
Efficient deep learning in space
Knowledge distillation and optimization of resource usage in a
satellite

Master’s Thesis in Complex Adaptive Systems

Ebaa Asaad and Sara Larsson

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Efficient deep learning in space

Knowledge distillation and optimization of resource usage in a
satellite

Ebaa Asaad and Sara Larsson

Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems

Chalmers University of Technology
Gothenburg, Sweden 2022

Efficient deep learning in space
Knowledge distillation and optimization of resource usage in a satellite
Ebaa Asaad and Sara Larsson

© Ebaa Asaad and Sara Larsson, 2022.

Supervisors:
Ola Benderius, Associate Professor at Mechanics and Maritime Sciences, Chalmers.
Alice Anlind, Software engineer, Unibap
Hannes von Essen, Deep learning researcher, EmbeDL
Wilhelm Tranheden, Deep learning researcher, EmbeDL

Examiner:
Ola Benderius, Associate Professor at Mechanics and Maritime Sciences

Master’s Thesis 2022:33
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration of the pipeline for detecting locations of maritime vessels using
object detection on-board a satellite.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Digitaltryck
Gothenburg, Sweden 2022

iv

Efficient deep learning in space
Knowledge distillation and optimization of resource usage in a satellite
Ebaa Asaad and Sara Larsson
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
The development of micro-satellites and machine learning (ML) has increased dras-
tically in recent years, which has unlocked new possibilities in the field of Earth
observation. One of the applications is the tracking of maritime vessels since the
current tracking systems such as the automatic identification system (AIS) can be
eluded by simply switching it off. This project, therefore, investigates the possibil-
ities of applying ML in a satellite, specifically with the aim of detecting maritime
vessels.

An object detector (YOLOv5) was chosen for testing due to its speed, small size, and
its user-friendly framework. For comparison with a simpler model, the classification
models ShuffleNetV1 and a custom-built CNN model were chosen. Thereafter, for
the purpose of optimization, knowledge distillation, as well as different methods for
reducing resource usage, were tested.

The results show that it is feasible to implement ML on board a satellite to detect
maritime vessels, where the best result for YOLOv5 was 2.1 min per 10,000×10,000
pixels RGB image on the target hardware using the GPU. Using the CPU with
multiple threads achieved a result of 2.2 min for the same image. Increasing the
batch size did not yield better results. ShuffleNetV1 was not supported by the
TFLite framework, due to a network structure called group convolutions. Neither
was quantization supported by the target hardware, but it did decrease the file size
of the model by half.

Using knowledge distillation showed great results for the classifiers. Using Shuf-
fleNetV1 to train the simpler CNN model yielded an increase of 12 % in accuracy.
It also shows that it is possible to apply a non-supported network on the target
device by distilling the knowledge to a supported network. Distilling knowledge us-
ing YOLOv5 was more difficult, due to the complexity of the network and the task
of object detection. Two methods were therefore tested: using the teacher’s output
(logits) as a target and using the feature maps within the network as targets (feature
imitation). However, only minimal improvements were reflected in the results.

Keywords: satellites, Earth observation, space, maritime vessels, YOLOv5, Shuf-
fleNetV1, Tensorflow Lite, knowledge distillation, optimization, neural networks.

v

Acknowledgements
First, we want to send our deepest gratitude to our supervisor at Chalmers, Ola
Benderius. Thank you for your great support and guidance during this project!

Further, we want to thank the people at EmbeDL and Unibap for giving us this
wonderful opportunity! More specifically, we want to thank our supervisors at the
respective companies. Wilhelm and Hannes, thank you for your enthusiasm and for
being there for us every week with your guidance. Alice, we want to thank you for
your never-ending excitement and your guidance throughout this project. We would
also like to thank the people at AI Sweden, and especially Erik Svensson, for their
support and for providing a fantastic work environment.

Artur and Domenic, thank you for all the feedback during the weekly meetings, and
for making this journey just that bit easier.

Last but not least, we want to thank our families and friends for their unconditional
love and support for us during this project! We would not have been able to do this
without you.

Ebaa Asaad and Sara Larsson, Gothenburg, June 2022

vii

Preface
This project is conducted at Chalmers University of Technology, in collaboration
with Unibap AB and EmbeDL. Unibap AB is one example of an actor in the field
of satellite hardware that develops computers and cloud services targeting machine
learning onboard satellites. EmbeDL works with deep learning algorithms and is spe-
cialized in optimizing such algorithms for usage in embedded systems. The project
is also included in a master’s thesis collaboration organized at AI Sweden, which is
an organization that facilitates the development of machine learning in Sweden.

ix

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Research questions . 2
1.2 Limitations . 3
1.3 Important metrics and acronyms . 3
1.4 Outline . 5

2 Background 7
2.1 Satellites . 7
2.2 Datasets . 8
2.3 Machine learning in image processing 8

2.3.1 Image classification . 9
2.3.1.1 ShuffleNetV1 . 9
2.3.1.2 Other classifiers . 9

2.3.2 Object detection . 9
2.3.2.1 YOLOv5 . 10

2.4 Optimization . 11
2.4.1 Knowledge distillation . 11
2.4.2 Quantization . 13

3 Methods 15
3.1 Dataset . 15
3.2 Model choice . 16

3.2.1 Classifiers . 16
3.2.2 Object detection: YOLOv5 16

3.3 Training setup . 18
3.4 Evaluation . 18

3.4.1 Measuring accuracy . 19
3.4.2 Measuring resource usage . 19

3.4.2.1 Input image . 19
3.4.2.2 Inference time . 20
3.4.2.3 Memory . 20

3.5 Optimization methods . 20
3.5.1 Optimizing resource usage . 20

xi

Contents

3.5.1.1 Memory management and conversion of datatypes . . 20
3.5.1.2 Inference options . 21

3.5.2 Knowledge distillation . 21
3.5.2.1 Knowledge distillation for classification 21
3.5.2.2 Knowledge distillation for object detection 22

4 Results 23
4.1 ML metrics . 23

4.1.1 Ml metrics of the classifiers 23
4.1.2 ML metrics of YOLOv5 . 23

4.2 Resource usage . 25
4.2.1 Resource usage using YOLOv5n 25

4.2.1.1 Memory management and conversion of datatypes . . 25
4.2.1.2 Breakdown of inference process 25
4.2.1.3 Different input sizes 27
4.2.1.4 Quantization . 30
4.2.1.5 Multithreading . 30
4.2.1.6 Batch size . 32

4.2.2 Resource usage using the classifiers 32
4.2.2.1 Resource usage using ShuffleNet 33
4.2.2.2 Resource usage using the simple CNN model 33

4.2.3 Simple model vs. YOLOv5n 35
4.3 Experimental results of knowledge distillation 36

4.3.1 Results of knowledge distillation on the classifiers 36
4.3.2 Results of knowledge distillation on YOLOv5 36

5 Discussion 39
5.1 Choice of dataset . 39
5.2 Choice of model . 39

5.2.1 Choice of classifier . 39
5.2.2 Choice of object detector . 40

5.3 Performance on the hardware . 41
5.3.1 Effects of code structure . 41

5.3.1.1 Converting image vs. converting tile to float32 . . . 41
5.3.1.2 Using memcpy . 41
5.3.1.3 Memory used by the image 41
5.3.1.4 How TFLite manages memory 42
5.3.1.5 Better memory managements 42

5.3.2 Effects of using different input sizes 42
5.3.2.1 Choosing an input size 43
5.3.2.2 Avoiding processing unnecessary pixels 43

5.3.3 Quantizing the weights . 43
5.3.4 Multiple threads in the CPU 44
5.3.5 Increasing the batch size . 45
5.3.6 Using the classifier . 45

5.4 Network compression with knowledge distillation 46
5.4.1 ShuffleNetV1 teaching the simple CNN model 46

xii

Contents

5.4.1.1 Using unsupported networks 46
5.4.2 YOLOv5l teaching a YOLOv5n 46

5.4.2.1 The case of detecting maritime vessels 46
5.4.2.2 The case of a large number of classes 47

5.5 Theoretical optimizations . 47
5.5.1 Combining models . 47
5.5.2 Using only the classifier . 49

5.6 Detecting vessels from space . 50
5.6.1 Frame rate . 50
5.6.2 Memory when deployed . 50
5.6.3 The results depend on the camera 50
5.6.4 Tiling the image . 50
5.6.5 Accuracy of the model . 51
5.6.6 Use cases . 51

5.7 Ethical and sustainability aspects . 52
5.8 Future work . 52

5.8.1 Further optimizations of memory and speed 52
5.8.2 Serialization of the GPU delegate 53
5.8.3 memcpy using batches . 53
5.8.4 The problem of overlapping tiles 53
5.8.5 Knowledge distillation for object detectors 53
5.8.6 Testing in space . 54
5.8.7 Edge Learning . 54

6 Conclusion 55

A Appendix I
A.1 The history of YOLO . I
A.2 Literature review of object detectors III

A.2.1 R-CNN, Fast R-CNN, Faster R-CNN III
A.2.2 SSD . III
A.2.3 RetinaNet . III
A.2.4 LRF . IV
A.2.5 EfficientDet . IV

A.3 Comparison of existing models . IV
A.3.1 Image classifiers . IV
A.3.2 Object detectors . V

A.4 Simple CNN model architecture . X
A.5 Set of results for knowledge distillation using YOLOv5 X

xiii

Contents

xiv

List of Figures

1.1 The confusion matrix . 4

3.1 Image samples from the Kaggle Airbus Challenge dataset 15
3.2 YOLOv5 network architecture . 17

4.1 Memory usage during an inference using YOLOv5n 27
4.2 VRAM usage during an inference for YOLOv5n 28
4.3 Inference time for different input sizes using YOLOv5n 28
4.4 Memory usage for different input sizes using YOLOv5n 29
4.5 Trade-off between time and VRAM using different input sizes for

YOLOv5n . 29
4.6 Inference time using multithreading for YOLOv5 31
4.7 Memory usage when multithreading for YOLOv5n 31
4.8 Inference time using different batch sizes for YOLOv5n 32
4.9 VRAM using different batch sizes for YOLOv5n 32
4.10 Inference time for multithreading using the simple CNN model 34
4.11 Inference time for different batch sizes using the simple CNN model . 34
4.12 Comparison of memory consumption between YOLOv5n and the sim-

ple CNN model . 35
4.13 Comparison of VRAM between YOLOv5n and the simple CNN model 35
4.14 Comparison of knowledge distillation methods on the Kaggle dataset 37
4.15 Comparison of knowledge distillation methods on the COCO dataset 37

5.1 Illustration of the tiling process . 44
5.2 Illustration of combining a classifier and an object detector 48
5.3 Time difference of combining YOLOv5 and the classifier vs. only

YOLOv5 . 49
5.4 Different vessel sizes . 51

A.1 Comparison of object detectors from the YOLOv2 paper VI
A.2 Comparison of networks from the RetinaNet paper [61]. Average

precision versus inference time on the COCO dataset. VII
A.3 Comparison of networks from the YOLOv3 paper [18]. Average pre-

cision versus inference time on the COCO dataset. VII
A.4 One of the graphs comparing networks from the YOLOv4 paper [6].

Average precision versus inference time on the COCO dataset. VIII

xv

List of Figures

A.5 Another graph comparing networks from the YOLOv4 paper [6]. Av-
erage precision versus inference time on the COCO dataset. VIII

A.6 Graph comparing networks from the paper covering PP-YOLO [20].
Average precision versus inference time on the COCO dataset. . . . IX

A.7 Grapgh from the PP-YOLOv2 paper [67]. Average precision versus
inference time on the COCO dataset. IX

A.8 All tests for knowledge distillation . XII

xvi

List of Tables

1.1 Metrics used to indicate the speed and complexity of a ML model . . 3
1.2 Metrics for evaluating the accuracy of classifiers and object detectors 4
1.3 Different memory types used by the CPU and GPU 5

3.1 Comparing the file-size of YOLOv4Tiny and YOLOv5n 17
3.2 Number of parameters for different YOLOv5 models 17
3.3 Hardware specifications . 18
3.4 Optimizations in the code structure 21

4.1 Accuracy results of ShuffleNetV1 . 23
4.2 Accuracy results of the simple CNN model 24
4.3 Accuracy results of YOLOv5 models 24
4.4 Comparison of accuracy between pytorch and TFLite models 24
4.5 Comparison of methods for memory and data management 25
4.6 Comparing pre-processing time and inference time for YOLOv5n . . . 26
4.7 Detailed time measurements of the inference step for YOLOv5n . . . 26
4.8 Inference time and VRAM for different input sizes using YOLOv5n . 29
4.9 Inference time for different precision of the weights using GPU for

YOLOv5n. 29
4.10 Storage space taken by the model weights 30
4.11 Best time results when multithreading for YOLOv5 31
4.12 Comparing pre-processing time and inference time for the simple

CNN model . 33
4.13 Detailed time measurements of the inference step for the simple CNN

model . 34
4.14 Results of knowledge distillation using the classification models 36

A.1 A comparison of different classifiers V
A.2 The architecture of the simple CNN model X
A.3 A list of tests on knowledge distillation using YOLOv5 XI

xvii

List of Tables

xviii

1
Introduction

The development of artificial intelligence (AI) and machine learning (ML) has been
rapidly increasing for the past few years. The increase in development in ML is
mainly due to the increase in computation power as well as the efforts of differ-
ent people around the world to gather and build large volume datasets, which are
necessary to train ML models [1][2]. One challenge regarding ML models is how
expensive it is to train them, especially in computation power and time. Moreover,
to acquire higher accuracy, ML models have become larger, deeper, and more com-
plicated [3][4][5]. Even after the model is put into production, it still requires a
high amount of computation power, especially when striving for instant predictions
on frequent inputs or large input sizes [6]. Therefore, ML models often need to be
optimized in order to run on embedded and mobile systems [7]. Examples of such
systems are smartphones, embedded vehicle systems, and satellites.

Recently, the interest in the usage and development of small satellites for Earth
observations has grown rapidly [8][9]. The increasing number of satellites brings
possibilities for more frequently acquired data, and more powerful sensors bring
higher quality data, which is critical for the utility of ML models. Large volumes of
data create the need for specific requirements from the hardware and high downlink
and uplink capabilities between the satellite and the systems on Earth [8][9]. Par-
ticularly the size of images for computer vision (CV) increases drastically as their
resolution increases. For example, one image from the Sentinel-2 satellite can be up
to 3.2 GB in size (see 3.4.2.1), and the time for one captured satellite image to reach
a computing model and give a result could take several days. The delay between
taking an image and it reaching a computing model makes it unfeasible for satellite
images to be used in applications where it is crucial to act quickly. Therefore, it
would be advantageous to bring machine learning models to space to process the
data on-the-fly and only downlink the important results.

One major application possibility is the monitoring of maritime vessels on the oceans
[10]. The oceans are in critical condition due to overfishing [11]. Unfortunately, it
is difficult to monitor activities on the oceans and therefore illegal fishing continues
to exist. Also, human trafficking and the smuggling of goods near certain shores
are not unusual activities [12][13]. During the time of writing this report, automatic
identification system (AIS) is the main monitoring system for maritime vessels. It
transmits information such as the location and occupation of the vessel. However,
it is only required on vessels of a specific size, and it can be easily manipulated by
for example, simply switching it off [14].

1

1. Introduction

The onboard computers on satellites have in recent years become more powerful,
which makes it possible to use ML models in space [8][9]. However, these computers
are still limited in many aspects, such as computation power, memory, and storage
compared to, for example, desktop computers. These limitations are mainly due
to the shortage of electricity in space. Moreover, several other applications could
be using the same platform, which increases the importance of optimizing different
parts of the pipeline for a specific process.

There are several ML models for classification and detection on images, already
optimized for small mobile systems as well as embedded systems. Examples of
these are MobileNetV2 [7], ShuffleNet [15], SENets [16] and certain YOLO-models
[3][6][17][18][19][20]. These models may or may not be applicable for a satellite com-
puter, but in order to make efficient use of the expensive equipment in the satellites,
the models should be developed to be compact in terms of storage, computing power
and time. Another way to decrease the use of these resources required by the process
is to change the surrounding processes around the ML model.

1.1 Research questions
This project focuses on benchmarking different machine learning algorithms for ob-
ject detection and image classification for satellite images. The evaluation of the
models includes researching different inference times and model sizes. The best-
fitted models will then be tested on the target computer and evaluated in a similar
matter. Furthermore, a review of the model as well as the processes surrounding
the model will be done to find optimization possibilities and further decrease the
consumption of computation power, memory usage, and storage. This results in two
research questions for the project:

• What is the performance of a developed machine learning model in terms of
accuracy, inference time, and storage when deployed on a satellite (for example
by using Unibap’s satellites)?

