
Visualization of feature-traceability in
variant-rich systems
Master’s thesis in Software Engineering and Technology

ANTON SOLBACK

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

Visualization of feature-traceability in variant-rich
systems

ANTON SOLBACK

Department of Computer Science and Engineering
Division of Software Engineering and Technology

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2019

Visualization of feature-traceability in variant-rich systems
ANTON SOLBACK

© ANTON SOLBACK, 2019.

Supervisor: Thorsten Berger, Department of Computer Science and Engineering
Examiner: Regina Hebig, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Division of Software Engineering and Technology
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Visualization of feature-traceability in variant-rich systems
ANTON SOLBACK
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Purpose. Feature-traceability is defined as the ability to trace features and the
different aspects of it in code. Variant-rich systems are systems that have many
variants, such as software product lines. Feature-traceability in variant-rich systems
is hard, as a result, the purpose of this thesis is to suggest views that will improve
feature-traceability and other feature related problems in variant-rich systems.
Methods. The purpose was achieved by performing a literature survey, then, by
following a design science methodology, views for improved feature-traceability was
conceived. These conceived views were successively evaluated and improved upon
further.
Result. The result of this thesis is an analysis of the current state of feature-
traceability in research, concept views that present ideas of what could be imple-
mented in a feature-traceability tool. Additionally, an open-source plugin for the
integrated development environment Eclipse called Feature Dashboard. Feature
Dashboard enables the user to, not only, trace features to their implementation, but
to get information such as which features are implemented in the same file, observe
where in the folder structure a feature is located, metrics about features, feature
metrics for folders/files, and inspect which features are shared between projects.
Conclusion. This thesis shows that Feature Dashboard can be used to improve
feature-traceability, maintainability, understandability, and other feature manage-
ment related tasks for a project. As Feature Dashboard is open source, it offers
a platform that enables future researchers to, either implement new views or to
compare the result of Feature Dashboard to other views. Furthermore, anyone can
suggest improvements and extend it with additional functionality, thus benefiting
everyone.

Keywords: feature, feature-traceability, visualization, eclipse, plugin, variants, SPL.

v

Acknowledgements
Special thanks to Thorsten Berger, Jan-Philip Steghöfer, Sina Entekhabi, and to
everyone that participated in the various evaluations throughout the thesis.

Anton Solback, Gothenburg, June 2019

vii

Contents

List of Figures xiii

List of Tables xv

Listings xvii

1 Introduction 1
1.1 Context . 1
1.2 Problem . 1

1.2.1 Tracing features . 1
1.2.2 Understandability . 2
1.2.3 Maintainability . 2
1.2.4 Visualizing feature-to-code traces 2

1.3 Goal . 3
1.4 Purpose . 3
1.5 Method . 3
1.6 Outline . 3

2 Background 5
2.1 What is a feature? . 5
2.2 Software product line . 5
2.3 Feature model . 5
2.4 Clone & own . 6
2.5 Trace recovery . 6

2.5.1 Manual . 6
2.5.2 Automated . 7

3 Methodology 9
3.1 Research Questions . 9
3.2 Thesis workflow . 9
3.3 Literature survey . 10

3.3.1 Search process . 10
3.3.2 Paper relevance . 11
3.3.3 Paper contents . 11

3.4 Evaluation . 11
3.4.1 Semi-structured interviews . 11
3.4.2 Questionnaire . 12

ix

Contents

3.4.3 Controlled experiments . 12
3.5 Design Science . 12

3.5.1 Problem relevance . 12
3.5.2 Design as a search process . 13
3.5.3 Design as an artifact . 13
3.5.4 Design evaluation . 13
3.5.5 Research contributions . 14

4 Result 15
4.1 Literature survey . 15

4.1.1 Result . 15
4.1.2 Identified issues . 18

4.1.2.1 Colors . 18
4.1.2.2 Visual bloat . 18
4.1.2.3 Overview . 19

4.2 Initial views . 19
4.2.1 Feature-to-File . 20
4.2.2 Feature-to-Folder . 21
4.2.3 History . 22

4.2.3.1 Determining delta 22
4.2.3.2 Concepts . 24

4.3 Feature dashboard . 25
4.3.1 Annotations . 26
4.3.2 Mapping files . 27
4.3.3 Views . 28

4.3.3.1 Feature Dashboard View 28
4.3.3.2 Feature-to-File view 29
4.3.3.3 Feature-to-Folder view 30
4.3.3.4 Metrics view . 31
4.3.3.5 Tangling view . 32
4.3.3.6 Common features view 34

5 Evaluation 35
5.1 Semi-structured interviews . 35
5.2 Questionnaire . 36

5.2.1 Feature-to-File . 36
5.2.2 Feature-to-Folder . 37
5.2.3 Feature tangling view . 37
5.2.4 Common features view . 38
5.2.5 Metrics view . 39
5.2.6 General . 39

5.3 Scalability . 41
5.3.1 Feature Dashboard View . 41
5.3.2 Feature-file . 42
5.3.3 Feature-to-Folder . 42
5.3.4 Feature tangling view . 42
5.3.5 Common features . 43

x

Contents

5.3.6 Metrics view . 43

6 Discussion 45
6.1 Result . 45
6.2 Evaluation . 46

6.2.1 Interviews . 46
6.2.2 Questionnaire . 46
6.2.3 Scalability tests . 47

6.3 Threats to validity . 47
6.3.1 Result . 48
6.3.2 Interviews . 48

6.3.2.1 Internal . 48
6.3.3 Questionnaire . 48

6.3.3.1 Internal . 48
6.3.3.2 External . 49

6.3.4 Scalability tests . 49
6.3.4.1 Internal . 49
6.3.4.2 External . 49

6.4 Research questions . 50

7 Conclusion 53
7.1 Future Work . 53

A Appendix I
A.1 Views . I
A.2 Evaluation 1 protocol . III

xi

Contents

xii

List of Figures

2.1 Example of a simple feature model 6

3.1 Thesis workflow. 10

4.1 Feature-file view in FLOrIDA . 16
4.2 Feature-folder view in FLOrIDA . 16
4.3 Collaborative diagram in FeatureIDE 17
4.4 Overview of View infinity . 17
4.5 Overview of FeatureCommander . 17
4.6 First feature-file concept. 19
4.7 A variant of Figure 4.6. 20
4.8 Concept to give better overview than Figure 4.7. 21
4.9 Concept that does not rely on connections between nodes. 21
4.10 When a node in Figure 4.9 is highlighted. 21
4.11 Concept inspired by the collaborative diagram in FeatureIDE. 22
4.12 First feature-folder concept. 23
4.13 One feature node for each occurrence. 23
4.14 One node for each feature. 23
4.15 Showing if a feature is present in a commit for each branch/variant. . 24
4.16 Github’s visualization of branches. 24
4.17 Metrics graph. 24
4.18 Example of combining Figure 4.15 and Figure 4.16. 25
4.19 History of common features between variants. 25
4.20 Opening Feature Dashboard views at the same time as developing. . . 26
4.21 Feature Dashboard View. 28
4.22 Feature-to-File view with one feature selected. 29
4.23 Files belonging to feature BalanceReminder. 29
4.24 Feature-to-File view with multiple features selected. 30
4.25 Feature-to-Folder view with a single feature selected. 30
4.26 Feature-to-Folder view with multiple features selected. 30
4.27 Metrics for features. 31
4.28 Metrics for folders/files. 32
4.29 Features tangled with BackupReminder. 33
4.30 Common features between two variants. 33

5.1 Subjects’ background . 36
5.2 If subjects used the tool before taking the questionnaire 36

xiii

List of Figures

5.3 I think the feature-to-file view was useful in tracing features to files
which implement them . 37

5.4 I think the feature-to-file view will be helpful in the following aspects 37
5.5 I think the feature-to-folder view was useful in tracing features to

folders . 37
5.6 I think the feature-to-folder view will be helpful in the following aspects 38
5.7 The Feature tangling view was effective in showing which features are

tangled together . 38
5.8 I think the feature tangling view will be helpful in the following aspects 38
5.9 The Common Features view showing common features between pro-

jects/variants was useful . 38
5.10 I think Common Features view will be helpful in the following aspects 39
5.11 I thought that the metrics offered on a Feature-level provided useful

information . 39
5.12 I thought that the metrics offered on a Project-level provided useful

information . 39

6.1 How a feature’s LOFC has changed over commits. 45

A.1 Feature-to-File . I
A.2 Feature-to-Folder . II
A.3 Feature list . II
A.4 Feature metrics . III

xiv

List of Tables

5.1 Subjects’ opinion regarding the usability of Feature Dashboard 40
5.2 Measurements for feature dashboard view in milliseconds 41
5.3 Measurements for viewing files implementing a feature in seconds . . 42
5.4 Measurements for viewing features if tangled in milliseconds 42
5.5 Measurements for feature-to-folder in milliseconds 42
5.6 Measurements for feature tangling view in milliseconds 43
5.7 Measurements for common features view in milliseconds 43
5.8 Measurements for viewing metrics in milliseconds 43

xv

List of Tables

xvi

Listings

4.1 Examples of feature annotations in a Java source file. 27
4.2 One syntax for .feature-file. 27
4.3 Another syntax for .feature-file. 27
4.4 Example of a .feature-folder file in a folder strucutre. 28
A.1 Interview protocol . III

xvii

Listings

xviii

1
Introduction

In this chapter, an introduction to the thesis is given. Firstly, in Section 1.1 the
context of this thesis is presented. Then, in Section 1.2, the problems that motivate
this thesis are given. Section 1.3 covers the goal for this thesis. Following the goal,
section 1.4 explains the purpose. Then, in Section 1.5 methods used in this thesis
are briefly explained. Lastly, Section 1.6 gives an outline of the report.

1.1 Context
The context for this thesis is software engineering with variant-rich systems, where
many different developers work on such systems over long timespans. They also need
to maintain and evolve features, which can exist in many variants. To have multiple
variants of a software product is especially common in embedded/cyber-physical
systems, automotive systems, telecommunications, and industrial automation.

1.2 Problem
There have been a number of problems identified regarding the context for this thesis
and in this section they are presented.

1.2.1 Tracing features
In order to know where features in a codebase are located, their location needs to be
stored. To achieve this, there are examples of tools that can be used to externally
document locations of features in a codebase. However, as a codebase grows, such
external documentation goes out of date, which often results in developers utilizing
’code browsing’ in order to understand it [1]. Reading through source files, especially
when the codebase is comprehensive, is time-consuming. Therefore, it is vital to use
a method that constantly keeps traces up-to-date.

To keep traces up-to-date, Ji et al. [2] suggests placing annotations directly in
the source code. Annotations are placed in the comments of a source code file,
allowing annotations to be used regardless of programming language. The idea is
that annotations should naturally evolve alongside the code. Thus, a user would
not have to access a third-party program to first find the trace and then update it.
As is demonstrated in the paper, the cost of maintaining annotations were very low
[2].

1

1. Introduction

1.2.2 Understandability
Imagine the following scenario: A developer has just started working at a company
and is given a task to fix a bug related to a specific feature. Not being familiar
with the codebase in question, significant time has to be spent to learn it. In the
best case, there already exists documentation which explains where different parts
are located and how the codebase is structured. In the worst case, there does not
exist any comprehensive documentation and the developer has to resort to code
browsing and reading source code comments (if there are any). Regardless, there is
a substantial initial learning curve involved. Even for senior developers, starting to
work at a new product which is large and complex, at least a couple of months is
given to learning. Therefore, having a way to decrease the time for a new developer
to be efficient is beneficial for everyone involved. Gaining a better understanding of
the code, in general, is not just beneficial for new developers, but to anyone who is
working with the code.

