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Abstract

Star formation is one of the most important subjects in all of astrophysics. Previ-
ous analyses have shown that there is a link between star formation and gravitational
instabilities in galactic discs. In this thesis we investigate the gravitational instabil-
ity of 9 dwarf and 12 spiral galaxies from The H I Nearby Galaxy Survey (THINGS),
previously analyzed by Leroy et al. (2008), using the Romeo-Falstad (2013)Q stabil-
ity parameter for multicomponent and realistically thick galactic discs. Our analysis
allows us: (1) to quantify how the stability properties of the dwarfs differ from those
of the spirals, (2) to determine how the disc stability properties vary with galacto-
centric distance, and (3) to establish which component dominates the gravitational
instability of the disc. We find that the dominant component differs significantly
between the two subsamples in a statistical sense. Even so, the median value of
the Q stability parameter is nearly independent of galactocentric distance with a
value of order unity for both the dwarfs and the spirals, suggesting that galactic
discs may be controlled by self-regulation processes. Two important quantities that
enter our stability analysis are the stellar and gaseous velocity dispersions, which
we find to have a strong impact on disc instability. In all current stability analyses
such quantities are estimated through simple models (e.g. Leroy et al. 2008) since
they are difficult to measure. However, our analysis illustrates that using observed
stellar and gaseous velocity dispersions would be very useful for understanding the
complex link between star formation and gravitational instabilities in disc galaxies.
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Chapter 1

Introduction

Star formation is one of the most important subjects in all of astrophysics. Without stars
there would be no planets, no starlight, no elements heavier than lithium and no life.
Despite its enormous significance and after several decades of intense research there are
still many questions left to be answered regarding the star formation process. The perhaps
two most important ones are: where are stars formed and at what rate? A hint to the
answers lies in the Kennicutt-Schmidt (1998, 1959) law ΣSFR ∝ Σn

g , where ΣSFR is the
star formation rate surface density and Σg is the surface density of gas in a galactic disc
and n ≈ 1.4 according to Kennicutt (1998). This empirical formula relates small-scale
star formation to the large-scale distribution of gas in disc galaxies. Its existence implies
that the rate at which stars are formed is strongly influenced by some phenomenon with
a very long range, and gravity is an excellent candidate.

Soon after Toomre (1964) had developed a very idealized local stability criterion
Spitzer (1968) and Quirk (1972) suggested that gravitational instability might set a lower
limit to the gas surface density necessary for stars to form in a galactic disc. Martin
& Kennicutt (2001) investigated the gravitational instability of 32 nearby spiral galaxies
using the Toomre (1964) criterion and they found indications of a gas surface density
threshold in these galaxies (see figure 1.1). Unfortunately, they could not use the simple
Toomre (1964) stability parameter to account for the vivid star formation in the inner
discs of low-mass galaxies. They also found that the ratio between the observed critical
gas surface density and the theoretical critical density predicted by the Toomre (1964)
criterion varied between the galaxies in their sample.

Martin & Kennicutt (2001) speculated that these variations may be due to differences
in the relative contributions of stars to the gravitational instability of the gas. Although
their paper arose a great deal of interest in gravitational instability it also illustrated
the necessity of using more sophisticated stability parameters which at least consider
the influence of stars. Leroy et al. (2008) used such a parameter calculated by Rafikov
(2001) to explore the gravitational instability of 12 spiral and 9 dwarf galaxies from
The H I Nearby Galaxy Survey (THINGS). The same spiral galaxies were also analyzed
by Romeo & Wiegert (2011) and Romeo & Falstad (2013) using more advanced stability
parameters than that of Rafikov (2001). However, neither of the latter studies investigated
the gravitational instability of the 9 dwarf galaxies.

Large galaxies are believed to have formed through clustering of smaller objects such
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Figure 1.1: From Martin & Kennicutt (2001). The top plot shows the Hα surface brightness
radial profile for the galaxy NGC 5236 (the dashed line is a fitted exponential function). Since
Hα-emission is a tracer of star formation we can see in this plot that the star formation rate
surface density falls drastically beyond the threshold radius RH II. The middle plot shows the
radial profiles of gas (H I + H2), H2 (as traced by CO-emission) and H I. These surface densities
have been multiplied by 1.4 to account for helium. The dashed curve shows the critical surface
density given by the Toomre (1964) criterion and we see that the gas surface density falls below
the critical density close to RH II. The bottom plot shows the ratio α between the total gas
surface density and the critical density.
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as dwarf galaxies. Studying the star formation process in the latter type of galaxies is
therefore of vital importance for our understanding of the evolution of galaxies such as
the one we live in. In this thesis we use the most advanced stability parameter available,
namely that of Romeo & Falstad (2013), to analyze the 9 dwarf galaxies mentioned above
and to compare their stability properties to those of the 12 spiral galaxies.

The rest of the thesis is organized as follows. In chapter 2 we present the galaxies in
our study as well as the survey from which they were selected by Leroy et al. (2008), and
we also briefly describe the stability parameters of greatest interest to us. Our stability
analysis is performed in chapter 3 and in chapter 4 we search for physical correlations
involving ΣSFR. We investigate how reliable our stability analysis is in chapter 5 before we
give our conclusions in chapter 6. In appendix A we provide radial profiles of important
parameters for the individual galaxies in our study and in appendix B we briefly describe
our error analysis.
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Chapter 2

Overview of THINGS galaxies and
stability parameters

2.1 THINGS galaxies
The H I Nearby Galaxy Survey (THINGS) is a very ambitious survey of the 21 cm line
emission from neutral atomic hydrogen (H I) in 34 nearby galaxies. It is based on observa-
tions made at the Very Large Array of the National Radio Astronomy Observatory during
the period 1989–2005. Most of the galaxies in THINGS were selected from the sample of
the Spitzer Infrared Nearby Galaxies Survey (SINGS) in order to enable multiwavelength
analyses of these objects. The THINGS galaxies were also chosen to represent a wide
range of star formation rates, total H I masses, absolute luminocities and metallicities (i.e.
total mass fractions of elements heavier than helium). They are at distances of about
2–15Mpc from us (1 pc ≈ 3.26 light years). (Walter et al. 2008)

The first THINGS paper (Walter et al.) was published in 2008, and since then many
others have followed. The one of greatest interest to us is the paper by Leroy et al. (2008),
which includes a gravitational stability analysis of THINGS galaxies. The parameters and
radial profiles necessary to repeat their analysis have been placed in the VizieR database1
(http://vizier.u-strasbg.fr/), from where they are accessible to anyone. It was this data
which enabled the analysis in this thesis!

For their analysis Leroy et al. (2008) depend on an overlap between data from
THINGS, SINGS, the Galaxy Evolution Explorer (GALEX) Nearby Galaxies Survey
(NGS) and (for the large spiral galaxies) either the Berkeley-Illinois-Maryland Associ-
ation (BIMA) Survey of Nearby Galaxies (SONG) or the HERA CO-Line Extragalactic
Survey (HERACLES). They can therefore only analyze 23 of the 34 THINGS galaxies.
(Leroy et al. 2008)

They arrange their sample of 23 nearby star-forming galaxies by their total stellar
massesM? in an increasing order, and they classify the first 11 galaxies as ‘dwarf galaxies’
(or simply ‘dwarfs’). The remaining 12 galaxies are large spiral galaxies (or ‘spirals’) (see
table 2.1). For reasons which will be explained in section 3.1.1, Leroy et al. (2008) had to
exclude two of the dwarfs from their stability analysis. This means that the total number

1This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France.
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Table 2.1: The sample of Leroy et al. (2008), which was also analyzed in this thesis (see table
2 and 4 in Leroy et al. 2008). The galaxies have been arranged by their total stellar masses M?

in an increasing order and the table shows their basic morphologies according to Leroy et al.
(2008). The two galaxies within parentheses were excluded from both the gravitational stability
analysis of Leroy et al. (2008) as well as the analysis in this thesis.

Dwarfs Morphology Spirals Morphology
1 DDO 154 Irregular 12 NGC 628 Spiral
2 Ho I Irregular 13 NGC 3198 Spiral
3 Ho II Irregular 14 NGC 3184 Spiral
4 IC 2574 Irregular 15 NGC 4736 Spiral
5 NGC 4214 Irregular 16 NGC 3351 Spiral
6 NGC 2976 Spiral 17 NGC 6946 Spiral
7 (NGC 4449) Irregular 18 NGC 3627 Spiral
8 (NGC 3077) Spiral 19 NGC 5194 Spiral
9 NGC 7793 Spiral 20 NGC 3521 Spiral
10 NGC 2403 Spiral 21 NGC 2841 Spiral
11 NGC 925 Spiral 22 NGC 5055 Spiral

23 NGC 7331 Spiral

of dwarfs and spirals in both theirs as well as our analysis is 9 and 12, respectively.
The dwarfs have rotation velocities vrot . 125 km/s, total stellar massesM? . 1010M�2

and absolute magnitudes in the blue band MB & −20, while the spirals have vrot &
125 km/s, M? & 1010M� and MB . −20. (Leroy et al. 2008). MB is a measure of the
intrinsic brightness of an object in a narrow band centered at 4400Å. The lower the value
of MB the brighter the object is in this band. Relative to the spirals, the dwarfs also
tend to have low metallicities, intense radiation fields, low galactic shear, weak or absent
spiral structures (Leroy et al. 2008), smaller optical radii and lower star formation rates
(see table 4 in Leroy et al. 2008). The optical radius of a galaxy is defined as the radial
distance from the optical center of the galaxy where the surface brightness in the blue
band has, on an average, decreased to 25 magnitudes per square arcsecond.

Moreover, the dwarfs are H I-rich while the spirals are H2-dominated. (Leroy et al.
2008). We also see in table 2.1 that the majority of the dwarfs, unlike the spirals, have
irregular morphologies. Galaxies are morphologically classified by the way they appear
when viewed through an optical telescope. Galaxies which have clear spiral structures or
structureless elliptical shapes are called spiral and elliptical galaxies, respectively. Many
galaxies cannot be classified as either spiral or elliptical galaxies, and these galaxies are
called irregular galaxies. Some irregular galaxies have weak spiral or elliptical features,
while others have no apparent structure of any kind. Also, irregular galaxies may or may
not be disc-shaped.

