
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0
500

1000
1500

2000
2500

3000
3500

4000
4500

0

1

2

3

4

5

6

x 10
−3

Hardware Platform For Active Acoustic Spec-

troscopy Sensors

Master of Science Thesis in the Programme Integrated Electronic System Design

LIXUN XIA

BIN LIAO

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, September 2010

The Author grants to Chalmers University of Technology and University of Gothen-

burg the non-exclusive right to publish theWork electronically and in a non-commercial

purpose make it accessible on the Internet. The Author warrants that he/she is the au-

thor to the Work, and warrants that the Work does not contain text, pictures or other

material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for ex-

ample a publisher or a company), acknowledge the third party about this agreement.

If the Author has signed a copyright agreement with a third party regarding the Work,

the Author warrants hereby that he/she has obtained any necessary permission from

this third party to let Chalmers University of Technology and University of Gothenburg

store the Work electronically and make it accessible on the Internet.

Hardware Platform for Active Acoustic Spectroscopy Sensors

LIXUN XIA

BIN LIAO

© LIXUN XIA, September 2010

© BIN LIAO, September 2010

Examiner: Lars Bengtsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone +46(0)31-772 1000

Cover:

Frequency response functions with different number of windows for averaging, on

page 12.

Department of Computer Science and Engineering

Göteborg, Sweden 2010

MASTER’S THESIS 2010:09

Hardware Platform for Active Acoustic

Spectroscopy Sensors

Master’s Thesis in Integrated Electronic System Design

LIXUN XIA

BIN LIAO

Department of Computer Science and Engineering

Division of Computer Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2010

Hardware Platform for Active Acoustic Spectroscopy Sensors

Master’s Thesis in the Master’s Program in Integrated Electronic System Design

LIXUN XIA

BIN LIAO

Department of Computer Science and Engineering

Division of Computer Engineering

Chalmers University of Technology

Abstract

Real-time estimation of the frequency response function of fluids is one of the critical

building blocks for cost-effective application of active acoustic spectroscopy technol-

ogy in process control industry. The motivation was to study and develop real-time

algorithm for non-parametric estimation of frequency response function on embedded

platforms, according to the specific requirements and application scenario involved in

active acoustic spectroscopy sensors. In addition to that, implementations of the al-

gorithm on fixed-point and floating-point digital signal processors have been made in

order to benchmark the performance and evaluate different platforms.

The up-to-date ADSP-BF561 and ADSP-21489 processors, designed for signal pro-

cessing tasks around audio frequency range, served as the implementation and evalu-

ation platforms. The embedded programs for each have been developed based on the

distinct processor architectures and memory hierarchies. It has been observed that the

floating-point processor which runs at much slower core frequency, delivers better per-

formance over the other. By the benchmark results, it could be identified that the less

efficient memory substructure of the fixed-point processor constitutes the bottleneck of

its total performance.

Keywords: Active Acoustic Spectroscopy, Frequency Response Function, Digital Signal

Processing

CHALMERS, Master’s Thesis 2010:09 iv

Contents

Abstract iv

Contents v

Acknowledgements vii

1. Introduction 1

2. Theories for Estimation of Frequency Response Function 3

2.1. System Model . 3

2.2. Estimate Spectral Densities . 4

2.2.1. Transform of Correlation Functions 6

2.2.2. Periodogram’s Perspective . 8

2.2.3. A More General Result . 9

2.3. Estimate FRF . 10

2.4. Estimate Impulse Response . 13

3. Fixed-Point Implementation 17

3.1. Hardware Description . 17

3.1.1. Digital Signal Processor: ADSP-BF561 18

3.1.2. Analog-To-Digital Converter: AD 1836A 19

3.2. Software System . 19

3.2.1. Dual Cores Programming . 19

3.2.2. Programming Language . 20

3.2.3. Fractional Number Computation 20

3.2.4. Software Design . 22

4. Floating-Point Implementation 27

4.1. Hardware Setup . 27

4.2. Software Design . 28

4.3. Calibration . 31

4.4. Verification . 34

4.4.1. Lowpass Filter Without Delay . 35

4.4.2. Highpass Filter Without Delay . 36

v

4.4.3. Lowpass Filter With Delay . 36

4.4.4. Highpass Filter With Delay . 37

5. Benchmarks and Conclusion 39

5.1. Timing . 40

5.2. Precision . 41

5.3. Summary . 45

References 47

A. Proofs 49

B. Matlab Scripts 51

CHALMERS, Master’s Thesis 2010:09 vi

Acknowledgements

We would like to express our gratitude to the examiner of the thesis Lars Bengtsson

from Chalmers University of Technology, and our supervisor David Brohall and Felix

Törner from Acosense AB.

vii

CHALMERS, Master’s Thesis 2010:09 viii

1. Introduction

As a company developing active acoustic spectroscopy sensors for process control in-

dustry, Acosense AB needs real-time estimation of the frequency response function(FRF)

of fluids flowing through pipes based on acoustic noise-stimulus-and-responsemethod.

The system to be estimated could be modeled as a single-input single output(SISO) lin-

ear system, but with delay due to the physical propagation time of the sound wave.

The estimation algorithm is expected to provide decent estimate precisions and mean-

while to keep a small profile so that the program could run on commercial digital signal

processors. The hardware have three input signals to process during estimation: one

stimulus and two responses. Therefore a single such device would be able to calculate

two FRFs. Figure 1.1 has shown a pipe with two sensors clamped around both edges.

Pipe

receiver(A11) receiver(A12)

transmitter(S12) transmitter(S22)

receiver(A21) receiver(A22)

Figure 1.1.: Sensor Installation

In chapter 2, we will take a close look at the methods for FRF estimation. Different

estimators will be examined and evaluated according to the design trade-offs decided

by the hardware resource available. H1 estimator turns out to be the best method for

our application. In chapter 3, algorithm design and implementation based on the fixed-

point digital signal processor is presented. Due to the insufficient capacity of the fast

on-chip memory on this platform, slower SDRAM must be used to fulfill the compu-

tation. Meanwhile the program has to be modified because of the restricted on-chip

memory space. The counterpart implementation on the floating-point processor will

be given in chapter 4. Thanks to the larger internal memory and the floating point unit,

algorithm could be realized straight forward on this platform. The error analysis and

performance benchmark between both platforms will be discussed in the final chap-

ter(chapter 5). The precision and computation speed for both have been measured and

compared in several tables.

1

CHALMERS, Master’s Thesis 2010:09 2

2. Theories for Estimation of Frequency

Response Function

2.1. System Model

The system to be estimated H(ω) can bemodeled as a linear single-input single-output(SISO)

system, with propagation delay τ of the sound. The measurements of the stimulus and

response would also be contaminated by additive measurement noises. Other physical

effects such as Doppler frequency shift are not modeled and will not be discussed in

the thesis. Thus the model for the test system can be visualized as in the block diagram

of figure 2.1.

H(ω) e−jωτ

u(n)

p(n)

x(n) y(n)

q(n)

v(n)

Figure 2.1.: System Under Estimate

x(n) and y(n) are the stimulus and response signal respectively, whose measure-

ments – u(n) and v(n) contain the observation noises p(n) and q(n). We assume these

noises, which come from AD conversion or any other sources, are uncorrelated with

each other and with the stimulus and response. The stimulus time series we are us-

ing are white noises with user defined distributions. Therefore the stimulus belongs

to wide sense stationary stochastic process. This process, filtered by the linear system

H(ω), gives the output as a process that is also wide sense stationary. Accordingly our

future discussions will be based on the presumption that both stimulus and response

are wide sense stationary stochastic process. We will derive all equations that are going

to be realized in the prototype from the definition of the cross correlation function at

the beginning. Each step of the derivation and analysis is helpful to analyze and verify

the algorithms for implementation at early phase.

3

2.2. Estimate Spectral Densities

Estimation of spectral densities has been investigated for a long time and it has a strong

connection with FRF estimation. We will focus on cross correlation and cross spectral

density estimation in this section because auto correlation and power spectral density

are just the special cases. For discrete time series x(n) and y(n), the cross correlation

between them is defined as

rxy(k) = lim
N→∞

1

2N + 1

N

∑
n=−N

x∗(n)y(n+ k) (2.1)

We usually work with a finite number or ”window” of samples in engineering due to

the limited resource of the hardware, and this ”window” of the true time series often

results in frequency leakages [Whw 09]. One solution to this problem is to add weights

to the samples within such that the credibility of the samples reduces from the middle

of the window to both far ends, besides the weights outside the window must be zero.

So any ”window” of the true time series is identical to the multiplication of the true

time series which are infinitely long with a window function. So the cross-correlation

function of rectangularly windowed time series x(0), x(1), . . . x(N − 1), x(k) = 0 when

k < 0 or k > N− 1 and y(0), y(1), . . . y(N− 1), y(k) = 0 when k < 0 or k > N− 1 could

be derived in equation 2.2, according to definition 2.1.

r̂xy(k) =
1

N

N−1

∑
n=0

x∗(n)y(n+ k) (2.2)

r̂xy(k) could also be regarded as an estimate of the authenticate cross correlation func-

tion. The cross spectral density is the discrete-time fourier transform(DTFT) of the

cross-correlation function of both wide sense stationary processes, given as theWiener–

Vkhinchin theorem and shown in equation 2.3.

Sxy(ω) = DTFT{rxy(k)} =
∞

∑
k=−∞

rxy(k)e
−jωk (2.3)

So the cross spectral density of the rectangularly windowed samples would be

Ŝxy(ω) = DTFT{r̂xy(k)} =
∞

∑
k=−∞

r̂xy(k)e
−jωk =

N−1

∑
k=1−N

r̂xy(k)e
−jωk (2.4)

Meanwhile the cross spectral density in equation 2.4 would alternatively be obtained

from multiplication of DTFT of the rectangularly windowed time series directly.