• What optimization methods can increase the performance of the machine
learning model in terms of accuracy, memory usage, inference time, and stor-
age when deployed on a satellite (for example by using Unibap’s satellites)?

2

1. Introduction

1.2 Limitations
No processing of raw satellite images was performed in this project. Hence, the
dataset used in the training of the networks was the Kaggle’s Airbus ship detection
challenge dataset [21].

Moreover, the performance of the ML models is only tested on Unibap’s hardware,
more specifically a satellite computer called iX5-100 [22]. The results and optimiza-
tion methods are therefore only meaningful for this, and similar, hardware. The
satellite computer was not physically in space, since the focus of the project is the
performance of the models themselves. Testing in a computer in space would be
limiting, due to environmental factors such as radiation, but also due to the lack of
freedom when testing in such an environment, as other programs are running there
as well. Furthermore, the hardware is only used as a testing bed for the models, i.e.
no training was conducted on the specified hardware.

1.3 Important metrics and acronyms
This section explains the different metrics and acronyms used throughout the project
when measuring the performance of machine learning models. Table 1.1 explains the
metrics used for measuring speed and complexity. Table 1.2 explains some metrics
used for evaluating classifiers and object detectors. Table 1.3 lists some important
acronyms relating to memory used by the central processing unit (CPU) and graphics
processing unit (GPU).

FPS Frames per second. The number of frames a model is able to process
during one second.

FLOP Floating point operations (commonly written as FLOPs). The number
of operations required to run a single instance of a model. Not to be
confused with FLOPS.

FLOPS Floating point operations per second. Usually used for indicating the
computing capacity for a hardware. Might be useful in the context
of ML for determining a theoretical time for training on a specific
hardware. Not to be confused with FLOP.

Table 1.1: Metrics used to indicate the speed and complexity of a ML model.

3

1. Introduction

FN, FP,
TP, TN

See Fig. 1.1.

Accuracy The proportion of true results among all examined cases. It is defined as
T P +T N

T P +T N+F P +F N
.

IOU Intersection over union (commonly written as IoU), given by the intersec-
tion of the predicted bounding box and the labeled bounding box, divided
by the union of the predicted bounding box and the labeled bounding
box.

P Precision, given by the number of predicted labels that match the ground
truth, divided by the total number of predictions (T P

T P +F P
). TP and FP

are in object detection given by a threshold of IOU.

R Recall, given by the number of predicted labels which match the ground
truth, divided by the total number of annotated labels (T P

T P +F N
). TP and

FN are in object detection given by a threshold of IOU.

AP Average precision, given by the area under the precision vs recall curve.

mAP Mean average precision (commonly written as mAP). The mean of all
AP for each class. mAP.5 means that the threshold for IOU is 0.5.
mAP0.5:0.9 means the average thresholds over IOU, from 0.5 to 0.95
with step 0.05.

Table 1.2: Metrics for evaluating the accuracy of classifiers and object detectors.

Figure 1.1: The confusion matrix. The abbreviations represent true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN).

4

1. Introduction

RAM Random access memory. A fast memory allocation for active pro-
cesses.

VRAM Video RAM. RAM memory used by the GPU.

VIRT Virtual memory. The memory allocated for a process to use, repre-
sented as a continuous memory but possibly mapped to noncontinuous
memory locations.

RES Resident size, RAM memory of the CPU used by a certain process.

SHR Shared memory, memory accessible by multiple processes to allow for
inter-process communication.

Table 1.3: Different memory types used by the CPU and GPU

1.4 Outline
Chapter 2 highlights the important and relevant background and previous research
needed to understand the results. Sect. 2.1 gives an understanding of the satellites in
the field of Earth observation and Sect. 2.2 explains the different datasets commonly
used in the context of training and testing machine learning models. Sect. 2.3 intro-
duces the relevant machine learning algorithms. Lastly, Sect. 2.4 explains common
optimization methods, including knowledge distillation in Sect. 2.4.1.

To understand the processes applied in this project, a description of the steps and
choices are explained in chapter 3, Method, including the datasets in Sect. 3.1, choice
of models in Sect. 3.2, training setup in Sect. 3.3, evaluation in Sect. 3.4, and finally
the choice of optimization methods in Sect. 3.5.

The results are then presented in chapter 4, where the evaluation of the ML models
in relation to accuracy is presented in Sect. 4.1, and results for the optimization in
4.2 and Sect. 4.3.

Lastly, the discussion of the results is found in chapter 5 and the conclusion in
chapter 6. In detail, the used dataset and model choices are discussed in Sect. 5.1
and 5.2 respectively. The performance of the models are then discussed in Sect. 5.3,
the outcome of using knowledge distillation in Sect. 5.4, theoretical methods for
optimizing the pipeline in Sect. 5.5, the applicability of machine learning in space in
Sect. 5.6, ethical and sustainability challenges in Sect. 5.7, and possible future work
in Sect. 5.8.

5

1. Introduction

6

2
Background

Machine learning as we know it now has its origin in the late 1960s through the
work of Rosenblatt [23][24]. He created a machine that was capable of recognizing
the letters of the alphabet, which was called a “perceptron”. The perceptron later
became the prototype of modern artificial neural networks [24]. The real turning
point for machine learning was at the beginning of the 21st century. The turning
point is mainly due to certain trends, where the first one is the big data trend.
Large volumes of data became available and new methods were necessary to deal
with these large volumes of data [24]. The second trend was the breakthrough
when GPUs became affordable in relation to their computational capabilities, in
connection with a better and standardized software to use the devices. The rise in
computational power and its affordability allowed the distribution of large amounts
of data among different processing units as well as the processing of a large amount
of data in the memory [24]. The third trend was the development of new algorithms
in the machine learning domain, specifically deep machine learning [24].

This chapter presents some basic information to build a foundation for understand-
ing and putting into context, the results of this project. Sect. 2.1 presents some
background on different types of satellites and hardware that accompany them.
Sect. 2.2 goes through a few of the different datasets used for training a machine
learning model. Sect. 2.3 contains information about how machine learning is com-
monly used in the domain of image analysis by introducing a few models. Finally,
a few different algorithms for optimizing deep learning models are explained as well
in Sect. 2.4.

2.1 Satellites
Satellites have been used for many purposes, one of which is Earth observation.
There are different types of satellites such as open data satellites and commercial
satellites. Copernicus is an open-access earth observation program organized by
the European space agency that aims to monitor changes in the planet and its
environment [25]. The project provides information that can be used for a variety of
applications, such as regional and local planning, agriculture, and fisheries to name a
few [25]. The project provides six thematic streams of services, namely atmosphere,
marine, land, climate change, security, and emergency [25]. The goals of the project
are achieved through the Sentinel family of satellites which includes the Sentinel-
1 to Sentinel-6 satellites [26]. Sentinel-1 and Sentinel-2 provide radar and optical

7

2. Background

imagery respectively, for land and marine services, and are used in previous projects
aimed at monitoring coasts [10][26][27]. The Sentinel-1 constellation consists of two
satellites, which provide radar imagery with a resolution down to 5 m and coverage
up to 400 km as well as a six days revisit period [28]. Having radar imagery makes it
possible to generate images regardless of the weather and time of day [28]. Sentinel-
2, which also consists of two satellites, on the other hand, has an optical camera
providing optical images with a resolution down to 10 m and a swath width up
to 290 km[29]. There are also commercial satellites such as WorldView, which can
provide images down to 30 cm resolution [30].

2.2 Datasets

A dataset needs to be large and diverse to achieve good training on a machine learn-
ing model and to make the task of generalizing easier. One of these datasets, which
is widely used as a benchmark in image classification, is the ImageNet dataset [31].
The dataset has around 14 million images consisting of 21,841 subcategories [32].
Another dataset widely used by the community of machine learning developers is
the COCO dataset, which is a popular dataset used for object detection [33]. The
COCO dataset contains 330,000 images where over 200,000 of them are labeled [34].
Another dataset for object detection is the PASCAL VOC2017 originated from one
of the PASCAL visual object classes (VOC) challenges that aims to provide stan-
dard annotated datasets and evaluation procedures for CV and ML [35]. The dataset
consists of 9,963 annotated images collected from the flickr2 photo-sharing website.

Images can also come directly from satellites such as the Sentinel-family, which is
a part of the Copernicus program [25]. However, these images are considered raw
data and are not directly usable in the context of machine learning, as they require
some preprocessing steps. These images can be found in the Copernicus Open Ac-
cess Hub [36]. This hub was used in several projects aimed at monitoring coasts, by
combining satellite imagery with AIS data [10][27]. However, the datasets generated
in those projects are not open to the public.

Another source for datasets relating to data science and machine learning is Kaggle
[37], which contains many different datasets for different applications. However,
the dataset of interest to this project is the Kaggle Airbus ship detection challenge
[21]. This dataset contains around 200,000 satellite images prepared for usage in
the context of machine learning.

2.3 Machine learning in image processing

This section goes through different machine learning models used for image classifi-
cation (see Sect. 2.3.1) and object detection (see Sect. 2.3.2).

8

2. Background

2.3.1 Image classification
Image classification has been an important topic for many years. It is a complex
process that is affected by many factors. Many algorithms such as K-means, mini-
mum distance, and maximum likelihood have been used for image classification [38].
However, artificial neural networks have become increasingly popular in the last few
years because of the advances in computation power [24] and the networks’ ability
to approximate any function [39].

2.3.1.1 ShuffleNetV1

ShuffleNetV1 is a convolutional neural network (CNN) designed for mobile devices
[15]. It utilizes pointwise grouped convolutions to reduce the computation complex-
ity [15]. This is reflected by the low number of FLOP (approx. 140 MFLOP) the
network has [15]. One drawback of using grouped convolutions however is that the
output of a certain group only relates to the information of the inputs within that
group [15]. The information is not shared across groups, which can affect the way
the network learns, as the output feature maps lack inter-communication. Therefore,
channel shuffle is used in ShuffleNetV1 as a way to mitigate the effect of grouped
convolution, while conserving the advantages gained in computation complexity [15].

2.3.1.2 Other classifiers

There are lots of different networks that have been developed for image classification.
One of those networks is MobileNetV2, which is an artificial neural network designed
to run on mobile and embedded devices [7]. It uses depthwise separable convolutions,
linear bottlenecks, as well as inverted residuals to achieve the goal of being able to
run on mobile devices [7]. The idea is to reduce the computation complexity while
maintaining good accuracy. Another network is Xception [40], which also makes use
of depthwise separable convolutions. More detailed comparison of image classifiers
can be found in the appendix, Table. A.1.

2.3.2 Object detection
Another more complicated field of computer vision is to detect and classify an ob-
ject within an image. This process is however cumbersome since it consists of two
tasks and it often comes down to a trade-off between speed and precision [3][6][17].
Therefore, two types of object detectors have been developed to be suitable for dif-
ferent tasks, mainly the two stage detector (TSD) and the one stage detector (OSD)
[6]. For example, a fast detector is required if the prediction is used in a live video
feed or in recommendation systems that detect certain events, while an accurate
detector could be used in systems with non-frequent input where the accuracy is
more important than speed.

TSD consists of two processes, one for detecting the location of an object and one
for classifying the object [6][17]. The processes are trained separately which is an
easier fitting task than training them simultaneously. However, the TSD contains

9

2. Background

two models in a pipeline where the models need to have a high amount of param-
eters and sub-processes in order to achieve high accuracy. They are therefore less
effective in time and computing power. In constrast, OSD was developed to create a
fast model that would be able to detect and classify instantaneously, for example in
a video feed. The trick is to have a single network for predicting both the localiza-
tion and the classification of an object and transform the problem into a regression
problem. It was first introduced in a network called YOLO (You only look once) in
2016 [17][41] and has triggered a massive exploration of fast object detectors. Both
new versions of YOLO and other models have been developed since [3][6][18]. The
increase of complexity in the multitask of localization and classification however
results in less acurate predictions. Since this project targets a restricted computer
where the model predicts vessels from satellite images directly from the camera, the
OSD will be further investigated.

The history of YOLO and a literature review of different object detectors can be
found in Sect. A.1 and Sect. A.2 respectively. Furthermore, a comparison of different
object detectors can be found in Sect. A.3.

2.3.2.1 YOLOv5

YOLO “only looks once” at the image as it simultaneously classifies and detects
objects within that image. The network consists of a backbone (feature extraction),
neck (feature aggregation), and a head (prediction and regression). The reason why
this network received massive attention within the community was due to the possi-
bility of fast detection of objects within the frame rate of a video [17]. In addition,
by using the image directly, an encoding of the global features could be obtained.
This yields a strong generalization in the feature extractions and also reduces the
error of detecting the background [42]. Several versions of YOLO have been devel-
oped since, which have increased the efficiency, accuracy, and applicability of the
model. YOLO could even be implemented in small and mobile embedded systems
despite being a deep neural network.

YOLOv5 uses a so-called “bag of freebies” that consisted of methods to decrease
the training costs and a “bag of specials” that significantly improves the accuracy
with a small increase in inference cost [6][20]. The backbone consists of cross-stage
partial (CSP) blocks, which maintain fine-grained features by repeatedly sending
half of the feature map through a dense layer where the output is then concatenated
with the untouched half. This allows for a better gradient flow through the dense
layers, saves the gradient changes in the feature map, and reduces the number of
parameters. The neck then consists of a spatial pyramid pooling block (SPP) and a
path aggregation network (PAN). SPP provides a fixed output size with a dynamic
input size and it increases the receptive field using different sizes of pooling which
are proportional to the input size, creating a spatial pyramid. PAN is used to pre-
serve the spatial knowledge throughout the network by concatenating earlier feature
maps with later feature maps. The head consists of convolutional layers that output
the prediction values. YOLOv5 tackles the high variety of object sizes by extracting

10

2. Background

feature maps from three different parts of the PAN, which facilitates the detection
of objects with different sizes. A simplified overview of the specific network archi-
tecture used in this project is later shown in Fig. 3.2.

YOLOv5 is not implemented using the framework Darknet as the previous YOLO-
versions. Instead, it is using the user-friendly framework PyTorch that is widely used
in the machine learning community [43]. YOLOv5 is also constantly developing with
new versions, and the framework gives a wide range of settings and possibilities to
modify the network structure for customization. YOLOv5 also uses auto-learning
bounding box anchors for easier choice of anchors.

2.4 Optimization
This section covers two methods for optimizing neural networks, knowledge distil-
lation, and quantization. There is however a large collection of other methods that
could be used for optimization of neural networks such as network pruning that will
not be covered in this paper.

2.4.1 Knowledge distillation
A simple method to improve the performance of a model is to average the output
of an ensemble of different models trained on the same data [44]. This is however
computationally expensive since all models must be used for a single prediction. It
is however possible to avoid this by distilling the knowledge of the trained ensemble
of models into a single model, which is called knowledge distillation (KD).

Another difficulty in optimizing networks is knowing how to change the model struc-
ture without losing the trained knowledge. With KD however, the knowledge could
be distilled into a smaller network by teaching the smaller network to match the fea-
tures of the teacher network instead of trying to slim down the original network [44].

KD not only reduces the complexity of the model but also helps the model in gener-
alizing [45][44]. The generalization ability of networks is often desired, but difficult
to obtain since the model would predict cases it has not previously seen. A trained
KD model could therefore achieve better generalization due to the fitting of knowl-
edge into a less complex network.

KD defines a loss function from the difference between the outputs of the teacher
model and the student model when running inference on the same data. The last
layer of the classification CNN-models produces probabilities of all possible classes
using a softmax layer to point out the most probable classes, depending on the
differences between the output elements. The wrong classes in a confident classifier,
therefore, obtains very small values (close to 0) and would almost not be counted
into the KD loss at all. Hence KD uses a temperature T in the softmax function
that reduces the differences and creates soft labels as shown in (2.1).

11

2. Background

qi = exp(zi/T)∑
j exp(zj/T) (2.1)

where qi is the probability given to class i obtained from comparing the logit (non-
normalized value) zi with all other logits and T is the temperature modifying the
softmax. The total loss is then calculated using following (2.2).

LKD = 1
m

m∑
p=1

(sp − tp)2 (2.2)

where m is the number of elements in the predictions p, obtained from s (the stu-
dent) and t (the teacher).

There are several ways to set up KD. One effective way is to use a labeled training
set to train the student network where the prediction loss of the student network
is combined with the KD loss, as seen in (2.3). This helps the student in the right
direction and forces the student to match the soft targets of the bigger network [44].

L = Lpred + λLKD (2.3)

where λ is the factor determining the grade of affect KD will have on the loss. This
helps the smaller network in the right direction since it cannot completely match
the bigger network.