Spiral and elliptical galaxies are further divided into sub-categories according to their
ellipticities and how closely wound their spiral arms are, respectively. Spiral galaxies are

2M� is the mass of the Sun. In general, the symbol � represents the Sun.
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Figure 2.1: The 61 KINGFISH galaxies arranged into the Hubble sequence, which is also known
as the ‘Hubble tuning-fork’ due to its appearance. KINGFISH is a survey of nearby galaxies in
the far infrared part of the spectrum which uses data from the Herschel space telescope. (Source:
http://www.esa.int/spaceinimages/Images/2013/02/Interactive_Hubble_Tuning_Fork)

also separated into those with or without bars/bulges at the center. In some classification
schemes, such as the de Vaucouleurs system, one also considers whether or not galaxies
have ring-like structures. The reader should be alerted to the fact that there exists neither
a universally accepted system of galaxy morphology classification nor an unambiguous
method of determining which category within a given system a galaxy belongs to. We
have therefore omitted detailed morphological information in table 2.1.

However, to illustrate the basic differences in appearance between spiral, elliptical and
irregular galaxies we have included figure 2.1, which shows an attempt to organize the
61 galaxies in the Key Insights on Nearby Galaxies (KINGFISH) survey into the Hubble
sequence. The latter is a famous morphological classification scheme which was invented
by Hubble in 1936.
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2.2 Stability parameters
Let us first have a look at the (Safronov-) Toomre (1964) stability parameter Q. Suppose
that we have an infinitesimally thin single-component disc which rotates differentially, i.e.
the angular velocity is a function of the radius R. Next, suppose that we perturb the
disc with small axisymmetric, or tightly wound, waves. One can then show that the disc
is gravitationally stable at R against waves with short, but otherwise arbitrary, radial
wavelengths if the Toomre (1964) stability criterion is satisfied:

Q > 1, Q = κσ

πGΣ , (2.1)

where κ(R) is the epicyclic angular frequency, σ is the radial velocity dispersion, G is the
gravitational constant and Σ(R) is the surface density.

The reason for why the waves have to be small is that the Toomre (1964) stability
criterion is derived using linear perturbation theory, and the reason for why the radial
wavelength has to be small has to do with the fact that “gravity is a long-range force,
so perturbations in all parts of the system are coupled”, as Binney & Tremain (2008)
put it. However, if the radial wavelength is much smaller than the radius then the long-
range coupling may be neglected and the response of the system to the perturbations
is determined by local conditions. This simplifies the analysis considerably, as does the
assumption of axisymmetry. The assumption of a short radial wavelength is in this context
usually referred to as the ‘short-wavelength approximation’, and it may be written as
|kR| � 1, where k is the radial wavenumber. (Binney & Tremain 2008, pp. 485, 486)

Unfortunately, the Toomre (1964) criterion (2.1) is ill-suited as a diagnostic for grav-
itational instability of galactic discs, since such discs are multi-component systems with
non-zero thicknesses. However, it is possible to derive Toomre-like stability criteria, i.e.
on the form Q > 1, which allow for several components if one replaces the Toomre (1964)
parameter with an appropriately defined effective stability parameter Q.

In their analysis of the gravitational stability of THINGS galaxies Leroy et al. (2008)
use an effective stability parameter calculated by Rafikov (2001), which treats both the
stars and the gas as fluids (see equation 15 and 16 in Leroy et al. 2008). This parameter
allows for a single gaseous and an arbitrary number of stellar components, but Leroy et
al. (2008) treat all the stars in a galaxy as a single component. To treat stars of different
types as different components would have given more accurate results, but there is not
enough observational data to perform such an analysis.

However, one can treat H I and H2 as separate components, but this is not possible
with the Rafikov (2001) stability parameter. This parameter also neglects the thickness
of the disc and it is difficult to compute since doing so requires the maximization of a
so-called stability curve.

Romeo & Wiegert (2011) showed that for a two-component system of stars and gas
it is possible to define an approximation QWR of the effective stability parameter which
is accurate, simple and fast to compute, takes into account the thickness of the disc and
makes it easy to see which component dominates Q. We will see in the next chapter that
the latter information is very important in stability analyses.

Romeo & Falstad (2013) generalized QWR into an accurate approximation of the ef-
fective stability parameter for a system with an arbitrary number of stellar and gaseous
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components. For an N -component system their stability parameter QN is given by (see
equation 16, 18 and 19 in Romeo & Falstad 2013)

1
QN

=
N∑
i=1

Wi

TiQi

(2.2)

Qi = κσi
πGΣi

(2.3)

Wi = 2σmσi
σ2
m + σ2

i

(2.4)

T ≈

1 + 0.6
(
σz

σR

)2
for 0 . σz/σR . 0.5

0.8 + 0.7
(
σz

σR

)
for 0.5 . σz/σR . 1

(2.5)

where σi and Σi are the radial velocity dispersion and surface density of the i:th com-
ponent, σz and σR are the vertical and radial velocity dispersions, and m denotes the
component with smallest TQ : TmQm = min{TiQi}.

It is easy to show that Wi ≤ 1 and that Wi = 1 precisely when i = m. We therefore
see in (2.2) that the component with smallest TQ is also the component which dominates
QN .

Romeo & Falstad (2013) used their stability parameter to perform a three-component
analysis of the gravitational stability properties of the spirals in table 2.1, in which stars,
H I and H2 were treated as distinct components.

9



10



Chapter 3

Stability analysis: dwarfs vs. spirals

3.1 Computing the Romeo-Falstad QN stability pa-
rameter

The value of QN at different radii was computed for the 9 dwarfs and the 12 spirals for
a disc consisting of: (1) stars and H I, (2) stars and gas, where the gas in turn consists
of H I and H2, and (3) stars, H I and H2. We will refer to case 1 as ‘Q2 without H2’, case
2 as ‘Q2 with H2’, and case 3 as simply Q3. For reasons which will be explained in a
moment, there is no observational data on the surface density of H2 for the dwarfs. This
means that for the dwarfs Q2 without H2 is the most reliable stability parameter in the
sense that it is the only one computed solely from observational data without additional
approximations, asides from those used in all three cases. However, Q2 without H2 is
also less reliable than the other two stability parameters in the sense that it completely
ignores the molecular gas in the disc. From this perspective Q2 with H2 it better than
Q2 without H2, but the former parameter has the weakness that it treats H I and H2 as a
single component. Q3 is therefore the best stability parameter for the spirals and, to the
extent that we can trust the estimated values of ΣH2 for the dwarf galaxies, it is also the
best for the dwarfs.

Since the main purpose of this thesis is to compare the gravitational stability properties
of the dwarfs with those of the spirals described in Romeo & Falstad (2013), we used
precisely the same observational database, assumptions and approximations as they did
to compute QN . This way we can be sure that any difference between the stability
properties of the two subsamples is due solely to the physical dissimilarities between
dwarfs and spirals. Moreover, since Romeo & Falstad (2013) used the data and methods
of Leroy et al. (2008), our results are also directly comparable to those of Leroy et al.
(2008).

3.1.1 Basic quantities
Let us now show how to compute QN . We see in equation (2.2)–(2.5) that we need
to know the values of the parameters listed below, where the index notation should be

11



self-explanatory.

Q2 without H2 : σ?, σH I, (σz/σR)?, (σz/σR)H I,Σ?,ΣH I, G, κ (3.1)
Q2 with H2 : σ?, σg, (σz/σR)?, (σz/σR)g,Σ?,Σg, G, κ (3.2)
Q3 : σ?, σH I, σH2 , (σz/σR)?, (σz/σR)H I, (σz/σR)H2 ,Σ?,ΣH I,ΣH2 , G, κ (3.3)

In summary, we need to know the values of:

σ?, σg, σH I, σH2 , (σz/σR)?, (σz/σR)g, (σz/σR)H I, (σz/σR)H2 ,

Σ?,Σg,ΣH I,ΣH2 , G, κ (3.4)

Like Romeo & Falstad (2013) we estimate σ? with the help of equation B3 in Leroy et al.
(2008):

σ?,z =
√

2πGl?
7.3 Σ0.5

? , (3.5)

where l? is the stellar scale length for the galactic disc.
Statistically speaking, the stellar surface density decreases as Σ? ∝ exp(−R/l?) with

the radius R. If the galactic disc is self-gravitating and locally isothermal in the vertical
direction, then in the limit |z| → +∞ the stellar volume density ρ? also decreases ex-
ponentially as ρ? ∝ exp(−|z|/h?) with the height z (see equation 3 in Romeo 1992). To
derive (3.5) Leroy et al. (2008) have assumed that the stellar scale height h? is indepen-
dent of R and that l?/h? = 7.3 ± 2.2. In addition, they have assumed that the galactic
discs are isothermal in the z-direction, which allows them to use equations based on hy-
drostatic equilibrium to derive (3.5). Moreover, they take (σz/σR)? = 0.6, and insertion
of this into (3.5) gives

σ? = 1
0.6

√
2πGl?

7.3 Σ0.5
? , (3.6)

where σ? as before denotes the radial stellar velocity dispersion.
This approximation of σ? is discussed in section 5.2. The reason for why Leroy et al.

(2008) use (3.6) to estimate σ? is that direct observations of this quantity are rare for
galaxies in general and non-existing for the THINGS galaxies in particular. To compute
σ? using (3.6) we need the values of l? and Σ?, which are given in the electronic version
of table 4 and 7, respectively, in Leroy et al. (2008).

Next, like Romeo & Falstad (2013) and Leroy et al. (2008) we take the velocity
dispersions of the gaseous components to be constants with the values σg = σH I = 11 km/s
and σH2 = 6 km/s. As Romeo & Falstad (2013) explain it is also natural to let (σz/σR)g =
(σz/σR)H I = (σz/σR)H2 = 1 since collisional components should have isotropic velocity
dispersions.

Just as for Σ?, radial profiles of ΣH I are given for both the dwarfs and the spirals in
the electronic version of table 7 in Leroy et al. (2008). Radial profiles of ΣH2 are also
given for the spirals, but not for the dwarfs. Since there is no data on ΣH2 for the dwarfs
we estimate the value of this parameter for these galaxies as (see equation 28 in Leroy et
al. 2008)

ΣH2 ≈
10−6ΣSFR

5.25× 10−10yr−1 , (3.7)
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where ΣSFR ≡ dΣ?/ dt is the star formation rate surface density.
This formula is based on an empirical power law relationship with index 1.0±0.2, i.e. a

linear relationship, between ΣSFR and ΣH2 found by Bigiel et al. (2008) for their subsample
of seven large THINGS spiral galaxies. Leroy et al. (2008) extended this result by showing
that for their subsample of 12 large THINGS spiral galaxies, which include those studied
by Bigiel et al. (2008), the star formation efficiency of H2, SFE(H2) ≡ ΣSFR/ΣH2 , varies
relatively little with R,Σg,Σ? and several other parameters where the ISM is dominated
by H2. They also computed the constant 5.25 (±2.5) in equation (3.7) (see equation 27
in Leroy et al. 2008).