An additional scenario is if there are multiple variants of the same software, at
some point, the developer might want to merge them into a software product line
(SPL). During this task, it is important to understand which features are shared be-
tween variants, which are not, where they are located, which features depend on each
other, for example. To have this knowledge, it requires an excellent understanding
of all variants in question.

1.2.3 Maintainability
As a codebase gets larger and more complex, it will become increasingly harder to
maintain. Knowing the locations of features, additional information such as metrics
could also be used to make it easier to maintain the features. For instance, if it was
possible to see that a feature has grown a lot in size recently, maybe it is time to
split that feature into smaller parts. Perhaps it is noticed that a specific feature
is scattered all over the codebase. Or that many features are tangled together in
a specific file. Depending on this information, it could be a good idea to refactor
the code. It would also be possible to correlate this information with other code
quality metrics such as bug reports. For instance, it is indicated that a feature has
become increasingly scattered and tangled with more and more features over the
recent month. Simultaneously, more and more bug reports regarding this feature
have been reported. As such, having more detail information about features located
in a codebase could increase its maintainability.

1.2.4 Visualizing feature-to-code traces
As already suggested, with the introduction of embedded annotations it is possible
to indicate in the code where specific features are located. However, this only solves
a part of the problem, namely; a developer still has to go through the source code and
look for these annotations to get an overview. It is possible to do a full-text search,
however, that is not effective. As such, how can these annotations be extracted and
then visualized?

2

1. Introduction

1.3 Goal
The goal of this thesis is to conceive, realize, and evolve a feature visualization
technique. An important part of this is, firstly, to investigate the state-of-the-art
and what other relevant information is needed.

As a result of what is discussed in Section 1.2, how are features best visualized?
What views should be present to convey the necessary information? How should
features that belong to a certain file be visualized? What information/metrics about
features are necessary? Are these types of visualizations, metrics, and information
helpful in understanding features and how they are realized in code? These are
questions that the thesis will try to answer.

1.4 Purpose
As already discussed, tracing features is a significant problem and there is not a
generally accepted best solution to this problem. However, if an effective solution is
discovered, the implications can be immense. As Ji et al. [2] discussed, simply having
annotations in the code indicated a great benefit in feature-related maintenance.
Combining this methodology with a more powerful visualization tool that also can
provide meaningful metrics, the process of understanding a codebase and tracking
the features could increase significantly.

As Wang et al. [3] states in their paper, locating features manually has a sub-
stantial cost attached to it. These features must then be recorded in some external
documentation and as already discussed, this process is error-prone, and it takes
considerable time from developers. Having a tool, which just parses source code
files, provides visualizations and metrics about features would not only remove the
time investment but also the errors made. The only thing that should be maintained
is the annotations that describe where features are located. However, this should
be straightforward as they evolve naturally as developers code and as previously
mentioned, the maintenance cost is low [2].

1.5 Method
The goal of this thesis is to be achieved by firstly reviewing already written literature
within the visualization of feature-traceability. After this, a design science method-
ology is utilized to develop views. These views are to be implemented in a tool that
allows a developer to investigate which features are present in a codebase. After the
mentioned views have been implemented in this tool they should be evaluated.

1.6 Outline
This thesis is organized as follows: Chapter 2 provides the reader with information
regarding background concepts. Chapter 3 introduces the methodology used in this
thesis to obtain the result. Following the methodology in Chapter 4, the result

3

1. Introduction

of this thesis is presented. Chapter 5 goes over the different evaluations that were
performed as a part of this thesis. Chapter 6 provides a discussion about the different
parts of the thesis. Chapter 7 presents the reached conclusion.

4

2
Background

In this chapter, concepts are explained that can be beneficial to be aware of before
continuing reading this thesis.

2.1 What is a feature?
When developing a software artifact, there are certain features associated with it. A
feature often describes the functional or non-functional requirements of that artifact
[4]. In terms of a software system, a feature is often thought of and explained to
stakeholders in terms of some specific characteristic [5]. Therefore, knowing what
features a specific system offers is very important, not only to categorize it but also
for stakeholders to understand what it can do.

2.2 Software product line
If a company sells a commercial product then it might not always be the case that
every customer wants all the functionality that the product offers. For instance,
they might not need a specific feature and is not willing to pay for that feature
when buying the product. Or the customer has specific environmental demands
that the product has to adapt to. Therefore, in order to satisfy customers, a variant
is created which has a different set of features. This process could continue and
after a while, there are many variants that suit different customers and purposes.
One of the negative effects of this is that all these different variants have to be
maintained separately. As a result, it can be beneficial to merge these variants into
a software product line. To do this, all variants are analyzed and common features
are extracted to form a base on which other features are subsequently added to.
Similarly, when buying a car, the manufacturer offers the base configuration of a
specific model. From there, it is possible to add different features that would be
preferable to have. As Benavides et al. states, software product line engineering
promotes creating a family of software products from features that already exist,
instead of creating separate variants from scratch [6].

2.3 Feature model
A software product’s behavior can often be described by simply listing the features
which are offered. However, in order to describe a software product line (SPL), a

5

2. Background

Figure 2.1: Example of a simple feature model [6].

feature model is used [6]. A feature model is used to describe all possible config-
uration options that can be made for an SPL [6]. In Figure 2.1, a simple feature
model can be found for a phone. As can be seen in the figure, there are multiple
different relationships that can be specified in such a model. One of these indicates
all mandatory features that will always be included with the product and another
indicates that one feature might depend on another being present, and so on.

2.4 Clone & own
Instead of creating an SPL from the beginning, another option is to create variants
that later could be merged into an SPL. One popular way that variants are created
is by performing, what is called, Clone & Own. Creating new variants by Clone &
Own is achieved by first locating pieces of code in a variant that should be reused.
Then, the targeted variant(s) are copied or merged into a new variant. At that
point, excess functionality is removed and new features are introduced into the code
[7].

2.5 Trace recovery
In order to visualize the location of a feature in a project, that location first has to
be identified. In this section, different methods used and challenges regarding this
task is explained.

2.5.1 Manual
In software artifacts, what a specific feature belongs to, for instance, a method or
class, is seldom recorded and maintained. When there is only the original developer

6

2. Background

of an artifact, source code comments will most likely be enough due to the developers’
preexisting knowledge and understanding. However, as the artifact increases in size
and as more developers join the development, the locations of features are usually
not known anymore. When this is the case, the feature locations need to be recovered
which is a daunting and error-prone task [3]. However, a study performed by Krüger
et al. [8] notes, among others, that there is still little known about the actual effort
of performing these feature locations and what factors influence them. Regardless,
the easier it is to understand the connection between source code and a feature,
the easier it is to modify it [9]. Thus, a way of clearly describing the features to
developers in order to get a better understanding of how the different parts are
connected to each other is needed.

2.5.2 Automated
Instead of manually going through each resource and documenting traces, a natural
improvement is to try and automate this process. There is no shortage of contri-
butions to this field as many have tried to come up with the next tool that will
revolutionize the industry. Dit et al. [10] performed a mapping study of this field
where 89 papers were analyzed. These papers were then categorized by their sug-
gested approach, the three categories were: dynamic, textual, and static [10]. Then
there are also papers that have suggested a combination of two or more approaches.

Dynamic feature location works by analyzing running code and inspecting what
is executed for a specific type of input. This input could be a test case that tests
a specific feature and by analyzing which code is executed it is known what code
belongs to the feature. Static feature location does not rely on a running program to
determine feature location but instead analyzes the source code files. Textual feature
location is similar to static feature location, however, it relies on specific markers
in the source code such as annotations or comments. It is also possible to combine
these different approaches with each other. For instance, Andam et al. [11] suggests
a static feature location approach with the help of machine learning. When a feature
is located, annotations are placed in the code which can later be found using textual
feature location. Combining dynamic and static feature location techniques could
imply that first, dynamic location is used to narrow the search space and then a
static analysis is applied [10]. An approach that combines these two methods is
suggested by Eisenbarth et al. [12]. Firstly, execution traces are gathered from the
targeted system and based on these traces, analysis is performed [12]. The parts of
the code which have been indicated to belong to a feature can then be analyzed.

Although there are many contributions to this field, Andam et al. [11] states
there is still no solution that works in the real world. This is because they have low
accuracy and to analyze a project in the first place, they require a lot of work to
be properly configured [11]. Thus, one time-consuming task is simply replaced by
another.

7

2. Background

8

3
Methodology

In this chapter, the research questions are presented and the methodology used in
this thesis is explained.

3.1 Research Questions
The research questions that the thesis will answer are the following.

1. What feature-traceability views have been proposed in literature?
As the question implies, a literature survey is performed to establish how
feature-traceability views are visualized in research. This allows establishing
best practices in terms of what has been observed to work and what does not.

2. What information regarding features is required to realize views
that provide added value?
What information regarding a features in a project is required in order to
realize views that provide added value regarding them?

3. Do the implemented views support feature-traceability and other
feature related problems?
As highlighted in Section 1.2 there are a number of problems that are related
to not having an effective feature-traceability tool. For instance, do developers
think that having a tool such as this could increase the maintainability of a
project?

3.2 Thesis workflow
In this section, the workflow and the different phases of the thesis are presented.

Firstly, a literature survey was conducted, this was necessary in order to answer
RQ1. During the literature survey, tools/views that have been previously presented
in research regarding feature-traceability were investigated. After performing the lit-
erature survey, the result was analyzed further to identify issues and/or limitations
with the suggested visualizations. Then, there were a number of concepts created to
explore different techniques and approaches that could be used when realizing views.
After different ideas had been explored, the development began of Feature Dash-
board. Feature Dashboard is a plugin in the integrated development environment
(IDE) Eclipse which enables feature-traceability alongside development. When the
development of the plugin had reached a certain point, the focus shifted towards im-
plementing views. During this time, an iterative process of creating, improving, and
evaluating views was started which was the last stage of the thesis. At this point, it

9

3. Methodology

was possible to answer RQ2 and RQ3, namely, what information regarding features
is required for the specific visualizations and if they support feature-traceability and
other feature related management tasks.

Figure 3.1: Thesis workflow.

3.3 Literature survey
As detailed, the first task that was performed in the thesis was a literature survey.
This is to gather information about the state-of-the-art within the field and to
understand what has been demonstrated not to work (if any). Another important
aspect is that by analyzing the result and sections such as future work, additional
inspiration for new views can be gathered. In this section, it is first described which
methods were used in finding papers. Then, it is explained how a paper was deemed
relevant to inspect. Finally, points of interest are outlined which were used when
analyzing a relevant paper further.

3.3.1 Search process
In order to find relevant papers for this literature survey, there were various methods
utilized. The main method was to start from an already know paper and from there,
find papers which are suggested as related work. Then, this task was to be performed

10

3. Methodology

recursively for each paper that is suggested. Additionally, by using services such as
Google Scholar, it is possible to see which papers have cited a specific paper. For
instance, if paper A has deemed to be relevant, then it is possible to see which
papers have cited paper A.