Traditional KD with soft labels works great on simpler tasks such as image classi-
fication but is less effective on complex tasks such as object detection. Especially
reliable localization knowledge is hard to distill [45]. The reason for this is that the
classifier works on a global context in the image while detectors target local areas.
Hence distilling the knowledge will result in noise given by the background. There
is however another method for KD that focuses on the localization task that uses
fine-grained feature imitation on local near object regions to calculate the loss, as
shown in (2.4).

lij =
C∑

c=1
(fadap(s)ijc − tijc)2 (2.4)

where i and j are the coordinates for each object anchor and c the class. s is the
student feature map and t is the teacher’s feature map. fadap is a layer to adapt the
student’s layers to be compatible with the teachers. Using an imitation mask I, the
estimated near anchor locations are included shown in (2.5).

Lim = 1
2Np

W∑
i=1

H∑
j=1

C∑
c=1

Iij(fadap(s)ijc − tijc)2 (2.5)

where Np = ∑W
i=1

∑H
j=1 Iij (number of positive points in the mask),W the width and

H the height. Lim is then added to the training loss Ldet with a balancing factor λ,
as shown in (2.6).

L = Ldet + λLim (2.6)

12

2. Background

This method improved the discrimination ability of the resulting network and pro-
vided a more reliable localization [45]. The errors of detecting the background as
an object and duplicating or grouping the objects were decreased.

2.4.2 Quantization
Quantization reduces computation and model size by reducing the precision of the
weight datatype from a higher number of bits to a lower number of bits [45][46][47][48][49].
It is an efficient method for optimization with some loss of accuracy in network cal-
culations. Although, this requires that the device supports the low-bit operations.

13

2. Background

14

3
Methods

This chapter presents the different methods, datasets, and frameworks used in this
project. Sect. 3.1 presents the dataset used. Sect 3.2 goes through the models and
reasoning behind the choice of them. Sect. 3.3 presents the training setup, such as
hardware, dataset split, etc. Sect. 3.4 goes through the method for evaluating the
results obtained, while Sect. 3.5 presents different optimization methods that are
used in this project.

3.1 Dataset

A dataset consisting of 192,555 satellite images with the size of 768×768 pixels was
chosen from the Kaggle Airbus challenge. Kaggle Airbus was chosen because of the
already prepared and labeled images for training, meaning that no preprocessing is
required for them to be utilized. Moreover, the dataset includes many images from
different environments (water, clouds, land, etc.), which can help mitigate any bias
that can arise in the dataset. Using unprocessed satellite images, such as Sentinel
1 and 2, would have required a massive amount of preprocessing. This would have
taken unnecessary time since it would not have added any value from a research
point of view, as the focus of this project is not the dataset. A sample of the images
available in the dataset can be found in Fig. 3.1.

Figure 3.1: A sample of the images available in the Kaggle Airbus Challenge
dataset.

15

3. Methods

3.2 Model choice
A classification model was chosen as a first step for classifying the images. It is also
a good reference point that can be used for benchmarking the performance of other
model types.

An object detector was also chosen above other methods due to the high interest in
object detectors in the field of computer vision. An object detector is also suitable
due to the recent improvements in speed as well as accuracy in the OSDs. More-
over, testing the feasibility of these more complex networks in a satellite would be
interesting. Furthermore, an object detector is suitable because the target case is to
detect maritime vessels. An object detector gives more rich information about the
vessels such as the precise location and size of the vessel.

3.2.1 Classifiers
ShuffleNetV1 was chosen as a binary classifier based on its low number of FLOPs.
It was implemented as described in the paper for ShuffleNetV1 [15]. Specifically
ShuffleNetV1 1x, with three groups, was chosen. Moreover, the framework used for
building the model was Tensorflow’s Keras module. The model is relatively small
as it only has 994,514 parameters.

A simple CNN model was also used for distilling knowledge from ShuffleNetV1, and
for usage in the satellite computer. The model is small (240,722 parameters), and a
description for the simple CNN model can be found in A.4.

3.2.2 Object detection: YOLOv5
YOLOv5 was chosen because of the simplicity of implementation and great per-
formance, as explained in Sect. 2.3.2.1. The model is widely used due to the im-
plementation in the framework Pytorch, which has a larger community compared
to the frameworks of YOLOv4 (Darknet) and PP-YOLO versions (PaddlePaddle).
YOLOv5 is also 90 % smaller in file size compared to YOLOv4 according to the
literature study in Appendix A.3.2. Comparing the latest models for the smallest
networks in each YOLO version, YOLOv4Tiny and YOLOv5n, (presented in Ta-
ble 3.1) does also confirm that YOLOv5 is much smaller.

For stable training results, the released version 6.1 of the official GitHub repo for
YOLOv5 was used [50]. A visualization of the specific version of model architecture
that was used is shown in Fig. 3.2 which was the latest architecture for YOLOv5.
The exact layer settings are saved in the YAML files in the project GitHub reposi-
tory for YOLOv5 [51].

The loss function used is also the default one of YOLOv5. It includes the classifica-
tion loss (class probabilities), the objectness loss (confidence of the detection), and
the regression loss (IOU of the bounding box), also seen in (3.1).

16

3. Methods

L = Lcls + Lobj + Lbox (3.1)

YOLOv4Tiny YOLOv5n
23.67 MB 4 MB

Table 3.1: The smallest models of YOLOv4 and YOLOv5 compared by their file-
size, where YOLOv5n is approximately 83 % smaller.

YOLOv5 model Large Medium Small Nano
Number of parameters (M) 46.1 20.9 7.0 1.8

Table 3.2: The different YOLOv5 models tested in this project and their numbers
of parameters.

Figure 3.2: A simplified overview of the network architecture for all the YOLOv5
models used in this project. Conv indicates convolutions and Concat is where the
layers are concatenated. C3 is a particular CSP block shown in the blue box to the
right, where the bottleneck reduces the dimensions. It is also uses the SPPF which
is a faster SPP.

17

3. Methods

3.3 Training setup
The training of the networks was done using the Kaggle Airbus dataset mentioned
in Sect. 3.1. For classification models, the dataset was randomly split into 60 %
training, 20 % validation, and 20 % test. For YOLOv5, the dataset was divided into
partitions 70 %, 15 %, and 15 %.

ShuffleNet was trained for two epochs due to the network overfitting easily, as the
number of training images is large. Moreover, since validation is done at the end of
an epoch, the model was trained for exactly two epochs. The code is found in the
GitHub repository for this project [51].

The released version 6.1 of the official Github repository for YOLOv5 was used to
train the YOLOv5 models. Multiple model sizes (see Table 3.2), pre-trained and
without pre-trained weights were tested. The pre-trained weights were acquired from
the original GitHub repository of YOLOv5, and are trained on the COCO dataset
[50]. All model structure settings (saved in YAML files) and the pre-trained weights
are furthermore saved in the GitHub repository containing the training setup for
YOLOv5 [51].

Since the process of training the models is separate from doing inference, the train-
ing was done on a much more powerful computer. The training was performed
using AI Sweden’s cluster server which is accessed through an interface called AiQu.
Docker images were used for training, where they were built locally and pushed to
DockerHub to be accessible by the AiQu server. The specifications for the AiQu
server can be found in Table 3.3a.

Kernel Linux
Machine AMD64
CPU cores 256

GPU NVIDIA A100-SXM4-40GB
Memory 40 GB/GPU, 1008 GB RAM

(a) Specifications of AiQu. Note that
all resources are shared between mul-
tiple projects at AI Sweden.

Kernel Linux
Machine AMD64
CPU cores 4

GPU AMD R3E
Memory 2 GB (GPU/CPU)

(b) Specifications of Unibap’s satellite
computer iX5.

Table 3.3: Hardware used for training and evaluating the models.

3.4 Evaluation
This section provides an overview of the evaluation process. Firstly, it goes through
the method for measuring the accuracy of the models in Sect. 3.4.1. Secondly,
Sect. 3.4.2 goes through the different methods used when testing inference on the
target hardware.

18

3. Methods

3.4.1 Measuring accuracy

AiQu was used to evaluate the accuracy since the process is computer-heavy due
to the number of images used for prediction testing (38,511 images for classification
and 28,883 images for object detection). Testing on another computer than the
target computer is possible since the prediction results are not computer specific,
they originate from math operations within matrices.

3.4.2 Measuring resource usage

For realistic and relevant results in the aspect of speed and memory usage, a satel-
lite computer was used. Specifically, a satellite computer called iX5 was utilized
for testing. The specifications can be found in Table 3.3b. The computer used was
located in Uppsala at Unibap’s office for stable testing and to follow the limitation
of this project to not take into account the environmental effects in space. Measure-
ments in space do also require more preparation and therefore restrict the number
of testings. VPN and SSH were used to establish a connection from a distance. The
testing required conversion of the model weights to one of the supported frameworks,
Tensorflow Lite (TFLite), which is optimized for embedded devices such as the ix5
[9]. Specifically, the C++ version of TFLite was used for testing with CMake as the
building tool. To validate if the conversion to TFLite was successful, a comparison
of several predictions by the TFLite interpreter and the Pytorch model was done on
the same input images. A link to the repository containing the complete code for
the TFLite testing can be found in the project GitHub [51].

3.4.2.1 Input image

No dataset was used for the testing of resource usage in the satellite since no training
is performed during an inference. Furthermore, the prediction is not important
during the measurements of time and memory usage. Therefore, a dummy image
was created for testing, with the same size as a large satellite image. Sentinel-2 user
handbook states that a sentinel-2 camera samples 13 spectral bands: four bands at
10 m, six bands at 20 m, and three bands at 60 m spatial resolution with an orbital
swath width of 290 km [52]. These resolutions mean that for a 10 m resolution and
290 km×290 km image, the number of pixels in such an image is 29,000×29,000
pixels, for 20 m it is 14,500×14,500 pixels, and for 60 m it is 4,834×4,834 pixels.
Given that each pixel is in float32 format, which takes up four bytes, such an
image would have a size of roughly 3.2 GB for the finest resolution. This is the
worst-case scenario for one of the best cameras available on satellites, therefore it
is not feasible to test using these numbers. The resolution and size of the image
chosen for testing in this project is, therefore, a made-up case of 10,000×10,000
pixels, which is a more reasonable worst-case scenario regarding smaller satellites.
The precision of the image was also chosen to be int8 to match the datatype of the
satellite images in the Kaggle Airbus Challenge dataset.

19

3. Methods

3.4.2.2 Inference time

The inference time of the TFLite models were measured using an automated script
in bash and executable programs in C++ targeting the GPU and the CPU. The
time was measured using time functions in the C++ code:
time1 = std : : chrono : : h igh_reso lut ion_c lock : : now()
\\ Code to measure
time2 = std : : chrono : : h igh_reso lut ion_c lock : : now()

The resulting time taken was then calculated using the difference between two mea-
sured times. Several tests on each model were performed for stability in the testing.
The timing tests were also measured assuming that the initialization of the GPU
delegate is already done for fair testing results between the GPU and CPU. The
initializing of the GPU increases the time significantly and can be reduced or elim-
inated, which is later described in Sect. 5.8.

3.4.2.3 Memory

Memory usage was measured with an automated bash script. External measuring
tools for Linux systems called top and radeontop were used to track the memory
usage of the built programs. These tools were used to capture the memory usage
of all the surrounding functions as well as the overhead. Top measures the RAM
(CPU), VIRT, RES, and SHR of a certain process, and radeontop measures the
VRAM usage. The swap memory (memory the process borrows from the hard disk
when running out of RAM) was also turned off during the tests, to get more accurate
results.

3.5 Optimization methods
To optimize the speed and the memory usage of the models, a thorough investigation
of the methods used for setting up the pipeline of the process was done. Knowledge
distillation was also used, which is another indirect optimization of resource usage
that targets a better accuracy using a smaller network. Other common methods
such as network pruning were not investigated. Quantization is however explored
since it is easily applied after the model is trained.

3.5.1 Optimizing resource usage
By evaluating several methods of structuring the code and using different methods
in the frameworks, a mapping of the efficiency of each method could be obtained.

3.5.1.1 Memory management and conversion of datatypes

The image consisted of eight-bit integers, and the model required 32-bit floats as
input. Therefore conversion of input datatypes was required. Initially, the image
was converted to float32 directly after loading. Then, a more efficient method of
only converting the tile (a smaller part of the image) that is sent to the input tensor

20

3. Methods

was tested.

TFLite requires several steps for the values to actually reach the input tensor. The
values have to first be copied over to an input tensor that is accessible by the
program. Thereafter, when running the invoke-command where the prediction is
obtained, it copies all values to the actual input tensor located in the delegate. In
the beginning, the C++ function called memcpy was used for copying the value to
the input tensor accessible by the program. Then, due to troubles related to the
program crashing due to segmentation fault, another method was tested of simply
copying every element value one by one to the accessible input tensor.

The above explained methods of building the code resulted in three different meth-
ods, Method A, Method B and Method C (see Table 3.4).

Method Explanation
A Convert the complete image to float32 directly after loading and

use memcpy to copy values into the accessible input tensor.
B Convert only the tile to float32 and use memcpy to copy values

into the accessible input tensor.
C Convert only the tile to float32 and copy the values by indexing

pixel by pixel to the accessible input tensor.

Table 3.4: The tested coding structuring methods for running inference on the
target hardware using the proposed 10,000×10,000 pixels RGB image.

3.5.1.2 Inference options

Different inference options on the model were also tested. Different input sizes were
tested with sizes divisible by 32 since YOLOv5 has this restriction for the input.
Furthermore, different numbers of threads were tested on the CPU, since threads
were not supported by the GPU. Note also that multithreading is only utilized
during the invoking of the model. Lastly, different batch sizes were also tested.

3.5.2 Knowledge distillation
KD was used to increase the accuracy for smaller models, which is an indirect
optimization of resource usage. The teacher model for the classifier was ShuffleNet
where the knowledge was distilled to a smaller CNN model explained in Sect. 3.5.2.1.
Sect. 3.5.2.2 explains the setup of using bigger YOLOv5 models as teachers for a
YOLOv5n (nano) model.

3.5.2.1 Knowledge distillation for classification

ShuffleNetV1 was used to train a smaller CNN model. The model description can be
found in Appendix A.2. The simpler model was not optimized for the best possible
accuracy, it was rather taken as a reference for comparison before and after applying

21

3. Methods

KD. The soft outputs of the teacher model were used in the distillation loss as seen
in (2.3). The model was trained in the same way as ShuffleNetV1, for two epochs
and with the same dataset, in order to facilitate a direct comparison.

3.5.2.2 Knowledge distillation for object detection

KD was used for object detection by distilling larger models into a YOLOv5 nano
model. Both methods of KD-loss were tested, the loss function for soft labels (2.2)
and the loss function for the feature imitation (2.5).

The feature maps used for the feature imitation were obtained right after the con-
catenations occurs when merging earlier feature maps to later feature maps in the
PAN structure (4 extra connections between the vertical paths in Fig. 3.2).

Moreover, it was not possible to use the soft labels in YOLOv5, since the Softmax-
function is not present in YOLOv5. Therefore, only the direct outputs of the network
(logits) were used instead with the same loss function (2.2). The KD-losses were
then combined with the loss from the ground truth (2.3)(2.6).

The COCO dataset (see Sect. 2.2) was also used when testing KD in order to get
a better understanding of the effects that the KD algorithm has on YOLOv5 when
having one class (this case) compared to having multiple classes.

22

4
Results

This chapter presents the results obtained from different tests. Sect. 4.1 presents
the results of training YOLOv5 and the classifiers, in regards to accuracy and other
ML-related metrics. Thereafter, in Sect. 4.2, the results of running the models in
a satellite computer are presented, relating to the usage of computational power
and memory as well as inference time for different models. Finally, in Sect. 4.3, the
results of applying knowledge distillation to the models mentioned in Sect. 3.5.2 are
presented.

4.1 ML metrics
In this section, the results obtained from training the ML models are presented. In
Sect. 4.1.2, the results of training different YOLOv5 models, in regards to precision,
recall, and mean average precision (both mAP.5 and mAP0.5:0.95), are presented.
Sect. 4.1.1, presents the results of training the classifiers, both ShuffleNetV1 and the
simple CNN model, in regards to accuracy.

4.1.1 Ml metrics of the classifiers
This section presents the results obtained from the training of ShuffleNetV1 and the
simple CNN model on the Kaggle dataset mentioned in Sect. 3.1. The results are in
regards to the accuracy obtained from three datasets, i.e. training, validation, and
testing. One result for ShuffleNetV1 can be seen in Table 4.1 and for the simple
model in Table 4.2.

