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Driver Behaviour Model Based Threat Assessment
for Forward Collision Warning Systems
ABHISHEK KARUNAGARAN
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
Forward Collision Warning systems warn the driver when there’s a risk of a collision
with a car or truck in front of the equipped vehicle. Different drivers have different
driving styles, and an attempt is made to come up with a conceptual design of such a
system that adapts to these differences. The aim of this thesis was to develop a threat
assessment algorithm that estimates the driver’s “comfort zone” by continuously
analyzing vehicle signals, and uses it to decide when to issue a forward collision
warning to the driver. A literature survey of relevant driver behaviour models for
braking was performed for this application, and estimation schemes were designed
and developed for a looming threshold based, and an evidence accumulation based
model. Further, a test track study was conducted to collect driving data, and the
developed estimators were tested on this data. Qualitative comparisons of the two
driver behaviour models were made, and used to propose conceptual designs for
threat assessment algorithms. Due to the design of the test track study which used
professional test drivers, and involved repetitive tasks, the data collected was not
suitable to draw conclusions on the performance of the developed estimators. A
comparison of the obtained estimates of driver model parameters, and parameter
values reported in literature showed potential but this needs to be verified with a
larger naturatlistic driving dataset.

Keywords: forward collision warning, driver behaviour models, braking behaviour,
driver adaptation, evidence accumulation
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1
Introduction

Traffic crashes and accidents can leave deep psychological scars on survivors, families
of victims, witnesses and society in general, in addition to severe property damage.
In 2015, road injuries were responsible for the deaths of 1.3 million people according
to the World Health Organization (WHO) [2], making it the 10th leading cause
of death globally. This implies the occurrence of a much larger number of traffic
crashes and accidents that didn’t lead to fatalities.
Volvo Group’s Accident Research Team concluded that Active Safety systems de-
signed to prevent accidents have a great potential to improve Traffic Safety [3].
Systems such as the Forward Collision Warning (FCW) and Advanced Emergency
Braking System (AEBS) that warn drivers of impending frontal collisions, and take
preventive action respectively were highlighted.
Considering that these systems interact with the driver, it is essential that they don’t
become a nuisance by interfering with normal driving tasks. However, warnings and
interventions should still be provided when needed. A FCW system should hence
consider the driver’s preferences and driving style to suitably adjust the timing of
warnings, while ensuring compliance with safety and legal requirements.

1.1 Background

Accident Causation and Active Safety
An important step towards understanding the motivation behind this thesis is to
grasp why accidents occur, and the role that active safety functions play in mitigating
or preventing them.
To this end, Ljung Aust and Engström developed a conceptual framework to help
standardize the criteria and metrics used for requirement specification and evalua-
tion of active safety systems [4]. This framework will be used to explain accident
causation and the role of active safety. “Situational control” is the central concept of
this framework, where drivers choose a “goal state” which balances goal fulfillment
against the feeling of discomfort, and continuously adapt to disturbances due to a
changing environment. This is based partly on Summala’s zero discomfort model in
which drivers “strive to maintain a state of zero discomfort”[4, 5].
The goal state consists of the driver’s goal, described by the states/parameters values
of the driver, the vehicle, and the environment (DVE). The region of states/parame-
ters in the DVE space that correspond to a controlled operation is called the “safety
zone”. Drivers attempt to select a goal state within this zone, keeping a safety
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1. Introduction

margin to its boundaries. This sub-region of the safety zone accounting for the
safety margin is called the “comfort zone”. The boundaries of the comfort zone are
based on expectations of discomfort by the driver, which comes from a subjective
understanding of the vehicle and environmental conditions. The estimation of the
safety zone and comfort zone boundaries depends on the driver’s ability, experience,
expectancy and level of alertness [4]. Hence, the zone boundaries will vary for
different drivers and different situations (varying with traffic conditions
and driver alertness).
When the DVE states exceed the comfort zone, drivers feel discomfort and take
corrective action to return to the comfort zone. An incorrect estimation of the
safety zone boundaries, or failure to maintain situational control could lead to an
accident. This could happen due to several factors such as erroneous perception
(e.g. due to poor visibility), distraction, misallocated attention, incorrect prediction
of other road users’ movements, overestimation of driver/vehicle capabilities, and
sudden unexpected events [4].
With this understanding of why accidents occur, the role of active safety functions
can be better explained. Active safety functions support the driver in maintaining
situational control by addressing the accident causing factors listed above. Estima-
tion of zone boundaries can be improved through functions such as distance alert,
FCW, blind spot detection, etc. while functions like AEBS, Lane Keeping Assist
can help keep or bring back the DVE states into the safety zone [4].

Forward Collision Warning Systems
The ISO standard 15623:2013, “Intelligent transport systems – Forward vehicle col-
lision warning systems – Performance requirements and test procedures” defines a
forward vehicle collision warning system (referred to in this thesis as FCW) as a
“system capable of warning the driver of a potential collision with another forward
vehicle in the forward path of the subject vehicle” [6]. It further specifies that the
purpose of this system is to warn the driver in time to help prevent/mitigate a
frontal collision (frontal from the perspective of the subject vehicle). The warning
should be provided early enough to help avoid most common frontal collisions by
the application of brakes alone, but the warning should also not be perceived as being
false or a nuisance [6].
Hence, in Ljung Aust and Engström’s conceptual framework, the purpose of FCW
is to warn the driver as the DVE states exceed the boundary of the comfort zone.
The warning helps the driver better perceive the safety zone boundaries and in the
case of misallocated attention, direct the attention of the driver to the threat in
front [4],[7].

