
Automatic Generation of Operations for the
FLEXA Production System

Master of Science Thesis in Automation

NINA SUNDSTRÖM

Department of Signals and Systems

Division of Automatic Control, Automation and Mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2010 EX024/2010

Master of Science Thesis in Automation
REPORT NO. EX024/2010

Automatic Generation of Operations for the FLEXA Production

System

NINA SUNDSTRÖM

Department of Signals and Systems
Division of Automatic Control, Automation and Mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2010

Automatic Generation of Operations for the FLEXA Production System
NINA SUNDSTRÖM

c©NINA SUNDSTRÖM, 2010

Report No. EX024/2010

Department of Signals and Systems
Division of Automatic Control, Automation and Mechatronics
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Göteborg, Sweden 2010

Abstract

The scope of this thesis was to introduce the possibility to make specifications of
a process inside a simulation tool and automatically generate this information to a
formal verification tool. The intention was to specify possible locations for different
movable resources in a manufacturing system. The positions were to be transformed
to transport operations describing the permitted motion for each movable resource
in the production cell.

Introducing specifications at an early stage and in a familiar tool would raise the
level of abstraction, since the information otherwise would be modeled using formal
tools developed by the academic world. In order for this approach to be successful, it
had to be possible to retrieve locations from the simulation tool. If so, the locations
had to be parsed into transport operations in a format readable by a verification tool.

FLEXA is a research project within the European Seventh Framework Programme.
The objective is to utilize automation technology developed by the automotive in-
dustry so that the European aero engine industry can meet requirements on flexi-
bility, cost effectiveness and safety aspects. For this thesis, a simplified version of
the FLEXA production cell was used in a simulation tool called Process Simulate
where a plug-in was integrated using C#. A GUI was developed to guide the user
through a few steps that involved creating possible locations and picking locations for
specific resources. Transport operations were automatically generated to an .xml file.

The results show that it was possible to interact with the simulation tool, create
locations for different resources and generate information in the form of transport
operations. The .xml file was written in a .wmod format which was readable by
Supremica, a formal verification tool developed at Chalmers University of Technol-
ogy.

Keywords: Tecnomatix, Process Simulate, Product Recipe, Transport Operation,
Automatic generation of operations

, Signals and Systems, EX024/2010

i

, Signals and Systems, EX024/2010

ii

Acknowledgements

I would like to express my deepest thanks to my examiner Petter Falkman for his
guidance and support throughout this thesis work. I would also like to express my
appreciation to Patrik Magnusson for his continuous support, valuable advice and
discussions.

Thanks to Fredrik Westman for introducing me to Process Simulate and for an-
swering any questions that I faced with the software during this project.

Sincere thanks to my office mates, Oskar Wigström and Roozbeh Kianfar, for al-
ways having a good spirit and the time for a short chat or a cup of coffee.

Nina Sundström
Göteborg, 2010

, Signals and Systems, EX024/2010

iii

, Signals and Systems, EX024/2010

iv

Contents

Abstract i

Acknowledgement iii

Contents v

Notations vii

1 Introduction 1

1.1 Project Scope . 2

1.2 Purpose . 2

1.3 Aim . 2

1.4 Approach . 2

1.5 Limitations . 3

2 Background 4

2.1 The FLEXA Production Cell . 4

2.2 Product Recipes and Transport Operations 5

2.3 Extended Finite Automata . 6

2.4 Process Simulate . 7

2.5 Supremica’s .wmod format . 9

2.6 Sequence Planner . 10

3 Method 11

3.1 Developing a plug-in in Process Simulate 12

3.1.1 Creating commands . 12

3.1.2 Global locations . 12

3.1.3 Locations for resources . 13

3.2 Writing the .wmod file . 14

4 Results 17

4.1 Simple Button Command . 17

4.2 Graphical User Interface . 17

4.2.1 Defining global locations . 19

4.2.2 Defining locations for resources . 20

4.3 Extracted Information . 21

4.3.1 .wmod file . 21

4.3.2 Transport Operations . 23

4.4 Hands-on example . 25

5 Discussion 29

, Signals and Systems, EX024/2010

v

6 Conclusion 31

References 32

A Program Structure I

B Integrate Command Into Process Simulate III

, Signals and Systems, EX024/2010

vi

Notations

.NET A framework developed by Microsoft. It includes a Common Language Run-
time(CLR) that manages the execution of programs written in this framework, and
a large Framework Class Library(FCL) with pre-built code.

action If a guard condition is true and the event occurs, actions in updating the variables
may follow.

API Application Programming Interface implemented by a software program enabling the
program to interact with other software.

C# Object-oriented programming language developed by Microsoft.

carrier A resource which task is to hold a product, e.g. fixture or basket.

EFA Extended Finite Automata which is an augmentation of an ordinary automaton,
where transitions are associated with guards and actions.

event Represents an incident that causes an automaton to move from one state to another.

guard A set of conditions that has to be fulfilled for an event to be enabled.

GUI Graphical User Interface to a computer which makes it possible to interact with a
program in more ways than just the textbased.

plug-in A set of software that makes it possible to add new features to a larger software
application.

Process Simulate The process simulation application in the Tecnomatix environment.

product recipe The sequence of operations that corresponds to a finished product.

Sequence Planner Modeling and analyzing tool for sequences of a process.

Supremica A formal verification tool developed at Chalmers University of Technology.

Tecnomatix An application for e.g. part manufacturing, resource planning and plant
simulation owned by Siemens Product Lifecycle Management Software Inc.

transport operation Description of each carrier’s permitted movement in a production
system.

XML Widely used programming format. It stands for eXtensible Markup Language.

