The Jumping Dead

Development of a Graphics-Intense Smartphone Game

Bachelor of Science Thesis in Computer Science and Engineering

Emil BRYNGELSSON
David DAGSON
Mathias FORSSEN
Jonatan KILHAMN
Nina MALM

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering

Gothenburg, Sweden, June 2013

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or
other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

The Jumping Dead
Development of a Graphics-Intense Smartphone Game

Emil BRYNGELSSON
David DAGSON
Mathias FORSSEN
Jonatan KILHAMN
Nina MALM

(© Emil BRYNGELSSON, June 2013
(© David DAGSON, June 2013

(© Mathias FORSSEN, June 2013
(© Jonatan KILHAMN, June 2013
(© Nina MALM, June 2013

Examiner: Sven Arne ANDREASSON

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover: The image on the cover can be seen show a typical frame from the game The
Jumping Dead

Department of Computer Science and Engineering
Goteborg, Sweden June 2013

Abstract

This thesis presents the development of a graphics-intense smartphone game.
With a team of five people for five months, a game engine is used to develop a
3D platform game for Android. The goal is to make the most of the graphics
capability of the phone, while maintaining smooth gameplay at an acceptable
frame rate.

To fulfil the requirements, a number of problems have to be solved. Light
and shadows can be implemented in several ways, with different looks and
costs. 3D modelling, texturing and animation is explored to learn to create
good looking characters and decorations without overloading the GPU with
triangles. The tools and effects used are tested with regards to the frame rate
of the phone, and the results are documented in detail.

The resulting product is a platform game with animated models, inter-
active physics, and several types of light, shadows, and particle effects. The
discussion is based around objective measurements of frame rate, in combina-
tion with the subjective opinions on the quality of visual effects used.

Based on the results, our conclusion is that a graphics-intense smartphone
game can be made, but it has to be done with care. Considerations include the
shader interaction with models and textures, minimising the number of trian-
gles for rendering and storage in memory, and maintaining an even rendering
and game-logic workload per frame to avoid stalling the game.

Sammanfattning

Denna kandidatuppsats behandlar utvecklingen av ett grafikintensivt spel for
smartphones. Under fem manader arbetar fem personer med att utveckla ett
3D-plattformsspel till Android. Malet &r att utnyttja telefonens grafikchip
maximalt utan att det negativt paverkar flodet i spelet.

For att kunna na malet si sa behovde ett antal problem losas. Ljus och
skuggor kan implementeras pa flera olika sétt, med olika utseende och kostna-
der. 3D-modellering, texturer och animationer undersoks for att kunna uppna
attraktiva figurer och dekorationer utan att éverbelasta grafikprocessorn. Alla
verktyg och effekter testades med avseende pa frame rate pa telefonen, och
resultaten dokumenterades i detalj.

Den resulterande produkten &r ett plattformsspel med animerade model-
ler, interaktiv fysik och flera olika typer av ljus, skuggor och partikeleffek-
ter. Diskussionen &r uppbyggd kring objektiva métningar av bildfrekvens i
kombination med subjektiva asikter om kvaliteten péa de visuella effekter som
anvants.

Utifran resultaten &r var slutsats att ett grafikintensivt spel kan uppnas,
men det méaste goras med eftertanke. Hansyn maste tas till, bland annat, hur
shaders interagerar med modeller och texturer, minimering av det antal tri-
anglar som renderas och sparas i minnet samt hur renderingen och spellogiken
kan spridas ut pa ett jamnt sitt for att forhindra att de negativt paverkar
spelflodet.

Acknowledgements

We would like to thank our supervisor, Ulf Assarsson, for his pointers con-
cerning graphical effects and his help with the report throughout the project.
Further, we would like to thank the Department of Computer Science and
Engineering for providing us with the smartphone that was used in the the-
sis. We would also like to thank bachelor groups 2 and 24 for providing us
with invaluable feedback on the structure of our report. Finally we would like
to thank the jMonkeyEngine and Blender communities for all their help and
patience.

Contents

(I _Introduction|

(1.1 Background|

1.2 Purpose| .

1.0 Method .

[1.5.1 'Testing and comparing visual appearance|.

(1.6 Description

of the game|

[2.1 Lighting techniques|,

2.1.1 Reflection models

[2.1.2 Prec

alculated light|

[2.1.3 Background illuminated objects|

[2.1.4 Multi-coloured light sources|

[2.2 Light in jMonkeyEnginel

[2.3.1 Performance with many light sources|

[2.3.2 Shading of the background|

[2.3.3 Modelling of torch lights|

[2.3.4 Modelling of window light|

2.4 Discussionl
[3_Shadows|

[3.1 Drop shadows|

[3.1.1 Projection shadows|

[3.1.2 Shadow-mapping| L.
I;i,l';s :‘2112L£1£2!! ygzllllllngil -------------------------

[4 3D modelling
01 Prooioed

[4.2 Mesh editin

T R

4.3 Colouring and texturingl

4.4 Animations|

[4.5.1 Mesh editingl

[4.5.2 Colouring and texturing|

[Particle systems|

6 Game logic|

6.1 Main gameplay|

[6.1.1 Jumping

6.2 Collision detectionl

[Using a game engine|

[7.1 Choosing a game engine|

(7.2 Adapting to jMonkeyEngine’s framework|

[7.2.1 Spatials and controls|

[7.2.2 Loading assets and scenes|

(23 Conclusionsd oo

[7.3.1 Physics|.

[7.3.2 Graphics|.

8 Resultsl
9 onl

9.1 Project management|

9.2 Game development| 0000000

9.3 Graphics|

(10 _Conclusions|
[References|

35
35
35
36

38
38
38
39
40
41
42

43
43
43
44
44
44
45
45
45

47

48
48
48
49

50

51

Dictionary

Some abbreviations, terms and definitions are stated here for reference and for ease
of reading. Other technical terms are explained in the specific chapters where they
are used.

the game - The game produced as part of this project.
the ghost - The in-game character controlled by the player.

the player - Refers to either the person playing the game or to the ghost, depending
on context.

the phone - The phone used during development and for testing, a Samsung
Galaxy S2 from 2011.

The Jumping Dead - The title of this project and name of the game. Most often
refers to the game.

fps - Frames per second. A measurement of render speed often used in games.

resolution - Refers to the number of pixels on screen or on a texture, or the number
of triangles of a 3D model.

cost - words like costly, expensive, and intensive are used in terms of processing
power and memory unless otherwise specified.

Android - The Android OS for smart phones. Where version is concerned, refers to
Android 4.1.2, which is the latest update for the phone, and was used during
this project.

OpenGL - The Open Graphics Library. Where version matters, refers to OpenGL
ES 2.0, the version used in Android on the phone.

JME - jMonkeyEngine 3.0 RC2. Refers to either of the SDK, the IDE or the game
engine with this name.

shader - In computer graphics, a program that is run for each of a set of entities
when rendering the scene. For the purposes of this report, the sets of entities
are all vertices or all fragments.

vertex shader - A shader that is run for each vertex in the view, transforming
their positions in three dimensions to positions on the screen.

fragment shader - A shader that is run for each fragment of the screen (com-
monly a pixel), performing any necessary calculations including determining
the fragment’s colour.

buffer - A temporary storage of data associated with each rendered fragment (com-
monly a pixel).

depth buffer - A buffer containing the distance between the camera and the closest
surface at each fragment.

normal buffer - A buffer containing the normal of the closest surface point at each
fragment.

colour buffer - A buffer containing the colour of each fragment. This is normally
the buffer that is shown on the screen after rendering.

1 INTRODUCTION

1 Introduction

The market of games for handheld devices has grown immensely the last couple
of years. A recent study, conducted by the Entertainment Software Association,
showed that the average household in the US owns at least one PC, smartphone, or
dedicated game console (Entertainment Software Association 2012)). The study also
showed that a third of smartphone owners regularly use their phones to play games.
There is therefore a large market for game developers in this field. This bachelor’s
thesis focuses on the development of a graphics-intense smartphone game for the
Android platform.

1.1 Background

Computer graphics has for a long time been an important aspect of video games.
Released in 1972, Pong was among the first video games produced for a mass market
(Pongmuseum.com 2013)). Computer graphics has seen major improvements since
then and this development continues every year. The use of increasingly complex
graphics in computer games calls for more advanced hardware, which can be seen as
a contributing factor for the hardware industry to put out new and more powerful
products at an increasing rate (Jornmark, Axelsson, and Ernkvist 2005)). Another
field that is on the rise is the smartphone industry. Modern smartphones resemble
pocket PCs more than regular phones and as hardware improves, so can the software
developed for them as well. There are thousands of games available for smartphones
and they, just like computer games, drive their hardware to support better and
better graphics (Jornmark, Axelsson, and Ernkvist 2005).

However, in contrast to desktop PCs, smartphones are built to be portable, which
results in different requirements and restrictions on the hardware. Smartphones have
much harder limits on their weight and size, and hardware for smartphones must be
designed accounting for such constraints. Thus games developed for smartphones
face different restrictions than the ones developed for PCs. For example, the amount
of textures that can be cached in the GPU, the GPU speed, the CPU speed, and
memory resources are considerably higher on modern computers compared to newer
smartphones. Another important aspect is the difference in screen size and screen
resolution between these categories of devices. As a consequence, visual details as
well as flaws that would be visible on a computer screen are easily missed on a
smartphone screen. These problems and restrictions are the focus of this thesis.

1.2 Purpose

The purpose of this project is to build a simple yet functioning and graphics-intense
platform game for smartphones. Simple yet functioning means that the game will
run with simple game logic and few features, but is in such a finished state that it
could be played by someone outside the development group. Graphics-intense means
that the game contains several graphical elements, such as 3D models, lighting,
shadows, and particle effects, which are visually pleasing.

Furthermore, the aim of this thesis is to describe the graphical aspect of the
development of the game, with focus on an analysis of different techniques available

1.3 Problem 1 INTRODUCTION

for implementing different graphical elements.

1.3 Problem

Based on the purpose of the project, a problem specification was made addressing
major concepts of the visual appearance of the game as well as the game concept
and rules.

Object representation includes 3D modelling of objects, animation of the models,
and texturing. The models and textures need to be adapted the screen size of the
phone in order to limit their cost while still maintaining their attractiveness. Thus,
Section [f] explores what level of detail is suitable for the device and the game concept
used in this thesis.

Graphical effects are used to heighten the visual appearance of the scene, and
includes implementation of several graphical elements which can be applied to rep-
resent the objects as well as possible. Using several graphical effects can result in
an excessive use of the available hardware resources, which is why evaluation of dif-
ferent techniques in isolation as well as in combination with others is an important
subject in game development. Section [2] Section [3, and Section [5] aim to answer the
question of what is a good balance between the quality and the overall performance
of the game.

Game logic is a subject where the physics and other rules of the chosen game
domain are modelled. This also includes automatic generation of the level during
gameplay, which involves adjusting the process in order to create a game which is
neither too hard to play, nor so easy it bores the player. This is not the main focus
of this report, but is covered briefly in Section [and Section [7]}

1.4 Limitations

Developing a game is a large project which is normally not completed by five people
in five months. Thus, two limitations were introduced to reduce the scope of the
project.

Firstly, Android was chosen as the targeted platform since it would not be pos-
sible to develop the game for several platforms within the given time frame. The
reasons for choosing Android over other platforms are the group members’ previous
experience with Java programming and that developing for Android has no associ-
ated costs.

Secondly, the development of The Jumping Dead was limited by the smartphone
model, Samsung Galaxy S2, which was the one provided by Chalmers to be used
for verification during this project. All software written had to be runnable on this
device, and no claims can be made regarding other smartphone models.

1.5 Method

This section details how the project was conducted in order to achieve the visual
appearance shown in the concept art in Figure [1}

Deciding which graphical effects should be implemented was an important aspect
of this project. A literature study that analysed different graphical elements and

1.5 Method 1 INTRODUCTION

effects was made in order to facilitate the decision. The methodology used to choose
which of those graphical elements and effects to be implemented, once they had been
tested in the game, is covered in Section [[.5.1] In addition to the literature study,
other tools were used to facilitate the development. The game was built entirely in
the game engine jMonkeyEngine. The decision of which game engine to use, and
the impacts of using jMonkeyEngine is further discussed in Section [7] Furthermore,
Git, a version control system, was used to facilitate having multiple developers work
on the project simultaneously. Finally, Blender was used for all the modelling work.

Figure 1 — Concept art for The Jumping Dead, used as a model throughout
the development process.

1.5.1 Testing and comparing visual appearance

When evaluating the impact of different graphic effects, different perspectives were
taken into account. Each feature included in the game needs to enhance the visual
appearance while neither its computational cost nor its memory consumption are
too high. The computational cost is measured in average frame rate over a few
minutes. In order for an implementation of a graphic effect to be regarded as having
an acceptable computational intensity, the average frame rate when it was applied
needed to be at least 30 fps. The visual appearance is, on the other hand, measured
using the subjective opinion of the group members.

If possible, these measurements are taken on the smartphone provided to the
project. In other cases, such as when one implementation results in a black screen
on the phone mentioned above but functions correctly on the computers used for
the development, the measurements are done using computers to give an indicator
of its performance and visual effect. In the later case, the name of the computer is
stated in the text.