Additionally, different search engines were also used to find relevant papers such
as Google Scholar and IEEE Xplore. Google scholar is very useful since it collects
results from multiple different organizations. This saves time as the websites for
these organizations do not need to be visited. However, the exception is IEEE
Xplore, as their search engine allows for the creation of predicates when searching
for specific keywords. The following is an example of a predicate that was used:
(visualization AND feature) OR feature-traceability. It is also possible to spec-
ify where these keywords should appear. For instance, it is possible to specify if
a keyword should appear in the meta-data only or in the text as well. Keywords
that were used when searching are the following: feature, feature-traceability, visual-
ization, feature-location, feature-to-code, traceability, software product line, software
variants, variant management.

3.3.2 Paper relevance
For the literature survey, there was a criterion established to determine if a paper
was relevant or not. The criterion was that the paper has to suggest or present a
visualization technique for feature-to-code traceability. For instance, there are tools
that suggest views in other areas of SPL development such as tracing features to
feature-models, however, in this literature survey, the main focus is on views that
trace features to their implementation in code.

3.3.3 Paper contents
When a paper has been determined to be relevant, specific parts of the content were
examined further:

• What type of views are suggested
• What visualization techniques are used?
• Is there any future work suggested?
• Have the views been formally evaluated? If so, what conclusion can

be made?

3.4 Evaluation
This section describes methodologies used to evaluate different parts of the result.
Chapter 5 presents the result of these evaluations.

3.4.1 Semi-structured interviews
The first methodology used to evaluate the conceived views was the usage of semi-
structured interviews. The difference between semi-structured and structured in-
terviews is that it further promotes a conversation between the interviewer and the

11

3. Methodology

interviewee [13]. This allows subjects to explore things regarding the subject that
they think is important. Even though it is not entirely structured, there should still
be a protocol with predetermined questions which ensures that interviews consis-
tently covers the same topics [13]. As such, the protocol used for these interviews can
be found in Appendix A.2. Feedback received during the interviews was recorded
and later transcribed.

3.4.2 Questionnaire

At the end of the thesis, a questionnaire was used in order to answer RQ3. To achieve
this, there was a combination of closed and open questions. The closed questions
were to evaluate whether or not subjects thought the views were helpful in different
aspects such as tracing features and allow better understandability of a project.
However, to gather additional feedback on what was missing or other problems that
were not known beforehand, open questions were also in the questionnaire for each
view. The questionnaire was distributed by sending requests to subjects through
email and other messaging applications, such as Skype.

3.4.3 Controlled experiments

In addition to distributing a questionnaire at the end of the thesis, controlled ex-
periments were performed to test the initialization time of the views as the input
increases. Controlled experiments are experiments where all variables are controlled
except for one, namely, the independent variable [14]. It is the hope, by changing
the independent variable and controlling all other variables, to identify the effect of
the independent variable. It is important for the internal validity of the experiment
that only the independent variable is changed, otherwise, there could be additional
factors that can affect the outcome of the experiment [14].

3.5 Design Science

In this thesis, as previously mentioned, the methodology used to obtain a result was
design science. Hevner and Chatterjee [15], present a number of guidelines regarding
design science some of which are presented here and how they were adhered to in
the thesis.

3.5.1 Problem relevance

This guideline specifies that the artifact developed should provide solutions to spe-
cific and relevant problems. In this case, the problems revolve around feature-
traceability in variant-rich systems, see Section 1.2 which provides a description of
the problems identified

12

3. Methodology

3.5.2 Design as a search process
This is the search for the optimal views for feature-traceability and the steps taken
to arrive there. In this section, numerous sources that were used as inspiration when
creating views are presented.

Firstly, the literature survey executed gave valuable inspiration, not only from
the research that had previously suggested feature-traceability tools/views but other
aspects of feature management views. After previous relevant research had been
identified, the tools and views were further analyzed from a user point of view. The
goal was to identify issues/problems that would hinder a user from effective feature-
traceability. With these issues in mind, a number of concepts were created which
explored how to visualize different aspects of feature-traceability. Since the issues
identified should be avoided, it promoted additional creative thinking. Research
regarding visualizations in software engineering was also consulted such as work by
Moody [16] and El Ahmar et al. [17, 18]. Inspiration was also drawn from views
that are not related to the area of feature-traceability. For instance, when trying to
create concepts of how to visualize how features propagate through Git branches,
visualizations offered by Github and other open source websites were investigated.

When eventually implementing views in the plugin, additional factors gave in-
spirations on how to visualize different aspects of feature-traceability such as func-
tionality offered by the visualization library used. In addition to taking advantage
of this functionality, the limitations of the library also have to be considered. Since
the views were going to be implemented in Eclipse, it was also possible to utilize
the fact that multiple views can be opened at the same time.

Another major source of inspiration was the result of evaluations held during the
thesis, which gave ideas for how to improve existing views and additional views that
could be implemented.

3.5.3 Design as an artifact
Another part of design science is that the result, namely the views, should be rep-
resented in an appropriate manner. In this case, it is about providing a means for
developers to inspect and analyze features that are located in the source code of a
specific project. Thus, the views will be implemented in a plugin for the integrated
development environment (IDE) Eclipse. Hence, allowing developers to view infor-
mation about features in the same program as they are using to develop code, which
removes the need for a third party program.

3.5.4 Design evaluation
An important part of design science is that the result has to be evaluated and
therefore there were different methods used to achieve this. Firstly, semi-structured
interviews were held with a small selection of subjects. The main purpose of these
interviews was to gather feedback on how to further improve the views, not to an-
swer RQ3. As such, semi-structured interviews were used as they promote discussion
between interviewer and interviewee to a higher degree than structured-interviews.

13

3. Methodology

Subjects included were students performing master theses with the goal of deter-
mining the cost of merging software variants into SPL’s. Since the work that they
are performing is exactly what is meant to be made easier with Feature Dashboard,
their feedback was important. Since they were using other tools to help them in
their work, advantages and disadvantages regarding these tools could be gathered as
well. From this evaluation, useful feedback was received that was taken into account
during the next design iterations.

For the second evaluation, both Feature Dashboard and the views were evalu-
ated. Unlike the first evaluation, a questionnaire was used at this point instead.
The reasoning behind using a questionnaire was that this project was executed as a
part of ReVaMP2. ReVaMP2 is a collaboration between universities and companies
in Europe and the thesis supervisor has had previous contact with developers at
some of these companies and the idea was to contact them and gather feedback
[19]. However, due to that these companies are located in other countries and the
developers having limited time, it was decided that a questionnaire was going to
be utilized. However, this posed additional challenges since the tool would have to
be distributed to subjects in order for them to use it and then provide feedback.
As Feature Dashboard is a plugin, if an intended subject previously did not have
Eclipse installed, then they would have to install Eclipse, the plugin, and additional
dependencies. To make it as easy as possible to take part in the questionnaire, a
version of Eclipse with the plugin and its dependencies pre-installed was provided.
A description outlining the usage of the tool and views was also provided to sub-
jects. Furthermore, the description provided examples of all views that were to be
evaluated. There were also two projects, to simulate two variants, provided which
would allow subjects to use the tool as intended.

Lastly, there were a series of controlled experiments in order to evaluate the
initialization time of the views as the input increases. This was to offer performance
metrics of how the views in the tool perform for future researchers and developers
looking to use the tool.

3.5.5 Research contributions
The research contributions include an open source tool that has views that helps a
user to trace features to their implementation in the code. This makes it possible
for other interested parties to easily use the tool and/or contribute to the tool
instead of developing something new from the ground up. Additional contributions
include a literature survey along with an analysis of the result. Concept views and
visualization ideas for different aspects of a project are also provided.

14

4
Result

In this chapter, the result of the thesis is presented. Firstly, an overview of the
area of feature-traceability is given in the form of a literature survey. During the
literature survey, there were a number of observations made which are presented.
After the literature survey, a number of concepts views that could be present in
a feature-traceability tool were created with the observations from the literature
survey in mind. Afterward, the tool that the views were realized in, is presented.
This tool is called Feature Dashboard and is an Eclipse plugin that will allow users
to trace features to their location.

4.1 Literature survey
In this section, the literature survey that was conducted at the beginning of the
thesis is presented. The goal of this literature survey was to find already suggested
tools and views in the area of feature-traceability.

4.1.1 Result
Florida: Feature location dashboard for extracting and visualizing feature
traces [11]. In this paper, a tool for tracing features to their location in code
is suggested. There are two main views offered: Feature-file (tracing features to
the source files they are implemented in) and Feature-folder (tracing features to
their location in the folder structure). As can be seen in Figure 4.1, the traces are
visualized using a graph where features and files are represented by nodes and if
a file implements that feature then there is an edge between them. The feature-
folder view is visualized using a different technique. As can be seen in Figure 4.2,
features are still being represented as nodes but the folders are now boxes which are
nested in each other to represent the folder structure. There is an additional view
which is a table and provides different metrics for each feature. In terms of future
work, they explain that they plan to use the underlying version-control system to
extract metrics and have a view for this [11]. During the development of this tool,
feedback on the views was provided by two industry contacts who were involved in
the development. Other than that, there was no evaluation conducted.

Visualizing Software Product Line Variabilities in Source Code [20]. In
this paper, a tool that is based on the IDE Eclipse is suggested which is called CIDE
[20]. Features are visualized by first assigning a color for each feature that interests
the user and then different parts of the IDE are color coded. For instance, different

15

4. Result

Figure 4.1: Feature-file view in
FLOrIDA [11].

Figure 4.2: Feature-folder view in
FLOrIDA [11].

folders and packages in the project explorer are color coded as well as specific parts
of a source file. Since the tool is not evaluated in this paper one of the points for
future work is to evaluate it and to evaluate different ways of creating views based
on file contents [20].

FeatureIDE: A tool framework for feature-oriented software develop-
ment [21]. In this paper, a framework for Feature-Oriented Software Development
(FOSD) is being presented called FeatureIDE [21]. FeatureIDE is a collection of dif-
ferent tools that focuses on feature-oriented software development and one of these
tools is the already mentioned CIDE. As such, visualizing feature-to-code is achieved
in the same way as in CIDE. However, as mentioned by Meinicke et al. [22], just us-
ing the project explorer does not offer an effective overview of the project. As such,
an additional view that is introduced in FeatureIDE is the Collaborative diagram.
As can be seen in Figure 4.3 a file is selected and it is possible to see here that the
features Hello, Beautiful and World are implemented in this file. No future work is
suggested and no evaluation is presented.

View infinity: A zoomable interface for feature-oriented software de-
velopment [23]. In this tool, it is possible to trace features to their implementation
in the source code. The techniques used for visualization is similar to the already
discussed tools such as CIDE and FeatureIDE, namely, associating colors with fea-
tures and highlighting code in the editor. However, what is unique about this tool
is the zoomable view. On the left, the current view is displayed and on the right, the
different zoom levels are displayed (see Figure 4.4). The top level shows the feature
model, next is a file view that shows different files that implement a specific feature
and the final zoom level is looking at the source code for a specific file. They have
provided a short summary of a usability evaluation that was performed and reached
the conclusion that subjects were positive about the tool. Future work is to provide
a more extensive evaluation and integrate the tool in a modern IDE.

Feature cohesion in software product lines: An exploratory study [24].
In this paper, the views that are suggested are not specifically about showing the
location of features in the code. However, the views show the cohesion and coupling
of features in the code, thus giving the user an idea of how features interact with
one another in the code. The views suggested are based on clustering layouts. As

16

4. Result

Figure 4.3: Collaborative diagram
in FeatureIDE [22]. Figure 4.4: Overview of View infinity [23].

with other tools, different colors are assigned to selected features. No evaluation has
been made on these views and there is no future work presented.