, Signals and Systems, EX024/2010

vii

, Signals and Systems, EX024/2010

viii

1 Introduction

Today manufacturers face challenges in delivering products with high quality, competitive
in cost and satisfying performance whilst not compromising safety aspects. In order to
balance between these requirements, manufacturing processes have become more complex,
more automated and flexible. Consequently, virtual manufacturing has become an impor-
tant part for implementing production cells and improving manufacturing processes.

For the aerospace manufacturing industry, requirements on the development in produc-
tion has been introduced from demands on new product introduction, new materials used
and new regulations on environment. The FLEXA (advanced FLEXible Automation cell)
production system is a part of a research project within the European Seventh Framework
Programme (FP7). The aim of the FLEXA project is to develop and deliver methods
and tools that support the design and the development of flexible automation cells for the
European aero engine industry. To meet this goal five major aero engine and component
manufacturers, together with six universities and four Society of Manufacturing Engineers
companies, have joined forces. Among the universities are Chalmers University of Tech-
nology and University West. [1]

This thesis will introduce the concept of product recipes and transport operations in the
manufacturing process. The operations that are necessary to be performed in order to have
a finished product constitute the product recipe. Transport operations describe the per-
mitted motions for a movable resource inside a production cell. These two definitions will
have a strong advantage when e.g. introducing new resources to a manufacturing system.

A simplified version of the FLEXA cell will be used as a virtual model in a simulation
tool called Process Simulate [9]. This software is a part of the Tecnomatix application
suites owned by Siemens Product Lifecycle Management Software Inc., provided by Uni-
versity West. The intention is to introduce the possibility to define different locations for a
resource in the virtual environment and then automatically generate transport operations
used for formal verification of the production system.

The motivation for this thesis subject is to take further use of the simulation tool. The
aim is to be able to make specifications in the production cell that otherwise would be
written as formal automata. By introducing specifications at an earlier stage and in a
familiar tool, the level of abstraction would be raised. The goal is for the user to follow
a few steps, involving picking locations in a virtual cell, to retrieve transport operations.
The information can be saved to an .xml file in a format readable by a tool for formal
verification, like Supremica [2]. The result of the verification of transport operations and
product recipe would consist of possible routes for the movable resource to take and what
routes that may cause blocking situations. With this information it would e.g. be possible
to create robot paths in the simulation tool and use optimization to find the optimal path.

, Signals and Systems, EX024/2010

1

1.1 Project Scope

The scope of this project is to automatically create a model of operations for the FLEXA
production system. By specifying possible locations for different resources in a virtual
production system, transport operations should be created. These should model potential
routes of resources and what conditions that have to be fulfilled in order for a transport
to occur.

1.2 Purpose

The purpose of this project is to:

• Study the concept of transport operations and product recipes.

• Understand the structure of Process Simulate and how to retrieve information re-
garding locations for resources using the Tecnomatix .NET API.

• Create a plug-in with a GUI to automatically generate transport operations.

1.3 Aim

This project aims to extend the use of the simulation tool, introducing specifications at
an early stage in the production planning process. The intention is to specify possible
locations for different resources and generate transport operations between these locations.
This raises the level of abstraction since the simulation software is a tool already used in
industry. To achieve this aim, a virtual model in Process Simulate is used for automatically
generating transport operations to an .xml file. This file can later be opened in a tool for
formal verification, such as Supremica, for synthesis and optimization.

1.4 Approach

To interact with Process Simulate v9.1 the Tecnomatix.NET API will be used. Using this
API it is possible to create buttons and commands in the Process Simulate environment.
The commands can be written in any .NET language such as Visual Basic .NET or C#.
However, a prerequisite is to use Microsoft Visual Studio .NET Professional, 2005 edition
[7]. Since examples in the API are written in C# and previous work found on the subject
also used C#, it is a natural choice to use that programming language. The approach can
be represented by a work flow displayed in Figure 1.1. A plug-in will be programmed using

Figure 1.1: The work flow of the project.

, Signals and Systems, EX024/2010

2

C# which parses locations in Process Simulate into transport operations. The information
will be written to an .xml file in a .wmod format which can be opened in Supremica.
In order for the user to easily achieve the steps before extraction is done, a GUI will be
developed. The idea is that the user follow the instructions in the GUI and after a few
mouse clicks have completed the task of retrieving the information needed in order to have
a model of transport operations.

1.5 Limitations

This thesis work will not investigate the possibility to generate information about product
recipes from the simulation tool. Neither will the project consider robots performing the
transports.

, Signals and Systems, EX024/2010

3

2 Background

2.1 The FLEXA Production Cell

The FLEXA project aims to create tools and methods to the European aero engine industry
to design and develop flexible automation cells. The layout of the FLEXA cell, which has
been proposed to be used as an example cell by Volvo Aero, is displayed in Figure 2.1.
This cell will be used to manufacture a turbine exhaust case which is a part located in the

Figure 2.1: The layout of the FLEXA production cell.

exhaust area of an airplane engine. In the current production this part is delivered as one
large piece and only a few number of suppliers are able to deliver it. In order to reduce
cost the exhaust case will be divided into subparts that will be welded together to form
the final larger part. By introducing this new procedure, more suppliers can deliver the
subparts resulting in lower cost. The different zones in the cell will perform:

1. Fixturing/Defixturing

2. Measuring and Milling

3. Storage of fixtures

4. Welding

5. Washing and Grinding

6. Measuring

, Signals and Systems, EX024/2010

4

2.2 Product Recipes and Transport Operations

Consider that a product is to be produced in the FLEXA production cell. This product
has a given product recipe, i.e. a number of operations that have to be executed in order
to have a finished product. The operations could for example be: Fixate, Milling and
Unfixate, see Figure 2.2. An operation is realized in e.g. a machine or in some other area in
the production system. Products manufactured according to one product recipe are called
instances of that recipe which enables reuse of recipes. In order go between two locations
of operations in a product recipe a transport operation has to execute. The term location
of operation can be described as the physical space where an operation is realized. The