Note that by using equation (3.7) to estimate ΣH2 for the dwarfs we are implicitly
assuming that this relation is approximately true for these galaxies as well – not only
where the ISM is dominated by H2 but at all radii. This is a big leap of faith! Also note
that the powers of 10 in equation (3.7) are merely meant to convert between different
units. In the units used in the electronic version of table 7 in Leroy et al. (2008) equation
(3.7) simplifies to ΣH2 ≈ ΣSFR/5.25.

Next, we used G = 4.301 m2kpc/s2/M�. With the gravitational constant in this unit
one can directly insert the tabular values of l? and Σ? into equation (3.7), without changing
their units, to obtain σ? in km/s. If in addition κ and σi have the units km/s/kpc and
km/s, respectively, then equation (2.3) also gives the Toomre (1964) parameter directly
from the tabulated surface densities.

The epicyclic frequency was calculated from equation 13 and B1 in Leroy et al. (2008),
which give that

κ(R) = 1.41vrot(R)
R

√
1 + β (3.8)

vrot(R) = vflat

[
1− exp

(
−R
lflat

)]
(3.9)

β(R) = R/lflat
exp(R/lflat)− 1 (3.10)

where vflat and lflat are parameters obtained from fitting the rotation curve to an expo-
nentially decreasing function on the form (3.9). The values of vflat and lflat are given in
the electronic version of table 4 in Leroy et al. (2008). Note that equation (3.10) is not
given in Leroy et al. (2008). It was calculated from (3.9) using the definition of β as the
logarithmic derivative of the rotation curve, i.e. β ≡ d(ln vrot)/ d(lnR).

Also note that the dwarf galaxies NGC 4449 and NGC 3077, which are listed within
parentheses in table 2.1, have complicated rotation curves which cannot be fitted well
by functions on the form (3.9). These two galaxies were therefore excluded from both
the stability analysis of Leroy et al. (2008) as well as ours. The reason for their strange
kinematics is that NGC 4449 has a counter-rotating core and NGC 3077 is interacting
with the galaxy M81. (Leroy et al. 2008)

Moreover, it should be mentioned that interstellar gas consists of about 74% hydrogen
and 26% helium on an average. Other elements are present only in very small amounts.
To account for the helium, which cannot be directly observed, Leroy et al. (2008) included
a factor 1.36 ≈ 1/0.74 in their tabulated values of ΣH I and ΣH2 . This makes Σg the total
surface density of gas, rather than merely the hydrogen surface density.
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3.1.2 Observational data
The most basic physical quantities in the electronic tables of Leroy et al. (2008) are:
Σ?,ΣH I,ΣH2 (spirals only),ΣSFR and vrot. From these one can compute for instance
vflat, lflat, l?, the optical radius R25, etc. Let us therefore briefly mention how Leroy et
al. (2008) derived the basic quantities.

The stellar surface density was determined from Spitzer (mostly SINGS) 3.6µm in-
tensity maps. The median intensity over 10′′ wide tilted rings was computed and radial
profiles of the median were constructed. These profiles were used to compute the K-band
intensity (the K-band is centered at 2.2µm) via an empirical formula. Then a fixed K-
band mass-to-light ratio ΥK

? = 0.5 M�/L�,K was used to convert the K-band intensity to
stellar mass. Divided by the area this gives Σ?. After correcting for the inclination i the
formula for Σ? in M�/pc2 becomes (see equation C1 in Leroy et al. 2008)

Σ? = 280 cos i I3.6, (3.11)

where I3.6 is the 3.6µm intensity in the unit MJy/ster.
Next, the H I surface density was determined from THINGS 21 cm line emission maps.

The formula used was (see equation A1 in Leroy et al. 2008)

ΣH I(M�pc−2) = 0.020 cos i I21 cm(K km s−1), (3.12)

where I21 cm is the integrated intensity of the 21 cm line and the expressions within paren-
theses are the units for ΣH I and I21 cm. Note that this formula includes a factor 1.36 to
account for the presence of helium.

For the spirals the H2 surface density was estimated using CO as a tracer. HERACLES
provided maps of the CO J = 2→ 1 emission for all the spirals except NGC 3627 and NGC
5194, where J is the total angular momentum quantum number. For the latter galaxies
BIMA SONG supplied CO J = 1→ 0 maps. By assuming a constant CO-to-H2 conversion
factor XCO = 2 × 1020 cm−2(K km s−1)−1, and a relation ICO(2 → 1) = 0.8ICO(1 → 0),
Leroy et al. (2008) could compute ΣH2 from the integrated CO intensities ICO(2 → 1)
and ICO(1→ 0) with the formulas (see equation A2 and A3 in Leroy et al. 2008)

ΣH2(M�pc−2) = 5.5 cos i ICO(2→ 1)(K km s−1) (3.13)
ΣH2(M�pc−2) = 4.4 cos i ICO(1→ 0)(K km s−1) (3.14)

According to Leroy et al. (2008) the CO-emission from very low-mass galaxies is usually
weak or not detected and its interpretation is complicated by potential variations in XCO.
This is the reason for why they do not provide tabulated values of ΣH2 for the dwarfs.

The star formation rate surface density was estimated fromGALEX NGS far-ultraviolet
(FUV) maps and Spitzer 24µm maps. According to Leroy et al. (2008), this combination
traces both unobscured (FUV) and dust embedded (24µm) star formation. The formula
they used is (see equation D1 in Leroy et al. 2008)

ΣSFR =
(
8.1× 10−2IFUV + 3.2+1.2

−0.7 × 10−3I24
)

cos i, (3.15)

where ΣSFR has the unit M�kpc−2yr−1 and the intensities have the unit MJy/ster.

14



Next, the rotation velocity was determined from THINGS mean intensity weighted
velocities vr and the formula (see equation B2 in Leroy et al. 2008)

vrot = vr − vsys
sin i cos θ , (3.16)

where vsys is the systemic velocity and θ is the azimuthal angle relative to the receding
major axis measured in the plane of the galaxy. Maps of vrot were assembled and the
median in 5′′ wide tilted rings computed to give radial profiles of vrot. These profiles were
weighted by the scatter in the rings and fitted to functions on the form (3.9) using a
non-linear least squares method to provide values of vflat and lflat for each galaxy. For as
many of the galaxies as possible high-quality rotation curves from de Blok et al. (2008)
were also included in the fit.

Finally, it should be mentioned that Leroy et al. (2008) have placed all data at a
common spatial resolution of 400 pc for the dwarfs and 800 pc for the spirals. This means
that they have used Gaussian functions to degrade data with higher spatial resolution to
ensure that all data have the same resolution. This is equivalent to placing all the dwarfs
and all the spirals at an equal distance, respectively. Note that the spirals are larger than
the dwarfs but they are also at larger distances, so the number of resolution elements
per galaxy is about the same for all the galaxies. Leroy et al. (2008) have also used a
working sensitivity of 1 M�pc−2 for ΣH I and ΣH2 and 10−4 M�yr−1kpc−2 for ΣSFR, which
means that they have removed all data with values below the working sensitivities. This
is important since the data would otherwise have different sensitivities and one would not
know how to interpret a missing value in the electronic version of table 7 in Leroy et al.
(2008).

3.2 Scatter plots of QN vs. galactocentric distance
Scatter plots of QN for the three cases described at the beginning of section 3.1 are shown
in figure 3.1 for the dwarfs and the spirals separately. In all six plots QN is plotted as
a function of the normalized galactocentric distance R/R25, and the grey area shows the
region of local gravitational instability. The values of R25 were taken from the electronic
version of table 4 in Leroy et al. (2008). The plots of Q2 with H2 and Q3 for the spirals
show the same data points as the two plots in figure 4 of Romeo & Falstad (2013), except
for the addition of the empty squares in the former plots. Several other plots in Romeo
& Falstad (2013) have been reproduced in this thesis with permission from the authors.

The colors of the points in figure 3.1 show which component dominates QN , i.e. has
the smallest value of TQ, at each point. The symbols indicate the amount of gaseous
data available. Points with non-vanishing values of both ΣH I and ΣH2 are denoted by
circles, point with non-vanishing values of ΣH I but not ΣH2 or vice versa are denoted by
diamonds and plus-signs, respectively, and points with vanishing values of both ΣH I and
ΣH2 are denoted by empty squares. Note that the symbols have the same significance in
all the plots of, or related to, QN in this thesis. Also note that in the PDF-version of this
thesis all figures have vector graphics, and the reader is therefore encouraged to enlarge
the plots and study the shapes and colors of individual points and error-bars.
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Figure 3.1: Scatter plots of Q2 without H2, Q2 with H2 and Q3 for the dwarfs (left) and spirals
(right). The meaning of the colors and symbols in these plots are explained in the main text.
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Moreover, the error-bars in figure 3.1, as well as the error-bars in all other figures in
this thesis, have been computed using the same methods as in Romeo & Falstad (2013).
The details of the error analysis are given in appendix B together with an alternative
method of computing the error-bars for QN . In the present context it is sufficient to say
that the error analysis is very complicated for QN and that the main reason for this is
that QN is not differentiable at points where the dominant component changes, i.e. where
the index m in equation 2.4 changes value.

It should also be mentioned that each point in figure 3.1 has three associated values of
QN : a nominal value computed from observational data, and a lower and an upper value
indicating the uncertainty of QN . The end-points of the error-bars show an estimation
of the latter two values, and the colors of the error-bars show the dominant components
for these points. However, the reader should be aware that there exists no method of
calculating the exact value of the standard deviation σ of QN and that the error-bars in
figure 3.1 do not show QN ± σ. In fact, the error-bars are asymmetric and it is shown
in appendix B that the density function of QN is asymmetric as well – in particular near
point where the m-value changes.

The error-bars are not shown for the square points in figure 3.1 since they are inside
the squares. These points were excluded from the analysis of the spirals in Romeo &
Falstad (2013) since they cannot be placed in the (s, q) plane, which will be introduced
in section 5.1. Also, some of these points have vanishing values of ΣH2 at small radii,
where there should be plenty of H2 in the spirals. This is more likely due to observational
difficulties rather than real deficiencies in H2, which makes these points very uncertain.
For the dwarfs there are only square points at large radii where we expect the surface
densities of both ΣH I and ΣH2 to be below the working sensitivity of Leroy et al. (2008).
Nevertheless, to ensure that the dwarfs are treated in precisely the same manner as the
spirals we have excluded the square points from the stability analysis for both subsamples
in this thesis. In the only computation where these points are considered this is stated
explicitly, and in appendix B we also show that including the square points has a negligible
effect on the results.