Ŝxy(ω) =
1

N
X∗(ω)Y(ω)

=
1

N

[

N−1

∑
n=0

x(n)e−jωn

]∗ [
N−1

∑
m=0

y(m)e−jωm

] (2.5)

CHALMERS, Master’s Thesis 2010:09 4

We can show that equation 2.4 and 2.5 are the same, because they are just different ways

of summing up the entries in equation 2.6 and 2.7. The cross correlation matrix can be

derived by the multiplication of column vector x(n) and y(n) as in equation 2.6.

x(n)y(n)′ =





















x0y0 x0y1 x0y2 x0y3 · · · x0yN−1

x1y0 x1y1 x1y2 x1y3 · · · x1yN−1

x2y0 x2y1 x2y2 x2y3 · · · x2yN−1

x3y0 x3y1 x3y2 x3y3 · · · x3yN−1

· · · · · · · · · · · ·
. . . · · ·

xN−1y0 xN−1y1 xN−1y2 xN−1y3 · · · xN−1yN−1





















(2.6)

The phasor matrix can be written as in equation 2.7.

Wφ(ω) =





















e−jω0 e−jω1 e−jω2 e−jω3 · · · e−jω(N−1)

e−jω(−1) e−jω0 e−jω1 e−jω2 · · · e−jω(N−2)

e−jω(−2) e−jω(−1) e−jω0 e−jω1 · · · e−jω(N−3)

e−jω(−3) e−jω(−2) e−jω(−1) e−jω0 · · · e−jω(N−4)

· · · · · · · · · · · ·
. . . · · ·

e−jω(1−N) e−jω(2−N) e−jω(3−N) e−jω(4−N) · · · e−jω0





















(2.7)

Then the cross spectral density Ŝxy(ω) is the ”dot product” of the cross correlation ma-

trix and the phasor matrix, given in equation 2.8. The ”dot product” operator multiplies

corresponding entries between two matrices and accumulates the productions, similar

as dot product of two vectors. Equation 2.5 implies that the entries of matrix in equation

2.8 are summed row by row. This can be verified by expanding the polynomial multi-

plications in equation 2.5. While in equation 2.4, the entries are summed up diagonally,

as marked by the red line for the zero lag.

Ŝxy(ω) =
1

N
x(n)y(n)′ ·Wφ(ω) (2.8)

Because equation 2.4 and 2.5 are mathematically the same, we will develop the mathe-

matical expectation with both methods for further comparison and verification, which

will be described in the following subsections.

5 CHALMERS, Master’s Thesis 2010:09

2.2.1. Transform of Correlation Functions

From equation 2.4 we have: when k = 0, 1, · · · ,N − 1,

E
{

r̂xy(k)
}

=
1

N

N−1

∑
n=0

E {x∗(n)y(n+ k)}

=
1

N

N−1−k

∑
n=0

E {x∗(n)y(n+ k)}

=
1

N

N−1−k

∑
n=0

rxy(k)

=
N − k

N
rxy(k)

(2.9)

when k = 1− N, 2− N, · · · ,−1,

E
{

r̂xy(k)
}

=
1

N

N−1

∑
n=0

E {x∗(n)y(n+ k)}

=
1

N

N−1

∑
n=−k

E {x∗(n)y(n+ k)}

=
1

N

N−1

∑
n=−k

rxy(k)

=
N + k

N
rxy(k)

(2.10)

when |k| ≥ N, r̂xy(k) gives only zeros, and the expectation will also be zero. To sum

up, we have

E
{

r̂xy(k)
}

= wB(k)rxy(k) (2.11)

where

wB(k) =











N−|k|
N |k| < N

0 otherwise

(2.12)

The triangular shaped wB(k) function was also named Bartlett window, in figure 2.2.

As the existence of the window, r̂xy is a biased estimate of the true cross correlation

function. Nonetheless, we can always extend the number of N so that the window con-

verges to constant unity in the time domain, which in turn gives an unbiased estimate

of the cross correlation. Therefore r̂xy is an asymptotic unbiased estimate of the true

cross correlation [Hys 96].

CHALMERS, Master’s Thesis 2010:09 6

0

N−N

N = ∞

Figure 2.2.: Bartlett Window

The mathematical expectation of the cross spectral density Ŝxy(ω) will be

E
{

Ŝxy(ω)
}

= E

{

∞

∑
k=−∞

r̂xy(k)e
−jωk

}

=
∞

∑
k=−∞

E
{

r̂xy(k)
}

e−jωk

=
∞

∑
k=−∞

rxy(k)wB(k)e
−jωk

=
1

2π
Sxy(ω) ∗WB(ω)

(2.13)

Where ”∗” indicates convolution operation, besides WB(ω) is the DTFT of wB(k). As

N → ∞ we have wB(k) → 1. It follows thatWB(ω) → 2πδ(ω). Hence

lim
N→∞

E
{

Ŝxy(ω)
}

= lim
N→∞

1

2π
Sxy(ω) ∗WB(ω)

=
1

2π
Sxy(ω) ∗ 2πδ(ω)

= Sxy(ω) ∗ δ(ω) = Sxy(ω)

(2.14)

7 CHALMERS, Master’s Thesis 2010:09

2.2.2. Periodogram’s Perspective

From equation 2.5, given wR(k) as the rectangular window, i.e. wR(k) = 1 when k =

0 · · ·N − 1 otherwise 0, we have:

E
{

Ŝxy(ω)
}

=
1

N
E

{[

N−1

∑
n=0

x(n)wR(n)e
−jωn

]∗ [
N−1

∑
m=0

y(m)wR(m)e−jωm

]}

=
1

N
E

{[

N−1

∑
n=0

x∗(n)wR(n)e
jωn

] [

N−1

∑
m=0

y(m)wR(m)e−jωm

]}

=
1

N
E

{

N−1

∑
n=0

N−1

∑
m=0

x∗(n)wR(n)y(m)wR(m)e−jω(m−n)

}

=
1

N

N−1

∑
n=0

N−1

∑
m=0

E {x∗(n)y(m)}wR(n)wR(m)e−jω(m−n)

=
1

N

N−1

∑
n=0

N−1

∑
m=0

rxy(m− n)wR(n)wR(m)e−jω(m−n)

(2.15)

Note that the rectangular and Bartlett window are all real functions, whereas x(n) and

y(n) are not necessary the case. By variable substitution as k = m− n, we have:

E
{

Ŝxy(ω)
}

=
1

N

N−1

∑
k=1−N

N−1

∑
m=0

rxy(k)wR(m− k)wR(m)e−jωk

=
N−1

∑
k=1−N

rxy(k)

[

1

N

N−1

∑
m=0

wR(m− k)wR(m)

]

e−jωk

=
N−1

∑
k=1−N

rxy(k)wB(k)e
−jωk

=
1

2π
Sxy(ω) ∗WB(ω)

(2.16)

The result is consistent with what we’ve obtained before. Besides we have got a new

relationship from equation 2.16:

wB(k) =
1

N

∞

∑
m=−∞

wR(m− k)wR(m) = rRR(k) =
1

N
wR(k) ∗ wR(−k) (2.17)

Therefore the DTFT of the Bartlett window can be represented by DTFT of rectangular

window shown in equation 2.18.

WB(ω) =
∞

∑
k=−∞

wB(k)e
−jωk

=
∞

∑
k=−∞

[

1

N
wR(k) ∗ wR(−k)

]

e−jωk

=
1

N
WR(ω)W∗

R(ω) =
1

N
|WR(ω)|2

(2.18)

CHALMERS, Master’s Thesis 2010:09 8

Consequently, we have

E
{

Ŝxy(ω)
}

=
1

2πN
Sxy(ω) ∗ |WR(ω)|2 (2.19)

2.2.3. A More General Result

Although we have expected the same results from both methods previously described.

The run-time and space complexities are different from each other. For the cross-

correlation method, we have to handle data array of length up to 2N − 1. The peri-

odogram method on the other hand has a constant data array length of N. For large

number of N, it is more feasible to use the periodogram based method. Therefore we

prefer the periodogram based method to be implemented for the prototype.

In a more general case, the discrete time series are windowed with arbitrary window

function, marked as w(n). Based on the conclusion of section 2.2.2, we could derive

the result quickly as well. For a window function other than rectangular, the mathe-

matical expectation of the estimate might be biased, thus we need to insert a scalar to

compensate this bias. Assume we need U for an asymptotically unbiased estimate of

the CSD.

Ŝxy(ω) =
1

NU

[

∞

∑
n=−∞

x(n)w(n)e−jωn

]∗ [
∞

∑
m=−∞

y(m)w(m)e−jωm

]

(2.20)

So we have the mathematical expectation by equation 2.19:

E
{

Ŝxy(ω)
}

=
1

2πNU
Sxy(ω) ∗ |W(ω)|2

= Sxy(ω) ∗
1

2πNU
|W(ω)|2

(2.21)

We need the area of the function that Sxy(ω) convolutes with to be an unity, so that

when N → ∞, the δ(ω) function would be unit area(no bias).

∫ π

−π

1

2πNU
|W(ω)|2 dω = 1 (2.22)

Now considering Parseval theorem(proof in the appendix), we have

N−1

∑
n=0

|w(n)|2 =
1

2π

∫ π

−π
|W(ω)|2 dω (2.23)

With equation 2.22 and 2.23 we have determined the value for U as

U =
1

N

N−1

∑
n=0

|w(n)|2 (2.24)

9 CHALMERS, Master’s Thesis 2010:09

The equation 2.20 can evenmore be averaged over several overlapped or non-overlapped

data windows to reduce the variance [Pwh 67]. Given K data windows, it can be de-

scribed as

Ŝxy(ω) =
1

NUK

K−1

∑
i=0

[

∞

∑
n=−∞

xi(n)w(n)e
−jωn

]∗ [
∞

∑
m=−∞

yi(m)w(m)e−jωm

]

(2.25)

The reduce of variance is crucial since only when both (1) the sample mean of the es-

timate is unbiased or asymptotically unbiased, (2) variance converges to zero, can we

say that the estimate is consistent. The proof that guarantees the convergence of the

variance can be found in literature [Hys 96].