Figure 2.2: A product recipe and transport operations.

following is an example of the conditions that have to be fulfilled in order for a transport
operation to be enabled between two locations A and B:

• The product has booked a carrier

• The product is in location A

• Location B is available, i.e. free

A carrier could e.g. be a fixture or a basket. The combination of transport operations
and product recipes is represented in Figure 2.3. In this figure alternative routes are in-
troduced. In order to go from operation Fixate to operation Milling the route through
to A could be taken, which for instance could represent a transport operation to e.g. a
milling machine A. However, the route to to B could also be chosen, which could represent
a transport operation to e.g. a milling machine B. If both machines that can perform the
task of Milling are busy, the route to a buffer and later to one of the machines could be
taken. Next, the Milling operation could occur.

The empty box in Figure 2.2 and 2.3 will show the advantage with this approach. If a new
resource is introduced to a production cell only transport operations to that machine have

, Signals and Systems, EX024/2010

5

Figure 2.3: The combination of the product recipe and the transport operations.

to be added. In Figure 2.3 an extra alternative shows up as a result of the new machine
added to the production system.

With this approach, introducing conditions for a transport operation to occur, logics be-
come a part of the information to be extracted from the production cell. It is therefore
appropriate to model the system as Extended Finite Automata (EFA). This framework of
modeling is an extension to ordinary automata but with the exception that it introduces
integer variables to the model. EFA will be explained more in detail in Section 2.3.

2.3 Extended Finite Automata

Discrete event systems (DES) are systems whose state space is discrete and whose state
changes are associated with an event occurring at discrete points in time [3]. The main el-
ements of DES are the discrete state space and the discrete event set. Deterministic Finite
Automata (DFA) is a modeling framework for discrete event systems. These automata
consist of a finite number of states and transitions between states associated with the oc-
currences of events. A transition is a directed arc showing in what way an automaton can
move from one state to another, or to the same state. An event is connected to a transition
and causes the system to move from one state to another [5].

The automaton in Figure 2.4(a) could for instance represent a sensor with two states,
off (S0) and on (S1). The event s1 on is associated with the transition going from state
off to state on, i.e. the sensor is turned on. The opposite holds when the sensor is turned off.

An Extended Finite Automaton (EFA) is an augmentation of an ordinary automaton [10].

, Signals and Systems, EX024/2010

6

For EFA, guards and actions are introduced with transitions. In order for a transition to
be enabled the guard formula has to be fulfilled, i.e the condition of the guard has to be
true. When the transition is taken, a set of variables may be updated according to the
actions. Figure 2.4 displays the difference between the two automata representations. The

(a) DFA (b) EFA

Figure 2.4: Illustration of the differences between (a) Deterministic Finite Automata and
(b) Extended Finite Automata. In both automata there are two states, S0 and S1, and
two events, s1 on and s1 off. In (b) the guard formula is on the first row under the event,
and the actions consist of the rows under the guard.

EFA in Figure 2.4(b) has two variables constituting the guards and actions. For event
s1 on to be enabled, the guard formula has to be true, i.e. variable var1 is 0 and variable
var2 is 1. When the guard condition is true and a transition is taken, the variables are
updated. In this example, the values of var1 and var2 are set to 1 respective 0. EFA can
be modeled in a verification tool called Supremica, developed at the department of Signals
and Systems at Chalmers University of Technology.

2.4 Process Simulate

Process Simulate is a part of Tecnomatix application suites owned by Siemens Product
Lifecycle Management Software Inc. It enables process planning, resource planning, part
planning and simulation of a manufacturing process in a virtual environment. In order
to locate where different carriers can be situated inside the FLEXA production cell and
to retrieve this information using the Tecnomatix .NET API, it is important to study the
structure of the software. The basic configuration of the applications in Tecnomatix is
given in Figure 2.5. The software is organized in three layers consisting of a database, a
server and clients.

, Signals and Systems, EX024/2010

7

The first layer consists of an Oracle Database Server whose main task is to manage data
and ensure the data update is handled correctly. The database is sub-divided into schemas.
The eMServer is in the next layer and this is the core element in the configuration. Services
are provided by the eMServer to applications/clients, e.g. requests for data from clients
are sent forward to the database. The eMServer handles the communication between the
clients and the database. The last layer contains the different clients which can represent
the applications in the Tecnomatix environment, e.g. Process Simulate. [8]

Figure 2.5: The structure of Tecnomatix consisting of three layers; a database, eMS-server
and clients [8].

The data structure of the Tecnomatix clients is displayed in Figure 2.6. As mentioned
previously, the database is divided into schemas. These consist of projects which are
each made up of objects/nodes structured in trees. These nodes are products, operations,
resources and manufacturing features that together define the manufacturing process. A
tree can only contain a group of the same nodes, e.g. resources. Finally, attributes can be
attached to the nodes, e.g. files with 3D data or AutoCAD files. [8][9]

Figure 2.6: The data structure in the Tecnomatix environment.

