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Abstract
The objective of the thesis was to develop an algorithm that can estimate the size,
orientation, velocity and yaw-rate of an extended object surrounding a host vehicle
by using the available information in the Radar Data Cube (RDC) from a single
radar in a single radar frame. The RDC was clustered using DBSCAN to sort out
the scatter points belonging to the target. Then a RANSAC algorithm was used
to estimate a bounding box of the target. Further it was assumed that the target
vehicle could be modeled according to the Ackermann steering condition. The posi-
tion of the rear axle was estimated using the assumption that the density of scatter
points is higher around the wheels than on the rest of the side of a car.

The yaw rate was estimated by first calculating the Instantaneous Center of Rota-
tion (ICR) line. The ICR line intersects the origin of the sensor and has a slope
that can be calculated by solving a system of equations for two randomly sampled
scatter points. This was done multiple times and the median of the results was used
as an estimation of the slope. An ICR point was then found by computing the point
where the ICR line intersects with a line coincident with the rear axle. The yaw rate
could then be calculated using the slope of the ICR line and the position of the ICR
point. Using the estimated yaw rate and the distance from the center of the rear
axle to the ICR point, the instant velocity was estimated. To show that it would be
possible to estimate the motion of a target instantaneously if there was less noise in
the measurements, the results was modeled with a Coordinated Turn model and a
Cubature Kalman filter was developed and applied.

It was shown that it is possible to compute the full motion, orientation and size
instantaneously with the proposed model. The result was however considerably
noisy. This noisy behavior was mitigated with the Kalman filter which resulted in
an output with more stable estimates.

Keywords: Radar, Full Motion Estimation, Instantaneous Yaw Rate Estimation,
Radar Data Cube
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1
Introduction

The automotive industry is currently moving towards more autonomy and future
cars might not require human drivers. There are still some crucial obstacles to
overcome before vehicles become totally autonomous but many of the cars on the
market today have some kind of autonomy or pilot assist systems.

1.1 Background
A crucial part of making cars more autonomous is to detect and classify surrounding
objects and to decide their size, position, velocity and yaw rate. This is often done
using radars, cameras and/or other sensors [1]. One of the companies developing
radars and tracker schemes in the automotive industry is Aptiv. There are several
different kinds of automotive radars that have various functions. Within Aptiv these
include Short Range Radar (SRR), Mid Range Radar (MRR) and Long Range Radar
(LRR). They have different fields of view and ranges. The type of radar used in
this thesis is a Short Range Radar Generation 3 (SRR3). A radar operates by
transmitting a radio signal and then receiving it again by antennas. When multiple
antennas are used, both the range and the angles (azimuth and elevation) to what
is measured can be computed by using the phase shift of the radio signal between
the antennas. Usually an array of antennas are used to accurately compute these
characteristics of the signal. The data that the antennas receive can be visualized in
a range-Doppler map and by stacking the range-Doppler maps for all of the antennas
in the radar one gets an RDC which contains all relevant low level information from
the radar. An example of a range-Doppler map can be seen in Figure 1.1.

Figure 1.1: An example of a range-Doppler map with the amplitude of the radar
signal.
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1. Introduction

Most automotive radars today use the information from the RDC to compute de-
tections and only these detections are the output from the sensor. The reason for
only giving the computed detections as output is that the RDC contains too much
data for the on board processors to efficiently compute. The most common way
of choosing detections is to take the peaks in the range-Doppler maps, that is the
yellow areas in Figure 1.1. The rest of the RDC is filtered out by setting a threshold
on what is to be categorized as noise. The detections are then grouped together
(clustered) in some sort of object tracker to estimate the position, size and orienta-
tion of objects like cars, trucks and pedestrians. One distinction between modern
automotive radars and classical airborne radars is that the targets are assumed to
be extended objects in relation to point sources because the resolution of the radars
are finer then the physical extent of the object. Hence, more than one detection per
extended object are expected to be generated and the size and motion of objects
can then be estimated.

In order to more accurately compute the size and orientation of the objects one
could investigate if there is more useful information in the RDC than the detections
that are the input to the common automotive radar trackers today [2]. In the case
of the radar output in Figure 1.1, it is the information around the yellow areas that
are categorized as noise in the radars used today.

1.2 Purpose
The purpose of the thesis is to investigate alternative tracking schemes than what
is common today in an automotive setting by utilizing more of the data from the
radar. This in order to develop better active safety functionalities which depend on
an accurate description of the motion and size of surrounding extended objects.

1.3 Objective
The objective of the thesis is to develop an algorithm that can accurately estimate
the size, orientation, velocity and yaw-rate of an extended object surrounding a host
vehicle using more of the available information in the RDC than just the detections
in one radar frame.

1.4 Scope
The data used in the project is the output from only one radar and hence no fusion
between different radars or other sensors are considered. The object that is estimated
is a passenger car which means that the result is not necessarily transferable to other
kinds of objects, such as bicyclists and pedestrians, since the object is modelled as
a rectangle with a motion as described by the Ackermann model. The thesis is also
limited to post processing of collected data, meaning that the resulting algorithms
are not intended to be able to function in real time in a vehicle.

When benchmarking the performance of the developed algorithms, the position,
velocity and yaw rate of the target are compared to GPS data as ground truth.
When evaluating the algorithms no new data is gathered. An existing log from a

2



1. Introduction

previous test drive at Aptiv is used since the data is gathered from a test facility
where there are an accurate GPS system to track vehicles. The size estimates are
compared to the actual size of the target given by the manufacturer of the car model
used in the test drive.
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2
Theory

In order to achieve the objective of the full motion estimation, the radar data had to
be understood and extracted. Fundamental radar concepts are therefore described in
Section 2.1 and the difference between radar detections and low level measurements
in the RDC is detailed further in Section 2.2. From these radar measurements
correlating to one extended object a crude method to compute the heading and
velocity is described. Lastly, a model to simulate radar output in a single time
instance from the motion of an extended object is proposed. Which was used to
develop and verify the methods presented in this thesis. In the model, assumptions
regarding the distribution of the radar measurements along the edges of an extended
object are also explained.

2.1 Radars
A radar device fundamentally transmits electromagnetic waves that propagate through
space, reflect on distant objects and are then received again by antennas on the radar
device. Depending on the intended usage of the radar, the characteristics, such as
frequency, bandwidth and dwell time, of the transmitted electromagnetic waves are
different. The radar used to collect data in this thesis is a Linear Frequency Mod-
ulated Continuous Wave (LFMCW) radar. These sensors are capable of measuring
the range, range rate and angles of a reflected wave. LFMCW radars transmit a
linear frequency sweep called a chirp. The chirp is being transmitted on top of a
carrier frequency, fc. The difference between the lowest and highest frequency of a
chirp is the bandwidth and the time it takes to perform a chirp is called dwell time.
Several succeeding chirps are being transmitted during one radar frame [3].