FeatureCommander: colorful #ifdef world [25]. In this paper, a prototype
for tracing feature-to-code is presented. The idea behind the different visualizations
is similar to CIDE, however, there are some differences. Looking at Figure 4.5, it is
possible to see how much in percentage a feature or features use of a file. Nothing
is suggested in terms of future work but they have performed an evaluation mainly
testing the scalability and that subjects liked the idea of having different colors
differentiating the features.

Figure 4.5: Overview of FeatureCommander [25].

On feature traceability in object oriented programs [1]. There are three
different views suggested: visualization of feature metrics and roles, if there is any
overlap amongst features, and evolution of features. The type of visualization used
is the use of 3D boxes and depending on height, width, depth, and color different
characteristics can be implied. These views have not been evaluated and the future

17

4. Result

work presented is to analyze more projects with these views.

4.1.2 Identified issues
During the literature survey and while examining the suggested views, a number
of issues were identified. These issues can be problems that the authors themselves
point out or by analyzing the views from a user point of view.

4.1.2.1 Colors

As can be seen in the different views already suggested, there is a common theme
amongst them. And that is the usage of colors when displaying features and their
location in code. However, using colors to distinguish features amongst each other
has some problems associated with it. One of these problems is brought up by
Kästner et al. [20], namely that if many features are to be displayed at the same
time, at some point the user is going to have to use hues that are very similar to
each other. Another problem is that there are colors that will not be possible to use
due to contrast issues with the text and keywords in the editor. In Figure 4.4, it is
possible to see the editor and the colors used by the text. If, for instance, a dark
blue color would be used, then it would not be possible to see different parts of the
code. Even though Feigenspan et al. [26] concludes that the usage of colors increases
some aspects of program comprehension it might not beneficial in this specific use
case. Additionally, some of these tools also require the user to manually assign
colors to different features, adding an extra mandatory step by the user. Later, the
user also needs to remember which feature is assigned to which color or navigate
to whichever view where this information can be found since it is not immediately
obvious. Another issue is regarding people that are color blind and their ability to
use these views. As such, can views be created that does not have an over-reliance
on colors to distinguish features?

4.1.2.2 Visual bloat

Since a lot of the previous work focuses on separating features by highlighting code
in the editor, this is mainly something that was identified by looking at the views
suggested by Andam et al. [11] and Apel and Beyer [24]. Looking at Figure 4.1,
the traces between features and files are visualized by the use of a graph. In this
graph, features and files are represented by nodes and if a feature is implemented in
a specific file, then there is an edge between these nodes. In this particular example,
there are a lot of features and files which implies a lot of connections. This means
that it is difficult to distinguish which file node is connected to which feature node,
or vice versa. One might be able to fix this by using smart layout algorithms for
the nodes/connections so that there are fewer overlapping connections. However,
having increasingly complex layout algorithms imply that views will take longer time
to initialize. As a result, another important factor when creating views was how one
could minimize the number of visual elements in the view but still provide effective
feature-traceability.

18

4. Result

4.1.2.3 Overview

Many tools presented in the literature survey, take advantage of similar visualization
techniques. Particularly, the user assigns colors to features and correspondingly, files,
folders, project explorer, and additional elements are color coded. However, as is
mentioned by Meinicke et al. [22], using the project explorer for this intention makes
it hard to establish an overview of the project. This was their reasoning as to why
they introduced the Collaborative diagram to FeatureIDE (see Figure 4.3). As such,
another priority when designing views was to conceive views that would require as
little interaction as possible from the user but still offer an effective overview of the
specific system.

4.2 Initial views

After having performed the literature survey and identified the previous work, a
number of concepts were created to come up with different visualization ideas. There
were no outside parties that had established requirements that were adhered to when
creating these concepts. Concept views were created that would allow the user to do
the following: a user should be able to trace a feature to files which implement this
feature, the user should get an overview over the project and see where the feature
is located in the folder structure, give the user the possibility to see how a feature
has evolved in the project.

Figure 4.6: First feature-file concept.

Since views were going to be implemented in Eclipse, it was important to deter-
mine which visualization library that was going to be used in order to be aware of
both the limitations and advantages of the library. There were a number of different
libraries that were under consideration, however, it was decided that GEF Zest Ver-
sion 5 [27] would be used. The reasoning behind this choice was that the library was
the most up-to-date and still receives active support which is important for future
development.

19

4. Result

4.2.1 Feature-to-File
In this section, concepts of a view that would allow a user to see which files implement
a feature are presented.

The first concept is presented in Figure 4.6. Here, the selected feature and files
which implement said feature are represented by nodes in a graph. If there is a
connection between nodes, then it means that the feature is implemented in that
file.

Figure 4.7: A variant of Figure 4.6.

Figure 4.7 is similar to the previous concept, however as written in Section 4.1.2,
one of the issues identified is that there are too many visual elements in the view.
One way to deal with this, as presented by Moody, is by utilizing modularization or
hierarchically structuring [16]. Modularization implies dividing large systems into
smaller subsystems as a means to help with information overloading. As such, by
utilizing a feature from the visualization library used, information can be modular-
ized into nested graphs. In this case, files belonging to just one particular feature
will be placed in the respective nested graph. Files that implement multiple selected
features should be positioned outside. As such, the user would quickly identify which
files belong to a specific feature.

One of the disadvantages of using the nested graph functionality in Figure 4.7, is
that it requires one additional interaction to show files that belong to that specific
feature. Therefore, in Figure 4.8 the idea was still to utilize modularization but still
have as little connections as possible and to remove the extra step needed to view
the files which belong to just one of the selected feature. As such, files belonging
to the same feature are grouped in a container and then a connection is made from
this container to the feature.

A common property amongst the previous views is the dependency of connections
from one node to another. This takes more time to render and introduces more visual
elements to the screen. Thus, a view that does not rely on connections was created.
In Figure 4.9, the features selected are represented by geographical shapes and if that
feature is implemented in a file, a smaller version of that shape is placed in the node
which represents the file. As Moody [16] writes, geographical shapes play a special
role as it is the main property on which objects are identified in the real world. Even
though there is no need for connections, and it is easy to see if a file implements

20

4. Result

Figure 4.8: Concept to give better overview than Figure 4.7.

Figure 4.9: Concept that does not rely
on connections between nodes.

Figure 4.10: When a node in Figure
4.9 is highlighted.

more than one feature. One major limitation, similar to that of the usage of colors,
is that there are only so many shapes that will be clearly distinguishable from each
other. Ideas to alleviate this problem can be seen in Figure 4.10. Here, a specific
node is focused and only then are connections shown.

The majority of the aforementioned views use a type of graph, in that there are
nodes attached to each other by a connection. Inspiration taken from FeatureIDE
and the collaborative diagram (see Figure 4.3), resulted in Figure 4.11. If two or
more features are selected, all files belonging to the different features are displayed
and if a feature is implemented in a file then this is indicated.

4.2.2 Feature-to-Folder
In this section, another type of view is described. This view should allow a user to
trace features to their location in the folder structure of a project.

In Figure 4.12, the idea is to have a tree view over the folder structure. Addi-
tionally, the goal behind this concept was to reduce the number of columns created
for the tree by combining folders that do not contain any features, to one node in-

21

4. Result

Figure 4.11: Concept inspired by the collaborative diagram in FeatureIDE.

stead of two or more. In certain programming languages, there are conventions that
dictate a certain folder structure which creates empty folders which would probably
not be interesting for the user.

Figure 4.13 demonstrates a slight alteration on the previous concept. Here, all
folders are given a node to better visualize at which depth the feature is located
at. Furthermore, instead of having one node for each feature that connects to each
folder node, there is one feature node for each location. However, having one feature
node for each location would quickly lead to a lot of nodes in the view, especially if a
feature is extensively scattered across the project. As such, Figure 4.14 was created
that has one feature node for each feature. However, the problem here is that now
the nodes have to be placed intelligently so that connections are not overlapping.

4.2.3 History
As can be seen in the literature survey (Section 4.1), of the already suggested tools
that have some sort of feature-location views, only Antoniol et al. [1], provides an
example how to view the history or evolution for a feature. As such, concept views
are presented in this section that visualizes a feature’s evolution in a project.

4.2.3.1 Determining delta

When visualizing something that changes over time, the delta at which data points
are retrieved needs to be determined. The delta used by Antoniol et al. [1] is
one week. However, considering the state of the software industry today, where
many development teams are working with agile workflows where many changes are
happening on a daily basis, a week was determined to be too large of a delta. Since
most (if not all) large-scale projects use an underlying version control system, it was
decided to utilize this when gathering data about the state of the project in the

22

4. Result

Figure 4.12: First feature-folder concept.

Figure 4.13: One feature node for each
occurrence.

Figure 4.14: One node for each fea-
ture.

23

4. Result

Figure 4.15: Showing if a feature is present in a commit for each branch/variant.

past. The versioning system chosen to support was Git since it is one of, if not the
most, popular system to use according to a report in 2016 [28]. In Git, whenever a
change is introduced by a developer, that change is saved in a commit. As a result,
a commit is used as the delta in the concept views.

Figure 4.16: Github’s visualization of
branches. Figure 4.17: Metrics graph.

4.2.3.2 Concepts

The first view that came to mind when trying to see the history for a specific feature
was a simple graph. This graph would plot values for a feature’s metrics and how
they change over a number of commits. Figure 4.17 shows a graph which displays
the lines of feature code for a feature over a number of commits. Here, it would be
possible to have any metric that can be associated with a feature.

Having multiple variants of a software product, at some point, a developer might
want to compare these variants to each other. Figure 4.15 shows a concept which
assumes that different variants are on different branches instead of separate projects.
There are three variants: master, branch1, branch2. In this example, Feature 1 is

24

4. Result

Figure 4.18: Example of combining Figure 4.15 and Figure 4.16.

selected and a circle represents that the feature was present in that specific commit.
In this view, it is possible to see when a commit introduces a feature and if the other
variants adopt that feature and at which point.

As previously described, these views utilize Git to get information about the code
in the past, however, there is additional information that can be gathered from Git.
Figure 4.16 demonstrates how Github visualizes how branches diverge and merge
into one another for a specific project. As such, Figure 4.18 shows a view when
combining Figure 4.15 and 4.16. Unlike Figure 4.15, this view is solely intended to
compare different branches and how features move across them.

Figure 4.19: History of common features between variants.

When comparing variants, viewing which features that are shared between them
could be interesting when, for instance, performing variability management. Figure
4.19 shows for each commit, a list of common features between two variants. In-
specting the view, as time moves on, two variants are becoming increasingly similar
in terms of which features they implement. If this trend continuous, then it would
be beneficial to merge them together.

4.3 Feature dashboard
An important part of the design science methodology, as detailed in Section 3.5, is
that the result should be realized in an appropriate manner. As such, in this section,

25

4. Result

the tool Feature Dashboard is presented. Feature Dashboard is a plugin in the IDE
Eclipse and allows users to trace and get information regarding features at the same
time as developing software. In Figure 4.20, an example is presented of having some
views offered by Feature Dashboard opened at the same time as writing code.

Figure 4.20: Opening Feature Dashboard views at the same time as developing.

4.3.1 Annotations
What is perhaps the most important part of this tool is how features are found in
the code. As mentioned in Section 2.5.2, there exists a number of different ways of
extracting these locations. Feature Dashboard uses the textual approach by parsing
source files and looking for annotations. The syntax used for annotations is the same
as suggested by Ji et al. [2]. There are three types of annotations: line, start-block,
and end-block. Listing 4.1 shows an example of these annotations and how they are
used to indicate the location of features in the code. In the aforementioned example,
there are two features: Main and ConsolePrint. Lines 3-6 belongs to Main and line
5 belongs to ConsolePrint.