1.6 Description of the game 1 INTRODUCTION

1.6 Description of the game

The Jumping Dead is a platform game in which a ghost jumps from platform to
platform trying to get as far as possible. Jumping is accomplished by tapping the
screen. The game ends when the ghost falls down, and the task is made harder
by enemies pushing the ghost backwards. Power-ups can be collected to receive
temporary benefits.

The setting is a stone church, which includes several elements to enhance the
atmosphere. The walls are decorated with roman numerals indicating the player’s
progress, as well as windows, torches and plants. The enemies come in the shape of
bats flying across the screen and wizards who fire colourful magic bolts at the ghost.

2 LIGHT

2 Light

Simulation of different aspects of light can be very important in games. Even very
simple approximations of the behaviour of light help humans discern distances and
the relative positions of objects. Colours can also set the mood in various ways
(Kiiller et al. 2006). In a computer-rendered 3D environment, each object can be
drawn in a uniform colour in order to be distinguishable from other objects in the
scene. Introducing a more complex model for light, however, makes the scene look
more realistic.

Several light models and techniques exist, ranging from models that trace indi-
vidual beams of light as they are reflected and absorbed in the scene, which is too
computationally expensive to be feasible for real-time rendering, (Filion 2011) to
simplified models using a few constant colours for each object to approximate the
illumination (Akenine-Méller, Haines, and Hoffman 2008).

The simplified model introduced above normally consist of three constant colours,
namely ambient, diffuse, and specular (Wolff [2011). Ambient light is light with no
direction which illuminates everything in the scene evenly (Akenine-Méller, Haines,
and Hoffman 2008). This is supposed to approximate the real-world effects of light
being repeatedly reflected in many diffuse surfaces in the environment (Akenine-
Moller, Haines, and Hoffman 2008)). Diffuse reflection models light that falls directly
from a light source onto a surface (Akenine-Méller, Haines, and Hoffman [2008). Its
strength is lowered as the light comes in close to parallel to the surface (Akenine-
Moller, Haines, and Hoffman 2008)). This corresponds well to reality, since the same
amount of light is spread over a larger surface area if that surface is slanted away
from the light source (Akenine-Moller, Haines, and Hoffman [2008]). The concept
of specular reflection is that most of the incoming light continues in the direction
reflected in the normal (Akenine-Moller, Haines, and Hoffman 2008)). The surface is
thus drawn with different brightess depending on the position of the viewer. This can
simulate shiny materials where one can see the reflection of a light source (Akenine-
Mboller, Haines, and Hoffman 2008)).

2.1 Lighting techniques

There are a number of techniques to achieve lighting by using the simplified model
described above. Firstly, light can be calculated by utilising either the fragment
shader or the vertex shader, resulting in different computational costs and smooth-
ness. Furthermore, light can also in some cases be precalculated when the illu-
mination from a light souce can be predicted. This section will describe different
techniques for modelling light.

2.1.1 Reflection models

Both diffuse and specular reflection use the fragment’s surface normal in their calcu-
lations. However, as per Section [4.1] all surfaces are divided into flat triangles with
sharp angles between them. If the entire triangle is considered to have the same
normal, the resulting shape will have sharp division between edges. This is called
flat shading (Akenine-Méller, Haines, and Hoffman [2008]).

2.1 Lighting techniques 2 LIGHT

To make the surface seem smoother, the normal is defined differently for each
vertex of the triangle and interpolated for all fragments in-between (Akenine-Méller,
Haines, and Hoffman [2008)). The method used in jMonkeyEngine 3.0 (JME) is called
Phong shading (jMonkeyEngine and simply interpolates the surface normal
in every point from the three vertices. This means that the fragment shader has to
perform light calculations for each fragment (Akenine-Méller, Haines, and Hoffman
2008).

Another method that is computationally cheaper is Gouraud shading. It per-
forms the light calculations for the vertices only, and then lets the fragment shader
interpolate the resulting colour for all points in-between (Akenine-Moller, Haines,
and Hoffman [2008). Neither flat shading nor Gouraud shading renders specular high-
lights as accurately as Phong shading (Akenine-Moéller, Haines, and Hoffman 2008).
All three variants are shown in Figure [2|

OLe

Figure 2 — The same sphere rendered using, from left to right, flat shading,
Phong shading, and Gouraud shading.

2.1.2 Precalculated light

The methods presented above can be used to determine the effects of light dynami-
cally for each frame. If the light sources or the illuminated objects move, the lighting
will change accordingly. However, this is not always necessary. If neither the light
source nor the object to be illuminated moves, the light calculations will give the
same results each frame.

In the latter situation, the illumination can be determined once and then re-used.
This is done by storing precalculated values in a semi-transparent texture, which
is brighter closer to the light source. Quadrilaterals with these textures are then
placed between the light source and the object that is illuminated, which gives a
realistic result if the object is flat.

There are other concerns to note when using precalculated light. Since the
static texture does not look different when seen from different camera positions, it
does not model the behaviour of specular reflections. Another consequence of using
precalculated textures are that light calculations involving the light source can be
omitted if no other objects than those the texture is applied to is affected by the
source. Furthermore, if the objects the texture is applied to are not illuminated by
other light sources, they can use an unshaded material. Such a material is exempt
from all light calculations, and is always drawn in the same colour with a constant

brightness (jMonkeyEngine 2013)).

2.2 Light in jMonkeyEngine 2 LIGHT

2.1.3 Background illuminated objects

A problem with using unshaded materials is that the objects for which it is used
are not affected by background illumination. Thus, the objects appear brighter
than other objects in space if the background illumination is not completely bright.
Moreover, if the background illumination is altered, the colour of the object will not
be updated, thus creating a colour contrast to the other objects.

One solution to this problem is to send a variable holding the ambient colour of
the scene to the shader. During rendering, the shader then multiplies the colour of
the object by the colour of the background illumination.

2.1.4 Multi-coloured light sources

Some light sources may have different colours in different directions. One example
of this phenomenon from the game is the light transmission through the coloured
window glass that causes objects to be illuminated with different colours depending
on which parts of the window they are close to. If a light source with a single colour
is used, the errors in colouring may be apparent.

Several methods for modelling the incoming light from multi-coloured light sources
exist. A simple approximation of this phenomenon is to use several light sources
with different directions and colours. However, this might lead to a large amount
of light sources appearing simultaneously. Another option is to extend the colour
attribute of the light sources with a texture describing its colours in different di-
rections (Akenine-Moller, Haines, and Hoffman [2008]). The relative positions of the
point to be illuminated and the light source centre can then be used to obtain a
coordinate to perform a texture lookup.

2.2 Light in jMonkeyEngine

In JME, support of a simplified shading model using ambient, diffuse and specular
lighting is included in the engine. The object to be illuminated is set to use a material
(see Section that supports light (jMonkeyEngine [2013b). Then, when a light
source is added to the scene, the lighting calculations are handled automatically.

There are several classes of lights implemented in JME. For background illumina-
tion, the game uses a directional light. As with ambient light, it reaches every point
with the same colour and intensity, but it also has a direction. Lighting variations
are introduced by adding point lights, which are shining outwards from one point in
all directions, and spotlights, which have cone shaped ranges. Different placements
of these types of light sources, along with precalculated light sources were tried. The
following sections will describe the different alternatives that were implemented, and
their effects.

2.3 Results

When modelling the light from the light sources in the game, several techniques
were used to decrease the computational intensity of the game while aquiring the
visual effects of light. These techniques included the functionality available in JME,

2.3 Results 2 LIGHT

unshaded objects, precalculated lighting, and colour textures. Finally, a solution
using unshaded materials being dependent on background illumination for the walls
and windows, precalculated lighting for modelling the illumination by the torches
and windows on the walls, point lights with a lower range for modelling the illumina-
tion from those lights on other objects than the walls, and colour textures to model
the multi-coloured nature of the window lights. In this section, the alterations of
the lighting models are depicted in sequence. Thus, the settings used for a specific
measurement are always the last settings portraied with the alterations that are de-
scribed along with the presentation of the measured value. Thus, the last described
settings are the ones used in the game.

2.3.1 Performance with many light sources

Initially, point lights were placed in all torches and windows, and spotlights were
used to brighten up the wizards, which added a high computational cost. In addition
to providing more depth and variety to the scene, the lights gave the impression
of activity, especially since the wizards’ light sources followed them. With these
settings, an average of 4.4 light sources, not counting the directional background
light, was used simultaneously. Compared to the 47.8 fps obtained when only the
background light was used, this lowered the frame rate to 18.8 fps.

Furthermore, if the wizards’ spotlights were removed, the average number of light
sources per scene was reduced to 2.4. As a consequence, the frame rate increased to
29.4 fps. Despite using less light sources, the presence of lights changed the visual
appearance of the scene, as can be seen in Figure [3, which depicts the same scene
with and without these lights. However, Figure [3b| also shows how the light emitted
from the fire of the torch reaches farther than seem realistic, thus not only affecting
the ghost, but also the flower pot and the platforms. The reason for and a solution
to this problem is described in Sections [2.3.3] and [2.3.4]

Moreover, measurements also showed that the range of the light sources as well
as the frequency with which they appear affect the frame rate. For example, in order
to execute at a frame rate of 35 fps or higher, a maximum of 0.9 point lights with
radius of 75 JME world unit{] could be used, but if the radius was decreased to 50
world units, 1.9 point lights could appear simultaneously.

2.3.2 Shading of the background

Shading of objects is calculated for each fragment in JME, thus making the frame
rate dependent on the size and number of objects for which light calculations are
made. One large object, compared to the size of the platforms and other game
objects, for which light is calculated is the background wall.

Making the wall unshaded, in other words not performing any light calculations
for it, greatly improved the performance of the game. With the settings described
above, where light sources were placed in torches and windows, but without illu-
minating the wall, the frame rate increased from 29.4 fps to 40.1 fps even if the
average number of light sources per frame was increased to 3.2. Using the second

IThe length unit used in the code. For reference, the platforms in Figure [4| are 24 world units
long.

2.3 Results 2 LIGHT

(a) Background illumination only. (b) Light sources placed in torches and
windows.

Figure 3 — Comparison showing the effect of placing light sources in the
torches and windows.

option described in Section enabled the wall to be affected by changes of the
background illumination. These extra computations did not have any notable com-
putational cost, as the game ran at 43.6 fps with an average of 3.0 light sources per
frame. However, both these options removed the illumination of the light sources
on the wall.

In order to solve the problem of the absence of illumination of the wall, precalcu-
lated light textures were added to the scene. The textures replaced the light sources
of the torches, as described in Section [2.1.2] and were used to model the illumination
of the wall by the window light. Thereby, the light sources of the windows were not
removed since they were needed to illuminate the ghost and other objects passing
nearby in the scene. The visual effects of the result is depicted in Figure 4l which
compared to Figure [3b] add a more prominent illumination of the wall by the light
sources, but also gives a darker background of the scene. Due to this approach, the
amount of simultaneously used light sources was decreased to 1.1, and the frame
rate was increased to 50.6 fps. These techniques are described more in detail in

Sections 2.3.3] and 2.3.4] below.

2.3.3 Modelling of torch lights

In the first implementation, the torches used point light sources illuminating both
the wall and any passing objects. However, this modelling caused three different
problems that resulted in modifications to the model. Firstly, JME’s implementation
of lighting requires that at least one vertex of a triangle needs to be within the range
of the light source in order for any part of the object to be illuminated. This means
that in order to affect the wall, the radius of the point light had to be at least
50 world units, which lead to high computational cost and lit objects farther away
from the fire than what seemed realistic. Secondly, fire produces a flickering light
in reality. When using an ordinary point light source, such flickering will not occur.
Thirdly, as the previous results in Section [2.3.2| showed, computing the colour of
the wall is computationally expensive and as a result the wall was made unshaded

2.3 Results 2 LIGHT

Figure 4 — Usage of light textures and unshaded wall material for modelling
the illumination of the wall by the light sources.

to increase the frame rate. As described above, this resulted in the torch light not
affecting the wall.

In order to illuminate the unshaded wall with a light that more closely resemble
real firelight, a precalculated light texture which was made to flicker by changing its
opacity each rendered frame was used to replace the torch light source. The game
ran at 50.6 fps when using this technique, which is considerably faster than using
a light source, which ran at 29.4 fps, while also producing a more realistic result.
However, as the texture only models the illumination by the fire on the wall, the
fire will not illuminate the ghost or other objects that may move close to it.

To account for the illumination on nearby objects, a light source was added
to the scene in addition to the texture. Since this light source only modelled the
illumination of small objects close to the source, but not the illumination of the wall,
it was given a smaller radius of 10 world units, which is the same size as the light
texture on the wall. This option lowered the frame rate to 47.9 fps. The different
models of the torch light is shown in Figure [5

] .

(a) A point light source (b) A pre-rendered lighting (c) A texture and a 10
with a 50 world unit ra- texture. world unit radius.
dius.

Figure 5 — Different variants of light from a torch.