Driver Behaviour Models
Michon classified driver behaviour models based on whether they were concerned
with the motivations of the driver or their behavioural characteristics (input-output),
and whether they’re dynamic or not [8]. This thesis primarily deals with driver
behavioural model that mathematically describe the relation between driver inputs
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1. Introduction

and outputs. Several such models have been proposed to represent driver behavior
under routine and near-crash situations, with some treating driving as a ’tracking’
task and thereby taking a control theory approach, while others take an approach
based more on human psychology [9].

Driver Adaptive FCW
Over the previous subsections it’s been established that the boundaries of the driver’s
comfort zone and safety zone vary across drivers, and that FCW warns the driver
when DVE states go outside the comfort zone. Hence, it can be inferred that a
FCW system should adapt it’s timing of warnings for different drivers to improve
driver acceptance.
Jamson et al. performed a simulator study where drivers were asked to compare
two FCW systems - one with fixed timing of warnings, and the other which adapted
the timing based on each driver’s reaction time. They concluded that while both
systems reduced the risk of crashes by a similar amount, aggressive drivers preferred
the adaptive system [10].
Wang et al. developed an FCW algorithm that adapts to different drivers and
variations in the behaviour of a driver over time. The algorithm is based on a
hypothesis that drivers attempt to control the vehicle such that the time headway is
a desired value and the inverse time-to-collision is zero. A risk perception quantity
was defined based on this hypothesis, and the FCW algorithm issued a warning
when the quantity crossed a threshold. The parameters of the risk perception model
are estimated using recursive least squares, and the threshold is determined using
decision tree learning. The algorithm was evaluated on driving data collected using
an experimental passenger car and the algorithm was found to have a lower rate of
false alarms than a non-adaptive traditional algorithm with fixed threshold values
[11].

1.2 Research Objectives
Motivated by the conceptual need for driver adaptation and the potential shown
by adaptive FCW algorithms in literature, the aim of this thesis was to set the
foundation for developing a production FCW system that can continuously analyze
sensor signals, and:

• estimate the driver’s comfort zone boundary in the DVE space during routine
driving,

• check for short-term deviations from routine behaviour (e.g. due to fatigue, a
change in driver, etc.),

• calculate if required evasive action leads to DVE states going out of comfort
zone, and

• give different levels of warning, if needed, based on the situation’s criticality.

Research Questions
Such a foundation was to be developed by answering the following research questions:
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1. Introduction

A How can driver status (e.g. Reaction time) and threat status be
observed by the adaptive FCW system?
1. What models should be used in driver observation status for estimating

comfort zone boundaries?
2. How can a conceptual design be made for the adaptive FCW?

1.3 Limitations
The following limitations were placed on the scope of the thesis:

• Presence of only a single leading vehicle.
• Target vehicle present in the path of the ego vehicle.
• Roads have limited curvature density.
• Driver considered to brake only in response to target vehicle’s motion (i.e. no

engine braking).
• Driver decelerates the truck by pressing the brake pedal.
• Driver does not steer to avoid collision.

1.4 Approach
The following approach was used to attempt to answer the posed research questions:

1. Identify driver behaviour models from literature that can be applied for
the FCW use case. This formed the first step in answering research question
A.1.

2. Find/Collect driving data for testing estimation and threat assessment
algorithms. After an attempt to get access to a large driving database failed,
data collected on a test track was used.

3. Develop algorithms for estimating parameters of driver models and
evaluate performance on driving data. The aim of this step was to answer
research question A and A.1.

4. Design a threat assessment framework that adapts to the varying comfort
zone of different drivers. This partially answered research question A.2 and
set the framework for answering research question A.

1.5 Thesis Structure
The thesis has been structured along the same lines as the approach outlined in
Section 1.4. Chapter 2 contains a brief literature survey of driver behaviour models
and a more detailed description of the two models selected for designing parameter
estimation algorithms. Chapter 3 describes the methodology used while collecting
driving data on the test track. The parameter estimation algorithms are described in
Chapter 4 along with the results obtained by running the algorithms on the collected
driving data. Chapter 5 describes threat assessment frameworks designed based on
the parameter estimation algorithms. Conclusions and envisioned future work are
presented in Chapter 6.
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2
Driver Behaviour Models for

Braking

2.1 Literature Survey

The transition of driving states from routine to conflict and near-crash situations is of
great importance while designing a FCW threat assessment algorithm. Markkula et
al. performed a comprehensive literature review of driver behaviour models depicting
near-collision behaviour [9]. While routine driving behaviour varies significantly
from near-collision behaviour, routine driver behaviour models have been applied to
understand near-collision behaviour. Such models were included in this literature
review in addition to models designed for more critical situations, and was hence
used as a starting point for this literature survey [9]. Due to the scope of this thesis
which dealt primarily with longitudinal dynamics, the main focus of this survey was
on models depicting braking behaviour.
Markkula et al. divided the braking models into two categories - models where the
driver starts to brake “at the instant a collision course is established”, and models
that display satisficing behaviour, where the driver starts to brake later based on
the driver’s safety margins [9]. The following two subsections describe models from
each of these categories.