26

4. Result

1 public class HelloWorld {
2 // &begin[Main]
3 public static void main(String [] args){
4 // &line[ConsolePrint]
5 Arrays . stream (args). forEach (System .out :: println);
6 }
7 // &end[Main]
8 }

Listing 4.1: Examples of feature annotations in a Java source file.

4.3.2 Mapping files

Feature1 : File1.java , File2.java
Feature2 : File3.java , File4.java

Listing 4.2: One syntax for .feature-file.

In addition to being able to add annota-
tions in the source code, there is another
way of declaring that a specific resource
belongs to a feature. In some cases, a
user knows that an entire file or folder
belongs to a feature. In those cases, going through all resources and adding anno-
tations can become tiresome. Similarly to Andam et al. [11], there are also specific
mapping files that either map a file or folder to a feature. These files have the file
extension of .feature-file and .feature-folder. For .feature-file’s there are
two different syntaxes that are supported, these can be found in listings 4.2 and 4.3.
File1.java File2.java
Feature1
File3.java File4.java
Feature2

Listing 4.3: Another syntax for .feature-file.

The reasoning behind having two different syntaxes for the .feature-file is be-
cause there already exists datasets that use these two types of syntaxes. Therefore,
being able to support both of them was important.

As previously mentioned, the .feature-file’s are used when an entire file is
associated with a feature. However, if a user knows that a folder and all of its
contents (includes all sub-folders) belong to a feature, it is possible to use the
.feature-folder file instead. In this file, a user simply lists a feature on each
line that should be associated with the contents in the folder which the file is lo-
cated in. Listing 4.4 shows an example of how this file could be placed in a folder
structure. All resources in Root will successively belong to any feature(s) specified
in the mapping file.

27

4. Result

Root
.feature - folder
File1.java
File2.java
Sub1 .1

File3.java
File4.java

Sub1 .2
File5.py

Listing 4.4: Example of a .feature-folder file in a folder strucutre.

As can be noted from Listing 4.4, the mapping files will be scattered across
the codebase that is annotated. This is intentional as there are several advan-
tages of having these files scattered across the codebase. One of these advantages
is that there will be no single large file that contains all information. As this file
increases in size, it will become increasingly difficult to maintain and to confirm
that every mapping is correct. Another advantage is if the folder structure is
refactored at some point. In the case of a single file, every line that is affected
would have to be manually changed which would undoubtedly be an error-prone
task. With the scattered approach, as a folder is moved, so will the mapping file.

Figure 4.21: Feature
Dashboard View.

4.3.3 Views
In this section, the different views that are included in
Feature Dashboard are presented. At the end of the the-
sis, these views were evaluated and the result can be in-
spected in Section 5.2.

4.3.3.1 Feature Dashboard View

This is the main view of the plugin, from here, the fea-
tures that are located in the parsed project are selected.
Figure 4.21 shows an example of this view and each fea-
ture found can be selected by pressing in the respective
checkbox. Depending on what is selected in this view, it
will change what is shown in (almost) all other views.

It can be noted that some features in the view have
different layout properties. This is because of the pos-
sibility to add a feature model (see Section 2.3) in the
root of the project. If the plugin detects a feature model,
the features will be placed in accordance with this fea-
ture model. The feature model is specified in a language
called Clafer, which allows a user, (among other things) to specify a feature model
textually [29, 30]. This file is added in the root of the project and is given a name
with the file extension .cfr.

As can be noted in Figure 4.21, some features are colored red. This means that
the feature was found when parsing annotations, but it was not found in the feature

28

4. Result

model. This enables the user to either update the feature model or correct any
mistakes that have been made.

4.3.3.2 Feature-to-File view

As the name suggests, this view allows the user to trace features to files that im-
plement the said feature. To view this information about a feature, the user selects
the desired feature in Feature Dashboard View (see the previous section).

Figure 4.22: Feature-to-File
view with one feature selected.

Figure 4.23: Files belonging to feature Bal-
anceReminder.

Figure 4.22 shows what is displayed when the feature BalanceReminder has been
selected. The node which represents the feature is connected to another node that
contains a nested graph that has the label ’Additional files’. Double-clicking on it
will show the view presented in Figure 4.23, in which files are also represented by
nodes. Firstly, if the user is interested to see which lines inside a specific file belong
to the feature, it is possible to double-click the node. This action will open the file
in the editor and the appropriate lines of code will be highlighted. It is also possible
to see the project relative path for the file in question by hovering with the mouse
over the node in the view. To get back from Figure 4.23 to 4.22 the user has to
double-click anywhere inside the view (except on the actual nodes) or zoom out.

The view will have slightly different behavior depending on if the selected features
are tangled with one another. Two features are said to be tangled if they are both
implemented in the same file. In Figure 4.24, multiple features have been selected,
namely BalanceReminder, Log, ExchangeRates, BIP70, and BlockChainSync. Unlike
Figure 4.22, there are file nodes in the initial view that connects to a feature node.
This implies that the features Log, BalanceReminder, and ExchangeRates are all
implemented in the file Configurations.java. It can also be noted that the feature
Log, does not have a connection to a nested graph node which the other feature
nodes have. This is because that feature is only implemented in a single file, namely
Configurations.java. All other features are implemented in additional files that
the others are not implemented in. As with the first view, if a user double-clicks
a file node, for instance SendCoinFragments.java, that file will be opened in the
editor and code belonging to BIP70 and ExchangeRates will be highlighted.

The same design philosophy, as outlined in Section 4.2.1, regarding taking advan-
tage of modularization was used here as well. Moreover, as detailed in Section 4.1.2,

29

4. Result

Figure 4.24: Feature-to-File view with multiple features selected.

one of the issues found with other views was that the number of connections made
the view difficult to interpret as there were, in some cases, too many connections.
Here, the choice was made to have connections from files to features so the user can
quickly gather an overview of the features that are tangled together and in which
files. As El Ahmar et al. [18] lists, there are a number of visual variables that can
be used in visual representations. Of these, brightness has been taken advantage of
when visualizing the connections in this view. As can be seen in Figure 4.24, some
of the connections are less bright than the others. By default, all connections are
made less bright and when a file node is selected, those connections will be made
brighter to clearly indicate which files belong to those features.

It is also important to note that in the case of Constants.java, for instance,
there could be more features located in this file but among the selected features,
only ExchangeRates and BlockChainSync are implemented in it.

4.3.3.3 Feature-to-Folder view

Figure 4.25: Feature-to-Folder
view with a single feature selected.

Figure 4.26: Feature-to-Folder view with
multiple features selected.

In this view, it is possible to see where in the folder structure one or more

30

4. Result

features are located. When selecting a feature, the folder structure will be created
and each folder will have a node with a connection to its parent folder. As with
all other views, the feature is represented by a node with a green background color.
A connection will be made between a feature and a folder node if the files that
the feature is implemented in are located in that folder. In Figure 4.25 the feature
IssueReporter has been selected and from the connections it is possible to deduce
that files implementing this feature are located in the folders wallet/wallet and
wallet/wallet/ui. An additional example where two features are selected can be
seen in Figure 4.26.

4.3.3.4 Metrics view

Similarly to Andam et al. [11], Feature Dashboard also offers a view that allows the
user to retrieve different types of metrics about the features located in a project.
Two abstraction levels were made for the metrics: feature and resource. The views
shown in figures 4.27 and 4.28 show metrics for features and resources respectively.

The metrics for each feature are the following:

Figure 4.27: Metrics for features.

• Lines of feature code (LOFC)
Counds the number of lines referenced by annotations in the code. When a
feature is mentioned in a .feature-file or .feature-folder the entire file is taken
into account.

• Number of File Annotations (NoFiA)
The number of entire files belonging to a feature as a result of .feature-file and
.feature-folder files.

• Number of Folder Annotations (NoFoA)
Number of entire folders that has been indicated to belong to a feature.

• Scattering degree (SD)

31

4. Result

Amount of in-file annotations referencing a feature (see Section 4.3.1), plus
NoFiA and NoFoA.

• Tangling degree (TD)
A feature is tangled if, in a file, there are multiple annotations referencing
different features. For instance, if a file has two annotations and they reference
different features, then the tangling degree for those features is increased by
one.

• Nesting depth (ND)
The project root has a depth of zero and for each folder, the depth increases by
one. The depth is also increased for every annotation block that the current
annotation is located inside. Maximum, average, minimum nesting depth is
provided for each feature as well.

• Number of authors (NoAu)
Amount of authors that contributed to a source file that the feature is located
in.

The metrics for resources are mostly the same as for features, however, there are
some differences. Firstly, the average is shown for LOFC, ND, TD, and SD. For
folders, the average is calculated over the number of files in that folder and for files,
the average is calculated over the number of features in the file. A metric introduced
for resources is the number of features (NoF) which shows the number of unique
features located in a folder/file. Lastly, it is also possible to see the number of files
(NoFi) for folders.

Figure 4.28: Metrics for folders/files.

4.3.3.5 Tangling view

One prominent point of feedback from the first evaluation (see Section 5.1), was the
lack of a view that showed which features a specific feature is tangled with. In the

32

4. Result

metrics view (see the previous section), it is possible to see the tangling degree for
a feature but it is not shown which features a feature is tangled with. As a result of
this feedback, the view shown in Figure 4.29 was conceived. By selecting a feature
from the Feature Dashboard View (see Section 4.3.3.1), it will show which features
the selected feature is tangled with. It is important to note that it only shows from
the perspective of the selected feature. As can be seen in Figure 4.29, there are only
connections to/from the selected feature which in this case is BackupReminder, but
not between any other features. This does not mean that they are not tangled, it
is simply because the decision was made only to show how the selected feature is
tangled with other features.

In previous views, the same visualization is used for feature nodes to quickly iden-
tify them. In this view, however, there are only feature nodes that are visualized. As
such, a concept described by Moody [16] is used, namely: perceptual popout. This
means that specific elements should ’pop-out’ or be distinguishable without con-
scious effort [16]. This is achieved by, firstly, using a layout algorithm called Spring
layout, which pushes connected nodes away from each other, it is possible to convey
which node is selected by connecting all tangled nodes with the selected node. Fur-
thermore, selected features are displayed in a different color, clearly distinguishing
them further.

Figure 4.29: Features tangled with BackupRe-
minder.

Figure 4.30: Common features
between two variants.

In this view, it is shown which features a feature is tangled with, however, there
is still information that might be interesting for a user that is missing. Particularly,
in which files/folders are the features tangled? As such, it is possible to double-click

33

4. Result

a connection between two features. This will open the Feature-to-File and Feature-
to-Folder view (see Section 4.3.3.2 and 4.3.3.3 respectively) with those two features
as a selection. Subsequently, it will allow the user to see in which files two features
are tangled in and see their location in the folder structure.

4.3.3.6 Common features view

An additional point of feedback from the first interview was being able to compare
two projects with one another and see which features are and are not shared between
them. Correspondingly, the view, Common features, was conceived (see Figure 4.30).
As can be seen, in the first column all unique features found between the two projects
are listed. Projects have a column each and in each cell, it is indicated if that feature
is present in that variant or not.

34

5
Evaluation

This chapter presents the result of the evaluations performed during the thesis.

5.1 Semi-structured interviews
In this section, the result of the interviews is presented. For each view, a short
description of the feedback will be presented and quotes taken from the interviews
will be presented where appropriate.