Let us now analyze figure 3.1. The first thing that one notices is that most of the
data points in these six plots lay on bands slightly above the region of instability. For the
dwarfs this band is relatively close to the grey region, while for the spirals there is a small
but tangible gap between the lower edge of the band and the grey area. The second thing
that one notices is that when we move from the top plots to the middle ones and then to
the bottom plots, the data points are lowered in general and gas-dominated points appear
at small radii with relatively low QN -values in particular.

The second observation can be understood by inspection of equation (2.2) and (2.3).
Since Qg ∝ 1/Σg adding ΣH2 to Σg decreases the value of Qg, which in turn increases the
value of 1/Q2, i.e. decreases the value of Q2. The value of TgQg is also lowered, while T?Q?

is unaffected. This tends to make star-dominated points gas-dominated. These effects are
most pronounced in regions with a lot of H2, i.e. near the centers of the galaxies1. Also,
since Qi ∝ σi and σH2 < σH I, treating H2 as a separate component has similar effects.

If we compare the two plots of Q3 we also see that there is a difference in both
1Radial profiles of ΣH2 and several other quantities are shown for individual galaxies in appendix A.
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the distribution and nature of the gas-dominated points between the dwarfs and the
spirals. For the dwarfs there are gas-dominated points at all radii, with a slightly higher
concentration at R/R25 & 0.5, while for the spirals nearly all the gas-dominated points
have R/R25 . 0.6. Also, the gas-dominated points in the dwarfs are H I-dominated,
except for a few points at small radii, while the gas-dominated points in the spirals are
H2-dominated, except for a few points at large radii. The latter observation was expected
since the dwarfs and the spirals are rich in H I and H2, respectively.

Moreover, we see in the plot of Q3 for the dwarfs that there is a string of H I-dominated
points with relatively large Q3-values at 0 . R/R25 . 0.7. These points belong to the
irregular galaxy Holmberg I (Ho I), which has a central ‘hole’ in its H I-distribution.
According to Ott et al. (2001), most of the atomic hydrogen in Ho I is located in a
supergiant shell, and they suggest that this shell might have been formed by strong stellar
winds and supernova explosions which have driven the H I away from the center of the
galaxy. However, they also point out that there exists little observational evidence that
stars are the cause of such superbubbles or supergiant shells.

Regardless of the origin of the H I-shell it remains an observational fact that both Σ?

and ΣSFR have very low values in the central parts of Ho I. One might suspect that this
is due to the low values of ΣH I there since star form from H2, which in turn forms from
H I. Due to the absence of stars we do not expect Q3 to be star-dominated at small radii
in Ho I, and since QH I ∝ 1/ΣH I we also expect Q3 to have high values there (see equation
(2.2) and (2.3)). This is precisely what we see in the bottom left plot in figure 3.1.

Next, let us comment on the H2-dominated points at small radii in the plot of Q3 for
the dwarfs. The three points with the smallest values of Q3 belong to NGC 4214, which
has a central starburst (see for instance Fanelli et al. 1997), i.e. ΣSFR is very high in
the central parts of this galaxy. Intuitively this seems to correspond well with the small
Q3-values there. However, NGC 4214 is morphologically classified as an irregular galaxy
with a weak bar in the NASA/IPAC Extragalactic Database (NED)2, and the method
of calculating with values averaged over tilted rings used by Leroy et al. (2008) does
not work well with bars. The reason for this is that the conditions inside bars are very
different from the conditions in their surroundings, so the average or median value over a
tilted ring passing a bar neither represents the properties of the bar nor its surrounding
very well.

It should also be mentioned that we assumed a fixed value of σH2 , but in reality the
velocity dispersion increases towards the center of a galaxy. We see in equation (2.2) and
(2.3) that a larger value of σH2 implies a larger value of QH2 and thus also a larger value
of Q3. It is therefore possible that the H2-dominated points in NGC 4214 have larger
Q3-values than those shown in figure 3.1. Moreover, one should not necessarily expect a
starburst region to have very low values of Q3. There may be self-regulation mechanisms
which prevent the value of Q3 from falling much below one. This is easy to understand
since gravitational instabilities try to collapse gas clouds, which heats them up. This
in turn increases the velocity dispersion of the gas, which leads to higher values of Q3.
Interestingly enough, the heating of the gas also increases the gas dissipation, which lowers

2This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated
by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.
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the temperature as well as the velocity dispersion and Q3. Due to such self-regulation
mechanisms a starburst region may therefore oscillate around Q3 = 1, i.e. it could be
marginally stable.

Finally, the remaining three H2-dominated points at small radii in the plot of Q3 for
the dwarfs belong to NGC 925, which is a barred spiral galaxy, so the discussion above
applies to these points as well. One should also mention that there are a few points in
this plot with Q3 < 1 at 0.6 . R/R25 . 0.9. These points belong to galaxy 3 and 4 in
table 2.1, and there is not much else to say about them.

3.3 Stability properties as functions of galactocentric
distance

The two upper plots in figure 3.2 show the median of QN as a function of galactocentric
distance R/R25 for the same three cases as before for the dwarfs and the spirals separately.
The two lower plots show the percentage of data points in each bin dominated by stars
and gas, respectively, as well as the percentage of points with QN < 1. In all four plots
12 bins b1, . . . , b12 were used with the limits 0.1(i− 1) < bi ≤ 0.1i, i = 1, 2, . . . , 12. Note
that changing the limits to 0.1(i − 1) ≤ bi < 0.1i makes a difference since some of the
data points lay precisely on the borders between bins. However, this is a relatively small
effect with no qualitative impact on the results.

We see in figure 3.2 that the median of Q3 is almost constant with a value of about
2 for both the dwarfs and the spirals. We also see that in all three cases the percentage
of gas-dominated points steadily decreases with R/R25 for the spirals, while it instead
increases for the dwarfs up to R/R25 ≈ 0.95 and then it decreases rapidly. This is more or
less what we would expect from an inspection of the two bottom plots in figure 3.1. Figure
3.3 shows schematically at which galactocentric distances the majority of the Q3-points
are dominated by stars and gas, respectively, for the two subsamples.

Note that the median of Q3 is below the median of Q2 with H2, which in turn is below
the median of Q2 without H2. This is in full agreement with the discussion in section
3.2. However, it is a bit surprising that the median of Q2 with H2 is so close to the
median of Q3 for the dwarfs. The reason for this is that there is relatively little H2 in
the dwarfs compared to the spirals. In general, treating H2 as a separate component has
very little impact if ΣH2 has a small value. In particular, it has a negligible impact on
star-dominated points, and we can tell by inspection of figure 3.1 that the median of Q2
with H2 and Q3 are both star-dominated3 at almost all radii for the dwarfs. The same is
true for the median of Q2 with H2 for the spirals, but at small galactocentric distances
the median of Q3 is obviously H2-dominated for the spirals. This ensures that there will
be a large difference between Q2 with H2 and Q3 at small R/R25 for the spirals, and this
is precisely what we see in figure 3.2.

3For an even number of data points in a bin the median is the average value of the two middlemost
QN -values. In this case the median of QN does not correspond to a single point and consequently does
not have a dominant component. However, if the two middlemost points are both star-dominated then
the median may be thought of as a star-dominated point as well.
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Figure 3.2: The two upper plots show the median of QN as a function of galactocentric distance
R/R25 for the three standard cases for the dwarfs (left) and the spirals (right). The two lower
plots show the percentage of data points in each bin dominated by stars and gas, respectively,
as well as the percentage of points with QN < 1.
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Figure 3.3: A sketch of where in the interval 0 ≤ R/R25 ≤ 1.2 the majority of the Q3-points
are dominated by stars and gas, respectively, for the two subsamples. Note that the figure is
not in scale.
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Chapter 4

Searching for physical correlations

Attempts were made to find correlations involving ΣSFR. Figure 4.1 shows scatter plots of
ΣSFR as a function of galactocentric distance for the dwarfs and the spirals, respectively.
It also shows the median of ΣSFR for the two subsamples, computed using the same
bin-limits as for figure 3.2. Note that one usually also computes the 1σ-scatter for the
(sub)samples about the median as σ ' MAD/0.6745 (see equation 10 in Romeo, Horellou
& Bergh 2004), where MAD stands for Median Absolute Deviation. However, in this case
MAD/0.6745 is not a robust estimator of the 1σ-scatter since the scatter plots of ΣSFR
suggest that the distribution of this quantity is both skewed and multimodal. The former
means that it is not symmetric with respect to the median and the latter means that the
data points tend to concentrate around more than one value of ΣSFR for a fixed value of
R/R25.

We also see in the scatter plots of ΣSFR that there are large empty areas inside the
distributions. For the dwarfs there are several such areas in the interval 0 . R/R25 . 0.6,
and for the spirals there is one particularly large empty area stretching from R/R25 ≈ 0.4
to R/R25 ≈ 1.1. This could simply be a consequence of the smallness of the subsamples,
i.e. if there were more galaxies then the extra data points might have filled the empty
spaces. However, these areas could also be a result of how the THINGS sample was
selected. For any statistical analysis the sample must be selected at random, but the
THINGS galaxies were purposely selected to represent a wide variety of physical proper-
ties. In making such a choice one always risk biasing the sample, regardless of by which
criteria it is chosen. In other words: the THINGS sample might not be representative of
the natural mixture of galaxies in the nearby Universe. The fact that the relative scatter
of ΣSFR is rather small for the dwarfs at R/R25 & 0.6 could also be an effect of how these
galaxies were selected.