2.1.1 Range Measurements
When the transmitted signal reflects on objects, a copy of the signal is being received
by the antenna. Since it takes some time, τδ, for the signal to propagate from the
radar to the object and back, the received signal will be shifted in time compared to
the transmitted signal. By mixing the transmitted signal with the received signal the
Intermediate Frequency (IF)-signal is obtained. The IF-signal is a new signal with a
frequency equal to the difference between the transmitted and received frequencies in
each time instance. The phase shift of the IF-signal will correspondingly be equal to
the difference in phase shift between the transmitted and received signal. Since the
chirps varies in frequency over time, the resulting IF-signals is different depending
on the distance to the reflecting object. The distance can therefore be calculated
from the IF-signal [3].

5



2. Theory

The carrier frequency can be different between radar frames to extract more in-
formation from the environment. An SRR can have both a frequency that works
best at a short range and one that functions better on a mid range. These different
frequencies generates different range-resolutions over different radar frames and are
called look types.

2.1.2 Range Rate Measurements
If the object that the signal is reflected on has a velocity towards or away from
the radar sensor, the IF-signal will change slightly between each chirp in a frame.
For reasonable velocities the difference in frequency between chirps will be smaller
than the range resolution. The phase, on the other hand, will change even at low
velocities since the wavelength of the signal and the change in range between chirps
is of the same order of magnitude. By using the phase difference between the IF-
signals of each chirp, the time between the chirps and the wavelength of the radar
wave, the radial velocity of the object relative to the radar can be calculated.

2.1.2.1 Ambiguity in Range Rate Measurements

Since sinusoidal waves are ambiguous, the phase shift between the chirps can be the
same for different radial velocities. Hence there is a maximum radial speed that
can be measured unambiguously by an LFMCW radar. If, for example, the radial
displacement of an object that reflects a radar signal between two chirps is exactly
half the wavelength of the radar wave, there is no way of knowing whether the object
is moving towards the radar or away from it since the phase difference is the same in
both cases. Since there is ambiguity in the range rate of objects it is assumed that
the speed is low enough for the displacement between chirps to be less than half the
wavelength of the radar wave. Hence the maximum radial velocity that an LFMCW
radar can measure in a frame is a function of the wavelength and the time between
the chirps, τs [3]. There are, however, methods for dealiasing the range rate, and
in that way unambiguously measure radial velocities greater than this maximum.
One such method is the one referenced in [4]. In this project, all radial velocities
are assumed to be below the maximum radial velocity that the radar can measure
unambiguously without dealiasing.

2.1.2.2 Range Rate Compensated for Velocity of the Sensor

Since the radar is mounted on a host vehicle that might be moving, the measurements
will not reflect the actual velocities over the ground of detected targets, but the
velocities relative to the host. Assuming that the velocity and curvature of the host
vehicle, as well as the position of the sensor on the host, are known, the velocity of
the sensor can be calculated and compensated for in order to get the over ground
velocities of targets. When the over ground velocity is found the stationary objects
can be sorted out. In Figure 2.1, an example of the position of a sensor on a host
vehicle can be seen.

6
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Figure 2.1: Position of a sensor on a host.

In Equation (2.1) the velocity of the sensor is calculated, given the position in Figure
2.1. The superscripts in brackets of the variables in Equation (2.1) and the following
equations in this thesis indicates in which coordinate system the variable is defined.
The subscripts indicate what object the variable belongs to. H is short for Host, S
for Sensor, T for Target and D for Detection. Hence, v[S]

S is the velocity of the sensor
relative to the coordinate system of the sensor. v[S]

Sx
and v[S]

Sy
are the components in

the direction of the x- and y-axis respectively. Further, ∆β is the boresight of the
sensor. That is the angle between the x-axis in the host vehicle coordinate system
and the x-axis in the sensor coordinate system. v[H]

H is the velocity of the host
vehicle in the host coordinate system, and v[H]

Hx
and v[H]

Hy
are the velocity components

in the direction of the x- and y-axis respectively. CH is the curvature of the target
and L[H]

Sx
and L[H]

Sy
are the x- and y-coordinates of the origin of the sensor coordinate

system in the host coordinate system.

v[S]
S =

v[S]
Sx

v
[S]
Sy

 =

 cos (∆β) sin (∆β)
−sin (∆β) cos (∆β)


v[H]

Hx

v
[H]
Hy

+ CH
∥∥∥v[H]

H

∥∥∥︸ ︷︷ ︸
ωH

0 −1
1 0


L[H]

Sx

L
[H]
Sy

 (2.1)

Using Equation (2.2), where θ is the azimuth, the compensated range rate, ṙcomp, of
a detection can then be calculated. In Equation (2.2), ṙ is the range rate measured
by the sensor.

ṙcomp = ṙ +
∥∥∥v[S]

S

∥∥∥ cos
θ − tan−1

v[S]
Sy

v
[S]
Sx

 (2.2)

2.1.3 Range-Doppler Map
When the IF-signals for each chirp is generated, they are low-pass filtered and then
a Fast Fourier Transform (FFT) is performed over the IF-signals. This generates
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peaks in the IF-signal at frequencies corresponding to ranges of measured objects.
A second FFT is then performed over the phases of the first FFT. This generates
peaks at the phase shifts of the IF-signals corresponding to the range rates of the
objects at the corresponding ranges. After performing these FFT:s, the results can
be arranged in a two dimensional matrix called the range-Doppler map. An example
of a range-Doppler map can be seen in Figure 2.2. Each element in the matrix is
a bin pair that represent the energy in a Doppler bin and a range bin. Bin pairs
without any objects are blue in the range-Doppler map and bin pairs where objects
are measured are in other colors depending on how high the magnitude peak at
that bin pair is. The range-Doppler map in Figure 2.2 shows the bin measurements
multiplied with the corresponding range and Doppler resolutions. The resolution
depends on the length of the FFT and the sampling frequency.

Figure 2.2: A range-Doppler map over moving target and host.

2.1.4 Radar Data Cube
In each radar frame one range-Doppler map, such as the one in Figure 2.2, for
each antenna is generated. These can be represented as a three dimensional matrix,
a data cube shown in Figure 2.3. Each element in the RDC is a complex valued
number and the bin over all antennas in one frame is called a beam vector. The beam
vector’s complex valued numbers are used to compute the azimuth as explained in
Section 2.1.5. Throughout this thesis the amplitude in each bin is computed as the
norm of the beam vector.

8
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Figure 2.3: A visual representation of the RDC and a beam vector.

2.1.5 Angle Measurements
In order to measure the angles to objects, LFMCW radars have multiple antennas
placed in rows and columns on the same plane. If an object that reflects a signal
back to the antennas is not perpendicular to the radar plane, the different antennas
do not receive the returning wave at exactly the same time. This leads to a phase
shift between the different antennas’ received signals. This phase shift can be used
to calculate at what angle the object is relative to the radar. The phase shifts from
antennas in vertical columns are used to calculate the elevation angle of the object
relative to the radar. The phase shifts from antennas in horizontal rows are used to
calculate the object’s angle in the horizontal plane. A coordinate system is placed
with its origin in the middle of the arrays of antennas. The x-axis is in what is
called the boresight of the radar. The boresight is a line orthogonal to the plane
of antennas. For most radars the boresight is in the the center of the radar’s field
of view which is also the case for the radar used in this thesis. When defining the
angles to objects in the radar’s field of view, the azimuth is the angle between the
objects position and the boresight in the xy-plane and the elevation angle is the
angle in the xz-plane [5]. The angles are visualized in Figure 2.4. In this project
only the azimuth, and not the elevation angle, is considered.
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Figure 2.4: A visualization of the azimuth and elevation angles. The boresight of
the radar is in the x-axis.

