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Abstract

There is currently interest in the medical sciences in gaining deeper under-
standing regarding the dynamics arising from spinodal decomposition, espe-
cially in combination with other concurrent physical processes. One method of
investigation is through numerical simulations. The lattice Boltzmann method
(LBM) is a relatively new promising numerical method, showing great potential
particularly in simulating multicomponent fluids. Many improvements have re-
cently emerged in research literature, but few examples exist where these are
collectively used and evaluated. In this work, recent developments are gathered
and critically analyzed. Based on conclusions from said analysis, a numerical
model, capable of solving any number of fluid components, is proposed with
the purpose of reproducing the physical processes currently of interest - con-
trolled spinodal decomposition in a solidifying ternary mixture. The proposed
model is implemented in high performing multithreaded code with a careful
choice of data structure and memory model. Also, a brief excursion in GPU
(Graphics Processing Unit) computing is made, resulting in excellent computa-
tional performance with a factor of ∼35 speedup in the best case. The model is
further validated through benchmarks, such as phase diagram, fluid-fluid inter-
face profile and the Laplace law, to show good evidence of physical correctness.
Simulations showed satisfactory results in reproducing the governing physical
processes separately. A full simulation of the solidifying solution managed to
reproduce complex secondary effects observed in the real case, but more work is
needed to improve on the solidifying process and the numerical performance on
the force responsible for the phase separation. The findings validate the LBM
as an easily extendable and intuitive numerical method. With some minor im-
provements, the implemented application shows potential to be a competent
tool in examining complex multicomponent fluids.

Keywords: Lattice Boltzmann Method, Multicomponent Flow, Spinodal Decom-
position, GPU Computing
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1 Introduction

The Lattice Boltzmann Method (LBM) has emerged over the past two decades
as a competent and promising alternative in computing many types of fluid flow.
A fundamental difference in approach allows certain types of problems to be de-
scribed very intuitively. Among these, the most prominent in literature are fluid
flow through complex geometry, such as flow through porous media, and multi-
phase/multicomponent fluids. Both classes of problems which have been proven
difficult to treat previously. In contrast to conventional and more established meth-
ods, the LBM does not solve for the macroscopic properties directly. Instead, the
Boltzmann transport equation is solved, which describes the time evolution of the
statistical distribution in phase-space of particles in a gas. The macroscopic prop-
erties are then acquired from moments of the distribution function. The Boltzmann
equation can be formulated such that it will satisfy the Navier-Stokes equations of
fluid motion, and accurately describes many of its accompanying complex behaviors.
Owing to the nature of the method, where a mesoscopic particle-particle interaction
approach is taken, certain aspects of fluid phenomena such as complex solid-fluid
interaction and phase separation emerges naturally.

As the LBM has matured considerably in recent time, it has grown from a
research topic to a viable option in engineering applications as well as an aid in
many research areas. A field in which the LBM has seen much development of late is
multiphase fluids, where focus lies in modeling thermodynamical phase separation or
phase segregation by spinodal decomposition. These related phenomena are indeed
strong points of this method, but there still seems to be no clear consensus of which
approach to take. An issue not made easier by the vast number of suggested methods
in research literature. However, many of the inconsistencies and drawbacks inherent
in early models have been mended and improved upon.

Interest regarding multicomponent flows currently exist in the medical sciences.
A specific case is the production of pill coatings, as in creating a suitable structure
for optimal drug delivery. Here a porous structure is formed by letting two immis-
cible polymers separate through spinodal decomposition, while concurrently drying
and solidifying.

Motivated by the novelty of the LBM and the wealth of potential applications,
as well as by current interest in industry and research, this thesis will cover the
fundamentals of the LBM, as well as provide detail and critical analysis of a few
of the most popular models. Based on conclusions from said analysis, a model
suitable for multicomponent flows with spinodal decomposition will be proposed.
This model will be implemented, and an attempt in reproducing the process of
the pill coating procedure will be made. Although there exists a few available
open source LBM solvers, the implementation will be made from the ground up.
While initially requiring more work, any improvements or modifications can readily
be implemented. Moreover, due to the uncertainty in openness and extendability
in existing software, it could be realized at a later stage that a crucial feature is
difficult or impossible to implement. As a final point, since this thesis will cover
recent research, it is unlikely that any published software reflects all functionality
required by the proposed model.
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In what follows in Part I, some background will be given as to introduce the
reader to the main work in this thesis. The fields of fluid dynamics and kinetic
theory are vast, therefore coverage shall be restricted to a few concepts relevant
to this work. Explanations will be brief, but should hopefully capture the essence
of the matter. Part II covers the Lattice Boltzmann method in general, as well as
providing detail and analysis regarding recent progress in different models. Problem
description and implementation details are described in Part III. Finally, simulation
results, discussion and conclusions are presented in Part IV.
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2 Fluid dynamics and the Navier Stokes equations

2.1 The continuum hypothesis

The mathematical treatment of fluids is part of the branch of continuum mechanics.
As such, the fluid and its properties are treated as any mathematical quantity
which possesses infinitely smooth, continuous properties. Fundamentally, however,
as seen from a microscopic viewpoint, a fluid or a gas consists of a discrete number
of particles whose collective interactions give rise to the macroscopic behavior we
normally observe. The nature of the inherent dynamics at the microscopic scale
is governed by collisions and thermal effects, giving rise to a brownian pattern of
motion. As a result of this, the kinetic properties of individual particles, or small
collections thereof, are fluctuating wildly over space and time. One is then tempted
to pose the question as to in which regime continuum fluid mechanics is valid, as
the continuous properties certainly breaks down at some point. This issue brings us
to one of the fundamental underpinnings of fluid mechanics, namely the continuum
hypothesis. Consider a small hypothetical volume where we observe and measure the
averaged velocity and number density of all particles within it. For a volume where
the scale in on the order of the particles themselves, the properties will fluctuate
heavily for consecutive measurements, as previously mentioned. If the volume is
made larger, these fluctuations will reduce in magnitude, and will eventually be so
small as to be rendered negligible. Extending on this concept further; if the volume
is made big enough, the measured properties will start changing with increased
size. This time because part of the neighboring fluid, having different macroscopic
properties, is included in the volume. The continuum hypothesis states that there
exists a region in between these extremes where the control volume can be made
smaller, but without a corresponding change in macroscopic properties, and without
adding fluctuations. On these grounds, and within these limits, the continuous
treatment is valid. Moreover, the region in which this holds true spans down to a
very small spatial scale. For example, a volume of 10−9 cm3 (cube with 10 µm side)
containing water still holds on the order of 1013 molecules, which is well enough by
a wide margin to smooth out any molecular fluctuations.

2.2 The equations of fluid motion

When describing the motion of a single viscous fluid in the macroscopic continuum
regime, two equations are normally used. These are the continuity equation and the
Navier-Stokes equation. For compressible flow these are

∂ρ

∂t
+∇ · (ρu) = 0 (2.1)

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+∇ ·T+ f (2.2)

respectively, where ρ is the density, u the fluid velocity, and p the pressure. Further,
T is the deviatoric stress tensor, and f corresponds to body forces per unit volume.
Body forces are of the nature that they affect the whole volume, with gravity being
the most obvious example. The full stress tensor σ consists of an isotropic part (p)
and a deviatoric part, or the non-equilibrium part, (T) and is on the form

σ = −pI+T (2.3)
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where I is the identity matrix. The first two terms on the RHS in (2.2) can then
be identified as the divergence of the stress tensor. For a fluid at rest the deviatoric
part vanishes, hence the name non-equilibrium stress tensor. The deviatoric stress
tensor determines how the fluid behaves in shearing motion, and is hence intimately
connected to viscosity. It should be mentioned here that for any discrete fluid model,
it is important to validate that the resulting stress tensor is symmetric. If this is
not the case, anisotropic behavior and galilean invariance will be the result.

For incompressible flows the density is constant, and thus the term ∂ρ
∂t vanishes.

The resulting equations of motion reduce to

∇ · u = 0 (2.4)

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ∇2u+ f (2.5)

where µ is the dynamic viscosity. In further explaining the terms of the momentum
equation, the first term on the LHS in (2.5) represents the acceleration resulting
from a local change in momentum over time. The second term describes the accel-
eration from a change in the bulk flow, or more precisely from a change in the flow
field with respect to position. This is known as convective derivative or convective
acceleration. In the right hand side, the deviatoric stress tensor have taken on a
form in which the symmetry properties only depends on the velocity.

2.3 Viscosity

A defining property of a fluid is its viscosity. This is a measure of the fluids resistance
to change due to shear stress. A fluid with a high nominal value of viscosity is said
to be viscous, and has a high resistance to change. That is, a given shear stress
results in a relatively small change in motion in the fluid. One could say the the
fluid responds with a strong counterforce to resist deformation. These are ’thick’
fluids like oil and honey. Low viscosity fluids then obviously occupy the other end
of the spectrum. A zero viscosity fluid is termed a superfluid, and can be thought
of as the hydrodynamic equivalent of superconductors. Zero viscosity is an exotic
condition displaying plenty of counterintuitive behavior, and can be achieved with
liquid Helium below 2.17 degrees Kelvin.

Two types of viscosity are normally referred to, dynamic viscosity (µ) and kine-
matic viscosity (ν). The relation between the two is simply

ν =
µ

ρ
(2.6)

The effect of the viscosity can be decomposed into two independent components,
shear viscosity and bulk viscosity. The former is local in scope and describes fine
grained motion, while the latter affects large scale velocity fluctuations.

2.4 Reynolds number

An important property with fluids is an intimate connection between scale and
viscosity. Broadly speaking, a large system with a high viscosity fluid will exhibit
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the same type of motion as a small system with a low viscosity. This property
of equivalence is a very useful tool, and is measured by the Reynolds number, a
dimensionless quantity given by

Re ≡ ρuL

µ
=

uL

ν
(2.7)

Here u is a typical velocity, and L is a typical length scale. Unless used in a well
defined manner, this can be a somewhat arbitrary measure and perhaps best used as
a crude guideline. Normally, Reynolds numbers associated with unsteady flow are
at the order of ∼ 102, while the onset of turbulence is somewhat higher at around
∼ 103 and increase with degree of turbulence.

3 Spinodal decomposition

When mixing different liquids, a complex interaction between the different species
of molecules takes place. Certain, interactions or forces strive to separate the com-
ponents, while others work in the favor of mixing. Summing up all interactions, the
resulting force will tell us whether the multicomponent liquid will mix or separate.
In order to gain a basic understanding of the mixing or unmixing of liquids, one
can employ the regular solution model. This is a mean-field-theory, and assumes a
simplified view of species interaction on the basis of entropy of mixing. Here, all par-
ticle interactions and thermal energy are bundled together to form a dimensionless
interaction parameter, χ, defined as

χ =
z

2kBT
(2ǫAB − (ǫAA + ǫBB)) (3.1)

where ǫ denotes the interactions and self-interactions between species A and B,
and z is the number of nearest neighbors. While hiding a lot of physical detail,
the advantage with the interaction parameter approach is a clear picture of the
mechanism of separation itself without having to deal with the underlying specifics.
The aim with this method is to find an expression for the free energy of mixing,
that is the difference between free energy before mixing and after mixing,

Fmix = FA+B − (FA + FB), (3.2)

where F = U − TS is the Helmholtz free energy, and observe how changes in χ
and initial volume fraction of A and B affect this energy. Since the system always
strives to minimize the free energy, certain fundamental conclusions can be drawn.

One immediate observation is that as the interaction parameter χ is increased,
a certain threshold value exists where it is no longer energetically favorable for the
liquid to remain mixed for certain volume fractions. Moreover, the degree of sep-
aration increases with an increasing value of χ. Considering that χ ∝ 1/T , this is
so far pretty intuitive. A drop in temperature increases χ, which in turn cause the
phases to separate. The model reveals that for certain initial volume fractions, any
change in fractional composition will decrease the free energy. This mode is globally
unstable and a continuous separation will ensue, a process known as spinodal decom-
position. Further, there are volume fractions where a small change in composition
will yield an increase in free energy, thus implying stability. However, between the
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distinct cases of continuous separation and stability exists a region of local stability
only. Here, a small change in composition leads to an increase in free energy, but
thermal fluctuations are large enough to overcome the energy barrier for a phase
separation. This is a metastable condition. The point where the metastable region
and the unstable region meet is called the spinodal. By keeping track of where the
spinodal is while changing χ, one can obtain a phase diagram as a function of χ and
the volume fraction of one of the phases.

An interesting consequence of unmixing is that matter is transported from re-
gions of low concentration to regions of high concentration. This is a complete
reversal of the normal diffusion process. Hence, spinodal decomposition is some-
times referred to as ’uphill diffusion’. To explain this we must consider the chemical
potential. When interaction forces exist, it is not the concentration that must be
uniform at equilibrium, but the chemical potential. This quantity is related to the
derivative of the free energy with respect to concentration, i.e. ∂φF , thus matter will
flow according to the derivative of the chemical potential, or the second derivative
of the free energy, ∂2

φF . In the spinodal region, the second derivative is by definition
negative, which implies that matter will flow in the opposite direction of ’normal’
diffusion. In the stable region the sign is positive, and normal diffusion will take
place.

4 Kinetic gas theory and the Boltzmann equation

Consider a large collection of particles in a confined space, such as a container filled
with a gas. Individually these particles behave much like rigid bodies following
newtonian dynamics, traveling in a straight line until colliding with another particle,
followed by an exchange of momentum. In theory, one could propagate this system in
time, particle by particle, by integrating Newton’s laws of motion. Naturally this is
going to be a very time consuming operation, and is unfeasible for any system larger
than the microscopic scale. Consider instead the hypothetical volume described in
section 2.1 (the continuum hypothesis), and make it small enough for molecular
fluctuations to appear. If consecutive measurements of the velocity are taken for a
gas or a fluid at rest, they will still vary. However, plot the distribution of a large
number of measurements and a pattern will appear. For an ideal gas this will be the
Maxwell Boltzmann distribution. This describes the distribution of particle speeds
in an ideal gas close to equilibrium. Instead of working with particles individually,
we can use the fact that they follow certain statistical rules. The treatment of
particle distributions is in the realm of statistical mechanics, and the Boltzmann
equation describes the time evolution of such a system. The Boltzmann equation
on differential form is

∂f

∂t
+ ξ · ∇xf +

1

ρ
F · ∇ξf = Ω(f) (4.1)

where f = f(x, ξ, t) is the particle probability distribution as a function of space,
velocity, and time, F is the total body force and ρ the local particle density. The
term Ω(f) on the right hand side is known as the collision term, and is yet to be
defined. The essential meaning of this equation is very simple; the total change in
the particle distribution function (LHS) should be equal to the result of the collision
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process. A shorter way of writing the Boltzmann equation which makes this obvious,
is simply

d

dt
f(x, ξ, t) = Ω(f) (4.2)

To show that this is the same as (4.1), the LHS is first written more explicitly as

d

dt
f(x, ξ, t) =

∂f

∂t
+

∂x

∂t
· ∂f
∂x

+
∂ξ

∂t
· ∂f
∂ξ

=
∂f

∂t
+ ξ · ∂f

∂x
+ a · ∂f

∂ξ
(4.3)

Since ∂
∂x ≡ ∇x and analogously for ξ, and with a = F /ρ according to Newton’s

second law on differential form, we arrive at (4.1).
The types of processes that are suitable to describe in this representation reside

in the mesoscopic domain. That is, sufficiently large to render the treatment of
individual particles unfeasible and irrelevant, but small enough that we wish to keep
the particle viewpoint, i.e. where the collective behavior of particles is important.
Depending on the nature of the system to be described, the collision term is modeled
accordingly. To capture the dynamics of fluid flow, a simple and common choice of
collision term is the one suggested by Bhatnagar-Gross-Krook,

Ω(f) = −1

τ
(f − f eq) (4.4)

where τ is the relaxation time of the system, i.e. the mean time between particle
collisions, and f eq is the Maxwell Boltzmann velocity distribution

f eq =

(

ρ

2πkBT

)3/2

exp

[

− ρ

2kBT
(ξ · ξ)

]

(4.5)

The interpretation of the BGK collision term is that the system relaxes towards
the equilibrium function, which is the distribution of particle velocities in an ideal
gas. And it does so at a certain rate, determined by τ . However, it should be
mentioned that this model is unphysical, but when used with the lattice Boltzmann
approximation it recovers the macroscopic properties of the Navier-Stokes equation
in the limit of small τ .

As with any reasonably complex physical scenario, the governing equations are
at best very difficult to solve, and closed form solutions are usually restricted to
simple ideal cases. This is where numerical methods come into play, where the
governing equations are discretized and solved up to a certain order of accuracy.
With these words, it comes naturally to introduce the lattice Boltzmann method.
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Part II

The Lattice Boltzmann Method
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5 Overview of the lattice Boltzmann method

When the lattice Boltzmann method (LBM) started to gain attention about two
decades ago, it showed promising capabilities in modeling many types of flow, which
had previously been more difficult to achieve. Since its emergence, the LBM has
evolved into a viable alternative to existing numerical methods, as many of its ini-
tial drawbacks and limitations have been overcome or improved upon. The type of
applications that have been most pronounced are flows through complex geometry
and multiphase/multicomponent liquids, since these in particular have been very
difficult to implement and control with traditional methods. However, due to the
particular nature of the LBM, these types of problems and their inherent physics
translate very well into its framework. To better understand the reason behind
this, it is illuminating to take a brief look at the history and origins of the lattice
Boltzmann method.

What sets the LBM apart from most other numerical schemes is its foundation
in kinetic theory. Rather than solving a set of continuum macroscopic equations,
a mesoscopic particle-based approach is taken. Indeed, the LBM originates from
lattice gas automaton (LGA) models. In these types of models, a very simplified
view of particle-particle interaction is adopted. Here both space and velocity is
discretized onto a grid, which in turn is populated with ’virtual’ particles. These are
then transported around the grid along the links between the grid points, colliding
with other particles according to very simple rules. To further simplify things, a link
can either have one particle or no particle at all, indicating the boolean nature of
the model. For a system with N links between connecting grid points, the evolution
equation for a typical LGA model is written on the form

ni(x+ ei, t+ 1)− ni(x,t) = Ωi(n(x,t)), i = 0,1,...,N (5.1)

where ni is a boolean variable indicating the presence or absence of a particle
at link i, and ei are the spatial directions of each link. When two particles are
transported towards a common grid point, their subsequent change in momenta is
determined by the collision term Ω. The following step is advecting, or streaming,
the particles along their new direction of motion. The idea of this picture, despite
its remarkable simplicity, is that the general physical behavior of the underlying
particles will emerge on the large scale, and in particular that the governing macro-
scopic equations will be satisfied in the limit of an infinitely small lattice spacing. In
1986, Frisch et al. [9] managed to successfully recover the Navier-Stokes equations
using a symmetric hexagonal lattice. One major drawback of this model is that
suffers from statistical noise. To overcome this one has to choose a lattice spacing
so small that computations are no longer feasible, or to use some sort of statistically
averaged pre-smoothing technique. It was the latter which led to the development
of the LBM, as it was soon discovered (McNamara & Zanetti, 1998) [29] that this
could be used exclusively on its own, and thus the connection to LGA could be
dropped entirely.

The main idea of the LBM, as seen in connection with the LGA, is then to re-
place the binary particle populations ni ∈ {0,1} with smoothly varying distribution
functions fi ∈ R+, which can be seen as ensemble averages of the former. As a
result the macroscopic properties, retrieved from the underlying particle kinetics,
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will be free of statistical noise. Moreover, to address the collision operator, which
previously only amounted to boolean logic but now subject to more rigorous sta-
tistical kinematic treatment, Higuera and Jiménez [17] assumed that the particle
distributions on any given lattice site is close to equilibrium state, and can thus be
linearized. Further, they proposed a specific form of the collision term, still among
the most widely used today, which uses a single relaxation time to relax all popula-
tions, or distribution functions, towards their equilibrium state. This collision term
is known as the BGK collision term, after Bhatnagar, Gross and Krook (1958) [3].
The equilibrium distribution is then chosen such that the Navier-Stokes equations
are recovered in the continuum limit.

In fact, one can arrive at the lattice Boltzmann equation either by starting from
the LGA model, or entirely from the continuum Boltzmann equation with a discrete
set of velocities [5], using an expansion around a small Mach number.