2.3. Estimate FRF

Now that equation 2.25 give us a consistent and implementation efficient way to esti-

mate spectral densities, we can step further to find out the relationship between differ-

ent spectra. Assume the impulse response of our system under estimate is h(n), as in

figure 2.1, the output of the system will be

y(n) =
∞

∑
m=0

h(m)x(n−m) (2.26)

The cross correlation of the input and output will be

rxy(k) = E {x∗(n)y(n+ k)}

= E

{

x∗(n)
∞

∑
m=0

h(m)x(n+ k−m)

}

= E

{

∞

∑
m=0

h(m)x∗(n)x(n+ k−m)

}

=
∞

∑
m=0

h(m)E {x∗(n)x(n+ k−m)}

=
∞

∑
m=0

h(m)rxx(k−m)

= h(k) ∗ rxx(k)

(2.27)

CHALMERS, Master’s Thesis 2010:09 10

Alternatively,

ryy(k) = E {y∗(n)y(n+ k)}

= E

{

y∗(n)
∞

∑
m=0

h(m)x(n+ k−m)

}

= E

{

∞

∑
m=0

h(m)y∗(n)x(n+ k−m)

}

=
∞

∑
m=0

h(m)E {y∗(n)x(n+ k−m)}

=
∞

∑
m=0

h(m)ryx(k−m)

= h(k) ∗ ryx(k)

(2.28)

It follows the relationship in frequency domain as

Sxy(ω) = H(ω)Sxx(ω) (2.29)

Syy(ω) = H(ω)Syx(ω) (2.30)

Hence, as long as we know relevant spectral densities of input and output signals, the

estimate of the frequency response function would be

ˆFRF = Ĥ(ω) =
Ŝxy(ω)

Ŝxx(ω)
=

Ŝyy(ω)

Ŝyx(ω)
(2.31)

Now we insert equation 2.20 into 2.31 and we have

Ĥ(ω) =

1
NU

[

∞

∑
n=−∞

x(n)w(n)e−jωn

]∗ [∞

∑
m=−∞

y(m)w(m)e−jωm

]

1
NU

[

∞

∑
n=−∞

x(n)w(n)e−jωn

]∗ [∞

∑
m=−∞

x(m)w(m)e−jωm

]

=

∞

∑
m=−∞

y(m)w(m)e−jωm

∞

∑
m=−∞

x(m)w(m)e−jωm

(2.32)

We can see that the estimation based on single data window degenerates to the direct

division of output and input in frequency domain, which has much higher variance

11 CHALMERS, Master’s Thesis 2010:09

compared to averaged version using several data windows, described below

Ĥ(ω) =

1
NUK

K−1

∑
i=0

[

∞

∑
n=−∞

xi(n)w(n)e
−jωn

]∗ [∞

∑
m=−∞

yi(m)w(m)e−jωm

]

1
NUK

K−1

∑
i=0

[

∞

∑
n=−∞

xi(n)w(n)e−jωn

]∗ [∞

∑
m=−∞

xi(m)w(m)e−jωm

]

=

K−1

∑
i=0

[

∞

∑
n=−∞

xi(n)w(n)e
−jωn

]∗ [∞

∑
m=−∞

yi(m)w(m)e−jωm

]

K−1

∑
i=0

[

∞

∑
n=−∞

xi(n)w(n)e−jωn

]∗ [∞

∑
m=−∞

xi(m)w(m)e−jωm

]

(2.33)

As shown in the cover figure, increase of total number of windows results in the in-

crease of the FRF magnitude in low frequencies, showing better and better approxi-

mations to the real value. The Fourier transform in equation 2.33 is the DTFT of win-

dowed sample series, which could be replaced by DFT when discrete frequency bins

or frequency samples [Mkv 09], are preferred for digital implementations, as given in

equation 2.34.

Ĥ(k) =

K−1

∑
i=0

[

∞

∑
n=−∞

xi(n)w(n)e
−j 2π

N kn

]∗ [∞

∑
m=−∞

yi(m)w(m)e−j 2π
N km

]

K−1

∑
i=0

[

∞

∑
n=−∞

xi(n)w(n)e
−j 2π

N kn

]∗ [∞

∑
m=−∞

xi(m)w(m)e−j 2π
N km

] (2.34)

Nevertheless the measured signals contain observation noise. We should see what

equation 2.31 becomes when measurement noise cannot be ignored. To simplify the

analysis we can assume the additive noises are uncorrelated with each other and with

the stimulus and response.

H1(ω) =
ˆSuv
ˆSuu

=
ˆSxy + ˆSpy + ˆSxq + ˆSpq

ˆSxx + ˆSpx + ˆSxp + ˆSpp

=
ˆSxy

ˆSxx + ˆSpp

=
ˆSxy
ˆSxx

ˆSxx
ˆSxx + ˆSpp

= Ĥ(ω)
ˆSxx

ˆSxx + ˆSpp

(2.35)

Since |Sxx/(Sxx + Spp)| will always less than 1, thus the input observation noise has

introduced an error, which makes |H1| estimate less than the perfect estimate |Ĥ(ω)|.

CHALMERS, Master’s Thesis 2010:09 12

Following the same logic, we can get the so called H2 estimator, which has a positive

systematic error for the output observation noise, shown in equation below.

H2(ω) =
ˆSvv
ˆSvu

=
ˆSyy + ˆSqy + ˆSyq + ˆSqq
ˆSyx + ˆSqx + ˆSyp + ˆSqp

=
ˆSyy + ˆSqq

ˆSyx

=
ˆSyy
ˆSyx

ˆSyy + ˆSqq
ˆSyy

= Ĥ(ω)
ˆSyy + ˆSqq

ˆSyy

(2.36)

We can also notice that equation 2.36 can not be evaluated at zeros of the linear system

due to the response power spectrum as the denominator. The third kind of FRF estima-

tor is the geometric mean of H1 and H2, named with Hr. Although Hr provides a better

estimate than H1 and H2 in terms of systematic error, still Hr could not handle systems

with zeros. There are also many other sophisticated estimators [Apv 06] that optimize

certain performance but the drawbacks are also obvious—they are not suitable for em-

bedded computation. Taken these all into account, we have chosen the H1 estimator

for implementation. The form of H1 can be referred to as in equation 2.34 but with x(n)

and y(n) replaced by measured quantities u(n) and v(n).

The last factor that may affect our estimate quality would be the propagation delay of

the sound wave. Mathematically this delay stage only introduces a phase shift for the

FRF, which could be observed from the fourier transform of the delayed system. But

we are working with limited window length(samples). The delay reduces the num-

ber of samples that are correlated with each other between stimulus and response in

a given window. Therefore the propagation delay affects the magnitude response as

well. Consequently it is a common practice to estimate or measure the delay first so

that the stimulus and response can be properly aligned digitally in the memory space

[Ayt 77]. The impulse response of the delayed system could be used for such detection.

2.4. Estimate Impulse Response

The impulse response function can be estimated statistically by time-domain correla-

tion analysis method. Again we take a retrospect into equation 2.27. If the input signal

13 CHALMERS, Master’s Thesis 2010:09

is white noise with unit variance(σ2
x = 1), then we have the new relationship as

rxy(k) = h(k) ∗ rxx(k)

= h(k) ∗ σ2
xδ(k)

= σ2
xh(k)

= h(k)

(2.37)

Therefore the problem has been converted to how to precondition the input and output

signals so that white noise can be achieved. We use whitening filters F(ω) added to

known linear system, as in figure 2.3. The whitening filter is designed such that the fil-

H(ω)e−jωτ

F (ω)

F (ω)

y(n)
x(n)

v(n)

u(n)

Figure 2.3.: Estimate of Impulse Response

tered x(n), which is u(n), will be white noise with variance σ2. For the newly generated

signals u(n) and v(n), still we have

ruv(k) = h(k) ∗ ruu(k)

= h(k) ∗ σ2δ(k)

= σ2h(k)

→ h(k) =
ruv(k)

σ2

(2.38)

The design of the whitening filter may start with auto-regressive estimation of the

power spectrum of signal x(n), and then compensate the spectrum to form a constant

power spectrum, indicating uncorrelated time series or white noise. Efforts can be

saved however, when x(n) is already uncorrelated, thus whitening filters might not

be needed.

In this chapter, we have rebuilt the entire calculation model for FRF estimation based

from some basic definitions. This process helps analyze the conversion frommathemat-

ical equations to algorithms for machines. Evenmore, connections of different methods

CHALMERS, Master’s Thesis 2010:09 14

have been clarified. Consequently this chapters serves as the foundation for the rest of

the contents.

15 CHALMERS, Master’s Thesis 2010:09

CHALMERS, Master’s Thesis 2010:09 16

3. Fixed-Point Implementation

In this chapter, we will discuss how to use fixed-point DSP, ADSP-BF561 in the project,

to implement FRF algorithm in real time system. First, we cover briefly description of

hardware system. Then, dependent on property of hardware, we will focus on the topic

that how to design suitable software system on it.

3.1. Hardware Description

The hardware system mainly consists of three parts, Analog/Digital Converter(ADC),

Digital Signal Processor(DSP) and Computer(PC). In this project, ADSP-BF561 EZ-KIT

lit(EZ-KIT), which is evaluation system for Blackfin processor, is used. It contains

ADSP-BF561 Blackfin processor and AD1836 multichannel audio codec on the board.

Connection between PC and EZ-KIT lit is showed in figure 3.1.

4
2
1

5

ADSP-Bf561

EZ-KIT Lite borad

3

Figure 3.1.: Construction Of Hardware System: 1.ADSP-BF561 Blackfin processor,

2.AD1836 multichannel 96kHz audio codec, 3.64M SDRAM, 4.RCA jacks

for stereo audio input, 5.USB port

One function of PC is used to send audio signals, which are imaged as analog input

signals in the working environment, from sound card to RCA jack on EZ-KIT. Another

function is used to receive and display results after processing. In DSP the final re-

sults are dumped out through USB port, then showed on PC screen by using Matlab

17

software. The following sections will briefly introduce the properties of each part of

hardware.

3.1.1. Digital Signal Processor: ADSP-BF561

The ADSP-BF561[Bds 09] is a high performance member of Blackfin family of products

targeting a variety of multimedia, industrial and telecommunications applications. At

the heart of this device are two independent Analog Devices Blackfin processors. Each

of these Blackfin processors combine a dual-MAC state-of-the-art engine, the advantage

of a clean, orthogonal RISC-like microprocessor instruction set, and signal instruction,

multiple data(SIMD) multimedia capabilities in a signal instruction set architecture.