Non-Satisficing Models
In the category of non-satisficing models, the Gazis, Herman, and Rothery (GHR)
model is well known [9]. The model was developed to represent car-following be-
haviour where the acceleration of the following vehicle depends on the following
vehicle’s velocity, space headway, and relative velocity [12]. The model is non-linear
and a lot of research has been done on finding the right parameters for the model,
and on modifying the model to improve realism, or in some cases, even to simplify
it [12],[13],[14]. One such simplified model is the Helly model, which is linear [15].
Another model class which has been widely used for studying forward collision warn-
ing systems is the delayed constant deceleration models, described by Markkula et al.
as, “Starting at a (reaction) time T after a stimulus S, the driver applies a constant
deceleration D.” This approximates the behaviour of the GHR model in situations
where the lead vehicle decelerates. In the review, the stimuli cited included “sudden
appearance of an unexpected obstacle”, “first glance back towards the road after a
lead vehicle has begun deceleration”, and “the establishment of an initial collision

5



2. Driver Behaviour Models for Braking

course”[9]. Considering these stimuli, the resulting models would be non-satisficing
since they don’t account for the driver’s safety margins while representing the start
of braking.

Models that simulate Human Satisficing Behaviour
Lee established that the Time to Collision (TTC) can be estimated using a visual
variable related to the optic flow field of the driver, and proposed that drivers start
to brake once this visual variable crosses a threshold [16]. Kiefer et al. proposed
that the driver starts to brake once the inverse time to collision (invTTC) exceeds a
speed dependent threshold, based on a driving database containing “3536 last-second
braking judgement trials” [17].
A popular satisficing model is the Gipps model where the driver controls the speed
of the vehicle such that, if the leading vehicle suddenly brakes with a certain decel-
eration (a parameter of the model), a collision can be avoided without exceeding the
driver’s preferred deceleration limit, provided the driver’s reaction time is within a
certain limit [18]. Markkula et al. performed simulations with the Gipps model and
showed that the invTTC values when the driver starts to brake follows a similar
trend to the speed dependent thresholds of Kiefer et al. [9].
Markkula proposed a modeling framework that could represent both routine and
near-crash driving behaviour. The framework was not limited to braking, and key
features of this framework include:

• representing the driving task as a series of discrete adjustments rather than a
continuous closed loop control task

• the timing of these adjustments are based on the accumulation of evidence
(e.g. invTTC)

• the amplitude of the adjustments depend on the value of the evidence and the
predicted effect of adjustments on the evidence [19].

Markkula showed that an accumulator that used a visual estimate of the inverse
time to collision was able to closely predict the time when drivers start to brake in
the driving database of Kiefer et al. for cases where the lead vehicle was moving.
However, for cases where the lead vehicle was stationary, the model’s prediction were
much earlier than what was observed in the data [19]. Svärd et al. manually param-
eterized a driver braking model based on Markkula’s framework, and simulated it
on Euro NCAP scenarios [20]. The resulting behaviour in near-crashes and crashes
showed similar trends observed by Markkula et al. in the SHRP2 naturalistic driv-
ing database [20, 21]. The framework was later extended to human sensorimotor
control in general [22].

2.2 Model Selection
Having gained knowledge of most of the popular driver behaviour models for brak-
ing, the next step was to select which models to use for developing FCW threat
assessment algorithms.
With guidance from the objectives outlined in Section 1.2, the following factors were
considered while selecting models:
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2. Driver Behaviour Models for Braking

• ability to accurately represent and predict driver braking behaviour,
• compatibility with theories from human psychology,
• ease of estimating parameters on production ECUs,
• sensitivity to different driving scenarios, and
• robustness to possible limitations of production sensors.

It was promising to note that a lot of models could in theory be used to observe
driver status. Unfortunately, the time constraints of a master’s thesis meant that
only two models could be investigated.
The first model investigated was a delayed constant deceleration model. The sim-
plicity of the model combined with its prior applications in evaluating FCW systems
made it a very attractive option [9]. To better account for satisficing behaviour, the
stimulus for this model was defined to be the crossing of a driver specific invTTC
threshold rather than a lesser kinematics dependent stimulus like the appearance of
a target.
While the delayed constant deceleration model is simple, in routine driving the
deceleration could significantly vary over the duration of the braking event as the
kinematics of the situation vary. For example, consider the situation where the
leading vehicle starts to accelerate shortly after the driver of the following vehicle
starts to brake. Further, there is some evidence to suggest that a mechanism like
evidence accumulation can better explain when drivers start to brake, particularly
in cases where the driver’s eyes are not on the threat [23]. For these reasons, the
second model investigated was based on the computational framework of Markkula
et al. [22]. The following subsections describe the details of the selected models.

2.2.1 Delayed Constant Deceleration Model
As seen in Figure 2.1, once the invTTC crosses a threshold, iTTCth, the driver
starts to apply a constant acceleration, ac, after a time delay of tD. Each driver is
assumed to have a driver specific range of iTTCth and ac, which corresponds to the
comfort zone of the driver. The time delay, tD is driver independent and is based on
considerations of human physiology and possible limitations of a production truck’s
sensors.
The inverse time to collision is defined as:

invTTC = vego − vtarget

xtarget − xego

. (2.1)

where vego, xego are the following vehicle’s velocity and longitudinal position respec-
tively, vtarget, xtarget are the leading vehicle’s velocity and longitudinal position. For
the sake of brevity, the leading vehicle will be called the target, and the following
vehicle, the ego vehicle.