Mesoscopic viewpoint

With this in mind, one can describe the scale at which the lattice Boltzmann method
operates as being larger than the microscopic domain of molecular dynamics, while
still smaller than the macroscopic scale since it deals with particle kinetics rather
than continuum dynamics. This is also known as the mesoscopic scale. Owing to
the nature of this particle viewpoint, many complex fluid phenomena emerges nat-
urally by the implementation of intuitive kinetic mechanisms. Solid-fluid boundary
conditions can be treated as rigid particles bouncing off a flat surface, making the
interaction with complex geometries a trivial matter. An issue normally much more
complicated with continuum methods. Multicomponent fluids can be simulated
by inserting additional sets of particle distribution functions, and their miscibil-
ity controlled by nearest neighbor mean-field interaction, spontaneously giving rise
to phase-separation and interfacial dynamics. Though it has been shown, as the
model have gradually matured, that often great care must be taken to keep the re-
sults physically sound and valid. Without rigorous analysis of the kinetics involved,
it is easy to end up with a numerically unstable and unphysical model.

Other uses

Although the most reported use of LBM seems to be with flows through porous me-
dia and multiphase flows, it can be applied to many other areas in fluid dynamics
and other regimes altogether. Providing a few examples of this; Yu & Girimaji per-
formed a study of turbulent jet flow with high Reynolds number (Re ∼180,000) [48].
Mendoza & Muñoz successfully recovered the Maxwell equations by using auxiliary
population vectors and a modified equilibrium function [31]. The lattice Boltzmann
method can also be used in quantum mechanics by modifying it to solve the time
dependent Schrödinger equation, as reviewed by Succi & Benzi et al. [43]. Recently
progress has also been made by Lapitski & Dellar in solving the Dirac equation
(to first order) [25]. Pattison et al. modeled magnetohydrodynamic flow to good
agreement with benchmarks [33]. Plenty of other examples exist in literature for
the curious minded.
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On simulation

What makes the LBM such an attractive option in many cases is not only its great
algorithmical simplicity, but stemming from this is also easy implementation and
excellent computational efficiency. The advancement of the simulation in time con-
sists basically of a collision/relaxation step and an advection/streaming step. The
collision step is completely local in space, lending itself extremely well to fine grained
computational parallelism. The streaming step is realized as a simple integer shift
of variables in memory. While this step is not completely local, it only extends to
neighboring nodes. Moreover, the entire simulation grid can easily be decomposed
and distributed over a large cluster, with little data communication between each
advancing step. Indeed, it has been shown in many instances [1, 8, 34] that near
linear speedup can be achieved over large supercomputer clusters. Another inter-
esting computational route is that of implementation on modern graphics cards,
also known as GPU compute devices. These chips contain a large number of com-
putational cores compared to a normal CPU, and can perform very well in cases
where fine grained data parallelism can be achieved [38]. Certain problem types
display performance gains up to two orders of magnitude compared to a single CPU
implementation. In the case of LBM, varying speedups of factors ∼5-20 have been
reported for single component flow [12,37,46].

Limitations

While there are many attractive properties due to the intrinsics of the LBM, it
is important to mention its limitations and drawbacks, many of which arise from
the very same principles which make it easy to use. One of the most obvious
limitations is that of low Mach number flows. In a basic implementation, stable
and accurate simulations are obtained only when Ma.0.3. There is also a relatively
low limit to attainable Reynolds numbers (500 .Re.2000) with the BGK collision
term in particular, compared to advanced discrete macroscopic methods. Although,
by special treatment of the collision term [7] and viscosity manipulation [18], one
can achieve much higher Reynolds numbers. The simplest implementation of the
solid-fluid boundary condition (bounce-back) is viscosity dependent with the BGK
collision term, and only of first order accuracy and thus have a degrading effect on
the simulation. This can be ameliorated by different choice of collision term and
a more elaborate solid-fluid treatment. Fundamentally the LBM is athermal, but
temperature can be embedded as an extra set of distribution functions, following
a modified collision term. When modeling multiphase flows, it can be difficult
to choose the right forcing model and approach in underlying phase separation
mechanism. The outcome is often an inconsistent model with incorrect interfacial
dynamics and spurious velocity currents, even though results might appear correct
at first glance.

It is promising that many of the shortcomings can be greatly improved simply
with a modified collision term. However, in order to acquire a physically correct
model for a particular case, advanced theoretical analysis is often required, which
could be potentially daunting for non-experts. Further, the outcome of this are
modifications that can be difficult to grasp, possibly obfuscating of the physics at
hand, and in the worst case takes us far from the intuitive clear picture of the model
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that made it so attractive to begin with. With that said, thanks to the contribu-
tions from the scientific community, many of the shortcomings have been addressed
with reported solutions being readily implementable, and new improvements are
constantly being published.

5.1 Lattice structure and methodology

To provide orientation and overview, this section will describe the main components
and terminology of the LBM, revealing all the necessary detail involved in a basic
implementation. For simplicity, in the following description a 2-dimensional lattice
will be used, together with the BGK collision term.

The fundamental building blocks are the lattice structure along with its discrete
set of lattice vectors, the evolution equation, and the hydrodynamic relations to
recover the macroscopic quantities from the particle distribution functions. How-
ever, solid-fluid interactions, initial conditions and boundary conditions will also
be brought to attention. Starting with the space and velocity discretization, the
system of lattice and lattice vectors follow a naming convention according to DdQq,
where d defines the spatial dimension, and q the number of discrete velocities. Here
a 2D system with 9 unique velocities will be treated, that is, the D2Q9 model. In
this case, space is discretized in a cartesian grid, and the lattice vectors link the
current cell with all the 8 nearest neighbors. Remaining is the zero vector, which
allows for a stationary distribution. Note that the vectors in this model do not
have equal length, and this is indeed not a requirement. Instead, different weights
are associated with the different vectors to maintain isotropy and symmetry. The

e1

e5e2e6

e3

e7 e4 e8

e1

e2e3

e4

e5 e6

D2Q9 D2Q7

Figure 1: Lattice structures for the D2Q9 and D2Q7 models. Apart from the shown
velocities, there is also a zero vector e0, representing a stationary distribution.

discretization does not need to be cartesian, a common model is D2Q7, where a
hexagonal lattice is used, with 6 nearest neighbor vectors of equal length and one
stationary vector. Figure 1 shows the lattice cells for both the D2Q9 and D2Q7
models. The lattice vectors ei for the D2Q9 model are

(e0,e1, ...,e8) =

(

0, 1, 0, −1, 0, 1, −1, −1, 1
0, 0, 1, 0, −1, 1, 1, −1, −1

)

(5.2)

Space is discretized in suitable number of lattice cells Nx and Ny in each di-
mension. Obviously, this is done in a way consistent with the chosen velocity space

23



discretization. Each lattice cell stores Q distribution functions, one for each lattice
vector, giving a total number of Nx ·Ny · 9 values representing the entire fluid.

With all the necessary background given, it is now suitable to present the evo-
lution equation, which naturally has the same appearance as (5.1), but with the
BGK collision term in place, and the binary particle function n(x,t) replaced with
the continuous distribution function f(x,t):

fi(x+ ei∆t, t+∆t)− fi(x,t) = −1

τ
[fi(x,t)− f eq

i (ρ,u)], i = 0,1,...,N (5.3)

where τ is the relaxation rate. The right hand side describes the process of collision
and relaxing f towards its equilibrium state, f eq. The equilibrium function, in turn,
depends only on the local density and velocity. These macroscopic quantities are
given by the hydrodynamic moments of f

ρ =
∑

i

fi, ρu =
∑

i

fiei (5.4)

The equilibrium function is derived from a Taylor expansion of the Maxwell-Boltzmann
distribution function, and is given in lattice units (to second order) by

f eq
i = wiρ

(

1 + 3(ei · u) +
9

2
(ei · u)2 −

3

2
u2

)

(5.5)

where wi are a set of weights obeying
∑

wi = 1. These are related to the choice of
lattice vectors, and for the D2Q9 model amount to

w =
1

36
(16, 4, 4, 4, 4, 1, 1, 1, 1) (5.6)

The algorithm for the evolution of one time step is detailed below (also see Figure
2). For each lattice cell, do the following

• Calculate macroscopic properties with relations (5.4)

• Evaluate equilibrium functions according to (5.5), using ρ and u obtained
from previous step.

• Update distribution functions:

f̃i(x,t) = fi(x,t)−
1

τ
[fi(x,t)− f eq

i (ρ,u)]

• Stream populations from current node to neighboring nodes:

fi(x+ ei∆t,t+∆t) = f̃i(x,t)

In the last step, because of data dependencies, a temporary storage buffer is needed
for the destination sites of the streaming populations. This implies that twice the
amount of memory is required, although as we shall see later, there are other ways
of accomplishing this with a much reduced memory footprint. In our discrete sys-
tem, the lattice spacing and time step are referred to as ∆x and ∆t, respectively.
Normally however, one uses normalized lattice units, meaning ∆x = ∆t = 1. In
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Stream Collision/Relaxation Stream

Figure 2: Overview of the stream/collide procedure, focused on one lattice cell and a
set of populations/distribution functions. In the step leading up to the collision, particle
populations are streaming into the current node. These populations are used to compute
the equilibrium functions and subsequent relaxation. Next, these populations are streaming
out along their respective direction and the process is repeated. (Note that no cell is ever
’empty’. Other populations have simply been omitted for clarity.)

these units, the sound speed becomes cs = 1/
√
3, and in deriving the Navier-Stokes

equations from the LBE, one can identify the kinematic fluid viscosity [26] as

ν = c2s∆t

(

τ − 1

2

)

=
1

3

(

τ − 1

2

)

. (5.7)

Moreover, the pressure is simply given by an equation of state (EOS), such that
p = c2sρ = ρ/3. One can reintroduce physical quantities in the system by setting for
example either ∆x or ∆t, and other free parameters, such as the relaxation time,
to fixed values, then derive the quantities from the physical relations.

An important issue in any fluid solver is that of solid-fluid boundary treatment.
Fortunately solid obstacles are very easily introduced into the LBM, indeed this is
one of the models greatest strengths. In its most basic implementation, one simply
defines lattice nodes as being solid or fluid. At the wall boundary we want to achieve
the no-slip condition, meaning the macroscopic fluid velocity is zero at this interface.
The LBM solution is to have the particle populations streaming towards the wall
bounce off of it, in such a way that the streaming direction is completely reversed
(not reflected). To clarify; if the population was traveling in the direction e5 before
hitting the boundary, it would travel along e7 = −e5 after the interaction. This is
called the bounce-back boundary condition, and the rule is formally written as

fī(x,t+∆t) = fi(x,t), eī = −ei (5.8)

Although easy to implement, it has been showed that this treatment is only accurate
to first order, and should be avoided for cases with much solid boundary exposure,
such as flows through porous media. There exist plenty of other more accurate
options [32], however they are usually not as straight forward in implementation.

Other types of boundary conditions to mention are those for the grid boundaries,
for example inlet or outlet flows. Defining these is equivalent to specifying Dirichlet
and Neumann type boundary conditions in continuummechanics. Common in LBM
is to use the so called Zou-He boundary conditions [52], where either a given velocity
profile or pressure/density can be specified across the domain border. This involves
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using the moment representations (5.4) and some additional assumption (such as
zero tangential velocity) to solve a set of equations. Solving these gives the values
of the distribution functions at the boundary, such that the prescribed macroscopic
conditions are satisfied.

Finally, some detail on initial conditions should be provided. If the velocity
field is prescribed for the entire grid, one can use the equilibrium function (5.5),
together with desired density ρ, to compute the distribution functions f = f eq for
the corresponding nodes. However, this assumes that all kinetic moments are at
equilibrium, and is consequently only valid for the restricted case of a stationary
flow with zero velocity and pressure gradients. If the flow problem is of the nature
that the initial transient is of minor importance, this approach can likely still be
used. For cases where it is essential to have an accurate initial condition, and
where the initial pressure is not given, other measures have to be taken. One
option suggested by Mei, Luo, et al [30]. is an iterative approach to find the initial
distribution functions, constructed in such a way as to be easily adopted into the
LBM framework. This generates an initial flow field with an error of order O(u3)
in the pressure field.

5.2 Deriving the lattice Boltzmann equation

One can derive the lattice Boltzmann equation in a few different ways, for example,
either by a Chapman-Enskog multiscale expansion [5] or by asymptotic analysis [21].
Here, following the derivation in Chen & Doolen [5], the starting point will be the
continuum Boltzmann equation, as first done by He & Luo [14], with a prescribed
equilibrium function and using the BGK collision term. The equation describing
the evolution of the distribution function g = g(x,ξ,t) is then written as

∂g

∂t
+ ξ · ∇xg = − 1

ετ
(g − geq) (5.9)

where ξ denotes particle velocity space, τ is the relaxation parameter, ε is a small
parameter on the same order as the time scale, and geq is the equilibrium function,
here described by the Maxwell-Boltzmann distribution function:

geq =
ρ

(2πRT )D/2
exp

(

−(ξ − u)2

2RT

)

(5.10)

where D is the spatial dimension of the system. The macroscopic quantities for the
kinetic system are acquired by taking moments of the distribution functions. The
zeroth, first and second order moments yields the density, momentum (mass flux)
and energy, respectively, and are given by

ρ =

∫

gdξ, j = ρu =

∫

gξdξ, ρDT/2 =

∫

g(ξ − u)2dξ (5.11)

Using the ideal gas law, the sound speed is cs =
√
RT . Normalizing the equilibrium

function and the velocity by
√
3RT , yielding instead a sound speed of cs = 1/

√
3,

and assuming the fluid velocity u is small compared to the sound speed, we can
Taylor expand around this parameter and arrive at

geq =
ρ

(2π/3)D/2
exp

(

− ξ2

2c2s

)(

1 +
ξ · u
c2s

+
(ξ · u)2
2c4s

− u2

2c2s
+O(u3)

)

(5.12)
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At this point it is suitable to make the transition to the discrete velocity space,
where the continuous variable ξ is replaced by the discrete set ei ⊂ ξ, where i =
{1,2,...,N} denotes the number of lattice vectors (sometimes referred to as links). It
is also convenient, and customary in the context of LBM, to write the corresponding
distribution functions as gi(x,t) ≡ g(x,ei,t). This means that for equation (5.9),
the equation only have to be solved for this discrete subset, rather than for all of
velocity space. This is a huge simplification, but nevertheless, as we shall see, this
model still maintains sufficient kinetic detail to describe the physics of interest at
the macroscopic level. To obtain the macroscopic variables from the distribution
function in discrete space, one can use Gaussian quadrature to approximate the
equations in (5.11). Gaussian quadrature in its general form is written as

∫

S
f(x)dx ≈

∑

i

wif(xi), xi ∈ S (5.13)

where xi are a set of points inside integration space, and wi their corresponding
weights. It should be pointed out that, if f is a polynomial, for a certain choice of
xi and wi, the integral

∫

f(x)dx can be evaluated exactly up to a certain limited
polynomial order. The density and momentum can be approximated as

ρ(x,t) =
∑

i

Wigi(x,t), ρu(x,t) =
∑

i

Wigi(x,t)ei (5.14)

where Wi are weights, independent of x and t, yet to be determined. Considering
the pre-factor in equation (5.12), it is here convenient to perform a simple transfor-
mation of the distribution function

fi(x,t) ≡ Wigi(x,t) (5.15)

Rewriting (5.14) and (5.12) then turns into the simplified forms

ρ(x,t) =
∑

i

fi(x,t), ρu(x,t) =
∑

i

fi(x,t)ei (5.16)

and

f eq
i ≡ Wig

eq = wiρ

(

1 +
ξ · u
c2s

+
(ξ · u)2
2c4s

− u2

2c2s

)

(5.17)

respectively, where wi = Wi/(2π/3)
D/2 . He & Luo successfully retrieved the weights

by approximating the integrals (5.11) with third-order Hermite polynomials, then
proceeded by solving these exactly with Gaussian quadrature [14]. In this case, the
specific form of the quadrature used was

∫

f(x)e−x2/2 =

n
∑

i=1

Wif(xi) (5.18)

which is exact when f(x) is a polynomial of order k, and 0 ≤ k ≤ 2n−1 holds. Since
the mass and velocity are conserved moments, it is indeed vital that the relations of
the hydrodynamic moments in (5.14) hold exactly. The resulting expression allows
the weights Wi to be identified, when comparing with (5.14). One can also use
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conservation properties and symmetry of the lattice for a general approach. The
sound speed in lattice units is given by

∑

i

wiei,αei,β = δαβc
2
s, α, β = 1,...,D (5.19)

where α, β denote the cartesian components, and D the spatial dimension. Further-
more, conservation laws imply that

∑

i

wi = 1,
∑

i

wiei = 0 (5.20)

Using relations (5.19) and (5.20), one can retrieve precisely the weights wi as with
the Hermite formula approach. As a final step, the evolution equation (5.9) with the
transformation (5.15) is discretized to first order. However, it has been shown [42]
that because of the nature of the resulting discretization error in the evolution
equation, the result is actually second order accurate in space and first order in
time. The time derivative term then becomes

∂fi
∂t

≈ fi(x,t+∆t)− fi(x,t)

∆t
(5.21)

Using the upwind scheme on the advective term, it is approximated by

ei · ∇fi ≈
fi(x,t)− fi(x−∆xei, t)

∆x
(5.22)

Lastly, following the work of Cao et al. [4], using the collision term, ie the right
hand side, in the downwind direction by simply replacing Ωi(x) with Ωi(x−∆xei),
all the components of the discrete evolution equation are known. Assembling them
results in

fi(x,t+∆t)− fi(x,t)

∆t
+

fi(x,t)− fi(x−∆xei, t)

∆x
=

= − 1

ετ
(fi(x−∆xei, t)− f eq

i (x−∆xei, t)) (5.23)

Using lattice units (∆t = ∆x = ε = 1), replacing x with x+∆xei and rearranging
finally gives the LBE as a finite difference equation for fi:

fi(x+ ei, t+ 1)− fi(x, t) = −1

τ
(fi(x, t)− f eq

i (x, t)) (5.24)

To show that the derived LBM satisfies the Navier-Stokes equations, the most
common approach is to employ the Chapman-Enskog expansion. Here the terms
in the LBM are expanded around a small parameter, and subsequently reinserted.
After some algebraic manipulation the resulting terms can be identified with those
in the N-S equation, up to a certain order. This derivation has been performed in
many papers and is not repeated here. The interested reader is referred to [5] for
the Chapman-Enskog procedure, and to [21] for the asymptotic analysis by Junk.
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5.3 LBM models

While the most widely used variant of the LBM is the single component fluid with
bounce-back boundary conditions and the BGK collision term, there are many differ-
ent options to choose from. Different models come with a different set of advantages
and drawbacks, and choosing the right one for the purpose can be critical. In the
following sections are descriptions and discussions on a few main aspects of the
LBM, such as different collision terms, multicomponent flows and body forces.

5.3.1 BGK collision term

Despite conclusive evidence that the BGK single relaxation time collision term is
inferior to other more sophisticated methods [7, 10], it remains in popularity. The
BGK collision term is a simplification of the more general form which, instead of a
single scalar as a relaxation parameter, involves a full matrix M for the relaxation
step:

Ωi = −Mij(fj − f eq
j ) (5.25)

where Einstein summation over repeated indices are assumed. For the BGK term,
this corresponds to setting Mij = δij

1
τ , which implies a single relaxation time for all

hydrodynamic (conserved) and kinetic (non-conserved) moments. This limits the
accuracy and stability of the numerical model [7]. However, if one is studying flows
well within the stability region of this model, two benefits are obvious: a very easy
implementation and a light computational burden. Attempts have been made to
improve on this model by using higher order discretization schemes [36], expanding
the equilibrium function to third order [11], giving

f eq
i = wiρ

(

1 + 3(ei · u) +
9

2
(ei · u)2 −

3

2
u2 +

27

6
(ei · u)3 −

9

2
u2(ei · u)

)

(5.26)

and also by equilibrating the density fluctuation rather than the total density [13].
The latter involves substituting the equilibrium function (to second order) for

f eq
i = wi

[

ρ0 + δρ

(

1 + 3(ei · u) +
9

2
(ei · u)2 −

3

2
u2

)]

(5.27)

where the δρ is the density fluctuation, and the total density over a lattice site is
given by ρ = ρ0 + δρ. This reduces compressibility effects and results in a nearly
incompressible model, rather than a weakly compressible.