Set Training Validation Testing
Accuracy 0.9338 0.8583 0.8586

Table 4.1: ShuffleNetV1 results in regards to accuracy after 2 epochs. The results
show the accuracy on the three different datasets, i.e. training, validation and
testing.

4.1.2 ML metrics of YOLOv5
The results of the training of different YOLOv5 models regarding several machine
learning metrics are shown in Table 4.3. The difference in size between the different
YOLOv5 networks is high compared to the difference between all ML metrics. The

23

4. Results

Set Training Validation Testing
Accuracy 0.7460 0.7471 0.7468

Table 4.2: Simple CNN model results in regards to accuracy after 2 epochs. The
results show the accuracy of the three different datasets, i.e. training, validation,
and testing.

focus of this project is the optimization and efficient utilization of resources, there-
fore, YOLOv5n was used to further generate the results in Sect. 4.2 and Sect 4.3.

Model P R mAP@.5 mAP@.5:.95 parameters (M)
yolov5n pt 0.789 0.701 0.761 0.490 1.77
yolov5n 0.783 0.666 0.731 0.467 1.77

yolov5s pt 0.836 0.731 0.810 0.543 7.02
yolov5m pt 0.849 0.787 0.859 0.602 20.89
yolov5l pt 0.869 0.814 0.879 0.638 46.13

Table 4.3: Models with different sizes tested on a test set consisting of 28,884
images and 12,416 boat labels. All models are trained for exactly 80 epochs to
facilitate a direct comparison. “pt” indicates a pre-trained model using the COCO
dataset, obtained from the YOLOv5 repository.

The results YOLOv5n and YOLOv5s when built in two different frameworks, and
their effect on all the metrics, are shown in Table 4.4. The results show that the
conversion does affect the metrics but not notably.

Model Framework P R mAP@.5 mAP@.5:.95
yolov5n pytorch 0.789 0.701 0.761 0.490
yolov5n tflite 0.798 0.689 0.750 0.482
yolov5s pytorch 0.836 0.731 0.810 0.543
yolov5s tflite 0.823 0.737 0.798 0.532

Table 4.4: The comparison of two models before and after the conversion to TFlite.
The two models are evaluated on a test set consisting of 28,884 images and 12,416
boat labels. Both models are trained for 80 epochs and have pre-trained weights
obtained from the YOLOv5 repository.

24

4. Results

4.2 Resource usage
This section presents the results obtained from running the different models on
the target hardware. Sect. 4.2.1 goes through the results obtained from running
YOLOv5n, while Sect 4.2.2 goes through these results obtained from the classifiers.
The results are presented in regards to inference time and memory usage.

4.2.1 Resource usage using YOLOv5n
This section presents the results obtained from running YOLOv5n models on the
target hardware in regards to inference time and memory usage.

4.2.1.1 Memory management and conversion of datatypes

The memory management methods and conversions of datatypes were analyzed ac-
cording to the three methods described in Table 3.4. Table 4.5 shows the measured
memory and inference time.

Method time (min) CPU memory (GB)
1 5.3 1.30
2 5.3 0.47
3 5.6 0.45

Table 4.5: Comparison of different methods of memory and data management
described in Tab 3.4 with input size 1,440×1,440.

Method A, converting the image from int8 to float32 directly after loading it,
killed the process since it run out of RAM. However, turning on swap memory made
it possible to obtain a measurement. As seen in Table 4.5, a reduction of approxi-
mately 0.8 GB was obtained by simply using Method B instead, where only the tiles
were converted to float32. Time was not affected when using Method B compared
to Method A.

Using memcpy function in C++, to copy over values to the input tensor (Method B)
instead of copying each pixel separately (Method C) reduced the time by approx-
imately 16 seconds on average. The memory usage for memcpy (Method B) was
almost the same as for Method C.

Testing the memory usage using the different methods was only done using the CPU
since no model inference was done during this step. All other tests were measured
using Method B due to the above results, except for the batch sizes that were
measured using Method C, which is further explained in Sect. 5.3.1.2.

4.2.1.2 Breakdown of inference process

Table 4.6 compares the time used for pre-processing and inference over different in-
put sizes. The pre-processing step, including loading and tiling up the image, always

25

4. Results

takes the same amount of time and is negligible compared to the actual inference
time. Looking further into the details of the inference time in Table 4.7, it is evident
that the times measured for loading the input tensor and fetching the output are
also negligible compared to the detection step.

Fig. 4.1 shows the measurements of memory usage during a run using GPU and CPU,
both with the image loaded and without. The CPU starts the inference instantly
since almost no time is used for the pre-processing steps (also seen in Table 4.6).
Therefore it has almost constant use of memory throughout the run. When running
on the GPU on the other hand, it first creates the GPU delegate (around 90% of
the run in Fig. 4.1). After the initialization, the inference begins and lasts a much
shorter time than the CPU (shown in Table 4.6). The same figure does also show
a difference of approximately 300 MB in virtual memory and resident size between
loading the input image and not loading the input image for both the GPU and the
CPU. Lastly, there are no differences in the used VRAM for loading an image and
not loading an image, as seen in Fig. 4.2.

Input
size
(pixels)

Pre-
processing
(min)

Inference
(min)

192 0.031 5.52
288 0.031 5.31
480 0.031 5.32
768 0.031 6.12
1440 0.031 5.35
2080 0.031 5.73

(a) CPU

Input
size
(pixels)

Pre-
processing
(min)

Inference
(min)

192 0.031 6.71
288 0.031 4.79
480 0.031 2.47
768 0.031 2.66
1440 0.031 2.13
2080 0.031 2.43

(b) GPU

Table 4.6: Comparing the pre-processing time and inference time for YOLOv5n,
using different input sizes, GPU or CPU, and float16 as the weight precision.

Input size
(pixels)

Load input
to tensor (s)

Detect
(s)

Fetching
output (s)

Detect
once (s)

192 1.147 401.6 0.015 0.143
288 1.269 285.9 0.007 0.234
480 1.211 147.3 0.005 0.334
768 1.342 158.5 0.002 0.809
1440 1.139 126.6 0.001 2.584
2080 3.078 142.8 0.001 5.712

Table 4.7: YOLOv5n for different input-sizes with detailed timing using GPU with
the precision of weights in float16. All columns are measured for the complete
image except for the last column which measures the processing time for one tile.

26

4. Results

Figure 4.1: Memory used during inference for input size 1,440×1,440 pixels to
the network, using GPU and CPU, with and without loading the input image. The
changes in the horizontal axis must be taken with a grain of salt since 100% of a
run corresponds to the entire measurement time and the number of tiles processed
is not the same during the run with image and the run without image.

4.2.1.3 Different input sizes

The results of using different input sizes are shown in Fig. 4.3. The inference time
when using the GPU decreases as the network’s input size increases, while when us-
ing the CPU the time is almost constant. Fig. 4.3 also brings forward a connection
between input sizes and the amount of overlap in the last tile when pre-processing
the image (further explained in discussion, Sect. 5.3.2.2). This overlap is especially
reflected in the inference time when using the CPU. The least time-consuming mod-
els are 1152, 1440, 1536, and 3360 using the GPU. The max size for the tiles was
furthermore measured at 3712×3712 and failed at 3776×3776.

Fig. 4.4 shows the relation between input size and memory usage. The slope for the
memory used (VIRT and RES) when running on the CPU is larger than the slope
when using the GPU. A trade-off between the time taken and the VRAM used by
the GPU is then shown in Fig. 4.5 and Table 4.8. It is visible that there exists a
lower bound of approximately 2.1 - 2.5 min starting with an input size of 480×480.

27

4. Results

Figure 4.2: VRAM used by the GPU during inference for input size 1,440×1,440
pixels to the network, with and without loading the input image. The changes along
the horizontal axis must be taken with a grain of salt since 100% of a run corresponds
to the entire measurement time and the number of tiles processed is not the same
during the run with image and the run without image.

Figure 4.3: Time it takes for the program to load an image, tile it, and process
all tiles for YOLOv5n models with different input sizes using GPU and CPU. The
yellow dashed line shows the overlap needed in percent for the last tiles to the right
and bottom.

28

4. Results

Figure 4.4: Memory used during inference for different input sizes using GPU and
CPU. The green graph is showing the differences between the CPU and GPU

Figure 4.5: A trade-off between VRAM
used by the GPU and inference time for
the following network input sizes shown
in Table 4.8.

Input
size

Time
(min)

VRAM
(MB)

192 6.689 54.06
384 3.532 59.70
480 2.483 65.50
768 2.663 81.10
1152 2.368 120.82
1440 2.137 158.46
1536 2.254 170.10
3072 3.173 222.32
3360 2.287 235.50

Table 4.8: Values used in
Fig. 4.5

Input size Inference
float32
(min)

Inference
float16
(min)

Inference
int8 (min)

192 6.5 6.5 7.0
384 3.3 3.3 3.5
768 2.3 2.3 2.5
1152 2.2 2.2 2.4
1536 2.0 2.0 2.1

Table 4.9: Inference time for different precision of the weights using GPU for
YOLOv5n.

29

4. Results

4.2.1.4 Quantization

Using quantization does not decrease the inference time, but does decrease the size
of the weight file drastically. Table 4.9 shows the differences in time when using
weights in float16, float32, and int8. There is no difference in time for float16
and float32, but int8 does slightly increase in time. Furthermore, in Table 4.10
it is shown that saving the precision of the network in float16 instead of float32
and int8 instead of float16 reduces the file size by approximately half the size.
The size of the input tensor for the model does however not affect the size of the
weight file significantly.

Framework Model Input size Precision File size (MB)
tflite yolov5s 768 fp32 26.91

768 fp16 13.52
tflite yolov5n 1152 fp32 6.99

768 fp32 6.88
32 fp32 6.78
1152 fp16 3.56
768 fp16 3.50
32 fp16 3.45
1152 int8 1.98
768 int8 1.95
32 int8 1.93

Table 4.10: Storage space taken by the model weights for different input sizes and
precision of model weights.

4.2.1.5 Multithreading

Fig. 4.6 shows that four or five threads are the optimal number for all input sizes
using the CPU. The best obtained time given in Table 4.11 shows that an input size
of 3,360×3,360 pixels with nine threads is the best. However, all the measured times
in the table are similar and around 2.2 min. These times show a similar pattern to
the results of the input sizes (Sect. 4.2.1.3), which seem to indicate the existence of a
lower bound, slightly above 2 min for the inference time. The time stops decreasing
already around four threads.

Fig. 4.7 shows the memory measurements of using different numbers of threads.
There are no differences in resident size (RAM), but the virtual memory increases.
The more threads that are used, the higher percentage of the CPU processing power
is used. The CPU power does however stop increasing after four threads. No
measures were done for the GPU since multithreading is not supported by the GPU.

30

4. Results

Figure 4.6: Inference time using CPU
with different input sizes and multithread-
ing. The dashed purple line shows the best
time previously archived using an input
size of 1,440×1,440 and batch size one at
2.14 minutes. The best values are shown
in Table 4.11.

Input size Threads Time
3360 9 2.187
3360 6 2.188
3360 7 2.190
3360 8 2.190
3360 10 2.190
3360 5 2.197
1440 8 2.198
1440 7 2.204
1440 10 2.213
1440 4 2.219
1440 6 2.221

Table 4.11: Best values in
time from Fig. 4.6

Figure 4.7: Memory and CPU usage for one to five threads. The horizontal axis
represents the fraction of the time a process was running.

31

4. Results

4.2.1.6 Batch size

Increasing the batch size was not possible with Method B where the C++ function
memcpy was used to copy the values into the input tensor. Therefore, Method C was
used where the pixel values were copied over one by one. Larger batch sizes than
one were not tested for the CPU since computations on the CPU with larger inputs
did not improve the time, as seen in Sect. 4.2.1.3.

A problem with larger batch sizes was that the input sizes were only able to be
tested up to 768×768 since 928×928 failed. Different batch sizes were therefore
tested with smaller input sizes and the results are shown in Fig. 4.8. The results
show that increasing the batch size does decrease the inference time, but that the
slope fades towards both larger batch sizes and larger input sizes.

The VRAM used by the process with increasing batch size is shown in Fig. 4.9. The
increase appears to be linear and higher with larger input sizes.

Figure 4.8: Time for different input
sizes using different batch sizes and the
GPU. The dashed purple line shows the
best time previously archived using an
input size of 1,440×1,440 and batch size
one at 2.14 min.

Figure 4.9: VRAM used during in-
ference for different input sizes as the
batch size increases.

4.2.2 Resource usage using the classifiers

This section presents the resource usage results for the classifiers. The results for
ShuffleNet are presented in Sect. 4.2.2.1, but since it was not successful to run on the
satellite computer, the simple CNN model is used for measurements instead. The
detailed measurements of the simple CNN model are therefore shown in Sect. 4.2.2.2
and a comparison of YOLOv5n and the simple CNNmodel is presented in Sect. 4.2.3.

32

4. Results

4.2.2.1 Resource usage using ShuffleNet

ShuffleNetV1 uses grouped convolutions which was not, at the time of writing this
report, supported by TFLite. Converting the model to TFLite format was possible,
but running an invoke using that model was not supported. Therefore, only the
simple CNN model was used for running inference on the target hardware.

4.2.2.2 Resource usage using the simple CNN model

Results of the inference time for the pre-processing and inference steps, using dif-
ferent input sizes, are presented in Table 4.12. Furthermore, a breakdown of the
inference time is shown in Table 4.13. All surrounding steps take much less time
compared to the detection step, which shows a similar pattern to the breakdown for
the YOLOv5n (Sect. 4.2.1.2). The model is however smaller and so is the time it
takes for the detection step. Therefore, in this case, the loading of the input tensor
step does make a difference. However, the time for loading the input tensor is almost
constant.

Furthermore, multithreading did decrease the inference time for the CPU but did
not improve beyond the best measured time for the GPU, which is seen in Table 4.10.
Fig. 4.11 shows that using a larger batch size than one does not decrease the inference
time at all.

Input
size
(pixels)

Pre-
processing
(min)

Inference
(min)

192 0.031 1.07
288 0.031 1.02
480 0.031 1.02
768 0.031 1.16
1440 0.031 1.02

(a) CPU

Input
size
(pixels)

Pre-
processing
(min)

Inference
(min)

192 0.039 0.39
288 0.034 0.28
480 0.034 0.28
768 0.034 0.30
1440 0.034 0.27

(b) GPU

Table 4.12: Comparing the pre-processing time and inference time for the simple
CNN model, using different input sizes, GPU or CPU, and float16 as the weight
precision.

33

4. Results

Input size
(pixels)

Load input
to tensor (s)

Detect
(s)

Fetching
output
(s)

Detect
once (s)

192 0.9 21.9 0.005 0.01
288 1.1 15.5 0.002 0.04
480 1.2 15.5 0.002 0.04
768 1.2 16.7 0.001 0.09
1440 1.1 15.1 0.000 0.31

Table 4.13: The simple CNN model for different input sizes with detailed timing
using GPU with the precision of weights in float16. All columns are measured for
the complete image except for the last column which measures the processing time
for one tile.

Figure 4.10: Comparing the infer-
ence time for different input sizes to
the model with a different number of
threads using the simple CNN model.
The light green dashed line is the lowest
inference time measured with the GPU
(1,440×1,440 as input size at 0.27 min).

Figure 4.11: Comparing the infer-
ence time for different input sizes to the
model with different batch sizes using
the simple CNN model. The light green
dashed line is the lowest inference time
measured with the GPU (1,440×1,440
as input size at 0.27 min).

34

4. Results

4.2.3 Simple model vs. YOLOv5n
An inference using the classifier for an image of 10,000×10,000 pixels resulted in
about 16 s to 26 s for all tile sizes compared to 128 s when using the YOLOv5n
model with 1440×1440 as input size on the GPU, which was the fastest YOLOv5
model. On the CPU, it took 1 min to 1.2 min for the classifier versus 5.3 min to
6.0 min for YOLOv5n. There was however not much of a difference in memory
usage, as shown in Fig. 4.12 and Fig. 4.13.

Figure 4.12: Comparing memory consumption for different input sizes for
YOLOv5n and the simple CNN model.

Figure 4.13: Comparing VRAM for different input sizes for YOLOv5n and the
simple CNN model.

35

4. Results

4.3 Experimental results of knowledge distillation
This section presents the results from running knowledge distillation on the object
detector (see Sect. 4.3.2) and the classifier (see Sect. 4.3.1).

4.3.1 Results of knowledge distillation on the classifiers
The simple CNN model was trained using knowledge distillation for two epochs, in
order to facilitate a direct comparison with the results of training the simple CNN
model without KD. The results of using KD can be found in Table 4.14, which shows
a 12% increase in the accuracy.