The ADSP-BF561 processor has dual symmetric 600MHz high performance cores and

each core has include:

• two 16-bit MACs

• two 40-bit ALUs

• four 8-bit video ALUs

• 40-bit shifter

And 328K bytes of on-chip memory. Each of core includes:

• 16K bytes of instruction SRAM/cache

• 16K bytes of instruction SRAM

• 32K bytes of data SRAM/cache

• 32K bytes of data SRAM

• 4K bytes of scratchpad SRAM

Additional on-chip memory peripherals include:

• 128K bytes of low latency on chip L2 SRAM

• Four-channel internal memory DMA controller

• External memory controller with glueless for SDRAM, mobile SDRAM, SRAM

and flash.

Blackfin processors also provide advanced power management and performance,

which is world-class level, but we are not supposed to use that property in this project.

So we will not mention the detail of portable low power architecture here.

CHALMERS, Master’s Thesis 2010:09 18

3.1.2. Analog-To-Digital Converter: AD 1836A

The AD 1836A is high performance, single-chip codec which provides three indepen-

dent stereo DACs and two independent stereo ADCs. The ADC section can be operated

at both 96KHz and 48KHz. And it accepts 16-/18-/20-/24-bit data. In this project, one

of ADC channels is used for transforming analog input signals to digital input signals.

It is supposed to work at 24-bit data length and 96KHz sampling rate in order to achieve

high performance.

3.2. Software System

3.2.1. Dual Cores Programming

ADSP-BF561 processor[Bhr 10] has dual-symmetric blankfin cores on chip, each of which

is running independent with each other. Each core has its own Level one(L1) cache, and

a shared Level two(L2) cache. One of the biggest advantage of having a dual cores pro-

cessor is for ability to perform thread level parallelism(TLP). A thread is a task that

computer puts resources to run. One processor has two cores. It means that, on a sin-

gle clock cycle, a dual-cores processor is able to operate more data and cost less energy

relative to single-core processor with the same clock speed and the same architecture.

Just as two head are better than one.

While the advantages far outweigh the disadvantage, we should be aware of a few

negatives. One of these is that software need to be redesigned to work specifically with

dual-cores processor. It is important to note that the most reliable design is to have

an individual processor on a chip and due to the fact that dual-core processor always

works faster and harder, which puts constraints on system buses and other part of

hardware, such as memory. About memory, programmers have to carefully consider

the fact, keeping memory consistence between two cores.

In this project, FRF algorithm is supposed to only be implemented on one core(core

A), meanwhile another core might be remained to process works such as flow control in

the future, whichwill not be covered in this report. Twomotivations encourage us to do

that. The first advantage is that memory consistence, which would definitely increase

the cost of program development, do not need be considered in this stage. The second

one is that there is no need add chip, if extra functions, such as system control, are

supposed to be implemented on system in the future. Therefore programmer should

have less space requirement of final products. As a result, we develop program on

BF561 processor as single core processor programming during this stage, meanwhile

core B is in idle condition all the time.

19 CHALMERS, Master’s Thesis 2010:09

3.2.2. Programming Language

DSPs are programed in the same languages as other scientific or engineering applica-

tions, usually assembly or C. Assembly is able to easily control and operate hardware

resource, such as MACs, ALUs and shifters to exploit parallel execution as much as

possible, therefore the program written in assembly usually execute faster. However, it

is difficult to program in assembly for beginner, since it will need roughly six months

training before that.

While the program written in C is much easier relative to assembly. A key advantage

of using C is that the programmer dose not need to totally understand architecture of

processor being used; knowledge of architecture is left to compiler to deal with. So

the programs written in C are usually easier to develop and maintain. However, if the

programmer, who does not care about any knowledge about architecture and assem-

bly instruction set, try to develop software system in C, the compiler probably can not

translate them efficient to machine language. C code usually requires a large number of

memory than assembly, resulting in more expensive hardware. Therefore, even if pro-

grammer plan to program only in C, we will probably need to write compiler-friendly

sentences in C.

What is best language for our application? During this project developing, we do

not have enough time to learn assembly and implement FRF algorithm in it. On the

other hand, FRF is so complex algorithmwhich is inefficient and not easy to implement

it in assembly from the beginning to the end. In comparison, the program written in

C even can obtain good enough performance in this project. And we also can balance

between to world: written program in C, but use assembly for critical sections which

must execute quickly.

3.2.3. Fractional Number Computation

Fixed point DSPs, such as BF561, usually represents each number with minimum 16

bits. There are four common way that 216 = 65536 possible bit patterns can be repre-

sented as a number.In unsigned integer, the store number value can be any integer from

0 to 65536 and scaling factor is equal to 20 = 1. Similarly, signed integer, use two’ com-

plement, in which the most significant bit(MSB) stands for the sign symbol, to make

range from -32768 to 32767, and scaling factor is still equal to 20 = 1. With unsigned

fraction notation and signed fraction notation, the 65536 levels are uniformed spread

between 0 and 1 and between -1 and 1 separately, while both of their scaling factors

are equal to 2−15. In the project, since the value of input data, which are sampled by

ADC from analog environment, is always limit between -1 and 1, any numbers in DSP

computation can be used as signed fraction pattern.[Api 09]

The purpose of this project is supposed to calculate FRFwith a large number of points

CHALMERS, Master’s Thesis 2010:09 20

each time, which is equal to 4096 or 8192. Onemotivation to do that is because we could

obtain perfect accuracy on frequency spectrum of channel, no matter in frequency do-

main or amplitude domain. High resolution of result, of course, will benefit engineers

for analysis in the future works. Another reason is that there always exist some time

delay, which is estimated below 50 sampling periods, between sending side and receiv-

ing side. It will cause serious damage on phase frequency response, but little influence

on amplitude frequency response. Without any delay detection, if the more samples is

used for FRF calculation, the influence of delay will be decreased. If the more samples

be used, the more relative points are used for calculation between the two sides. As a

result, without any delay compensation, the results of frequency response are able to

estimated more accuracy with a large number of samples relative a small one.

The coins have two sides. There is a big problem following with these benefits: the

dynamic range of value of results. Since fixed point numbers are always with finite pos-

sible values, it is very important to programmer that adjusting this range to proper posi-

tion to avoid overflow and underflow occur if the result of operation is larger or smaller

than the numbers in that range. Taking 4096 points FRF calculation as an example, FFT

on input data is a necessary step during FRF calculation. To avoid overflow, we at least

scaling down by 2 in each stage of FFT. As 4096 points FFT, the results of FFT on inputs

have to be scaled down by 213. And during cross-correlation and auto-correlation step,

in which two results after FFT are multiplied together, the result is scaled down by 226.

The problem is coming up. If the numbers in DSP are represented as 16 bits, it is out

of ability of 16 bit numbers to handle overflow and underflow together. In other word,

the dynamic range of results are much larger than 65536 possibles which 16 bits can be

represented. While we try to prevent overflow occur, which will serious damage big

value results, the small values are always equal to zero, where the underflow occur.

The condition would turn to worst, when the 8192 points FRF is calculated. Therefore,

it has to be considered that using 32 bits to represent each number.

As we mention before, each core of BF561 processor has two 16 bits MACs. It means

that it working on 16 bits operations, such as multiplication and addition, are very ef-

ficient, which only need one clock cycle to finish that. However, it impossible to do

the same thing efficient to 32 bits operation, especially 32 bits multiplication. Although

BF561 assembler provides some intrinsic(built-in) functions[Clm 05], that enable effi-

cient to use hardware resources, to do 32 bits operations, these functions still cost sev-

eral times time relative to 16 bits operations. In this project, speed performance of FRF

has to be scarified in order to guarantee overflow and underflow not happening under

a lager dynamic range of results.

21 CHALMERS, Master’s Thesis 2010:09

3.2.4. Software Design

The memory portions of BF561 are arranged in a hierarchical structure to provide good

performance balance of very fast, low latency memory as cache or SRAM close to pro-

cessor and larger, low cost and performance memory systems further from the proces-

sor. The level one(L1) on-chip memory systems in each core have the highest perfor-

mance with limited memory size. The level two(L2) on-chip memory systems provide

additional memory capacity with lower memory performance. Lastly, off-chip memory

systems have much more memory capacities complied with high data latency.

According to table 3.1, programming on BF561 processor, which is under memory-

restricted(on-chip memory) environment, is not easy. In this application, each signal

on three channels, required to be processed simultaneously, use the window size of

8192, however the capacity of L1 data memory is only 68KB, where less than three of

8192-elements arrays are possibly stored. Moreover, beside input signals, the program

also need extra spaces for interval arrays and look-up tables. Hence, we have to move

out most of data to off-chip memory(L3), although a gap between processor speed and

SDRAM speed is large.

Memory Level Access Latency Size Data

L1 code memory 1 CCLK 32KB Codes

L1 data memory 1 CCLK 68KB Temporary data

L2 shared memory 9 CCLKs 128KB DMA scripts

L3 SDRAM 8 to 10 SCLKs 4*16MB All data

Table 3.1.: The Memory System

Fortunately, the Blackfin family processors, including ADSP-BF561, provide Direct

Memory Access(DMA)[Bhr 10] to transfer data within memory spaces and between a

memory space to a peripheral without the attention of the processor. With DMA we

set the DMA engine off and running and at the end we just setup an interrupt to be

triggered when the specified data stream transmission is accomplished, meanwhile we

have 100% of processor time to allocated to main process. In this application, three

DMAs are implemented and to be assigned the different jobs, listed in table 3.2. DMA0

and DMA1 cooperate to move samples from ADC port to circle buffer which is a space-

saving method to placing all of samples. In addition, DMA2 is important part, because

the processor is supposed to calculate data only in L1, where it works at core clock

speed(600M Hz). DMA2 help the processor transfer the necessary data into L1 and

move the results back to L3 memory.