5.3.2 MRT collision term

Developed by d’Humières (1992) [6], the Multiple Relaxation Time (MRT) model is
an approach to model the collision term in a way which is consistent with the for-
mulation of the general LBE. Here all the different kinetic moments are allowed to
relax independently from each other, meaning each moment has an independently
adjustable relaxation time. This treatment greatly improves the numerical stabil-
ity, accuracy and physical limits of the model [7], in comparison with the BGK
collision term. This manifests in, for example, lower attainable viscosity, and also
significantly reduced spurious (unphysical) velocities at interfaces in multicompo-
nent flow [51]. Because relaxation times can be set independently, the shear viscosity
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and the bulk viscosity are no longer coupled, as in the BGK model. By setting a
high bulk viscosity, one can artificially dampen spurious pressure oscillations that
can arise with low shear viscosities, and thus acquire increased stability. Also, the
remaining relaxation times can be set to further tune the stability of the model.
There are no perfect values that will work for every case, so a certain degree of
trial and error might be required to find satisfactory values. These improvements
come at the cost of a somewhat more complicated implementation and an increased
computational burden.

What constitutes the MRT model is a collision term with the full matrix, re-
sulting in the evolution equation

fi(x+ ei∆t, t+∆t)− fi(x, t) = −Λij[fj(x,t)− f eq
j (ρ,u)], i = 1,...,N (5.28)

where Λ is the introduced collision matrix, and N is the number of lattice vectors, as
usual. To find out how to define and use Λ, d’Humieres carefully constructs a linear
mapping from velocity space to moment space. First, introduce a set of vectors
{φβ |β = 1,...,N}, such that the scalar product φβ

i fi gives the corresponding kinetic
moment mβ. For example, φ1 would appropriately be a vector of all ones, with
the result that the scalar product would add all the populations together such that
φ1
i fi = m1 = ρ, thus yielding the first hydrodynamic moment, i.e. density. Given

that the underlying lattice structure is chosen properly such that is possesses nec-
essary symmetry, the vectors φβ can be constructed by a Gram-Schmidt procedure
from the lattice vectors ei to form an orthogonal dual basis to the space spanned by
f . Here it is said that the space spanned by f is the velocity space, and conversely
that the space spanned by m is the moment space. By constructing a matrix M ,
where each row is a vector φβ , that is Mij = φi

j , this matrix will represent the
linear mapping of f from velocity space to moment space according to mi = Mijfj .
Since it is a linear operation by an orthogonal matrix, the unique inverse mapping
fi = M−1

ij mj exists. Now let the matrix Λ be defined such that its eigenvectors

correspond to the vectors φβ . By this construction, the relaxation process will nat-
urally take place by the matrix multiplication performed in the evolution equation
(5.28). But to explicitly be able to choose the relaxation rates, the orthogonality of
M is exploited to construct a diagonal matrix Λ̂ according to

Λ̂ = MΛM−1 ≡ Is (5.29)

where I is the N by N identity matrix, and s = (s1, s2, ..., sN ) are the (inverse
of) relaxation rates for each corresponding moment. Equation (5.28) can now be
written in the following form

fi(x+ ei∆t, t+∆t)− fi(x, t) = −M−1
ij Λ̂jk[mk(x, t)−meq

k (ρ,j)] (5.30)

This way the relaxation step is carried out in moment space. The expressions for the
moment space equilibrium functions meq can be found by optimizing the isotropy
and the galilean invariance for the model. For details of this analysis, see Lallemand
& Luo [22]. These expressions are given for the D2Q9 model in [23], and for the
D3Q15 and D3Q19 models in [7]. One notable case here regarding the hydrodynamic
moments ρ and j, is that meq = m, since they are conserved quantities.

To summarize the steps in which the MRT relaxation step is normally carried
out, first the distribution functions are transformed to moment space. Then, using

30



the hydrodynamic components of m, the equilibrium functions meq = meq(ρ,j) are
computed. Relax the different moments, each according to its own rate: m′

i =
si(mi − meq

i ). Note that since meq = m for ρ and j, m′ = 0 regardless of choice
of relaxation rate for these particular moments. However, this only applies to the
special case of a single component fluid, and in the absence of body forces. Finally,
what remains to be done is to transform m′ to velocity space by f ′ = M−1m′,
since the streaming step is performed in velocity space. On a practical note, the
coefficients of M−1 can be calculated by using the fact that it is an orthogonal
matrix, and constructed from the vectors φi. Therefore

M−1
ij = φj

i/(φ
j
kφ

j
k) (5.31)

(note that the superscript indices are not summation indices here). Because of a
minimal number of arithmetic operations, the formulation above will yield a some-
what more numerically accurate result, compared to applying a general matrix
inverse algorithm. And, obviously, this matrix only needs to be computed once.

In the following section, some detail is provided for the D3Q19 lattice, since this
is one of the most widely used models. The moment vector m is arranged as

m = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz)
(5.32)

To describe the terms of physical interest so far unmentioned, e relates to the energy,
ε to the energy squared, qx,y,z is the energy flux independent of the mass flux,
and pij makes up the traceless (pxx + pyy + pzz = 0) viscous stress tensor, where
pww ≡ pyy − pzz. In order to set the corresponding relaxation times, the following
form is proposed

s = (0,se,sε, 0, sq, 0, sq, 0, sq, sp, sπ, sp, sπ, sp, sp, sp, sm, sm, sm) (5.33)

where the reuse of similar relaxation times for different moments is motivated by
symmetry (isotropy, galilean invariance) of the model. The values for s range be-
tween 0 and 2. Here the relaxation rates for the conserved moments are set to
zero. It is important to note though, that for the inclusion of a body force or for
multicomponent flows, these values have to be non-zero (details are provided in the
forces section). The moment equilibrium functions are often chosen [7,35] as follows

eeq = −11ρ+ 19

(

j2x + j2y + j2z
ρ0

)

εeq = wε1 + wε2

(

j2x + j2y + j2z
ρ0

)

qeqx,y,z = −2

3
jx,y,z

peqxx =
1

3

(

2j2x − j2y − j2z
ρ0

)

peqww =
j2y − j2z

ρ0
(5.34)
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peqxy =
1

ρ0
jxjy

peqyz =
1

ρ0
jyjz

peqxz =
1

ρ0
jxjz

πeq
xx = wxxp

eq
xx

πeq
ww = wxxp

eq
ww

meq
x,y,z = 0

where wε1, wε2 and wxx are free parameters. For optimized stability, Lallemand &
Luo [22] found from linear analysis that wε1 = 0, wε2 = −475/63 and wxx = 0 are
good choices.

The kinematic viscosity ν of the model is related to the viscous stress tensor,
thus

ν =
1

3

(

1

sp
− 1

2

)

(5.35)

while the bulk viscosity is determined by

ζ =
2

9

(

1

se
− 1

2

)

(5.36)

As such, the viscosity of the fluid is defined by setting the relaxation rates sp and
se. The remaining parameters do not have much impact on the physical properties
of the flow, but are rather used to tune numerical stability. Values for these can be
obtained from linear stability analysis for specific cases, or simply through trial and
error.

At first impression, it might seem as if this model imposes a great computational
burden, as compared to the BGK model. However, since the matrices M and its
inverse contain a lot of zeros (see Appendix A), one can write explicit expressions
for the transformation of each moment, rather than performing a full matrix mul-
tiplication. Moreover, many of the rows in M contain similar coefficients, so by
careful combinations of row elements these can be reused, effectively reducing the
number of arithmetic operations required. Optimal use of this strategy results in the
MRT model using up approximately 20% more computational time over the BGK
model [7]. However, the memory increase is virtually none, since the distributions
in moment space do not need storing, and thus the only extra memory required
is for the matrices M and M−1, which is neglible compared to the storage for the
distribution functions.

5.4 Body force schemes

In the models described so far, the term responsible for the body force has been
omitted. The reasons for this are that it is not always necessary to include a
body force, but also that there are many ways of incorporating this term and a
separate treatment is justified for clarity. In multicomponent fluids in particular,
the implementation of body force has a large impact on the resulting dynamics,
therefore a review of a few forcing schemes is detailed below.
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The continuous Boltzmann equation with the force term included, has the ap-
pearance

∂f

∂t
+ ξ · ∇xf +

1

ρ
F · ∇ξf = Ω (5.37)

This continuous force term ends up in the LBE as a separate term S

fi(x+ ei∆t, t+∆t)− fi(x, t) = Ωi(x,t)∆t+ Si(x,t) (5.38)

Depending on how the force term in (5.37) is treated, the LBE force term in (5.38)
will take on different forms. Possibly the most straight forward way of implementing
a body force is to simply set it as

Si = wi
F · ei
ρc2s

(5.39)

and calculate the momentum of the fluid as normally done by ρu =
∑

fiei. How-
ever, due to the LBE being a finite difference form of the continuous counterpart,
this implies the forcing term above is constant over the time interval ∆t. For cases
where the body force is indeed time invariant, this might work well, but for complex
inter-particle forces in multicomponent fluids a more accurate treatment is benefi-
cial.

5.4.1 Shan-Chen forcing

One of the early forcing strategies, most commonly used for multiphase flows, was
the Shan-Chen forcing scheme [40]. This involves a special treatment of the velocity
based on the laws of motion, and is in its current form only applicable for the BGK
model. If a force F acts on the fluid particles, a momentum contribution of τF
would be added to these particles. This added momentum would then have the
particles reach a new equilibrium state ρueq during the time τ . Based on Newton’s
laws of motion the equilibrium velocity is then given by

ueq = u+
τF

ρ
(5.40)

In the Shan-Chen forcing model, this equilibrium velocity is then used to compute
the equilibrium function as f eq = f eq(ρ,ueq). However, the actual velocity of the
fluid is not u, but instead given by

u∗ = u+
∆tF

2ρ
=

1

ρ

∑

i

fiei +
∆tF

2ρ
(5.41)

While performing well in single-phase flows, this forcing has been shown to be
thermodynamically inconsistent in multiphase flows, meaning it doesn’t match the
predicted phase-coexistence curve [19]. It also shows a strong dependence between
surface tension and relaxation time, when it should be independent.
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5.4.2 He, Shan & Doolen force model

Another treatment, proposed by He et al. [15], suggests an approximation to the
gradient∇ξf . Since the equilibrium function f eq is the leading term in the expansion
of f , it is thus the major contribution. Therefore, one could make the approximation

∇ξf ≈ ∇ξf
eq = −ξ − u

RT
f eq (5.42)

The continuous Boltzmann equation with the BGK collision term then becomes

∂f

∂t
+ ξ · ∇xf − F · (ξ − u)

ρRT
f eq = −f − f eq

λ
(5.43)

In order to solve (5.43) the whole equation is first discretized in time, then integrated
over one time step. The collision term can be assumed to be constant over one
time step [15], in accordance to previous derivations of the LBE. However, this
assumption does not hold for the force term, prompting the use of trapezoidal
integration for a more correct treatment. This results in a semi-discrete Boltzmann
equation

f(x+ ξ∆t, ξ, t+∆t)− f(x,ξ, t) =

= −∆t

λ
(f − f eq) +

∆t

2
(G|t+∆t +G|t)

(5.44)

where G ≡ F ·(ξ−u)
ρRT f eq. But since there are now quantities from time step t + ∆t

in two terms, this equation is implicit. To resolve this, new variables h and heq are
introduced as transformations of f and f eq according to

h = f − ∆t

2
G, heq = f eq − ∆t

2
G (5.45)

With (5.45), the new evolution equation becomes explicit in h

h(x+ ξ∆t, ξ, t+∆t)− h(x,ξ, t) = −∆t

λ
(h− heq) +G∆t (5.46)

Following a similar procedure as in the derivation in section 5.2, using τ = λ/∆t,
equation (5.46) turns into the LBE form

hi(x+ ei∆t, t+∆t)− hi(x, t) = −1

τ
(hi − heqi ) +

F · (ei − u)

ρc2s
f eq
i ∆t (5.47)

with the equilibrium function f eq
i as used previously, and where

heqi = f eq
i − F · (ei − u)

2ρc2s
f eq
i ∆t (5.48)

Inserting (5.48) in (5.47) results in the LBE evolution equation in its final form

hi(x+ ei∆t, t+∆t)− hi(x, t) =

−1

τ
(hi − f eq

i ) +

(

1− 1

2τ

)

F · (ei − u)

ρc2s
f eq
i ∆t

(5.49)
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Since h is transformed, the following relations must be used to retrieve the correct
hydrodynamic moments

ρ =
∑

i

hi, ρu =
∑

i

hiei +
∆t

2
F (5.50)

In an actual implementation, one would normally not use the untransformed variable
f directly, thus the naming convention h can be replaced for f in equation (5.49)
and (5.50) as long as one keeps this in mind, and always uses (5.50) to calculate the
velocity.

In a comparison of different forcing schemes for single-phase and multi-phase
fluids, Krafczyk et al. [19] found this scheme to be among the most physically ac-
curate, absent of some of the numerical artifacts and physical inconsistencies that
plagues the Shan-Chen forcing model.

5.4.3 He, Shan & Doolen forcing for MRT model

Although He et al. only derived the result of the their forcing scheme for the BGK
collision model, similar treatment on the basis of the approximation (5.42) has been
done by McCracken & Abraham for the MRT model [28]. To be consistent with the
MRT approach and to improve computational efficiency, the addition of the forces
is also performed in moment space, thus requiring a transformation of S. This is
done analytically according to Ŝ = Ŝ(u,F ) = MS. Which in turn means S does
not have to be evaluated explicitly in the collision procedure, much like meq has a
predetermined expression. For clarity in derivations, let us from here on adopt the
typing conventions f+ ≡ f(x+ei∆t, t+∆t), and S+ ≡ S|t+∆t. The MRT evolution
equation with trapezoidal integration of the force term then becomes

f+
i − fi = −Λij(fj − f eq

j ) +
∆t

2
(S+

i + Si) (5.51)

where Λij is the collision matrix, and Si defined as

Si ≡
F · (ei − u)

ρc2s
f eq
i (5.52)

To remove the implicity, f is transformed as previously where

hi = fi −
∆t

2
Si (5.53)

Inserting (5.53) in (5.51) gives

h+i +
∆t

2
S+
i − hi −

∆t

2
Si = −Λij(hj +

∆t

2
Sj − f eq

j ) +
∆t

2
S+
i +

∆t

2
Si (5.54)

Cancelling out terms of S+, and rearranging those of S results in the explicit equa-
tion

h+i − hi = −Λij(hj − f eq
j ) +

(

Iij −
1

2
Λij

)

Sj∆t (5.55)
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where Iij = δij is the identity matrix. As with the forcing model of He, to obtain
the correct momentum, one must use the relation in (5.50). Following the same
transformation procedure as for the MRT model in section 5.3.2 results in

h+i − hi = −M−1
ij

[

Λ̂jk(mk −meq
k ) +

(

Ijk −
1

2
Λ̂jk

)

Ŝk∆t

]

(5.56)

where

mi = Mijhj (5.57)

meq
i = Mijf

eq
j (5.58)

Ŝj = MijSj (5.59)

and Λ̂ = diag(s1, s2, ..., sN ) contains the inverse of the relaxation times for each
moment. To provide example, Ŝ for the D2Q9 lattice is given by

Ŝ = MS =





























0
6(u · F )
−6(u · F )

Fx

−Fx

Fy

−Fy

2(uxFx − uyFy)
uxFy + uyFx





























(5.60)

For Ŝ in the D3Q19 lattice, see section 6.2. One of the most pronounced benefits
of using MRT with this forcing model is greatly reduced spurious velocities at the
interface in multicomponent fluids [51], compared to BGK model with Shan-Chen
forcing or similar/equivalent scheme.

5.5 Multicomponent flows

The simplicity of simulating multiphase and multicomponent fluids is one of the
strong points of the lattice Boltzmann model. Due to the particle nature of the un-
derlying model, multiple components and their mixing or separation can be imple-
mented without much additional work. Over time, a number of different approaches
to multiphase flows have been developed. Here, a few of the more established models
will be covered in some detail. First a note of caution; one must be careful to distin-
guish between multiphase and multicomponent fluids. The former refers mainly to a
fluid which exist in different phases in the thermodynamical sense, for example H2O
coexisting in liquid phase and gas phase. A particular case might be to investigate
bubble dynamics. In this case there is often a large density ratio across the inter-
face, a condition which puts extra demand on a stable model. In multicomponent
flow however, some number of different fluids are mixed, which are usually in the
same thermodynamical phase (meaning liquid or gas). In these cases the density
ratio between two regions of unmixed aggregate fluids is typically low. Here the
miscibility condition between the components determine if unmixing (by spinodal
decomposition) is taking place, a process sometimes also referred to as phase sep-
aration, although spinodal decomposition and thermodynamical phase separation
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are two distinctly different types of processes. From here on phase separation shall
refer to the thermodynamical process, while unmixing or spinodal decomposition
refers to the miscibility between liquids. However, two regions of unmixed fluid
components close to equilibrium might be referred to as two different phases.

5.5.1 Interaction potential (Shan-Chen type)

Among the many types of multicomponent flow models used today, one could iden-
tify three classes of models appearing regularly in literature. The first is the Shan-
Chen type model, where non-local interactions are being incorporated into the model
through a forcing term, effectively modifying the equation of state to a non-ideal
one. The result is a spontaneously emergent phase separation, or unmixing, pro-
vided the interaction parameter is above a certain threshold value. This is a so
called bottom-up approach, where the physics is incorporated at the kinetic level.
This type of implementation adheres to the fundamental mesoscopic nature of the
LBM. Although consistent, one drawback is the difficulty to predict the behavior a
priori. Rather, the resulting surface tension and interfacial properties have to be
measured from the resulting simulation.

Representing the general multicomponent fluid is one set of distribution func-
tions for each component σ, where each component follows the evolution equation

fσ
i (x+ ei∆t, t+∆t)− fσ

i (x, t) = Ωσ
i (x,t)∆t+ Sσ

i (u,Fσ) (5.61)

To set the interaction strength between two arbitrary components σ and σ̄, an
interaction matrix Gσσ̄ is introduced. This could be seen as an effective global
temperature. If the interaction value is set high enough, unmixing/phase segregation
will occur, otherwise the components remain mixed. The force responsible for the
particle interaction in this model is then described by

Fσ(x) = −Ψ[ρσ(x)]
∑

σ̄

Gσσ̄

∑

i

wiΨ[ρσ̄(x+ ei)]ei (5.62)

where Ψ[ρ] is a local density functional, effectively an equation of state which can
take on many forms depending on physical context. Two commonly used definitions
are Ψ = ρ, and Ψ = 1 − exp(−ρ). Normally the sum over i in equation (5.62) is
taken over the set of nearest neighbors.

The original Shan-Chen model [40] suffered from breakdown of local conservation
of momentum, inconsistent thermodynamical behavior, and a viscosity dependent
surface tension. Much of this seem to stem from the way the force is incorporated
into the model (refer to Shan-Chen type forcing in section 5.4.1). Yu and Fan [51]
incorporated the force in moment space with the MRT model, using the method
by McCracken and Abraham (see section 5.4.3), and also extended the range of the
mean-field interaction potential. In doing so they reduced the spurious velocities
by the interface, got viscosity independent surface tension, and attained a means
of controlling surface tension and thickness by modifying the influence of the long
range interaction force.

Other attempts in improving on the Shan-Chen model include a modified BGK
collision term in combination with a equilibrium function to third order [11], and
defining alternative non-ideal equations of state such as the van der Waals and
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Carnahan-Starling EOS [15, 19]. These modified models have all shown improve-
ment over the original form, in regards to thermodynamical consistency, viscosity
independent properties, and spurious velocities arising near interfaces.

5.5.2 Free energy models

A second important class of models are based on the free energy approach, first de-
veloped by Swift et al. [44, 45]. In contrast to the Shan-Chen interaction potential
model, free energy based models infuse prescribed macroscopic properties, which is
known as a top-bottom approach. Some argue that this ’shoehorning’ of a desired
behavior onto the model goes against the idea of the LBM. However one wants to
look at this, the results agree well with experiment and theory [20], and gives the
benefit of being able to predetermine specific properties of the fluid. On the down-
side, there have been signs of an issue with mass conservation with high Reynolds
numbers [20]. Although this might be a result of an inadequate forcing strategy, as
this particular implementation uses the simplest form possible (see (5.39) in forc-
ing section). Also, early models had problems with galilean invariance, but that
issue has now been resolved. The free energy approach uses one set of distribution
functions to evolve the fluid according to the Navier-Stokes (N-S) equations, and
another set to solve the Cahn-Hilliard (C-H) equation for an order parameter which
keeps track of the density difference, and thus defines the interface.