Set Training Validation Testing
Accuracy (before KD) 0.7460 0.7471 0.7468
Accuracy (after KD) 0.8706 0.8619 0.8651

Table 4.14: The simple CNN model’s results before and after using knowledge
distillation from a pre-trained ShuffleNetV1, in regards to accuracy after two epochs.

4.3.2 Results of knowledge distillation on YOLOv5
Fig. 4.14 shows the results obtained by comparing the outcome when training a
YOLOv5n normally to the outcome of training a YOLOv5n using knowledge dis-
tillation from a YOLOv5l. The tests include both using pre-trained weights for
YOLOv5n and without. The precision was not affected by KD, while recall and
the two mAP measures had all similar affections. Soft labels resulted in the best
improvements followed by knowledge distillation using the first three feature maps
while using only one feature map even worsened the training.

Fig. 4.15 shows the results of running knowledge distillation on the COCO dataset.
These tests were including longer training since detecting multiple classes is a more
complex problem and require more time to train. The results, in this case, show
that knowledge distillation does not affect the training at all.

Appendix A.5 shows the complete set of results obtained in this project.

36

4. Results

Figure 4.14: A comparison of the training metrics when running knowledge distil-
lation using the logits and three feature maps from a YOLOv5l to train a YOLOv5n.
The training was conducted using the Kaggle dataset mentioned in Sect 3.1.

Figure 4.15: A comparison of the training metrics when running knowledge dis-
tillation using both feature maps and logits from a YOLOv5l to train a YOLOv5n
on the COCO dataset for a higher number of epochs.

37

4. Results

38

5
Discussion

The choice of dataset and models are discussed in Sect. 5.1 and 5.2. Thereafter,
the results obtained from knowledge distillation are discussed in Sect 5.4. Both
Sect. 5.5.1 and 5.5.2 contains discussions on the results obtained from the testings
on the target computer. The applicability of ML in space is discussed in Sect. 5.6,
while ethical and sustainability aspects are discussed in Sect. 5.7. Finally, possible
extensions and future work is discussed in Sect. 5.8.

5.1 Choice of dataset
The dataset used was the Kaggle Airbus challenge dataset. While the dataset is great
for training ML models, it does not reflect the nature of the process of using an ML
model in space. Images taken using satellite cameras are not as neatly processed as
the images found in the Kaggle dataset. For example, as mentioned in Sect. 2.1, the
Sentinel-2 camera has at best a resolution of 10 m, which can make it difficult to
detect vessels, compared to the images found in the Kaggle dataset (see Fig. 3.1).
Consequently, since different satellite cameras will produce different images, the
performance of an ML model in terms of accuracy cannot be generalized to different
datasets. However, by focusing on the models’ resource usage, and examining the
relative differences before and after optimization, a general understanding of such
models’ behavior can be developed. Therefore, for such ML models to be applied in
a live system, a different dataset, consisting of images taken with the camera on the
target system (or similar) needs to be created and a new model needs to be trained
on that dataset.

5.2 Choice of model
This section discusses the ideas behind the choice of the models used in this project.
In addition, it names a few important points when choosing a model for embedded
systems.

5.2.1 Choice of classifier
ShuffleNetV1 was chosen because it is a network designed for mobile and embedded
systems. The network is based on grouped convolution, which is faster than normal
convolution. The network was also chosen because of its relatively low number
of FLOP. However, FLOP is an indirect metric that does not translate directly

39

5. Discussion

to computational speed on specific hardware. This is something that needs to be
taken into account when designing a model that is required to run on small mobile
systems. Different factors such as memory access cost, degree of parallelism, and
even element-wise operations can influence the actual time it takes to run inference
on specific hardware. Also, it is important to make sure that the operations executed
by the network are supported by the target framework.

5.2.2 Choice of object detector

YOLOv5 was chosen because of the simplicity of implementation and because it
is created in the widely used and user–friendly framework, Pytorch. Moreover,
YOLOv5 has proven its efficiency in mobile and embedded systems, which is more
important in this project than other metrics such as accuracy. YOLOv5 is however
a complex network that targets the detection of multiple classes with possibly a lot
of background noise, which is not the case in this project. Satellite images over
the sea often consist of mostly water where vessels are the only class. Therefore,
other simpler models might be more efficient in resource usage. On the other hand,
there might be more information about the vessel that YOLOv5 provides that could
be interesting. An example of such information could be the size of the vessel.
Since only larger vessels are legally required to report to AIS, the information about
the vessel size is crucial to determine if the vessel should exist on the AIS or not.
Moreover, YOLOv5 is good at detecting other classes, which can be beneficial when
utilizing a satellite. For example, another application in the same satellite could
be to detect airplanes. The flexibility of YOLOv5 allows for more information to
be captured at once, which is much more resource-efficient than using several models.

The comparison of different YOLOv5 sizes in Table 4.3 shows that YOLOv5s is
almost four times bigger than YOLOv5n in the number of parameters and does not
show much better results in terms of ML metrics. The same goes for even bigger
networks where YOLOv5m is three times bigger than YOLOv5s and YOLOv5l is
more than two times bigger than YOLOv5m. YOLOv5n already gives relatively
good results (0.789 in precision and 0.701 in recall), compared to its size and the
size and results of other tested YOLOv5 models. Therefore, to reduce resource us-
age, YOLOv5n was chosen. However, the choice might not be as straightforward
when it comes to more complex use cases, because the trade-off between size and
performance of the different models would be larger. For example, in an application
with multiple classes where accuracy is crucial, choosing YOLOv5n might not be
the best course of action.

No extensive hyper-parameter tuning or modifications of the networks were made
during testing since the focus of the project was to optimize resource usage. These
limitations could have affected the results for precision negatively since the default
settings might not be optimal for the used dataset. Changes in the model architec-
tures could also affect both precision and resource usage.

40

5. Discussion

5.3 Performance on the hardware
The results obtained from the different optimization methods are discussed in this
section. The description of the methods are found in Sect. 3.5.1 and the results in
Sect. 4.2. All sections include discussions of the results for YOLOv5n, except for
Sect. 5.3.6 which discusses the results of the classifier.

5.3.1 Effects of code structure
The most basic optimizations such as structuring the code efficiently and allocat-
ing only the necessary memory for storing variables could decrease memory usage
significantly. This section describes some of the essential steps to decrease memory
consumption.

5.3.1.1 Converting image vs. converting tile to float32

It is clear that converting only the tile to float32 (Method B) and not the complete
image (Method A), is preferable when using a target device with restricted RAM,
since the process crashed when not using any swap memory (see Sect. 4.2.1.1).
However, the default state of swap memory is on and would most probably be used
during production. It is, therefore, possible to use more memory than the available
RAM during inference, but this is not preferable since the swap memory uses the
hard disk which is slower than the RAM. Converting the entire image to float32
does not provide any advantages time-wise and only has the drawback of filling up
the memory.

5.3.1.2 Using memcpy

Using memcpy (Method B) instead of copying all values one by one to the input tensor
(Method C) reduced the inference time by 16 seconds (see Sect. 4.2.1.1). These 16
seconds might not be significant in comparison to the two minutes it takes. However,
it can accumulate to a big amount of time saved when processing a large number of
images. It is also shown in Fig. 4.8 that the difference in time could be larger with
other input sizes. On the other hand, Method B did not function for all batch sizes.
It was discovered that memcpy requires that the memory allocation for the input
data is contiguous, which is not the case when using memcpy on each tile in larger
batch sizes. However, it would be advantageous to solve this issue so that memcpy
can be used on bigger batch sizes.

5.3.1.3 Memory used by the image

Looking at the breakdown of the inference process in Sect. 4.2.1.2, a difference of
300 MB was measured when loading the input image versus not loading it, which
matches the size of an input image plus the size of one tile. The size of an input
image is 284 MB (10,000×10,000 image with three channels in int8) and the size of a
single tile is 23MB (a 1440×1440 tile with three channels in float32), which equals
approximately 300 MB. These results show that a large portion of the memory usage

41

5. Discussion

is allocated for the input image. On the other hand, the GPU memory is allocated
through the GPU delegate, and is therefore independent from the memory allocated
for the image, which explains why the GPU memory remains constant both when
loading and not loading an image.

5.3.1.4 How TFLite manages memory

There were several steps to allocate memory for all three methods, briefly men-
tioned in Sect. 3.5.1.1. The complete image was first loaded. Thereafter, a tile
was extracted from the image and stored into a variable, which was then copied
into the input tensor. Lastly, after calling the actual detection function in TFLite
(interpreter->invoke()), the values are copied to the memory space of the input
of the model, which is allocated in the GPU. The last part is shown by the process
breakdown shown in Sect. 4.2.1.2, where the actual detection takes much more time
than the surrounding processes. Furthermore, it is shown that using the GPU takes
more memory than using the CPU. The increased memory usage of the GPU is
sensible since the values must be copied to the memory of a completely separate
processing unit, while the CPU is able to contain the values in the same memory
space.

5.3.1.5 Better memory managements

One way of making better use of the memory would be to free the memory as
soon as a tile is used as input to the network. Freeing up memory in this way
will however require some low-level programming where it is possible to be closer
to the hardware. Perhaps forgo the usage of some off-the-shelf libraries towards
implementing a customized pipeline. Moreover, the model’s input size should be
customized in relation to the image size see (5.3.1.5).

mod
(
image size
input size

)
≈ 0.

Another method for preventing RAM overload is to use a separate program to tile
up the image and save it locally on the disk. This can potentially slow down the
process since the cost of loading the image from the disk is higher than RAM, but
it can save a bit of memory. Moreover, this method allows for removing the loaded
image from the disk as soon as it has been used in the model, which can be beneficial
in some cases. For example, if the raw image from the camera is not in int8 format,
then it would be beneficial to have such a program that does the tiling in a separate
step.

5.3.2 Effects of using different input sizes
Using different input sizes can affect the inference time significantly when using the
GPU, which is shown in Sect. 4.2.1.3. The GPU has an efficient architecture for
matrix multiplications, which decreases the inference time when increasing multi-
dimensional input sizes. The CPU on the contrary does not have this ability and
therefore the measurements are somewhat constant or even increasing. The timing

42

5. Discussion

measures further revealed a connection between the input size and the overlap given
by the last tile, which is further explained in (Sect. 5.3.2.2).

By further analyzing the memory usage, it was visible that the memory usage for
the CPU is increasing at a higher rate than the memory usage for the GPU when
measuring the resident size and virtual memory. This is seen in Fig. 4.4. The lower
increase in memory usage by the GPU exists because the process of inference is
performed in the GPU and is not included in the CPU measurements. It is instead
visible by measuring the VRAM. The differences between the CPU and GPU are
also high in Fig. 4.4 since it requires more memory to use two processing units than
only the CPU.

5.3.2.1 Choosing an input size

In the aspect of increasing the input size, it could be concluded that the GPU is
more efficient to use than the CPU. Which of the input sizes is most suitable when
using the GPU is dependent on the most critical resource. It was discovered in
the trade-off between time and VRAM (Fig. 4.5) that there was a lower bound in
time (around 2.1 min to 2.5 min), starting with an input size of 480×480 pixels.
Therefore, to get the best trade-off between time and memory, the input size of
480×480 pixels should be used. On the other hand, if time is more critical than
memory usage, it would be more sensible to use the fastest model with an input size
of 1,440×1,440.

5.3.2.2 Avoiding processing unnecessary pixels

Having an image size that is not divisible by the tile size will result in a remainder
of pixels when tiling the image. The current implementation of tiling tackles the
remaining pixels by simply counting from the edge, instead of starting where the
previous tile ended. The current implementation results in unnecessary pixels that
are processed, and an illustration of the problem is shown in Fig. 5.1. The problem is
reflected by the matching peaks in the measured inference times and the percentage
of overlap that the last tiles have, especially when using the CPU. This can be seen
in Fig. 4.3. Therefore it is important to match the input size of the model to the
image size so that the overlap in the last tile is as minimal as possible, i.e.

mod
(
image size
input size

)
≈ 0.

5.3.3 Quantizing the weights
The results for quantization in Sect. 4.2.1.4 show that neither having the precision of
the model weights in int8 nor float16 decreased the time of inference, which was
contrary to the expectations. The model with a precision of float16 gave the same
time results as float32 and int8 even exceeded the inference time for float32. It
was discovered that these results were because quantization was not accelerated by

43

5. Discussion

Figure 5.1: An example using a 340×340 pixels image with a tile size of 100×100
pixels. This illustrates the overlap created by the last processed tiles on each row
and column.

the target computer, nor was it supported by the TFLite interpreter.

TFLite supports exporting models weights to int8 format, but does not support
it during the inference step. The environment works in float32. When running
an int8-model, TFLite first dequantizes the input to float32 and then quantizes
the results back to int8. This is also the reason why the inference time increases
when using int8. Using a model containing float16 weights, the computation still
occurs with float32. It is however possible to command the interpreter to do com-
putations in float16, but it does not affect the time.

A positive outcome of quantizing the weights is that it decreases the size of the
model, which is shown in Table 4.10 where the file sizes of different input sizes and
datatypes are presented. All levels of quantization (from float32 to float16 and
from float16 to int8) decreased the file size of the saved weights by half. Judging
by the increase of inference time for int8-models, the method of quantization to
int8 is not optimal to use in the target computer. However, float16 is suitable, it
decreases the file size significantly, and does not affect the inference time.

5.3.4 Multiple threads in the CPU
Having multiple threads can be a way of speeding up the process if the computation
is done using the CPU. The results in Sect. 4.2.1.5 show that the inference time
is decreasing as the number of threads increases. The optimal number of threads
seems to be four threads, as the decrease in time is negligible with an increasing
number of threads. The best time obtained using four threads is 2.2 min. Moreover,
the CPU power similarly stops increasing after four threads. Resident size has the
same memory usage for all number of threads, but both the virtual memory and the
shared memory increase when using more threads than one. The increase in virtual

44

5. Discussion

and shared memories occurs when using multiple processes that require communi-
cation between each other, which is the case in multithreading.

The results in Sect. 4.2.1.5 further show that the best time obtained was 2.187 min
with nine threads on a 3,360×3,360 pixels input size, which almost reaches the same
speed as using the GPU with 1,440×1,440 (2.137 min). The CPU could therefore
be used instead of the GPU if necessary for this particular hardware with almost
the same performance. Less memory is also used by using the CPU, but since the
process is using the maximum processing power of the CPU, no other processes
would be able to run. The satellite computer ix5 does furthermore have four CPU
cores which might explain why the time stops decreasing after four or five threads.

5.3.5 Increasing the batch size
The results for different batch sizes in Sect. 4.2.1.6 show a decrease in time when
using larger batch sizes but without any significant improvements. Larger input
sizes crashed the program due to lack of memory, while the smaller input sizes did
not reach enough low inference time to match the time of other optimization tests.

Four measurements were taken of different input sizes, where the smallest input
size of 280×280 had the best trade-off between time and memory as the batch size
increased. However, it started from a much higher time with a batch size of one,
compared to other input sizes. The input sizes 480×480, 672×672, and 768×768
started at better inference time for a batch size of one but did not improve signif-
icantly by increasing the batch size. Moreover, the increase in memory usage for
different batch sizes was higher when using larger input sizes. Therefore, the best
input size to use for larger batch sizes is 480×480.

A comparison between the results for batch sizes and other results cannot be taken
seriously. Different batch sizes were tested using Method C (copying pixel by pixel
to the input tensor) while other tests were conducted using Method B (using the
C++ function memcpy). Method C was slower, which not only affects a one-to-one
comparison of the time values but also might affect the rate of change in time when
using different batch sizes as well as different input sizes. Unfortunately, the problem
of using a larger batch size with memcpy (explained in Sect. 5.3.1.2) was not solved
during this project.

5.3.6 Using the classifier
The results for applying the simple CNN model (since ShuffleNet was not supported
by TFLite) show that the only difference between the YOLOv5n model and the CNN
model is the time used for detection (presented in Sect. 4.2.2). All other results in
the inference breakdown such as time and memory were similar to the measurements
for YOLOv5n. It can therefore be concluded that it is not the model itself that uses
up the memory.

45

5. Discussion

5.4 Network compression with knowledge distil-
lation

This section discusses the findings of using knowledge distillation to do an indirect
optimization of resource usage by improving the accuracy on a small network.