2.2.2 Evidence Accumulator Model
This model is a watered down implementation of the framework designed by Markkula
et al. with the major simplification being the use of sustained closed loop driver
intervention instead of a series of discrete open loop interventions. This was done
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2. Driver Behaviour Models for Braking

Figure 2.1: Graphical representation of Delayed Constant Deceleration model.

since it simplified the design of the estimation algorithm, and in many cases inter-
mittent control could be represented using sustained control [22]. Further details
about the start of braking, and acceleration during braking are mentioned below.

Start of braking event

The concept of evidence accumulation is inspired by concepts from psychology where
an action is triggered once the accumulation of neuron firing rates crosses a threshold
[24]. The accumulator is mathematically described as:

dA

dt
= kAγ(ε(t)), (2.2)

where, A is the activity, a dimensionless term inspired by neuronal activity, but can
be both positive and negative, kA is the accumulator gain, ε(t) is the evidence being
accumulated, which in this model is the invTTC, and γ is a gating function that
allows the accumulation of evidence only if ε(t) is above a lower limit. The invTTC
has the same definition as in Equation 2.1 and the gating function was defined as:

γ(ε) = sgn(ε)max(0, ε− ε0), (2.3)

where ε0 is the threshold that ε has to cross to be accumulated. The driver is con-
sidered to start braking, a time delay, tA after A crosses the accumulator threshold,
which is set to 1.
Of all the parameters, kA is the only one that’s driver specific, with tA being depen-
dent on human physiology and potential sensor limitations similar to tD in Section
2.2.1, and ε0 being dependent on sensor specifications.

8



2. Driver Behaviour Models for Braking

Acceleration during braking event

Once the accumulator triggers the start of intervention, the driver’s desired acceler-
ation was defined using the Helly model [25].
In the original Helly model, the driver’s acceleration is described as:

aego = C1(vego(t−τr)−vtarget(t−τr))+C2(xtarget(t−τr)−xego(t−τr)−D(t)), (2.4)

D(t) = β1 + β2vego(t− τr) + β3aego(t− τr), (2.5)

where aego, vego, xego are the ego vehicle’s acceleration, velocity and longitudinal
position respectively, atarget, vtarget, xtarget are the target vehicle’s acceleration, ve-
locity and longitudinal position, D(t) is the driver’s desired space headway, τr is the
driver’s reaction time, and C1, C2, β1, β2, β3 are gain factors [25].
The acceleration term in the definition of desired headway was dropped since re-
searchers have shown that the desired acceleration can be reasonably estimated
without this term [26]. In order to design estimators that can run on embedded
hardware, the relations were discretized using a step size, Ts of 400ms (selected as
twice the sampling rate of the sensors’ outputs). Hence,

D[k] = β1 + β2(vego[k]), (2.6)

where k is the index, and the desired acceleration, ad was defined as:

ad[k] =
[
α1 α2 α3 α4

] 
vego[k] − vtarget[k]

vego[k]
∆x[k]

1

 , (2.7)

where
α1 = C1, (2.8)

α2 = −β2C2, (2.9)

α3 = C2, (2.10)

and
α4 = −β1C2, (2.11)

The gains, α1, α2, α3, and α4 are driver specific parameters. It should be noted
that the longitudinal positions of the target and ego vehicle were defined based on
a fixed global coordinate system. The origin of this coordinate system was not
specified since the model is concerned only with the space headway, which is the
distance of the front of the target vehicle from the front of the ego vehicle.
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3
Test Track Study

A test track study was conducted in March 2018 for the purpose of collecting data to
help in the development of driver model parameter estimation algorithms. The study
was conducted at the AstaZero test site in Sandhult, Sweden with three professional
Volvo test drivers. The following sections describe the details of how the study
was conducted including details about the test site, vehicle, and equipment used,
participating drivers, and the test scenarios.

3.1 Test Site

The tests were performed in the “Multilane Road” environment at AstaZero, a layout
of which can be seen in Figure 3.1. The sides of the curved acceleration road are
adjacent to raised mounds which prevents the driver from seeing any object placed
on the four lane road until reaching near the end of the acceleration road. The multi-
lane road has four lanes, but in the two test scenarios, the target vehicle was placed
only on the second lane from the right (while approaching from the acceleration
road).

Figure 3.1: Dimensions and layout of multi-lane environment at AstaZero [1].
Image reproduced with permission from AstaZero.

11



3. Test Track Study

3.2 Vehicle and Equipment
The ego vehicle was a rigid 4x2 Volvo FH tractor with a fully loaded load cage
resulting in a Gross Combination Weight of 18000 kg. The truck was a test vehicle
fitted with medium and long range radars, and a camera. The sensor package also
included a sensor fusion algorithm that combined measurements from the radar and
camera to provide estimates of the target vehicle’s states. In this thesis, only the
longitudinal position and velocity estimates of the target were used. The truck also
had a logger that could log CAN signals and signals from the sensor package. The
start and stop of logging were controlled manually using an on-board computer.
The target vehicle used was a regular Volvo V70.

3.3 Participating Drivers
Three drivers participated in the study, all of whom were professional test drivers
employed by Volvo and regularly tested active safety functions at AstaZero. The
data was anonymized at the time of collection, with the labels, ’Driver 1’, ’Driver 2’
and ’Driver 3’ being assigned to them. All three drivers were male, had a Swedish
CE driver’s license, and were of ages 28, 41 and 40 years respectively. Drivers 2 and
3 had more than five years of experience testing different truck functions for Volvo,
while Driver 1 had little more than a year’s experience driving trucks. All three
drove an average of approximately 5 hours a day.