Be that as it may, we see that the logarithm of the median of ΣSFR is almost a linear
function of galactocentric distance for both subsamples, i.e. ΣSFR seems to decrease
exponentially with R/R25 in a statistical sense. We also see that there is an offset between
the two lines such that the median of ΣSFR has larger values at small galactocentric
distances for the spirals than for the dwarfs. This is not surprising considering that more
stars are formed at the center of large spiral galaxies than at the center of dwarf galaxies.
Moreover, we also see that the median of ΣSFR has a larger negative tilt for the spirals
than for the dwarfs.
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Figure 4.1: Scatter plots of ΣSFR as a function of galactocentric distance for the dwarfs (upper-
left) and the spirals (upper-right), and the median of ΣSFR for the two subsamples (lower).
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Unfortunately, we cannot put too much faith in the median of ΣSFR; at least not for
the dwarfs. The reason for this is that it is not robust. This is shown in figure 4.2, where
we investigate the impact on the median of ΣSFR for the dwarfs from removing either NGC
7793 or NGC 2403, or both, from the dwarf subsample. We see that removing either of
these galaxies lowers the median significantly in the interval 0.2 . R/R25 . 0.4, and that
removing both of them also lowers the median by about a factor 2–4 at R/R25 . 0.2.
The reason for why the median of ΣSFR depends so strongly on these two galaxies is that
they both have radial profiles of ΣSFR which are almost identical to that of the median,
i.e. they strongly support the median at all values of R/R25.

Next, in an attempt to find a connection between ΣSFR and QN we have repeated some
of the steps in the analysis of Westfall et al. (2014). They investigate the relationship
between disc stability and star formation for 25 galaxies from the DiskMass Survey. They
find, with a confidence level of over 99%, that the effective star formation rate surface
density is anti-correlated with the minimum value of Q2 with H2 on the interval 0.1 ≤
R/l? ≤ 2.5. We denote the former quantity by Σ̄SFR and the latter by Qmin

2 . Σ̄SFR is
defined as

Σ̄SFR ≡ SFR/(πR2
25), (4.1)

where SFR ≡ dM?/ dt is the global star formation rate of the galaxy.
Note that Σ̄SFR is almost, but not quite, equal to the average value of ΣSFR over the

optical disc. Although ΣSFR decreases rapidly beyond the edge of the optical disc it does
not vanish completely for R > R25. SFR is therefore somewhat larger than the integral of
ΣSFR over the optical disc, which implies that Σ̄SFR is a bit larger than the average value
of ΣSFR over this disc.

Westfall et al. (2014) use Qmin
2 in order to make their results comparable to those of

Li et al. (2006). In their paper from 2005 Li et al. use computer simulations to explore
star formation in isolated disc galaxies. They show that at time t = 0 in their simulations
the two-component Rafikov (2001) stability parameter Qsg for stars and gas has large
values at small radii, decreases to a well-defined minimum Qsg,min at Rmin, and increases
for R > Rmin. In their paper from 2006 they also show that at time t = τSF, which they
call the ‘star formation timescale’, ΣSFR ∝ [Qsg,min]−1.54±0.23. It is unclear at which radius
ΣSFR is to be evaluated, but presumably it is at Rmin.

Considering the uncertainty of the observational data, Q2 with H2 is equivalent to Qsg,
but Σ̄SFR 6= ΣSFR(Rmin). Also, the galaxies explored by Westfall et al. (2014) are different
from those simulated by Li et al. (2005, 2006), and Westfall et al. (2014) compute Σ̄SFR
and Qmin

2 for t 6= τSF. One should therefore not expect to find a very strong agreement
between the results of these two studies, and Westfall et al. (2014) indeed find a much
steeper power-law slope of about 3 in their data than the slope of −1.54 computed by Li
et al. (2006).

In our analysis we tried to find a relation between Σ̄SFR and the minimum Qmin
N of Q2

without H2, Q2 with H2 and Q3, respectively, on the interval 0.1 ≤ R/l? ≤ 2.5. Since our
radial profiles of these stability parameters do not have well-defined minima, i.e. they
are not convex, we also tried to find a relation between Σ̄SFR and the median of QN for
these three cases. Note that in this analysis the median of QN is the median of all QN -
values for a single galaxy, rather than the median of QN at a fixed galactocentric distance
marginalized over all galaxies in the subsample as in figure 3.2.
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Figure 4.2: The upper-left plot is identical to the lower plot in figure 4.1. The remaining
three plots show the effect on the first plot of removing NGC 7793 (upper-right) or NGC 2403
(lower-left), or both (lower-right), from the dwarf subsample.
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Figure 4.3: Σ̄SFR as a function of Qmin
N and the median of QN , respectively, for the three

standard cases for the dwarfs.

The values of SFR, R25 and l? were taken from the electronic version of table 4 in
Leroy et al. (2008), and the results of the computations are shown in figure 4.3 and 4.4
for the dwarfs and the spirals, respectively. Note that there are no error-bars for Σ̄SFR
in these plots since the standard deviations of SFR and R25 are not given by Leroy et
al. (2008). The dashed grey line in the plots show the best fitted power-law relationship
with a fixed slope of −1.54 for the data of Westfall et al. (2014). This line has been taken
directly from figure 3 in Westfall et al. (2014) to compare their result to ours, i.e. it has
not been fitted to our data!

We see in figure 4.3 and 4.4 that there is no apparent anti-correlation between Σ̄SFR
and any of the other quantities considered in these plots. However, for the spirals there
is a hint of an anti-correlation between Σ̄SFR and the median of Q3. The dashed green
line shows our linear least-squares fit to the data points. It has a slope of −1.73, which
is relatively close to −1.54. We also see that there is an offset between the green and the
grey line. Moreover, for the dwarfs there is a hint of an anti-correlation between Σ̄SFR
and the median of Q3; at least if one ignores the lowermost point in this plot. This point
corresponds to the galaxy IC 2574, which is a relatively large dwarf galaxy with very
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Figure 4.4: Σ̄SFR as a function of Qmin
N and the median of QN , respectively, for the three

standard cases for the spirals.
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low values of ΣSFR over the entire optical disc. As a comparison, IC 2574 has an optical
radius of 7.5 kpc and central values of ΣSFR of about 10−3 M�/yr/kpc2, while the dwarf
galaxy NGC 4214 has an optical radius of 2.9 kpc and central values of ΣSFR of about
10−1 M�/yr/kpc2.

Without the point corresponding to IC 2574 we can believe that there exists an anti-
correlation between Σ̄SFR and the median of Q3 for the dwarfs, but if there is such a
relation it is much to faint in our data to justify a linear least-squares fit. However, we
can tell by inspection of the bottom-right plots in figure 4.3 and 4.4 that there seems to
be an offset between the data for the dwarfs and the data for the spirals.

Westfall et al. (2014) also seek a linear relationship between Σ̄SFR/Σ̄g and Qmin
2 , as

predicted by Li et al. (2006), where Σ̄g is the average value of Σg over the optical disc.
They found a weak linear relationship with a slope of −1.0. Since Σ̄SFR/Σ̄g is a rather
peculiar quantity, we decided to instead seek a relationship between SFR/Mg and Qmin

N or
the median of QN , where Mg is the total gas mass of the galaxy. We obtained values of
MH I and MH2 for the spirals from the electronic version of table 4 in Leroy et al. (2008),
which include the mass of the helium. Unfortunately, there was not enough data for the
dwarfs, so this analysis was only performed for the spirals. The result is shown in figure
4.5 and we see that there does not seem to be a correlation in any of these plots.
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Figure 4.5: SFR/Mg as a function of Qmin
N and the median of QN , respectively, for the three

standard cases for the spirals.
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Chapter 5

How reliable is our stability analysis?

In the stability analysis described in chapter 3 we have made use of several simplifying
assumptions and approximations, and we will now investigate how reliable our analysis
is.

5.1 The short-wavelength approximation
Let us first discuss the short-wavelength approximation. As we mentioned in section
2.2 the Toomre (1964) stability criterion is derived under the assumption that the radial
wavelength λ of the perturbation is much smaller than the radius R. In fact, all Q stability
parameters are based on this assumption, and we must therefore make sure that it holds
in our analysis. The condition which must be satisfied may be written as |kR| � 1,
where |k| = 2π/λ is the radial wavenumber of the perturbation. Note that although |kR|
is formally required to be much greater than one, the short-wavelength approximation
often performs well even with |kR| as small as unity. (Binney & Tremain 2008, p. 486)

Since Toomre-like stability criteria are on the form Q > 1, the Q parameter is always
calculated for the radial wavenumber kmax which minimizes Q, i.e. maximizes 1/Q. By
defining Q in this way one ensures that if Q > 1 then the disc is stable against perturba-
tions with arbitrary, albeit small, radial wavelengths. In deriving QN Romeo & Falstad
(2013) approximate kmax as kmax ∼ κ/σm, where m as before denotes the component with
the smallest value of TQ. We therefore have that kmaxR ∼ κR/σm.

In figure 5.1 we show the value of this quantity as a function of galactocentric distance
for the dwarfs and the spirals, respectively, for our three standard QN parameters. We
see that in all six plots kmaxR ≥ 1 at all values of R/R25 except for very small ones. This
means that the short-wavelength approximation is valid in our analysis, except near the
galactic centers where the computed QN -values are uncertain anyway for reasons which
are explained below. The percentage of data points with kmaxR < 1 in the six plots is
shown in table 5.2.
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Figure 5.1: Plots of kmaxR, approximated as kmaxR ∼ κR/σm, for the dwarfs (left) and spirals
(right).

32



Table 5.1: The percentage of data points with kmaxR < 1 in the six plots in figure 5.1.

Q2 without H2 Q2 with H2 Q3
Dwarfs 7% 6% 5%
Spirals 5% 3% 2%

5.2 Velocity dispersions
Let us now discuss the velocity dispersion of stars σ?. We computed σ? with the help of
equation B3 in Leroy et al. (2008), which is shown in section 3.1.1 in this thesis and is
repeated below.

σ?,z =
√

2πGl?
7.3 Σ0.5

? (5.1)

Since Leroy et al. (2008) assume that l?/h? = 7.3 (±2.2), equation (5.1) gives the following
expression for the exponential stellar scale height h?:

h? =
σ2
?,z

2πGΣ?

(5.2)

However, as Hoffmann & Romeo (2012) point out, h? depends on the total surface density
Σtot = Σ? + Σg, rather than merely Σ?. This means that σ?,z is actually given by

σ?,z =
√

2πGl?
7.3 Σ0.5

tot. (5.3)

The relative error of equation (5.1) is(
σ2
?,z

2πGΣ?

−
σ2
?,z

2πGΣtot

)/
σ2
?,z

2πGΣtot
= Σg

Σ?

. (5.4)

For the spiral galaxies Σ? tends to be much larger than Σg at all radii, except at R & R25.
This means that equation (5.1) is only a good approximation of σ?,z for the spirals at
R . R25. However, for the dwarf galaxies Σ? is only significantly larger than Σg at much
smaller radii, and Σ? < Σg at all radii for the two smallest dwarfs DDO 154 and Ho I! In
other words: equation (5.1) is a very poor approximation of σ?,z for the dwarfs, except at
relatively small radii in the largest of these galaxies.