, Signals and Systems, EX024/2010

8

Retrieving resources and frames in Process Simulate are of great importance for this thesis.
Using the Tecnomatix .NET API enables the possibility to function as a client. In the
Process Simulate client environment displayed in Figure 2.7, the Object Tree contains a
hierarchy of the elements displayed in the loaded cell. Example of elements are weld points
and paths but also the objects of high interest for this project, i.e. frames and resources.
These are located under folders with equivalent names. In parallel with these folders, the
Graphic Viewer window displaying the production cell is of interest.[9]

Figure 2.7: The Process Simulate work window. In the work environment viewers such
as the Object Tree Viewer and the Graphic Viewer take up most of the window. The
Object TreeViewer is located on the upper left side and contains information regarding
the loaded cell, e.g. resources displayed in the folder Resources and locations of different
objects contained in the folder Frames.

2.5 Supremica’s .wmod format

In order to open the file with transport operations in Supremica the format of the .xml
file has to be in .wmod. This section will explain the structure of this format. The
.wmod format has a root element named Module which has two children nodes, named
EventDecList and ComponentList.

, Signals and Systems, EX024/2010

9

• EventDecList contains declarations of all events.

• ComponentList contains descriptions of all constituting components of the model,
namely automata and variables. The children nodes are

– SimpleComponent

– VariableComponent

The node SimpleComponent contains information about states, events and transitions for
the given automaton. For each state, incoming and outgoing transitions are given with
respective labels, as well as guards and actions for that specific transition.

The node VariableComponent contains children nodes VariableRange, VariableInitial and
VariableMarking. The first child node defines what values the variable can have. The next
child node gives the initial value for the variable while the last child node defines whether
the variable is marked and if so, what value it has.

2.6 Sequence Planner

Sequence Planner is an application developed by the department of Signals and Systems
at Chalmers University of Technology. The application can be viewed as an interface to
Supremica where the formal verification of systems is performed. Supremica returns a re-
sult of the verification back to Sequence Planner [6]. In Sequence Planner it is possible to
model operations as Sequential Function Charts (SFC) where both parallel and alternative
tracks are possible to model. A Sequence of Operations (SOP) can contain several opera-
tions. The operations in Figure 2.2 and 2.3 are modeled in this software. The operations
in Figure 2.2, representing the product recipe and the transport operations, are SOPs. In
Figure 2.3 there are alternative tracks at two locations. Preconditions and postconditions
can also be attached to the operations modeled in Sequence Planner defining when an
operation is enabled to start and finish.

In this thesis the information extracted from Process Simulate is written to a format
readable by Supremica. This is because the intention is to use the simulation tool as the
interface generating the transport operations, and afterwards using this information in a
verification tool like Supremica. If an intermediate step is included in the project where
the user is supposed to visualize the generated operations, Sequence Planner can be ap-
propriate to use. This is simply because the format in Sequence Planner is more adapted
for industry than the format in Supremica. In Supremica the transport operations are
displayed as automata while Sequence Planner displays them as in Figure 2.2.

, Signals and Systems, EX024/2010

10

3 Method

The intention with the concept of product recipes and transport operations is to improve
the flexibility of a system. It should be possible to introduce new resources to a cell with-
out much manual effort or to manufacture multiple products in the same production cell.
Imagine if a human operator is supposed to keep track of two different parts, and all differ-
ent locations these parts can be situated in. As the amount of possible locations increases
or if a new product is introduced in the cell, the complexity in keeping track of all possible
locations for each product is increased to a level to hard for a human to handle. The
virtual production cell used in this project is as mentioned earlier the FLEXA production
cell, see Figure 3.1.

Figure 3.1: The FLEXA Production Cell.

The procedure for automatically generating transport operations can be given in the fol-
lowing steps:

• Create frames in Process Simulate

• Choose possible locations for different carriers

• Parse locations to transport operations written to a .wmod file

, Signals and Systems, EX024/2010

11

Reversed engineering has more or less been used since the information to extract was known
but not how to retrieve that specific information from Process Simulate. The first step
was therefore to learn more about the software and what options there were to use the
Tecnomatix .NET API to extract data. A plug-in was developed using C# to take care of
the steps mentioned above. In the following section the plug-in will be described in more
detail.

3.1 Developing a plug-in in Process Simulate

A plug-in was developed in Process Simulate which made it possible to extract information
from the software. When studying the documentation of the Tecnomatix.NET API, a class
was found that enabled the creation of a command button integrated into Process Simulate.
The documentation included how to access information about e.g. resources and frames but
also how to create new frames [7]. The steps used for creating a plug-in can be described
using a flowchart diagram, see Figure 3.2. The first step was to choose a file to extract the
information to. In this thesis the file was supposed to be opened in Supremica, thus the
filename extension .wmod was attached to the file. The next step in the flowchart diagram
was to choose the global set of locations that all carriers could be placed in. When this
step was completed, the locations for every carrier were chosen. The final step was to parse
the information into a structured .xml file. In the following sections every class starting
with Tx is a class given in the Tecnomatix .NET API [7].

Figure 3.2: The flowchart shows an overview of how the plug-in works.

3.1.1 Creating commands

To construct a button command that is integrated into Process Simulate, it was possible to
create a class in C# which implemented a class called TxButtonCommand. The result was
a custom command introduced in the Process Simulate environment [7]. In this thesis a
simple button command was created that appeared in the menu bar. When the button was
clicked the command related to the button executed. A well-known example of a button
command is the Help button that usually displays a GUI with different help options when
clicked.

3.1.2 Global locations

The class TxFrameEditBoxCtrl could be used in order to choose locations in the Graphic
Viewer of Process Simulate. This class has a member event that listens to when a pick

, Signals and Systems, EX024/2010

12

is made. The coordinates of the picked location could be saved as an object of TxTrans-
formation. Using TxFrameCreationData enabled the creation of a frame in the chosen
location. The approach in choosing the global locations for all the possible carriers can be
described by the flowchart in Figure 3.3. To avoid errors every frame created had to be
unique. Therefore the first step was to choose a name of the frame. If an already existing
frame had the same name, another name had to be given. Next, a location could be chosen
by picking a location in the Graphic Viewer. [7]

Figure 3.3: The flowchart representing the procedure of choosing global locations.