3.4 Test Scenarios
Two test scenarios were specifically designed by the author for this study. In this
report, scenario is defined as the setup including location, speed, and path of the ego
and target vehicle, and other instructions given to the driver. A run is defined as an
instance of a scenario. Both scenarios were meant to mirror situations encountered
in real-life city traffic. Drivers were briefed regarding the design and purpose of the
scenarios, and were instructed to keep their eyes on the target while driving, and
to start braking and control the deceleration as they would in real city traffic. The
author was present in the truck, controlling the start and stop of logging.

3.4.1 Scenario 1
In scenario 1, the target vehicle was placed around 100m from the start of the multi-
lane road, and remained stationary throughout the scenario. The ego truck started
from the acceleration road, and approached the multi-lane road at 50 km/hr with
cruise control activated. The driver braked softly and came to a stop behind the
target. This is similar to the real-life situation where a car is waiting for the traffic
light to turn green, and the ego truck needs to stop and wait behind the car.
The drivers took turns performing runs of the scenarios. First, Driver 1 performed
5 runs, and then the drivers were switched. Due to a miscommunication, Driver 2
thought that the task was for the driver to start braking once the AEBS system had
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started to brake automatically. Hence, the first four test runs were excluded from
subsequent analysis, and Driver 2 eventually completed five runs as per specifica-
tions, and drivers were switched again, and Driver 3 drove five times uneventfully.
A summary of which runs were included in the final analysis can be found in Table
3.1.

3.4.2 Scenario 2
Scenario 2 mirrors the situation where the ego truck approaches a traffic light that’s
just turned green, and the car in front is about to start accelerating, but the faster
ego truck needs to brake to maintain a comfortable headway to the car in front.
Similar to scenario 1, the ego truck approaches from the acceleration road at 50
km/hr with cruise control activated, but in this scenario, the target vehicle starts
to slowly accelerate to 20 km/hr when the ego truck is around 100m behind, and
then maintains that speed. Again, the driver of the ego truck brakes softly to reach
around the same speed as the target vehicle, and then starts following it.
The three drivers each performed five runs of the scenario without any issues. How-
ever, in subsequent analysis it was found that the logging of Driver 1’s run 1 had
been stopped prematurely, and that the log of Driver 1’s run 3 was corrupted. Hence,
these two runs were excluded from further analysis.

Table 3.1: Summary of runs included in analysis.

Driver 1 Driver 2 Driver 3
Scenario 1 1, 2, 3, 4, 5 5, 6, 7, 8, 9 1, 2, 3, 4, 5
Scenario 2 2, 4, 5 1, 2, 3, 4, 5 1, 2, 3, 4, 5
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4
Driver Model Parameter

Estimation

4.1 Recursive Least Squares
Considering that the selected models were linear with respect to the parameters to
be estimated, the linear least squares estimation scheme would seem like a good
choice. However, storing a large number of measurements and then calculating the
psuedo inverse would require storage and computational resources that may not be
feasible on a production ECU. Hence, the recursive least squares (RLS) scheme was
chosen to estimate the parameters of both the selected driver models.
The RLS with forgetting factor scheme as seen in Vahidi et al. was used [27]. If the
model whose parameters need to be estimated can be described as follows:

y = φTθ, (4.1)

where y is the vector of measurements, φ is the vector of states, and θ is the vector
of parameters to be estimated, then the recursive scheme is:

θ̂[k] = θ̂[k − 1] + l[k](y[k] − φT[k]θ̂[k − 1]), (4.2)

l[k] = P[k − 1]φ[k](λ+ φT[k]P[k − 1]φ[k])−1, (4.3)

P[k] = (I − l[k]φT[k])P[k − 1] 1
λ
, (4.4)

where P is the covariance matrix and λ is the forgetting factor [27].

4.2 Simulation Environment
The simulations were performed using a Simulink model that takes signal data
from the log files recorded at the test track, passes it through a sensor data fusion
algorithm, thereby giving estimates of the ego vehicle and leading vehicle’s states,
which could be used by the online estimator as inputs. The log files consist of
logged vehicle CAN signals and signals from the truck’s on-board sensors and fusion
algorithms. The sensor data fusion module in the Simulink model was developed by
Volvo and can be uploaded to a truck’s ECU. Hence, the inputs to the estimation
algorithms are representative of what could be seen on a production truck.
The designed estimation functions are called every 0.04s, while the sensor data fusion
module in the Simulink model is called every 0.02s.
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Manual Recording of Measurements
During the analysis of the logs from Scenario 1 where the target was stationary, it
was found that the fusion algorithm of the sensor package was unable to detect the
target with sufficient confidence in time to accumulate enough evidence, and in some
runs, even to estimate the invTTC threshold in the delayed constant deceleration
model. The radar was able to detect the target in enough time, but the radar
measurements were not logged in a manner that they could be accessed separately
in the Simulink model. However, the radar measurements could be viewed manually
in the sensor provider’s review software. Range and range rate measurements were
noted down manually at a frequency of 1Hz from this software. This data was
given as an input to the estimation algorithm until the time that the sensor’s fusion
algorithm detected the target with sufficient confidence. 1 Hz was considered to be
enough since in this scenario the target remains stationary, and during the period
when the fused target measurements are not available, the ego truck hadn’t started
braking significantly, and after that the fused measurements are available at 50 Hz.
There were some runs in scenario 2 where the same issue was observed, however
it wasn’t as severe as seen in scenario 1, so a decision was made not to take man-
ual measurements, and use this as an opportunity to analyze the effect of sensor
limitations on the estimation of driver model parameters.