5.4.1 ShuffleNetV1 teaching the simple CNN model
Knowledge distillation is good for learning the distribution between the different
target classes. The class distribution is especially important when the classifier has
to distinguish between many different classes. However, it evidently also works in the
case of binary classification, as the results in Sect. 4.3.1 show an improvement of 12%,
which is an outcome that was somewhat unexpected. The probability distribution
provided by the teacher model is valuable information that would otherwise be lost
if only hard labels are used. The probability distribution, which is used in the loss
function to train the student model, is a strength of knowledge distillation in the
classification tasks.

5.4.1.1 Using unsupported networks

A problem that emerged when trying to use ShuffleNet is that grouped convolution
was not supported by TFLite. Having non-supported operations meant that using
ShuffleNet on the target hardware was not feasible. However, by using knowledge
distillation, a smaller and less complex model was able to utilize the knowledge
learned by ShuffleNet in order to better generalize to the data. Moreover, it meant
that a model which was practically unfeasible for usage on the target computer could
still be utilized to train a smaller model that is a better fit for the target hardware.

5.4.2 YOLOv5l teaching a YOLOv5n
Knowledge distillation for an object detector is more complicated because the task
of object detection is more complex than a classifier. Therefore, the results in
Sect. 4.3.2 were not as impressive as when using KD on the classifier. Two different
cases were used for the training of YOLOv5 using KD. The first is using the Kaggle
Airbus Challenge dataset, which only contains one class (see Sect. 5.4.2.1). The
second is using the COCO dataset in Sect. 5.4.2.2.

5.4.2.1 The case of detecting maritime vessels

The first KD method was to take knowledge from different feature maps inside the
neck of the network (see Fig. 3.2), namely four places which are the outputs of
the concatenation layers. Using only one feature map worsened the training perfor-
mance. By only focusing on teaching the network to learn from one feature map,
the general knowledge might not be transferred correctly. Especially in the case of
YOLOv5, as different parts of the network are responsible for detecting different
sizes of the object. By adding more feature maps, the performance of training in-
stead improved. The improvement was however small, but not due to fluctuations

46

5. Discussion

since it was noticed during multiple tests, with and without pre-trained weights.

Using the prediction output directly (logits) as the transferring knowledge showed
a higher improvement than using feature maps. The improvement is thought to be
because logits can be directly compared between different YOLOv5 networks, while
a series of actions need to be conducted to match the tensor shape of the student
and the teacher models when comparing feature maps. This series of steps can
mean that distilling knowledge from a YOLOv5l to a YOLOv5n can be problematic
since the difference in size is too big, which can lead to a loss of information during
training. Therefore, it was investigated to use a YOLOv5s (small) with the same
setup, but no improvements were noticed. The small network, on the other hand,
might have too small of a difference in performance compared to the nano to learn
anything. To draw any conclusions about weather the networks have feasible size
for knowledge distillation is therefore not possible from these results.

A trivial motivation to why the improvements only are small is that the testings
in this project did not cover the most optimal combinations of feature maps or an
optimal learning rate of the knowledge distillation. Furthermore, the performance
of the models in the beginning is already high considering the complicated task of
detecting and classifying and it might be hard to find another local optima that
results in higher improvements.

5.4.2.2 The case of a large number of classes

The complexity of the task was thought to be a contributing factor in the minimal
improvements observed when using knowledge distillation on YOLOv5. Detecting a
maritime vessel in an image filled with blue water is perhaps not the most challenging
task for an object detector such as YOLOv5. Therefore, it is thought that there is
not much more the network can learn by using KD in such a case. That is why an
experiment using COCO dataset was conducted to test this hypothesis. However,
looking at Fig. 4.15, it can be seen that no improvements were detected when using
the different setups of knowledge distillation. With these results, another thought
arises, that the COCO dataset instead might be a too complicated task for knowledge
distillation.

5.5 Theoretical optimizations
It is possible to further decrease the time when applying detection of maritime vessels
by combining a classifier and an object detector, or by considering only using the
classifier. This section includes a theoretical discussion of these two proposals, using
the practical results of this project.

5.5.1 Combining models
One way of speeding up the process is using a small-sized classifier to filter the
tiles before detecting the maritime vessels with the YOLO network, as illustrated

47

5. Discussion

in Fig. 5.2. This would increase the inference time over multiple tiles, with a slight
penalty of accuracy.

Figure 5.2: An illustration of the filtering process when combining a YOLOv5
with a classifier.

Assuming that a classifier has 87% accuracy, combined with the YOLOv5n network,
a general understanding of the performance of such mixed model can be constructed.
Based on the ratio of vessels in the Kaggle dataset, which has 42,556 images con-
taining vessels and 150,000 without vessels. Also given the results obtained in time
for processing one tile, shown in Table 4.7 and Table 4.13, where the classifier can
go through an image in 0.09 s seconds and YOLO in 0.809 s.

With the 87% accuracy of the classifier, the worst-case scenario in time would be if
the classifier classifies all the 42,556 images containing vessels correctly while clas-
sifying 13% of all the 150,000 images that do not contain vessels incorrectly. This
would lead to 62,056 images going through the classifier into the YOLO model.
This is however still considerably lower than the 192,556 images that otherwise
would have been processed by the YOLO model without the filtering. It is 13% less
accurate, but it is 56.65% faster which is a huge improvement.

Fig. 5.3 shows the above discussed worst-case scenario and the average-case scenario
over different accuracy of the classifier. Even if the classifiers have less accuracy,
and the worst case is experienced, it would still be a massive improvement in time
with 50% saved time at 80% in accuracy. However, it would be a more inaccurate
model since there would be two steps with uncertainty in the pipeline. As always,
there would be a trade-off between time and accuracy.

It is important to note also that if all tiles contain vessels, for example in a harbor
where maritime vessels are frequent, the time would instead increase. Both of the
models would then be processing all tiles, which results in 0.899 s per tile and an
11% increase in time compared to only using the YOLO model. However, combining
the models might not be a problem in the use case of detecting illegal activities since
they most probably would not occur in areas with a lot of marine traffic. Moreover,
high-traffic areas are usually covered by the tracking systems on earth. The only
critical case would be if the hardware is heavily restricted in time so that not all
tiles could be processed. Therefore one method could be to only use the detection
algorithm when the satellite is orbiting over less trafficked areas and areas which are
hard to surveillance.

48

5. Discussion

The filtering process does not require both models to run in sequence. Therefore, it
would be advantageous to run the classifier and YOLO in parallel, if the hardware
has enough computing power and memory. Having these models running in parallel
should in theory save more time.

Figure 5.3: The relative time saved when using the mixed model structure com-
pared to only using YOLOv5 nano. Both the average and worst-case scenarios can
be seen in the figure.

5.5.2 Using only the classifier
Using only a classifier could be done by taking a relatively small input size into
the network. The output of such a solution would be interpreted as: this area that
is covered by this tile potentially contains a vessel. Such output is still valuable
information, especially if the area is small enough. For example, an image with a
resolution of 10 m/pixel and input size of 192×192 would correspond to an area of
3.7 km2, which is a relatively easy area to cover [53]. More importantly, it would
amount to 87% less time compared to using a YOLOv5n.

Another restriction of using only the classifier is that it cannot be used in areas
where vessels are allowed to be. The tracking system AIS is not required for smaller
vessels. Therefore if the classifier detects the presence of a boat within an area,
there would be no information on how many boats there are or if they are boats
that cheats the tracking system (i.e. larger boats). It could simply be a family on
a vacation that is detected. This is avoided when using the YOLO model since it
also gives a bounding box around the vessel that reveals the size and location of
the vessel. To send the coast guard each time a vessel is detected would therefore

49

5. Discussion

be unfeasible when using the classifier. However, covering protected areas where no
vessel should exist, then it is highly effective.

5.6 Detecting vessels from space
This section discussed the applicability of using a ML model to detect maritime
vessels from space.

5.6.1 Frame rate
The frame rate of 2 min/image is not fast enough to process a live feed (more than
one fps), however, it is still fast enough to provide valuable information in Earth
observation. Detection using a live feed of a single location would not be possible
using a single satellite due to the orbiting state of most satellites. One solution
would be to use geostationary satellites. A combination of several satellites could
also provide an almost continuous feed of a certain location. This is practical in cases
when small changes are relevant, such as tracing a vessel to detect, for example,
fishing patterns. In the task of monitoring the oceans, a high frame rate is not
required due to the long distances and large areas covered. A single vessel in the
ocean would for example not have any significant changes in its location during the
two minutes it takes to tun an inference. Moreover, the location between the frames
could also be calculated or filled with the location given by the AIS.

5.6.2 Memory when deployed
Time is affected by the size of the RAM that the computer has. More memory will
allow for parallel processes, which decreases time. Measurements will therefore be
completely different on other computers. The swap memory was turned off during
the testing, which is on by default. Having swap memory turned on enables the
process to use more memory and possibly decrease the processing time if it enables
parallelism.

5.6.3 The results depend on the camera
The camera and the type of images the camera produces also affect the measure-
ments in regards to different frame rates, data types, and resolutions. An optic
camera is not operable during the night and has noise such as clouds, while a radar
camera is not affected by these aspects. The extremely large image of 10,000×10,000
was chosen for the test setup, which comes from the Copernicus project that uses
one of the best cameras available on satellites. Therefore in most cases, there will
be a smaller image that is processed.

5.6.4 Tiling the image
It is important to note that tiling an image presents a risk of accidentally cropping
the vessels in two. The camera must therefore have a resolution where the vessels

50

5. Discussion

are small enough to have a small probability of a vessel being on the edge of a tile.
Fig. 5.4 shows examples of images obtained from the Kaggle Airbus Challenge with
different vessel sizes in a 768×768 pixels image. With an input size of 192×192,
there would be four tiles. For the vessels in the first image, the tiling would most
probably not crop where any vessel is located, while in the second and third image,
a cropping over a vessel would be probable.

Figure 5.4: Different vessel sizes for images with a resolution of 768×768 pixels.

5.6.5 Accuracy of the model
The object detector tested obtained 0.789 in precision and 0.701 in recall. These
results would mean that the detector would give a false prediction 21 % of all times
and it would miss a vessel 30 % of all times. In a real scenario of detecting vessels,
it would still contribute by giving a hint of where vessels are located. If there is no
match of a vessel in the existing tracking systems such as AIS, then the pipeline could
still warn the coast guards that there is an untracked vessel at a certain location. In
location aspects, YOLOv5n got 0.761 in mAP@0.5 and 0.49 in mAP0.5:0.95, which
is not as important as the precision and recall. The exact location and size of a
bounding box do not in this case matter since the exact location and size of the
vessel can be backed up by the AIS and previous detection of the same boat.

5.6.6 Use cases
There are two different use cases for the models used in this project. The first one
is when an object detector is used, with or without filtering at first, to complement
the existing tracking system AIS. The complementing part is important, since it is
inevitable to be captured by a satellite image, while it is easy to cheat the AIS. One
possible pipeline would be to first detect the vessels and extract the location and
size of each of them based on their bounding boxes. The smaller maritime vessels
that are not required to have an AIS are then filtered out. Such information is much
smaller in size, compared to a satellite image, which is easier and faster to downlink
to Earth. These locations are compared with the information available in the AIS.
If no match of the vessel is found, then the coast guard would be alarmed that there

51

5. Discussion

is a detection of a potential illegal activity.

The other use case would be when detecting boats in protected areas where no
vessels are allowed. In this case, using only the classifier would be the most efficient
method. The pipeline would be similar, but the downlinked information would
contain an area instead, which is directly alarmed to the coast guard.

5.7 Ethical and sustainability aspects
With Earth observation follows the complications of integrity and consent. Surveil-
lance at certain locations could be seen as an act of espionage or even a threat be-
tween countries. The privacy of individuals is also affected since the images captured
from above can unveil enclosed areas, which are taken without consent. Satellite
images are large and usually only give an overview of an area, but some cameras on
certain satellites could capture images down to a resolution of 30 cm, which is almost
as big as a license plate of a car. Surveillance does however help in creating order
and could be used to prevent disasters. Especially observing oceans is important
due to their critical condition. The supervision of oceans is poor due to the huge
covering areas and different laws in different water areas (international waters for
example). Therefore illegal activities, such as dumping trash or oil, illegal fishing,
and smuggling, are easier to carry out there.

There are several sustainability issues regarding the increase in the number of satel-
lites in recent years. More satellites will increasingly pollute the higher layers above
the atmosphere. The process of launching satellites requires a massive amount of
resources, both for the rocket to leave the Earth’s atmosphere and for developing
the rocket itself. The space traffic is also not organized as the traffic on Earth
and collisions do occur. There are no dangers of satellite parts reaching the Earth
and satellite parts are small enough to burn before reaching Earth. However, as
the number of satellites increases rapidly, the probability of collisions will increase
creating a huge amount of space debris, which in its turn can lead to more collisions.

5.8 Future work
There are several tests that this project did not cover and plenty of extensions of
the project. This section mentions some of the most important future work.

5.8.1 Further optimizations of memory and speed
A good deal of optimization could be done using low-level programming as men-
tioned in Sect. 5.3.1. Manually allocating and freeing memory to avoid unnecessary
copies could potentially save more memory.

One method that can be worth looking into is testing whether the process can be
split between both the CPU and the GPU, given that the CPU is running multiple

52

5. Discussion

threads. In theory it could yield double the speed of only running on one of the
devices. To note however is that two different interpreters then are required, which
could increase memory usage.

5.8.2 Serialization of the GPU delegate
The duration of initializing the GPU delegate significantly increased the time and
was therefore mitigated to get comparable results for the inferences using the GPU.
The initialization can be avoided by continuously running the process, but it might
not be possible in all applications. For example, when working with time-slots
to manage several processes in the satellite, the delegate would be required to re-
initialize every time the process starts. This can however be solved by investigating
the serialization of the delegate from previous runs which increases the initialization
time up to 90 % [54].

5.8.3 memcpy using batches
As discussed in Sect. 5.3.1.2, the function memcpy did not work when using a batch
size larger than one. The implementation of copying values to the input tensor was
to apply memcpy on each tile in the batch. This implementation failed since the tiles
were not contiguous in memory, which is required when using memcpy. It would be
advantageous to solve this since the implementation of memcpy is faster than other
tested implementations. A possibility would be to create a matrix as a temporary
place holder, consisting of all tiles in the batch. However, this would require an
additional copy of the input containing all tiles which would increase memory usage.
On the other hand, an additional copy would theoretically be equivalent to a larger
input size.

5.8.4 The problem of overlapping tiles
It was mentioned in Sect. 5.3.2.2 that there exists an overlapping problem that
causes the processing of unnecessary pixels if the input size to the network is not
matched to the size of the input image. This is however not feasible if the input
image is of dynamic size. Another solution that was not tested in this project, could
therefore be to instead discard the leftover pixels if there are only a few leftover
pixels. Discarding pixels, however, introduces a risk of missing a boat, if the boat
is located on the right or bottom edges of the image. On the other hand, if the
satellite images do overlap, then this would not be a problem.

5.8.5 Knowledge distillation for object detectors
There are plenty of explorations left for using knowledge distillation on complicated
networks such as the YOLOv5. Testing more combinations of feature maps for
the KD method of imitation masks would give a better understanding of how the
feature maps affect the training. Moreover, finding an optimal learning rate for KD
in relation to other learning rates could also improve the training. An investigation

53

5. Discussion

of whether YOLOv5n is too small to additionally improve would also be interesting,
or simply combine the losses of feature imitation and the logits.

5.8.6 Testing in space
A natural extension to the project is to test the model in the satellite in orbit.
Radiation and other environmental issues could affect the model performance as
well as the process around it. More work is also required to actualize it as a full
product. For example, post-processing the output into geo-locations which can be
sent back to earth where it is received and compared to AIS data.

5.8.7 Edge Learning
Edge Learning is a growing concept that would be interesting to investigate in this
use case, where prediction and training occur on-board the satellite. By sending the
AIS location and vessel size of all vessels inside the camera snapshot to the satellite,
the labeling and training using camera images directly on the edge device could be
possible. This would allow to continuously improve the model.

54

6
Conclusion

This research shows that machine learning can be implemented on board a satellite
with aim of detecting and localizing maritime vessels. The best result obtained,
using YOLOv5, is 2.1 min per 10,000×10,000 pixel image, which is considered to be
very large. Therefore, in most cases, even less time and memory will be used.

There are certain limitations that need to be taken into account. One of these lim-
itations is the target hardware, and especially the target camera, as the resolution
and image size is vital for both model accuracy and applicability on board a satel-
lite. Model choice is an important aspect when the target hardware is restrictive.
Therefore, it is important to not only look at metrics such as FLOPs, which is an
indirect metric when it comes to actual inference time. However, there is room for
flexibility depending on the rate at which results need to be obtained from the ap-
plication, as well as the rate at which images are captured.