Due to the nature of the C-H equation, the corresponding set of distribution
functions can operate on a reduced symmetry lattice, thus making it computation-
ally efficient as well. For a 3D grid, the C-H system only needs 7 lattice vectors
(D3Q7), as compared to the D3Q19 set normally used to solve the N-S equations.

5.5.3 Index tracking models

Finally a third class introduces the concept of an index tracking method. Here an
extra set of distribution functions is again employed, for the evolution of an index
fluid. This ”fluid” satisfies a non-ideal equation of state, and is meant to capture
the molecular interaction between fluid components. This interaction gives rise to
phase segregation and interface tension, and is incorporated into the LBM model
by adding a term which is a function of the gradient of the index fluid. Although
numerically robust, it does not capture the C-H equation to the same extent as the
free energy models [20].

5.5.4 Remarks

The vast majority of multiphase models describe a two-phase or binary fluid im-
plementation. The only model which provide a straight forward extension to any
number of components is the Shan-Chen class, although the work done on more
than two fluid components is very scarce. In its original form, the Shan-Chen
model would have been an undesirable model to consider for many component flow.
However, thanks to the many improvements developed recently, this is now a viable
option.
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5.6 Physical validity of numerical model

The LBM is normally implemented in lattice units, i.e. a dimensionless system where
the time step and the lattice spacing is set to 1 and so on. This can be helpful in ease
of implementation, and provides a common ground to compare properties between
different implementations like stability regions, relative accuracy and computational
efficiency to name a few. But in order to be useful in engineering applications and
scientific research, the dimensions will at some point have to be translated into
actual physical quantities. Moreover, in a real world case, one must also assess how
accurately the physics involved are represented. In more precise terms, the regions
of parameter space where the physics of interest are reflected to desired accuracy
must be known, and thus definable. This information will also tell us whether
a particular problem can be modeled at all. The accuracy can be measured, or
quantified, in several ways. Initially, one can get a good sense of the capabilities
by analysis of the theory behind the model. In the case of the LBM, there are
plenty of theoretical work done. As was stated before, it has been shown that the
LBM is of second order accuracy in space and first order in time. Furthermore,
we know that only the long wavelength and low frequency features of fluid flow
are accurately portrayed, since this is the assumption upon which the model is
derived. This implies a restriction on the attainable lower limit of viscosity. Also,
empirical measurements show that the model normally starts to break down at
lattice velocities of ∼0.2, which translates to Ma≈0.3. This clearly shows that for
high Mach flows this is not an appropriate model. Moreover, if one wants to achieve
accurate high Reynolds number flows, it is essential to implement either the MRT
collision term or the Smagorinsky subgrid model [41, 49], preferably both. Other
means of testing validity is setting up a benchmark case and comparing the results
with both experimental data and analytical solutions, where applicable.
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Part III

Model and Implementation
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6 Model requirements

As with all computational modeling, one will have to closely examine the case at
hand and determine precisely which physical aspects needs to be captured. This can
be a difficult task, since even seemingly irrelevant processes may have a large impact
on the end result. If the numerical model is too simple, it will fail to represent the
physical process. Add too much detail, and it will become difficult to work with
and demand excessive computational resources. In this section, a description of the
governing physics of a specific pill coating procedure will be given, followed by an
identification of equivalent numerical requirements for the model.

The pill coating mixture consists of an liquid three-component blend of ethanol,
EC and HCP, where the two latter are polymers. The relative concentration ratio is
0.85 : 0.10 : 0.05, respectively. Initially the solution is liquid and completely mixed,
owing to the high fraction of ethanol. As the ethanol evaporates, the miscibility
condition changes and the solution enters the spinodal region, giving rise to unmix-
ing and phase segregation of the polymer components. However, at this stage in the
process the segregated regions are not purely single component. One phase consists
of a large fraction of EC and a small fraction of HCP, and vice versa for the other
phase. Later in the process these intra-phase fractions will again separate, resulting
in a secondary process of spinodal decomposition. During this entire process, the
ethanol is mixed with both polymer phases. As the ethanol evaporates further, the
now segregated mixture starts a process of solidifying. This is done gradually as
mobility is successively reduced. Finally the mixture becomes fully solid by way of
a glass transition. The governing physics in the semi-solidified state is somewhat
unclear. Since the components in question are long polymers, there is reason to be-
lieve the solution behaves in a non-newtonian manner as a viscoelastic fluid. Some
kind of reptation model might be needed to accurately describe the physics here.

So far the mixture has been described from an immersed point of view, in the
sense that one could say we are in the liquid, looking at what happens. To acquire
a full physical picture, the other aspect that need to be considered is the process as
seen ’externally’. Since the initial volume fraction of ethanol is large compared to
that of the polymers, the mixture will undergo significant shrinking as the ethanol
is evaporating, all the while the spinodal decomposition process is taking place.
This obviously has an impact on the segregated domains thus formed. Moreover,
the liquid mixture, as composed of its initial fractions, is periodically added to the
solidifying structure. This has the effect of re-liquefying the upper layers of the
semi-solid structure it is added on top of, as the ethanol diffuses into the underlying
mixture. An image of what the final structure looks like can be seen in Figure 3.
The scale of the microscopic domains are on the order of 1µm.
Turning now to the modeling of the physical phenomena described above. To state
the obvious, the numerical model will have to be able to solve the Navier-Stokes
equations for a general three-component fluid. It will further have to selectively de-
scribe the mixing and unmixing of components, meaning there must be embedded
control for how each fluid component interacts with itself and the other components
through inter-particle forces. Component properties like viscosity must not only
have individual control, but must also be allowed to vary locally as a function of
concentration of other components. Particularly the viscosity of polymer compo-
nents will be dependent on ethanol concentration. Moreover, the unmixing process
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Figure 3: Scanning electron microscope of cross-sections of the solidified pill coating mix-
ture. The scale bar on the top right is 10 µm.

should follow the physics of spinodal decomposition, and in doing so satisfy the
Cahn-Hilliard equation, directly or indirectly. To ensure correctness, the resulting
interfacial dynamics also need to be accurately captured, i.e. segregated domains
following the Laplace law, and displaying correct interfacial profile and interface
tension. Since the densities of the fluid components are similar, no special treat-
ment will have to be incorporated to salvage the numerical instabilities that arise
in high density ratio flows. An evaporation mechanism must also be present, as
to capture the correct distribution of ethanol throughout the mixture. Finally the
polymer containing domain must be able to gradually reduce in volume to get a
good agreement with experiment. This implies the possible need for an adaptive
grid resolution to resolve details.

6.1 Proposed model

Judging from the list of requirements in the previous section, and seeing to the
capabilities of the LBM listed in this thesis, most aspects can be covered to a good
extent. Certain phenomena such as secondary spinodal decomposition will require
more work and will not be implemented at this stage. Also, while there are methods
for adaptive grid refinement available for the LBM [50], this will not be addressed
due to time constraints. A more resource wasteful approach will have to be taken,
where the grid resolution is simply set high enough globally to resolve the necessary
detail. With these delimitations mentioned, attention is first directed at which mul-
ticomponent model to use. While the free energy models provide a solid physical
foundation, all existing implementations (so far found by the author) deal explicitly
with two-component, high density ratio flows. Extending to general n-component
flow, or at least 3-component, might not be straight forward. The situation is simi-
lar for index tracking methods, although it seems free energy models are preferential
over this class anyway. In light of this, the Shan-Chen type multicomponent model
with the D3Q19 velocity set is suggested. This model can in its current form be eas-
ily extended to any number of fluids, and the interaction between fluid components,
including self-interaction, is readily defined and easily adjustable. The particular
velocity set is chosen because it is a good trade-off between accuracy and efficiency,
as the D3Q15 set exhibits some instabilities, and the D3Q27 set is computationally
expensive but only marginally more accurate than the D3Q19 set. In the suggested
implementation, one set of distribution functions for each component will be used.
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Moreover, incorporating some recent improvements with this model should provide
the required numerical stability and physical accuracy. Thus, the Shan-Chen mul-
ticomponent model will be used in conjunction with the Multiple Relaxation Time
(MRT) collision term, as it has shown to be superior over the BGK collision term in
a wide range of applications. Further, in modeling the inter-particle forces respon-
sible for the phase-segregation, an extended mid-range potential will be employed,
providing additional control over interfacial properties, and reduced spurious veloc-
ity currents near the interface. The forcing scheme will be according to He et al,
as developed for the MRT model by McCracken and Abraham (section 5.4.3). This
seems to be one of the most physically accurate forcing schemes developed to date.
One of its few drawbacks is its limited ability to model high density ratio flow when
compared to other schemes, a non-issue in the case at hand. Naturally, including
these improvements into the Shan-Chen model will increase computational burden,
however it should provide excellent numerical stability, versatility, and accuracy
compared to a more basic implementation. Indeed, the model properties suggested
above have been cherry-picked from some of the most promising results of recently
published research.

6.2 Model details

In this section the details of the proposed LBMmodel are given. The D3Q19 velocity
set is given by

(e0,e1, ...,e18) =

=





0, 1, −1, 0, 0, 0, 0, 1, 1,
0, 0, 0, 1, −1, 0, 0, 1, −1,
0, 0, 0, 0, 0, 1, −1, 0, 0,

1, 1, −1, −1, −1, −1, 0, 0, 0, 0
0, 0, 1, −1, 0, 0, 1, 1, −1, −1
1, −1, 0, 0, 1, −1, 1, −1, 1, −1



 (6.1)

with the corresponding lattice weights

wi =







1/3 i = 0
1/18 i = 1,...,6
1/36 i = 7,...18

(6.2)

The D3Q19 velocity set is visualized in Figure 4. The evolution equation for each
fluid component σ ∈ {1,2,...,n} in an n-component flow is written as

fσ
i (x+ ei∆t, t+∆t)− fσ

i (x, t) =

−M−1
ij

[

Λ̂jk[m
σ
k(x, t)−meq

k (ρσ ,jσ)] +
(

Iij − 1
2 Λ̂ij

)

Ŝj(uσ,Fσ)∆t
]

(6.3)

where uσ is the component fluid velocity, given by the relation

ρσuσ =
∑

i

fσ
i ei +∆tFσ/2 (6.4)
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Figure 4: Visualization of the D3Q19 lattice velocity set. The illustration is ’exploded’ in
the y-direction to reduce clutter.

where the term ∆tFσ/2 enters because of the transformation used in the forcing
scheme. The total fluid velocity is then given by

u =

∑

σ ρσuσ
∑

σ ρσ
=

{

ρσ =
∑

i

fσ
i

}

=

∑

σ(
∑

i f
σ
i ei +∆tFσ/2)

∑

σ

∑

i f
σ
i

(6.5)

Using this velocity, the fluid component momentum jσ is defined as

jσ ≡ ρσu (6.6)

The inter-particle force Fσ is calculated by the expression

Fσ(x) = −Ψ[ρσ(x)]
∑

σ̄

Gσσ̄

∑

i

wiΨ[ρσ̄(x+ ei)]ei (6.7)

where the commonly chosen relation

Ψ[ρ(x)] = 1− exp(−ρ(x)) (6.8)

is used. For n-component flow, the inter-particle interaction matrix G takes on
a symmetric n by n form, where element (σ, σ̄) specifies the repulsion strength
between component σ and σ̄. The expressions for vectors Ŝ and meq are explicitly
given in (6.12). The moment matrix M is listed for the D2Q9 and D3Q19 lattices
in appendix A. Note that in evaluating meq, the velocity and momentum must be
used as defined in (6.5) and (6.6). This has the implication that the hydrodynamic
moment representing momentum is no longer equal to the corresponding equilibrium
function, since jeq = ρσu 6= ρσuσ. What this means is that the momentum is
no longer conserved within each component. This is entirely physical, since fluid
particles of all components collide with each other and thus exchange momentum.
However, total momentum of all components is conserved at each lattice site. To
prove this, it can easily be shown that the sum of momenta for all components is
equal to the sum of momenta for the equilibrium function for all components. That
is, we want to show

∑

σ

ρσuσ =
∑

σ

ρσu (6.9)
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This is accomplished by simply using the definition of u in (6.5), and inserting in
the RHS of (6.9), which results in

∑

σ

ρσu = u
∑

σ

ρσ =

∑

σ ρσuσ
∑

σ ρσ

∑

σ

ρσ =
∑

σ

ρσuσ (6.10)

Since momentum is migrating between components, the corresponding relaxation
times can no longer be arbitrary, or zero. By setting them to unity, momentum is
conserved. This results in the multicomponent diagonal collision matrix Λ̂ taking
the form

Λ̂ = diag(0,se,sε, 1, sq, 1, sq, 1, sq, sp, sπ, sp, sπ, sp, sp, sp, sm, sm, sm) (6.11)

Naturally, this matrix can be different for each component. Up to this point it has
been assumed that Λ̂σ = Λ̂, but this is not a requirement. On the contrary, setting
different viscosities for each fluid species demands component specific relaxation
times, since ν = ν(sp).

meq =
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(6.12)

6.2.1 Boundary conditions

Since there will be limited interaction with solids, the bounce-back condition will
be used at any solid-fluid interfaces. The solid-fluid interactions will arise in part
at the ’bottom’ of the container, or simulation domain, where the standard bounce-
back implementation will be used. There will also be an interaction at the top
of the container, at the free surface, to stop the liquid from escaping the domain.
Moreover, the free surface interface at the top will move downwards as the ethanol is
evaporating. To model the shrinking of the liquid, the fluid will be constrained by a
solid at the top, acting as the free surface, gradually moving downwards. Here arises
a need for an arbitrarily placed wall, moving at a varying rate. The standard bounce-
back only supports interactions where the solid is aligned with the grid in discrete
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steps. Thus, functionality needs to be added for a more general solid-fluid interface
which does not necessarily coincide with the lattice nodes. Moreover, the moving
wall will have to exert a force on the fluid to maintain momentum balance and
mass conservation. Both these issues have been treated by Lallemand & Luo [24],
and will be used here. For an arbitrarily placed wall, consider a reference node xr

inside the solid, and a distance 0 ≤ q < 1 from the reference node to the actual
wall. Instead of just using the reversed population, i.e. fī(x,t +∆t) = fi(x,t), the
post-interaction populations are calculated according to an interpolation scheme.
The force from the wall, moving at velocity uw, is given by Fi = 3wi(ei ·uw). After
the streaming step, the populations which have interacted with the wall and are
now moving away from the solid are computed in place according to

fī(xj ,t) = q(1 + 2q)fi(xj + ei∆t, t) + (1− 4q2)fi(xj , t)−

−q(1− 2q)fi(xj − ei∆t, t) + 3wi(ei · uw), q <
1

2

(6.13)

or

fī(xj ,t) =
1

q(2q + 1)
fi(xj + ei∆t, t) +

2q − 1

q
fi(xj − ei∆t, t)−

−2q − 1

2q + 1
fi(xj − 2ei∆t, t) +

3wi

q(2q + 1)
(ei · uw), q ≥ 1

2

(6.14)

depending on the value of q, i.e. the wall position.

6.2.2 Extended interaction potential

The extended mid-range interaction potential is implemented according Sbragaglia
et al. [39]. The motivation behind this approach is to reduce the unphysical spuri-
ous velocities that arise near fluid-fluid interfaces. Sbragaglia et al. show that the
spurious velocities arise as a result of lack of isotropy in the interaction potential
forcing term. By expanding the set of lattice points used in calculating the interac-
tion force, one can push the anisotropies to successively higher orders in the Taylor
expansion.

For the D2Q9 model, 4th, 6th, 8th, and 10th order of isotropy forces are im-
plemented, while for the D3Q19 model the 4th, 6th, and 8th order of isotropy. For
preliminary tests the 6th order force is adequate, while for the full simulations the
8th order (D3Q19) and 10th order (D2Q9) forces have been used. Figure 5 shows
the different sets of lattice vectors for the D2Q9 model.

6.2.3 Evaporation and solidification

The mechanisms for evaporation and solidification are model independent, in the
sense that their implementation does not differ between choices of collision and
forcing schemes etc. The former can be modeled by removing a certain amount of
ethanol as it enters the interfacial region between the mixture and air. This can be
achieved by simply maintaining a fraction of the populations entering the fluid-air
interface, expressed as f ′

i(x,t) = afi(x,t), where 0 ≤ a < 1. A better way is to set
a fixed velocity boundary condition by the interface, for example with the Zou-He
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4th order

6th order

8th order

10th order

Figure 5: Visualization of different envelopes in calculating the pseudo-molecular interac-
tion force for different orders of isotropy in the D2Q9 lattice.

implementation. Having the velocity pointing out from the domain for the ethanol
component only will ensure that matter flows out of the fluid region. The magnitude
of the velocity will determine the rate of outflux/evaporation.

This simple evaporation model is accurate enough for our current purpose of
phenomenological modeling, but might need to undergo a more rigorous treatment
at a later stage to account for e.g. temperature dependent evaporation.

In its native form, the LBM does not provide any intuitive mechanism to achieve
solidification. Therefore, in modeling this phenomenon one must find a physical
process that mimics the gradual reduction of mobility. One such way is to em-
ulate solidification by flow through homogeneous porous media. By successively
decreasing permeability of the porous medium, the liquid will find transportation
increasingly ’difficult’, thus reducing mobility and effectively appearing as a gradual
transition to a solid state. The equation for flow in porous media is governed by
the Brinkman equation

〈∇p〉 = −µ

k
u+ µe∇2〈u〉 (6.15)

where 〈 〉 denotes volume average, k is the permeability of the porous medium,
and µe is an effective parameter controlling the viscosity and increasing with solid
fraction such that µe/µ > 1. The Brinkman equation is a generalized form of
Darcy’s law, where boundary effects between regions of different porosity are being
considered. According to [27], this behavior can be incorporated into the LBM
model by an additional force term

Fb = −µ

k
u = −νρ

k
u (6.16)

Moreover, the relaxation time is set as τ = τe = 3(µe/ρ) + 1/2. Hence, there are
two free parameters, µe and k, to set in controlling the degree of solidification (fluid
mobility) of the ethanol-polymer mixture.
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7 Implementation

This section aims at providing motivation and detail regarding the choice of com-
puter implementation of the proposed LBM model. Aspects such as algorithms, ob-
ject oriented programming, data structures, multi-threading and code optimization
will be covered. Though its main purpose is describing the programming approach
of this thesis, it is also meant to serve as a guide for anyone interested in implement-
ing their own LBM variant or improving/building upon the current one suggested
in this document.

7.1 Programming model

Before choosing implementation approach, considering platform and programming
model, one must have a clear picture of the inherent problematics and requirements.
It is intuitive to think of the LBM with all its variants as a modular system. Dif-
ferent collision terms could be considered one class of models, and different lattice
structures another, for example. Here, the choice of lattice structure should ideally
not affect the inherent workings of the collision term, as the algorithm is the same.
With a suitable level of abstraction, the LBM could be constructed of a different set
of independent modules, each dealing with their inherent tasks and communicating
the result with the other modules. This construction makes it relatively easy to
build a library of functionality and improve or add new modules as the need arise,
providing good scalability. It also facilitates in comparing computational efficiency
between different programmatical approaches. Although care must be taken not
to introduce a level of abstraction too high, as the computational efficiency might
be compromised. This is indeed another important practical consideration. Fluid
simulations, especially in three dimensions, require an immense amount of data to
be processed, and are as such inherently computationally expensive. Therefore, it
is of great importance to choose an efficient programming model which can utilize
near peak computer performance. This immediately rules out convenient scripted
programming languages such as Matlab.

7.1.1 Programming language

With the main requirements being modularity and computational efficiency, the
choice falls upon C++. This is a natural choice since it is a mature, widely used,
and object oriented language, with a proven track record of robustness and efficiency.
Using GNU/Linux the code can be readily compiled using the standard open source
GNU-C++ compiler (g++). For performance, one can choose between a few parallel
computing extensions such as OpenMP, MPI and Posix threads. In this work,
OpenMP has been utilized because of its ease of use. This is a straight forward
extension which works by adding parallel directives in the code. Most often the
workload in large loop bodies is distributed over all CPU cores. If there are no
complex data dependencies, as is the case for the LBM collision step, existing code
can easily be parallelized without much additional effort.
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7.1.2 GPU computing

Another interesting approach in high performance computing is that of GPU (Graph-
ics Processing Unit) computing. GPUs were originally intended for real time pro-
cessing of computer graphics. Their construction differs from a CPU in that they
are specialized to process vast amounts of data in a similar manner, and therefore
consist of a large number of computational cores that all perform the same op-
erations to a large set of data. This approach is called SIMD (Single Instruction
Multiple Data). It was soon noticed that this tremendous computing power could be
harnessed for computations of a more general nature. GPU computing lends itself
extremely well to applications which are inherently data parallel. Since the LBM
exhibits data parallelism to a large degree, a brief excursion into GPU computing
is also covered. Here the programming language used is CUDA C, developed by
Nvidia.