3.1.3 Locations for resources

When global locations had been chosen, locations for each carrier were picked. These lo-
cations were a subset of the global locations. Using TxApplication.ActiveDocument.
PhysicalRoot.GetAllDescendants it was possible to access all physical objects in the virtual
cell in Process Simulate [7]. In order to retrieve the nodes displayed in the folder Resources
in the Object Tree, all objects were filtered using a class TxTypeFilter. If TxPlanningRe-
source was used as a filter, the resulting objects were resources and saved for later use.

The flowchart in Figure 3.4 describes the procedure of picking locations for each car-
rier. First, a resource had to be chosen. If the resource already had been given locations,
another resource had to be chosen. Next, the locations for the specific resource had to be
chosen. The last step was to pick initial/marked location for the resource. In this thesis,

, Signals and Systems, EX024/2010

13

an assumption was made that each resource had a ”home location” where it started and
ended. Therefore, the initial and marked location was assumed to be the same. If the
initial/marked location already had been picked by another resource, a new location had
to be chosen.

Figure 3.4: The flowchart shows the procedure of choosing locations for each resource.

3.2 Writing the .wmod file

When global locations, resource locations and initial/marked location had been given it
was time to parse the locations to transport operations and write the information to an
.xml file. Global locations and locations of resources were stored into lists [4]. The name
of the initial/marked state was saved for later use. The next step was to write the infor-
mation to an .xml file in .wmod format. A class called XmlTextWriter was used to parse

, Signals and Systems, EX024/2010

14

the information into a structured .xml file [4]. The flowchart in Figure 3.5 represents the
steps taken for this procedure. The first step was to loop through the list containing the
locations for a resource. Basically, there were two identical lists, one for from-locations and
one for to-locations for a resource. If the from-location and to-location were identical next
element in the list was examined. This because a transport operation was never supposed
to occur from one location to the exact same location. If the locations were not identical,
an event was created with the name of the resource plus the name of the from-location
together with the name of the to-location, e.g. Fixture1 in Sta1 to Sta2.

Next, the information for the element SimpleComponent described in Section 2.5 was writ-
ten. If the from-location was initial/marked the VariableInitial and the VariableMarking
for the variable VariableComponent named after the resource name plus in-location were
set to 1. Else the variables were set to 0.

The next step was to write the VariableComponent for the to-locations. From the be-
ginning all to-locations variables were set to zero. When all to-locations had been looped
through, the next element in the from-locations list was examined. The final step was
to create a number of VariableComponent equal to the number of space resources. These
variables were set to 1 if a resource had an initial/marked location in that global position,
else they were set to 0.

, Signals and Systems, EX024/2010

15

Figure 3.5: The flowchart shows the procedure of writing the information to a .wmod file.
, Signals and Systems, EX024/2010

16

4 Results

The procedure for this project was to develop a plug-in from which it was possible to create
a global set of locations in a virtual cell, and later choose a subset of these locations for
specific resources. A simple button command was created and implemented in the menu
bar of Process Simulate. When the button was clicked, a GUI with three buttons was
displayed where the user was instructed through some easy steps in how to create and pick
locations. This information was parsed into a structured .xml file which was opened in
Supremica. The parsing transformed the information given into transport operations in
the form of EFA with guards and actions attached to transitions. The following sections
go into details of the results for the different parts. In Appendix A the structure of the
final program is described while Appendix B contains the steps for integrating a command
into Process Simulate.

4.1 Simple Button Command

The simple button command described in Section 3.1.1 was named GenerateModel and
was placed in the menu bar of Process Simulate to the left of the Help button, see Figure
4.1. Once the user clicked on the button the GUI displayed in Figure 4.2 appeared. In

Figure 4.1: The simple command button GenerateModel implemented in the Process Sim-
ulate environment.

Appendix B the procedure for integrating a command into Process Simulate is given. The
class implementing TxCommandButton is described further in Appendix A.

4.2 Graphical User Interface

An user-friendly GUI was developed in C# to make it easy for a Process Simulate user
to create locations, choose resource specific locations and finally parse the information to
an .xml file. The steps previously mentioned in Section 3.1.2, 3.1.3 and 3.2 have been
covered in the GUI in Figure 4.2. This was the main window for the plug-in and was
named GenerateModel. If the first button named Browse was clicked a file dialog allowed
the user to choose a name and directory for the .wmod file to be saved in. As usual, if the
user chose an already existing file a message box was displayed asking the user if the file
should be replaced. The events of buttons Pick Location and Resources are described in
detail in the following sections. All error messages mentioned in these sections refer to an
error represented as a red circle with an exclamation mark in the center and a text box
with an explanation of the error.

, Signals and Systems, EX024/2010

17

Figure 4.2: The GUI for automatically generating transport operations to a .wmod file.

, Signals and Systems, EX024/2010

18

4.2.1 Defining global locations

If button Global Frames was clicked a window with corresponding name was displayed, see
Figure 4.3. In this GUI the user had to first choose a name for a location. If a name had

Figure 4.3: The GUI for choosing global locations.

not been given and the Pick Location button was clicked, an error was displayed saying
that a name had to be given. Else a control was performed to see if a location with the
same name already existed. If so, an error message was provided. When Pick Location
was clicked the mouse pointer was attached with a small axis of coordinates indicating
that a pick in the Graphic Viewer could be made in order to choose a location for a frame.
When completed, a new frame with the given name was created in the Object Tree. In
Graphic Viewer an orange frame appeared where the click occurred, see Figure 4.4. All
global locations were created according to this procedure. When the Finish button was
clicked, the window closed and the main window Generate Model was displayed.