Despite DMAs work independent with processor, they are still not able to process at

the same time if they operation the same object. For example, if there is only one group

of an array to store data in L1, after processing, the processor has to wait for DMA to

CHALMERS, Master’s Thesis 2010:09 22

Name ISR No. Type Mode Function

DMA0 ISR0
Peripheral

DMA

Autobuffer

mode

Transmit samples:

ADC→Receive buffer

DMA1 ISR1
Memory

DMA

Descriptor list

(small mode)

Transmit data:

Receive buffer→Circular buffer

DMA2 ISR2
Memory

DMA

Stop

mode

Rest transmission work:

L1↔L3

Table 3.2.: Three DMAs In Program

move out the result to SDRAM and replace the new data into the array. Also, when the

data is calculated by processor, the DMAs are forbidden to intervene. Both of processor

and DMAs have to stall waiting for other finish. In order to decrease the bad influence

by structure, the double buffers are initialized. As illustrated in figure 3.2, one buffer is

processed by processor, while the data in another buffer can be transferred from/to L3

memory. And vice versa. Consequently, the processor is free to run as fast as possible

without wasting time of data transferring, meanwhile the most of transmission time

can be covered by processor.

Buffer

A

Buffer

B

Buffer

A

Buffer

B

L1

L3

DMA
 DMA
Core A
 Core A

The next stage
The current stage

Figure 3.2.: Ping-Pong Buffer

Due to limited spaces in L1, six 1024-points arrays, working as buffer, have been cre-

ated. But smaller buffer bring us a problem, one operation has to be separated into

many small operations to finish the same work. That definitely add more data commu-

23 CHALMERS, Master’s Thesis 2010:09

nication and increase the complexity of algorithm to program.

Because many data communications in codes, a number of interrupt events are gen-

erated by DMA. If any of two interrupt event occur at the same time, it is probably to

cause program sequence disorder. Therefore, finite state machine(FSM), which defines

many states to isolate every interrupt, is used here. Through changing state and value

of flag signals, the handshake is made between processor and DMA. Then they can

make sure to safely move to the next state.

The main algorithm of FRF consist of five main parts, windowing, FFT, spectral cal-

culation, window accumulation and final division of FRF. The program flow diagram

is showed in figure 3.3.

Clear arrays

FRF

Equal to the

number of group

Accumulation

Spectral

Window

+FFT

A group of

samples?

Idle

N

N

Y

Y

Figure 3.3.: Program Flow Diagram

In transmission stage, DMA0 and DMA1, employed to carry samples from ADC to

circular buffer in L3, work invisibly and independently to processor. Both work modes

of DMA0, in Autobuffer mode, and DMA1, in Script mode, are only need to set up

CHALMERS, Master’s Thesis 2010:09 24

once when the whole system initializing and then following setup works automatically

and repeatedly all the time. There is no necessity for processor to be noticed until the

completed window size of samples are collected in circular buffer. Then the processor

start to move out data from circular buffer and prepare for FRF calculation of a new

group samples. The flow chart is show in figure 3.4.

The various of FFT algorithms which have been developed for its evaluation use the

complex number and complex arithmetic. In this application, all input data are pure

real sequences, therefore, only half of works should be needed.[Hvs 87] By exploiting

symmetric property of real transform, half memory spaces and calculations could be

saved. However, because of limited spaces, where it is impossible to directly calculate

8192 point FFT on L1 memory, the algorithm need to be change to adapt this situation.

The 8192 points FFT needs to be separated into two part: eight 1024 points FFTs and

FFT merge which uses specified way to combine small FFT results into a bigger one.

The first part adopt 2-radix in place FFT algorithm, where the complexity is O(nlogn),

whereas complexity of FFT merge, which is inefficient but unavoidable, is O(n2).

Enable DMA0

move data

Sport->Receive

buffer

Interrupt

from Sport?

Generate interrupt

to core

A sufficient

No. of group?

Enable DMA1:

Receive

buffer->Circular

buffer

Interrupt:

DMA0 finish?

Enable DMA2:

Circular

buffer->Array

Interrupt

from DMA1?

Idle

FFT

Change FSM state:

Idle->FFT

Interrupt

N

Y

N

N

Y

Y

ISR0
 Core
 ISR2
ISR1

Figure 3.4.: Transmission Flow Chart

In turn, the spectral densities are computed as multiplied the result of FFT of stim-

ulus signal and response signal. And in accumulation part, corresponding results of

spectral are added together until the sufficient the number of windows arrive. Both of

complexities of this two parts are linear to O(n).

25 CHALMERS, Master’s Thesis 2010:09

Real-time calculation of FRF involves thousands of division operations because the

estimate algorithm given is based upon the division between cross-spectral density(CSD)

and power-spectral density(PSD). To accomplish such divisions as fast as possible, we

need high performance division algorithms. Among themGoldschmidt’s method turns

out to be a reasonable choice. In order to accelerate the convergence, approximation

method finds its way based on series expansion. In this method, an initial estimation

of the quotient is gradually refined until desired precision is achieved. The operations

are then converted to additions and multiplications, which are fast and easily available

in present hardware platforms. Approximation method can reach a quadratic conver-

gence rate. The complexity of this part is O(n).

CHALMERS, Master’s Thesis 2010:09 26

4. Floating-Point Implementation

4.1. Hardware Setup

The experiment environment consists of three parts, as plotted in figure 4.1. The lap-

SHARC

LAPTOP

RCA Stereo Cable

RS232

PC

Figure 4.1.: Experiment Setup

top functions as the signal generator using soundcard driven by Matlab audioplayer

functions. The analog output of the soundcard is fed through the stereo cable into the

conditioning and analog-to-digital converter(ADC) circuit of the ADSP-21489 SHARC

development board. The processor then upload the results to the monitor PC using a

RS232 cable. Meanwhile the users are expected to use the monitor software on the PC

for calibration and observation.

The ADC on SHARC development board has 24-bit word length and 192kHz sam-

pling rate, which are of the same configuration as the DAC in the soundcard of the lap-

top. TheADSP-21489 digital signal processor is a single-instructionmultiple-data(SIMD)

27

harvard floating point processor [Shc 09] for audio applications. The processor’s float-

ing point unit completes a single-precision multiplication in one core cycle(2.5ns); a

single-precision division in three core cycles. Besides that it features with a hardware

fast fourier transform(FFT) accelerator. The on-chip 5M bits memory space allows to

keep large window of samples internally on-chip without overhead of swap between

the SDRAM memory. This advantage enables a straight forward algorithm design and

maintains a fast execution speed. Moreover, quite a lot of peripheral direct memory

access(DMA) channels result in an easy and efficient timing control of the hardware.

4.2. Software Design

The program is written in ANSI C programming language. Moreover each function

component has been designed for maximum portability and reusability. The control

structure has maintained a simple design—it only contains a single ADC interrupt ser-

vice routine, which writes the samples into circular buffers. Outside of the ADC ISR,

the main function fulfills the main calculation tasks, as shown in the flow diagram 4.2

below. The ADC ISR of the program is invoked whenever the event of the AD con-

versions of the three channels occurs at every sampling instant. The background loop

in the main function detects whether a full window of samples is formed or not, if so

the program starts to perform the FFT and spectral density calculations, and averaging

spectral densities over several windows to reduce the estimation variance. In the final

window the FRF will be derive by divisions of the averaged spectra.

One of the best data structures for holding the overlapping and delayed samples

from the ADC would be circular buffers. They are implemented in arrays with modulo

indexing. The samples in the circular buffers will then be copied to other arrays for FFT

and spectral calculations, because during the calculation process the circular buffers are

continuously being written by new samples from ADC.

Although the SHARC processor features with a hardware FFT accelerator, unfortu-

nately this pipelined structure, workingwith both of a source and sink array, is memory

hungry. What we need is an in-place algorithm minimizing the memory costs so that

larger window of samples can be calculated within internal memories. Based on this

requirement, it is more reasonable to run the in-place FFT routine using the processor

core instead of the accelerator to halve the memory usage.

Since the ADC samples are all real numbers, and the fourier transform of real num-

bers yields complex conjugate frequency results. So only single sided spectra and FRF

are needed for computation. The single sided fourier transform for real numbers is

called real valued fourier transform. We have adopted the real split radix FFT to min-

imize the number of operations[Pdh 83, Hvs 86, Hvs 87, Pdm 90, Sgj 07, Mfs 05]. The

twiddle factors are stored as a sine table without calculating from scratch. The com-

CHALMERS, Master’s Thesis 2010:09 28

INIT

UART RX

Read Circular Buffers

UART TX

Gain and Offset Control

Add Window

Real Value FFT

Spectral Calculation

Sufficient Number of Windows ?

FRF Calculation

Clear Spectra

Next Window Ready?

Y

N

Y
N

Figure 4.2.: Program Flow Diagram

plexity for this part is O(nlogn).

The spectral densities are computed as multiplications of the fourier transform of

windowed stimulus and response, as described in chapter 2. The complexity is lin-

ear O(n). The final division of the spectra is also of O(n) complexity. To boost the

performance, these loop-based non-dependency code lines could be optimized by the

compiler according to the SIMD structure [Spr 09]. In SIMD executions the loop will be

vectorized by a factor of two as the core fetches two words at a time [Srl 09].

The results will be transmitted through the UART to a PC using RS232 cables. The

command to determine the runtime state is also downloaded to the SHARC board by

the same duplex transmission line. The UART DMA improves the concurrent execu-

tions of the processor core and peripherals, thus gives a simpler and better timing con-

trol, which is illustrated in figure 4.3. In this example diagram, the number of samples

for one window has been scaled down to 4, and the FRF is averaged over 2 windows.