7.1.3 Objects and inheritance

One of the central properties of object oriented programming in C++ is that of
inheritance. Since the implementation relies on inheritance, a brief explanation of
the concept is provided. Objects in C++ are most often realized by classes. A
class can be described broadly as a collection of data and/or functionality. Often
the functionality is related to the data belonging to the class. Central in the object
oriented paradigm and in utilizing the flexibility that comes with it, is the ability
to create new objects, or classes, on the back of existing ones. In doing so, the new
object inherits the properties of the existing one, all the while new functionality
can be added. As an example, consider a class describing a geometric object, call
it Polygon. Belonging to this class we define a set of points describing the shape.
Now, we can define new classes, deriving from this class, such as Rectangle and
Triangle, since they both share the property that they consist of a set of points.
However, for example, the area of the derived objects are calculated differently, and
thus have to be defined in each derived class. Here, we save the effort of having to
re-implement point storage for the two derived classes, as this is inherited from the
base class. Obvious is also the different levels of abstraction between the base class
and the derived class. One could further derive a class Square from the Rectangle
class, and so on.

The field of object oriented programming (OOP) and all the concepts and func-
tionality that comes with it is vast. The above explanation is merely meant to touch
upon the very fundamental idea that underpins OOP. For details on this topic, there
is an endless supply of books to consult.

7.2 Framework

At its most abstract level, the LBM implementation consists of several types of
modules, as mentioned above, each of which handles a separable part of the LBM.
At the time of writing, these are

• LBMSystem
This module provides the base for the simulation environment. Some global
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parameters such as grid dimensions are held here, but its main purpose is to
tie the different modules together and synchronize some operations between
them. All parts which comprise the entire system can be accessed from this
module. The particle population data is also accessed from here.

• Kernel
The Kernel defines the various steps, and the ordering of these, in the main
time evolution algorithm. It invokes all the necessary procedures involved
in propagating the simulation one time step, such as boundary conditions,
collision and streaming. However, the functionality of these procedures are
determined elsewhere, in keeping with the object oriented approach.

• Collision
As the name implies, everything related to the collision phase of the algorithm
is handled here. This, together with the stream node, are the most computa-
tionally intensive modules of the framework. It is thus of utmost importance
that this part is highly optimized, if peak performance is desired.

• Stream
This module takes care of the streaming step. Depending on data structures
and data dependencies, this can be done in a few different ways. In certain
algorithms the collide and stream steps are fused into one, reducing memory
bandwidth, although this requires a special algorithm (described in section
7.4).

• Lattice
Here details regarding the lattice structure, velocity set, and their correspond-
ing weights are kept.

• Solid
This module holds information about any solid obstacles in the fluid domain,
and stores interfacial population data used in solid-fluid boundary treatments,
such as the bounce-back boundary condition.

For a simple schematic overview how these are connected, see Figure 6. Each of

LBMSystem

Kernel

Collision Stream

Lattice Solid

Figure 6: Simplified schematic showing the connections between the different modules.
There are also additional classes providing functionality for visualization and initial condi-
tions.

these modules are realized in C++ as classes. To avoid code duplication, and to
make the framework extendable, inheritance is utilized where appropriate. The
most abundant use of inheritance is with the Collision class, since many different
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collision models have been implemented, while they still share common properties
to a certain extent. A subset of the Collision inheritance tree can be seen in Figure
7.

Collision

Multicomponent Collision MRTCollision BGK

Collision BGK

Multicomponent

D2Q9

Collision BGK

Multicomponent

D3Q19

Collision MRT

Multicomponent

D2Q9

Collision MRT

Multicomponent

D3Q19

Collision BGK

 D2Q9

Collision BGK

 D3Q19

Multicomponent

D2Q9

Multicomponent

 D3Q19

Collision MRT

 D2Q9

Collision MRT

 D3Q19

Figure 7: Schematic view over inheritance tree for multicomponent collision models with
the BGK and MRT collision term. The dashed boxes represent abstract classes which cannot
be used on their own. Note that this is only a subset of the available models.

7.3 Data structure

An important consideration in any application where performance is required, is
the choice of data structure. That is, how the information that is to be processed is
organized in computer memory. Fundamentally, the reason for this is that memory
access speed is slow compared to the CPU processing speed. A situation which has
only become more accentuated in the past years since CPU computational speed is
increasing much faster than memory access speed. This brings the implication that
it usually takes longer to fetch a value from memory than to perform the desired
arithmetic operations on it. In such situations it is said that memory access is a
bottleneck, or that the computation is bandwidth limited.

7.3.1 Cache

To circumvent memory bottlenecking, an interim memory between the CPU and
main memory exists, called a cache. This memory is small and fast, and can provide
data to the CPU much faster than from the main memory. However, for this
configuration to be effective, data must be copied into the cache before it is used.
Which in turn means the computer, or the cache handler, will have to guess what
data will be used next, in order to have it available in cache before the CPU asks for
it. The only reasonable assumption it can make here, is that this data resides close
in memory space to the previous data just accessed. So if the CPU first accesses
data from memory address 100, the cache handler will immediately start copying
data from address 101, 102, 103,... etc into the cache. By accessing the data in
the order it is loaded into cache, i.e. sequentially, optimal memory bandwidth will
be achieved, thus minimizing bottlenecking. The data access pattern is usually
referred to in terms of stridedness. Sequential access is small strided, or 1-strided.
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Reading data from memory regions far apart is called large strided access, and is
to be strictly avoided for computationally intensive parts of the code, if possible, as
this is detrimental for performance.

In reality, usually 3 levels of cache exist, L1, L2 and L3 cache, in a hierarchy.
Here L1 cache is the smallest and fastest, while L3 is the largest and slower than L1
and L2. However, the principles described above still apply, and in following these
one should produce optimized code.

7.3.2 Data ordering

While it seems trivial that data is stored and accessed in a sequential manner, there
are a few different approaches to be considered. Since each grid element consists
of a number of populations (distribution functions), and in some cases multiple
sets of populations for multicomponent flow, different ordering among these can be
employed. For single component flow, the options are to store grid node ordered
or direction ordered. In the former, all populations that ’live’ in one lattice node
are residing in contiguous memory space, whereas in the latter all populations of a
certain lattice direction are contiguous (see Figure 8). One can also arrange data

Element 1 Element 2 Element N

f1 f2 ... fQ f1 f2 ... fQ f1 f2 ... fQ

Element 1,...,N Element 1,...,N Element 1,...,N

f1 f1 ... f1 f2 f2 ... f2 fQ fQ ... fQ

Figure 8: Different data ordering schemes. Top: Node ordered. Bottom: Direction ordered.

in a form of periodic direction ordering, such that only small subsets of the grid
are repeatedly directionally ordered. The main difference with these approaches is
that the grid element ordering supports local memory access for the collision step,
but must perform large strides for the streaming step. With the direction ordered
approach, large strides have to be taken for gathering data for the collision step,
while the streaming step becomes more sequential in nature. However, the large
stridedness in the collision step can be avoided by pre-calculating and storing the
density and velocity for the entire grid, thus requiring more steps in the algorithm
and more memory, whereas in the grid ordered approach this is not necessary (for
single component fluids).

7.3.3 Memory locality and domain decomposition

Although small, the cache hierarchy does allow room for some maneuverability. If
data is accessed within a memory region small enough to fit inside the cache, data
access can be non-sequential while still maintaining high performance. Code which
is utilizing this feature is said to exhibit good memory locality, or cache locality.
This issue is especially important to consider in the streaming step, since this is
a non-local operation where data is shifted from one memory location to another.
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Preferably then, considering locality, the memory space for the surrounding nodes
should be as close as possible. However, because memory is linear, when construct-
ing the simplest possible grid, large strides will be inevitable for certain streaming
directions (see Figure 9). A common workaround to improve on this scenario is to

Regular Grid

0 Nx-11 2 ...

Nx Nx+1 2Nx-1Nx+2 ...

...

...

Nx-2

2Nx-2

NxNy-1

Figure 9: Memory addressing for a regular grid in 2D. Note that big strides in memory
will be made when streaming in y-directions.

split the main grid into smaller subgrids, a method referred to as domain decompo-
sition. By computing one subgrid at a time, cache locality is improved due to its
smaller size (Figure 10). Furthermore, by constructing the subgrids such that the

Subgrid 0 Subgrid 1 Subgrid 2

0 Nx-11 2 3

Nx Nx+1 2Nx-1Nx+2 Nx+3

...

...

Nx-2

2Nx-2

NxNy-1

4 ...

Nx+4 ...

Figure 10: Main grid decomposed in domains, or subgrids. Strides will still be large, but
since the subgrid is small, a bigger portion of it should reside in cache and there should be
performance gains.

memory layout is contiguous within each subgrid, locality is improved even further
(Figure 11, 12). This brings both advantages and disadvantages. Apart from the
improved locality, each subgrid can be more easily handled separately, and thus
is advantageous for certain algorithmic improvements and also for distributing the
workload on a bigger cluster. The obvious disadvantage is that the communication
across the borders between different subgrids becomes somewhat more convoluted.

7.3.4 Data dependencies

In performing the streaming step, the populations of the current grid element are
distributed to the surrounding grid elements according to their corresponding lattice
direction. In doing so, the previous populations residing in these locations will
obviously be overwritten. This creates a data dependency, in which a temporary
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Subgrid 0 Subgrid 1 Subgrid 2

0 1 ... nx-1

nx nx+1 ... 2nx-1

nxny-1

nxny+

0

nxny+

1

nxny+

nxny-1

nxny+

nx-1

2nxny+

0

2nxny+

1

2nxny+

nxny-1

2nxny+

nx-1

nxny+

nx

nxny+

nx+1

nxny+

2nx-1

2nxny+

nx

2nxny+

nx+1

2nxny+

2nx-1

...

...

...

...

Figure 11: Alternative memory addressing for subgrids. Here each subgrid is contiguous
in memory, and thus memory locality should be optimal within the domain.

Subgrid 0 Subgrid 1 Subgrid 2

(0,0) (1,0) ... (nx-1,0)

(0,1) (1,1) ... (nx-1,1)

(nx-1,

ny-1)
(0,ny-1)

...

(1,ny-1)

...

...

(0,0) (1,0) ... (nx-1,0)

(0,1) (1,1) ... (nx-1,1)

(nx-1,

ny-1)
(0,ny-1)

...

(1,ny-1)

...

...

(0,0) (1,0) ... (nx-1,0)

(0,1) (1,1) ... (nx-1,1)

(nx-1,

ny-1)
(0,ny-1)

...

(1,ny-1)

...

...

Figure 12: Subgrids with contiguous memory, showing (x,y) local coordinates instead
of memory addressing. To access a particular subgrid, one simply have to calculate a
fixed memory offset. Here it becomes obvious that this data ordering makes it straight
forward to distribute computational parcels over a large cluster; in the computation step,
no information is needed about the neighbors or where we are in the global grid.

memory storage have to be introduced to resolve it. The simplest approach here
would be to allocate two separate grids A and B, thus requiring twice the amount
of memory. The post collision populations would be calculated for the entire grid
and stored in B, followed by streaming back to A. A more efficient method would
be to fuse the collision and streaming step and write to grid A or B for even or
odd time steps respectively. So in the first time step data would be read from
A and written to B. The following time step would read from B and write to
A, and so on. This eliminates memory accesses by half, thus greatly reducing
the limitation set by memory bandwidth. However, this still requires twice the
memory. Considering a 3D multicomponent fluid can easily take up several gigabytes
of memory, this is preferably avoided. Employing domain decomposition, one can
reduce memory footprint by computing one domain at a time, and thus only require
temporary storage the size of the domain. Although care needs to be taken with
the populations streaming out of the domain, and into the neighboring domains.
Here is another data dependency which needs to be addressed. This is normally
solved by padding each domain with a layer of ’ghost nodes’ or buffer elements
(Figure 13). These elements serve as a temporary storage, and at the end of the
computation step these will be transferred to their correct location. Naturally, this
involves some extra computation overhead, but makes up only a small fraction of
the total computational time. It is a small sacrifice for a large reduction in memory
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Subgrid 0

Buffer elements Buffer elements

Subgrid 1

Figure 13: To make each subgrid computation step independent, and to resolve data
dependencies, a layer of buffer elements are added. The populations residing in the buffers,
as a result of streaming, will be transferred to the corresponding elements after all the
subgrids have been computed.

usage.

7.3.5 Chosen data structures

A few basic tests for single component flows were initially carried out, and it was
found that the grid element ordered approach was fastest for the computer archi-
tecture at hand. For multicomponent flows, each additional set of populations are
stored in succession (see Figure 14). Moreover, the grid is decomposed in sub-

Component 1 Component 2 Component C

f1 f2 ... fQ f1 f2 ... fQ f1 f2 ... fQ

Element 1

Figure 14: The chosen data ordering scheme for multicomponent fluids.

grids, with the memory contiguous in each subgrid as described above (Figure 11).
Without the subgrid approach, the streaming step scales very badly with parallel
computing, providing essentially no speedup at all when running on all four cores
compared to a single core. Using the subgrid, the computational performance scales
very well with number of cores and problem size. In addressing the data depen-
dency issue with the streaming step, memory space corresponding to one additional
subgrid is allocated. The post collision values are stored in the temporary subgrid,
and then streamed back to the main grid. Further, each subgrid is padded with
a layer of ghost nodes, or buffers, to accommodate for the populations streaming
out of the domain, thus increasing the subgrid dimensions by two elements for each
spatial dimension. The fractional increase in the total memory requirement per
subgrid then becomes

(nx + 2)(ny + 2)(nz + 2)

nxnynz
(7.1)
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where ni is the number of grid elements in the spatial dimension i ∈ {x, y, z}. For
a typical subgrid size of nx = ny = nz = 40 this amounts to a 16% increase over
the storage for the main grid.

It should be noted however, that an exhaustive investigation was not pursued,
and that further performance increases could possibly be had with careful choice of
data structure, such as partial direction ordering as described above.

7.3.6 Indexing and data addressing

With the data structure in place, it should be described how to access the de-
sired populations. For a three-dimensional grid, where each grid element supports
any number of fluid components, and where each component consist of a set of
lattice populations, we are essentially addressing a 5-dimensional structure. That
is, to access a certain population we need to specify 3 spatial indices for the grid
element, 1 fluid species index, and 1 population index. Although C++ supports
”multidimensional” data storage, this is not possible to utilize when passing data
between functions through memory pointers. Also, since all computer memory is
one-dimensional, the multidimensional array indexing is just a mapping to one-
dimensional space. Therefore, all populations are stored in a large one-dimensional
array to begin with, where the mapping from 5 indices to 1 address element have
to be determined ’manually’.

First, let us find the local index to an element in a subgrid. The total number
of elements, or populations, for one subgrid will be

Nf,sub = nxnynzCQ (7.2)

where C is the number of fluid components, Q the number of populations per compo-
nent, and ni the number of grid elements in each spatial dimension for the subgrid.
With the data ordering determined previously, the index idxsub to population q, for
fluid component c in subgrid element (i,j,k) is calculated as

idxsub = (knxny + jnx + i)CQ+ cQ+ q (7.3)

where all indices are 0-based, that is q ∈ [0, Q − 1] and analogously for the other
indices. Since the main grid consists of several subgrids, the memory offset to the
current subgrid must also be computed. Let the main grid consist of dx, dy, dz
subgrids in each spatial dimension, respectively, such that the total number of grid
elements along one dimension is Nx = dxnx. The memory offset to access the
elements in subgrid (I,J,K) is then

idxoffset = (Kdxdy + Jdy + I)Nf,sub (7.4)

Thus, we can calculate the global index to the main grid as

idxglobal = idxoffset + idxsub =

(Kdxdy + Jdy + I)Nf,sub + (knxny + jnx + i)CQ+ cQ+ q
(7.5)

While this might appear cumbersome to deal with, some sub-expressions like idxoffset
are precomputed once and used to create a pointer to the current subgrid. As such,
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only the local indices need to be computed, and it transparently maps to the global
indices without the user having to think about it. It is this feature that makes this
particular memory model so favorable for distributed cluster computing.

7.4 CUDA model

With some modifications the existing code can be adapted to the CUDA C language,
whereby the large computational power provided by GPU based hardware can be
utilized. When designing code for CUDA enabled devices one must understand the
special data execution model, which is in turn intimately connected to the hard-
ware. As a result of the large number of computational cores, and the capability to
launch and handle a very large amount of concurrent threads, programs are often
designed such that one thread is responsible for only one small fragment of the total
problem. This fragment is usually one grid node for grid based methods, and the
LBM is no exception. Moreover, in order to map all data elements to threads in
a scalable manner, CUDA builds on the concept of thread blocks (Figure 15). A
thread block is a group of threads with some inherent dimensional properties. It
can be 1D, 2D and 3D, depending on what suits the problem best, and as thus each
thread come with a spatial index as a unique identifier. The entire problem is then
divided up into a number of thread blocks, also with a spatial structure, collectively
forming what is called a grid, to cover all data elements. By structuring the threads
in this manner, one does not need to know the specifics of the GPU hardware, i.e.
the number of cores, and the problem should map equally well to a budget, high
end, or future device. Nvidia GPU devices come with different types of memory

Figure 15: Schematics of the CUDA threading model. The entities labeled ’Block(x,y)’
are thread blocks. Each thread block has access to a small low latency memory (shared
memory) where data can be shared with the thread block only. The shared memory can be
seen as a kind of user managed cache.
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which can be divided up into two broad categories, global and shared. Global mem-
ory is the large main memory, where access is relatively slow (high latency), while
the shared memory is local to each thread block, small in size but with very fast
access (low latency). Key in obtaining peak performance is to use these types of
memory efficiently. A common strategy is to copy memory from global memory
to shared memory before using it. However, global memory must be accessed in a
specific way to maintain high performance. Just as in the case of the CPU and its
cache-structure, data should preferably be read from global memory in a sequential
manner. This is even more important in the case of GPU computing. Without
going into too much technical detail, data should be read in data packets of 128
bits (4 single precision floating point values, or 2 double precision), and should be
read more or less strictly sequentially (small deviations are allowed, given it is done
within certain restrictions). Such memory access is called coalesced. Once data
resides in shared memory, it is available for use with more random access without
performance loss. One can see the coalesced global memory access together with
shared memory utilization as a form of user managed cache. For more details on
the CUDA model, see [2].