4.3 Delayed Constant Deceleration Model
As described in Section 2.2.1, the delayed constant deceleration model has two driver
specific parameters that need to be estimated, iTTCth and ac.

4.3.1 Inverse Time to Collision Threshold

Estimation Scheme

Once the estimator receives target measurements, i.e. once a target is detected
with sufficient confidence, invTTC is calculated at each time step, and the value
of invTTC delayed by tD is stored at each time step. The delayed invTTC at the
time when a non-zero brake pedal position is first detected, becomes the estimate
of iTTCth. A simple quality check was implemented to ensure that the iTTCth was
not zero, which could happen if the sensors drop the target.
Ideally, tD should account for the driver’s perceptual and motor delays, which can be
taken as 0.15s [24],[22]. To account for possible delays due to the sensors themselves,
tD was taken to be 0.2s.

Results and Analysis

Figure 4.1 shows how iTTCth varied across different drivers and scenarios. A sig-
nificant difference can be observed across the three drivers. Further, this difference
follows a similar trend in both scenarios. Due to several factors such as varying ex-
perience, miscommunication, comfort levels, etc. which could be working together
to lead to this difference, no attempt is made to explain it.
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Figure 4.1: Scatter plot of invTTC thresholds across different drivers and scenarios.

It is important to compare the obtained estimates with the invTTC thresholds ob-
served in other driving studies in literature. In the study by Kiefer et al. drivers were
“asked drivers to maintain their speed and brake at the last second possible in order
to avoid colliding with the target using “normal” braking intensity or pressure”[28].
54 drivers performed a test case similar to scenario 1 where the ego vehicle was
initially travelling at 30 mph towards a stationary target. The mean invTTC at the
start of braking (across all drivers) for this case was found to be 0.25 [28]. While this
is higher than most of the iTTCth values seen in scenario 1, it should be noted that
in scenario 1 drivers were instructed to brake whenever they wanted to, as compared
to the Kiefer et al. study where they were instructed to brake at the last possible
second. This could explain why the iTTCth values were lower.
36 drivers performed the case similar to scenario 2, where the ego vehicle was initially
travelling at 30 mph while the target travels at a constant speed of 10 mph. Again,
drivers were asked to brake at the last possible second. In this case, the mean
invTTC values at the start of braking was 0.26 which is again higher that the
iTTCth values in scenario 2 [28].
A cause for concern is the level of variation in the iTTCth values of each driver.
Unfortunately, due to the nature of the instructions given to the drivers, only guesses
can be made as to why this was seen. Figure 4.2 shows how the iTTCth values varied
over the consecutive runs. It should be noted that certain runs were excluded from
the analysis as explained in Section 3.4.
While one would expect drivers to have higher iTTCth values in subsequent runs as
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Figure 4.2: Variation of invTTC thresholds over consecutive runs.

they get used to the repetitive nature of the task, such a trend cannot be clearly
seen for all drivers in both the scenarios.

4.3.2 Constant Acceleration

Detection of Start and End of Near-Constant Acceleration Phase

It is not necessary nor feasible to run the constant acceleration estimation algorithm
all the time on a production ECU. Rather, the estimator should ideally run only
during the part of the braking event where the acceleration is nearly constant. This
leads to the need for detecting when this constant acceleration phase starts and
ends.
The conditions selected for the start of the phase were:

• Position of Brake Pedal > 5%, and
• invTTC > 0 s−1,

while the conditions selected for the end of the phase were:
• Position of Brake Pedal ≤ 5% and Estimated Jerk ≥ -0.1 m/s3, or
• invTTC ≤ 0.1 s−1 and Estimated Jerk ≥ -0.1 m/s3, or
• Ego Velocity ≤ 1 m/s.

The limit for the brake pedal position was selected based on the mapping between
the brake pedal position and requested acceleration, while the limits on invTTC and
jerk were manually tuned. It should be noted that the jerk was estimated using an
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RLS scheme similar to the one described below, but with the first order estimate of
jerk as the measurement, y.

Estimation Scheme

The RLS scheme described in Section 4.1 was used to estimate the constant accel-
eration. The acceleration signal from the ego vehicle’s CAN signals was taken as
the measurement, y. The constant acceleration parameter, ac was the parameter
to be estimated, θ, and φ was hence 1. The forgetting factor was manually tuned
to obtain a suitable compromise between capturing the trend of the signal while
discarding sharp fluctuations, resulting in a choice of 0.99.
A rough quality check was designed through an error measure inspired by the root
mean squared error (RMSE). It’s not trivial to calculate the RMSE online since the
estimate varies at each time step. Hence, a measure of error was defined that could
be calculated online:

Measure of Estimation Error =

√
Σ(y − φTθ̂)2

N
, (4.5)

where, N is the number of samples. The estimate was considered to be of acceptable
quality if the error measure was less than half the magnitude of the estimate (similar
to a signal-to-noise ratio of 2). While this check has no foundation in statistical
theory, it can be used to identify situations where the variation in acceleration is so
high, that a constant acceleration model can’t be used to describe it.