The SRR3 has an array of three antennas and hence the received signal per time
instance is an array of three elements with complex numbers. In order to extract
the angle from these complex numbers the phase difference between a narrow and
wide antenna pair is computed and compared for each beam vector to remove any
phase ambiguities [5].

2.2 Radar Signal Filtering
When the range-Doppler map is constructed the next challenge is to determine
which information is the most relevant in order to find peaks in the data that could
correlate to targets. This is normally done in a few different filtering steps that result
in what is called detections. The first step is a type of CFAR, which is followed by
subsequent thresholds on the received signal magnitude which result in first pass
detections and then actual detections. All information above CFAR will however be
considered in this thesis as useful.

2.2.1 CFAR-filtered RDC
A CFAR is used to filter out the noise from the received radar signal in the RDC.
The CFAR threshold of what is considered to be noise and what is relevant data is
different in different scenarios and ranges and is therefore dynamically computed for
each data set and range bin. One way to compute CFAR for a given range bin is to
use the average of the signal power of 2Ncfar range bins around a Cell Under Test
(CUT), as shown in Figure 2.5. This is called a cell averaging CFAR. The signal
power for each cell is computed as the norm of the corresponding beam vector. In
this way the general noise level is mitigated and only the relevant information in
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the data is left. If CFAR is larger than the signal power in the CUT, then it is
considered to be noise [3].

Figure 2.5: Computing CFAR with the sliding window approach over range bins.

2.2.2 Detections
From the CFAR-filtered range-Doppler map, detections can be computed. Detec-
tions can be chosen in various ways but the most common method is to take the
peaks in the resulting CFAR-filtered range-Doppler map where a few adjacent bins
around the peak are used to compute one detection. The detection does not neces-
sarily represent one bin measurement since it is also common to interpolate between
bins to increase the resolution of the detections. Hence, the number of detections
is smaller than the number of bin measurements in the CFAR-filtered RDC. This
result in detections with a range, azimuth, range rate and amplitude. Exactly how
the detections are computed and which type of CFAR that is used in the SRR3
cannot be disclosed since it is a central part of Aptiv’s software. In this thesis the
detections used are the ones computed by the radar and the CFAR threshold used
is also an output from the radar.

2.3 Velocity and Heading of Extended Objects
When a moving extended object is in the field of view of a radar, the radar signal
reflects off of it and it is shown in the range-Doppler map as a cluster of points. This
can be seen in Figure 2.2 as a collection of bins with high beam vector amplitude
with a compensated range rate that is non-zero. If a moving extended object cause
N bin measurements, the relations between these and the velocity of the vehicle can
be expressed as in Equation (2.3). This relation will hold to compute the velocity
and pointing of an object accurately if it is assumed that the extended object has
a linear movement and the calculated velocity will thus be less accurate the more
yaw rate an object has. The matrix is ill-conditioned if the azimuth spread is small
as well and hence sensitive for noise in the compensated range rate [5]. In Equation
(2.3) ṙcomp is the compensated range rate, θ is the azimuth angle and v[S]

Tx
along with

v
[S]
Ty

are the velocities of the target object in the sensor’s coordinate system.


ṙcomp,1

...
ṙcomp,N

 =


cos (θ1) sin (θ1)

... ...
cos (θN) sin (θN)


v[S]

Tx

v
[S]
Ty

 (2.3)
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The total velocity of the extended object is then given by Equation (2.4), and the
heading of the target vehicle in the sensor’s coordinate system, α[S]

T , is given by
Equation (2.5) where ∆β is the boresight of the sensor.

‖vT‖ =
√(

v
[S]
Tx

)2
+
(
v

[S]
Ty

)2
(2.4)

α
[S]
T = tan−1

v[S]
Ty

v
[S]
Tx

+ ∆β (2.5)

2.4 Simulated Radar Measurements
To develop the algorithms used for estimating size, velocity and yaw rate, a theoreti-
cal model of a system containing a host vehicle with a sensor and one or more target
vehicles was created. In the model, the host, sensor and targets are given velocities,
curvatures and sizes when they are generated. Then detection points on the edge of
the target can be generated. The velocities of these points depend on the velocity
and the curvature of the target as well as on where the points are located relative to
the center of rotation of the target vehicle. Equation (2.6) is used to calculate the
velocity of the points. v[T ]

D is the velocity of a detection in the coordinate system
of the target. v[T ]

Dx
and v[T ]

Dx
are the velocities in the x- and y-direction respectively.

v
[T ]
Tx

and v[T ]
Tx

are the x- and y-components of the velocity of the target vehicle in the
coordinate system of the target. CT is the curvature of the target. L[T ]

Dx
and L

[T ]
Dy

are the x- and y-coordinates of the detection point in the target vehicle coordinate
system.

v[T ]
D =

v[T ]
Dx

v
[T ]
Dy

 =

v[T ]
Tx

v
[T ]
Ty

+ CT
∥∥∥v[T ]

T

∥∥∥︸ ︷︷ ︸
ωT

0 −1
1 0


L[T ]

Dx

L
[T ]
Dy

 (2.6)

To calculate what the sensor would measure if it detected the generated points, the
velocities of the detections need to be calculated in the coordinate system of the
sensor. This is done using Equation (2.7), where v[S]

D is the velocity of the detection
in the coordinate system of the sensor. v[S]

Dx
and v[S]

Dy
are the components in the x-

and y-direction. ∆γ is the angle between the x-axis of the target coordinate system
and the sensor coordinate system. v[T ]

Dx
and v[T ]

Dy
are the x- and y-components of the

detection’s velocity in the target coordinate system.

v[S]
D =

v[S]
Dx

v
[S]
Dy

 =
 cos (∆γ) sin (∆γ)
−sin (∆γ) cos (∆γ)


v[T ]

Dx

v
[T ]
Dy

 (2.7)
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Equation (2.8) is then used to calculate the azimuth. θ is the azimuth of a detection
in the coordinate system of the sensor. In this equation p[S]

Dx
and p[S]

Dx
are the x- and

y-coordinates of a detection in the coordinate system of the sensor.

θ = tan−1

p[S]
Dy

p
[S]
Dx

 (2.8)

Equation (2.9) is used to calculate the range to a detection from the sensor. Just like
in the previous equation, p[S]

Dx
and p[S]

Dx
are the x- and y-coordinates of a detection in

the coordinate system of the sensor.

r =
√(

p
[S]
Dx

)2
+
(
p

[S]
Dy

)2
(2.9)

Equation (2.10) is used to calculate the range rate of a detection measured by the
sensor. v[S]

Dx
and v

[S]
Dx

are the x- and y-components of a detection’s velocity in the
coordinate system of the sensor. θ is the azimuth of the detection relative to the
coordinate system of the sensor.