10

2.3 Results 2 LIGHT

2.3.4 Modelling of window light

The modelling of the windows was affected by the shape of the window, the bright-
ness of the glass due to the sun light shining through the window, and the colourisa-
tion of the light being transmitted through the window glass. The following sections
will describe the different alternatives that were examined when modelling the win-
dows.

Multi-coloured window lights

Due to the light transmission through the coloured window glass, objects should be
illuminated with different colours based on which part of the window they are close
to. Since the light sources that are available in JME only can have one colour, they
cannot be used as a realistic solution to this light behaviour.

As described in Section [2.1.4] an option for modelling this is to use multiple light
sources. However, using a large amount of light sources was shown to be unfeasible
for real-time rendering on the phone (see Section [2.3.1)).

Another option is to use a precalculated wall lighting texture, which is applied to
the wall. As this option replaces the light sources, it produced an apparent increase
of frame rate to 53.4 fps. However, this option did not result in any colourisation of
the light which illuminates other objects than the wall, such as the ghost or nearby
platforms.

A third option that amends both these problems involves adding a texture de-
scribing the colours in different directions of the point lights as described in Sec-
tion 2.1.4] In order to not substantially strain the GPU’s texture cache, the used
textures had a size of 4 x 5 pixels.

Due to the fact that some graphic cards only can transfer 32 floats into the
fragment shader, some simplifications had to be made in order to be able to use
the colour texture. Firstly, the specular colour had to be replaced with a specular
brightness, which is a float describing the difference in intensity between the specular
and diffuse colours. Thus, the specular colour was approximated in the fragment
shader by multiplying the diffuse colour by the computed brightness, which may not
give the correct specular colour. Another difference is the calculated of the distance
vector between the point being shaded and the light source centre. Instead of using
the centre of the light source and the position of the fragment, the calculation was
made per-vertex in the vertex shader and then interpolated.

In this solution, the window closest to any moving illuminated object is found
simultaneously as the ordinary traversal of the light sources, which is used by JME
to find the colour and position of the light source closest to the different vertices
of the object, thus not increasing the computational complexity of the application.
However, this method occasionally selected the wrong window, thus resulting in the
light calculations being made with the wrong colours. The static objects received
the colour texture of the closest window when they were created, thus illiminating
the possibility of receiving an incorrect texture. When this implementation was
used for the ghost and the platforms, that is other objects were only affected by the
standard colour of the light source, the game ran at 48.3 fps, which can be compared
to the 52.7 fps that was measured when single coloured light sources of the same

11

2.3 Results 2 LIGHT

size and frequency were used.

Correct shape of the light range

The window lights should be narrower horizontally than vertically due to the window
shape, but the point lights have a spherical range.

The solution used was to place the light source in the lower part of the window,
which resulted in it reaching farther below the window than above it. As a result,
objects in the top half of the window would not be illuminated by the light source.
Furthermore, the the coordinate used for the colour texture lookup had to be altered
to compensate for the difference between the centre of the light source and the centre
of the window. Due to this repositioning and the small horizontal size of the window,
the radius of the point light could be decreased from 75 to 23.5 world units, which
despite of the multi-coloured light source increased the frame rate to 54.3 fps. This
frame rate is higher than the 52.7 fps measured using the larger, single coloured light
source, but adds the visual effect of the platforms and the ghost being illuminated
with different colours depending on their relative position to the window.

The difference between not using multi-coloured light and using it is shown in
Figure[6], where the colurisation has an apparent effect on the platforms. The impact
on the colouring of the ghost is more notable when it is moving compared to when
seen in an image, as in Figure [6al Thus, this colourisation is shown from an angle
in Figure [6b] where the transition from green lighting to blue is notable.

(a) Multi-coloured window light seen (b) Multi-coloured window light seen
from the front. from the side.

Figure 6 — Effects on the ghost and platform illumination by a 23.5 world
unit multi-coloured window light.

Shading of the window

If an ordinary shading model was used for the window, both the glass and the
window frame were affected by other lights in the scene. As a consequence, this
resulted in the glass being darkened by the directional light, as shown in Figure [6a]
above.

12

2.4 Discussion 2 LIGHT

To amend this, the window could either be set as glowing or using an unshaded
material. However, this lead to the brick frame being too bright, as with the wall
in Section [2.3.2] This visual effect of using an unshaded material for the window
frame is shown in Figure [7a]

Another option was to extend the shader used to make the wall illumination
dependent on the directional light with an affection texture that describes how much
different parts of the object should be affected by the background illumination. For
the windows, a texture as small as 2 x 1 pixels could be used for describing that
the brick frame should be affected, but that the glass should not. As portrayed
in Figure [7h] this resulted in the glass of the window to appear to glow due to
outside lighting while the bricks did not. However, when tested on the phone, the
texture lookup always resulted in a value depicting that the brick frame should not
be affected by the background illumination, thus leading to the same result as when
using an ordinary unshaded material. In contrast to when using this option for the
wall, the simplification of only taking the background illumination into account did
not increase the frame rate, which was decreased from 54.3 fps to 52.3 fps.

S wa®
OROn®
eesiee

(a) Use of the standard lighting mate- (b) Use of an unshaded material with

rial in JME, thus not taking background an affection texture. This option takes

illumination into account. the changes of background illumination
into account for the brick frame, while
ignoring it for the glass.

Figure 7 — Comparison of unshaded window frames when taking background
illumination into account and when not taking it into account.

2.4 Discussion

Initially, ordinary point light sources were used to model window light. This ap-
proach resulted in several visual problems as well as a very computationally expen-
sive model. Firstly, the light sources had to have a large radius in order to illuminate
the wall, which was both computationally expensive and illuminated objects farther
from the light source than appeared realistic. Secondly, the light sources did not
model colourisation of the light being transmitted through the church windows, nor
did they model the characteristics of fire.

Instead, multi-coloured light sources positioned in the lower halves of the win-
dows, smaller torch lights, and the use of light textures depicted reality better while

13

2.4 Discussion 2 LIGHT

having a lower computational cost. The texture behind the church windows along
with objects positioned in the upper half of the window were not illuminated by the
light source were elements which lowered the realism of the model. However, the
texture was still regarded to provide a visually pleasing effect, and the error of the
lack of illumination was not prominent since objects seldom are positioned in that
area of the window. However, these multi-coloured light sources only affects the
ghost and the platforms. Thus, the wizards, plants, and other objects are coloured
in the original light blue colour of the light source if they are positioned close enough
to it. This decreases the realism further, but is not regarded as a problem since the
ghost is the objects that the player focuses on. The multi-coloured nature could
be activated for other objects as well, which should not lower the frame rate ex-
cessively based on the measurements taken when this light behaviour was activated
for the ghost and the platforms, but this have not been tried. Moreover, the colour
texture of a window which was not the one closest to the player was occasionally
selected, which resulted in incorrect illumination of the ghost if the window closest
to the ghost and the selected window were of different types. However, this seldom
happened and was thus not regarded as a prioritised problem.

Furthermore, the simplifications made to calculations to accommodate for some
graphics cards only being able to transfer 32 floats into the fragment shader produced
no errors for the models used in the game, although the approximations could the-
oretically produce incorrect distance vectors and specular colours. This is because
the specular colours of the platforms and ghost was a brighter variant of the diffuse
colour, thus enabling the colours to be modelled correctly with only a diffuse colour
and a value describing the difference in brightness between the specular and diffuse
colours.

Using unshaded materials to take the background illumination into account
proved to be an inexpensive alternative to shaded materials. An option to using
an unshaded material to darken the window frame is to colour the texture for the
window glass in a brighter colour. However, this will result in the colours of the
glass appearing desaturated due to the grey background illumination. However, the
phone used the affection texture incorrectly, but the result was regarded as better
than letting the whole window being dependent on the background illumination.
Finally, the use of an unshaded material for the windows was more expensive than
using a material taking all lights into account, which was an odd result as this so-
lution requires less computations. This may be a result of the problems with the
measurement method discussed in Section Ol

14

3 SHADOWS

3 Shadows

The model for light used in section [2] hereafter referred to as the simple light model,
consists of three colour components per object, and have a problem in that it tends
to produce a flat result (Wolff 2011)). After having implemented lights, shadows can
be added to the model in order to add visual appeal and realism. However, the
representation of shadows in computer graphics is very often a concern separated
from illumination. In reality, shadows are a consequence of the fact that light does
not pass through opaque objects. There are physically correct rendering models,
but compared to the simple light model, those run much slower and are known to
be unfeasible for real-time rendering (Filion [2011]).

For the simple light model, used in JME, shadows are also crude approximations.
Two types of shadow models were considered for The Jumping Dead: drop shadows
and ambient occlusion. Drop shadows are the darker area cast by an object occluding
the light source. Ambient occlusion is on the other hand a model of shadows that
are caused by nearby objects (Wolff 2011)). There are other types of shadows and
shadowing techniques than these two, but none of them were considered for The
Jumping Dead.

This section will outline previous work and knowledge on drop shadows and
ambient occlusion. Then follows a description of the implementation of drop shadows
in the game, followed by the same regarding ambient occlusion. Both these results
also include some discussion along with the conclusions that can be drawn.

3.1 Drop shadows

To create a drop shadow, the basic task is calculating which objects are lit by a
given light source, and which are occluded. This information can be sent to the
fragment shader, which can then draw the shadowed fragments in a darker colour.
There are different methods that can be used to calculate which points that should
be shadowed, and they will be explained in this section.

Before moving on to different methods to do so, one thing should be noted. Be-
cause of the very simplified model of light, this section only concerns drop shadows,
i.e. shadows that fall from one object onto another. There are other shadow-like
effects that are captured when using ray-tracing, but not when using the simple light
model (Akenine-Moller, Haines, and Hoffman 2008, pp. 284-285). An approximation
of these can be achieved through ambient occlusion, which is described in section
section 3.2

3.1.1 Projection shadows

For shadows of meshes on planes, there is a very basic method called projection
shadows. Fach object casting a shadow is projected through the position of the
light source onto the plane to be shadowed. This gives a two-dimensional object
which can be rendered as a shadow. One of the drawbacks of this method is that
only planar surfaces can be shadowed. Furthermore, those planar surfaces must be
determined beforehand; the program cannot by itself determine where to cast the

15

3.1 Drop shadows 3 SHADOWS

shadow. The restriction to planes also means that objects in general can not cast
shadows on parts of themselves (Akenine-Moller, Haines, and Hoffman 2008)).

3.1.2 Shadow-mapping

Another method is to shadow each fragment in space based on the information in one
or several shadow maps. Such a map is generated each frame by rendering the entire
scene one from the viewpoint of each light source instead of the camera. Instead of
drawing to the screen, the program only marks points as illuminated or shadowed
based on whether they can be seen from the light. Then, in the ordinary render
pass from the camera’s viewpoint, this information is used to determine whether to
shadow each point.

One drawback of this approach is that the resolution of the shadow map — that is
the number of bitmap elements used in the first render pass — limits the smoothness
of the shadows (Akenine-Moller, Haines, and Hoffman 2008). Since many points may
be close to the camera but far from the light source, using the same shadow map
resolution as the screen resolution means some shadow edges become rough. At the
same time, increasing the shadow map resolution means computing time is spent on
determining the shadow status of several points, far from the camera, that all end
up in the same pixel on the screen.

A way to partially mitigate this, which is used in JME, is parallel-split shadow
mapping. The idea is to split the view frustum into segments of different depth,
and then using a different shadow map resolution for each segment. This way points
close to the viewer receive high-resolution shadows, and less time is devoted to points
farther away:.

3.1.3 Shadow volumes

Another method entirely is to use shadow volumes. It is based on the idea that
the total shadow cast from an object can be seen as an infinite volume with one
face towards the light, and faces on all sides running parallel with rays cast from
the light source. To determine if a point is shadowed, simply check if it is inside
at least one shadow volume. This is done by following a path from the camera to
the point of interest, and count the number of shadow volumes entered and exited.
Advantages of shadow volumes include the fact that the shadows are drawn in the
same resolution as the rest of the scene (Akenine-Moller, Haines, and Hoffman 2008)).

3.1.4 Results

A complete implementation of drop shadows is available in JME, including vari-
ants for shadows from directional lights, point lights and spotlights. As previously
mentioned, this implementation uses parallel-split shadow mapping.

Tests were made with shadows only cast by the ghost and the platforms, and only
received by the platforms and the wall. The visual results are showed in Figure [§
Using a high-resolution map, 4096 x 4096 pixels, the shadow edges are very sharp. A
lower resolution, 512 x 512 pixels, results in jagged shadow edges. These sawtooth-
like corners are the pixels of the shadow map, as that map is layered on the scene

16

3.1 Drop shadows 3 SHADOWS

from the viewpoint of the light source. Using the lowest resolution, 128 x 128
pixels, the shadows are also blurred-out which mediates the jagged look that would
otherwise result.

This shadow rendering is computationally expensive. With other settings such
that the laptop computer used for testing ran at an average of 68 fps El, test cases
similar to Figure [§| were tried. The 128 x 128 pixel shadow map version ran at 44
fps; the 512 x 512 one at 38 fps, and a 2048 x 2048 pixel shadow map version ran at
31 fps. The biggest one from Figure[§], 4096 x 4096, made the game freeze for about
a minute and then continue at less than one frame per second.