, Signals and Systems, EX024/2010

19

Figure 4.4: The Graphic Viewer with orange frames representing global locations. In this
figure, there are frames in both machines, on a table and on a shelf.

4.2.2 Defining locations for resources

When Resources was clicked a new window named Resource Locations appeared, see Figure
4.5. The first box displayed all resources in the virtual model and the next box displayed
the global locations created in the previous step. Locations picked in the second box were
displayed in the third box. This gave the user the possibility to choose the initial/marked
location for the resource.

If a resource already had been given locations or if a location in the third box already
had been chosen as initial/marked state, error messages were displayed for respective er-
ror. If the user only chose one location an error message was also provided since it would
have equaled a resource not supposed to move. As a consequence, a transport operation
should not have been generated. When the user clicked on OK in Resource Location, the
main window Generate Model was displayed. The user could continue clicking on Resources
in order to choose locations for other carriers. When the user clicked on OK in the main
window it closed and the information was automatically generated to transport operations
and written to a .wmod file.

, Signals and Systems, EX024/2010

20

Figure 4.5: The GUI for choosing locations for resources.

4.3 Extracted Information

The plug-in was developed to extract locations for resources and global locations using the
GUI. The information was parsed into an .xml file with the .wmod format described in
Section 2.5. Once the task was completed the file could be open in a verification tool like
Supremica. The two following sections will show the results of the procedure.

4.3.1 .wmod file

Once the user had followed the steps in the GUI the information was written to an .xml
file. In Figure 4.6 the resulting file is displayed. In this example file, there are three events
declared in EventDeclList. Each transport operation is given as a plant in SimpleCompo-
nent which is a child node to ComponentList. The number of SimpleComponent equals the
number of transport operations. The levels under NodeList contain information about the
location of the EFA, i.e. the state of an ordinary automaton. The levels under the node
EdgeList define the transitions, labels of transitions, guards and actions. In this example
there is only one transition, else each transition would be represented by a node Edge.

In Figure 4.7 variables created from parsing locations into transport operations are dis-
played. The number of nodes called VariableComponent equals the number of variables.
As mentioned earlier, VariableRange defines what values the variable can have. If the value
of the variable Fixture Plate in M1, as in this example, is 0 this means that the resource

, Signals and Systems, EX024/2010

21

Figure 4.6: The resulting xml file after extracting the information from Process Simulate.

, Signals and Systems, EX024/2010

22

named Fixture Plate is not in location M1. If the value is 1, the opposite holds, i.e. the
specified resource is in location M1. VariableInitial defines the initial value of the variable
and VariableMarking defines if the given variable is marked and if so, what value it has.
The variable names that start with SR, which is an abbreviation for Space Resource, is
variables for each global location. These variables can have value 0 or 1, depending on if
a resource has booked the space/location or not.

Figure 4.7: The variables in the resulting .xml file after extracting the information from
Process Simulate.

4.3.2 Transport Operations

To visualize how the transport operations would look like as EFA with guards and actions,
the xml file was opened in Supremica. Figure 4.8 displays the plant representing a trans-
port operation for a resource named Reg Shrmillfix to go from a location named Sta3

, Signals and Systems, EX024/2010

23

to a location named Sta2. The guard condition in this plant defines that the resource
Reg Shrmillfix has to be in location Sta3 and want to go to location Sta2 but also that
the space resource for Sta2 has to be unbooked. It these conditions are fulfilled the event
is enabled. The variables are updated when a transition is occurs.

In the given example the actions are to set the variable for resource Reg Shrmillfix to
be in the first location Sta3 to 0, this because by now we have moved from that location.
The variable for the same resource to be in location Sta2 is set to 1 since this is the current
location. The variable for the same resource to go to Sta2 is also set to 0 since this location
is now the current location of the resource. The space resources have to be updated. Since
the resource is no longer in Sta3 the variable is set to 0 while the space resource for Sta2
is set to 1 since this location is occupied by the given resource.

Figure 4.8: The transport operation for carrier Reg Shrmillfix to go from location Sta3
to location Sta2.

In short, we can describe the transport operation as a single state with a self-loop. For the
event of the self-loop to occur the guard conditions have to be fulfilled. When or if they
are, the given actions of the EFA will update the variables.

, Signals and Systems, EX024/2010

24

4.4 Hands-on example

To summarize the result of this master thesis, a hands-on example will be given in this
section. The production cell given in Figure 3.1 will be used to specify global locations
and carrier specific locations. The information is parsed into a .wmod file which is opened
in Supremica [2].

The procedure starts with a click on GenerateModel in the menu bar. As a result, the
GUI in Figure 4.2 is displayed. By using Browse a file can be chosen to save the informa-
tion to. In Figure 4.9 the first global location is created using the button Global Frames on
the GUI, i.e. a name is written and a pick is made in Graphic Viewer to choose a location.
In this case the name of the location is Sta010. An orange frame appears in Graphic Viewer
where the pick was made. These steps are repeated until all global locations have been
created. In this example there are three global locations positioned as in figure 4.4. The

Figure 4.9: The procedure of creating global locations in the cell. First, a name is given
then a pick is made in Graphic Viewer in order to choose a location.

name of the first position is as mentioned Sta010. The two other positions are located in
the machines and are named M1 and M2.