29 CHALMERS, Master’s Thesis 2010:09

30 1 2 30 1 2 30 1 2 30 1 2 30 1 2 31 20 03

1 10 0 1 0

ADC interrupt Service Routine

Event: AD Conversion Complete

Main Function Waiting State for Window 1

Main Function Calculation State for Window 1

Main Function Waiting State for Window 0

Main Function Calculation State for Window 0

DMA TX DMA TX DMA TX DMA TX DMA TX DMA TX

Figure 4.3.: Timing Diagram

C
H
A
L
M
E
R
S
,M

aster’s
T
h
esis

2010:09
30

4.3. Calibration

Calibration is an important procedure before any instruments starting their measure-

ments. The underlying principle is to compare the instrument with standards to val-

idate the coming measurements. In our case, the only means of gain control of the

analog paths is the analog mixer circuit of the laptop soundcard, which would never

reach a precise match of the stereo channels. Our solution to this problem is thus the ad-

ditional digital bias and gain compensations in the DSP program: the ADC samples of

each channel are added with biases and multiplied by coefficients adjustable from the

monitor software on the PC. Aside from calibration purpose, the digital gains would

help scale the data into the numeric range of better numeric precisions as well. So to

Figure 4.4.: Stimulus and Response Samples Before Calibration

calibrate the estimator, we should set proper bias and gain values when given common

standard analog signals for stimulus and response in order to balance the total gains

between them. We use a common zero volt reference and a sinusoidal signal to help

adjust the bias and the gain respectively. There are three steps for calibration. Firstly

the samples from the ADC should be biased to zero(which could be observed from the

monitor software) when given zero volt analog signals. The samples of the stimulus

and response before any calibrations are depicted in figure 4.4. We can see that they

are not reside on zero level but contain small DC biases. Hence we add the negated

values to stimulus and response digitally in the hope of shifting them to zero level. The

result after proper bias compensation is shown in figure 4.5. The statistical values have

been provided by the monitor software in its lower portion. Secondly, the stimulus and

response samples should have the same gain when given a common sine wave ana-

log input. This sine wave meanwhile helps identify the safe range of the input analog

31 CHALMERS, Master’s Thesis 2010:09

Figure 4.5.: Samples After Proper Bias

signals, preventing from cases of saturation failure. The pre and afterward gain adjust-

ments have been shown in figure 4.6 and 4.7. We could read the peek-to-peek ratios

under the display canvas of the calibration tool. The statistical values including mean

Figure 4.6.: Stimulus and Response Samples Before Gain Adjustment

and peak-to-peak values, given by the monitor software are derived from each win-

dow of sampled data and averaged over several windows to reduce the variances. The

complexity of these statistical functions are approximately O(n), which is acceptable

for embedded real-time calculations. In other words, these functions could be incorpo-

rated into the DSP program in the future to realize the auto-calibration features. The

CHALMERS, Master’s Thesis 2010:09 32

Figure 4.7.: Samples After Proper Gain Compensation

final step is to make time domain correlation analysis for impulse response of the sys-

tem using noise test signals. The necessity of this step has been described in chapter 2.

Propagation delay of the sound wave could be estimated based on the characteristics

of the system’s impulse response in time domain. Accordingly the delay values mea-

Figure 4.8.: Impulse Response Estimate

sured in number of samples, would be used to realign the windows of the stimulus

and response inside the DSP program. The impulse response is calculated as the cross

correlation of the stimulus and response from lag 0 to lag 256 within each window and

averaged over several number of windows, shown in figure 4.8. The prerequisite is that

33 CHALMERS, Master’s Thesis 2010:09

the stimulus should be white noise. Although the stimulus signal is approximate white

time series, for applications of delay estimation there is no need for extra whitening

filters. The correlation algorithm has been carried out in time domain, which has a run-

time complexity of nearly O(n2). Therefore we could not calculate for a large number

of lags for lengthy windows. So far the estimator is ready for FRF estimation, demon-

Figure 4.9.: Ready To Estimate FRF

strated in figure 4.9. With optimization of speed turned on for the SIMD structure,

the floating point platform is able to calculate two FRFs with 8192 point window. The

duty ratio is 35.1% at 400MHz core speed, and the internal memory usage is over 90%.

The duty ratio without optimization is around 70%. The improvement of the execution

speed is contributed by the vectorization of the loops for SIMD structure.

4.4. Verification

Verification would be the last step of calibration since this step justifies the correctness

of both analog-and-ADC subsystem and the digital calculations. To verify the estimate

precisions for certain standard LTI systems, we use second order high-pass and low-

pass filters as the reference systems, whose accurate FRFs could be acquired by ”freqz”

function provided in Matlab. The stimulus and response samples are generated by

Gaussian white noise and the reference system output. There are totally four test items:

(0)The lowpass reference system:

Hlp(z) =
1

1− 1.5z−1 + 0.9z−2

CHALMERS, Master’s Thesis 2010:09 34

(1)the highpass reference system:

Hhp(z) =
1

1+ 1.5z−1 + 0.9z−2

(2)the delayed version of Hlp:

z−117Hlp(z)

(3)the delayed version of Hhp:

z−73Hhp(z)

All these tests are exercised after proper calibrations described in previous section. The

window size is 8192 point; no overlapping samples; number of windows is 200; win-

dow function is hann function. In order to test the ability of calculating two FRFswithin

the same window period, the low-pass filter was tested by one FRF channel and the

high-pass filter by the other simultaneously.

4.4.1. Lowpass Filter Without Delay

Estimate Hlp(z) =
1

1−1.5z−1+0.9z−2 . Since there is no delay for this model, we don’t have

to calculate the impulse response to find out number of delayed samples. The relative

errors for magnitude and phase response are plotted in figure 4.10. We can see that

the error increases as the frequency increases. We have observed a ±2% error for the

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

frequency bins × 2*pi/8192

re
la

tiv
e

er
ro

r
fo

r
m

ag
ni

tu
de

 r
es

po
ns

e

(a) Magnitude

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−8

−6

−4

−2

0

2

4

6

frequency bins × 2*pi/8192

re
la

tiv
e

er
ro

r
fo

r
ph

as
e

re
sp

on
se

(b) Phase

Figure 4.10.: Relative Errors for the Low Pass Reference Filter

worst case around π. These data could help identify which frequency band has the best

accuracy. After all in real application situations, users would only expect credible FRF

at frequency binsmuch lower than the sampling rate. Fromfigure 4.10, themost reliable

estimate lies in frequency bins from zero to π/2. There are three locations where the

largest phase errors emerge: the zero frequency, also known as the DC component; the

frequency of the peak of magnitude; and π. The locations have correspondence with

the magnitude errors.

35 CHALMERS, Master’s Thesis 2010:09

4.4.2. Highpass Filter Without Delay

Estimate Hhp(z) =
1

1+1.5z−1+0.9z−2 . The relative error for magnitude and phase response

have been shown in figure 4.11. Again the most credible frequency bins are from DC

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−10

−5

0

5
x 10

−3

frequency bins × 2*pi/8192

re
la

tiv
e

er
ro

r
fo

r
m

ag
ni

tu
de

 r
es

po
ns

e

(a) Magnitude

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−8

−6

−4

−2

0

2

4

6

8

10

frequency bins × 2*pi/8192

re
la

tiv
e

er
ro

r
fo

r
ph

as
e

re
sp

on
se

(b) Phase

Figure 4.11.: Relative Errors for the High Pass Reference Filter

component to π/2, where an average of ±0.03% error exists. The large error for the

DC components may originate from the bias error in calibration phase. Besides the

accuracy drops as the frequency increases.

4.4.3. Lowpass Filter With Delay

Estimate Hlp with 117-sample delay stage. To determine the number of samples of

delay, we should estimate its impulse response before the estimate of the FRF. We could

read the delay value from the result, given in figure 4.13. The estimated delay value will

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

frequency bins × 2*pi/8192

re
la

tiv
e

er
ro

r
fo

r
m

ag
ni

tu
de

 r
es

po
ns

e

(a) Magnitude

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

frequency bins × 2*pi/8192

re
la

tiv
e

er
ro

r
fo

r
ph

as
e

re
sp

on
se

(b) Phase

Figure 4.12.: Relative Errors for Delayed Low Pass Reference Filter

be used as the shift values to choose proper window of samples for prospect calculation.

CHALMERS, Master’s Thesis 2010:09 36

The relative errors of magnitude and phase response have displayed in figure 4.12. We

can see that the magnitude errors have a ±2% worst case as well, the same as the worst

case in non-delayed test. Without delay compensation on the other hand will give

−50 0 50 100 150 200 250 300

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−3

lag

Figure 4.13.: Impulse Response for Delayed Low Pass Reference Filter

worse estimates.

4.4.4. Highpass Filter With Delay

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−12

−10

−8

−6

−4

−2

0

2

4

6
x 10

−3

frequency bins × 2*pi/8192

re
la

tiv
e

er
ro

r
fo

r
m

ag
ni

tu
de

 r
es

po
ns

e

(a) Magnitude

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−10

−5

0

5

10

15

frequency bins × 2*pi/8192

re
la

tiv
e

er
ro

r
fo

r
ph

as
e

re
sp

on
se

(b) Phase

Figure 4.14.: Relative Errors for the Delayed High Pass Reference Filter

Estimate Hhp with 73-sample delay stage. The impulse response is again been esti-

mated and we could find out the exact delay from the graph 4.15. The separate delay

37 CHALMERS, Master’s Thesis 2010:09

control for both channels requiresmorememory allocations than a common delay value

for both channels. This is also the reason why we eliminate the redundant estimation

methods like H2 and Hr to trade for space. The magnitude and phase relative errors

are given in figure 4.14. We could expect an equal estimate quality compared with the

0 50 100 150 200 250

−1

−0.5

0

0.5

1

x 10
−3

lag

Figure 4.15.: Impulse Response for the Delayed High Pass Reference Filter

non-delay version.

In this chapter we have introduced the hardware platform for the prototype, as well

as the structure of the software. Many crucial design considerations and trade-offs have

been elaborated on. In addition to those, the calibration and verification process have

also been covered in detail. Several test cases are demonstrated to justify our design.

The performance of the SHARC platform will be benchmarked against the Blackfin for

speed and precisions in the final chapter.

CHALMERS, Master’s Thesis 2010:09 38

5. Benchmarks and Conclusion

We have noticed that the analog-to-digital converters of the Blackfin and the SHARC

platform differ in sampling rates. To make a better benchmark between those two,

we decided to bypass the analog paths and the AD conversion and calculate the FRF

with the user-case stimulus and response data pre-stored in off-chip SDRAM. In other

words, our benchmarks only compare the digital implementations for precision and

speed. The automated benchmark procedure is depicted in figure 5.1. When doing the

window RX done?

No

Store to SDRAM

TX FRF Result

INIT

Digital Signal Processor

Y

TX ”Done with RX of one window”

number of window full?

FRF Calculation

EXIT

Y

No

INIT

TX the next window of data

No
Got ”Done with RX of one window”?