On the phone, all test cases resulted in a black screen as soon as the actual game
was started. The application would keep running, as evident by the music playing,

Finally, another problem was noted when testing on a computer using the JME
implementation. The drop shadows would not be shown through any transparent
object. The plant models are an example of transparency in the game, since they
are made by drawing a texture of leaves on transparent background to a flat sur-
face. Through the leaves the wall could be seen, but any shadow cast on that wall
disappeared.

3.1.5 Discussion

The purpose of adding shadows to the game was to achieve a more realistic look
and help the player see the platforms clearly. The restriction was, as with all other
graphical effects, that the game would run on the phone at a satisfactory frame
rate. A working implementation of ambient occlusion was already present before
drop shadows were thoroughly investigated. Since the latter would then be brought
into the game when it already contained lights and ambient occlusion, the change
would only add a small amount of realism. For that reason, the inclusion of drop
shadows was abandoned as it seemed to be a very time-consuming task.

The only implementation that was tested was JME’s own. However, writing a

2Tt should be noted that the game runs differently on different computers, and so these numbers
only tell anything in relation to each other. In this section, the laptop model used was a Macbook
Aluminium Unibody, 2009.

(a) Resolution: 128 x 128 (b) 512 x 512 pixels. (c) 4096 x 4096 pixels.
pixels.

Figure 8 — Drop shadows when using jMonkeyEngine’s default implementa-
tion set to different shadow map resolutions.

17

3.2 Ambient occlusion 3 SHADOWS

new implementation of shadow mapping did not seem worthwhile. This was because
this effect and numerous others showed that the GPU’s texture cache, where such
a shadow map would have to be stored, could not handle very big textures. The
results shown in Figure |8 indicated that the resolution of any shadow map providing
satisfactory shadows would be past the limit.

The other variants for drop shadows mentioned above, projection shadows and
shadow volumes, did not seem to be good candidates either. As the forays into
ambient occlusion detailed in Section made clear, creating and handling semi-
transparent shadow objects and placing them on the walls was tedious and com-
plicated enough when those shadows were not to move or change shape. Shadow
volumes was also deemed too complicated to implement compared to other effects.

Drop shadows are easy to achieve in JME, but that implementation does not
work on the Android platform. There may be a way to adapt the implementation
specifically for Android, but that would have to wait to another project than this one.
If no other shadowing effect were used, the scene would greatly benefit from including
drop shadows. However, in this case ambient occlusion had already increased the
level of realism greatly meaning drop shadows were not a priority.

3.2 Ambient occlusion

Ambient occlusion is an approximation of light attenuation due to occlusion by
nearby objects, such as the shadowing in corners, edges between floors and walls,
and in wrinkles of clothing (Wolff 2011)). It is known to add a noticeable amount of
quality, depth, and realism to the rendered image (Wolff 2011]).

There has been research in the area previously, which has resulted in a number
of techniques for modelling ambient occlusion with different amounts of accuracy
and time consumption. As the research often is conducted on computers whose
hardware resources, such as GPU texture cache, GPU speed, and CPU speed, are
considerably higher than those available on smartphones, some techniques created
for real-time rendering are not feasible for that purpose on smartphones.

3.2.1 Ambient occlusion techniques

Accurate modelling of the accessibilityf’| of a point can be done by tracing rays
emanating from the point and directed in its upper hemisphere (Wolff |2011). If a
ray collides with any surface within a certain distance from the point, the surface
occludes the point in that direction (Wolff 2011). The accessibility of the point is
then proportional to the fraction of rays that are not occluded (Wolff 2011)). Figure
[9) portraits this concept.

As this method involves tracing a large number of rays from each point, it is
known to be very computationally intensive (Wolff 2011; Akenine-Moller, Haines,
and Hoffman 2008). Thus, much of that computation is avoided or approximated in
real-time rendering (Akenine-Moller, Haines, and Hoffman 2008)). Three categories of
different methods available for real-time rendering of ambient occlusion are presented
below.

3The amount of ambient light a point receives (Wolff |2011)).

18

3.2 Ambient occlusion 3 SHADOWS

C

Figure 9 — Concept of the ambient occlusion model in 2D space. The light
blue area represents an object while the white area represents air. The circles
are different points that are evaluated, the dashed lines their normals, and the
semicircle their upper hemispheres. Rays that are occluded are directed in the
red parts of the hemisphere, while rays that are not occluded are found in the
green parts. Points A and D will not be occluded at all, while C will have a
lower accessibility value, and B will be very occluded.

Precomputed ambient occlusion

With the simplification that all indirect light is equally distributed in space, ambient
occlusion is independent of the position of the light sources (Wolff|[2011; Filion 2011)).
This allows precomputation of the accessibility factors, which are stored in a texture
(Wolff ; Akenine-Moller, Haines, and Hoffman .

However, as ambient occlusion is dependent on nearby objects, caution must be
taken for objects that move relative to each other and when objects are deformed
(Wolft . The faults recurring from the simplification of not modelling such oc-
clusion for rigid bodies are not always perceived by the user (Akenine-Méller, Haines,
and Hoffman . If this simplification does result in detectable errors, the am-
bient occlusion from one object on others can be stored in a low resolution cube
map or a texture, and then projected onto the scene when the object moves (Landis
; Kontkanen and Laine ; Malmer et al. . Additionally, the occlusion
from one object on itself due to movement of its body parts require precomputa-
tion of several poses (Akenine-Méller, Haines, and Hoffman Kontkanen and
Laine . Both solutions for moving objects are very storage expensive (Akenine-
Méller, Haines, and Hoffman [2008)), which can become a problem when rendering

on smartphones.

Screen-space ambient occlusion

Screen-space ambient occlusion is a category of techniques operating in screen-space.
Thus, surfaces which are not visible from the camera do not contribute to the calcu-
lated accessibility value. Fortunately, this is seldom causing considerable problems
for the visual perception (Filion [2011).

Both Filion (2011) and Mittring have proposed screen-space methods

19

3.2 Ambient occlusion 3 SHADOWS

where rays are traced against the depth buffer instead of several directions in the
upper hemisphere. However, their approaches for extracting sample points and
performing calculations differ. Filion (2011) has proposed extracting 2D samples
in the upper hemisphere of the point by using a normal buffer. Mittring (2007)) on
the other hand considers 3D points from the whole sphere with the centre in the
evaluated point, thus having to approximate which samples are not in the upper
hemisphere of the point.

Since the main bottleneck when using screen-space ambient occlusion is the use
of the GPU’s texture cache system (Filion 2011)), Filion’s use of the normal buffer
in addition to the depth buffer can cause problems. To amend the extensive use of
the texture cache system, the depth buffer can be downsampled to a sixteenth of
the original size, which often produces pleasing results (Filion [2011)).

Both methods have problems with different artefacts, such as banding artefacts or
noise, due to the small sample rate and non-randomised sampling (Akenine-Moller,
Haines, and Hoffman 2008} Filion 2011). The problem can be amended by using
a semi-randomised sample pattern and post-process blur (Akenine-Méller, Haines,
and Hoffman 2008; Filion 2011)), but those solutions cause higher computational cost
and in some cases strain the GPU texture cache system.

An alternative to these techniques has been presented by Luft, Colditz, and
Deussen (2006). The method subtracts a blurred version from the original depth
buffer, which is inexpensive but only resembles ambient occlusion (Akenine-Moller,
Haines, and Hoffman [2008). However, a pleasing image can be produced with correct
settings (Akenine-Moller, Haines, and Hoffman 2008).

Volume-based ambient occlusion

Volume-based ambient occlusion is a category of techniques where the accessibility
value is estimated analytically by modelling each object as a collection of volume
shapes.

Bunnell (2005) used disks positioned at each vertex of the objects. The main
issue with this method is that it requires a large amount of discs even for small
scenes, which leads to a large memory consumption for storing information about
them.

Evans (2006)) proposed a method based on distance ﬁeldsﬂ covering the whole
scene. The method produces visually pleasing results, but due to the size of the
field, it is only suited for small volumetric scenes.

Another option not dependent on the geometric complexity was presented by
McGuire (2010)). The method includes extruding dynamic bounding volumes from
objects, and later traversing them similar to how shadow volumes are traversed
during shadowing (McGuire 2010). For many scenes, the result is comparable to ray
traced occlusion and can be substantially faster than Mittring’s method while less
error-prone (McGuire 2010)). The main disadvantage of the method is that it uses
both normal and depth buffers during calculations (McGuire 2010)).

4A distance field stores a value for each point on a plane or in a volume. The sign of the value
states if the point is inside an object or not, and the magnitude is equal to the closest object
boundary (Akenine-Moller, Haines, and Hoffman [2008]).

20

3.2 Ambient occlusion 3 SHADOWS

3.2.2 Results

For use in the game, implementations of precomputed ambient occlusion and screen-
space ambient occlusion were made. The implementations were initially tested on
an Acer TravelMate 5520 computer for an indicator of their speed and accuracy,
and later tested on the phone for final comparison. In short, precomputed ambient
occlusion was regarded as the best option in the end, and is thus the alternative
used in the game.

Precomputed ambient occlusion

The first implementation included precomputed ambient occlusion stored in textures
for each object and additional quadrilaterals representing the ambient occlusion on
the wall and platforms caused by the object. Due to this approach, the imple-
mentation does not model the occlusion caused between moving objects or body
parts.

To minimise the use of the GPU’s texture cache system, two different simplifi-
cations were made. Firstly, the ambient occlusion textures were minimised to a size
smaller than the size of the objects shown on screen. Secondly, if the object used
a colour texture, the ambient occlusion texture was merged with it before render-
ing. As a consequence, the occlusion factor was multiplied by both the ambient and
diffuse colour, which produced a slightly too dark result.

Another problem noted from the implementation was overdarkening. This oc-
cured when two occlusion quadrilaterals overlapped, or when the ghost was posi-
tioned in the air or in front of a window. The latter occurence had two reasons.
Firstly, the floor quadrilateral was not temporarily removed when there was no plat-
form positioned below the ghost. Secondly, if the ghost ran in front of a window,
the window glass was shadowed.

Predictably, the implementation added a sense of depth to the scene. As can be
seen in a comparison between Figures and this resulted in the platforms
being easier to distinguish.

Screen-space ambient occlusion

The second implementation tested was the ambient occlusion functionality Bouquet
provided as a post-process for jMonkey in 2010.

As a consequence of the alterations of the colour buffer after the scene is rendered,
not only the ambient colour term, but also diffuse colours, specular colours, and light
sources are darkened. An example of this can be seen in Figure[10d, where the light-
emitting fire is shadowed.

Furthermore, the computational complexity of the technique was too high for
real-time rendering on the TravelMate laptop. To lower the complexity, Bouquet’s
implementation was altered to only calculate ambient occlusion in real-time for pixels
close to moving objects, and using precomputed ambient occlusion for fixed objects.
While the alterations led to a considerable increase of speed from 18 fps to 28 fps on
the laptop, it was still too slow for real-time rendering. Additionally, the alterations
introduced further over-darkening at pixels at which both ambient occlusion textures

21

3.2 Ambient occlusion 3 SHADOWS

and screen-space ambient occlusion was used. Moreover, when tests were executed
on the phone, the GPU’s texture cache was overused, resulting in an execution error.
Finally, as JME does not support post-processing when compiling for Android, the
technique resulted in a black screen even if the calculations were performed.

(a) No ambient occlusion (b) Precomputed ambient (c) Bouquet’s screen-space

model. Performance: 57.1 occlusion. Performance: ambient occlusion. Perfor-

fps on the laptop, 52.7 fps 54.3 fps on the laptop, 49.5 mance: 18 fps on the lap-

on the phone. fps on the phone. top, not runnable on the
phone.

Figure 10 — Comparison of different ambient occlusion techniques.

3.2.3 Discussion

The precomputed method uses accurate models, and thus yields realistic results
for static objects. If it is used, then accessibility values should be precomputed
for the occlusion generated by moving objects on other moving objects, and an
implementation of correct projection of such occlusion should be made. However,
the lack of such support was remotely visible during gameplay.

There are also several proposals of solutions to the problems with over-darkening.
The incorrect shadowing by the ghost on the air can be solved by sending the position
of the ghost and the occlusion texture to the shaders used to shading the platforms
instead of using a quadrilateral. The shaders can then use the distance between
the the ghost and the point being shaded to evaluate if the ghost is occluding
the platform and to calculate the coordinate for a texture lookup of the occlusion
texture. The occlusion of the window glass can be solved in with a similar technique
by sending the occlusion texture to the wall and window shaders. The problem with
over-darkening where wall occlusion textures from objects overlapped was solved by
taking caution to move objects whose wall occlusion may overlap further from each
other

Nevertheless, the technique involves a time consuming manual process when
computing and storing accessibility values for each object. Screen-space methods
have the advantage of not being dependable on the used objects, but demanded
more resources than were available on the smartphone. Thus, although widely used
for real-time rendering, screen-space ambient occlusion proved too computationally
expensive for use on the phone. Other post-processing alternatives that are faster
exist, but care must be taken to ensure that they do not overuse the GPU’s texture
cache system and that they are fast enough.