, Signals and Systems, EX024/2010

25

The next step is to choose locations for each carrier using the button Resources on the
GUI, see Figure 4.2. The resources loaded in the cell are displayed under the first box.
First a carrier has to be chosen from the list, in this example the chosen carrier is called
Reg Hubmillfix. Next, the locations for this carrier are chosen, in this case Sta010 and
M1. The last step is to choose initial/marked location for the carrier according to Figure
4.10. This location is the starting and ending point for the carrier. In this example only
one carrier is chosen. To end the procedure the button OK on the main window of the
GUI is clicked and the information is parsed to the chosen file.

Figure 4.10: The procedure of picking locations for a carrier.

Figure 4.11 displays Supremica loaded with the file used to save the information to. There
are two transport operations, one for the case where the carrier is transported from lo-
cation Sta010 to location M1 and one for the opposite case. There are a total of seven
variables where four variables describe the current location of the carrier or to where the
carrier wants to go. Three variables, beginning with SR, describe the global locations.

, Signals and Systems, EX024/2010

26

In this example, the initial/marked location for carrier Reg Hubmillfix was in Sta010.
This means that the variable SR Sta010 will be initialized to 1 and the other two vari-
ables beginning with SR will be initialized to 0. The variable Reg Hubmillfix in Sta010 will
also be initialized to 1 since it starts in that position while the rest of the variables for
Reg Hubmillfix will be initialized to 0.

Figure 4.11: Supremica loaded with the file that was used to save the information to.

The transport operation Reg Hubmillfix in M1 to Sta010 is displayed in Figure 4.12. For a
transport to occur, the conditions on the first row below the automaton need to be fulfilled
as explained earlier. Once the transition is made, the variables are updated according to
the remaining rows.

, Signals and Systems, EX024/2010

27

Figure 4.12: The transport operation for carrier Reg Hubmillfix to go from location M1
to location Sta010.

For Reg Hubmillfix in M1 to Sta010, i.e. for the carrier Reg Hubmillfix to go from M1 to
Sta010, the conditions are:

• Reg Hubmillfix has to be in M1

• Reg Hubmillfix has a desire to go to Sta010

• The space for Sta010 has to be available

When these conditions are fulfilled and a transition follows, the variables are updated
according to:

• Reg Hubmillfix is no longer in M1

• Reg Hubmillfix is in Sta010

• Reg Hubmillfix no longer has a desire to go to Sta010

• The space for M1 is available

• The space for Sta010 is no longer available

The opposite holds for transport operation Reg Hubmillfix in Sta010 to M1.

, Signals and Systems, EX024/2010

28

5 Discussion

This thesis introduced the concept of product recipes and transport operations. Process
Simulate was used in order to specify where different carriers could be situated in the cell.
With this information it was possible to transform the locations into transport operations.
In Figure 4.8 the transport operation was described as an EFA with a single-state and
a self-loop. The number of transport operations and variables became quite large for the
total system. If one carrier could be in 4 locations, this resulted in 12 transport operations,
8 resource specific variables and 4 space variables representing global variables. However,
no restrictions were put on the system regarding what routes to take, making the system
flexible. The advantage with this approach is the flexibility it would bring and the possi-
bility to reuse product recipes.

The procedure given in the GUI was to first choose global frames, i.e. all possible lo-
cations for the carriers to be in. Another choice would have been to specify each carrier
and its different locations in the production cell. The reason to why this approach was not
adapted, was because of errors that could be encountered. For instance, if a carrier has
been given locations and one of these locations was in a place called A. If locations were
to be picked for another carrier and this carrier also could be in A, the user had to pick
on the exact same spot given by the preceding carrier. If the user would pick a location
just besides the first location A, a new location would be created. These two locations,
intended to be the same, would be interpreted as two different locations. Thus, the system
would interpret one location as available even though it is actually not.

The transport operation displayed in Figure 4.8 has a redundancy of variables. Instead
of introducing space resource variables for global locations, it would be possible to reduce
the number of variables. This could be solved by instead of having a space resource for
a location A and having to book that variable in order to move there, a control could be
implemented in order to see if any of the other carrier in the cell is in that location. If
not, the space is available and a move could be made. However, for better understanding
when displaying the transport operations the approach with space resources was used for
this thesis work.

Another way to reduce the number of variables, is to use an enumeration type for the
current location for a carrier. This would result in one less expression for the actions in
the EFA. If the transport operation in 4.8 is used as an example, the different locations
where the carrier Reg Shrmillfix could be located in are Sta2 and Sta3. The enum be-
comes {Sta2, Sta3} where the first element is referred to as 0, the second to 1 and so on.
The variables Reg Shrmillfix in Sta3=0 and Reg Shrmillfix in Sta2=1 could be bundled up
into one expression. Using the enumeration type it would be possible to have a replacing
variable Reg Shrmillfix in = 0, which would mean that the carrier is located in Sta2. For
transport operations to be more easily interpreted, this approach was not used in this
project.

, Signals and Systems, EX024/2010

29

In the FLEXA Production cell there is one robot performing the transport operations.
The scope of this project excluded robots but it should be mentioned here that if more
robots were added to the cell which could perform transport operations, it would be nec-
essary to first book a robot before a transport could be executed. In this case, one more
state would have to be added to the EFA to model that a robot first has to be booked
before a transport operation is executed.

Before the information of locations for carriers is parsed into transport operations and
written to an .xml file, controllers should be implemented to the simulation tool. They
should perform e.g. reachability and collision tests in order to see if any motions be-
tween locations are unfeasible for a robot. If so, those transport operations should not be
extracted. With this procedure it is possible to only extract significant information.

, Signals and Systems, EX024/2010

30

6 Conclusion

This thesis work was successful in retrieving locations of carriers from Process Simulate
using a plug-in with a GUI that generated transport operations to an .xml file. The project
shows that it would be possible to make specification early in a manufacturing process by
using a simulation tool.