This has consequences; one of which is illustrated in figure 5.2, which shows σH I/σ?
as a function of galactocentric distance for the dwarfs and the spirals, respectively. The
left plots show the result of computing σ? from (5.1) and the right ones show the same
for equation (5.3). We see that the black points in these plots form bands which rise
almost linearly with R/R25. This is not very surprising considering that Σ? decreases
exponentially with radius, as we mentioned in section 3.1.1.

What should be more surprising is that so many of the data points in the upper-left
plot lay in the green regions, which are marked as ‘unphysical’. In fact, all of the blue
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points, which belong to DDO 154 and Ho I, are in these regions. The light-green region
shows where σ? < σH I and the darker green region shows where σ? < σH2 . We should
not find any points at all in either of these regions! The reason for this is that stars are
formed from H2, and newly formed stars may therefore have velocity dispersions as low as
that of H2. However, unlike gas stars cannot ‘cool down’ through dissipation. In fact, the
velocity dispersion of disc stars instead increases with time (‘disc heating’) due to their
interaction with spiral waves and encounters with giant molecular clouds. (Romeo 1990).
Since the stars studied by Leroy et al. (2008) belong to the so-called ‘old stellar disc’,
which consists of elderly stars such as our Sun, they should therefore have σ? � σH I, and
they must at least have σ? > σH2 .

Despite this we find that 41–42% of the data points1 for the dwarfs have σ? < σH I for
σ? ∝ Σ1/2

? . Also, 11% have σ? < σH2 , which is physically impossible! However, we see
that all points at small galactocentric distances have σ? > σH I, except for those belonging
to DDO 154 and Ho I. Moreover, for the spirals only 6–7% of the points have σ? < σH I

for σ? ∝ Σ1/2
? , and these points are all located at R & R25. These observations are in

full agreement with our analysis of the accuracy of equation (5.1) for the dwarfs and the
spirals, respectively.

We also see that for both subsamples there are only about half as many unphysical
points for σ? ∝ Σ1/2

tot as for σ? ∝ Σ1/2
? . This shows how important it is to take the total

surface density in the expression for σ? in general, and for dwarf galaxies in particu-
lar. But even then there are many unphysical points, which indicates the need of direct
measurements of σ?.

Another interesting observation is that for the spirals there are points with σH I/σ? on
the order of 0.01 at small galactocentric distances. Such high velocity dispersions of stars
are never observed. For instance, the lowermost point in the lower-left plot in figure 5.2
has σ? = 492 km/s, which seems too high to be true. Unfortunately, it is impossible to
say precisely how large the value of σ? can be since this depends on the galaxy. However,
in the Solar neighborhood the radial velocity dispersion of old stars is 38 ± 2 km/s and
even for the bulge stars in the Milky Way the root mean square (RMS) velocity is only
about 150 km/s (Binney & Tremain 2008, pp. 15, 18), which implies an RMS radial
velocity dispersion of about 150/

√
3 km/s ∼ 100 km/s (assuming that the stellar velocity

dispersion is isotropic). In general we expect to find σ? . 100 km/s for disc stars and
100 km/s . σ? . 200 km/s for stars in the bulge or halo. The large stellar velocity
dispersions at small galactocentric distances seen in figure 5.2 are therefore an indication
that either the equation of Leroy et al. (2008) for σ? is very inaccurate at small radii in
the spirals, or the values of Σ? deduced from observational data are too high near the
centers of these galaxies. The latter would give too large values of σ?, and it could result
from contamination of Σ? from halo and/or bulge stars in the line of sight.

Regardless of the cause, the suspiciously large values of σ? for the spirals at small radii
are another reason for why direct observations of this quantity are required for a stability
analysis. Moreover, it should be mentioned in this context that Leroy et al. (2008) assume
that (σz/σR)? = 0.6 to calculate σ? ≡ σ?,R from equation (5.1), but the ratio between σ?,z
and σ?,R is not constant. It is well-known that the velocity dispersion of stars becomes

1The percentages depend on the method by which one computes them. See appendix B for a short
discussion on this subject.
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Figure 5.3: These plots show how the dwarfs (upper) and spirals (lower) populate the (s, q)
plane for the three cases described in the main text.

isotropic towards the center of a galaxy, i.e. (σz/σR)? → 1 when R → 0, and this ratio
also depends on the Hubble-type in an unknown way. This is yet another reason for why
direct measurements of σ? are needed!

Before we leave the subject of σ?, let us discuss figure 5.3. These plots show how
the dwarfs and the spirals populate the (s, q) plane of Romeo & Wiegert (2011) for the
three cases: (1) stars + (H I + H2), (2) stars + H I, and (3) stars + H2. The parameters
s and q are defined as s ≡ σg/σ? and q ≡ Qg/Q?. In case 1 we treat all the gas as a
single component with σg = σH I, and in case 2 and 3 we completely ignore H2 and H I,
respectively.

As in figure 5.2, we see in figure 5.3 that there are a lot of data points with unphysically
low values of σ?. Be aware though that the light-green region has different meanings for
the three cases. For case 1 and 2 it shows where σ? < σH I, but for case 3 it instead shows
where σ? < σH2 . The darker green region shows where σ? < σH2 for case 1 and 2, while it
has no specific meaning for case 3.

Figure 5.3 also shows the so-called ‘two-phase region’, which is colored grey in these
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plots. Inside this region the dispersion relation ω2(k), where ω is the angular frequency,
has two local minima; one is due to the stars and the other one is due to the gas. Outside
the two-phase region ω2(k) has only a single (global) minimum. The galactic disc is
gravitationally unstable against axisymmetric, or tightly wound, density waves with radial
wavenumber k if ω2(k) < 0. In the upper part of the two-phase region (stellar phase) the
stellar minimum is beneath the gaseous one, which means that the stars determine when
the disc is no longer stable for all permissible values of k. In the lower part of the same
region (gaseous phase) the opposite is true, while outside the grey area the stellar and
gaseous minima coincide.

We see in figure 5.3 that for the dwarfs none of the data points are inside the two-phase
region in case 1 and 2, while in case 3 only a few points are inside it (4–8%). For the
spirals there are plenty of points inside the grey area in case 1 (12–17%) and even more
in case 3 (45–59%), but none in case 2. This tells us that H I is dynamically coupled to
stars for both subsamples, while H2 tends not to be, and that the share of H2 which is
decoupled from stars is much higher in the spirals than in the dwarfs.

Next, let us investigate the assumptions made for the velocity dispersions of H I, H2
and helium (He). We adopted the fixed value σH I = 11 km/s given by Leroy et al. (2008).
They claim that σH I = 11± 3 km/s is a good description of σH I in the outer parts of the
optical discs (0.5–1.0R25) of THINGS galaxies with inclinations i . 60◦. However, the
median of σH I is different for each galaxy, and one may wonder how selecting a single
value to represent σH I for all the galaxies has affected our results.

Leroy et al. (2008) do not provide numerical values of the median of σH I and the 1σ-
scatter of this quantity for individual THINGS galaxies (they merely plot them), so we will
use the results of Ianjamasimanana et al. (2012) instead. In their paper Ianjamasimanana
et al. (2012) analyze the shapes of the H I velocity profiles of the THINGS galaxies.
They find that the neutral atomic hydrogen in these galaxies actually consists of two
components: a cold component with velocity dispersions in the range ∼ 3.4 to ∼ 8.6 km/s
and a warm component in the range ∼ 10.1 to ∼ 24.3 km/s. Unfortunately, we cannot
treat H I as two distinct components since we do not know the surface densities of the
components. However, in table 1 in their paper Ianjamasimanana et al. (2012) also
provide values of σH I computed from single Gaussian fits to their data, together with the
corresponding standard deviations. These fits treat all the H I as a single component and
the values relevant to our study are shown in table 5.2 in this thesis.

To estimate the impact on our stability analysis from changing to these values of σH I

we used them to compute Q3 for the dwarfs and the spirals, respectively. The result is
shown in figure 5.4, and by comparing these two plots to the bottom two plots in figure 3.1
we see that assigning different values of σH I to the individual galaxies has no qualitative
effect on the scatter plots of Q3. For the spirals it has essentially no impact at all, which
is easy to understand considering that only a few Q3-points are H I-dominated for these
galaxies. For the dwarfs the effect is somewhat larger, but still very small. This is also
understandable in light of the fact that the values of σH I in table 5.2 are relatively close
to 11 km/s for all the dwarfs.

From this perspective it therefore seems acceptable to use σH I = 11 km/s for all the
galaxies in our stability analysis. However, there is a caveat to using a fixed value of
σH I. It is well-known that the velocity dispersion of gas increases towards the center of a
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Table 5.2: Values of σH I for individual dwarfs and spirals taken from table 1 in Ianjamasimanana
et al. (2012).

Dwarfs σH I [km/s] Spirals σH I [km/s]
1 DDO 154 9.7± 0.1 12 NGC 628 9.0± 0.2
2 Ho I 8.9± 0.2 13 NGC 3198 13.1± 0.3
3 Ho II 9.1± 0.2 14 NGC 3184 11.3± 0.3
4 IC 2574 10.1± 0.2 15 NGC 4736 11.0± 0.3
5 NGC 4214 8.8± 0.1 16 NGC 3351 10.2± 0.3
6 NGC 2976 11.9± 0.3 17 NGC 6946 10.4± 0.2
7 (NGC 4449) 13.8± 0.2 18 NGC 3627 20.8± 0.5
8 (NGC 3077) 12.6± 0.3 19 NGC 5194 17.0± 0.4
9 NGC 7793 10.6± 0.2 20 NGC 3521 17.4± 0.4
10 NGC 2403 11.1± 0.3 21 NGC 2841 16.3± 0.4
11 NGC 925 12.7± 0.2 22 NGC 5055 14.0± 0.4

23 NGC 7331 19.5± 0.4
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Figure 5.4: Scatter plots of Q3 for the dwarfs (left) and the spirals (right) computed using the
values of σH I listed in table 5.2.
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galaxy, and a constant value of σH I does not take this into consideration. The same can
be said about the fixed value σH2 = 6 km/s which we also adopted2. In order to obtain
more accurate results at small radii we therefore need radial profiles of both σH I and σH2

based on direct observations!
Let us finally briefly comment on the velocity dispersion σHe of helium. We mentioned

in section 3.1.1 that Leroy et al. (2008) accounted for the helium by including a factor
1.36 in their tabulated values of ΣH I and ΣH2 . With this method one implicitly assigns
the same value to the velocity dispersion of helium as that of the H I or H2 which it has
been associated with. In addition, one also implicitly assumes a fixed value of the ratio
(ΣH I + ΣH2)/ΣHe. Unfortunately, we do not know the true values of either σHe or ΣHe
since there is no observational data on these quantities.