22

3.2 Ambient occlusion 3 SHADOWS

One solution to the over-darkening of light emitters due to the post-processing is
to compute the screen-space ambient occlusion technique during rendering. Then,
the accessibility value can be multiplied by only the ambient colour. It also intro-
duces the option for each pixel to choose whether to use the accessibility value from
a texture or calculate it in real-time. However, this requires a suitable technique
with regard to the hardware resources available on the phone.

23

4 3D MODELLING

4 3D modelling

The models used in computer graphics are built up from polygonal meshes and their
associated properties. The components of a mesh are introduced in Section and
illustrated in Figure This chapter then continues to describe some techniques
used for creating, colouring, and animating a mesh. This is not intended as a detailed
how-to guide, but such guides can be found in the references. Nor is it meant as a
complete overview; the topic is huge and the concepts covered here are limited to
those that were used in the finalised game.

4.1 Primitives

Model geometry is made up of primitives. The smallest unit is the vertex which is
a set of attributes describing a point in space. In the simple case this means three
coordinates x,y and z in some coordinate system. The notion of vertex may also
contain additional information tied to the point, for example colour.

A set of vertices make up an edge or a polygon face. Edges and faces could in
theory also have color attributes associated to them but in practice data is rather
inferred from the corner vertices by interpolation.

Polygons in turn make up polygonal meshes which are used as geometric models.
Triangles are generally faster to process than other polygons, and for this reason
polygon faces are split into triangles for real time rendering.

Figure 11 — The primitives making up a wizard mesh. From left to right are
vertices, edges, polygonal faces, and triangles.

4.2 Mesh editing

A mesh can be created programmatically (Anders or using mesh editing soft-
ware. For this project, Blender was chosen because it is free to use (The Blender
Foundation [2013), and was recommended by the JME community(Vainer 2013c).
This section covers basic operations in 3D modelling, cloth simulation, and smooth
shading as applied with Blender.

Some of the most basic tools in Blender are translation, rotation, scaling, extru-
sion, and subdivision (Flavell . These operations are applied to the vertices,
edges, and faces of a mesh. Starting from a set of standard geometries including

24

4.2 Mesh editing 4 3D MODELLING

cubes, spheres, and cones, many physical shapes can be roughly imitated using only
these tools. An example is given in Figure

Figure 12 — The ghost mesh is formed from a sphere by translation, scaling,
extrusion and subdivision.

Cloth modelling is one application of soft body dynamics, in this case for imitat-
ing the look and physical characteristics of cloth (Mullen and Coumans 2008)). This
is particularly useful when creating a ghost mesh. Blender includes a physics engine
that handles the calculations, providing the designer with a flexible way to model
cloth without delving into physics (Mullen and Coumans [2008). An illustration is
provided in Figure[I3] In this case, the soft body simulation is temporary and only
used to deform the mesh. When a satisfying shape is found, the mesh is modified
to become rigid again.

44

Figure 13 — Cloth modelling. A supporting mesh (green) is placed inside the
cloth to control the deformation. A physics simulation is run where the cloth
falls down onto the support.

Smooth shading can be enabled for a mesh or parts of it while modelling. This
changes the appearance of the surface through shading without increasing the num-
ber of triangles. Without smooth shading, a very high triangle resolution would be
required to achieve the same smooth look. The effect of activating smooth shading

25

4.3 Colouring and texturing 4 3D MODELLING

for the ghost model is shown in Figure The specific shading algorithm that will
be used depends on the context in which it is used. JME uses Phong shading as

seen in Figure 2

Figure 14 — Smooth shading applied to the ghost mesh to give the surface a
smooth look. Note that the outer edges are still very sharp.

e 4

Figure 15 — The bat mesh, flat shaded.

4.3 Colouring and texturing

When the shape of a mesh is set, the next step is to add visual information to the
surface. This can be accomplished by the use of materials, textures, and UV maps.
A material is a set of parameters added to a model to provide information about
surface colour, transparency, textures, and shading (Akenine-Méller, Haines, and
Hoffman . This information is used to render the object as intended on screen.
JME supports definitions for both unshaded and shaded materials (Vainer 2013D)).
A model with unshaded material will be drawn identically regardless of any light
sources in the scene, whereas the colour of a shaded material can be affected by
several layers of light (see Section . An illustration applying coloured materials
can be seen in Figure [16d]

Texturing means drawing a 2D image onto the surface of a model. This allows
for a high amount of visual detail without the cost that comes with increasing the
number of triangles. In the mesh editor, a UV map image is created and an image
editor can then be used to draw the texture.

26

4.4 Animations 4 3D MODELLING

(b) One material with dif-

a) N terials.
() O materials fuse colour.

(c) Five materials with dif- (d) The same materials as
ferent diffuse colours, as- in (c), with the edges be-
signed to groups of faces. tween faces hidden.

Figure 16 — Materials and diffuse colour applied to the wizard mesh.

UV mapping is a method in which the faces of a mesh can be mapped to a 2D
image. Each vertex in the mesh is assigned a UV coordinate that can be displaced,
providing control of how a texture is drawn on a mesh (Flavell . This is com-
monly used to create skins for game models. UV coordinates are so named because
they represent the 2 dimensions of the UV map, as opposed to the 3-dimensional
XYZ coordinates of the mesh. One way to visualise the work process is to imagine
a mesh made of paper, which is cut open and unfolded on a flat surface, then drawn
onto and reassembled.

4.4 Animations

Computer animation is a broad term that can refer to many techniques for creating
moving images. This chapter describes two different techniques and a comparison
between them.

The first one is animation by transforms. The affine transforms of translation, ro-
tation, and scaling are three basic operations in 3D graphics(Akenine-Moller, Haines,
and Hoffman . JME provides methods to apply these transforms to a mesh,

27

4.5 Results 4 3D MODELLING

enabling run-time animation by code. Each of the transforms can be applied with an
arbitrary factor to any of the 3 axes, creating many possible combinations, however
these animations are simple and often repetitive.

The second method is bone animation. This is a common technique used to
animate game characters and objects, enabling more advanced motions than the
ones covered so far. To set up a bone animation, an armature (skeleton) of bones
is made and rigged to connect with the vertices of the mesh. Transformations on
the armature will then deform the mesh accordingly (Flavell |2010). Animations are
made by putting the armature in different poses and saving these as key frames. The
game engine calculates interpolated positions in between frames, forming a complete
recording of motion. Bone animations can be created in Blender and then imported
by JME (Vainer [2013al).

4.5 Results

This section describes the models created during development and some notes on
performance impact.

4.5.1 Mesh editing

The game uses 11 meshes in total: three for characters and eight for other objects.
The ghost, wizard, and bat were made in Blender with the techniques described
above, and the results can be seen in Figure [14] Figure [I6d] and Figure [I5] The
final ghost mesh was made following four iterations of earlier models, experiments
with cloth, and group discussions on how to make it anatomically correct. The
wizard went through four iterations, and the bat only one. After several re-makes
using successively fewer triangles, the final character meshes contain 206, 269 and
288 triangles, respectively.

The first version of the wizard has a hat made with high resolution cloth, counting
10944 triangles. The whole mesh counts 13260. When used in the game, the phone
runs out of memory and the game crashes after 20-90 seconds during test runs.

The mesh components for torches and power-ups were made from standard geo-
metric shapes scaled to a suitable size, see Figure [17] for power-ups. The platform,
window, and plant meshes mainly contain flat shapes, serving as frames for textures.
The non-character meshes are not very interesting from a mesh editing perspective;
the models made from them will instead be displayed in later sections.

4.5.2 Colouring and texturing

The ghost, wizard, and bat all use materials with diffuse colouring and smooth
shading enabled. This gives them their base colour, and for the bat nothing else is
added on top. End results as seen in-game are illustrated in Figure [§, Figure [20]
and Figure [23]

The game includes eleven textures used with models, all of which were hand-
drawn using various image editors. There are two textures each for windows and
plants. Each power-up has a standard volume mesh with a texture on it, shown in

Figure [17]

28

4.5 Results 4 3D MODELLING

Figure 17 — The powerup meshes with UV mapped textures.

The background wall and platforms use a texture made to be repetitive, as seen
in Figure [l It creates the illusion of a large seamless image, although the brick
texture used is only 52x58 pixels. The plant texture, despite its irregular shape, is
displayed nicely on a rectangular mesh thanks to its use of transparency: Figure[18]|
An illustration of the in-game result is shown in Figure [19]

Large textures caused the game to crash because the GPU ran out of texture
cache. As with models, early textures had an unnecessarily high level of detail for
their purpose. Later iterations were scaled down to save memory, and this could be
done without losing visual quality since the screen of the phone is so small.

UV mapping is implemented for the wizard and ghost textures for facial features,
as seen in Figure 20l It was also used to achieve the wrap-around look on the
platforms, as seen in Figure [21]

4.5.3 Animations

There are many methods of animation, and two have been successfully implemented
in The Jumping Dead. Wizards are animated by rotation, turning them to face
towards the ghost. Power-up graphics were designed with animations by rotation
and scaling. The design concept of all power-up animations is displayed in Figure [22]

Bone animations were implemented for the ghost, the bat, and the plant, illus-
trated with Figure and Figure 23] Some are played in a loop when no other
animation takes place: the ghost walks by default and the bat flaps its wings. The
ghost jump animation is activated when initiating a jump by the player pressing
a key. Collisions trigger the plant animation and the ghost flinching. Finally, the
invulnerability animation for the ghost is activated on the state change that occurs
when touching the power-up.

As implemented in the game, animations have a visual function and an informa-
tive function, but no logical consequences. Each animation is the result of a state,
never the cause. Disabling all animations would make the game less interesting,
though collisions, jumping, and other interactions would still occur.

Two test runs were made to estimate the impact on performance. The highest
number of animated models that occurs naturally in the game is a scene with the
ghost and three bats on screen. This scene was tested with and without animations,
and no significant difference in frame rate could be noted.

29

4.5 Results 4 3D MODELLING

Figure 18 — The plant textures make use of transparency to display on a
rectangular mesh, where the unused pixels are seen through. The checkboard
pattern represents transparent pixels. There are two different plant textures
with the same function.

30

4.6 Discussion 4 3D MODELLING

Figure 19 — The plant model close up to show the plane’s position relative to
the scene. The texture’s edge is coloured red to show it more clearly.

4.6 Discussion
Mesh editing

The final wizard model uses roughly 1/50 times the number of triangles compared
to the first. However, it makes better use of those triangles, with hair, a beard and
coloured clothes. These design details are computationally very cheap and the final
wizard ends up looking better in game. One problem with the 13620 triangles is
that the potential detail level was not noticeable the way it was used in the game.

Attempts were made to create a mesh for a 3D plant, but that proved to be very
difficult with the tools known at that point. It can be done with a mesh editor but
would require other tools, and likely a high triangle count to look good.

Colouring and texturing

Manual skinning and UV mapping the whole mesh was tried early in the project,
however it was disregarded because drawing textures require a lot of time, and
continually changing the meshes means redrawing those textures. Later, when the
final meshes were settled upon, skins could be made with confidence that they would
be kept. The easier solution was to add colour through materials which is both fast
and insensitive to mesh changes. Materials are assigned to faces and if the shape
of those faces change, the colour stays the same. In the case of remaking the whole
model, it is just a matter of keeping a few RGB-colour values and re-applying them
which can be done in minutes. UV mapped textures were thus mainly used for flat
objects, that is walls, platforms, plants and windows, and for power-ups which have
regular shapes not subject to change.

Another advantage of material colours is the ability to change colours at run-
time by assigning a new RGB-value to the diffuse method of the material. This
was used to re-dress the rapid-firing wizards in black and red instead of green and

31

4.6 Discussion 4 3D MODELLING

Figure 20 — UV mapped character skins. The polygon shapes correspond to
faces of the mesh. The polygons are displayed to illustrate the concept, and
are not part of the actual textures drawn on the mesh.

Figure 21 — Left: Default texture mapping on a platform meant that the
texture was scaled and drawn onto each face. Right: This was corrected with
manual UV coordinates for a better look.

blue, to distinguish them as more dangerous. Switching textures at run-time is of
course also possible, but requires drawing, importing, and keeping those textures in
memory.

Textures tend to look flat when drawn on low-polygon models and flat surfaces
since the shape of the surface is unaffected. There are many techniques used to
improve texture looks and remedy this problem, collectively named bump map-
ping(Akenine-Moller, Haines, and Hoffman . Bump mapping would have been
a nice addition to improve the look of walls, platforms and plants, but this requires
using shaded textures. To improve performance, shading was disabled for the wall,
platforms, and plants, and thus it was not an option to use bump mapping on most
textures in the game.

Colours were mainly specified in Blender as part of the model file and then
exported for use with JME. The recommendation from the JME community is to
rather do such configuration inside JME because different shaders are used, and
appearance in Blender during design may be different from the final appearance in
the game. This was never an issue in this project, and it was far easier to configure
these in Blender. However, for a project with greater needs for detail and perfection,
and using more types of shading, the recommendation should be followed.