The last window?

Y

No

RX the FRF result

Verify against the reference

Monitor PC

EXIT

Figure 5.1.: Automated Benchmark Process

benchmark, the monitor software on the PC sends predefined number of window of

reference stimulus and response data to the DSP processors through the asynchronous

serial transmission cable. The window length is 8192, and a total of 8, 20 and 100 win-

dows of reference data have been tested. The data set is so large that they should

be stored in the SDRAM of the embedded system before to be calculated. UART RX

and TX DMAs are used to simplify the communications. When calculations have com-

39

pleted, the processors will transmit the FRF data back to the monitor software, where

the result will be processed and compared against the correct result. Time costs of each

function block of the DSP program will also be measured by core timers. The cycles are

averaged over the number of windows used.

5.1. Timing

Both of the implementations have met their timing requirements, as shown in table 5.1

and 5.2. It should be pointed out that we were using non-overlapping windows for

SHARC Platform

Functions Cycles(CCLK:400Mhz) Timing Average

Moving 8192-point

stimulus and response

from SDRAM to internal memory

average:375925

worst:376004

average:939.8125us

worst:940.01us

Add windows to

stimulus and response
32790 81.975us

FFT of 8192-point

stimulus and response
1295337 3238.3425us

Derive Sxx, Sxy and accumulate 49233 123.0825us

Division 22531 56.3275

Total

FRF Calculation 4439.515us

For fs = 192kHz

Max allowed time for

FRF is 42666.6667us

Timing Satisfied

Table 5.1.: Timing of the SHARC platform

the benchmark calculations. The duty ratios on the other hand, determines the maxi-

mum number of overlapping samples between subsequent windows. The bottleneck

of the Blackfin platform mainly involves the block data moving from SDRAM to in-

ternal memory, and the merge step, which has O(n2) complexity. The bottleneck of

the SHARC platform involves moving data from off-chip memory to internal and FFT,

which are less intensive than its Blackfin counterpart. Since the SDRAMs require extra

timing control for refreshment, the access delay deviates over time, thus averaged val-

ues are preferred. There are several reasons that could explain the larger duty ratio of

the Blackfin platform.

Firstly, the memory subsystem structure of the Blackfin platform forced us to adapt

the algorithm into memory distributed solution, which slows down the total speed.

CHALMERS, Master’s Thesis 2010:09 40

Blackfin Platform

Functions Cycles(CCLK:600Mhz) Timing Average

Moving 8192-point

stimulus and response

from SDRAM to internal memory

319396 532.32664us

FFT 1024×8 and window

stimulus and response
11823335 197705.558us

Merge eight 1024-point

FFT into one 8192-point FFT
4166359 6943.9318us

Spectra Sxx, Sxy 367978 613.2967us

Accumulation(∑ Sxx,∑ Sxy) 375003 625.00499us

Spectra and Accumulate 742981 1238.30167us

Scaling 72569 120.94833us

Division and Reset 1167718 1946.1967us

Total

FRF Calculation 30486.129us

For fs = 96kHz

Max allowed time for

FRF is 85333.3333us

Timing Satisfied

Table 5.2.: Timing of the Blackfin platform

This could be justified by the large amount of time in the merge step of the algorithm.

On the other hand however, we could focus on optimization of merge algorithm for

better performance.

Secondly the dual-core quad-ALU structure of the Blackfin was not fully utilized

since only single core was assigned to the computation. We believe that the total latency

could be halved if the other core is used for the block algorithm. Parallelism might be

increased because of the parallel nature of the block algorithm.

Lastly the hardware data path for the Blackfin processor is 16 bit, whereas the appli-

cation requires 32× 32 bit fixed-point multiplication for decent numeric accuracy. In

spite of the dual 16× 16 multipliers for each processor core, the extension of the width

of the data path leads to an overhead in merge the outputs of the two multipliers when

doing the 32× 32 bit multiplications. The accumulation of the small overhead of this

most frequently used operation compromised the 600MHz clock advantage.

5.2. Precision

The numeric precisions of the FRF have been tested and results are plotted in figures

below. The basic data type for the Blackfin processor is 32-bit fixed point number, and

41 CHALMERS, Master’s Thesis 2010:09

for the SHARC 32-bit single precision floating point number. To maximize the speed,

the Blackfin processor did not use emulated floating point number system, but rather

the ordinary means by keeping track of the binary point. The SHARC processor, whose

single precision floating point number covers a larger numeric range with regard to the

fixed point processor, still has to be scaled the sampled data in order to find regions

of better accuracies. In the benchmark tests of different number of windows, the error

decreases as the number of windows increases. For 8 window case, the values of the

accumulated spectra are small, which in turn results in a considerable numeric error

in the final divisions. The increase of the windows augments the values of the spectra,

thus decreases the division errors for the derivation of FRF. So in short, no matter fixed

point numbers or floating point numbers, scaling is a crucial part for data processing.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−4

−3

−2

−1

0

1

2

3
x 10

−7 8 groups absolutely errors of frf amplitude

SHARC
BLACKFIN

(a) Absolute Error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01
8 groups relative errors of frf amplitude

SHARC
BLACKFIN

(b) Relative Error

Figure 5.2.: Magnitude Errors, Nwindow = 8

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−7 8 groups absolutely errors of frf real part

SHARC
BLACKFIN

(a) Absolute Error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
8 groups relative errors of frf real part

SHARC
BLACKFIN

(b) Relative Error

Figure 5.3.: Errors of Real Parts, Nwindow = 8

CHALMERS, Master’s Thesis 2010:09 42

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−7 8 groups absolutely errors of frf imag part

SHARC
BLACKFIN

(a) Absolute Error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.05

0

0.05

0.1

0.15
8 groups relative errors of frf imag part

SHARC
BLACKFIN

(b) Relative Error

Figure 5.4.: Errors of Imaginary Parts, Nwindow = 8

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−7 20 groups absolutely errors of frf amplitude

SHARC
BLACKFIN

(a) Absolute Error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.015

−0.01

−0.005

0

0.005

0.01
20 groups relative errors of frf amplitude

SHARC
BLACKFIN

(b) Relative Error

Figure 5.5.: Magnitude Errors, Nwindow = 20

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.5

0

0.5

1

1.5

2

2.5
x 10

−7 20 groups absolutely errors of frf real part

SHARC
BLACKFIN

(a) Absolute Error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
20 groups relative errors of frf real part

SHARC
BLACKFIN

(b) Relative Error

Figure 5.6.: Errors of Real Parts, Nwindow = 20

43 CHALMERS, Master’s Thesis 2010:09

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−6

−4

−2

0

2

4

6

8
x 10

−8 20 groups absolutely errors of frf imag part

SHARC
BLACKFIN

(a) Absolute Error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
20 groups relative errors of frf imag part

SHARC
BLACKFIN

(b) Relative Error

Figure 5.7.: Errors of Imaginary Parts, Nwindow = 20

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−1.5

−1

−0.5

0

0.5

1
x 10

−7 100 groups absolutely errors of frf amplitude

SHARC
BLACKFIN

(a) Absolute Error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−8

−6

−4

−2

0

2

4

6

8
x 10

−3 100 groups relative errors of frf amplitude

SHARC
BLACKFIN

(b) Relative Error

Figure 5.8.: Magnitude Errors, Nwindow = 100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−2

0

2

4

6

8

10

12
x 10

−8 100 groups absolutely errors of frf real part

SHARC
BLACKFIN

(a) Absolute Error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−1

−0.5

0

0.5

1

1.5

2

2.5
100 groups relative errors of frf real part

SHARC
BLACKFIN

(b) Relative Error

Figure 5.9.: Errors of Real Parts, Nwindow = 100

CHALMERS, Master’s Thesis 2010:09 44

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−4

−3

−2

−1

0

1

2

3
x 10

−8 100 groups absolutely errors of frf imag part

SHARC
BLACKFIN

(a) Absolute Error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.02

0

0.02

0.04

0.06

0.08

0.1
100 groups relative errors of frf imag part

SHARC
BLACKFIN

(b) Relative Error

Figure 5.10.: Errors of Imaginary Parts, Nwindow = 100

5.3. Summary

The goal of the thesis has been fulfilled since we managed to find out a suitable cus-

tomized FRF estimation algorithm for active acoustic spectroscopy sensors, as well as to

make successful implementations and evaluations. The benchmark results imply that

for signal processing tasks of large windows and wide dynamic range, large tightly

coupled memory and floating point unit might play a more crucial role than other fac-

tors. Due to the limited amount of time allocated for the project, the development

and optimization of the algorithm and hardware is not complete and sufficient, thus

the benchmark itself can only be regarded as certain reflections or suggestions of the

”golden” solution. There will be a long way to converge to the perfect solution as sev-

eral factors can further be explored in the future: (a)the system to be estimated is in fact

nonlinear; (b) other spectral density/FRF estimation approaches that lead to faster and

more accurate spectral/FRF estimations; (c) implementations other than digital signal

processors.

45 CHALMERS, Master’s Thesis 2010:09

CHALMERS, Master’s Thesis 2010:09 46

References

[Hys 96] Monson H. Hayes: Statistical Signal Processing and Modeling, Wiley, 1996

[Mkv 09] Tomas McKelvey: SSY130 Applied Signal Processing Course Notes,

Chalmers University of Technology, 2009

[Apv 06] Alexander Potchinkov: Measurement of frequency responses of nonlinearly

distorted SISO systems in noisy environments with generalized parame-

ter frequency response estimators, Signal Processing, vol.86(8), pp2094-2114,

2006.

[Ayt 77] A. F. Seybert: Time delay bias errors in estimating frequency response and

coherence functions, Journal of Soundand Vibrations, vol 60(1), pp1-9, 1978

[Whw 09] Wang Hongwei: FFT Basics and Case Study using Multi-Instrument, Appli-

cation notes, Virtins Technology, 2009

[Pwh 67] Peter D. Welch: The use of fast fourier transform for the estimation of

power spectra: A method based on time averaging over short modified pe-

riodograms, IEEE trans. Audio and Electroacoust. vol AU-15, pp.70-73, 1967

[Shc 09] Analog Devices: ADSP—2146x SHARC Processor Hardware Reference, Ana-

log Devices Inc. Rev0.2, 2009

[Spr 09] Analog Devices: SHARC Processor Programming Reference , Analog Devices

Inc. Rev2.0, 2009

[Srl 09] Analog Devices: Run-Time Library Manual for SHARC Processors, Analog

Devices Inc. Rev1.3, 2009

[Pdh 83] P. Duhamel and H. Hollmann: ’Split Radix’ FFT Algorithm, Electron. Lett.