The strategy used in this CUDA port is to let one thread compute and stream the
populations of one lattice node. All populations corresponding to the thread block
are first read to shared memory, whereby the new populations are computed. In
order to achieve coalesced reads, the memory model is changed to direction ordered,
as in Figure 8 (bottom). Using the node ordered memory model does not amount to
coalesced access, and thus resulted in performance only on par with the CPU version.
When using the temporary subgrid domain for storing the post-collision populations,
as shown in Figure 16, along with the revised data storage pattern, the performance
obtained was a speedup of a factor ∼8 over the equivalent CPU implementation.
However, examining the reads and writes one quickly notices that this uses 2 memory
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Figure 16: Subgrid memory model for the collision and streaming step, as used in the CPU
code. The post-collision values are first stored in the temporary subgrid. When all these
have been computed, they are subsequently ’streamed’ back to the originating subgrid in
the regular grid, thus resolving the data dependencies.

transfers per population: 1 where the post-collision value is stored in the temporary
domain, and 1 when storing in the regular grid in the streaming step. Since memory
bandwidth is usually the limiting factor in GPU computing, it is worth spending
some time trying to optimize access patterns. By using a second grid, thus requiring
twice the amount of memory, one can fuse the collision and streaming step by storing
the post-collision value directly at the streaming destination in the second grid. For
the next time step, the post-collision values are transferred back to the first grid, and
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so on. This way each data element only need to be transferred once per time step,
cutting memory bandwidth in half. Indeed, the result using this memory model was
almost twice the previous performance, yielding an impressive ∼14x speedup over
the CPU version using the less optimized memory access pattern. However, the
drawback is using twice the amount of memory. This is touching on a weak spot for
GPU computing, since these devices normally carry much less memory than what is
available to a CPU, thereby greatly limiting the size of the problem. But we shall see
that the memory usage can be improved upon, by considering the property where
the memory is contiguous in each subgrid. For a 2d problem, the subgrids that make
up the total grid can be viewed as the left illustration in Figure 17. Looking at how
these map to memory, the subgrids might as well be laid out in a straight line, as
depicted in the right illustration in Figure 17. With this in mind a new updating

0 1

2 3
0 1 2 3

Figure 17: Equivalence of memory layout with subgrids of internally contiguous memory.

scheme can be devised, utilizing the fused collision and streaming step, but where
only one extra subgrid is used. By computing one subgrid at a time, there will
always be one subgrid available for storage, albeit the memory location for this is
shifting. If subgrid 3 is first collide+streamed to the spare subgrid, its old location
will become obsolete and can be used for storage. Thus, subgrid 2 is subsequently
collide+streamed to the location for the old subgrid 3, and so on. This algorithm
is repeated until all subgrids are computed for time t + 1 (Figure 18, top). Now,
in commencing the computation for time step t + 2, there will be a spare storage
where subgrid 0 resided for time t. Thus, in order to compute time step t+ 2, one
repeats the process but in reversed direction (Figure 18, bottom). This application

0 1 2 3

Step 1Step 2Step 3Step 4

0’ 1’ 2’ 3’ 

0’ 1’ 2’ 3’ 

Step 4Step 3Step 2Step 1

0 1 2 3

Time t Time t+1

Time t+1 Time t+2

(collision+stream)

Figure 18: Schematics of revised updating model, being bandwidth and memory efficient.

of reduced memory usage with subgrids, in conjunction with bandwidth efficiency in
”shuffling” the subgrids back and forth, the performance is unimpaired compared to
that of the full dual grid model, while only using the extra memory of one subgrid.
This highlights the importance of careful implementation for performance; while
the first naive CUDA implementation produced the correct result, it had less than
1/10th of the computational performance of the refined ’shuffle’ model.

60



Only a few LBM models were tested due to time constraints. For multicom-
ponent flows, the CUDA approach was only taken for the D2Q9 model, since the
memory requirements for a 3D multicomponent model greatly exceed that of the
GPU devices available to the author. A brief summary of the models tested is listed
in Table 4.

7.5 Computational performance

In selecting a model with a set of desired properties, speed could be a determining
factor. Also, in order to compare results with other implementations and algorithms,
a good measure of computational performance is necessary. A very commonly used
measure in the context of LBM is the number of lattice sites updated per second.
The conventional unit used is MLUPS (Million Lattice Updates Per Second), and
this has been measured for the most relevant models - single component BGK and
MRT (2d and 3d), and multicomponent BGK and MRT (3d). Also, a few GPU
models have been measured. The hardware used was a quad-core i5 2500k consumer
desktop CPU (Intel ’Sandy Bridge’ architecture) running at 4.0GHz, accompanied
by 8Gb of system memory. For the GPU simulations, an Nvidia GTX580 with 512
CUDA cores and 3Gb of onboard ’device’ memory was used. Both CPU and GPU
versions use the ’shuffle’ algorithm described in section 7.4. The CPU results are
listed in tables 1, 2, and 3. The GPU results are listed in table 4. Best performance
for the 2d models was found with a subgrid size of approximately (200, 200) lattice
units, and for 3d models (40,40,40) was a good choice. For GPU models, domain
sizes should be chosen as a power of 2 to maintain performance.

BGK D2Q9 MRT D2Q9 BGK D3Q19 MRT D3Q19

N = 1 170 80 45 28

Table 1: Performance measure in MLUPS of single component LBM models. All models
use single precision floating point.

BGK D3Q19 (4th) BGK D3Q19 (6th) BGK D3Q19 (8th)

N = 2 10.4 8.3 4.6
N = 3 6.0 4.5 2.3

Table 2: Performance measure in MLUPS of multicomponent BGK LBM models using
the He forcing scheme. N represents the number of fluid components, and the number in
parenthesis indicate the order of isotropy for the midrange pseudopotential force.

MRT D3Q19 (4th) MRT D3Q19 (6th) MRT D3Q19 (8th)

N = 2 7.3 6.4 4.2
N = 3 4.6 3.9 2.3

Table 3: Performance measure in MLUPS of multicomponent MRT LBM models using the
He forcing scheme.
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Model CPU MLUPS GPU MLUPS Speedup

BGK D2Q9 170 1900 11
MRT D2Q9 80 1000 12.5
BGK D3Q19 45 725 16

Multicomponent N = 3:
BGK D2Q9 (8th) 9.0 180 20
BGK D2Q9 (10th) 6.9 145 21
MRT D2Q9 (10th) (Ψ = ρ) 5.5 125 23
MRT D2Q9 (10th) (Ψ = 1− e−ρ) 3.3 115 35

Table 4: Performance results and comparisons for GPU implementations. All measures
using single precision floating point.

One obvious conclusion is that 3d models are expensive, and multicomponent ones
even more so. Two major costs come with the multicomponent models. First there
is one additional set of population functions per additional fluid component that
have to be calculated. Second, the interaction potential model requires a force to
be calculated where the sum of the density is taken over a set of neighbors. The set
of neighbors grows with increased order of isotropy, and so does the computation
time. Interestingly, the BGK and MRT models are nearly equally costly for the
8th order interaction force. This demonstrates that the computation of this force is
much larger than the extra overhead required by the MRT collision term. As such,
there really is no reason to choose the BGK model in this scenario, unless one favors
a simple implementation.

Looking at the GPU results in table 4, it is observed that the more computa-
tionally demanding the model is, the greater the benefit over the CPU version. This
can be explained by reasoning that the GPU memory bandwidth becomes less of a
bottleneck as the computational burden increases.

As for comparing with other implementations in literature, this proved to be
difficult. There were no clear cases found where similar hardware was used, a
necessity for a meaningful comparison. Mostly large cluster implementations are
benchmarked, and the type of CPU’s used were high-end workstation models, usu-
ally from an older generation, whereas the results in this work are based on a single
modern consumer desktop CPU. However, one independent means of measuring the
efficiency of the algorithm is to calculate a theoretical performance limit on the
basis of available data bandwidth. Considering only the data quantity that needs
to be moved, disregarding any calculations, one can get an upper bound on the per-
formance. Here, each population on every lattice site will be read once and stored
once, resulting in two memory accesses per population. However, because of the
CPU architecture, when writing a value to memory, the corresponding address must
reside in the cache. This results in two memory accesses (since the store location
is not previously accessed and thus uncached): one for fetching the address to the
cache and one for subsequently storing the value. Thus requiring a total of 3 mem-
ory accesses. Using the single precision floating point datatype, occupying 4 bytes,
this gives that 3 · 4 · q bytes will have to be transferred to update one lattice cell for
any DdQq model. With knowledge of maximum bandwidth BW MBytes/s for the

62



hardware architecture in use, the maximum MLUPS measure can be calculated as

MLUPSmax,CPU =
BW

3 · 4 · q (7.6)

The GPU architecture does not come with the requirement that the write address
resides in cache, and thus the maximum performance is given by

MLUPSmax,GPU =
BW

2 · 4 · q (7.7)

To find the maximum bandwidth for the CPU, a STREAM-like benchmark was
performed. This test consists of sequentially copying large amounts of data from
one array to another, a large number of times (to even out fluctuations), while
recording the elapsed time. From this a reliable value of the actual bandwidth can
be deduced. Using all CPU cores, this test amounted to an attainable bandwidth
of ∼ 23 · 109 Bytes/s for the system at hand. The peak memory bandwidth of
the GPU device used is given by manufacturer specifications as 192 GBytes/s. The
performance of the D2Q9 and D3Q19 implementations can now be evaluated against
this measure. The results are listed in Table 5.

Model MLUPS measured MLUPS max Efficiency

CPU:
BGK D2Q9 170 213 80%
BGK D3Q19 45 101 45%

GPU:
BGK D2Q9 1900 2667 71%
BGK D3Q19 725 1263 57%

Table 5: Efficiency of single component models, as measured against maximum bandwidth
performance in which only data traffic is considered.

Considering this measure is for data moving only, the achieved results indicate an
efficient implementation for at least the D2Q9 versions. The 3d models involve a
larger number of arithmetic operations per site, due to the 3 components of the
velocity, so are expected to come with a lower efficiency compared to the 2d case.
However, measured values are still unexpectedly low and indicate some further op-
timization can likely be done for the 3d models.

It is not so straight forward to estimate the maximum bandwidth performance
for the multicomponent models, due to the much greater extent of memory oper-
ations. However, some conclusions can be drawn from the straight performance
measures. Due to the fact that the computation time for the interaction force
is dominating, any optimizations should be aimed at this step. Currently this is
evaluated per component, per lattice site. One possible improvement might be to
pre-compute these forces, which is essentially a convolution process. This approach
will incur a relatively small memory cost. Further, by using the fact that the force
that fluid A feels from a neighboring fluid B is the same as the reverse situation,
but with a switch in sign, the number of computations can be reduced by half.

Regarding GPU performance, the results clearly show that the LBM lends itself
well to massively parallel computing. Even if the memory constraint is a limiting
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factor, the GPU approach can be an excellent low cost option for interactive feed-
back of low resolution simulations during the modeling process. Moreover, using
GPUs is also an interesting option for cluster computing, since the problem can
then be broken down into subdomains small enough to fit inside GPU memory.
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Part IV

Simulation and results
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8 Benchmarking of proposed model

To assess the physical accuracy and numerical stability in the proposed model, a
series of benchmark tests will be performed. In some cases, numerical solutions will
be compared to analytical solutions, where these exist. Other LBM models than the
proposed one will also be subject to benchmarking, in order to quantitatively eval-
uate the difference between them. These will mainly be used to compare numerical
artifacts, stability limits and computational performance. Results which may be of
use when selecting models for other projects.

There are many standard benchmark tests available, some with analytical and
some with experimental solutions. Because of the application in question, mainly
multicomponent benchmarks will be treated.

Unless otherwise stated, dimensionless lattice units will be used throughout the
section.

8.1 Poiseuille flow

One of the most widely used benchmarks regarding fluid flow is flow in a straight
channel, also known as Poiseuille flow. This makes for a good benchmark, since it
is easy to set up and there exists a simple analytical solution. For a 2-dimensional
flow along the x-direction, the velocity profile across the channel (y-direction) is
given in lattice units by

ux(y) =
4umax

D2
(Dy − y2) (8.1)

where D is the diameter of the channel, and umax is the prescribed velocity in the
center of the channel.

To achieve steady state Poiseuille flow with the LBM, boundary conditions are
set according to Zou-He. Along the inlet, a velocity profile is prescribed according
to (8.1), with umax = 0.15. At the outlet the pressure is set to the constant value
ρ = ρ0 = 1.0. Viscosity is set to ν = 0.05. Walls are introduced by defining the
grid elements along the top and bottom as solid. The initial velocity through the
channel is set to zero, and the simulation is allowed to run until equilibrium has
been reached. Results for the single component BGK and MRT models are plotted
in Figure 19. In this simple regime, the BGK and MRT models perform essentially
identically, with a 0.52% overshoot in velocity at the center of the pipe, where the
profile is taken along the cross-section at the middle of the simulation domain.

8.2 Von Karman vortex street

By placing an obstacle in a stationary fluid flow, usually a sphere, cylinder, or cube,
a periodic disturbance develops behind the obstacle, given that the Reynolds number
is above a certain threshold value. This disturbance is called a von Karman vortex
street, and is a common benchmark to validate that a solver captures some degree
of the physics involved. Formulated differently; if a solver is unable to reproduce
the von Karman vortex street, it is probably not very accurate at all. Here, this
benchmark is only carried out for the proposed model, i.e. with the MRT collision
term. Using a similar setup as with the Poiseuille flow test in section 8.1, a cylinder
with radius r ≈ 14 is inserted near the center of the channel. The viscosity is

66



0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

y coordinate

x
 v

e
lo

c
it
y

 

 

BGK

MRT

Analytical

Figure 19: Measured velocity profile along 2-dimensional channel, compared to analytical
poiseuille profile. The boundary conditions are prescribed velocity at inlet (left), and con-
stant density at outlet. Here, the BGK and MRT models perform almost identically, and
differ 0.52% from the analytical profile at the center of the channel. The grid dimensions
are (Nx, Ny) = (400,100).

changed to ν = 0.064, and the velocity profile to umax = 0.2 in order to acquire
Re = 100. The simulation is initiated as previously in section 8.1, and propagated
for 50,000 time steps, after which a snapshot is taken. The result is plotted in
Figures 20,21, and are clearly displaying the characteristic pattern of a (confined)
vortex street.
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Figure 20: Contour lines of the velocity magnitude of a von Karman vortex street flow at
Re = 100. The grid dimensions are (Nx, Ny) = (700,200).

Figure 21: Streamed particles in a von Karman vortex street flow at Re = 100 from
benchmark simulation.
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8.3 Spinodal decomposition phase diagram

As an initial test, the phase diagram for a two-component mixture will be retrieved.
To find the transition point to spinodal decomposition, the spinodal, the liquid will
be initialized with a certain volume fraction φA of ’red’ component. This measure
is of course normalized such that the volume fraction of ’blue’ component is simply
φB = 1 − φA. The interaction parameter G12 is then successively increased until
phase separation is observed. Same component interaction is kept constant at G11 =
G22 = 1.0. This is repeated for many different volume fractions φA until a clear
pattern is seen. The result is plotted in Figure 22. Qualitatively, the measured
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Figure 22: The spinodal, according the to LBM multicomponent model (left). The red
dashed line with crosses are the measured values for φA ≤ 0.5, mirrored across φA = 0.5 to
demonstrate symmetry. Also plotted is the analytical solution for the spinodal line, with
the LBM data fitted (right).

LBM data show similar appearance of the spinodal line as for the regular solution
model. The interaction parameter G12 here is not exactly the same as χ in the
regular solution model, for which the spinodal point at φA = 0.5 assumes the value
of χ = 2, although they do have the same function. To compare the qualitative
behavior, the LBM data can be fitted to the analytical solution for the spinodal line
according to the regular solution model. This model predicts the free energy F for
a binary liquid to be

Fmix

kBT
= φAlnφA + φB lnφB + χφAφB (8.2)

The spinodal for a particular value of the interaction parameter χ is where

d2Fmix(φ,χ)

dφ2
= 0

holds. Taking the second derivative of (8.2), and using that φB = 1− φA, gives the
interaction parameter at the spinodal as a function of φ

χsp(φ) =
1

2

(

1

φ
+

1

1− φ

)

(8.3)
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Figure 23: The density profile across the interface of a suspended droplet, simulated with
the MRT model using 10th order isotropy interaction potential. The profiles correspond
very well to the analytical solution of a tanh profile. The values used are G12 = 2.5, and
ν = 0.1.

which is plotted in Figure 22 together with the fitted LBM data (right). They
show excellent qualitative agreement, which is probably to expect since both the
interaction potential model and the regular solution model have in common the use
of a mean field approximation.

8.4 Suspended droplet

Further testing the multicomponent model, an immiscible binary fluid shall be in-
vestigated. The case will be a droplet consisting of one component, immersed in a
surrounding fluid of the other component. The simulation will be allowed to run
until equilibrium has been reached, i.e. when then velocity and pressure fluctuations
that arise as a result of a slight off-equilibrium initial condition have attenuated to
an insignificant magnitude. The grid resolution for all tests is (Nx,Ny) = (200,200),
using periodic boundary conditions.

8.4.1 Interface profile

In the interaction potential model, the force responsible for separating two immis-
cible components originates from a pseudo-molecular interaction. Macroscopically,
the separation process and the properties of the resulting segregated domains is
governed by the Cahn-Hilliard (C-H) equation. Since there exists no obvious math-
ematical connection between the two approaches, and neither has there been any
attempt in proving one, what one can do is measure the results from simulation and
compare with experiment and analytical solutions. Solving the C-H equation for
a spherical droplet gives that the resulting density distribution across the interface
should follow a tanh function. In Figure 23 is a plot of the density distribution of a
droplet with radius r = 40, and the corresponding distribution for the surrounding
fluid. The fit to a tanh profile is in great agreement, giving evidence of physical
correctness. By increasing the interaction parameters Gij in equation (6.7), the
interface width can be adjusted. However, narrower interface widths come at the
cost of increased spurious velocities and reduced stability.
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Figure 24: Comparison of LBM with analytical result of pressure difference across the
interface of a circular droplet for ν = 0.1.

8.4.2 Laplace law

Due to surface tension effects at the droplet interface, the pressure pin inside the
droplet will be higher than the pressure outside, pout. Moreover, the pressure dif-
ference ∆p = pin − pout will be inversely proportional to the radius r, as given by
the Laplace law

∆p =
σ0
r

(8.4)

where σ0 is the surface tension coefficient. The pressure is directly proportional to
the density in equilibrium, and can be easily acquired in lattice units by p = c2sρ.
Simulations were run for droplet radii in the range 2 ≤ r ≤ 50 with the MRT
model using 10th order isotropy. A plot of the pressure difference compared to a
1/r function can be seen in Figure 24. There is good agreement for larger droplets,
although for smaller drops the internal pressure is not high enough to match the
Laplace law with 1/r appearance. This might in part originate from the way the
interaction force is incorporated, considering discrete lattice effects. In this case 3
layers of neighboring lattice nodes are used in calculating the separating force, thus
spanning a total of 7 lattice nodes. For small droplets, this would span across the
interface in every direction, thus smearing out the force and creating an unphysical
result. Although, as the representation of any curved shape degrades significantly
when the shape is approaching a similar size as that of the grid element itself,
inherent discrete lattice effects is probably the biggest contributor to unphysical
behavior at this scale.

8.4.3 Spurious velocities

A side effect of the discretization and of the truncation of higher order terms in the
expansions involved, is the emergence of spurious velocities. These entirely unphys-
ical velocities are particularly prominent at the interface between fluid components,
as a result of the strong forces that apply in these regions, and can reach speeds
fast enough to destabilize the entire simulation. Even while inside the stability re-
gion they might still cause significant inaccuracies, as these velocity currents can
spread out far from the interface and affect surrounding regions. Any attempt in
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Figure 25: Visual guide to extent of spurious velocities for a droplet of 80 lattice units
across, simulated with Shan-Chen BGK (left), He force model BGK (middle), and MRT
model (right). All three images are plotted to the same scale. For corresponding quantitative
comparison, see Figure 26.

modeling multicomponent flows with phase separation should see to reduce these
artifacts as far as possible. Thankfully, there are a number of ways of achieving
this. It has been demonstrated [19, 39, 51] that the use of the MRT collision term,
the He forcing scheme, and the extended mean-field interaction potential all serve
to reduce these currents. Carried out here is a series of test which measure and
compare the spurious velocities for different models and forcing schemes. All tests
have been performed by examining a droplet with r = 40 on a (320,320) grid, using
the interaction potential model with G12 = 2.8, G11 = G22 = 0.5, and with viscosity
set to ν = 0.1. The densities of the two components are initialized to be identical,
with ρ1 = ρ2 = 1.0. For the MRT D2Q9 model, the following relaxation times have
been used for the freely tunable values: s2 = 0.5, s3 = 0.7, s5 = s7 = 1.414. The
value of s2 controls the bulk viscosity, and was set to 0.5 (corresponding to a very
high viscosity) in order to dampen the transient fluctuations as quickly as possible.
Noteworthy as well is that when setting s7 very near

√
2, the spurious velocities

reduce significantly. This seems to indicate a connection to the symmetry of the
lattice.