32

4.6 Discussion 4 3D MODELLING

Figure 22 — Animation of the invulnerability power-up. A cube model is
rotated on the three axes and a single particle image is scaled by a periodic
function of time. The animations for the other three power-ups are variations
using the same techniques.

Figure 23 — Bone animation of the bat. The armature, placed inside the mesh
and displayed in red, is seen in the key frames of the bat flight animation.

Animations

There is some overlap between the above definitions of animation and movement.
The movements of game characters are in fact translations but these are such basic
game elements that we do not think of them as animations. However, when compar-
ing early wizards that lack movement to the ones in the finalised game, the latter feel
much more alive thanks to translation and rotation movements. Another overlap
is that the ghost has two bone animations that could have been made with trans-
forms instead: a Z-rotation and a Y-scaling. Coding them would have been faster
than recording with key frames, but having animations for one character accessed
by different methods would be impractical.

Character models

When modelling, each of the main characters provided different challenges, based on
their role in the game seen from a design perspective. The concept used for the ghost
does not require much colouring or texturing, but being the main character, the ghost
interacts with most other objects and needs ways to visualise these interactions and
states. This is reflected in the many animation sequences available to the ghost and
the randomised choice of three different collisions. Its different power-up states is
displayed by the color of the particle effect attached to the ghost.

The wizard has a focus on visual variety and detail. He wears a five colour skin
and a particle effect for a total of six associated colours. He has detailed face and

33

4.6 Discussion 4 3D MODELLING

enemy.

(b) Frenzy animation, played when the ghost is invulnerable.

Figure 24 — Four images each of two different bone animations made for the
ghost. Note: These are screenshots from gameplay, not to be confused with
the key frames of the animation.

beard textures. His spells have about 60 possible colour combinations, and he can
change the colour of his clothes and particle by sending one or two RGB values to
his redress method.

The challenge with the bat was to make it look realistic. Although the whole
game has a cartoony style, this animal corresponds to something real and should
make an effort to imitate that. No one complains if a ghost moves a bit weirdly,
but wings flapping is something else. Thus, the main challenge with the bat was
creating the mesh and the animation. Photos of real bats were used as concept art
and much attention was paid to individual vertices and scale of body parts, which
were not as important for the other characters. The skeleton and animation were
inspired by videos of real bats and birds flying. The bat was, more than any other
model, restricted by the hunt for low triangle count, since the body and wings could
have been made to look much better if given more vertices.

34

5 PARTICLE SYSTEMS

5 Particle systems

A particle system is an image-based animation tool. It consists of a group of parti-
cles, visible objects that move and change according to a set of rules (Akenine-Moller,
Haines, and Hoffman [2008)). They are a good complement to 3D models, often used
to represent things that are non-solid, transparent, constantly change shape, or sev-
eral of the above (Akenine-Méller, Haines, and Hoffman [2008)). A few examples are
fire, waterfalls, smoke, and explosions.

This section briefly describes how particle systems in computer graphics work,
and moves on to detail their implementation in the game.

5.1 Basic concepts regarding particles

Each particle is represented by a 2D sprite, an image or collection of images ranging
from a single pixel to a sequence of animated billboards (Akenine-Moller, Haines,
and Hoffman 2008)). A simple particle system consists of a generator, a point in
space where the particles are created. The particles usually move away from the
generator, sometimes randomly, and fade away with time. The sprite may be an-
imated and change between several images. By varying parameters such as the
movement pattern, speed, colour, size, and lifetime of the particles, many different
effects are achieved. Some examples of particle systems created using JME are seen
in Figure [25]

5.2 Results

JME has built-in support for particle systems, which resulted in that the imple-
mentations of the objects that constisted of particle effects were easy. A particle
emitter object can be created and attached to the scene graph, and with no further
configuration be visible in the scene. Numerous details can then be configured to get
the desired appearance, from colour, size, and the billboard image to the particles’
movements and animation settings.

Several particle designs have been implemented, as seen in Figure 26 The wiz-
ards’ fireballs were the first, followed by the magic spark on their wands. The ghost
leaves a semi-transparent trail of clouds, and an intense effect surrounds the power-
ups. Torches come in different shapes and colours and most of them are based on
one particle emitter with some random variables added for visual variety. The dif-
ferent things modelled with particles may seem unrelated from a user perspective,
however, on the inside they are to a large extent identical, with mainly size and
colour variations.

The particle systems used have not made a noticeable impact on the game’s
performance. The illustration in Figure may be considered to display a high
amount of particles on screen for the game, and more extensive testing has not been
done.

35

5.3 Discussion 5 PARTICLE SYSTEMS

(a) Dripping goo, using a decreasing (b) Explosion-like glow, using big
particle size and high gravity. particles, no gravity and small ini-

tial velocity.

(c) Force field, using a texture on a (d) Sparks, using few particles with
single particle growing in size. big, spark-like textures.

Figure 25 — Examples of particle systems.

5.3 Discussion

The game benefited greatly from the inclusion of particle systems. This is evident
from how basic some of the objects using particles for their appearance are — deco-
rative torches and wizard spells in particular — and how hard it would be to replace
them with 3D models.

Compared to rendering bigger models, higher-resolution textures, or performing
an extra rendering pass to render shadows , the computational resources claimed by
the particles in the game are minor. Since the same texture is used for every particle
of the same type, the GPU cache will not be strained. Since the particles cover a
small area of the screen and do not require for example lighting computations, they
will not push the GPU itself to its limits either.

We have not deliberately tried to increase the number of particles to reach the
limits, because for this game the number of particles currently used is enough. More
particles would not have added much the the visual appeal, as a church can only

36

5.3 Discussion 5 PARTICLE SYSTEMS

Figure 26 — In this image from the game, particle systems are used for the
ghost, the power-up, the torches, the wizard’s wand, and the spell.

hold so many torches and sparkling wizards before it becomes too much.

37

6 GAME LOGIC

6 Game logic

The purpose of this project is to create a game, and this section will detail the
specifics of that game. Although the focus of this thesis is the graphics of The
Jumping Dead, which is only tangentially related to its mechanics, the design of
those mechanics were in the end a substantial part of the project.

The results in this section are presented at face value, and without much discus-
sion. This is because the design decisions concerning the game logic are generally
not supported by anything other than the group’s own judgment. The purpose of
this section is instead to give the reader a working understanding of the game, in
order to follow in the examples given in other sections.

6.1 Main gameplay

The main gameplay of The Jumping Dead is running and jumping. The ghost’s
movement is mostly handled through the physics engine JBullet (jbullet.advel.cz
2008), which is integrated in JME. The engine makes sure that the ghost is pulled
down by gravity and does not fall through platforms. It runs in discrete time
steps, called ticks (jMonkeyEngine 2012). However, it automatically updates the
ghost’s position between each tick based on its stored velocity value. The following
algorithm, run before each tick, determines what that velocity will be:

1. Check if the player model is on the ground. If it is, set the forward velocity to
the value given by the current running speed.

2. If the jump button has been pressed since the last tick, set the upwards velocity
to the standard jump speed.

3. If the jump button has been released since the last tick, cut the jump short:
if the upwards velocity is bigger than the cutoff value (61% of the initial jump
speed), set it to the cutoff value.

4. If the player was hit by an enemy since the last tick, overwrite all previous
velocity with an upwards speed the same as the standard jump speed, and a
backwards speed equal to 71% of the running speed.

5. Pass the new velocity to the physics engine, which applies gravity and forces
from collisions, and then updates the player’s position.

In the above, the current running speed is based on the current difficulty level —
the speed increases by 3% of the starting speed every three seconds.

6.1.1 Jumping

The jump routine is the same as the one used in the Sonic the Hedgehog game series
(Mercury [pseud.] 2013), illustrated in Figure When the screen is tapped, the
vertical speed of the ghost is set to a predefined jump speed. If the tap is held, the
ghost continues along the upprmost trajectory until gravity brings it down again.
However, if the tap ends the vertical speed is immediately set to a predefined lower

38

6.2 Collision detection 6 GAME LOGIC

The effect of hold on jumps
180 - JPPET—

160 |-
140 |-
120 |-
100 |-

Jump height [y / w.u.|

W
(e}
T

2 \

| D

)) B E— Syt
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Horisontal distance [x / w.u.|

Figure 27 — Plot showing the Sonic jump algorithm.

value, unless the vertical speed has already fallen below this treshold. This game
uses a lower speed of 61% of the initial jump speed. This algorithm allows for
different jump heights.

The ghost’s speed can change, and this also changes the velocity and acceleration
values used for jumping and falling. The reason for this is to keep the jumping and
falling trajectories the same shape regardless of speed. Specifically, the velocities
given when jumping and being pushed back by enemies increase along with the
ghost’s speed, and the acceleration due to gravity grows as the square of the ghost’s
speed. The speed increases along with the difficulty over the course of the game,
and can also be affected by power-ups.

6.2 Collision detection

In addition to handling the interaction between ghost and platforms, the physics
engine is used for collision detection. Any object may be registered as a collision
listener to receive collision data from JBullet. In the game, one collision listener
receives all collision data and alerts the colliding objects to react accordingly, for
example when the ghost collides with a bat, or a magic bolt with a platform.
JBullet also supports non-physical objects, called ghost ob jectﬂ. They can pass
through other objects freely, but doing so will still alert the collision listeners. This
is utilised for the enemies in the game, most readily apparent for the wizard. Each
wizard has its own ghost object in the shape of a sphere, shown in Figure 28 As
long as the player is inside the sphere, the wizard will turn towards it and attack it

®Not to be confused with the main character of the game, only known as the ghost’.

39

6.3 Power-ups 6 GAME LOGIC

(a) The aggression range of a wizard. (b) The activation area of
the plant.

Figure 28 — Two collision shapes, ordinarily invisible, shown in orange. Left:
the aggression range of a wizard. Right: the activation area of the plant.

with regular intervals.

All other objects that interact with the player, such as bats, power-ups and
plants, also use ghost objects. These are generally in the shapes of spheres or cylin-
ders, which means they crudely approximate the shapes of the objects themselves.
When the ghost object touches the player, the appropriate reaction occurs regardless
of the speed or direction of the collision. These reactions include the player being
pushed backwards from a bat, or a plant swinging to the side when the player passes
by.

6.3 Power-ups

The Jumping Dead features four different types of power-ups that the player can
pick up. These are Invulnerability, Double jump, Speed up and Speed down, and
their names accurately describe their effects when picked up. They all use spherical
ghost objects to determine when the player has touched them.

The Invulnerability power-up makes the ghost invulnerable for five seconds. In
that time, attacks against the ghost have no effect. The bats and magic bolts react
like they do on a normal hit, but the ghost is not knocked back.

The Double jump power-up gives the ghost the ability to jump again in mid-air.
This is done by tapping the screen a second time. The ghost can jump once while
airborne, and must touch the ground before being able to do it again. This ability
does not go away with time, instead it stays until the ghost is hit by an enemy.

From their names, the Speed up and Speed down power-ups sound like each
others’ opposites. However, their implementation is quite different. Speed up gives
an increase in speed, equal to 33% of the speed at the start of the game, which can

40

6.4 Level generation 6 GAME LOGIC

bring the player over the ordinary maximum. It is, however, temporary and the
speed will decrease by the same amount after five seconds or when hit by an enemy.
Slowing down on the other hand is a one-time event: the speed is set back by 33%
of the starting speed, and the normal acceleration starts over from the new speed.
In addition, picking up a Speed down up ends any Speed up currently in effect.

When a powerup is in effect, the ghost’s appearance changes slightly depending
on the specific powerup. The trail of mist the ghost leaves behind either becomes
green, bigger, or lingers for a longer time before dissipating. When Invulnerability
is taken, the entire screen becomes brighter and the ghost switches from its ordinary
walking animation to an alternative one (see Section [4.4)).

6.4 Level generation

The level is generated in sections, with each section consisting of a piece of wall with
platforms attached. On each section is also a variable number of enemies, power-ups
and decorations. All these features are randomised independently from each other.

The level generator places platforms based on a platform layout chosen randomly
from several available layouts. The position of the last platform in a section deter-
mines that of the first platform in the next. This ensures that the distance between
two platform is never so big that the ghost cannot clear it. The level generator also
checks the height of the last section against upper and lower bounds, so that the
upper and lower edges of the wall cannot be seen.

Some platform layouts determine which enemies show up as well, but for the rest
the enemies are randomised separately. The possible enemies on a section are one
wizard, one bat or three bats flying in formation. If the section has a wizard, the
type of wizard is also randomly chosen (see Section .

The decorations available are windows, torches, plants and milestones. Each
section holds either a window or a torch, but not both. 60% of all sections also
have a plant. Which variety of window, torch or plant is used is also randomised.
Finally, every third section has a milestone showing the player’s progress in roman
numerals.

There are a number of parameters used by the level generator, such as the default
distance between platforms, frequency of certain types of enemies and power-ups,
and heights of the various decorations. Their values have not been determined in a
systematic manner, but rather by continually tweaking them during development;
keeping what worked and changing what did not.