Feature-To-File. As can be seen from the following quote, this view was not
received positively and the usefulness of it was questioned. This was the case for all
subjects interviewed.

[...] with this functionality it does not seem to be necessary, but if it
could show which features depend on other features then it could be very
useful I think [...]

As can read from the quote, some useful feedback was received in how it could be
improved in the future.

Feature-To-Folder This view was received positively as subjects thought it gave
a good overview of the project. There was no specific point of feedback regarding
the view that the subjects thought was bad or needed improvement.

[...] It could be helpful as a complementary view to see where they exist
in the file structure [...]

Feature/Project metrics view Of the views presented, these views were the
views that received the most positive feedback. The ability to easily see each feature
in a project and sort on LOFC, TD, for instance, was highly appreciated.

[...] especially tangling. Is it possible to see which other features it is
tangled with?

When asked if any metric was missing none of the subjects had any suggestion, how-
ever, as can be read from the quote, subjects wanted a view where it was possible to
see which features are tangled. Furthermore, similarly to the TD, when subjects saw
the number of features found across for projects, they pointed out that firstly, when
summing features across projects, it should show the number of unique features.
Furthermore, they pointed out that offering a view that allows them to see common
features across the project was very important.

Feature Selection view. Regarding this view, there was no specific feedback
other than it was appreciated that it was very easy to select different features and
see information regarding them. Another positive feedback was that the features
in the view adapted to the way they are located in the feature model and if any

35

5. Evaluation

features were missing from it.
Concept Views. As can be seen in the interview protocol, some questions were

asked about the viewpoint of the subject regarding the ability to view the history of
a feature. As such, some of the concepts that were created (see Section 4.2.3) were
shown to gather their opinion and feedback. Subjects stated that this was indeed
something that they would want to have and that it would provide added value.
For instance, regarding Figure 4.17, it was suggested to show one specific metric
for all features instead of just showing one feature and comparing different metrics.
Moreover, another comment regarding Figure 4.15 was that the possibility to click
on a specific commit and directly see information about the state of the project at
this point in time should be available.

Overall. The feedback overall was positive and they all expressed that views
such as these would be helpful in their work merging variants into an SPL. Even
though it was not specifically evaluated, additional feedback regarding interactions
in the tool was received. Such as, that it should be possible to go from one view to
another by interacting with elements in the view.

5.2 Questionnaire
In this section, the result of the questionnaire is presented. Since the subjects were
going to use the tool themselves, there could be problems preventing them to use it.
As such, subjects had to indicate whether or not they had used the tool or simply
inspected the examples provided in the documentation. Having used the tool or not
is defined as having at least opened each view once and seen one example.

0 1 2 3 4 5 6 7
Student

Developer
7

1

Figure 5.1: Subjects’ background

0 1 2 3 4 5 6 7
No
Yes

1
7

Figure 5.2: If subjects used the tool before taking the questionnaire

5.2.1 Feature-to-File
There were two comments regarding this view, they were both pointing out problems
with the interaction of viewing additional files for a feature. Going back to the
overview after having seen additional files was the problem in both cases.

36

5. Evaluation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Strongly Agree
Agree

Neutral

Strongly Disagree
Disagree

2
6

0

0
0

Figure 5.3: I think the feature-to-file view was useful in tracing features to files
which implement them

0 1 2 3 4 5 6 7
Understandability

Maintainability
Variability management

SPL Development
Variant merging

7
5

3
4

2

Figure 5.4: I think the feature-to-file view will be helpful in the following aspects

5.2.2 Feature-to-Folder
Comments for this view was regarding the fact that when trying to view multiple
features, the view became too cluttered. It became too cluttered since there were
many connections, some of which overlapped other connections and nodes. One
subject suggested having connections between files and features in this view as well,
effectively merging Feature-to-File and Feature-to-Folder.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Strongly Agree
Agree

Strongly Disagree
Disagree
Neutral

1
5

0
1
1

Figure 5.5: I think the feature-to-folder view was useful in tracing features to
folders

5.2.3 Feature tangling view
One subject had a very positive comment about the view, which can be found below
while another stated that it provided a good overview but was not useful for specifics.

I really like the idea of visualizing feature entanglement this way! From
the example I find it fairly clear and legible. [...]

37

5. Evaluation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Understandability

Maintainability
Variability management

SPL Development
Variant merging

5
3

5
3

2

Figure 5.6: I think the feature-to-folder view will be helpful in the following
aspects

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Strongly Agree
Agree

Strongly Disagree
Disagree
Neutral

1
5

1
0

1

Figure 5.7: The Feature tangling view was effective in showing which features are
tangled together

0 0.5 1 1.5 2 2.5 3 3.5 4
Understandability

Maintainability
Variability management

SPL Development
Variant merging

4
3

2
1
1

Figure 5.8: I think the feature tangling view will be helpful in the following
aspects

5.2.4 Common features view
One of the comments pointed out that this view would not be useful if a subject
does not perform variability management.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Strongly Agree
Agree

Strongly Disagree
Disagree
Neutral

5
0

0
1

2

Figure 5.9: The Common Features view showing common features between
projects/variants was useful

38

5. Evaluation

0 1 2 3 4 5 6
Understandability

Maintainability
Variability management

SPL Development
Variant merging

5
3

6
4
4

Figure 5.10: I think Common Features view will be helpful in the following
aspects

5.2.5 Metrics view
Comments pointed out that there should have been further explanation of the met-
rics and that it was not appreciated that there were only numbers in the view and
no lines indicating the different rows.

0 0.5 1 1.5 2 2.5 3 3.5 4

Strongly Agree
Agree

Strongly Disagree
Disagree
Neutral

1
1

1
1

4

Figure 5.11: I thought that the metrics offered on a Feature-level provided useful
information

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Strongly Agree
Agree

Strongly Disagree
Disagree
Neutral

1
2

1
2
2

Figure 5.12: I thought that the metrics offered on a Project-level provided useful
information

5.2.6 General
At the end of the questionnaire, subjects were asked if any views or functionality
was missing, but there was no feedback in this regard. Subjects were also asked if
they had previous experience with any other feature-location tool and the advan-
tages/disadvantages regarding it. This was to understand if anything can be learned
or avoided from already established tools. Four subjects indicated that they had
previous experience with FeatureIDE and had the following to say.

39

5. Evaluation

Easy to track features in the code

best tool in its domain that i found, but buggy and resource-intensive

FeatureIDE is quite mature and fully formed

Subjects were also asked which views are essential for feature-traceability. Each
subject answered that they thought a view where features are traced to files is
needed. A view which helps to trace features to folders received six votes, five
thinks a view is needed of how features are tangled with each other, a view which
lets a user see common features between projects is required by four subjects, and
lastly, two subjects think a metrics view is needed.

Additionally, in questions about the usability of the tool were included in the
questionnaire. These questions were in line with the SUS usability assessment which
is a ’quick and dirty’ way of assessing the usability of the tool [31]. For each question
there are five different possible answers, ranging from ’Strongly agree’ (SA) which is
a score of five, to ’Strongly disagree’ (SD) which is a score of one [31]. The following
questions are a part of the usability assessment.

1. I think that I would like to use the tool frequently
2. I found the tool unnecessarily complex
3. I thought the tool was easy to use
4. I think I would need the support of a technical person to be able to use this

tool
5. I found the various functions in this tool well integrated
6. I thought there was too much inconsistency in this system
7. I would imagine most people would learn to use this tool very quickly
8. I found the tool very cumbersome to use
9. I felt very confident using the tool
10. I needed to learn a lot before I could get going with the tool

[31].

Question
Answer SA A N D SD

1 2 2 2 1
2 1 4 2
3 4 2 1
4 2 5
5 4 2 1
6 4 1 2
7 1 3 2 1
8 1 1 4 1
9 1 6
10 1 1 3 2

Table 5.1: Subjects’ opinion regarding the usability of Feature Dashboard

40

5. Evaluation

The following is done to calculate the score: for each odd question the score is
subtracted by one, for each even-numbered question the score is subtracted from
five, then the total is multiplied by 2,5 and when this is done for each subject, an
average is calculated [31]. Using the values in Table 5.1, the calculated score for
Feature Dashboard is 65,71.

5.3 Scalability
At this point, the usability of both views and tool have been evaluated. In this
section, a controlled experiment is presented where the scalability of the views is
tested from a performance perspective. The views that were tested are the same as
were being evaluated in the second usability evaluation.

As the plugin is written in Java, to get precise measurements of the initialization
time, the standard Java library method System.currentTimeMillis() was used.
When this method is called, a timestamp in milliseconds is returned which allows
measuring the time elapsed between two points. As such, all the numbers displayed
in tables is the time elapsed in milliseconds, except for one exception.

The value for the independent variable was in all cases (except for Feature Dash-
board view and metrics view), decided by increasing it until the tool either was
unresponsive, crashed or ran out of memory. Then, the value was decreased until a
stable execution could be performed and two additional decrements were made to
the independent variable in order to provide additional coverage.

These tests were performed on a virtual machine running Microsoft Windows 10.
The virtual machine had access to two processor cores which are clocked at a 2GHz
base frequency, with a boost frequency of 3.10GHz and a total of 4GB of RAM.

5.3.1 Feature Dashboard View
As can be seen in Table 5.2, the independent variable is the total lines that were
searched (each line was 50 characters long unless an annotation was specified on
it). Note that during these tests, there were 12,000 annotations found across the
lines searched to simulate a real-world project. The reasoning behind this number
originates from the paper by Andam et al. [11], in which, an automated feature-
location tool is suggested that places the same feature annotations in the code as
is read by Feature Dashboard. Executing the tool on a project with 3,200,000 lines
of code, just over 6,000 annotations were placed in source files [11]. Assuming that
feature-location tools have low accuracy (see Section 2.5.2), the double amount of
annotations were considered in this test.

Lines Run 1 Run 2 Run 3 Run 4 Run 5 Average
250,000 6678 6420 6218 6673 8924 6983
500,000 19522 19473 19076 18576 19100 19149
1,000,000 66412 67927 66879 69239 67497 67591

Table 5.2: Measurements for feature dashboard view in milliseconds

41

5. Evaluation

5.3.2 Feature-file
For the Feature-to-File view (see Section 4.3.3.2), there were two tests performed.
One test to measure the time it takes to view all files that belong to a feature by
clicking on the nested node connected to a feature. For this test, the independent
variable was the number of files belonging to a feature. The time measured, was when
a user clicks to see the files belonging to a feature and when all files are displayed.
For this test, it was not possible to measure the time programmatically, since the
implementation for this functionality is a part of the visualization library and thus
not accessible. As such, the time was measured in seconds using a stopwatch on a
mobile phone. The results can be found in Table 5.3. The second test measured
the time it takes to view two features if they are tangled together in many files. As
such, the independent variable was the number of files two features are tangled in.
The result for the second test can be found in Table 5.4.

Files Run 1 Run 2 Run 3 Run 4 Run 5 Average
500 ∼6 ∼12 ∼6 ∼4 ∼7 7
1000 ∼9 ∼11 ∼7 ∼9 ∼9 9
1500 ∼12 ∼14 ∼12 ∼12 ∼10 12

Table 5.3: Measurements for viewing files implementing a feature in seconds

Tangled files Run 1 Run 2 Run 3 Run 4 Run 5 Average
250 5622 6835 5785 5529 6339 6022
500 16089 13339 12316 12318 12382 13288
750 18407 20922 22329 18488 21001 20229

Table 5.4: Measurements for viewing features if tangled in milliseconds

5.3.3 Feature-to-Folder
The Feature-to-Folder view (see Section 4.3.3.3) visualizes the folder structure and
the folders in which a feature is located in, as such, the independent variable was
the number of folders that have to be visualized when viewing a feature. The results
can be inspected in Table 5.5.