ṙ = v
[S]
Dx

cos (θ) + v
[S]
Dy

sin (θ) (2.10)

A Matlab app was designed in order to visualize the generated scenario. An example
of a visualization from the app can be seen in Figure 2.6, where a host, a sensor and
a target have been generated. On the target 100 detections points have been added
and the arrows represent the measured range rate from each detection.
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Figure 2.6: An example of generated data. The arrows from the detection points
represent the range rates measured by the sensor on host.

2.4.1 Model for Generating Detections
The positions of the detections on the vehicle is placed where the highest probability
of a detection in a given scenario is. The model used for this is the one in [6]. Here
it is assumed that the majority of detections are generated on the corners of the
vehicle and in the wheelhouses as shown in Figure 2.7, where the grey circle sectors
represent the most plausible position of detection points and the direction in which
the sensor has to be located in order for a detection to be generated. These places
are the most plausible detection points because these are complex geometries with
at least one area perpendicular to the radar which is a characteristic of a good
reflector. There are more possible areas on a car that the propagating radar wave
can reflect on, such as door frames and various edges. This is simulated by a small
underlying uniform distribution of detections apart from the generated detections
from the proposed model which can be seen in Figure 2.6.
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Figure 2.7: A plan view of the detection model for a passenger car. The gray
circular sectors represent the most plausible detection points and in what directions
the car has to be illuminated in order for a detection to be generated.

2.4.2 Measurement Noise and Outliers
In reality, the measured data is never as accurate as generated data, since there
will always be some measurement noise. To make the generated data more realistic,
measurement noise can be added to the calculated measurements. Equation (2.8)
and (2.9) are then rewritten as (2.11) and (2.12).

θ = tan−1

p[S]
Dy

p
[S]
Dx

+ n, where n ∼ N
(
0, σ2

θ

)
(2.11)

r =
√(

p
[S]
Dx

)2
+
(
p

[S]
Dy

)2
+ n, where n ∼ N

(
0, σ2

r

)
(2.12)

There can also be correctly measured detections that have range rates that look
completely wrong. For example if there is a detection on the wheel of a target
vehicle, the range rate might differ greatly from the rest of the measured range rates
on that target. These detections are called outliers. To make the generated data
even more realistic an option to add outliers is available in the theoretical model. In
Figure 2.8 the same scenario as in Figure 2.6 is visualized, but this time with noise
and outliers added.
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Figure 2.8: An example of generated data with noise and outliers. The arrows
from the detection points represent the range rate measured by the sensor mounted
on the host vehicle. Here it can be seen that the detection model in [6] is used since
most detections are at the closest corner and at the positions of the wheels on the
target bounding box.
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3
Method

The objectives of this project was to estimate the size, orientation, velocity and yaw
rate of a target vehicle using the RDC from a single radar frame. This was achieved
in the steps that can be seen in the flowchart in Figure 3.1. The range, compensated
range rate and azimuth of the scatter points were extracted from the RDC from an
SRR3. Then all scatter points with an amplitude below CFAR were removed as
described in Section 2.2.1. After all usable data was extracted, the first step was
to develop a clustering algorithm to sort out any scatter points not belonging to
the target vehicle. The clustering algorithm is described in detail in Section 3.1.
In order to estimate the size and orientation of the target an algorithm for finding
the bounding box was developed. This algorithm is described in Section 3.2. To be
able to estimate around what point the target is yawing, the position of the target’s
rear axle was estimated using the assumption that the density and amplitude of the
scatter points is greater around the wheels. This is described in Section 3.3. Using
the rotation point and the measurements the yaw rate was then estimated. This
is described in Section 3.4. Finally, in Section 3.5 it is described how the velocity
was estimated. Since the noise level on estimations made in a single radar frame
are high, a Kalman filter was developed to smooth out the yaw rate and velocity
estimations over time. The Kalman filter is described in Section 3.6.

DBSCAN

RANSAC

Rear Axle
Estimation

Moving
Cluster

Yaw Rate
Estimation

Velocity
Estimation

Bounding
Box

Size Position Pointing

Kalman Filter

Yaw
rate

Velocity

Full-
Motion

Estmiation

Distance to
Rear Axle

Compensated
Range Rate Azimuth Range

Beam
Vector

Amplitude

CFAR
Filtering

Figure 3.1: A flowchart describing what methods were used in this project.
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3.1 Clustering Using DBSCAN
In order to estimate size, velocity and yaw rate of objects surrounding the sensor,
the detections needed to be clustered into different targets. To do this, a version
of DBSCAN was used. The classical DBSCAN algorithm only clusters data points
based on their position [7]. In this case there can be detections in the same range
and with almost the same azimuth that belongs to different objects, for example
detections from different objects very close to each other. If the algorithm only
clusters points based on their position these points might be classified as belonging
to the same object. The outliers, for example detections on the wheels of a target
vehicle, also need to be removed since their measured range rate does not reflect the
motion of the target. Hence, only considering range and azimuth is not sufficient.
By also taking range rate into account when doing the clustering, the risk of having
outliers or detections from a different object in a cluster is decreased.

3.1.1 DBSCAN Algorithm
The DBSCAN algorithm clusters points that are close to each other. The classical
DBSCAN algorithm only clusters spatial data and takes a euclidean distance, ε,
and a minimum number of points, minPts, as input. The algorithm loops over all
points and if a point p has more than minPts in its neighbourhood, that is within
the euclidean distance, ε, from p, the points belong to a cluster. Points with fewer
than minPts neighbours are considered as noise [7]. In the DBSCAN algorithm
used in this project, however, the detections are clustered based on azimuth, range
and range rate. Since there is not only spatial data as input, the euclidean distance
can not be used as a threshold value. Instead the data is ordered in a range-Doppler
map where the value of each bin is the azimuth instead of the magnitude of the
signal. The threshold input, ε, is a 1-by-3 vector, where the first value describes
how many range bins from a point its neighbourhood is. The second value describes
how many Doppler bins from a point its neighbourhood is and the third element of
ε is a threshold value for the azimuth. A flowchart of the DBSCAN algorithm can
be seen i Figure 3.2.
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Figure 3.2: A flowchart describing the DBSCAN algorithm.

The DBSCAN algorithms uses another algorithm called getNeighbours, which takes
an index of the azimuth map, the azimuth map and the threshold values ε as input
and returns a list with the indices of the neighbours of the input point. Neighbours
are in this case points that are in the range set by ε from the current point.

3.1.2 Cluster Properties
Besides labeling all bins with a cluster ID or as noise, the DBSCAN algorithm
outputs information about each of the detected clusters. The properties provided
are the size of the cluster, the number of core points, the number of edge points, an
approximate location in the azimuth map and if the cluster is moving or not.