First, a study is made of the magnitude of the spurious velocity for the dif-
ferent multicomponent models: Shan-Chen, He forcing, and MRT. The interaction
potential forcing is calculated to the 10th order for all models. After equilibrat-
ing for 25,000 time steps, the velocities were measured. The result is portrayed in
Figure 25 and 26. From these images it is clear that the MRT model is superior
in regards to spurious velocities at and around the interface. The magnitude (in
lattice units) of the non-local spurious velocities are uSCs ≈ 0.0015, uHe

s ≈ 0.00012,
and uMRT

s ≈ 0.00003 for the three models, respectively. These spurious veloci-
ties will spread to and, if large enough, possibly affect the neighboring region. In
this respect, the MRT model is more than an order of magnitude better than the
Shan-Chen model. The spurious velocities inside the interface are uSCs ≈ 0.022,
uHe
s ≈ 0.0016, and uMRT

s ≈ 0.0003. The interfacial spurious velocities are much
larger in magnitude than their non-local counterpart, and of greater concern since
they tend to destabilize the entire simulation if large enough. Here the spurious
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Figure 26: Comparison of spurious velocities between different models. Values are radially
averaged to account for the radial asymmetry of spurious velocities seen in Figure 25.
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Figure 27: Spurious velocity (radially averaged) across a droplet interface for the MRT
model for different orders of isotropy in calculating the mean field force. Right image is a
close up of 6th, 8th, and 10th order.

velocities are almost two orders of magnitude lower for the MRT model, when com-
pared to the Shan-Chen model. This gives strong indication to a much increased
stability envelope for the MRT model. To further examine the MRT model, a test
is set up to evaluate how the order of isotropy for the interaction potential affects
the spurious velocities. A droplet was set up, similar to previous examples with
r = 40, and the velocity profile across the interface was plotted for 4th, 6th, 8th
and 10th order of isotropy (Figure 27). First, it can be seen that the 10th order has
the best properties. However, it is not by a significant margin when compared to
8th order. Though some three times larger than the 10th order, the 6th order force
is still a much better choice than the 4th order, but with little extra computational
cost. This can be a good choice when performing repeated tests while iterating
through parameters, when simulation speed is of concern. The 8th and 10th order
are both good choices for accurate simulations, and the 4th is probably best avoided
if stability is of concern. To give an idea of the anisotropic nature of the spurious
currents, a vector plot is provided in Figure 28.
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Figure 28: Spurious velocity vectors (exaggerated), showing distinct anisotropy.

8.5 Conclusion of benchmarks

It has been demonstrated that, expectedly, the MRT model is physically sound
as it can accurately reproduce some basic fluid phenomena such as Poiseuille flow
and the von Karman vortex street. Furthermore, tests involving multicomponent
fluids show that relevant physical properties are reflected in this regime as well, as
shown by the phase diagram, Laplace law and the interface density profile. The
discrepancy in the Laplace law for the smallest of droplets means some inaccuracy
in resolving the smaller structures. However, since these are transient, it is not
believed to have any significant impact on the larger structures formed over time in
the spinodal decomposition process.

The comparison of spurious velocities with other multicomponent models show
clear evidence that the MRT model is a very good choice, which is in agreement with
research literature. Although the He forcing scheme alone is a large leap in stability
compared to the Shan-Chen forcing, even if just used with the BGK collision term.
This might be something to consider for cases where one is not near the stability
limit. Lastly, the increased degree of isotropy in calculating the inter-particle force
provides an extra means of achieving better accuracy and stability. Put together, the
MRT collision term with the He forcing scheme, and using the interaction potential
according to Sbragaglia et al. provide a very competitive model.
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9 Modeling and simulation

In order to model the case described in section 6, a number of different methods
have to be employed (section 6.1) to capture the necessary physics. Some of the
phenomena that needs modeling are evaporation, solidification and partial solidi-
fication, and phase separation through spinodal decomposition. Putting them all
together at once would introduce a large number of unknown parameters, resulting
in a very complex setup. Therefore, each phenomenon will first be modeled sepa-
rately to find a working methodology and a suitable set of parameter values. When
each subcase has been successfully modeled, they will all be combined in an attempt
to simulate the full picture. In all cases, the proposed model described in section
6.2 is used.

In the sections that follow, the three components of the mixture will be visual-
ized as red, blue and green when depicted. These three components are sometimes
referred as to polymers (red and blue) and ethanol (green). It should be pointed out
that this naming acts mainly to connect to the problem case and to aid in discussion.
The different fluid components in the simulations do not possess the full physical
and thermodynamical properties of their real counterparts. Rather they are meant
to reflect the essence of the physics we are trying to capture, as detailed in section 6.

Note: It should be emphasized here that the denotion ρ(x) in the LBM context
refers to the number density at a particular lattice site x, and is different to the
molar weight. Even though two number densities ρA 6= ρB are not equal, they can
still have the same weight per molecule. To obtain the effect of different molar
weights, either entries relating to self-interactions in the matrix G are modified, or
the molar weight is incorporated into the forcing term.

9.1 Spinodal decomposition

Two cases of spinodal decomposition will be covered. First for a binary immiscible
liquid to reflect the composition of the polymer mixture. Then also with a ternary
liquid where the third component is a solvent, corresponding to the ethanol, com-
pletely miscible with both of the phase segregating solutes.

9.1.1 Binary spinodal decomposition

As a first test, it seems natural to examine the spinodal decomposition in the
most simple setting possible. A rectangular domain of dimensions (Nx,Ny,Nz) =
(280,160,160) lattice units is initialized with a completely mixed liquid in the ra-
tio ρA0

: ρB0
= 0.3 : 0.7, with zero velocity everywhere. To initiate the decom-

position, a random fluctuation to the composition have to be added to each lat-
tice site. This fluctuation need only be small and is here set to 1%, such that
ρA(x) = ρA0

(1 + ǫ) where −0.01 ≤ ǫ ≤ 0.01. Subsequently, to avoid pressure
fluctuations, the total number density of each lattice site is renormalized so that
ρtot(x) = ρA(x) + ρB(x) = 1.0 ∀ x. Further, the interaction matrix for the two
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components are set to

G =

[

1.0 3.5
3.5 1.0

]

(9.1)

The relaxation rates are set to

s1 = 1.19, s2 = 1.4, s4 = 1.2, s9 = 1.25, s10 = s2, s13 = s9, s16 = 1.5 (9.2)

which are then used in the following way for both fluid components

Λ̂ = diag(1, s1, s2, 1, s4, 1, s4, 1, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) (9.3)

The viscosity can be retrieved from s9 = s13 = 1.25, which translates to ν =
1
3(

1
s9
−0.5) = 0.1. The particular choice of the other relaxation times are for reasons

of symmetry and from linear stability analysis [22]. Finally, boundary conditions
are periodic. The simulation results of the decomposition progress can be observed
over different points in time as a series of 2D cross-sections (Figure 29) and as 3D
structures (Figure 30).

Figure 29: Cross-section (z = Nz/2) for spinodal decomposition of binary fluid, taken at
the following time steps: 150, 200, 300, 450, 650, 900, from top left to bottom right.

Figure 30: Representation of density iso-surface at ρA = 1.0 for spinodal decomposition of
binary fluid, taken at time steps 450 and 900.

At a certain threshold value for G12, the (pseudo) inter-molecular forces will
become large enough to cause phase segregation. While above this threshold, the
magnitude of this interaction parameter can be used to control the interface thick-
ness. However, this changes the physical behavior, and set high enough the simu-
lation will start becoming unstable. An alternative way of controlling the interface
thickness, without altering the full magnitude of the force, is to carefully adjust the
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weights of the different neighbor layers when computing the interaction potential.
How to determine these weights is described in detail in [39].

The phase segregation process had not reached equilibrium by time step 900,
and by then the structures formed are relatively large. Clearly, in order to produce
the shapes involved in the real world case, a mechanism to halt the segregation
process is needed.

9.1.2 Binary spinodal decomposition in ternary mixture

Similar to the process just described above, a third miscible component will here
be added to reproduce spinodal decomposition with a solvent present. The ratio
between solutes will be same in respect to each other, with the ratio between solvent
and solute being 1 : 1. Normalized to 1, the volume fraction ratio between all
components is thus ρA : ρB : ρC = 0.15 : 0.35 : 0.5, where A and B refers to
the solute (polymers), and C the solvent (ethanol). The interaction matrix G now
becomes a 3-by-3 matrix, which in the first attempt is set as similar to the binary
case as possible

G =





1.0 3.5 1.0
3.5 1.0 1.0
1.0 1.0 1.0



 (9.4)

Interestingly, running the simulation with these values, no phase segregation is

Figure 31: Cross-section (z = Nz/2) for spinodal decomposition of two immiscible compo-
nents immersed in a third, miscible, component (not depicted here), taken at the following
time steps: 150, 200, 300, 450, 650, 900, from top left to bottom right.

Figure 32: Representation of density iso-surface at ρA = 0.5 for spinodal decomposition in
ternary fluid, at time steps 450 and 900.
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present. The A-B interactions have to be increased to G12 = G21 = 4.5 to observe
a similar result as with the binary fluid. This means that the presence of a third
’neutral’ component naturally influences the miscibility condition of the other two.
Cross-sections of the density distribution of component A can be seen in Figure
31. Furthermore, judging from looking at the plot, the segregated domains seems
to have a different structure and interconnections. This will most likely affect the
permeability of the structure, should it assume a solid form. As a final observation,
looking at the concentration of the solvent only (Figure 33), it is clear that this fluid
component, though completely miscible, is not evenly distributed in the mixture,
but has a slightly lower volume fraction inside the ’red’ domains, and forms a denser
film around them.

Figure 33: Cross-section (z = Nz/2) for ternary mixture. Rightmost image shows the
concentration (contrast exaggerated) for the solvent only.

The former phenomenon can be explained by the higher pressure inside the
domains, as explained by the Laplace law, making it more difficult for fluid particles
to enter this region. The latter is understood by looking at the density distribution
across the interface between two liquids (Figure 23 in section 8.4.1). This drop in
density (and pressure) will attract a neutral liquid, thus coating the domain.

9.1.3 Ternary spinodal decomposition

Although not needed for the case of the pill coating mixture, a few examples of
ternary spinodal decomposition is demonstrated. The purpose is to show that this
is easily realized and how it materializes with the proposed model. Also, it should
be emphasized that by varying parameters only a small amount, a very different
outcome might be the end result. Experimenting within the parameter space might
be a useful tool in gaining an intuitive understanding of how properties of the
individual components affect the resulting structures. In the large leftmost image
in Figure 34, forming a continuous network, the domain was initialized with a
completely mixed liquid of component ratios ρA : ρB : ρC = 0.3 : 0.7 : 0.3. Viscosity
was set to ν = 0.5, and the interaction matrix set to

G =





1.0 4.2 4.9
4.2 1.0 4.2
4.9 4.2 1.0





ρA = Red
ρB = Blue
ρC = Green

(9.5)

For the top right image, where one can see more disconnected structures, the mixture
was initialized with the ratios ρA : ρB : ρC = 0.15 : 0.7 : 0.15. Viscosity was
ν = 0.15, and the interaction matrix

G =





0.3 3.8 3.8
3.8 0.3 3.8
3.8 3.8 0.3



 (9.6)
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Figure 34: Some examples of ternary spinodal decomposition in 2d. Here ρA,ρB and ρC
corresponds to red, blue and green.

Finally, for the bottom right image we see that individual droplets, or cells, have
formed, where each cell has a thin coating of another component. To achieve this,
the interaction matrix had to be set somewhat more component asymmetric. The
mixture was initialized with ρA : ρB : ρC = 0.15 : 0.7 : 0.3, the viscosity set to
ν = 0.5, with the interaction matrix

G =





0.3 3.6 2.6
3.6 1.0 2.5
2.6 2.5 1.0



 (9.7)

9.2 Solidification

To emulate the gradual solidification of the solute, the Brinkman force term will be
employed, following the principles described in section 6.2.3. Effectively, this force
term can simply be expressed as Fb = −cbρu, where cb is a factor determining the
strength of the force. This force is applied to each component, where the total fluid
velocity is used, and is thus written as

F σ
b = −cbρσu (9.8)

where u is defined in equation (6.5). In testing this solidification implementation,
a Brinkman force is added which is gradually increasing throughout the domain.
This scenario is close to the full physical model, where a concentration gradient of
ethanol will determine the degree of solidification. Also, the effect of the force is
easier to see this way. At the bottom om the domain, where 0 ≤ y ≤ 0.3Ny , the
force is set to zero, that is cb = 0. The Brinkman force then increases quadratically
to reach cb = 3.5 at the top. Walls are introduced at the top and bottom, and
periodic boundary conditions are applied at the other domain boundaries. The grid
resolution is chosen relatively large at (Nx,Ny,Nz) = (240, 480, 120) as to be able
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Figure 35: Cross-section of segregation process, subject to a spatially variable Brinkman
force. Time steps 300, 400, and 700 are shown.

resolve a large span in segregated domain sizes. All remaining parameters are set
as in section 9.1.1. Evident from the results in Figures 35 and 36, the introduced

Figure 36: Isosurfaces of ρA = 1.0 for the same structures as in Figure 35.

force does indeed manage to slow down the flow, and is able to reproduce an effect
resembling a variable degree of solidification. The effect is quite strong even for
small values of cb, as can be seen by the sudden transition from larger structures to
smaller as we move along y. However, while nearly completely still, it is unable to
stop the flow fully. Setting cb much higher than 3.5 with these parameter settings
risks destabilizing the simulation. Instead, to achieve full solidification, when the
ethanol concentration drops below a certain threshold value, corresponding to a high
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value of cb, the node should be defined as a solid node in the LBM sense. It will now
be taken out of the propagation loop and treated with the bounce back boundary
condition. Apart from expanding the array of solid nodes, no extra programmatical
treatment should be needed. The distributions will remain present and constant in
memory, despite residing on a lattice node being redefined as solid.

As a final comment, judging by the resulting structures, there is probably no
point in using a higher value than cb ≈ 2 for the Brinkman force (for similar param-
eter settings). There is very little difference in resulting structure above this value,
but the stability decreases significantly for cb & 3.

9.3 Evaporation and shrinking

In this section, the problem of removing one component by means of evaporation,
and the subsequent reduction in size of the remaining liquid, will be examined.
While the partial removal of a fluid component is easy in principle, simply removing
some volume fraction in a container full with liquid or gas will not do much. There
will be a temporary drop in number density, and thus pressure, where the particle
populations were removed, and this disturbance will soon be evened out as the
system relaxes to its new equilibrium state. But obviously no reduction in volume
will take place since there is no accounting physical mechanism. Moreover, the
removal of fluid species must be done in a manner consistent with that of evaporation
through a given boundary.

One solution is to set up a system with a gas phase and a liquid phase. The
particles removed from the liquid by evaporation will be added to the gas phase
in such a way as to maintain constant pressure. This will however introduce a
fourth component (gas phase) and the need for buoyancy forces, thus resulting in a
computationally demanding model.

A more computationally efficient and potentially less complex setup is to im-
plement the gas-fluid interface as a solid wall at the top. As some liquid volume
is evaporated, the wall is moved correspondingly in such a way as to maintain
constant pressure inside the fluid domain. This alleviates the need for a fourth gas-
phase component and buoyancy forces. Furthermore, as the wall closes in on the
liquid, there is no need to compute the domain above the wall, hence the compu-
tational burden per time step will decrease as the liquid domain shrinks. However,
as this wall will move slowly and at a varying rate, functionality need to be added
for a more general solid-fluid interface which does not necessarily coincide with the
lattice nodes. Moreover, the moving wall will have to exert a force on the fluid to
maintain momentum balance and mass conservation. Both these issues have been
treated by Lallemand & Luo, and have been implemented here according to their
work in [24], as outlined in section 6.2.1.

9.3.1 Evaporation mechanisms

One way to model the evaporation is to set the boundary condition for the ethanol
component alone to a fixed velocity, pointing out of the simulation domain. This
will cause a material outflow across the boundary and naturally form the concentra-
tion gradient observed in the real world case. The shape of the gradient will depend
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on the magnitude of the prescribed velocity at the boundary. The velocity magni-
tude is in turn related to the rate of evaporation. Zou & He have derived boundary
conditions for the D2Q9 and D3Q15 lattices [52], while an extension to the D3Q19
lattice on the basis of the same principles is provided by Hecht & Harting in [16].

A somewhat less physically accurate but flexible solution is to initialize the
ethanol with a prescribed concentration gradient. The ethanol is then removed
throughout the entire domain in such a way as to maintain the concentration gra-
dient. This can be done by simply multiplying the populations of each lattice site
with a factor less than unity. As the evaporation process can take a relatively large
number of time steps, this provides an efficient means of scaling the evaporation
time. By using this approach, one adopts the following two assumptions: first, the
currents produced by the evaporation and diffusion process are small enough to
be rendered negligible. Second, the rate of evaporation is related to the diffusion
process in such a way as to produce the prescribed concentration gradient.

Due to time constraints the chosen evaporation process is that of the latter.
The concentration gradient is chosen to be linear. To see the effects of the mov-
ing wall on the segregation process, phase separating forces have been applied.
However, no solidification is performed here, and the simulations are only in 2d in
order to work out a methodology. The mixture is initialized with component ratios
ρA : ρB : ρC = 0.3 : 0.7 : 1.0, i.e. 50% polymer mixture and 50% ethanol, where the
green component indicates the ethanol. The result of the simulation at various time
steps can be seen in Figure 37. In Figure 38 is a plot of total mass for the different

Figure 37: Time evolution of shrinking the liquid through evaporation and a moving
boundary (top). The wall exerts a force on the liquid to maintain momentum balance and
to preserve mass. The time steps displayed are 600, 1,200, 2,000, 4,000, 6,000 and 8,000.

components. There is a slight increase in mass for the red and blue components
when these should be conserved exactly. This issue is related to the moving wall,
but how is unclear. The mass balance can however be adjusted by modifying the
magnitude of the force exerted by the wall on the fluid.

Even though there is a small inconsistency in mass conservation, the 3-component
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Figure 38: Total mass as a function of time for the process displayed in Figure 37. Mass
conservation is not completely consistent for the red and blue components.

approach with a moving solid boundary will be chosen in modeling the full case. It
is less complex than the 4-component model, and dealing with only 3 liquids instead
of 4 reduces computational time greatly, as the algorithmical complexity scales as
O(N3) with the number of components N . Further, there will not be any need for
buoyancy forces, and finally, as an added bonus, the domain above the solid-fluid
interface does not have to be computed, further easing the computational burden
to some extent. For the evaporation process, the freely scalable model is chosen as
to cut down on simulation times to allow for a faster turnaround in experimenting.
The fixed velocity boundary condition of course remains the more physically correct
of the two.

9.4 Full case

Finally, as all separate methods have been verified to a reasonable working order
and a methodology for each have been found, it is time to combine all the differ-
ent phenomena in an attempt to reproduce the process of the drying pill coating
mixture.

To recapitulate, this mixture is initialized with a certain volume fraction of
ethanol and a completely mixed polymer blend. The ratio between the two polymers
are ρA : ρB = 0.3 : 0.7 with a small random fluctuation in order to initiate spinodal
decomposition. Ethanol is evaporated by removing populations throughout the
entire container in order to reduce simulation time. However, it is initialized with a
linear concentration gradient, and removed in such a way that this gradient remains
linear. This approach assumes that the currents induced by the ethanol transport
to the outflow boundary are negligible. Simultaneously, a wall at the top of the
container is pushing down on the liquid at the same rate as the ethanol is evaporated,
such that the pressure is maintained in the mixture. The purpose of this wall
is to mimic a free surface without having to introduce a fourth fluid component
in gas phase, with all the complications that this would bring. Furthermore, the
concentration of the ethanol is coupled to a force which has the effect of slowing down
the flow. As the ethanol evaporates, this force becomes stronger until eventually the
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fluid assumes the appearance of a near solid. In all figures, the ethanol is represented
with green, the 30% polymer with red, and the 70% polymer with blue.

Although it is known that the mixture is started with ∼85% ethanol, it is as-
sumed here that the mixture enters the unstable region of spinodal decomposition
at a much lower concentration. As such, the simulated mixture will be initialized
with a concentration near the spinodal in order to avoid unnecessary simulation
time. This concentration is at present unknown, but a few different values will
be tested. In general, it proved quite difficult to find values which reproduced the
sought behavior. Following is a discussion of a few simulation runs.

In the first case (case A), it was assumed that the decomposition process starts at
an ethanol concentration of ∼45%, and the mixture was thus initialized accordingly.
The ’solidification force’ is introduced when the ethanol concentration reaches below
15% and is linearly increased with decreasing concentration all the way down to 0%
ethanol when cb,max = 0.5. A series of cross-section snapshots from the simulation
is shown in Figure 39, and the final time step represented in 3d can be seen in
Figure 42. While it can be concluded that the mixture does very nearly solidify at

Figure 39: Cross-sections of the drying process for case A, with the time steps shown: 250,
450, 650, 850, 1050, 1250, 2250, and 3250. Grid resolution is (Nx,Ny,Nz) = (100,500,100)
lattice units.

the end, as there is not much difference between the two last images with 1000 time
steps in between, it can easily be seen that the resulting structures are much too
large. The segregating process is allowed to run for quite long until the solidification
process starts, resulting in a strong coarsening of the domains. However there is
an interesting effect as a result of the shrinking; the topmost segment has become
compressed with somewhat smaller domains as a result. Conversely, the separation
has continued for longer in the bottom part, resulting in somewhat larger domain
structures in this region. These effects are much more apparent when watching the
process in motion.