Results and Analysis

Figure 4.3 shows the RLS estimator in action. As seen, the RLS estimator is enabled
when the brake pedal is pressed and the target is detected with sufficient confidence.
The standard deviation of the estimate converges but to a non-zero value. This is
due to the use of a forgetting factor.
The updates from the RLS estimator can be seen in Figure 4.4. Note how the
constant acceleration estimate is updated at around 545s even though the RLS
estimator runs until around 548s. This is because the estimates are updated as soon
as the end of the near-constant acceleration phase is detected. The acceleration
update quality is a binary quantity, which in this case turns 1 since the measure of
estimation error is less than half the magnitude of the constant acceleration estimate.
Figure 4.5 shows how the ac estimates vary across drivers and scenarios. Again a
significant difference can be seen in the ac estimates of Driver 1 compared to the
others in both scenarios. It’s also worth noting that the estimates of Driver 2 and 3
in scenario 1 have a much larger variation than in scenario 2. The mean accelerations
in the study by Kiefer et al. for the cases corresponding to scenarios 1 and 2 were
1.6 m/s2 and 1.27 m/s2 respectively [28]. The obtained estimates are quite close
to those reported by Kiefer et al. with the significant exception of Driver 2 and 3’s
estimates in Scenario 1 [28].
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Figure 4.3: Functioning of RLS estimator for Driver 1’s Run 1 in Scenario 1.
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Figure 4.4: Outputs from RLS estimator for Driver 1’s Run 1 in Scenario 1.

4.4 Evidence Accumulator Model

In order to implement the evidence accumulator on an ECU, equation 2.2 was dis-
cretized as:

A[k] = kATs

z − 1γ(ε[k]), (4.6)

where, A is the activity, kA is the accumulator gain, Ts is the sampling time, ε[k] is
the evidence being accumulated, and γ is a gating function.

4.4.1 Accumulator Gain

Estimation Scheme

Out of the terms in equation 4.6, the time integral of the gated invTTC (i.e. the
term multiplied by kA on the right hand side of the equation) is calculated at each
time step. When tA is selected as 0.2s, the value of A is 1 0.2s before a non-zero
brake pedal position is detected. tA was selected based on the same reasoning used in
the selection of tD in the delayed constant deceleration model. Hence, the estimate
of kA is the inverse of the time integral of the gated invTTC stored 0.2s before the
brake pedal is pressed.
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Figure 4.5: Scatter plot of constant acceleration, ac estimates across different
drivers and scenarios.
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Figure 4.6: Estimates of Accumulator Gain for Driver 1 in Scenarios 1 and 2.

Results and Analysis

Figure 4.6 shows that the accumulator gain varies significantly over the consecutive
test runs. In Scenario 1, the gain shows a mostly decreasing trend, which can
be expected as the driver gets more comfortable with the task, but Scenario 2
appears to show the opposite trend. Upon further investigation it was found that
this was because the time at which the sensor package started to detect the target
with significant confidence varied significantly. Ideally these times should be the
same, considering that the kinematics of the situation don’t vary. This affected the
precision of the estimates since the accumulator ran for different lengths of time in
the three runs, 3.92 s, 3.28 s and 2.36 s respectively which explains the apparent
increasing trend in kA. This shows the extent to which sensor performance can affect
the gain estimates.

Since repetition clearly had a major effect on the estimates, only the estimates from
the first runs of each scenario were considered important and can be found in Table
4.1. Compared to the level of variation seen in Figure 4.6, it’s promising to see how
close the gain estimates for Driver 3 are in Scenarios 1 and 2.
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4.4.2 Acceleration Gains

Estimation Scheme

The RLS estimation scheme from Section 4.1 was used to estimate α1, α2, α3 and
α4, where:

y = aego, (4.7)

θ =


α1
α2
α3
α4

 , (4.8)

φ =


vego[k] − vtarget[k]

vego[k]
∆x[k]

1

 , (4.9)

and the forgetting factor, λ was chosen to be 0.99.

Results and Analysis

Figure 4.7 shows how the acceleration gains vary for Driver 1 over successive test
runs. As seen in Section 4.3.1, there’s no clear trend due to the nature of the test
track tests.
Table 4.1 shows how that the median gains show some variation across the three
drivers. Unfortunately, at the time of writing, there were no published estimates for
this type of model in literature, preventing an analysis similar to the one done in
Section 4.3.2.
The table contains only the accumulator gain estimates from the first runs in each
scenario. This is because the accumulator gain is highly sensitive to the driver’s
expectancy and since subsequent runs were repetitive in nature, it’s only the first
runs that should be included.
For the acceleration gain estimates, the median values are listed. For each driver
and scenario, a set of acceleration gains are obtained for each run. Even for the same
driver and scenario, the estimates will vary across runs, especially in this analysis as
seen in 4.7. Hence, the median is used as a robust estimate of the parameters over
the duration of all the runs.

Table 4.1: Overview of estimates for Evidence Accumulator Model

Driver 1 Driver 2 Driver 3
kA, Scenario 1 Run 1 3.56 - 1.77
kA, Scenario 2 Run 1 - 1.45 1.82

Median α1 (s−1) -0.33 -0.02 -0.02
Median α2 (s−1) -0.02 -0.27 -0.11
Median α3 (s−2) -0.04 -0.07 -0.05
Median α4 (s−2) -1.77 -1.54 -1.63
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Figure 4.7: Variation of Acceleration Gains for Driver 1 across different test runs.
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Figure 4.8: Verification of Acceleration Gain estimates for Driver 1 Scenario 1 Run
1.