3.1.3 Moving and Stationary Cluster Classification
For each point in a cluster, the compensated range rate is calculated using Equation
(2.2). If the average speed over ground is below 1 m/s the object is classified as
stationary. Since only logs with one moving car was used, the largest moving cluster
was assumed to be the target vehicle.
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3.2 Bounding Box Estimation Using RANSAC
In order extract the length and width of a target vehicle, the edges of the target
had to be determined from a moving cluster in the RDC. This was accomplished
by using RANSAC. RANSAC is an algorithm for estimating the parameters of a
mathematical model based on a set of data points with outliers. The method is
non-deterministic since the result can vary from one time to another, even though
the input data is the same. Most of the time the algorithm does, however, give a
sufficiently good estimation. RANSAC is based on the method to take a minimum
numbers of data points and fit a mathematical model to these points. The solution
is then evaluated based on how many of the total number of points that are within a
pre-set distance from the solution obtained by this minimal number of points. The
points within that distance are called inliers. The algorithm is then iterated and if
a solution is found that have more inliers than any of the previous solutions, that
solution is saved. If the sought solution is a polynomial of grade N , the minimum
number of points that RANSAC samples and fits a solution to is N + 1 [8].

A modified version of the RANSAC algorithm was used to estimate the position
of the sides of a target based on the measurements. Since two sides of the target
(an L-shape) often is visible to the sensor, the algorithm was constructed to find
L-shapes rather than finding a polynomial. The two sides visible was assumed to
be perpendicular to each other. The lines aligning with the two sides can then be
described using Equations (3.1) and (3.2).

y = kx+m1 (3.1)

y = −1
k
x+m2 (3.2)

Since there are three parameters to be decided, k, m1 and m2, the RANSAC algo-
rithm needs to take three random sample points to fit the model to. First k and
m1 are decided by fitting a polynomial of grade 1 to two of the points. Then m2
is decided by finding a perpendicular line to the first polynomial that crosses the
y-axis in m2. For each of the two lines, all scatter points within the threshold dis-
tance from the line are added to a list of inliers. The threshold value used in this
project was 0.5 m. Then the point where the two lines intersect is computed using
Equations (3.3) and (3.4).

xintersect = m2 −m1

k + 1
k

(3.3)

yintersect = k xintersect +m1 (3.4)

The points that lies closer to the sensor than the intersection point does, are then
removed from the lists of inliers before evaluating the solution in each iteration.
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Instead of just counting the inliers when evaluation the solution in each iteration,
the inliers are weighted based on their amplitudes. The sum of the weight of the
inliers is the score of that solution. Hence, the best solution doesn’t necessarily have
the most inliers if it has many inliers of high amplitude.

The euclidean distance between the intersection point and the inlier farthest away
from the intersection point on each line is the estimated length of the side of the
target vehicle corresponding to that line. The length of the longest side is the length
of the target vehicle and the length of the shortest side is the width of the target
vehicle.

3.2.1 RANSAC with Only One Side of the Target Visible
In each iteration of the RANSAC algorithm, the score for each individual line is
computed and the best one is saved. The best individual line after all iterations is
used in case only one side of the target vehicle is visible. To decide whether one or
two sides of the target are visible the ratio between the score of the two lines in the
best solution is computed. If one side has less than 35% of the score of the other
line, it is assumed that only one side is visible. Then the best saved individual line
is used instead.

The euclidean distances between all inliers are calculated and the longest distance
between two inliers is the estimated length of the side. If the length of the visible
side is estimated as greater than 3 meters, the side is considered as the long side of
the target. The width of the target vehicle is then estimated as the length multiplied
with 0.4. If the length of the visible side is less than 3 meters it is instead considered
as the short side. The length of target vehicle is then estimated as the width divided
by 0.4.

3.2.2 Number of RANSAC Iterations
The number of RANSAC iterations N needed to obtain a probability p to sample
only inliers when sampling n points and where the probability of each point being
an inlier is κ, can be calculated using Equation (3.5) [8].

N = log(1− p)
log(1− κn) (3.5)

To calculate a reasonable number of iterations the inlier rate had to be estimated.
The inlier rate varied depending on which test log and which frame was considered.
The proportion of inliers, κ in each frame of all the test logs was determined by
checking the inlier rate after 1000 RANSAC iterations in each frame. The result
can be seen in Figure 3.3. The mean value was 0.48 and the standard deviation was
0.116. A conservative inlier rate was then chosen as two standard deviations below
the mean value, that is 0.248. A success rate p of 0.999 was chosen and the number
of sampled points, n, was 3, since that is what is needed to form an L-shape. The
minimum number of iterations needed was calculated as 450.
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Figure 3.3: The share of inliers over two test logs where the target vehicle drives
in a circle.

3.2.3 Unambiguous Pointing of Bounding Box
The RANSAC algorithm results in a bounding box that has a pointing which is
ambiguous since it does not incorporate the direction of travel of the target, only the
orientation. Assuming that the linear velocity of the target has a greater influence on
the measured range rates than the yaw rate has, it is possible to adjust the pointing
from RANSAC. If this assumption hold, the front and back side of the target vehicle
can be determined. If the front or the back of the vehicle is visible, the mean of the
range rates on these sides are used to determine whether the pointing is towards
or away from the sensor. When only the side of the target vehicle is visible, the
measured range rates along the length of the object should be lower in the front and
larger in the back along the length of the target. This information is then used to
adjust the pointing of the bounding box to be in the direction of travel.

3.3 Rear Axle Estimation
According to the Ackermann steering condition there is one point on the vehicle
where there is only linear speed and no additional speed due to rotation of the
vehicle. This point will throughout this report be called the reference point. The
ICR line is perpendicular to the pointing of the target vehicle and intersects the
reference point. The position of the reference point can be approximated to be in
the middle of the rear axle. When assuming that the ICR lies in line with the rear
wheels of the car, the assumption that there is no slip angle is also made, which
means that the wheels are traveling in the direction that they are pointing [9]. This
is a reasonable assumption for street cars that have a low lateral acceleration [9].
To define the reference point, the rear axle of the car has to be estimated. Since the
pointing, and size of the object as well as the cluster corresponding to each bounding
box are known, the rear axle position in the bounding box can be determined. For
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this to work the assumption that the area around the wheels have a higher density
of beam vectors with high amplitudes reflected off of them than the rest of the side
of the car, has to hold [6]. The amplitude of the beam vectors along the length of
the bounding box can be computed [10]. This is done by adding the amplitudes of
beam vectors along the length of the bounding box. 100 points along the edge of
the bounding box is evaluated and the beam vectors with an Euclidean distance of
1 m is considered to be inliers. The aggregate contour plot over a whole log is shown
in Figure 3.4. The peaks in the plot corresponds to the positions of the wheels and
the first of these peaks is found in each radar frame.

Figure 3.4: The sum of beam vectors near bounding box over its length.

This analysis result in a distance from the rear end of the bounding box to the two
wheels on the side. Using the pointing of the bounding box, the distance to the rear
axle from the rear end of the bounding box can be determined. The result for one
scan is shown in Figure 3.5.