Folders Run 1 Run 2 Run 3 Run 4 Run 5 Average
250 4541 2718 2132 3141 1665 2839
500 8569 5084 4099 4373 4187 5262
1000 12251 12361 11348 10610 12035 11721

Table 5.5: Measurements for feature-to-folder in milliseconds

5.3.4 Feature tangling view
This view (see Section 4.3.3.5) visualizes features that are tangled with another
feature. As such, the independent variable is the number of features tangled together

42

5. Evaluation

in a file. The measurements can be inspected in Table 5.6.

Tangled features Run 1 Run 2 Run 3 Run 4 Run 5 Average
250 5410 3539 3581 3525 3532 3917
500 16089 13339 12316 12318 12382 13288
750 21898 21775 25972 23834 22665 23229

Table 5.6: Measurements for feature tangling view in milliseconds

5.3.5 Common features
By analyzing this view (see 4.3.3.6), a user can find which features are shared be-
tween two or more projects. For this test, three different projects were created that
each shared a number of features (which is the independent variable). The results
in Table 5.7 shows the initialization time to view the common features when the
third project is selected.

Common features Run 1 Run 2 Run 3 Run 4 Run 5 Average
1000 1845 1810 1836 1846 1886 1844
2000 5510 6193 5125 5146 5153 5425
3000 8588 7293 7341 7319 7422 7593

Table 5.7: Measurements for common features view in milliseconds

5.3.6 Metrics view
This view allows a user to view metrics for features and feature metrics for resources.
In order to simulate a project, there were 100 folders and 250 files created for which
metrics would have to be calculated. The independent variable was the number of
features per file. To view the results, see Table 5.8.

Features per File Run 1 Run 2 Run 3 Run 4 Run 5 Average
25 2525 1428 1117 1121 1273 1504
50 7809 5211 5713 4392 5645 5754
100 29788 34290 28652 35132 29625 31497

Table 5.8: Measurements for viewing metrics in milliseconds

43

5. Evaluation

44

6
Discussion

In this chapter, different parts of the thesis are discussed.

6.1 Result
The main point of discussion regarding the result is the absence of a view that al-
lows the user to inspect the evolution of a feature. Still, there was a view created
(see Figure 6.1), which shows how metrics have changed over time for a feature.
However, due to time constraints, the process in which information is gathered for

Figure 6.1: How a feature’s LOFC has changed over commits.

a feature could not be made to work consistently. Therefore, the view is still under
development and not available to users. One factor that is thought to contribute to
the inconsistency is that Git is integrated into Eclipse. As such, Eclipse will auto-
matically perform Git commands as soon as a change is detected. Which commands
executed are not know and therefore it is hard to determine if it affects the process
negatively or not. Regardless of what might affect the result, more work is required.

As detailed in Section 4.2.3, agile is one of the most popular workflows used
by software development teams today. Agile workflows encourage small commits
and therefore, a lot of commits have to be inspected. An observation made during
development was that it takes significant time to checkout each commit. For large-
scale projects, it would be a time-consuming task. To mitigate this issue, users
could specify how many commits back (to an upper limit) they are interested in.

45

6. Discussion

However, looking at just a few commits has proven to be a time-consuming process.
Another problem with performing checkout on each commit is that an index.lock
file will be created. This indicates that a process is currently modifying the index
file and therefore other processes are blocked from doing similar tasks, this includes
the developer as well.

6.2 Evaluation
In this section, the evaluations that were performed during the thesis are discussed.

6.2.1 Interviews
These interviews were a success, as they produced useful information which resulted
in new views and improvements to existing ones. An interesting observation is that
the first concepts created for Feature-to-File (see Section 4.2.1), offers what subjects
thought were missing from the evaluated view. Namely, the possibility to see if
features are tangled with one another and in which file.

Since participating subjects already used a tool based on Eclipse, useful feedback
on what to avoid was also received in this regard. One of these points of feedback
was when interacting with elements in a view, another view with relevant infor-
mation should be opened automatically. This inspired the interaction between the
Feature Tangling and Feature-to-File views, however, there could be more of these
interactions added.

6.2.2 Questionnaire
An interesting observation is that in the first evaluation, one of the views that re-
ceived the most negative feedback was Feature-to-File. For this evaluation, however,
it was one of the most appreciated. Though, there were some problems with going
back and forth between the two different ’views’ which should be improved further
by, for instance, adding a button with can be pressed to go back and forth.

One of the views that were least appreciated was Feature-to-Folder. Mainly it
seems to be a problem with how nodes are placed in the view. At the moment, a
tree layout algorithm is utilized to position the nodes which do not allow for the
separation of nodes. The feature nodes will, as a result, be considered as folder nodes.
A straightforward improvement would be to write an algorithm that can make this
distinction to position the nodes correctly. There was one comment that would like
to, effectively, merge Feature-to-File and Feature-to-Folder. However, if Feature-to-
Folder in its current state, was considered too cluttered, then combining these two
views would most likely lead to the same feedback. One possible solution is to allow
users to double-click a connection between a feature and a folder node. Subsequently,
all files located in that folder belonging to the feature would be presented.

Regarding the metrics view, there seem to be two main problems. Firstly, the
metrics shown in the view were not explained enough. Which could be fixed by
contributing to the built-in help page in Eclipse, offering a more comprehensive
explanation of the metrics. Secondly, not including visual aids to track metrics to

46

6. Discussion

either features or resources was not appreciated. This can be fixed by, for instance,
coloring rows in two alternating colors.

There was one developer that participated in the questionnaire. As such, this
feedback was inspected individually to see if there were any differences in the feed-
back received compared to students. However, there were no significant differences
observed. The same was done for the subject that did not use the tool before taking
the questionnaire, however, there was no significant difference here either.

There were four subjects that indicated that they had previously used a feature-
traceability tool and everyone indicated that this tool was FeatureIDE. Inspecting
the comments regarding the perceived advantages and disadvantages of FeatureIDE,
it is possible to understand why. Such that it is fully formed, it is easy to trace
features in the code, and that it is the best tool in the domain. However, FeatureIDE
is extensive and has a collection of multiple different tools and a downside to this
is as can be read, it is resource intensive and ’buggy’. Due to these facts, one way
that Feature Dashboard can set itself apart from FeatureIDE and steal away users,
could be to focus specifically on feature-traceability and keeping the tool as resource
inexpensive as possible.

When inspecting the score obtained from the SUS test, it reveals that the us-
ability is considered ’poor’ but on the border of being ’good’ [32, 33, 34]. Since it
was not the scope of this thesis to achieve excellent usability, the result is considered
good enough. However, it does show that there is ample room for improvement.

6.2.3 Scalability tests

Since it is expected that this tool will be used a majority of the time when a developer
is writing code, initializing views and provide a visualization regarding a specific
aspect of a feature cannot take to long. The results for Feature Dashboard view and
the metrics view are the views that require the most time to initialize. However,
these views are intended to be initialized only once or twice per session. As an
example, once the project has been parsed, there is no need to do it again for some
time. When it comes to Feature-to-File view, for instance, this is a view that the
user will interact with constantly. As such, if the initialization is too long, then it
will not be a pleasant experience using it. Inspecting the result for these views, it
can be identified that the views in some cases require a moment to initialize. In
Section 5.3.1, an example was given of how many annotations were present in a
large-scale project. An additional number to keep in mind was that for this project,
there were only 43 unique features identified [11]. As such, the results are considered
acceptable.

6.3 Threats to validity

In this section, different threats against the different aspects of the thesis are dis-
cussed.

47

6. Discussion

6.3.1 Result
Not finding already suggested work when executing the literature survey is a sig-
nificant threat. These papers could potentially have suggested extremely important
lessons or information that could have been useful to know in advance.

Another threat against validity is the number of evaluated design iterations. As
can be seen in Chapter 5, two iterations were evaluated. Performing more evalua-
tions allows for more feedback to be considered when designing views. The reasoning
as to why only two iterations were evaluated, was due to the back-end development
of the plugin required more time than expected.

6.3.2 Interviews
In this section, threats against the internal validity regarding the semi-structured
interviews were held are discussed.

6.3.2.1 Internal

One of the variable that was thought of that was going to affect the result of the eval-
uation was the unfinished tool. As such, subjects did not directly use the tool. The
interviewer demonstrated different examples when the subjects were told to focus on
the contents in the views instead of how interaction is the tool worked. Therefore,
any impact unfinished interactions in the tool would have had on the result was re-
moved. Furthermore, the interviews were recorded and later transcribed, removing
the possibility of feedback being misinterpreted or changed when compiled.

Another potential threat regarding the validity, as can be reading the protocol
in Appendix A.2, is the leading nature of the questions that were asked which could
have affected the feedback that was received. However, this evaluation was used
solely as a means to obtain feedback on the views and to start a discussion between
the interviewer and interviewee. As such, the threat to validity is considered to be
low in this regard.

6.3.3 Questionnaire
In this section, threats against the external and internal validity for the questionnaire
tests are discussed.

6.3.3.1 Internal

When evaluating the views for a second time, as with the first evaluation, a possible
threat against the internal validity was the interaction with the tool. For instance,
if the views received poor feedback, it is not possible to say if the tool had affected
that result negatively or positively. Therefore, the SUS test was included in the
questionnaire. With the addition of these questions, it was possible to separate the
feedback of the tool and views. If the tool received an excellent usability score while
the views were received negatively it is possible to say that the tool did not affect
the views negatively, for example. Furthermore, subjects would have to think twice
if something applies to the views or the tool.

48

6. Discussion

Additionally, subjects received documentation regarding the functionality of the
views/tool so that unintended behavior would not be interpreted as intended behav-
ior and vice versa. This is normally not a problem during interviews since there is
a constant dialog between interviewer and interviewee, but here it has to be stated
explicitly. However, if subjects do not read the documentation before using the tool
then there is nothing to stop this.

Even though any potential subject was heavily urged to use the tool, in the
event where it would not be possible it was still allowed to provide feedback. It was
permitted since in the documentation and in the questionnaire, there were examples
of all views which subjects could inspect. Additionally, subjects had to mark if they
had used the tool or not in the questionnaire. This enables an analysis of the result
afterward to see if a subject who had not used the tool has had a different experience
as suppose to treat all answers equally. For instance, it would have to be highlighted
if complete opposite feedback had been received from subjects who had or had not
used the tool.

6.3.3.2 External

Considering the size of the population, which is developers that would like to get
more information about a project in terms of its features, experienced developers
and inexperienced developers alike. Eleven subjects that were included during the
evaluations are not enough to make any significant claims regarding the generaliz-
ability of the entire population. However, increasing the generalizability slightly, is
the fact that subjects were using the tool on their own in the second evaluation.
With no predetermined example which was followed, the result can be generalized
on more scenarios.

6.3.4 Scalability tests
In this section, threats against the external and internal validity for the scalability
tests are discussed.

6.3.4.1 Internal

Since the computer on which the tests were executed on had limited performance, the
greatest threat against the internal validity is in the event when another background
process that consumes a lot of processing power is running. Instead of the tool being
able to take advantage of, for instance, 70 percent of the processing power it might
now only have access to 30 percent. Since it can not be completely determined if
there was something that interfered with the test, five runs were executed for each
test and then the average was calculated.