The research also shows that memory management and the data type of the image
are extremely important to memory usage. For example, having an image of int8
and only converting the tile used in inference reduces the memory usage signifi-
cantly. Also, memcpy was more efficient in time than copying pixels one by one but
did not work for larger batch sizes. It is also shown that when tiling the image, it
is important to match the tile size, or input size, to the image size to reduce the
overlap created by the last tile on each row and column. Few pixels in the last tile
will create a larger overlap that increases time due to more pixels being processed.
Quantization was not supported by the target hardware but decreased the file size.
The precision of float16 was optimal since it reduced the file size by half and did
not affect the inference time or memory usage. Using int8 reduced the file size
additionally by half, but increased the inference time since the process in TFLite
is first to de-quantize the input and then quantize the output. Furthermore, using
a GPU in TFLite yields a better inference time at a cost of higher memory usage.
This is most likely due to the GPU delegate and the fact that the GPU and CPU
have separate memory accesses. One way to mitigate this is to use the CPU with
multiple threads at a cost of increased CPU usage. Batch sizes larger than one did
not decrease the inference time to the same extent as larger input sizes. However,
the measurements of batch sizes might not be comparable since memcpy does not
work with batch sizes larger than one. Furthermore, by comparing the results of
using the classifier and YOLOv5, it is evident that the model size does not matter
in measuring memory, but does matter significantly in time.

55

6. Conclusion

Applying a smaller network comes with a penalty in accuracy, but accuracy could
be increased using knowledge distillation from a larger network. This was shown
successful for distilling knowledge from ShuffleNetV1 to a simple CNN model where
the model accuracy increased by 12 %. Moreover, it enables models which are not
supported by the target computer (ShuffleNetV1) to distill their knowledge to a
supported model (simple CNN model). Knowledge distillation on YOLOv5 however
was found difficult due to the much more complex nature of the network and task.
A slight improvement of the training metrics was obtained were using the logits
yielded the best results. Using three feature maps also yielded better training, but
using only one feature map worsened the training. In a multi-label setup using the
COCO dataset, there was no improvement when using knowledge distillation. There
is however plenty of additional tests that could give a better understanding of the
effect of knowledge distillation on an object detector.

One way of radically decreasing inference time (87 % less time) is to use a classifier
instead of an object detector, combined with a small input size. This comes at a
cost of having an estimation of an area in which a vessel is located, rather than
an exact location. Another approach to decrease inference time is combining the
object detector with a classifier that first filters out tiles with only water. This saves
around 50 % of the time with a penalty of 13 % in accuracy and the risk of instead
increasing time if all tiles contain vessels, for example near harbors.

Apart from the methods tested in this project, there are plenty more possibilities to
optimize the process even more. Hyperparameter testing, network pruning, low-level
programming to decrease redundant memory allocations, customizing interpreters
and accelerators and other optimizations available in the frameworks are yet to be
studied. The initialization of the GPU when starting the process takes time and is
not included in the results of this project. Therefore an important future work in
cases where frequent process startups are required would be to save the delegate to
the disk using serialization (explained in Sect. 5.8.2).

The results of this project will hopefully lead to further developments in the field
of maritime monitoring. More work is required before this can become an assisting
application when stopping illegal activities, but it constitutes a good first step in
that direction.

56

Bibliography

[1] H. Wu and Q. Dai, “Artificial intelligence accelerated by light,” Nature Pub-
lishing Group, 2021.

[2] Y. Duan, J. S. Edwards, and Y. K. Dwivedi, “Artificial intelligence for decision
making in the era of big data–evolution, challenges and research agenda,”
International Journal of Information Management, vol. 48, pp. 63–71, 2019.

[3] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 7263–7271.

[4] K. He et al., “Deep residual learning for image recognition,” 2016.
[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” 2014.
[6] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and

accuracy of object detection,” 2020.
[7] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottlenecks,”

2018.
[8] A. D. George and C. M. Wilson, “Onboard processing with hybrid and recon-

figurable computing on small satellites,” Proceedings of the IEEE, vol. 106,
no. 3, pp. 458–470, 2018.

[9] O. Petri, “Urban change detection on satellites using deep learning,” M.S.
thesis, 2021.

[10] K. Bereta, D. Zissis, and R. Grasso, “Automatic maritime object detection
using satellite imagery,” 2020.

[11] J. B. C. Jackson et al., “Historical overfishing and the recent collapse of coastal
ecosystems,” Science, vol. 293, no. 5530, pp. 629–637, 2001. doi: 10.1126/
science.1059199. eprint: https://www.science.org/doi/pdf/10.1126/
science.1059199. [Online]. Available: https://www.science.org/doi/abs/
10.1126/science.1059199.

[12] U.s. wants ships to keep their tracking devices on -senior official, https://
www.reuters.com/article/mideast-iran-tankers-tracking-idUSL2N24T089,
Accessed: 2022-03-07.

[13] M. Mukhayadi, A. Karim, and W. Hasbi, “Designing a constellation for ais
mission based on data acquisition of lapan-a2 and lapan-a3 satellites,” Telkom-
nika, vol. 17, no. 4, 2019.

[14] E. Ahlberg and J. Danielsson, “Handling and analyzing marine traffic data,”
M.S. thesis, 2016.

[15] X. Zhang et al., “Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices,” pp. 6848–6856, 2018.

57

https://doi.org/10.1126/science.1059199
https://doi.org/10.1126/science.1059199
https://www.science.org/doi/pdf/10.1126/science.1059199
https://www.science.org/doi/pdf/10.1126/science.1059199
https://www.science.org/doi/abs/10.1126/science.1059199
https://www.science.org/doi/abs/10.1126/science.1059199
https://www.reuters.com/article/mideast-iran-tankers-tracking-idUSL2N24T089
https://www.reuters.com/article/mideast-iran-tankers-tracking-idUSL2N24T089

Bibliography

[16] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” 2018.
[17] J. Redmon et al., “You only look once: Unified, real-time object detection,”

2016.
[18] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv

preprint arXiv:1804.02767, 2018.
[19] J. Solawetz. (2020). “Yolov5 new version - improvements and evaluation,”

[Online]. Available: https://blog.roboflow.com/yolov5-improvements-
and-evaluation/.

[20] X. Long et al., “Pp-yolo: An effective and efficient implementation of object
detector,” arXiv preprint arXiv:2007.12099, 2020.

[21] Kaggle: Airbus ship detection challenge, https : / / www . kaggle . com / c /
airbus-ship-detection/data, Accessed: 2021-02-23.

[22] Ix5-100 spacecloud® solution, https://unibap.com/en/our-offer/space/
spacecloud-solutions/ix5100/, Accessed: 2022-02-23.

[23] F. Rosenblatt, “Perceptron simulation experiments,” Proceedings of the IRE,
vol. 48, no. 3, pp. 301–309, 1960.

[24] A. L. Fradkov, “Early history of machine learning,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 1385–1390, 2020.

[25] About copernicus, https://www.copernicus.eu/en/about- copernicus,
Accessed: 2022-05-23, [Online].

[26] Discover our satellites, https://www.copernicus.eu/en/about-copernicus/
infrastructure / discover - our - satellites, Accessed: 2022-05-23, [On-
line].

[27] K. Bereta et al., “Monitoring marine protected areas using data fusion and ai
techniques,” 2019.

[28] Sentinel-1, https://sentinels.copernicus.eu/web/sentinel/missions/
sentinel-1/overview, Accessed: 2022-05-23, [Online].

[29] Sentinel-2, https://sentinels.copernicus.eu/web/sentinel/missions/
sentinel-2, Accessed: 2022-05-23, [Online].

[30] Worldview legion, https://www.maxar.com/worldview-legion.
[31] O. Russakovsky et al., “Imagenet large scale visual recognition challenge,”

International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.
[32] Devopedia. (2021). “Imagenet.” Accessed: 2022-05-21, [Online]. Available: https:

//devopedia.org/imagenet%5C#:~:text=ImageNet%5C%20is%5C%20a%
5C%20large%5C%20database,kind%5C%20in%5C%20terms%5C%20of%5C%
20scale.

[33] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in European
conference on computer vision, Springer, 2014, pp. 740–755.

[34] Cocodataset.org, https://cocodataset.org/#home, Accessed: 2022-05-23,
[Online].

[35] M. Everingham et al., “The pascal visual object classes (voc) challenge,” In-
ternational journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[36] Copernicus open access hub, https://scihub.copernicus.eu/dhus/#/home.
[37] Kaggle, https://www.kaggle.com/.

58

https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://www.kaggle.com/c/airbus-ship-detection/data
https://www.kaggle.com/c/airbus-ship-detection/data
https://unibap.com/en/our-offer/space/spacecloud-solutions/ix5100/
https://unibap.com/en/our-offer/space/spacecloud-solutions/ix5100/
https://www.copernicus.eu/en/about-copernicus
https://www.copernicus.eu/en/about-copernicus/infrastructure/discover-our-satellites
https://www.copernicus.eu/en/about-copernicus/infrastructure/discover-our-satellites
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/overview
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/overview
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
https://www.maxar.com/worldview-legion
https://devopedia.org/imagenet%5C#:~:text=ImageNet%5C%20is%5C%20a%5C%20large%5C%20database,kind%5C%20in%5C%20terms%5C%20of%5C%20scale
https://devopedia.org/imagenet%5C#:~:text=ImageNet%5C%20is%5C%20a%5C%20large%5C%20database,kind%5C%20in%5C%20terms%5C%20of%5C%20scale
https://devopedia.org/imagenet%5C#:~:text=ImageNet%5C%20is%5C%20a%5C%20large%5C%20database,kind%5C%20in%5C%20terms%5C%20of%5C%20scale
https://devopedia.org/imagenet%5C#:~:text=ImageNet%5C%20is%5C%20a%5C%20large%5C%20database,kind%5C%20in%5C%20terms%5C%20of%5C%20scale
https://cocodataset.org/#home
https://scihub.copernicus.eu/dhus/#/home
https://www.kaggle.com/

Bibliography

[38] D. Lu and Q. Weng, “A survey of image classification methods and tech-
niques for improving classification performance,” International journal of Re-
mote sensing, vol. 28, no. 5, pp. 823–870, 2007.

[39] A. Krogh, “What are artificial neural networks?” Nature biotechnology, vol. 26,
no. 2, pp. 195–197, 2008.

[40] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 1251–1258.

[41] S. Li et al., “Detection of concealed cracks from ground penetrating radar im-
ages based on deep learning algorithm,” Construction and Building Materials,
2021.

[42] P. Jiang et al., “A review of yolo algorithm developments,” Procedia Computer
Science, vol. 199, 2022.

[43] D. Thuan, “Evolution of yolo algorithm and yolov5: The state-of-the-art object
detection algorithm,” 2021.

[44] G. Hinton, O. Vinyals, J. Dean, et al., “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[45] T. Wang et al., “Distilling object detectors with fine-grained feature imita-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 4933–4942.

[46] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approximation of
convolutional neural networks,” arXiv preprint arXiv:1604.03168, 2016.

[47] S. Han et al., “Learning both weights and connections for efficient neural
network,” Advances in neural information processing systems, vol. 28, 2015.

[48] J. Wu et al., “Quantized convolutional neural networks for mobile devices,”
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 4820–4828.

[49] M. Rastegari et al., “Xnor-net: Imagenet classification using binary convolu-
tional neural networks,” in European conference on computer vision, Springer,
2016, pp. 525–542.

[50] G. J. et al. (2022). “Yolov5 github repository,” [Online]. Available: https:
//github.com/ultralytics/yolov5/tree/v6.1.

[51] E. Asaad and S. Larsson, https://github.com/Sara980710/master_thesis,
Jun. 2022.

[52] Sentinel-2 user handbook, 1st issue, European Space Agency, Paris, France,
2015, p. 9.

[53] M. S. Essa, private communication, May 2022.
[54] Gpu delegate serialization, https://www.tensorflow.org/lite/performance/

gpu_advanced#gpu_delegate_serialization.
[55] R. Girshick, “Fast r-cnn,” 2015.
[56] D. Silver et al., “Mastering the game of go without human knowledge,” nature,

vol. 550, no. 7676, pp. 354–359, 2017.
[57] J. Nelson. (2020). “Responding to the controversy about yolov5,” [Online].

Available: https://blog.roboflow.com/yolov4-versus-yolov5/.
[58] R. Girshick et al., “Rich feature hierarchies for accurate object detection and

semantic segmentation,” 2014.

59

https://github.com/ultralytics/yolov5/tree/v6.1
https://github.com/ultralytics/yolov5/tree/v6.1
https://github.com/Sara980710/master_thesis
https://www.tensorflow.org/lite/performance/gpu_advanced#gpu_delegate_serialization
https://www.tensorflow.org/lite/performance/gpu_advanced#gpu_delegate_serialization
https://blog.roboflow.com/yolov4-versus-yolov5/

Bibliography

[59] S. Ren et al., “Faster r-cnn: Towards real-time object detection with re-
gion proposal networks,” Advances in neural information processing systems,
vol. 28, 2015.

[60] W. Liu et al., “Ssd: Single shot multibox detector,” in European conference on
computer vision, Springer, 2016, pp. 21–37.

[61] T.-Y. Lin et al., “Focal loss for dense object detection,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2980–2988.

[62] T. Wang et al., “Learning rich features at high-speed for single-shot object de-
tection,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2019, pp. 1971–1980.

[63] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object
detection,” pp. 10 781–10 790, 2020.

[64] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” 2019.

[65] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and< 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[66] B. Yan et al., “A real-time apple targets detection method for picking robot
based on improved yolov5,” Remote Sensing, vol. 13, no. 9, 2021.

[67] X. Huang et al., “Pp-yolov2: A practical object detector,” arXiv preprint
arXiv:2104.10419, 2021.

60

A
Appendix

This appendix shows the model architecture for the simple CNN model in Sect. A.4.

A.1 The history of YOLO
YOLO, “you only look once” at the formulated problem of object detection. YOLO
is an object detector that simultaneously classifies and detects objects within an
image. The model consists of a backbone (feature extraction), neck (feature aggre-
gation), and head (prediction and regression). The possibility of fast detection of
objects within the frame rate of a video is the reason why YOLO received massive
attention within the community and has become one of the most used object detec-
tors [17]. In addition, by using the image directly, an encoding of the global features
could be obtained. The encoding yields a strong generalization when extracting fea-
tures and also reduces the error of detecting the background [42]. Several versions
of YOLO have been developed since, which have increased the efficiency, accuracy,
and applicability of the model. The different YOLO versions have allowed YOLO
to be implemented in different platforms, even small and mobile embedded systems.

The first version of YOLO was developed to decrease the inference time on object
detectors. The architecture consisted of 24 convolutional layers followed by two fully
connected layers, where the first twenty layers were pre-trained for classification [17].
Even if the model was fast, it suffered from errors in the localization and recall, and
the effects of using different sizes of bounding boxes were not included in the loss
[3][17].

YOLOv2 focused on the weaknesses of the first YOLO version, mainly low recall
and high localization error. The published paper states that YOLOv2 was able
to detect over nine thousand different objects with even greater speed than before
when using a particular setup of the model which they called YOLO9000 [3]. A new,
faster architecture for the backbone called Darknet-19 consisting of 19 convolutional
layers and five max-pooling layers were used, with batch normalization and a high-
resolution classifier (double the resolution for YOLOv1). They further introduced
anchor boxes (a prior set of bounding boxes given as input to the network) with
location offsets relative to the grid cells instead of predicting the bounding boxes
directly with global coordinates. The anchor boxes made the training of the net-
work significantly easier and it was inspired by Faster R-CNN [3][55]. To obtain
relevant anchor boxes, k-means clustering is used on the target dataset. Several ob-

I

A. Appendix

jects could then also be predicted at once since several anchor boxes are used when
sliding through the image. This increases the number of objects detected from 98
boxes to more than a thousand [3]. Moreover, a way of combining datasets was also
developed since there was a large gap between the existing number of annotations
for the classification and the detection. The method is using WordTree hierarchy
for object detection to solve the gap which made it possible to train both tasks
simultaneously. YOLO9000 is also trained with randomly selected input sizes to
provide a smooth trade-off between speed and accuracy.

YOLOv3 increased the overall performance by adding a better feature extractor
called Darknet-53, consisting of 53 convolutional layers with residual layers in be-
tween [18]. Residual networks use skip connections that skip several layers, which
eases the optimization task and solves the degradation problem that emerges as
networks become deeper [56][4]. YOLOv3 also predicts bounding boxes at three dif-
ferent scales, similar to a feature pyramid network (FPN) that concatenates feature
maps during downsampling with features during upsampling. The original author
of YOLO, Joseph Redmon, stopped developing the models after YOLOv3 [43].