Volume 20, Issue 1, p.14V16, 1984

[Hvs 86] Henrik V. Sorensen: On Computing the Split-Radix FFT, IEEE transactions on

acoustic, speech and signal processing, Vol.ASSP-34, No. 1, 1986

[Hvs 87] Henrik V. Sorensen: Real-Valued Fast Fourier Transform Algorithms, IEEE

transactions on acoustic, speech and signal processing, Vol. ASSP-35, No. 6,

1987

47

[Pdm 90] P. Duhamel and M. Vetterli: Fast Fourier Transforms: A Tutorial Review and

A State of the Art, Signal Processing, Vol.19, pp.259-299, 1990

[Sgj 07] Steven G. Johnson and Matteo Frigo: A modified split-radix FFT with fewer

arithmetic operations, IEEE Trans. Signal Processing, Vol.55 (1), pp.111V119,

2007

[Mfs 05] Matteo Frigo and Steven G. Johnson: The Design and Implementation of

FFTW3, Proc. IEEE, vol. 93, no. 2, pp. 216V231, 2005

[Bds 09] Analog Devices: Data Sheet Final: ADSP-BF561 Blackfin Embedded Symmet-

ric Multiprocessor, Rev D, Analog Devices Inc. 2009

[Bhr 10] Analog Devices: ADSP-BF561 Blackfin Processor Hardware Reference, Ana-

log Device Inc. Rev1.2, 2010

[Api 09] Randy Yates: Fixed-Point Arithmetic: Introduction, Digital Signal Labs, 2009

[Clm 05] Analog Devices: VisualDSP++ 4.0 C/c++ Compiler and Library Manual for

Blackfin Processor, Analog Device Inc. Rev 3.0, 2005

CHALMERS, Master’s Thesis 2010:09 48

A. Proofs

1. Fourier transform of unity.The Fourier transform of the delta function is one.

∫ ∞

−∞
δ(t)e−jωtdt = 1

So the inverse transform should give a delta function back:

1

2π

∫ ∞

−∞
ejωtdω = δ(t)

As a result we have
∫ ∞

−∞
ejωtdω = 2πδ(t)

To calculate the Fourier transform of unity,

∫ ∞

−∞
e−jωtdt

we change variable as p = −t, so the equation becomes

−
∫ −∞

∞
ejωpdp =

∫ ∞

−∞
ejωpdp = 2πδ(ω)

2. Proof of the Parseval equation for previous equation.

1

2π

∫ π

−π
W(ω)W∗(ω)dω

=
1

2π

∫ π

−π

[

∞

∑
m=−∞

w(m)e−jωm

] [

∞

∑
n=−∞

w(n)e−jωn

]∗

dω

=
1

2π

∫ π

−π

[

∞

∑
m=−∞

∞

∑
n=−∞

w(m)w∗(n)ejω(n−m)

]

dω

given n−m = k, we have

=
1

2π

∫ π

−π

[

∞

∑
k=−∞

∞

∑
n=−∞

w(n− k)w∗(n)ejωk

]

dω

49

=
∞

∑
k=−∞

∞

∑
n=−∞

w(n− k)w∗(n)

[

1

2π

∫ π

−π
ejωkdω

]

=
∞

∑
k=−∞

∞

∑
n=−∞

w(n− k)w∗(n)δ(k)

=
∞

∑
n=−∞

w(n)w∗(n)

=
∞

∑
n=−∞

|w(n)|2

CHALMERS, Master’s Thesis 2010:09 50

B. Matlab Scripts

FRF estimation function:

% FRF estimate

% Note that the ’stimulus’ and ’response’ are column vectors

function [frf] = myfrf(stimulus,response,win,N,K,V);

%V = 0.5; % overlap coefficient

%N = 8192; % window length

%K = 10; % number of windows

if win == ’hamming’

W = hamming(N);

elseif win == ’hanning’

W = hann(N);

elseif win == ’bartlett’

W = bartlett(N);

elseif win == ’blackman’

W = blackman(N);

else

W = ones(N,1);

end;

for k = 0:(K-1)

x(:,k+1) = stimulus((k*N*(1-V)+1) : (k*N*(1-V)+N)).*W;

y(:,k+1) = response((k*N*(1-V)+1) : (k*N*(1-V)+N)).*W;

end

xomega = fft(x);

Pxx = xomega.*conj(xomega);

Pxx = sum(Pxx.’);

yomega = fft(y);

Pxy = conj(xomega).*yomega;

Pxy = sum(Pxy.’);

51

frf = (Pxy./Pxx).’; % two sided spectrum

frf = frf(1:N/2); % convert to single-sided normalized spectrum

Fixed point Goldschimdt division:

%---

% Fixed-point Goldschimdt division --- reciprocal function

%

% Goldschimdt algorithm provides a high throughput divison

% based on series expansion and pipeline, for more info

% please refer to document "pipelined division"

%

% The divisor must be scaled to [0.5 1) before division’s taken place,

% so the Q format would be Q(0.WORDLENGTH-1)

% The reciprocal will be (1 2], which is of Q(2.WORDLENGTH-3)

%

% April 26, 2010

%---

% x : input scalar in format Q(0,WORDL-1)

% y : reciprocal output scalar in format Q(2.WORDL-3)

% LUT : precalculated M-bit-address lookup vector for initial guess

% WORDL : word length scalar

% M : address width of the lookup table, scalar

function [y] = mydiv(x, LUT, M, WORDL)

% since WORDL-LSB-2 = M bit for the lookup table

% the map function would be

map = floor(x/(2^(WORDL-M-2)))-2^M+1;

% nominator is 1

n(1) = 2^(WORDL-2); % Q(1,WORDL-2)

% initial guess of the reciprocal value

n(1) = n(1)*LUT(map); % Q(1,WORDL-2)*Q(1.WORDL-2)=Q(3,2*WORDL-4)

n(1) = floor(n(1)/(2^(WORDL-1))); % Q(3,2*WORDL-4) to Q(2, WORDL-3)

if n(1) >= 2^(WORDL-1) || n(1) <= 0

disp(’Overflow Occurs’);

CHALMERS, Master’s Thesis 2010:09 52

end

% initial calculation of the divisor

d(1) = x*LUT(map); % Q(0,WORDL-1)*Q(1.WORDL-2)=Q(2,2*WORDL-3)

d(1) = floor(d(1)/(2^(WORDL-1))); % convert Q(2,2*WORDL-3) to Q(1,WORDL-2)

if d(1) >= 2^(WORDL-1) || d(1) <= 0

disp(’Overflow or underflow’);

end

%converge within N steps

N = 3;

for k = 1:N

d(k+1) = d(k)*(-d(k)-(-2*(2^(WORDL-2)))); % Q(1,WORDL-2)*Q(1.WORDL-2)=Q(3,2*WORDL-4)

d(k+1) = floor(d(k+1)/(2^(WORDL-2))); % convert Q(3,2*WORDL-4) to Q(1,WORDL-2)

if d(k+1) >= 2^(WORDL-1) || d(k+1) <= 0

disp(’Overflow or underflow’);

end

n(k+1) = n(k)*(-d(k)-(-2*(2^(WORDL-2)))); % Q(2,WORDL-3)*Q(1.WORDL-2) = Q(4,2*WORDL-5)

n(k+1) = floor(n(k+1)/(2^(WORDL-2))); % Q(4,2*WORDL-5) to Q(2, WORDL-3)

if n(k+1) >= 2^(WORDL-1) || n(k+1) <= 0

disp(’Overflow or underflow’);

end

end

y = n(N+1);

%--

% for test only

% y = [n; d];

%--

%---

% Fixed-point Goldschimdt division --- testbench

%

53 CHALMERS, Master’s Thesis 2010:09

% Goldschimdt algorithm provides a high throughput divison

% based on series expansion and pipeline, for more info

% please refer to document "high throughput division"

%

% The divisor must be scaled to [0.5 1) before division’s taken place,

% so the Q format would be Q(0.WORDLENGTH-1)

% The reciprocal will be (1 2], which is of Q(2.WORDLENGTH-3)

%

% The most important design parameters are WL and MSB for lookup table.

% Because convergence loses precision due to the truncated procuts,

% to increase the lookup table means better initial guess and less

% precision loss.

%

% April 26, 2010

%---

clear all;

close all;

clc

% reciprocal investigation

% n/d, for denominator d, we pre scale it into the range of [0.5 1)

% in q0.15 format

% i.e. "01yy-yyxx-xxxx-xxxx..."

WL = 18;

MSB = 6;

LSB = WL-2-MSB;

RES = 2^(1-WL);

% use cases

d = 0.5:RES:(1-RES); % note that 1 is open range

dQ = d*(2^(WL-1)); % in Q(0,WL-1) format

ref = 1./d; % reference reciprocal values in floating format

refQ = floor(ref*(2^(WL-3))); % in Q(2,WL-3) format

% initial demoninator relies on LUT

% 10-bit LSB look up table gives increment 1024

% 4-bit lookup table

dLUT = [];

CHALMERS, Master’s Thesis 2010:09 54

for k = (2^LSB):(2^LSB):length(d)

dLUT = [dLUT 1/d(k)*(2^(WL-2))]; % in Q(1.WL-2)

end

% find out the errors

for k = 1:length(d)

result(k) = mydiv(dQ(k), dLUT, MSB, WL);

end

plot(refQ-result);

title(’Error analysis of reciprocal in Q(2.13) format for all Q(0.15) divisors in [0.5 1)’);

xlabel(’divisor in Q(0.15) scaled into [0.5 1)’);

ylabel(’error’);

grid;

%--

% test only

%--

% test = mydiv(dQ(1398), dLUT, MSB, WL);

55 CHALMERS, Master’s Thesis 2010:09