Figure 3.5: The rear axle extracted from the DBSCAN-clustered beam vectors,
the bounding box from RANSAC and the true position of the bounding box with
corresponding rear axle.
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3.4 Yaw Rate Estimation
To estimate the yaw rate of a target vehicle in one radar frame with one sensor the
ICR have to be known. The ICR is the center point of the curvature of the target.
In order to estimate the ICR, the pointing, a reference point on the vehicle and the
ICR line have to be known. The pointing is estimated with the modified RANSAC
algorithm and the reference point is the middle of the rear axis that was estimated
in Section 3.3. The ICR line describes all possible centers of rotation given the range
rates and azimuths corresponding to the target vehicle. To compute the ICR line
Equation (3.6), where ω is the yaw rate of the target, θ is the azimuth and ṙcomp is
the compensated range rate, was used.

ṙcomp = ωy
[S]
ICR︸ ︷︷ ︸
α

cos (θ)− ωx[S]
ICR︸ ︷︷ ︸
β

sin (θ) (3.6)

Two scatter points from the target was sampled based on the norm of the corre-
sponding beam vector and a linear system of two equations were solved to get α and
β as in Equation (3.7). The subscripts i and j refers to the two sampled indices. The
probability of sampling a certain index i is described in Equation (3.8) where BV is
all the beam vectors correlating to one target. The center of rotation (x[S]

ICR, y
[S]
ICR)

is in the sensor’s coordinate system and the range rate ṙcomp is compensated for the
velocity of the host vehicle [11].

[
ṙ

[S]
comp,i

ṙ
[S]
comp,j

]
=
[
cos (θi) sin (θi)
cos (θj) sin (θj)

] [
α
β

]
(3.7)

P (i) = ||BVi||
Σ||BV || (3.8)

The system of equations in Equation (3.7) are solved 100 times using different sam-
pled scatter points from the target. This results in 100 different estimates for α and
β and the medians of the respective lists were assumed to be reasonable estimates.
The estimates of α and β are then used to describe the ICR line as in Equation
(3.9).

y[S] = −β
α
x[S] (3.9)

According to the Ackermann steering condition the ICR lies perpendicular to the
pointing of the bounding box of an object and hence the center of rotation, ICR, of
an object is along the ICR line somewhere between ICRmin and ICRmax in Figure
3.6. Since the reference point Pref is known the ICR can be determined as the
intersection between the line that goes trough the rear axle of the bounding box and
the ICR line as shown in Figure 3.6.
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Figure 3.6: The ICR line and pointing of a target vehicle in the sensor coordinate
system. The bounding box describes the target vehicle.

When the ICR line in Equation (3.9) and the center of rotation ICR, described by
the coordinates (x[S]

ICR, y
[S]
ICR), is determined then the yaw rate, ω, can be computed.

Using the expression in Equation (3.6) the yaw rate can be expressed as in Equation
(3.10).

ω = α

y
[S]
ICR

(3.10)

3.5 Velocity Estimation
When the yaw rate and the center of rotation are known, the linear velocity of the
target vehicle can be computed using Equation (3.11) where R is the radius of the
turn which is the distance from ICR to Pref in Figure 3.6. v is the velocity and ω
is the yaw rate.

v = ω ·R (3.11)

3.6 Kalman Filter
Since the low level measurements from most radars are noisy, the estimated yaw
rate and velocity are also noisy if scatter points from just one radar frame are used
to make the estimation. To show that the method for estimating the yaw rate and
velocity instantaneously would work if the noise level of the measured data was
lower, a Cubature Kalman Filter (CKF) was used to get a better estimation of the
position and orientation of the target in each frame. The general non-linear motion
and measurement model used in the CKF are shown in Equation (3.12) and (3.13)
[12]. x̂k is the state vector in a given time instance, f is the deterministic part of
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the motion model and qk−1 is added Gaussian noise sampled from a distribution
with the variance Qk−1. The measurement model consists of a deterministic part h
which describes the relation between the states x̂k and the measurements yk. The
measurement model also consists of added Gaussian noise rk that are sampled from
a distribution with the variance Rk.

x̂k = f (x̂k−1) + qk−1, qk−1 ∼ N (0, Qk−1) (3.12)

yk = h(x̂k) + rk, rk ∼ N (0, Rk) (3.13)

The CKF is a non-linear Kalman filter that estimates the mean and variance of the
states using sigma points X . Sigma points are a set of points that represent the
distribution of the states in each time instance. In every time instance the sigma
points are constructed as in Equation (3.14). These are then weighted equally with
the weight W . (Pk−1|k−1)i is the ith column of the variance of the states in the
previous time step k − 1.

X (i)
k−1 = x̂k−1 +

√
n(Pk−1|k−1)1/2

i , i = 1, 2, . . . , n
X (i+n)
k−1 = x̂k−1 −

√
n(Pk−1|k−1)1/2

i , i = 1, 2, . . . , n

W = 1
2n

(3.14)

These points are then propagated through the prediction step and a prediction mean
and variance are computed as shown in Equation (3.15) [12].

x̂k|k−1 ≈
2n∑
i=1

W f(X (i)
k−1)

Pk|k−1 ≈
2n∑
i=1

W (f(X (i)
k−1)− x̂k|k−1)(f(X (i)

k−1)− x̂k|k−1)T + Qk−1

(3.15)

The update step uses the predicted mean x̂k|k−1 and variance Pk|k−1 and new sigma
points are constructed as shown in Equation (3.16).

X (i)
k = x̂k|k−1 +

√
n(Pk|k−1)1/2

i , i = 1, 2, . . . , n
X (i+n)
k = x̂k|k−1 −

√
n(Pk|k−1)1/2

i , i = 1, 2, . . . , n

W = 1
2n

(3.16)

Using the new sigma points from the prediction step, the mean and variance of the
states can be updated with the measurements yk. The updated mean is then x̂k|k
and the prediction is Pk|k as shown in Equations (3.17) [12].
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ŷk|k−1 ≈
2n∑
i=1

h(X (i)
k )W

Sk ≈
2n∑
i=1

(h(X (i)
k )− ŷk|k−1)(h(X (i)

k )− ŷk|k−1)TW + Rk

Pxy ≈
2n∑
i=1

(h(X (i)
k )− ŷk|k−1)(h(X (i)

k )− x̂k|k−1)TW

x̂k|k ≈ x̂k|k−1 + PxyS
−1
k (yk − ŷk|k−1)

Pk|k ≈ Pk|k−1 − PxyS−1
k P T

xy

(3.17)

The state vector used in the filter can be seen in Equation (3.18), where rcx is the
x coordinate of the reference point, rcy is the y coordinate of the reference point on
the target, v is the linear velocity of the target, ϕ is the pointing and ω is the yaw
rate of the target.

x =



rcx

rcy

v
ϕ
ω

 (3.18)