2Leroy et al. (2008) mention that this is the value of σg used by both Kennicutt (1989) and Martin
& Kennicutt (2001).
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Chapter 6

Conclusions

Below we point out the main steps of the analysis performed in this thesis and the con-
clusions drawn from the results.

1. We have analyzed the gravitational instability of 9 dwarf and 12 spiral galaxies from
the THINGS sample, previously analyzed by Leroy et al. (2008), using the Q stabil-
ity parameter for multicomponent and realistically thick galactic discs introduced
by Romeo & Falstad (2013). Three distinct cases were investigated in which the
galactic discs were modeled as: (a) two-component systems consisting of stars and
H I, (b) two-component systems consisting of stars and gas (H I+H2), and (c) three-
component systems consisting of stars, H I and H2. Of these cases the last one is the
superior diagnostic for the spirals as well as for the dwarfs, provided that we can
trust the estimated values of the surface density of H2 (ΣH2) for the latter galaxies.
Following Leroy et al. (2008) we have estimated these values for the dwarfs from the
star formation rate surface density (ΣSFR) using an empirical linear relation which
is known to approximately hold for the spirals.

2. Scatter plots of the three-component (stars + H I + H2) Q stability parameter Q3 of
Romeo & Falstad (2013) were computed for the dwarfs and the spirals. For both
subsamples the Q3-values mostly lay within relatively narrow bands just above the
threshold for instability, i.e. Q3 = 1. The component that gives the dominant
contribution to disc instability was also computed for each data point. For both
the dwarfs and the spirals there are star-dominated Q3-points at all galactocentric
distances (R/R25). Both subsamples also have H2-dominated points with Q3 <
1 at small R/R25, but the nature and distribution of the gas-dominated points
are otherwise different between the dwarfs and the spirals. The dwarfs have gas-
dominated points at all galactocentric distances, with a slightly higher concentration
for R/R25 & 0.5, and all of these points are H I-dominated except for a few H2-
dominated points at small R/R25. For the spirals on the other hand nearly all
gas-dominated points are H2-dominated with R/R25 . 0.6.

3. The median of Q3 is nearly independent of R/R25 with a value of about 2 for both
the dwarfs and the spirals. Moreover, for both subsamples the majority of the Q3-
points are star-dominated at all galactocentric distances except at R/R25 ≈ 0.95
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for the dwarfs and for R/R25 . 0.15 in the spirals, where the points are instead
gas-dominated.

4. Scatter plots of ΣSFR as a function of galactocentric distance were computed for
the dwarfs and the spirals. A previous analysis by Leroy et al. (2008) showed that
the logarithm of the median of ΣSFR is a nearly linear function of R/R25 for both
subsamples. We have found that this result is not robust for the dwarfs. We suspect
that the reason for this is that there are too few galaxies in the dwarf subsample of
Leroy et al. (2008) and that these galaxies are not representative of the population
of dwarf galaxies in the nearby Universe.

5. We have searched for a correlation between QN and the effective star formation
rate surface density Σ̄SFR, defined as the ratio between the global star formation
rate SFR and the area πR2

25 of the optical disc. We found a hint of such a relation
between Σ̄SFR and the median of Q3 computed for each spiral individually, and also
a somewhat weaker sign of the same for the dwarfs. Unfortunately, the dwarf and
spiral subsamples of Leroy et al. (2008) which were used in this thesis are too small
to either confirm or refute the existence of such correlations.

6. We have shown that the formula for the radial velocity dispersion of stars (σ?) used
by Leroy et al. (2008) gives unphysically low values of this quantity for R & R25 in
the spirals and at all radii in the dwarfs, except for very small ones in the largest
of the dwarf galaxies. As we mentioned, this expression for σ? is in fact incorrect.
We showed that an improved version of the formula only gives about half as many
unphysically low values of σ? for both subsamples. However, for the dwarfs the
percentage of such points is still unacceptably high, and for the spirals there are
also values of σ? at small radii which are too high. This illustrates the need for
direct observations of σ?!

7. Even more importantly, following previous studies (for instance Kennicutt 1989,
Martin & Kennicutt 2001 and Leroy et al. 2008) we have used fixed values of the ve-
locity dispersions of H I (σH I) and H2 (σH2) since there are no reliable measurements
of the radial profiles of these quantities throughout the galactic discs. However, we
know that the velocity dispersion of gas increases towards the galactic center, which
has never been taken into account in any stability analysis. We pointed out that the
fixed value of σH2 might be the reason for why there are H2-dominated Q3-points
with values below 1 at small radii in both the dwarfs and the spirals. If we had used
the correct values of σH2 then these points might have been above the threshold for
instability. For an accurate stability analysis one should therefore use radial profiles
of primarily σH2 , but also σH I, based on direct measurements!
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Appendix A

Radial profiles of individual galaxies
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Figure A.1: The epicyclic angular frequency κ as a function of galactocentric distance R/R25
for the DWARF galaxies.
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Figure A.2: The epicyclic angular frequency κ as a function of galactocentric distance R/R25
for the SPIRAL galaxies.
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Figure A.3: The star formation rate surface density ΣSFR as a function of galactocentric distance
R/R25 for the DWARF galaxies.
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Figure A.4: The star formation rate surface density ΣSFR as a function of galactocentric distance
R/R25 for the SPIRAL galaxies.

46



0 0.5 1
0.1

1

10

100

1000
DDO 154

R/R25

Σ
[M

-
/
p
c
2
]

0 0.5 1
0.1

1

10

100

1000
Ho I

R/R25

Σ
[M

-
/
p
c
2
]

0 0.5 1
0.1

1

10

100

1000
Ho II

R/R25

Σ
[M

-
/
p
c
2
]

0 0.5 1
0.1

1

10

100

1000
IC 2574

R/R25

Σ
[M

-
/
p
c
2
]

0 0.5 1
0.1

1

10

100

1000
NGC 4214

R/R25

Σ
[M

-
/
p
c
2
]

0 0.5 1
0.1

1

10

100

1000
NGC 2976

R/R25

Σ
[M

-
/
p
c
2
]

0 0.5 1
0.1

1

10

100

1000
NGC 7793

R/R25

Σ
[M

-
/
p
c
2
]

0 0.5 1
0.1

1

10

100

1000
NGC 925

R/R25

Σ
[M

-
/
p
c
2
]

0 0.5 1
0.1

1

10

100

1000
NGC 2403

R/R25

Σ
[M

-
/
p
c
2
]

Stars
H I
H2

Figure A.5: The surface density Σ of stars, H I and H2, respectively, as a function of galacto-
centric distance R/R25 for the DWARF galaxies.
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Figure A.6: The surface density Σ of stars, H I and H2, respectively, as a function of galacto-
centric distance R/R25 for the SPIRAL galaxies.
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Figure A.7: The velocity dispersion of stars σ? as a function of galactocentric distance R/R25
for the DWARF galaxies.
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Figure A.8: The velocity dispersion of stars σ? as a function of galactocentric distance R/R25
for the SPIRAL galaxies.
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Figure A.9: The gravitational stability parameter Q2 WITHOUT H2 as a function of galac-
tocentric distance R/R25 for the DWARF galaxies. The grey area shows the region of local
gravitational instability and the colors of the points show which component dominates QN , i.e.
has the smallest value of TQ, at each point. Green points are star-dominated and magenta
points are gas-dominated. The symbols indicate the amount of gaseous data available. Points
with non-vanishing values of both ΣH I and ΣH2 are denoted by circles, point with non-vanishing
values of ΣH I but not ΣH2 are denoted by diamonds, and points with vanishing values of both
ΣH I and ΣH2 are denoted by empty squares. The error-bars have been omitted for the empty
squares since they are inside the squares.
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Figure A.10: The gravitational stability parameter Q2 WITHOUT H2 as a function of galac-
tocentric distance R/R25 for the SPIRAL galaxies. The grey area shows the region of local
gravitational instability and the colors of the points show which component dominates QN , i.e.
has the smallest value of TQ, at each point. Green points are star-dominated and magenta
points are gas-dominated. The symbols indicate the amount of gaseous data available. Points
with non-vanishing values of both ΣH I and ΣH2 are denoted by circles, point with non-vanishing
values of ΣH I but not ΣH2 or vice versa are denoted by diamonds and plus-signs, respectively,
and points with vanishing values of both ΣH I and ΣH2 are denoted by empty squares. The
error-bars have been omitted for the empty squares since they are inside the squares.
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Figure A.11: The gravitational stability parameter Q2 WITH H2 as a function of galactocentric
distance R/R25 for the DWARF galaxies. The grey area shows the region of local gravitational
instability and the colors of the points show which component dominates QN , i.e. has the
smallest value of TQ, at each point. Green points are star-dominated and magenta points are
gas-dominated. The symbols indicate the amount of gaseous data available. Points with non-
vanishing values of both ΣH I and ΣH2 are denoted by circles, point with non-vanishing values of
ΣH I but not ΣH2 are denoted by diamonds, and points with vanishing values of both ΣH I and
ΣH2 are denoted by empty squares. The error-bars have been omitted for the empty squares
since they are inside the squares.
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Figure A.12: The gravitational stability parameter Q2 WITH H2 as a function of galactocentric
distance R/R25 for the SPIRAL galaxies. The grey area shows the region of local gravitational
instability and the colors of the points show which component dominates QN , i.e. has the
smallest value of TQ, at each point. Green points are star-dominated and magenta points are
gas-dominated. The symbols indicate the amount of gaseous data available. Points with non-
vanishing values of both ΣH I and ΣH2 are denoted by circles, point with non-vanishing values of
ΣH I but not ΣH2 or vice versa are denoted by diamonds and plus-signs, respectively, and points
with vanishing values of both ΣH I and ΣH2 are denoted by empty squares. The error-bars have
been omitted for the empty squares since they are inside the squares.
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Figure A.13: The gravitational stability parameter Q3 as a function of galactocentric distance
R/R25 for the DWARF galaxies. The grey area shows the region of local gravitational instability
and the colors of the points show which component dominates QN , i.e. has the smallest value
of TQ, at each point. Green points are star-dominated, blue points are H I-dominated and red
points are H2-dominated. The symbols indicate the amount of gaseous data available. Points
with non-vanishing values of both ΣH I and ΣH2 are denoted by circles, point with non-vanishing
values of ΣH I but not ΣH2 are denoted by diamonds, and points with vanishing values of both
ΣH I and ΣH2 are denoted by empty squares. The error-bars have been omitted for the empty
squares since they are inside the squares.
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Figure A.14: The gravitational stability parameter Q3 as a function of galactocentric distance
R/R25 for the SPIRAL galaxies. The grey area shows the region of local gravitational instability
and the colors of the points show which component dominates QN , i.e. has the smallest value
of TQ, at each point. Green points are star-dominated, blue points are H I-dominated and red
points are H2-dominated. The symbols indicate the amount of gaseous data available. Points
with non-vanishing values of both ΣH I and ΣH2 are denoted by circles, point with non-vanishing
values of ΣH I but not ΣH2 or vice versa are denoted by diamonds and plus-signs, respectively,
and points with vanishing values of both ΣH I and ΣH2 are denoted by empty squares. The
error-bars have been omitted for the empty squares since they are inside the squares.
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Appendix B