Also worth noting is that the top part starts separating first, as a result of the
lower concentration of ethanol. Thus these domains initially grow larger than the
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ones on the bottom. As the process continues, the upper part solidifies while the
domains can continue to grow in the bottom half. At the end in the near solid
structure, the domains are larger in the bottom than on the top, showing evidence
there is some interesting dynamics involved in domain size growth, governed by the
distribution and evaporation of the ethanol.

Based on the results in case A, the mixture in the next simulation (case B)
is initiated with only 20% ethanol. The motivation being that this should give
the liquid less time to segregate before solidifying, thus forming a finer structure.
Naturally, this also assumes the segregating process starts at the prescribed initial
ethanol concentration. Moreover, the maximum solidifying force is set higher at
cb,max = 1.5. The results can be seen in Figures 40 and 42. This time a somewhat

Figure 40: Cross-sections of the drying process for case B, with the time steps shown: 150,
250, 350, 550, 750, 1500, and 2150. Grid resolution is (Nx,Ny,Nz) = (100,500,100) lattice
units.

finer structure is obtained. Since the total ethanol content was less in this simu-
lation, the amount of shrinking is naturally less. Although more detailed, similar
characteristics can be seen here as in case A. It is less obvious in the cross-sections,
but a more obvious pattern emerges in the 3d representation in Figure 42. Here it
is clear that a varying composition in domain sizes has been achieved, with larger
structures in the bottom, and gradually becoming finer when moving towards the
top. Still, a somewhat finer structure overall is desired. Since these simulations
are so far dimensionless, it could be a matter of upscaling the process onto a larger
grid, allowing for a finer detail. However, in order to keep computational resources
to a minimum, attempts should be made to gain the most detail out of any given
resolution.

In an effort to produce a more fine grained domain structure, the spinodal de-
composition process is slowed down by applying the solidifying Brinkman force
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across the whole simulation grid. An additional solidifying force is then applied on
top to achieve full solidification. The idea is that the structures should now have
less effective time to coarsen, or do so at a slower rate. For this case C, the global
Brinkman force applied has a magnitude of cb,global = 0.5. Also, the resolution is
somewhat increased to reduce the effect of the periodic boundary conditions, and to
retrieve finer detail. The remaining parameters are unchanged from case B. A few
images from the resulting simulation is shown in Figure 41. This approach manages

Figure 41: Cross-sections of the drying process for case C, with the time steps shown: 250,
750, 1250, 2250, and 3750. Grid resolution is (Nx,Ny,Nz) = (240,480,120) lattice units.

to produce finer structures overall, as is most evident from the 3d-representation in
Figure 42. In this image, a subsection of the full simulation domain is taken as to
make a fair comparison with the previous simulations. However, there is not much
variation in the resulting structures, indicating the dynamics previously seen as a
result of the ethanol has less of an impact.

As a concluding remark of this section, it seems as if complex dynamics can
indeed be incorporated into the model, with resulting rich behavior. Finding the
right parameters to achieve the desired result, however, can be difficult and time
consuming. Each simulation run with a decent resolution takes hours on a normal
desktop machine. To gain the most understanding of the dynamics for each simu-
lation run, a large portion of the time steps should be saved and watched in real
time playback once the simulation is completed.
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Figure 42: Iso-surface of the final solidified 3d-structure of the ’red’ component for case A
(left), case B (middle), and case C (right).
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10 Discussion

In analyzing and evaluating the work done up to this point, there are a lot of as-
pects to consider. In beginning is a closer look at the more technical aspects of the
implementation. Subsequently, discussion will turn to the proposed LBM model
and simulation results.

Programming

The software written for this thesis was not meant to be a complete package by
any means. Rather, the main purpose of doing it from the ground up was the great
flexibility to modify the functionality that comes with such an approach. Improve-
ments and additions could readily be added without being subject to any possible
limitations to an API (Application Programmer Interface), making it very valuable
and efficient in trying many different models. But still, in order to produce results
within a reasonable time frame, performance must be fairly optimized. Efforts were
made to develop a memory model which would be efficient regarding cache locality,
memory locality and multithreading. The subgrid model with contiguous memory
layout satisfies all the aspects mentioned above, while also allowing for convenient
distribution of the workload for cluster computing. Moreover, it provides for linear
scaling with problem size, meaning a larger problem will not lead to a degraded spe-
cific performance. Memory usage with this model is also greatly reduced, limited
to one extra subgrid, when compared to the dual grid method. Furthermore, this
particular memory layout makes possible the devised ’shuffle’ time stepping model,
which cuts the memory accesses in half while retaining efficient use of memory.
When applied to the GPU implementation, performance almost doubled. However,
the CPU with its more sophisticated cache is not as sensitive to memory access as
a GPU device. For the single component D2Q9 model, the performance measured
at 170 MLUPS, up from the previous 130 MLUPS with 30%. A downside with
the particular choice of memory model is that the communication between subgrids
in the streaming step is somewhat more convoluted, as the mapping from global
coordinates to memory index is not as straight forward as with a regular memory
model. This can however be easily be circumvented with a wrapper function to
compute the destination address. Overall, the advantages with this memory model
seem to clearly outweigh the disadvantages.

GPU results

The GPU implementation clearly demonstrated that the LBM does very well on
these types of devices, owing to its inherent parallelism. With the full implemen-
tation achieving some 70% of peak theoretical performance of data transfers alone,
coupled with efficient memory usage, the implemented algorithm can be considered
efficient. Although GPU devices are generally limited in memory, this approach
could be very interesting for interactive feedback simulation during initial stages of
modeling, using low resolution models. A GPU implementation of a multicompo-
nent model would certainly be beneficial, considering these are much slower than
their single component counterpart. Also worth highlighting is that, generally, the
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results indicate that the more computationally intensive the model is, the greater
the speedup over the CPU implementation.

Object oriented programming

The object oriented approach has worked fairly well. Although the use of difficult
to read code and structures was sometimes needed in order to maintain perfor-
mance. Sadly, adding functionality the most user friendly and intuitive way will
most certainly lead to notable performance degradations. Improvements are needed
in adding the force into the collision model. At the moment a new collision routine
have to be defined in order to add the force in an efficient way. Generally, a more
efficient way of adding functionality without sacrificing performance can likely be
added through the use of C++ templates and metaprogramming (code generating
code).

Overall, the choice to write the code from scratch has been valuable in many
aspects. Most notably the possibility to add any kind of functionality, but also in
gaining a deeper understanding of the LBM and its inherent issues, and finally the
ease to port the results to other hardware solutions such as GPU devices.

On the proposed model

The suggested multicomponent model is based on the popular Shan-Chen model.
Its appeal lies in the ease of which the intercomponent interaction is achieved.
Rather than solving the Cahn-Hilliard equation in addition to the regular fluid,
as in the free energy methods, phase separation occurs naturally as a result of
an effective repulsive potential, in turn constructed by intuitive ’inter-molecular’
forces. However, as of yet there seems to be little or no mathematical treatment to
show the correctness of this approach. Instead one has to rely on empirical proof
through validation of benchmarks from theory and experiment. The initial version
of the Shan-Chen model was associated with some thermodynamically inconsistent
behavior and relatively large numerical instabilities. In the model suggested here,
these problems should be substantially reduced. Much of the problems with the
Shan-Chen model seem to stem from the special incorporation of the force into the
model, an approach which is abandoned here. Further, the lack of isotropy in the
interaction force is addressed through an increased stencil. Finally, added numerical
stability is added through the use of the MRT collision term. The motivation for
the inclusion of these particular improvements came from evidence in literature
[28,39,51], and the benchmark tests performed here seem to generally validate these
findings. Evidence of physical correctness can be witnessed in several benchmarks.
The interface profile shows great qualitative agreement (Figure 23), the pressure
drop across the interface follows the Laplace law for all but the smallest drops
where some deviation can be seen (Figure 24). The latter issue is most likely due to
increased discrete lattice effects as resolution breaks down, rather than a problem
with the model. Moreover, the measured phase diagram show excellent qualitative
behavior with the regular solution model (Figure 22). So far only qualitative results
have been shown, as no physical units have been applied. Since no thermal effects
occur in the model, meta-stability and nucleation are not reproduced.
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Regarding the spurious velocities, comparing between the different benchmarked
models, it is clear that the He forcing scheme is preferential over the Shan-Chen
forcing, and it is equally clear that the MRT collision term provides a further sig-
nificant improvement. Using identical interaction parameters, the MRT model with
10th order isotropy interaction force offers a reduction of the spurious velocities
with two orders of magnitude, when compared to the original Shan-Chen model.
Also, considering that the additional computation time for the MRT model becomes
almost insignificant when compared with a large inter-component force stencil, this
collision term is obviously preferential over the BGK model. The only reason to
choose the BGK collision term would be for an more straight forward implementa-
tion.

While intuitive to use, a drawback with the proposed model is the computational
burden. As a result of the additional sets of populations for each fluid together with
the interaction matrix, the algorithmic complexity is of order O(N3) with the num-
ber of fluid components N . Here the free energy model instead uses a reduced set of
additional populations (usually D3Q7) to solve the Cahn-Hilliard equation. While
the LBM is in general regarded as computationally efficient, other multicomponent
models, such as the free energy models, might offer a further reduced computational
burden when compared to the proposed model.

Simulation results

Working with the model, as in adding functionality and performing subsequent
tests, was generally a very positive experience. Introducing additional liquids, and
defining the miscibility relations, is a simple matter of changing a variable and ex-
tending the N by N interaction matrix. Adding the solidifying force as a function
of ethanol concentration was a few lines of code. Since all the concentrations (num-
ber densities) are precomputed for the whole grid, introducing additional complex
effects depending on these is simple. Consequently, getting the desired results when
independently testing the necessary physical phenomena was straight forward. Al-
though, admittedly, the 4 component evaporation setup was problematic in the way
that large pressure fluctuation arose as a result of an ever-so-slight departure from
equilibrium in the initial condition. The difficulty lies in setting the precise distribu-
tion across the interfaces between the components, as a function of density, interface
curvature, interaction parameters, etc. This is near impossible, and the resulting
pressure waves takes long time (O(104) time steps in this case) to subdue, affect the
results considerably, and pose a real problem. One solution could be to start the
simulation with the liquids slightly mixed, while gradually increasing interaction
parameters to let the liquid assume equilibrium smoothly. However, by introducing
a moving wall, which could be arbitrarily placed between lattice nodes, acting as the
free surface, this scenario could be circumvented altogether. This approach worked
well and was therefore adopted, although it did show a small inconsistency in mass
conservation. This might originate from the forcing term from the wall not being
incorporated according to the He scheme.

One fundamental difficulty is the slow nature of evaporation, combined with
the small time step for the LBM. A solution employed here in order to cut down
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simulation times is to artificially remove ethanol throughout the entire volume in
a consistent manner. This works relatively well and effectively scales the process
in time. However, some detail might be lost in the process, such as fluid transport
effects. One must be careful not to scale this process too much, as pressure fluctua-
tions will arise. Letting the evaporation occur over more than 1000 time steps seems
to work well. However, the more physically and dynamically correct treatment of a
fixed velocity boundary condition to cause material outflow is preferable, given that
time constraints is not an issue.

Combining all contributing phenomena in an attempt to model the full case
was an easy task, while getting the desired end result was not. Quite simply, the
parameter space is huge and finding the right window is difficult. A task made
even more challenging as many of the parameters are unknown even in the real
world case. Experimenting in any decent resolution in 3D is time-consuming on a
simple desktop computer, and it is difficult getting a ’feel’ for how the simulation
responds to different input. Key in getting a physically correct result seems to be
finding the right connection between solidification and ethanol concentration. At
the moment this is a linear map, and solidification is a simple effect of slowing down
the flow through a force opposing the flow direction, while the actual solidification
process is no doubt much more intricate than that. A non-newtonian collision
model would be a good place to start, in an attempt to capture a more reptation
like behavior in the semi-solid state. Such models have been devised, for example by
Yoshino et al. [47], but was not implemented here due to time restrictions. Apart
from this, the problems encountered was less connected to the LBM model (or
any numerical model), but more to the uncertainty of the physical processes and
parameters involved.

These complications aside, some interesting dynamics were captured. Reflect-
ing the real world case, varying sizes in domain structure was accomplished. Also,
because of the gradient of the miscible component (’green’) and its successive evapo-
ration, there was an observed shift, or reversal, in domain growth patterns. Initially,
structures grew larger in places of low concentrations of the miscible component (the
top), however as these solidified soon after, the structures at the bottom were allowed
to continue their growth until surpassing the domains at the top in size. Moreover,
since the top was nearly solid as the miscible component continued to evaporate, it
tended to almost collapse in on itself, resulting in a somewhat compressed elongated
domain appearance.

11 Conclusions

After having worked extensively with the LBM, both in terms of technical imple-
mentation and model studies, it becomes obvious that this is still a model under
development, especially with multicomponent flows and issues related to thermody-
namical behavior. However, plenty of options exist and new research is frequently
being published. Creating a basic implementation capable of relatively complex
behavior is very straight forward. Incorporating more sophisticated functionality,
necessary for many real world cases where greater demands on accuracy and stabil-
ity need to be satisfied, requires more initial work, but the obtained improvements

90



are often significant.

The proposed model is showing much improved behavior over a ’naive’ version,
although requiring an increased implementation effort and comes with a higher com-
putational cost, especially for multicomponent flows. This calls for a highly opti-
mized implementation, both algorithmically and programmatically. The calculation
of the interaction potential bears the largest computational cost, so optimization
efforts are extra important here. A speedup of a factor ∼2 should be attainable by
reusing force calculations between components. The devised memory model, domain
decomposition with contiguous memory, seems to work well with a multithreaded
approach and scales well with problem size, as well as bringing other advantages.
It is difficult to evaluate the implementation when comparing to results found in
literature, since no cases where similar hardware is used have been found. Although
one can use a maximum bandwidth measure for a good estimate on efficiency for
single component models. Both CPU and GPU results indicates an efficient imple-
mentation with this measure, especially for 2d models, while 3d models can likely
be improved some. Porting the LBM to a GPU device gives significant performance
increases, here with a factor of ∼ 10 − 15 for the single component models, and
∼ 20− 35 for 2D multicomponent models, and should be considered if interactivity
is desired. A GPU version could prove to be very advantageous for multicomponent
flows, albeit limited to smaller resolutions.

Implementing a multicomponent solver with the LBM through the interaction
potential model, and the use thereof, was intuitive and straight forward. The MRT
collision term gives excellent numerical stability and reduced spurious velocities
when compared to the BGK collision term. The He forcing scheme definitely seems
to be an improvement over a basic implementation, when comparing spurious ve-
locities with the Shan-Chen forcing. The extended stencil, i.e. the mid-range in-
teraction potential, for computing the interaction force reduces spurious velocities
and stability further, but is very expensive. Careful consideration should be taken
when employing this. The largest stencil might not always be necessary.

Since there is little theoretical grounds established for the interaction potential
model, proof of correctness have to come from empirical studies. The benchmarks
performed in this work all show good evidence of physical validity, as shown through
the phase diagram, interface profile, and the Laplace law. Moreover, adding new
functionality to account for various physical phenomena proved to be relatively easy.
Although satisfactory to some extent, the solidification process is currently limited
to a semi-solid state and does not reproduce the sought after non-newtonian be-
havior most likely exhibited in the pill coating mixture. Here a more sophisticated
model is needed, such as the one developed by Yoshino et al. [47]. The emulation
of a gradually receding free surface by a moving wall worked satisfactorily, but a
slight inconsistency in mass conservation was observed.

Combining all physical phenomena was technically easy, but controlling the end
result was difficult. This is mainly a result of a very large parameter space, where
many aspects are unknown even in the real world case. Consequently, the final
modeling process required a lot of guess work, and feedback was limited due to
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long simulation times. Hence, mainly as a result of the many unknowns, the re-
production of the pill coating drying process was not completely achieved to the
desired degree. However, some interesting dynamics was displayed, representative
with observed actual processes, and the outlook to model this case with the LBM by
improving e.g. the solidification process remains positive. Although, importantly,
much more information regarding the physical process needs to be known. Finally,
the free energy model should be considered for any future attempts, although a
3-component model might have to be developed as no examples of this have been
found in literature.

12 Future work

As discussed throughout the text, a number of aspects could be improved upon or
extended. Following is a summary of the most relevant issues that should be looked
at, if attempting to carry this work further.

Since the solidification process is such a central aspect, other models should be
considered in favor of the Brinkman force, such as a non-newtonian model. The
current solution does produce an effect similar to that of solidification, but as the
semi-solid state is reached the governing physics of a reptation like phenomenon is
not captured.

On a more fundamental level, the class of free energy models should be evaluated
as a possible alternative to the interaction potential model. An interesting prospect
is to develop a 3-component or even a general n-component free energy model. This
will likely cut computation time to some extent.

If staying with the present model, some performance tuning is needed. Improve-
ments can be made by optimizing the mean field inter-component force, a very ex-
pensive calculation at the moment. Although, most interesting from a performance
point of view would be a multi-GPU implementation of the 3D multicomponent
model, interaction potential model or other. With a multi-GPU setup, enough
memory storage would be available to contain a high resolution 3D simulation. Fur-
ther, the 2D multicomponent model on a single GPU gave enough performance
increase to provide for an interactive experience, so naturally a similar speedup is
expected for 3D models. Though an interactive response would be much to ask
for in the case of a 3D simulation, drastically cut simulation times would be very
beneficial for the time-consuming process of experimenting with parameters.

Of a more theoretical nature, there would likely be interest from the LBM com-
munity on a more rigorous treatment of the interaction potential model. So far
reliance rests mainly on phenomenological grounds. Showing analytically how this
model satisfies the governing equations, and how it connects to the regular solution
model, would be beneficial.
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13 Summary

A comprehensive study of the lattice Boltzmann method has been made, focusing
on multicomponent flows and spinodal decomposition. The interaction potential
model, first introduced by Shan and Chen, was employed as the mechanism re-
sponsible for phase separation. This particular choice was motivation by its ease of
use and intuitive approach, as well as straight forward extension to any number of
fluid components. As a response to known inconsistencies with the original Shan-
Chen model, several improvements were made based mainly on recent research. The
most significant modifications were a more accurate implementation of body forces,
increased potential range, and the use of the Multiple-Relaxation-Time (MRT) col-
lision term. This model was implemented from the ground up in multithreaded
C++ and a few preliminary attempts were made with GPU computing, resulting
in significant performance gains. Benchmarks demonstrated good signs of physical
correctness, as evidenced by the phase diagram, interface profile, and Laplace law.
Unphysical side effects were notably reduced as a result of mentioned improvements.
In order to model a real world case of a ternary mixture, simultaneously shrinking,
drying and phase-segregating, some physical phenomena such as solidification and
evaporation had to be introduced. Due to many unknown factors regarding the
physical process, a large number of tunable parameters, and lack of feedback be-
cause of long simulation times, the formation of the pill-coating structure was not
fully replicated. However, the resulting simulations did show some spontaneously
occurring complex dynamics in agreement with observations of the real process.
The interaction potential approach, combined with the extended interaction range,
turned out to be computationally demanding, in context of the LBM. Therefore,
other mechanisms of phase separation could potentially prove a better choice. All
things considered, with careful choice of properties the lattice Boltzmann method
remains a very interesting and promising approach for multicomponent flows.
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Appendix

A MRT details

Here some detail regarding the MRT collision term is given. The collision/relaxation
process occur in moment space. To transform the distribution functions to moment
space, form a column vector f and multiply with the moment matrix according to
m = Mf . Prior to the streaming step, the post-collision moments are transformed
to velocity space by f = M−1m.

A.1 D2Q9

The moment matrix for the D2Q9 model is defined as

M =





























1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1
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The equilibrium functions in moment space are given by
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A.2 D3Q19

The moment matrix for the D3Q19 model is defined as M =



































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
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The equilibrium functions in moment space are given by
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(A.4)

where wε, wεj and wxx are free parameters to tune. Linear stability analysis has
shown [22] that good choices for these are wεj = −475/63, wε = wxx = 0. The
freely tunable relaxation rates used in this work are set according to

s = (1.0, s1, s2, 1.0, s4, 1.0, s4, 1.0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) (A.5)

where

s1 = s2 = 0.7, s4 = 1.2, s10 = s2, s11 = s9, s13 = s9, s16 = 1.5 (A.6)

where s9 controls the shear viscosity.
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