The motion model in the update step is described by a Coordinated Turn (CT)
model, where the relations between the velocity, yaw rate, position and pointing are
captured [13]. The motion model is shown in Equation (3.19) where T is the time
between the radar frames which for the SRR3 is 50 ms. The velocity and yaw rate
is modelled as constant with added Gaussian noise which has a variance of 0.001 on
v and 0.001 on ϕ as in Equation (3.20).

f(x) =


x1 + x3T cos (x4)
x2 + x3T sin (x4)

x3
x4 + Tx5

x5

 (3.19)

Q =


0 0 0 0 0
0 0 0 0 0
0 0 0.001 0 0
0 0 0 0 0
0 0 0 0 0.001

 (3.20)

The measurement model, described in Equation (3.21), is constant but the velocity
and pointing are excluded as measurements because these measurements have many
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outliers and are the most noisy which can make the Kalman filter less accurate.
The measurement variance used is shown in Equation (3.22). The variance of the
reference point is assumed to be larger then the variance of the yaw rate.

h(x) =


x1
x2
x5

 (3.21)

R =

1 0 0
0 1 0
0 0 0.5

 (3.22)
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4
Results

To test the performance of the state estimation algorithms, estimates were done on
a log from test drive. The log is from a case where the target vehicle drives in circles
in front of the radar. The target vehicle in the log was a Peugeot Partner L1 2016.
The size estimates were compared to the actual size of the target vehicle. The yaw
rate and velocity estimates were compared to the yaw rates and velocities measured
by GPS in the test drives. The performance of the algorithms was evaluated both for
the case where all the data above the CFAR in the RDC was used and for the case
where only detections were used. The detections in this case are the output from
the radar where one detection is computed and interpolated from a few adjacent
bin measurements, as described in Section 2.2.2. The number of RDC points and
detections varied a lot depending on which side of the target vehicle was visible to
the radar. As can be seen in Figure 4.1, the number of RDC points was significantly
greater than the number of detections in all frames. The average number of RDC
points was 123.42 and the average number of detections was 7.61.

Figure 4.1: The number of RDC points and detections in each frame of the test
log.
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4.1 Size Estimation
The distributions of the size estimates from the test drive can be seen in Figure 4.2
where both the estimated size when using all the information in the RDC and only
the detections are presented. The resulting mean values and standard deviations
of the estimations over the whole log are presented in Table 4.1 and 4.2. The true
length of the vehicle used in the test drives is 4.38 m and the width is 1.81 m which
is presented as a vertical line in the histograms.

Figure 4.2: Histograms showing the estimation of the length and width of the
target. The length is shown in the left histogram and width in the right histogram.

Table 4.1: Table over the estimated length mean, median and standard deviation
for both when using the whole RDC and only the detections.

Length Mean Median σ
RDC 4.58 m 4.42 m 1.21 m
Detections 3.62 m 3.50 m 1.24 m
True 4.38 m 4.38 m

Table 4.2: Table over the estimated width mean, median and standard deviation
for both when using the whole RDC and only the detections.

Width Mean Median σ
RDC 2.25 m 2.13 m 0.64 m
Detections 1.51 m 1.47 m 0.48 m
True 1.81 m 1.81 m
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4.2 Position Estimation
The position of the center point of the target in each frame of the log is plotted in
Figure 4.3. The figure shows one plot for the case where the whole RDC was used,
and one plot for the case where only the detections were used. Both plots show the
estimated position both before and after the CKF was applied. Figure 4.4 shows
histograms of the position errors from the two cases.

Figure 4.3: The leftmost plot shows the estimated position using the RDC and
the true position in each frame. To the right is the estimated position using the
detections and the true position.

Figure 4.4: The leftmost plot shows error of the estimated position using the RDC
compared to the true position. To the right is the position error from the case where
only the detections were used.
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4.3 Pointing Estimation
The estimated pointing in each frame in the log, before and after the CKF, from
the case where the whole RDC was used is plotted in the upper half of Figure 4.5.

Figure 4.5: The upper plot shows pointing estimations from the RDC and true
pointing. Below is the pointing estimations from the detections and true pointing.

The lower half the figure shows the corresponding plot for the case where only the
detections were used to estimate the states. The mean square error of the estimations
compared to the ground truth GPS data is shown in Table 4.3.

Using the least squares approach described in Section 2.3 the result for the heading
in Figure 4.6 is obtained. If correct, the pointing and heading should have a strong
correlation, however it differs considerably from the pointing as shown.

Figure 4.6: Instantaneous heading estimation using a least squares approach and
the actual pointing.

32



4. Results

Table 4.3: Table over the MSE for the different pointing estimates.

RDC RDC Kalman Dets Dets Kalman Least Squares
MSE 4.6 2.0 5.2 2.5 5.9

4.4 Rear Axle Estimation
The result presented in Figure 4.7 is the euclidean distance between the estimated
reference point and the actual reference point from GPS data which lies in the center
of the vehicle 0.73 m from the back side.

Figure 4.7: The error of the estimated reference point compared to the actual
reference point.

4.5 Yaw Rate Estimation
The yaw rate was estimated using only measurements from a single time instance
and with the reference point on the target estimated as the center of the rear axle.
Both the instantaneous yaw rate and the Kalman filtered yaw rate compared to the
actual yaw rate are presented in Figure 4.8. The MSE of the estimates compared to
the GPS data is shown in Table 4.4.
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Figure 4.8: Yaw rate estimation results for the whole RDC and detections.

Table 4.4: Table over the MSE for the different yaw rate estimates.

RDC RDC Kalman Dets Dets Kalman
MSE 0.47 0.032 9.1 0.16

4.6 Velocity Estimation
The velocity estimates from the log are presented in Figure 4.9 together with the
actual velocity. This velocity estimation is based on the computations described
in Section 3.5 and then Kalman filtered. The mean square error of the estimates
compared to the GPS data is shown in Table 4.5.
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Figure 4.9: Velocity estimation results for the whole RDC and detections.

Using the method of computing the velocity instantaneously presented in Section
2.3 yielded the result in Figure 4.10. Here, the velocity estimates are far larger than
the actual velocity.

Figure 4.10: Instantaneous velocity estimation using a least squares approach.

Table 4.5: Table over the MSE for the different velocity estimates.

RDC RDC Kalman Dets Dets Kalman Least Squares
MSE 120 0.48 4700 0.95 80
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5
Discussion

Throughout this thesis a number of assumptions have been made to constrain the
project and to develop a solution. It was assumed that the examined radar log only
contained one moving object and that the object was a passenger car that behaved
according to the Ackermann steering model. For this assumption to hold the car
has to experience no slip, the car has to travel in the direction in which the wheels
are pointing. This is true in most cases where the speed of a vehicle is low but
could be an issue when the yaw rate is high, which could have affected the results of
the velocity and yaw rate estimations. The assumption that it was known that the
object in question was a passenger car was deemed reasonable since it is reasonable
to assume that the radar trackers of the future will have different models for tracking
different objects [14]. The setting where the developed model fits in is where the
radar outputs a number of detections or beam vectors with a label indicating the
type of object, then the model presented in this thesis can be applied.