Using the acceleration gain estimates and the inputs to the Helly model, the model’s
output could be compared with the acceleration measurement that was fed into the
estimator. As seen in Figure 4.8 the estimates manage to capture the general trend
of the signal which is what is needed for threat assessment in FCW.
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5
Threat Assessment Design for
Forward Collision Warning

Chapter 4 described methods to get an estimate of driver model parameters during
each braking event under routine driving. This chapter discusses how these estimates
could be used for threat assessment, and also a method of detecting when such an
assessment method should not be used.

5.1 Logical Architecture of Comfort Zone Bound-
ary Estimator

In order to observe the driver’s current status, the estimates of driver model param-
eters obtained at the end of each braking event need to be analyzed with respect to
the range of parameter estimates observed over a long period of time. This should be
done to check whether there are any short term deviations in driver behaviour due
to factors such as fatigue, intoxication, varying road conditions, etc. Further, this
could also help identify if there has been a change of drivers, so that the warnings
are appropriately adjusted. Figure 5.1 offers a visual representation of such a setup.

Figure 5.1: Logical Architecture of Comfort Zone Boundary Estimator.

The single event estimator would contain the estimation schemes described in Chap-
ter 4, giving a set of estimates, θ̂ at the end of each braking event. The short horizon
estimator estimates the statistical properties, θ̂ST of the vector of estimate sets ob-
tained over multiple braking events over a short time interval of around 15-20 min-
utes. These statistical properties could include sample mean, median, and variance,
estimated through a recursive online scheme. This recursive estimator should be
reset every 15-20 minutes. This interval was selected since it has been observed that
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fatigue can have an impact on driving behaviour within 20-25 minutes of driving
[29].
The estimates from the short horizon estimator should be compared with the usual
range of estimates observed over several driving sessions, θ̂LT. If there are significant
deviations, it could imply a temporary shift in driver behaviour or a change of driver
or driving conditions. In such cases, the FCW timings should not be based on θ̂ST
and should instead be based on the traditional purely kinematics approach. The
knowledge of these deviations could also be of use in other active safety functions
such as Driver Alert Support, Lane Departure Warning, etc.
If the deviations are not too high, θ̂ST is fed as an input to the long horizon estimator.
This estimator works just like the short horizon estimator, except that it works on
much longer time intervals.

5.2 Proposed Threat Assessment Algorithms

5.2.1 Delayed Constant Deceleration Model
Using the delayed constant deceleration model, a range of the driver’s invTTC
threshold and constant acceleration estimates can be obtained. Using the invTTC
threshold, for the current kinematic situation a range of times when the driver would
usually brake can be obtained. If this range has been crossed, and the driver hasn’t
braked then it’s a deviation from normal behaviour and a less intrusive warning
(e.g. visual) can be provided. Simultaneously, the acceleration needed to avoid the
crash can be calculated and if this exceeds the range of the driver’s usual applied
acceleration, then the second level of warning (auditory) should be given. Figure
5.2 shows how this algorithm would look like.

Figure 5.2: Threat Assessment algorithm based on Delayed Constant Deceleration
Model.
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5.2.2 Evidence Accumulator Model
A similar algorithm was proposed for the evidence accumulator model as seen in
Figure 5.3. The main difference from the previous algorithm is in the conditions for
the second level of warning. The evidence accumulator model can actually predict
the acceleration the driver would usually apply based on the current kinematics.
Assuming that this acceleration is applied, an enhanced time to collision (ETTC)
can be calculated, and the auditory warning would be provided if this crosses a
certain threshold.

Figure 5.3: Threat Assessment algorithm based on Evidence Accumulator Model.
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6
Conclusions and Future Work

A literature survey of driver behaviour models for braking was conducted to find
models that could be used to estimate the comfort zone boundaries of a driver.
Several models were identified that could theoretically be used, and two models -
delayed constant deceleration and evidence accumulator were selected for further
investigation. Estimation schemes were designed for these two models, and proof of
concept functions were developed.
In order to test the performance of developed estimators, a test track study was
conducted with three professional test drivers. Several test runs were performed for
two scenarios which were designed to emulate real-world traffic situations. CAN
and sensor signals were logged during the test runs and imported into a simulation
environment where the developed estimators were simulated.
Analysis of the simulation results showed that the test data collected was not partic-
ularly suitable for drawing detailed conclusions due to large unexplained variations
in driver behaviour, and the effect of performing a repetitive task. However, quali-
tative conclusions could be drawn, and for some models, a clear difference could be
seen between the driving styles of the three drivers. Further, the effect of practical
issues such as sensor limitations could also be seen in the results.
An analysis involving much larger naturalistic driving databases is needed to defini-
tively conclude if the developed estimators can be used for estimating comfort zone
boundaries, and decide which one is better.Based on the developed estimators, con-
ceptual designs for threat assessment algorithms were made.
A brief look at the ISO standard for collision warning systems (ISO 15623:2013)
showed that existing standards are not a hurdle for introducing such functions into
the market, although the functions need to satisfy the requirements that current
FCW systems already fulfill [6]. Hence, if driver adaptation for the FCW system
is found to significantly improve driver acceptance, it could be introduced to a
production FCW system.
However, several steps need to be performed in order to develop such a system.
First, the estimators developed in this thesis should be tested on a large naturalistic
driving database so that a clear conclusion can be drawn on their performance. If
the performance is found to be promising, the next logical step would be to develop
prototype threat assessment functions based on these designs and test them on data
from naturalistic driving databases or field tests. These prototypes would then act
as a foundation for the development of a production ready FCW function.
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