The game world does not exist very far away from the player. As seen in Fig-
ure [29] only about five times the visible level is kept in the program’s memory at
all.

The part of the level left behind cannot immediately be removed since the player
can be knocked backwards repeatedly so. Moving too far ahead is not a problem,
since the distance between the player and the right edge of the level is what triggers
the generation of more content.

41

6.5 Hazards 6 GAME LOGIC

Figure 29 — The entirety of the level existing at a given time, as seen from a
greater distance. The white rectangle represents the area seen by the player.

6.5 Hazards

The three types of hazards in the game are bats, wizards and the wizard’s magic
bolts. The wizards in turn come in three variants, differing in placement and attack
patterns. As previously stated they all use ghost objects to determine when to
interact with the ghost.

All hazards move during the game, and all such movement is accomplished in the
same way. Every time the screen is updated, the model is moved a small distance,
proportional to the time elapsed since the last update. This is the same way that
JBullet performs the ghost’s movement, but it is handled separately and not neces-
sarily at the same rate. This movement is completely separate from the animations
described in Section [4.4]

Of the three types of wizard, one is set apart from the other two. The two
ordinary wizards fly above the ghost and fire magic bolts straight at it. In contrast,
the third type of wizard flies in the foreground and fires at a point just ahead of the
ghost, calculated as follows. The ghost’s current velocity is interpreted as a distance
vector, giving the position (relative to the ghost) where the ghost will be in one
second. The height component of this vector is scaled by a factor of 0.3, and the
resulting position is the target for a fireball whose speed is chosen so that it will hit
in one second. If the ghost then keeps on moving forward, it will often be hit by
the fireball. The reason for scaling down the height component of the new position
is that in the middle of a jump the ghost temporarily has a very large upwards or
downwards component of its velocity. Using that vector without change results in
the foreground wizards firing magic bolts far above any point the ghost will ever
reach.

42

7 USING A GAME ENGINE

7 Using a game engine

At an early stage, it was decided that the game was to be written using the game
engine jMonkeyEngine (JME). It is a free, open-source 3D game engine for program-
ming written in Java, which was the group’s favoured language. JME also provides
a number of features that were deemed useful, including basic implementations of
textures, lights, shadows, and particle effects; a physics engine; and support for
building projects for Android.

7.1 Choosing a game engine

Using a game engine of this type heavily influences the level of the programming.
Building a small, simple game, one could feasibly have started on a lower level,
directly using the OpenGL libraries needed for Android graphics. Another way lies
with higher-level engines like Unity, where even more of the work concerns designing
the scene and objects, and less concerns classical programming. For this project,
the 'middle way’ was chosen.

The decision to use JME in particular came from it being the first candidate
found that fulfils all of several wishes from the group. Firstly, it uses Java, and at
about the desired level of programming. Secondly, it provides implementations of
the sought graphical effects that are extendable (even more so thanks to the open
source code) yet would be ’good enough’ if there turns out to be no time to improve
on them. Thirdly, it is free to use.

7.2 Adapting to jMonkeyEngine’s framework

Any choice of engine or framework limits things like code structure and workflow to
some degree. An engine that loads assets and draws objects to a screen must have
those assets and objects organised in some way. The particulars of this organisation
can certainly influence the developers’ choices for how to represent the internal
workings of their game. This was definitely the case when developing The Jumping
Dead.

When building a game, there are in principle two different systems that need to
interface with each other in some way — the model (the game logic) and the view
(the visual representation). There are examples of things on both sides that do not
concern the other side — purely decorative background objects not represented in
the game logic, or an invisible line that when crossed triggers an enemy attack.

The model can, in principle, be handled in any way imaginable, as long as a link
is kept that updates what is shown on the screen. Depending on the specific game,
the internal representation of game objects might be very simple. In a platform
game with 2D logic all information needed about a static rectangular platform can
be stored in four floating-point numbers. Designing this model is an important step
in creating the game code. The programming principle called Separation of concerns
(Htirsch and Lopes [1995)) suggests that the model and the graphical representation
should not be made too dependent on each other.

43

7.2 Adapting to jMonkeyEngine’s framework 7 USING A GAME ENGINE

7.2.1 Spatials and controls

Working in JME, however, at first stymied the group when it came to model and
view separation. Built around the scene graph, all objects that are drawn on the
screen are so-called spatials. Their appearance, including position and rotation, are
stored internally and can be manipulated from the running code. To each spatial
can be attached a control object, which contains code that affects the spatial each
time the game updates.

This framework means all object behaviour — the logical representation — end up
in control classes, tightly connected to the spatials — the graphical representation.
The classes JME uses to represent things like vectors and geometric transforms, as
well as the routines used to activate and deactivate sections of code, are all part of
this package deal. During the process, this sometimes felt like a constraint to work
around. Creating other data structures to store certain information and then porting
it into the JME spatials-and-controls system were actually considered. Not because
the system in place is downright bad, but because it at times seems awkward and
unfamiliar. However, with more experience using the engine, or with more active
guidance from programmers with such experience, it might have proved a powerful
tool.

7.2.2 Loading assets and scenes

One of the appeals with using JME during this project was the ease with which
assets, e.g. models, textures, and sounds could be imported into the game. This
can be done at any time during the program, anywhere in the code. However, only
after working with The Jumping Dead for over half the project did the group realise
the potential of the scene composer tool the JME development kit offers. It allows
for designers to load multiple models and carefully design a scene, and then save
the entire scene to be loaded at once when the game is run. This also allows for
batching models together to optimise both rendering and physics behaviour.

The downside to this realisation was that one of the earliest design choices for
The Jumping Dead had been to use a procedurally generated level. Only a few objecs
are generated at a time, and their exact placement is randomised which prevents
designing the scene beforehand. Unfortunately, the project had run so far that it
was deemed too late to change this basic design, and so the JME scene composer
was never used.

7.2.3 Conclusions

The way this project turned out, it cannot be said what would have gone differently
using another engine. Even less so if something lower-level than a complete game
engine, like Libgdx, had been used. It is certain, however, that many things would
have gone differently. A lot of work would have been saved on trying to work around
a system that was, in a way, built for another type of game than The Jumping Dead.
On the other hand, such a basic thing as loading a Blender-created model and its
texture into the game, which is done with a few lines of code in JME, could have
been a big undertaking in itself using other tools.

44

7.3 Issues on Android 7 USING A GAME ENGINE

7.3 Issues on Android

When developing in JME, the game runs on the computer by default and requires a
special setting to export to the Android device for testing. More than once, features
which ran perfectly fine on the computer caused glitches or even crashes on the
smartphone. This section outlines a few example situations that had to be solved.

7.3.1 Physics

The physics in the game partially uses a physics engine called JBullet, which is
integrated with JME. It consists partly of native code, that is code written and
compiled in another language and integrated into the Java classes. The standard
native libraries used for most of JME’s deployment options does not run on Android
devices, so there is alternate native code specifically made for Android. However,
there turned out to be some differences between this code and the ordinary JBullet
code used when testing on the computer. This discrepancy caused many errors that
were difficult to debug.

For example, the game uses ghost objects, which are non-physical volumes that
report when an object passes through them which in this game is used to detect when
the player is in close range of a wizard. The implementation used for the player’s
collision shape worked as intended on the computer, but on the phone it could not
pass through the ghost objects. The collision that was supposed to raise an event
but let the player through instead behaved as if it were solid. This problem was
eventually solved by writing a new PlayerControl class, building on a more general
rigid body behaviour.

A similar issue appeared with the code concerning checks of whether the player
is on the ground of a platform. This is done by means of a ray test, that is checking
if anything in the path of a given ray. A ray is drawn from the character to a point
just below their feet, and if it intersects anything the program concludes that the
player is on the ground. The length of this ray should be as small as possible, so
that the player will not be classified as on the ground when actually in the air just
above it. However, the value which other JME classes used that worked fine on the
computer, turned out to be too small on the Android device. The player model
could rest on the ground but claim that it was airborne, and thus would not start
walking forward. It seems that the Android version of the physics engine works with
a lower resolution, so that the length of the ray was lost in rounding errors.

7.3.2 Graphics

In JME there are built-in implementations of a number of concepts of game graphics.
This includes material properties, lighting, a scene graph, particle effects and post-
processing. Unfortunately there are some problems with support for Android in
the graphical implementations as well. According to jMonkeyEngine (2013a) some
effects are simply not supported and others drastically lowered the frame rate on
the phone.

Many of these had to do with the graphics cache on the phone. The error 'out
of graphics memory’ appeared many times for different reasons. Advice from the

45

7.3 Issues on Android 7 USING A GAME ENGINE

JME community along with more detailed testing made clear that loading any one
texture too large in size gave this error. This occurred for example at times when
too complex models, with high-resolution textures, were used. It also effectively
prevented the inclusion of any kind of post-processing, as such effects require storing
and manipulating the entire screen image. This includes the screen-space ambient
occlusion, detailed in Section [3.2.2] as well as bloom filters and motion blur effects

bl

6Both bloom filters and motion blur was brought up as candidates for inclusion but were never
a high priority, and no substantial efforts were devoted to them.

46

8§ RESULTS

8 Results

The most tangible result of this project is the game, which utilises a 3D environment
with dynamic lighting, and functioning game logic as described in the purpose.
The game contains several textures and animated 3D models created by the group
members. On the contrary, the movement and collision detection of the models are
controlled by a physics engine which was not part of the development of this game.

However, the game is stalled when new sections of the level are generated. This
results in the game not running smoothly, although the last measurements, when
all final effects were activated, gave an average frame rate of about 50 fps (see
Sections [2.3 and [3.2.2).

In addition to the game, the project also resulted in many insights in computer
graphics. The described techniques have been used in the computer graphics field
previously, but this project has evaluated their suitability for smartphone games.
In some cases, the measurements indicated what was expected from the literature
studies, while other results contradicted them. Some of the results presented here
have resulted in recommendations, given in Section [10} for other developers in similar
situations.

Using large light sources to model the light from torches, windows, and wizards
was too computationally expensive to be used in the game. Instead, the final version
of the came uses precalculated light textures to model the illumination of the wall.
Furthermore, the main visual appeal of lighting regarding other game objects comes
from light sources smaller than the ones originally included. The light from the
windows was also associated with colour textures in order to model the colourisation
of light being transmitted through the church windows.

While lighting greatly improved how realistic the game looks, shadows are needed
to give a sense of depth. Both drop shadows and ambient occlusion were investigated,
and both greatly improved how realistic the game environment looked. However,
the implementation of drop shadows did not transfer to the phone, which is why it
is not included in the final version of the game. The ambient occlusion included in
the game is prerendered, a method not unlike the embedded lights mentioned above.

Several animated 3D models are used in the game. A main character with six
animations has been made, as well as two enemies, two decoration models, and
four interactive power-ups. In addition to the main character, one enemy and one
decoration uses skeletal animation. Some initial models used too many triangles,
which caused performance problems, especially regarding GPU memory, and were
replaced by low polygon models to amend these problems. These models were
enhanced by UV mapped textures, which were scaled down to a size smaller than
that of the corresponding objects shown on screen in order to relief the strain of the
GPU’s texture cache system.

Another technique used to either model objects or improve existing objects are
particle systems, which had a negligible impact on performance. Various uses of
these included modelling of fire and magic, conveying of status information, and
intensifying effects. In order to make the scene more interesting, random parameter
variations were used by the systems.

47

9 DISCUSSION

9 Discussion

Overall, the finished product matches its expectations. However, there were issues
that were not foreseen, which have increased the awareness of the limitations of the
device itself, the game engine used, and to some extent the working process that was
adopted. Looking back, with the knowledge that have now been acquired, changes
could have been made to make the development process smoother. There are also
game features and content, though not critical for the playability of the game, which,
given more time, could be implemented.

9.1 Project management

From a management perspective, a more efficient way to structure the work would
probably have been to better use the individual strengths of the development team.
As it were, most members of the team could work on the areas that interested
them the most, which in itself can be seen as a good incentive to produce quality
work. However, this resulted in a substantial amount of time being spent learning
new subjects, as the areas of interest did not always correlate to previous expertise.
Whether this was the optimal approach is still up for debate. Furthermore, a better
distribution of tasks within the team could probably have benefited the development.

However, one thing which is agreed upon is that this project could have benefited
from better planning and structure. For instance, producing concept art at a much
earlier stage would have helped steer the development in the right direction sooner,
leaving more time to work on implementation. A similar observation can be made
about how the effectiveness of the development could have been improved by better
planning the structure of the code. This could have been done by more extensive
use of Unified Modelling Language (UML) diagrams.

9.2 Game development

All that is considered core gameplay features have been implemented. However,
there is a list of content that could be implemented given more development time.
Items on this list include new features such as high scores, achievements, and more
objects in the level. Furthermore, a solution to the problem with the game being
stalled when new sections of the level are generated has not been found, which means
that the game cannot be released in its current state. An attempt to solve this issue
has been made, which involved separating the level generation into a separate thread.
This improved the performance, but the game was still occasionally stalled.