YOLOv4 targeted training on conventional GPUs and did an investigation of dif-
ferent methods to increase efficiency and accuracy in the model architecture and
pipeline. The authors used a so-called “bag of freebies” that consisted of methods
to decrease the training costs and a “bag of specials” that significantly improves the
accuracy with a small increase in inference cost [6][20]. The backbone consists of a
CSPDarkNet53, which is a modified version of DarkNet53 where the RESNets are
replaced by cross-stage partial (CSP) blocks. CSP maintains fine-grained features
by repeatedly sending half of the feature map through a dense layer where the out-
put then is concatenated with the untouched half. This will allow a better gradient
flow through the dense layers, saves the gradient changes in the feature map, and
reduces the number of parameters. The neck then consists of spatial pyramid pooling
block (SPP) and a path aggregation network (PAN). SPP provides a fixed output
size with a dynamic input size and it increases the receptive field using different
sizes of pooling proportional to the input size, creating a spatial pyramid. PAN
is used to preserve the spatial knowledge that is easily lost in deep networks and
when down-sampling. The concept is the same as the FPN used in YOLOv3 but it
additionally includes an extra bottom-up layer that is used to connect layers from
the earlier layers. This thorough investigation increased the AP and FPS by 10 %
and 12 % respectively compared to the results of YOLOv3.

YOLOv5 translated the network from the framework Darknet to the user-friendly
and widely used framework PyTorch [43]. However, this model is similar to YOLOv4
and does not have any essential improvements [19][41]. Therefore, the name YOLOv5
has been controversial within the community [57][43] and there was no peer-reviewed
publication connected to the release of YOLOv5. YOLOv5 is also constantly devel-
oping with new versions within YOLOv5 and the framework gives a wide range of set-
tings and possibilities to modify the network structure for customization. YOLOv5
also uses auto-learning bounding box anchors for easier choice of anchors.

II

A. Appendix

Other YOLO versions have been developed after YOLOv5 such as PaddlePaddle
YOLO (PP-YOLO) which is based on another framework called PaddlePaddle, and
there are plenty of additional models that are modifications of the original YOLO
versions [20].

A.2 Literature review of object detectors
This section presents a literature review of different object detectors (other than
YOLO) that were investigated during this project.

A.2.1 R-CNN, Fast R-CNN, Faster R-CNN
Regional based convolutional neural network (R-CNN) is an early developed two
stage detector (TSD) from 2014. The model uses two thousand proposed regions
obtained by a selective search algorithm, which groups image segmentations into
larger regions by looking at different similarities [58]. The proposals of regions solved
the problem of having infinite possibilities of locations that CNN object detectors
previously had since the output must define all possible locations. The time required
to detect is high per image since the CNN is fed by all two thousand region proposals.
Therefore, the author created Fast R-CNN that instead runs the image directly as
input to the CNN, where the feature map then was reshaped using a region of
interest (ROI) pooling layer to fix the output image with the region proposals [55].
Faster R-CNN then increased the time even further by replacing the selective search
algorithm with a separate network that instead predicts the region proposals [59].

A.2.2 SSD
Single shot multi-box detector (SSD) was developed in 2016 to skip the region pro-
posal detector in R-CNNs and is, therefore, an OSD [60]. The model consists of
a single network that extracts features with a set of default bounding boxes and a
scoring of all classes per location. The bounding boxes and classes are then predicted
for multiple resolutions to handle objects in different sizes.

A.2.3 RetinaNet
RetinaNet is also an OSD and was the first one to surpass the TSD in accuracy
because it solved the class imbalance problem in OSDs [61]. This however results in
a high dimensional output where the number of elements is given by the number of
bounding boxes, locations, and classes (A.2.3).

nrelements = nrbox × nrloc × nrclass

The high dimensional output mostly contains “easy” negative predictions compared
to the TSD where the region proposal detection already has filtered out most regions
for the classification task. Classes that are considered “easy” to classify as negative

III

A. Appendix

for the network are the ones that obtain values close to zero. To solve this, they
introduced Focal loss that pushes all loss values near zero to zero to prevent small
losses on frequent classes to accumulate beyond the bigger losses on less frequent
classes. The structure is similar to other OSDs where they use a CNN structure
called ResNet as the backbone and a FPN.

A.2.4 LRF
Learning rich features (LRF) is an OSD that uses a bi-directional network instead
of the traditional top-down pyramid structure to preserve all levels of semantic
information since the top-down method mainly focuses on passing high-level features
to the bottom layers [62].

A.2.5 EfficientDet
EfficientDet is a family of detectors that use a weighted bi-directional feature pyramid
network (BIFPN) which is similar to the concept of LRF, and compound scaling
that scales the resolution, depth, and width of all stages of the network uniformly
[63]. These networks cover a large scale of resource constraints which increasingly
is requested.

A.3 Comparison of existing models
This section presents a comparison of the different models investigated in this project
before deciding which was most suitable.

A.3.1 Image classifiers
There are multiple frequently used networks for image classification such as ResNet,
SENet, AlexNet, DenseNet, Xception, and EfficientNet [64]. These networks are
compared in the paper for EfficientNet, where the EfficientNet is the smallest net
with the best accuracy.

Then there are networks specifically developed to be small and efficient for mobile
and embedded systems. In the ShuffleNetV1 paper, it is shown that ShuffleNet
achieves a better, or similar, classification error compared to other networks such as
VGG-16, GoogleNet, AlexNet, and SqueezeNet [15]. This is achieved even though
ShuffleNetV1 has down to ten times lower complexity (FLOP) than the networks
mentioned above [15]. The paper further stated that compared to MobileNet-224
which is an efficient network for mobile applications, the ShuffleNetV1 gives bet-
ter results in both complexity (FLOP), and classification error. However, another
paper that uses MobileNet-224 and ShuffleNetV1 states that MobileNet-224 gives
less error. On the other hand, in this test MobileNet-224 had four times more com-
plexity (FLOP) and twice as many parameters [16]. MobileNetV2 then came along
with better accuracy and less complexity than MobileNetV1, which achieved better
results than ShuffleNetV1 2x in terms of accuracy, but FLOP was not mentioned in

IV

A. Appendix

that paper [7]. A compilation of the results found in these papers can be found in
Table A.1.

Network Accuracy (%) MFLOP Params (M)
ShuffleNetV1 x0.5 (g=4) 58.4 38 -
ShuffleNetV1 x1.0 (g=8) 67.6 140 1.8
ShuffleNetV1 x1.5 (g=3) 71.5 292 3.4
ShuffleNetV1 x2.0 (g=3) 73.7 524 5.0

MobileNet-224 70.6 569 4.2
MobileNetV2 72.0 300 3.4
EfficientNet-B0 77.1 390 5.3

Table A.1: A comparison of different classifiers that were tested on the ImageNet
dataset. The numbers have been gathered from different papers [7][15][65][64].

A.3.2 Object detectors
To compare different object detectors, an overview of results achieved from several
object detector papers is discussed in this section. The investigation does mostly
focus on obtaining a model with high speed.

In the YOLOv2 paper, it is stated that YOLOv2 was able to predict with 73.4 mAP
for the VOC 2007 dataset [3], which already performed better than the TSDs Fast
R-CNN and Faster R-CNN as well as the OSD SSD as seen in Fig. A.1. The paper
however mentions that it performs worse using the COCO dataset, which is also
seen in the comparisons of models in the RetinaNet paper in Fig. A.2. The results
furthermore state that RetinaNet performs at the same level as the TSD and it is
the first OSD that has better accuracy than all TSD as mentioned earlier [61]. The
paper for YOLOv3 then uses almost the same graph as RetinaNet but adds the
results for YOLOv3. It shows the improvement in accuracy compared to YOLOv2,
seen in Fig. A.3. YOLOv3 almost reaches the level of accuracy RetinaNet has while
preserving the high speed of half the inference time RetinaNet requires.

The YOLOv4 paper is comparing its model to loads of other object detectors
(YOLOv3 among them), and YOLOv4 performs better than all in the trade-off
between precision and accuracy [6]. One of the more noticeable detectors men-
tioned is the learning rich features (LRF) since it could achieve a speed almost
twice the speed of YOLOv4 as seen in A.4. However, LRF instead suffers from
accuracy. EfficientDet is often seen in graphs for comparison since it is scalable in
a steady and uniform way [6][20][63][66]. YOLOv4 has double the speed compared
to EfficientDet, as seen in Fig. A.5.

YOLOv5 is not significantly different from YOLOv4 as mentioned in Sect. A.1.
One paper compares YOLO versions for detecting invisible cracks in the ground
using ground-penetrating radar [41]. Their results show that YOLOv4 has better
robustness and overall detection of cracks since YOLOv5 also detects pseudo-cracks.

V

A. Appendix

Another comparison paper which is exploring the evolution of YOLO versions, states
that it is hard to compare the two versions since they are built in two different lan-
guages and two different frameworks [43]. However, in the end, the same paper state
that YOLOv5 has been proven to be better in several circumstances. YOLOv5 is
also more practiced due to the ease of use compared to YOLOv4 which might lead
to more people using and testing YOLOv5. A third paper that uses object detection
for computer vision in apple picking robots has examined that the size of the file
containing the weights for YOLOv5 is 90 % smaller than the file for YOLOv4, which
makes the model more suitable for small mobile and embedded systems [66].

In the paper covering PP-YOLO, it is mentioned that PP-YOLO outperforms YOLOv4
as seen in Fig. A.6. Similarly, as seen in Fig. A.7 from the paper for PP-YOLOv2
it is shown that PP-YOLOv2 outperforms YOLOv5. There are however not many
other comparisons of the family of PP-YOLO and the framework PaddlePaddle is
not as widely known as Pytorch.

Figure A.1: Comparison of object detectors from the YOLOv2 paper [3]. Accuracy
and speed on VOC 2007 dataset.

VI

A. Appendix

Figure A.2: Comparison of networks from the RetinaNet paper [61]. Average
precision versus inference time on the COCO dataset.

Figure A.3: Comparison of networks from the YOLOv3 paper [18]. Average pre-
cision versus inference time on the COCO dataset.

VII

A. Appendix

Figure A.4: One of the graphs comparing networks from the YOLOv4 paper [6].
Average precision versus inference time on the COCO dataset.

Figure A.5: Another graph comparing networks from the YOLOv4 paper [6].
Average precision versus inference time on the COCO dataset.

VIII

A. Appendix

Figure A.6: Graph comparing networks from the paper covering PP-YOLO [20].
Average precision versus inference time on the COCO dataset.

Figure A.7: Grapgh from the PP-YOLOv2 paper [67]. Average precision versus
inference time on the COCO dataset.

IX

A. Appendix

A.4 Simple CNN model architecture

The architecture of the simple CNN model used in this project can be found in
Table. A.4.

Layer

2D Convolution, filters: 24, kernel size: 3, strides: 2, activation: relu, padding: same

Max pool, pool size: 3, strides: 2, padding: same

Batch normalization

2D Convolution, filters: 144, kernel size: 3, strides: 2, activation: relu, padding: same

Max pool, pool size: 3, strides: 2, padding: same
Batch normalization

Global average pooling

Dense, 512 neurons, activation: relu

Batch normalization

Dense, 256 neurons, activation: relu

Dense, 2 neurons, activation: None

Table A.2: The simple CNN model used as a student model during knowledge
distillation. The number of parameters used in the model is 240,722.

A.5 Set of results for knowledge distillation using
YOLOv5

A selected set of tests for knowledge distillation are listed in Table A.3 and their
results in accuracy are shown in Fig. A.8.

X

A. Appendix

i PT Teacher KD-
location

λ w P R mAP
@.5

mAP
@.5:.95

1 No None - - - 0.783 0.666 0.731 0.467
2 Yes None - - - 0.789 0.701 0.761 0.490
3 No YOLOv5s FM[0,1,0,0] 0.01 400 0.786 0.626 0.705 0.440
4 Yes YOLOv5s FM[0,1,0,0] 0.01 400 0.797 0.665 0.740 0.473
5 Yes YOLOv5l FM[0,1,0,0] 1 400 0.730 0.433 0.516 0.315
6 No YOLOv5l FM[0,1,0,0] 0.01 400 0.785 0.614 0.695 0.428
7 No YOLOv5l logits 0.01 400 0.788 0.697 0.761 0.488
8 Yes YOLOv5l FM[0,0,0,0] 0.01 400 0.685 0.417 0.470 0.289
9 Yes YOLOv5m FM[0,1,0,0] 0.01 400 0.788 0.658 0.728 0.459
10 Yes YOLOv5l FM[0,0,1,0] 0.01 400 0.773 0.615 0.695 0.428
11 Yes YOLOv5l FM[1,1,1,0] 0.01 0 0.792 0.709 0.771 0.499
12 No YOLOv5l FM[1,1,1,0] 0.01 0 0.798 0.669 0.744 0.478
13 No YOLOv5s logits 0.01 0 0.784 0.658 0.729 0.466
14 No YOLOv5l FM[1,1,1,0] 0.001 0 0.79 0.678 0.745 0.479
15 No YOLOv5l logits 0.1 0 0.77 0.597 0.675 0.406

Table A.3: A list of tests on knowledge distillation. Evaluated on a test set
with 28,884 images and 12,416 boat labels from the Kaggle Airbus challenge. All
models are trained for 80 epochs and evaluated with a batch size of one. i is the
test index. “PT” stands for pre-trained weights from the YOLOv5 repository (not
trained on the Airbus dataset) and the teacher weights are trained on the Airbus
dataset. KD-location shows whether feature maps or logits were used. FM stands
for feature maps where the four 1/0 indicates if the feature map is used or not. λ
is the knowledge distillation multiplication factor and w is the number of warm-up
steps (counted per batch).

XI

A. Appendix

Figure A.8: A visualization of the results is found in Table A.3 for the comparison
of different YOLOv5 models. The legend above corresponds to the index column in
Table A.3.

XII

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Research questions
	Limitations
	Important metrics and acronyms
	Outline

	Background
	Satellites
	Datasets
	Machine learning in image processing
	Image classification
	ShuffleNetV1
	Other classifiers

	Object detection
	YOLOv5

	Optimization
	Knowledge distillation
	Quantization

	Methods
	Dataset
	Model choice
	Classifiers
	Object detection: YOLOv5

	Training setup
	Evaluation
	Measuring accuracy
	Measuring resource usage
	Input image
	Inference time
	Memory

	Optimization methods
	Optimizing resource usage
	Memory management and conversion of datatypes
	Inference options

	Knowledge distillation
	Knowledge distillation for classification
	Knowledge distillation for object detection

	Results
	ML metrics
	Ml metrics of the classifiers
	ML metrics of YOLOv5

	Resource usage
	Resource usage using YOLOv5n
	Memory management and conversion of datatypes
	Breakdown of inference process
	Different input sizes
	Quantization
	Multithreading
	Batch size

	Resource usage using the classifiers
	Resource usage using ShuffleNet
	Resource usage using the simple CNN model

	Simple model vs. YOLOv5n

	Experimental results of knowledge distillation
	Results of knowledge distillation on the classifiers
	Results of knowledge distillation on YOLOv5

	Discussion
	Choice of dataset
	Choice of model
	Choice of classifier
	Choice of object detector

	Performance on the hardware
	Effects of code structure
	Converting image vs. converting tile to float32
	Using memcpy
	Memory used by the image
	How TFLite manages memory
	Better memory managements

	Effects of using different input sizes
	Choosing an input size
	Avoiding processing unnecessary pixels

	Quantizing the weights
	Multiple threads in the CPU
	Increasing the batch size
	Using the classifier

	Network compression with knowledge distillation
	ShuffleNetV1 teaching the simple CNN model
	Using unsupported networks

	YOLOv5l teaching a YOLOv5n
	The case of detecting maritime vessels
	The case of a large number of classes

	Theoretical optimizations
	Combining models
	Using only the classifier

	Detecting vessels from space
	Frame rate
	Memory when deployed
	The results depend on the camera
	Tiling the image
	Accuracy of the model
	Use cases

	Ethical and sustainability aspects
	Future work
	Further optimizations of memory and speed
	Serialization of the GPU delegate
	memcpy using batches
	The problem of overlapping tiles
	Knowledge distillation for object detectors
	Testing in space
	Edge Learning

	Conclusion
	Appendix
	The history of YOLO
	Literature review of object detectors
	R-CNN, Fast R-CNN, Faster R-CNN
	SSD
	RetinaNet
	LRF
	EfficientDet

	Comparison of existing models
	Image classifiers
	Object detectors

	Simple CNN model architecture
	Set of results for knowledge distillation using YOLOv5