Since the results presented are from only one log where the host car is stationary
on a test track with a target car circulating in front of the radar the results are not
necessarily transferable to all other scenarios and use cases. In a cluttered traffic
scenario with a lot of cars travelling at the same speed as the host for example,
the clustering will be much more difficult which could impact the estimation of the
object’s states. In a scenario where the host vehicle is moving, the uncertainty in
the host’s velocity will be added to the uncertainty in the estimation of the target’s
motion.

5.1 Size Estimation
The estimated size was better when using all the beam vectors in the cluster com-
pared to the estimations when using only the detections. This is because the detec-
tions usually don’t arise along the whole edges of the vehicle but only on the nearest
corner of the target and around the visible wheels. In the RANSAC algorithm the
size will then be underestimated since it will see the distance from the rear corner
to the front wheel as the whole length. Using all the beam vectors however, the
likelihood of getting data from a greater part of the edge increases since there might
be low level energy coming from the whole edge of the vehicle that can be captured
and the size estimate will be better. As shown in 4.1 the estimates using the whole
RDC was generally better compared to using only the detections. There are also
more outliers when using the detections which is probably because in some frames
there are only a few detections, three or less, which will make the RANSAC solution
poor since it samples three points in each iteration.
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5.2 Position Estimation
The position is the easiest state to estimate, since it only depends on the position
of the scatter points and not on the range rates. As can be seen in Section 4.2, the
position estimates are close to the ground truth. The estimations are not improved
by the CKF. This is due to the fact that the center point of the target is not a state
in the CKF. The center point after the CKF is instead derived from the estimation
of the reference point, the rear axle estimation and the estimated pointing. The
uncertainties in all these estimates are propagated and hence the uncertainty of the
the position of the center point after the CKF is larger than before the CKF.

5.3 Pointing Estimation
The estimated pointing is in most frames fairly good. The MSE was, as expected,
smaller when using the whole RDC than when only using detections, both before and
after the CKF had been applied. In the estimated pointing before the CKF there
are, however, some frames where the error in the pointing is close to π radians.
In those cases the position and size of the bounding box oftentimes are somewhat
correct, but the rear end of the car is estimated as the front end and vice versa. A
general approach to solve this ambiguous pointing is to fit the cluster to a velocity
profile and thus compute the heading which should be close to the pointing of the
vehicle. This was done as shown in Figure 4.6, but it did not yield any satisfactory
result. This is because when the yaw rate is considerably high, as in the log used,
it is not possible to fit the correct velocity profile to the bin measurements of the
cluster as described in Section 2.3. The proposed method to solve the issue presented
in Section 3.2.3 does not seem to work in every scan either which is probably due to
the yaw rate contributing more to the range rate then the linear speed of the object.

5.4 Rear Axle Estimation
Evaluating the rear axle estimation is difficult since it is highly dependent on the
estimation of the, size, pointing and position of the bounding box. This makes any
comparisons relative to the bounding box, for example the distance from the rear
side of the bounding box to the estimated position of the rear axle, irrelevant. As
discussed in Section 5.3 the pointing estimate is sometimes about π radians off from
the true pointing. In those cases, the rear axle estimation algorithm will estimate
the front axle as the rear axle. The solution presented is also dependent on that
the position and size of the bounding box is estimated correctly since it aims to
find the peaks of beam vector amplitudes along the nearest side of the bounding
box. Another approach to the problem is to use another iteration of DBSCAN on
the clustered beam vectors in order to find the peaks as in [10]. This will however
have the same difficulty with the pointing since an accurate instantaneous velocity
profile can not be established when the vehicle’s yaw rate is high. The behaviour of
faulty rear axle estimation dependent on ambiguous pointing is shown in Figure 4.7
where most errors are around 1 m but there is a tendency for a second peak in the
histogram around an error of 4 m. In those cases the position of the front axle has
been estimated and not the rear axle.
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5.5 Yaw Rate Estimation
Estimating the yaw rate for a general cluster in a single radar frame is not possible
since there are too many unknown variables. If the assumptions made in this report
are valid for a specific object, the yaw rate can be extracted in a single radar frame
from one cluster as has been shown. However, the method for estimating yaw rate
in a single radar frame has some flaws. As mentioned in Section 3.4 the method
is dependent on that the reference point on the rear axle is known. The biggest
disadvantage of this method is that its accuracy is very dependent on how accurate
the bounding box around the target can be estimated. Especially the accuracy of
the estimation of the pointing of the target is crucial for obtaining good results from
this method. As can be seen in Section 4.5 the yaw rate estimates are considerably
noisy. This is most likely due to the fact that in some instances the estimation of
the bounding box is of poor quality.

The yaw rate had a smaller MSE when using the whole RDC compared to detections
both before and after the CKF had been applied. This is due to a better estimate
of the bounding box and pointing in each frame. More scatter points, as is the case
when using the whole RDC, makes the estimation of α and β more accurate and
hence the ICR more accurate as well.

5.6 Velocity Estimation
The velocity estimation in a single time instance is very noisy and can not be utilized
in a tracker as is. This high level of noise is probably due to the fact that the
turn radius is poorly estimated when the line perpendicular to the pointing of the
bounding box and the ICR line are close to parallel. Then small errors in the
pointing or the slope of the ICR line yield large errors in the turn radius which
propagates to the velocity estimation. The Kalman filter where the velocity was
excluded as an input resulted in better results however.

5.7 Future Work
There is potential to further improve upon the presented solution and method. If
applied to a radar with a higher resolution than the one in used in this project, the
results are expected to be better since it would yield more beam vectors per object
and it would be easier to extract the position of the rear axle of the vehicle.

Furthermore the solution would have to be verified on more data. During this project
there was only data from one test drive available with ground truth. To verify that
the methods could work in a more general setting other logs, with target vehicles
driving in different speeds, with different yaw rates and in different parts of the
radar’s field of view would be needed. It is likely that the tuning of the RANSAC
algorithm and the Kalman filter would need to be adjusted to work in other settings.

In order to incorporate some, or all the methods used in this thesis in a radar system
in a commercial car, all algorithms would need to be more efficient. To make the
code efficient enough to run on a car’s on board processors was, however, not a part
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of the scope for this project.

Assuming that a classification of the cluster is given as an input to the developed
algorithm it could be extended to cope with other kinds of objects than passenger
cars. In order to achieve this the assumption of Ackermann steering has to be
modified to match the movement of for example trucks and bicycles. Pedestrians can,
however, not be modelled with a motion model like the ones used when modelling
vehicles and should be modelled as for example a random walk.
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6
Conclusion

The objective of this thesis was to estimate the full motion, size and orientation
of an extended object in a single radar frame, which was achieved. The estimates
are dependent on that the assumption that the extended object is a passenger car
with a steering model described with Ackermann steering holds. However, the result
is very noisy and is improved considerably if a Kalman filter with a CT model is
applied to the computed state estimates of the object. The result is considerably
better when using all beam vectors in a cluster as compared to only detections.
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