A perhaps larger undertaking, though one which is considered to be important,
especially if the game is to be released to a larger audience, is to optimise the game
to run on more devices than the one used for this project. This would include
solving problems, such as adapting assets so that they can be used in many different
resolutions. Furthermore, adding the option for the user to adapt the gameplay from
a settings menu, changing features, such as sound levels, overall difficulty of the
game, and control scheme would be important if the game is to appeal to a larger
audience. It is also believed that a user study could have benefited the project,
especially in order to be able to release the game to a larger audience. Although

48

9.3 Graphics 9 DISCUSSION

the subjective opinions of the group members can be used as an indicator for what
is the best option in a decision regarding the game concept or design, the group
members cannot represent the whole possible user group for the game.

Developing the game with a single smartphone model as the target device had
both advantages and disadvantages. Using a target device greatly limited the num-
ber of different hardware setups and Android version which needed to be considered.
Additionally, testing was made more consistent since the same mobile device was
always used. However, as mentioned previously it causes issues when the game is
run on other models that have different hardware. A solution to this problem could
have been to have the game recognise the hardware of the device it is installed upon
and then adapting certain settings, which could have made it possible to run the
game on a more wide variety of devices.

A problem, which occurred at later stages when more extensive game testing
was conducted, was that no effort had been made to facilitate testing of the game.
Features that could have been implemented to help this include pressing a button to
spawn a certain type of enemy, turn on a certain power-up, or pause the entire game.
The lack of this functionality, combined with the fact that the level was randomly
generated, made it unnecessarily hard to reproduce bugs when needed. Maybe even
implementing a level editor, implying a way to save and load specific levels, would
have been a good idea despite the early decision to use random level generation in
the final game. Another area which was made harder by the randomisation than it
had to was the framerate testing as no two test were exactly the same. This could
have been solved by using the same seed for the randomisation each time causing the
level to always look the same. However, it would not have been a perfect solution
as some extreme cases might have been missed.

9.3 Graphics

Developing a game gives a first-hand experience of the difference certain graphic ef-
fects make when implemented. For the untrained eye, the importance of for example
ambient occlusion for the realism of a 3D scene can be hard to grasp. The improve-
ment was the most prominent with the introduction of lights and shadows, but was
definitely present for animations and particle effects as well. Though some of the
implementations were not perfect, such as the prerendered shadow that can still be
seen when the ghost jump between platforms, they still go a long way in enhancing
the visual aspect of the game, especially when many times the only other option was
to have no effect at all due to the limitations of the phone. Especially interesting is
how far graphics go towards making the game have such a high quality that it can
be released. Without changing any of the game logic, without adding more content
to the level, the presence of torches with particles and lighting improved the quality
of the game tremendously, reminding us that digital games is very much a visual
medium.

49

10 CONCLUSIONS

10 Conclusions

The purpose of this project was to build a simple yet functioning and graphically
intense platform game for an Android smartphone. The Jumping Dead is the result
of the work that the group has invested towards fulfilling the purpose. During the
development, issues were encountered and solved. These have been summarised in
a condensed format in the following paragraph, which can be seen as a rough set of
recommendations when creating a similar project.

The development of The Jumping Dead showed that some effects had a much
larger impact on overall performance than others. Especially dynamic light, shad-
ows and post processing effects had such a drastic impact that they were either cut
back or skipped entirely. However, embedded lighting and texture-based ambient
occlusion were shown to yield similar visual results at a much lower cost. Such meth-
ods could serve as satisfactory replacements for the more computationally intensive
versions.

By adapting the detail of models to screen size, and using textures rather than
triangles, performance could be improved without losing visual quality.

Particle systems are highly customisable and computationally cheap, making
them very useful for a graphics-intense smartphone game. In The Jumping Dead
they were used to model fire, dust, magic spells and power-ups. Furthermore, JME
provides an easy-to-use implementation that runs on Android without problems.

Furthermore, the use of a preexisting game engine freed up time which could
be spent on other areas of the development. However, it is important to realise
that while game engines undoubtedly serve as good foundations for a project, they
are not tailored to a specific project, which can cause issues. In the case of this
project, the engine-specific implementations of certain effects did not work on the
phone. Not having complete control over those implementations was an obstacle in
the way of improving on them. For future projects, we recommend that the choice
of framework or game engine is made after serious consideration of the advantages
and disadvantages of the alternatives.

20

REFERENCES REFERENCES

References

Akenine-Moller, T., E. Haines, and N. Hoffman (2008). Real-Time Rendering 3rd
Edition. Natick, MA, USA: A. K. Peters, Ltd., p. 1045. ISBN: 987-1-56881-424-7.

Anders, M. (2010). Blender 2.49 Scripting. Olton, Birmingham, GBR: Packt Pub-
lishing Ltd, p. 292. 1SBN: 978-1-84951-040-0.

Bouquet, R (2010). Screen Space Ambient Occlusion for jMonkeyEngine 3.0. jMon-
keyEngine.org. URL: http://jmonkeyengine . org/2010/08/screen- space-
ambient-occlusion-for-jmonkeyengine-3-0/ (visited on 05/05/2013).

Bunnell, M. (2005). “Dynamic Ambient Occlusion and Indirect Lighting”. In: Pharr,
M. GPU Gems. Upper Saddle River: Addison-Wesley, pp. 223-233.

Entertainment Software Association (2012). Essential facts about the computer and
video game industry. URL: http://www.theesa.com/facts/pdfs/esa_ef _
2012.pdf| (visited on 04/15/2013).

Filion, D (2011). “Principles and Practise of Screen Space Ambient Occlusion”. In:
Lake, A. Game Programming Gems. Boston: Cengage Learning.

Flavell, L. (2010). Beginning Blender, Open Source 3D Modeling, Animation, and
Game Design. New York, NY, USA: Apress, p. 448. ISBN: 978-1-4302-3126-4.

Hiirsch, W. L. and C. V. Lopes (1995). Separation of Concerns. Tech. rep.

jbullet.advel.cz (2008). JBullet. URL: http : // jbullet . advel . cz/| (visited on
06/06,/2013).

jMonkeyEngine (2012). JME3 Documentation: Physics Listeners. URL: http: //
jmonkeyengine . org/wiki/doku. php/ jme3: advanced : physics_listeners
(visited on 04/22/2013).

— (2013a). JME3 Documentation: Android Support in the jMonkeyEngine. URL:
http : // jmonkeyengine . org/wiki / doku . php / jme3 : android (visited on
05/16/2013).

jMonkeyEngine (2013b). JME3 Documentation: Material Definition Properties. URL:
http://jmonkeyengine . org/wiki/doku. php/jme3:advanced : materials _
overview#phong_illuminated (visited on 05/14/2013).

jMonkeyEngine (2013). Material Deinition Properties. URL: http://hub. jmonkeyengine.
org/wiki/doku.php/jme3:advanced:materials_overview (visited on 05/10/2013).

Jornmark, J., A.-S. Axelsson, and M. Ernkvist (2005). “Wherever Hardware, There’ll
be Games: The Evolution of Hardware and Shifting Industrial Leadership in
the Gaming Industry”. In: DiGRA 2005: Changing Views: Worlds in Play, 2005
International Conference. June 16-20 2010, Vancouver.

Kiiller, R. et al. (2006). “The impact of light and colour on psychological mood: a
cross-cultural study of indoor work environments”. In: Ergonomics 49.14, pp. 1496—
1507.

McGuire, M. (2010). “Ambient Occlusion Volumes”. In: Proceedings of High Perfor-
mance Graphics 2010. June 25-27 2010, Saarbrucken.

Mercury [pseud.| (2013). Sonic Physics Guide: Jumping. URL: http : // info .
sonicretro.org/SPG: Jumping (visited on 05/15/2013).

Mullen, T. and E. Coumans (2008). Bounce, Tumble, and Splash! : Simulating the
Physical World with Blender 3D. Hoboken, NJ, USA: Wiley, p. 400. I1SBN: 978-
0-4703-9272-0.

51

http://jmonkeyengine.org/2010/08/screen-space-ambient-occlusion-for-jmonkeyengine-3-0/
http://jmonkeyengine.org/2010/08/screen-space-ambient-occlusion-for-jmonkeyengine-3-0/
http://www.theesa.com/facts/pdfs/esa_ef_2012.pdf
http://www.theesa.com/facts/pdfs/esa_ef_2012.pdf
http://jbullet.advel.cz/
http://jmonkeyengine.org/wiki/doku.php/jme3:advanced:physics_listeners
http://jmonkeyengine.org/wiki/doku.php/jme3:advanced:physics_listeners
http://jmonkeyengine.org/wiki/doku.php/jme3:android
http://jmonkeyengine.org/wiki/doku.php/jme3:advanced:materials_overview#phong_illuminated
http://jmonkeyengine.org/wiki/doku.php/jme3:advanced:materials_overview#phong_illuminated
http://hub.jmonkeyengine.org/wiki/doku.php/jme3:advanced:materials_overview
http://hub.jmonkeyengine.org/wiki/doku.php/jme3:advanced:materials_overview
http://info.sonicretro.org/SPG:Jumping
http://info.sonicretro.org/SPG:Jumping

REFERENCES REFERENCES

Pongmuseum.com (2013). Atari PONG. URL: http://www.pongmuseun. com (visited
on 04/17/2013).

The Blender Foundation (2013). Blender.org. URL: http : //www . blender . org
(visited on 04/17,/2013).

Vainer, K. (2013a). Creating assets in Blender3d. URL: http://jmonkeyengine .
org/wiki/doku.php/jme3:external:blender (visited on 04/18/2013).

— (2013b). How to Use Material Definitions. URL: http://jmonkeyengine.org/
wiki/doku.php/jme3:advanced:material_definitions (visited on 04/19/2013).

— (2013c). Models and scenes. URL: http: //www . jmonkeyengine . org/wiki/
doku.php/jme3:advanced:3d_models| (visited on 04/19,/2013).

Wolff, D. (2011). OpenGL 4.0 Shading Language Cookbook. Olton Birmingham:
Packt Publishing Ltd.

Secondary sources
Cited in Akenine-Moller, Haines, and Hoffman (2008):

Evans, A (2006). “Fast Approximations for Global Illumination on Dynamic Scenes”.
In: SIGGRAPH 2006 Advanced Real-Time Rendering in 3D Graphics and Games
course notes. SIGGRAPH.

Kontkanen, J and S Laine (2005). “ Ambient Occlusion Fields”. In: ACM SIGGRAPH
2005 Symposium on Interactive 3D Graphics and Games. SIGGRAPH, pp. 41—
48.

— (2006). “Ambient Occlusion for Animated Characters”. In: Eurographics Sympo-
sium on Rendering, pp. 343-348.

Landis, H (2002). “Production-Ready Global Illumination”. In: SIGGRAPH 2002
Course Notes, Course 16: RenderMan in Production. SIGGRAPH, pp. 87-102.

Luft, T., C. Colditz, and O. Deussen (2006). “Image Enhancement by Unsharp
Masking the Depth Buffer”. In: ACM Transactions on Graphics 25.3, 1206-1213.

Malmer, M. et al. (2007). “Fast Precomputed Ambient Occlusion for Proximity
Shadows”. In: Journal of Graphics Tools 12.2, pp. 59-71.

Mittring, M. (2007). “Finding Next Gen: CryEngine 2”. In: SIGGRAPH 2007 Ad-
vanced Real-Time Rendering in 3D Graphics and Games course notes.

52

http://www.pongmuseum.com
http://www.blender.org
http://jmonkeyengine.org/wiki/doku.php/jme3:external:blender
http://jmonkeyengine.org/wiki/doku.php/jme3:external:blender
http://jmonkeyengine.org/wiki/doku.php/jme3:advanced:material_definitions
http://jmonkeyengine.org/wiki/doku.php/jme3:advanced:material_definitions
http://www.jmonkeyengine.org/wiki/doku.php/jme3:advanced:3d_models
http://www.jmonkeyengine.org/wiki/doku.php/jme3:advanced:3d_models

	Introduction
	Background
	Purpose
	Problem
	Limitations
	Method
	Testing and comparing visual appearance

	Description of the game

	Light
	Lighting techniques
	Reflection models
	Precalculated light
	Background illuminated objects
	Multi-coloured light sources

	Light in jMonkeyEngine
	Results
	Performance with many light sources
	Shading of the background
	Modelling of torch lights
	Modelling of window light

	Discussion

	Shadows
	Drop shadows
	Projection shadows
	Shadow-mapping
	Shadow volumes
	Results
	Discussion

	Ambient occlusion
	Ambient occlusion techniques
	Results
	Discussion

	3D modelling
	Primitives
	Mesh editing
	Colouring and texturing
	Animations
	Results
	Mesh editing
	Colouring and texturing
	Animations

	Discussion

	Particle systems
	Basic concepts regarding particles
	Results
	Discussion

	Game logic
	Main gameplay
	Jumping

	Collision detection
	Power-ups
	Level generation
	Hazards

	Using a game engine
	Choosing a game engine
	Adapting to jMonkeyEngine's framework
	Spatials and controls
	Loading assets and scenes
	Conclusions

	Issues on Android
	Physics
	Graphics

	Results
	Discussion
	Project management
	Game development
	Graphics

	Conclusions
	References