Information about locations for carriers was retrieved from the production system in order
to generate transport operations. However, as mentioned in the discussion, information
about product recipes was disregarded. If possible, the product recipe could as a future
work be extracted from the cell, raising the level of abstraction even further. The question
is where to look for it. Since the operations necessary in order to produce a product is vital
for the manufacturing of a cell, it should be possible to find the operations constituting
the product recipe.

If the previously mentioned recipes were to be retrieved from the simulation tool, then
it would be possible to use both transport operations and product recipes and perform a
formal verification in a tool like Supremica in order to see if the production cell conforms
to the specifications.

In order to reduce the number of variables for the transport operations, it would be pos-
sible to continue this thesis work with the two approaches given in the discussion. These
approaches would remove the variables for the space resources and reduce all the variables
for a carrier’s current location to an enumeration type describing all possible locations for
that specific carrier. This would result in one less expression for the action functions in
the EFA.

, Signals and Systems, EX024/2010

31

References

[1] FLEXA - Advanced Flexible Automation Cell, A reseach project within the European
Seventh Framework Programme(FP7). http://www.flexa-fp7.eu. 2010-05-28.

[2] Supremica. http://www.supremica.org. 2010-05-16.

[3] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer
US, 2008.

[4] 2010 Microsoft Corporation. MSDN library. http://msdn.microsoft.com/en-us/

library/ms123401(v=MSDN.10).aspx. 2010-05-03.

[5] H. Flordal. Modular controllability verification and synthesis of discrete event systems,
2001.

[6] E. Olsson and C. Thorstensson. Development, implementation and testing of sequence
planner, a concept for modeling of automation systems, 2009.

[7] Siemens PLM. Tecnomatix.NET Manual.

[8] Siemens PLM. eMServer Data Importing (via Process Designer) Student Guide, Jan-
uary 2008.

[9] Siemens PLM. Process Simulate Basic Student Guide, January 2008.

[10] M. Sköldenstam, K. Åkesson, and M. Fabian. Modeling of discrete event systems
using finite automata with variables. In Proceedings of the 46th IEEE Conference on
Decision and Control, New Orleans, LA, USA, December 2007.

, Signals and Systems, EX024/2010

32

http://www.flexa-fp7.eu
http://www.supremica.org
http://msdn.microsoft.com/en-us/library/ms123401(v=MSDN.10).aspx
http://msdn.microsoft.com/en-us/library/ms123401(v=MSDN.10).aspx

A Program Structure

The structure of the classes created in Visual Studio 2005 in C# is shown in Figure
A.1. The class GenerateModelCommand implemented TxButtonCommand and contained
the button command explained in Section 3.1.1. This class had a method Execute used in
order to specify actions that should happen when a button is clicked. Two properties of the
class, Name and Category, were used where the first was the name of the command button
visible to a user, and the second the category from where the command was located at in
the Customize window for the menu bar, see Figure A.2. In order to integrate the command

Figure A.1: The classes written in C# in order to create a plug-in and GUI.

into Customize the procedure given in B had to be followed. In the program written for
this thesis the Execute method started the application GenerateModel which was the GUI
displayed in Figure 4.2. The Pick Location button was related to the class PickGlobalFrames
and the Resources button was related to the class PickLocations. The purpose of the two
other classes shown in Figure A.1, i.e. RetrieveFrames and RetrieveResources, was to collect
information regarding the frames respective resources in the loaded cell in Process Simulate.
Information which was used in the other classes.

, Signals and Systems, EX024/2010

I

Figure A.2: The customize window in Process Simulate where it is possible to add com-
mands to the menu bar.

, Signals and Systems, EX024/2010

II

B Integrate Command Into Process Simulate

This section will describe the steps that need to be completed in order to have a command
button integrated into the menu bar in Process Simulate. The steps are:

• Create a reference to Tecnomatix.Engineering.dll in a project in Visual Studio 2005
C#.

• Create a public class that implements TxButtonCommand, e.g. the class Generate-
ModelCommand described in Section A.

• In the project folder, find the .dll of the project and place it in the Tecnomatix
<Installation dir>\DotNetCommands\. In order to register the command an ap-
plication called CommandReg.exe in the Tecnomatix <Installation dir> has to be
started.

• Open the application. Figure B.1 shows the window displayed when running Com-
mandReg.

Figure B.1: The CommandReg application window.

Browse to the assembly that was placed in the Tecnomatix <Installation dir>\
DotNetCommands\. If there are several classes which implements TxButtonCommand, all
those classes will be displayed in the Class(s) box. Choose classes with commands that
should be registered. In the next box it is possible to choose what products the command is
supposted to be integrated to. In the last box it is possible to either choose an existing .xml
file or to create a new using the Create button to save the command to. When Register is
clicked a message should appear informing that the registration of the command succeeded.

, Signals and Systems, EX024/2010

III

	Abstract
	Acknowledgement
	Contents
	Notations
	Introduction
	Project Scope
	Purpose
	Aim
	Approach
	Limitations

	Background
	The FLEXA Production Cell
	Product Recipes and Transport Operations
	Extended Finite Automata
	Process Simulate
	Supremica's .wmod format
	Sequence Planner

	Method
	Developing a plug-in in Process Simulate
	Creating commands
	Global locations
	Locations for resources

	Writing the .wmod file

	Results
	Simple Button Command
	Graphical User Interface
	Defining global locations
	Defining locations for resources

	Extracted Information
	.wmod file
	Transport Operations

	Hands-on example

	Discussion
	Conclusion
	References
	Program Structure
	Integrate Command Into Process Simulate