Error analysis

Let us first discuss the method by which the error-bars for QN were computed. We listed
in (3.4) the parameters which QN depends on. Most of these were taken as constants
and σ? was computed from Σ? using equation (3.6). Moreover, κ was computed from
exponential fits to the rotation curves using equation (3.8)–(3.10). Naturally, these as-
sumptions and approximations provide substantial systematical errors to QN , but such
errors may be ignored for our present purpose since error-bars are only meant to show
statistical errors. We should therefore think of QN for the spirals as a function of the
continuous random variables Σ?,ΣH I and ΣH2 , which we have assumed to be independent
and normally distributed. Note that for the dwarfs QN is instead a function of Σ?,ΣH I

and ΣSFR since we have computed ΣH2 for these galaxies from ΣSFR using equation (3.7).
The uncertainties of Σ?,ΣH I,ΣH2 and ΣSFR are given in the electronic version of table
7 in Leroy et al. (2008) and we have interpreted these values as approximations of the
standard deviations of the quantities in question.

For a differentiable function f of n uncorrelated and normally distributed continu-
ous random variables Xi, i = 1, 2, . . . , n with standard deviations σi, i = 1, 2, . . . , n,
respectively, one usually estimate the standard deviation σf with the help of the error
propagation equation, which gives that (see for instance equation 3.14 in Bevington 2002)

σ2
f ≈

(
∂f

∂x1

)2

σ2
1 +

(
∂f

∂x2

)2

σ2
2 + . . .+

(
∂f

∂xn

)2

σ2
n. (B.1)

However, we cannot use this formula to estimate the standard deviation of QN since
this function is not differentiable at points where the dominant component changes (see
equation (2.2)–(2.5)). In fact, even if QN had been a differentiable function we still could
not have used equation (B.1). The reason for this is that (∂f/∂x)∆x is only a good
approximation of the difference ∆f in f due to the difference ∆x in x if ∆x is small, but
the relative uncertainties of Σ?,ΣH I,ΣH2 and ΣSFR are quite large for some points.

We therefore used a different method to estimate the uncertainty of QN , which is
precisely the same method as the one which was used by Romeo & Wiegert (2011) and
Romeo & Falstad (2013). An upper (Q+) and a lower (Q−) bound on QN within ±1σ-
intervals of the nominal values of the quantities which QN depends on were computed.
Q+ and Q− were used as the end-points of the error-bars while the dominant components
at these points were used to determine the colors of the error-bars. For Q2 with H2 the
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values of Q−, Q and Q+ were computed from the formulas below, where ∆Σi denotes the
uncertainty of Σi.

σ?,z =
(

2πGl?
7.3

)1/2

(Σ?)1/2, σ?,z+ =
(

2πGl?
7.3

)1/2

(Σ? + ∆Σ?︸ ︷︷ ︸
Σ?+

)1/2,

σ?,z− =
(

2πGl?
7.3

)1/2

(Σ? −∆Σ?︸ ︷︷ ︸
Σ?−

)1/2 (B.2)

σ?,R = 1
0.6σ?,z, σ?,R+ = 1

0.6σ?,z+, σ?,R− = 1
0.6σ?,z− (B.3)

Q? = κσ?,R
πGΣ?

, Q?+ = κσ?,R−
πGΣ?−

, Q?− = κσ?,R+

πGΣ?+
(B.4)

Σg = ΣH I + ΣH2 , Σg+ = ΣH I + ΣH2 + (∆Σ2
H I + ∆Σ2

H2)1/2,

Σg− = ΣH I + ΣH2 − (∆Σ2
H I + ∆Σ2

H2)1/2 (B.5)

Qg = κσg
πGΣg

, Qg+ = κσg
πGΣg−

, Qg− = κσg
πGΣg+

(B.6)

W = 2σ?,R σg
σ2
?,R + σ2

g
, W+ = 2σ?,R− σg

σ2
?,R− + σ2

g
, W− = 2σ?,R+ σg

σ2
?,R+ + σ2

g
(B.7)
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1
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1
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+ W

TgQg
if TgQg ≥ T?Q?

,

(
1
Q
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+
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T?Q?−
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TgQg−
if T?Q?− ≥ TgQg−

1
T?Q?−
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TgQg−

if TgQg− ≥ T?Q?−
,

(
1
Q

)
−

=
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T?Q?+
+ 1

TgQg+
if T?Q?+ ≥ TgQg+

1
T?Q?+

+ W−
TgQg+

if TgQg+ ≥ T?Q?+
(B.8)

Q = 1
(1/Q) , Q+ = 1

(1/Q)−
, Q− = 1

(1/Q)+
(B.9)

Note that equation (B.7) requires that σ?,R > σg = σH I, but we showed in section 5.2
that this is not always the case. However, we also explained that computed values of σ?,R
smaller than σH I are unphysical and therefore cannot be trusted.

For Q2 without H2 the equations are the same as (B.2)–(B.9) except without ΣH2 and
∆ΣH2 , and for Q3 they are analogous with

m = min{T (i)Q(i)}, m+ = min{T (i)Q+(i)},
m− = min{T (i)Q−(i)}, i = ?,H I,H2 (B.10)

W (i) = 2σR(m)σR(i)
σ2
R(m) + σ2

R(i) , W+(i) = 2σR−(m−)σR−(i)
σ2
R−(m−) + σ2

R−(i) ,

W−(i) = 2σR+(m+)σR+(i)
σ2
R+(m+) + σ2

R+(i) (B.11)

The error-bars in figure 5.2 and 5.3 were also computed using completely analogous meth-
ods as those described above, and the error-bars in figure 5.1 were computed using the
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m-values of Q+, Q and Q−. Moreover, it should be mentioned that the error-bars for Qmin
N

in figure 4.3–4.5 show Q+ and Q− for the points with the smallest nominal values of QN .
They do not take into account the fact that these points due to the uncertainty of QN

may not have the smallest physical values of this quantity.
As a comparison we also computed error-bars for QN using data smearing (see for

instance Bevington 2002). For each value of Σ?,ΣH I and ΣH2 (ΣSFR for the dwarfs)
given by Leroy et al. (2008) we computed 10000 pseudorandom numbers drawn from
normal distributions centered at the tabular values of these quantities and with standard
deviations equal to the uncertainties of the tabular values.

The result is shown in figure B.1. We see that the error-bars in these plots are very
similar to those in figure 3.1. However, there are some important differences which make
the latter error-bars better than the former. One such difference is that the error-bars
in figure B.1 do not have individual colors, so one cannot tell how the uncertainty of
QN may affect which component QN is dominated by. Also, the error-bars in this figure
are symmetric, but the plots in figure B.2 suggest that the distribution of QN is very
asymmetric for points with uncertain m-values. Moreover, using data smearing will only
give accurate results if the tabular values of Σ?,ΣH I and ΣH2 (ΣSFR) are relatively close
to the expectation values of these quantities, which may not be the case.

Let us now briefly discuss the data points with vanishing values of both ΣH I and ΣH2 ,
which we denoted by empty squares in figure 3.1, 5.1, 5.4 and A.9–A.14. We mentioned
in section 3.2 that these points were excluded from the stability analysis in this thesis and
we will now see how including them would have affected our results. Figure B.3 shows
the same plots as figure 3.2 except that the square points are included in the former plots
and excluded from the latter, and we see that there is no qualitative difference between
the plots in these two figures.

Finally, let us explain how the percentages of data points within different intervals or
regions were computed for figure 5.1, 5.2 and 5.3. The simplest method of computing the
number of points within, for instance, the two-phase region in figure 5.3 is to simply count
the number of points inside this region, divide that number by the total number of points
and multiply the result by 100. However, this method does not take into account the
uncertainty of the position of each point. Unfortunately, there is no unambiguous way to
include this uncertainty in the computation of the percentages, but we have at least tried
to do so in several different ways. One method which we used was to consider each data
point as three distinct points: a nominal point computed from tabular values and two
more points given by the end-points of the error-bars for the nominal point (method 1).
Another method which we tried was data smearing (method 2). In table B.1 we compare
the results given by these two methods for the percentages of data points with σ? < σH I

in the upper plots in figure 5.2, and we see that in this case the results are very similar.
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Figure B.1: The same plots as in figure 3.1 except that the error-bars in this figure have been
computed using data smearing.
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Figure B.2: The distribution of Q3 relative to the nominal value Q3,0 of Q3 (computed directly
from the tabular values of Leroy et al. 2008) for two points belonging to the dwarf galaxies NGC
7793 and NGC 4214 and two points belonging to the spiral galaxies NGC 4736 and NGC 3627.
The galactocentric distances R/R25 for these points are also given as well as Gaussian fits to the
distributions (the green curves). For each point 100000 pseudorandom numbers were generated
and the Q3,0-points were selected so that the left plots are for points with well-defined dominant
components while the right plots are for points with very uncertain dominant components. We
see that in the left plots the Q3-distributions are nearly perfectly Gaussian while in the right
plots they are very far from being Gaussian. Also note that the horizontal scales are different
and that the distributions in the right plots are an order of magnitude broader than those in
the left plots.
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Figure B.3: The same plots as in figure 3.2 except that the data points with vanishing values
of both ΣH I and ΣH2 have been included in this figure.

Table B.1: The percentages of data points with σ? < σH I in the upper plots in figure 5.2
computed with the two methods described in the main text.

Method Left plot Right plot
1 41% 16%
2 41% 17%
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