6.3.4.2 External

The results can be generalized onto different projects since it is shown how long
the initialization time is, depending on a specific variable. However, this does not
apply as much for the metrics view since this view depends on variables that shift

49

6. Discussion

drastically from project to project. Moreover, the results can not be generalized
on different computer configurations because changing the processing and memory
capabilities will affect the results.

6.4 Research questions
The first research question asked was the following.

RQ1: What feature-traceability views have been proposed in literature?

As can be inspected in Section 4.1.1, views that have been previously been proposed
in literature are presented. A common visualization technique is to assign colors to
features and then different parts of the view are color coded which allows a user to
associate the resource with features and, as a result, trace features to their location.
Andam et al. [11] suggested a slightly different approach in tracing features to files
by utilizing a graph and indicating that a feature is implemented in a file as an edge
between two nodes. Antoniol et al. [1] also suggests views that takes advantage
of a slightly different approach. The views presented takes advantage of 3D visu-
alizations and allows a user to see how a feature has evolved in the code, for instance.

The second research question asked was the following.

RQ2: What information regarding features is required to realize views
that provide added value?

Therefore, for each view that was implemented in Feature Dashboard, an explanation
regarding what type of information that is required in order to visualize them are
presented.

• Feature-to-File
The obvious thing that is required, is the ability to in some way associate a
feature with a file. The view also offers the possibility to allow the user to
view if two or more selected features are implemented in the same file. In
order to visualize this, all of the locations for all the selected features have to
be obtained and then it also has to be known for each location, which files it
is implemented in. When double-clicking a file node, an editor will be opened
and the relevant feature code will be highlighted. For this, it is necessary to
save, for each location, the start and end line of a block annotation or just
the line of a single line annotation. Furthermore, if a feature is mapped to
an entire file, either through a .feature-file or .feature-folder file, the
amount of lines for that file needs to be known to highlight the entire file. To
open the file in the editor, a direct reference to that file object in Eclipse also
has to be stored for each location.

• Feature-to-Folder
When a feature is selected, all folders that either contain files that belong to
a certain feature or if an entire folder has been mapped to a feature needs to

50

6. Discussion

be visualized. This requires all the locations for a specific feature to be known
and the parent folder all the way to the project root. When this is known, it
is possible to display the view.

• Feature metrics
In order to visualize this table and to calculate the different metrics shown
in the view, a number of various types of information regarding each feature
are required, such as: amount of features in the same file, the amount of an-
notations for a feature, how many .feature-file/folder files are used to
associate a feature to either a folder/file, at which depth is the file located in
the folder structure, and what depth is the feature annotation nested at.

• Feature tangling
In order to visualize this view, all feature locations for all features in the project
has to be known. Then, examine whether these features are implemented in
the same files as the selected feature. If this is the case, then there should be
a connection visualized between the two nodes. In this view, it is also possible
to double-click a connection and then Feature-to-File and Feature-to-Folder
view will be opened. As such, the information required by those two views
needs to be stored as well.

• Common features
Here, all features for two or more projects have to be known, which allows de-
termining all unique features. Then, check if a feature is present in a project
or not.

The last and third research question was the following.

RQ3: Do the implemented views support feature-traceability and other
feature related problems?

In order to answer this question, subjects either used the tool or inspected examples
of the views provided in Feature Dashboard and then answered a questionnaire.
The questionnaire allowed subjects to specify to which extent they agreed with a
specific statement. Furthermore, it was also possible to indicate whether or not
it was perceived that the views helped with other feature related problems such
as understandability, maintainability and variant merging. Before discussing the
result for each view, remember that feature-traceability is defined as the ability to
trace features and the different aspects of it in code, such as location, size, and
dependencies. For Feature-to-file, all subjects either agreed and strongly agreed
that the view helped tracing features to files and it was indicated that it helped
with other aspects, with understandability being the most common answer which
all except for one agreed with. Feature-to-Folder was also received positively, except
for two subjects that did not agree that it was useful in tracing feature to folders.
While subjects indicated that the view was helpful in a lot of other aspects, it was not
as positively received as Feature-to-File. Similarly to Feature-to-Folder, six subjects

51

6. Discussion

either agreed or strongly agreed that feature tangling view was effective in showing
which features are tangled together. There were also subjects who indicated that
this view would be helpful in other aspects. For common features view, five subjects
strongly agree that the view was useful. Subjects also thought that this view helped
them regarding other feature related problems. Lastly, the metrics view was not
received as positively as the other views, however, there were still subjects that
either agreed or strongly agreed that the metrics were useful. To then answer the
question, yes, the views implemented support feature-traceability and other feature
related problems based on the result gathered from the questionnaire.

52

7
Conclusion

In this thesis, a tool is presented which proposes views that aim to improve feature-
traceability. Feature-to-File allows the users to trace features to files in which they
are implemented in, Feature-to-Folder allows the user to see where a feature is lo-
cated in the folder structure of a project, Feature Tangling allows the user to identify
features that are implemented in the same file(s) as another feature, Common Fea-
tures allows the user to compare projects with each other and spot which features
are shared between them, and Metrics View allows the user to view metrics about
each feature in a project and also inspect feature metrics for each folder/file.

The result was achieved by first performing a literature survey, investigating
the state-of-the-art in feature-traceability research. The findings were analyzed and
there were identified issues with the suggested approaches. These issues included:
an over-dependence of colors, providing poor overview of the project, and visual
bloat. With the result of the literature survey in mind, concept views were created
which served as a creative process but also an inspiration for future development.
Afterward, by utilizing a design science methodology, the aforementioned views were
conceived. However, firstly, the foundations for an open source plugin for the IDE
Eclipse called Feature Dashboard were created. Subsequently, appropriate views were
realized in this plugin which allows the user to import a project and analyze features
located in the project. As Feature Dashboard is open source, it offers a platform for
future researchers to implement new and interesting views or to compare the results
of Feature Dashboard against other implementations, for instance. Furthermore, it
can easily be adopted by a developer who could either use the tool or contribute to
the development.

At the end of the thesis, Feature Dashboard was evaluated, and it shows, while
the interactions in the tool need improvement, that the views proposed do help
users with feature-traceability, understandability, maintainability, and other feature
management related tasks. Additionally, scalability tests were performed which
provides benchmarks for the initialization time of the views.

7.1 Future Work
Feature Dashboard is, at the moment, only provided as a plugin in Eclipse. It is
intended to offer Feature Dashboard as a lightweight Eclipse standalone, which only
contains Feature Dashboard and other essential features such as an editor. The idea
is that users who are not using Eclipse as their main IDE will be incentivized to use
the tool without having to download Eclipse in its entirety. Furthermore, if someone

53

7. Conclusion

is interested in the metrics that Feature Dashboard can calculate for a project, but
does not want to use the views, it is also intended to extract this part of the plugin
as a command line tool.

In Section 5.3, a scalability evaluation was performed where the initialization
time of the views in the plugin was tested. However, as the input scales, are the views
still usable? This is an entirely different question that also needs to be answered.

Continuing to improve views and adding functionality to Feature Dashboard is
also a priority. Improvements to the views include taking more advantage of more
visual variables like size, brightness, texture, orientation, and shape [17], among
others. An example where this can be applied to further enhance the views is in
Feature-to-Folder. At the moment, if a feature is located in two separate folders,
it is not clear as to how many files belong to this feature in those two folders. In
one folder, there can be one file while in the other, there are a dozen, for instance.
Using size, it would be possible to change the connections depending on how many
files there are in those folders. Additionally, continuous improvement for the history
view is needed so data can be collected consistently. Moreover, as detailed in the
previous chapter, one potential issue with retrieving history is that it would take a
significant amount of time for large projects. Therefore, it would be important to
implement this view and evaluate how long users would be willing to wait for the
history of a feature to be established.

54

Bibliography

[1] G. Antoniol, E. Merlo, Y.-G. Guéhéneuc, and H. Sahraoui, “On feature trace-
ability in object oriented programs,” in Proceedings of the 3rd international
workshop on Traceability in emerging forms of software engineering. ACM,
2005, pp. 73–78.

[2] W. Ji, T. Berger, M. Antkiewicz, and K. Czarnecki, “Maintaining feature trace-
ability with embedded annotations,” in Proceedings of the 19th International
Conference on Software Product Line. ACM, 2015, pp. 61–70.

[3] J. Wang, X. Peng, Z. Xing, and W. Zhao, “How developers perform feature lo-
cation tasks: a human-centric and process-oriented exploratory study,” Journal
of Software: Evolution and Process, vol. 25, no. 11, pp. 1193–1224, 2013.

[4] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker,
M. Chechik, and K. Czarnecki, “What is a feature?: a qualitative study of
features in industrial software product lines,” in Proceedings of the 19th Inter-
national Conference on Software Product Line. ACM, 2015, pp. 16–25.

[5] P. Shaker, “Feature-oriented requirements modelling,” in Proceedings of the
32Nd ACM/IEEE International Conference on Software Engineering - Volume
2, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 365–368. [Online].
Available: http://doi.acm.org/10.1145/1810295.1810394

[6] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of feature
models 20 years later: A literature review,” Information systems, vol. 35, no. 6,
pp. 615–636, 2010.

[7] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Enhanc-
ing clone-and-own with systematic reuse for developing software variants,” in
2014 IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 391–400.

[8] J. Krüger, T. Berger, and T. Leich, “Features and how to find them: A survey
of manual feature location,” in Software Engineering for Variability Intensive
Systems: Foundations and Applications. LLC/CRC Press, 2018.

[9] T. M. Shaft and I. Vessey, “The role of cognitive fit in the relationship between
software comprehension and modification,” Mis Quarterly, pp. 29–55, 2006.

55

http://doi.acm.org/10.1145/1810295.1810394

Bibliography

[10] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in source
code: a taxonomy and survey,” Journal of software: Evolution and Process,
vol. 25, no. 1, pp. 53–95, 2013.

[11] B. Andam, A. Burger, T. Berger, and M. R. Chaudron, “Florida: Feature
location dashboard for extracting and visualizing feature traces,” in Proceedings
of the Eleventh International Workshop on Variability Modelling of Software-
intensive Systems. ACM, 2017, pp. 100–107.

[12] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding program comprehension by
static and dynamic feature analysis,” in Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01). IEEE Computer Society,
2001, p. 602.

[13] R. Longhurst, “Semi-structured interviews and focus groups,” Key methods in
geography, vol. 3, pp. 143–156, 2003.

[14] D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-
K. Liborg, and A. C. Rekdal, “A survey of controlled experiments in software
engineering,” IEEE transactions on software engineering, vol. 31, no. 9, pp.
733–753, 2005.

[15] A. Hevner and S. Chatterjee, “Design science research in information systems,”
in Design research in information systems. Springer, 2010, pp. 9–22.

[16] D. Moody, “The “physics” of notations: toward a scientific basis for construct-
ing visual notations in software engineering,” IEEE Transactions on software
engineering, vol. 35, no. 6, pp. 756–779, 2009.

[17] Y. El Ahmar, X. Le Pallec, S. Gérard, and T. Ho-Quang, “Visual variables in
uml: a first empirical assessment,” in Human Factors in Modeling, 2017.

[18] Y. El Ahmar, S. Gérard, C. Dumoulin, and X. Le Pallec, “Enhancing the
communication value of uml models with graphical layers,” in 2015 ACM/IEEE
18th International Conference on Model Driven Engineering Languages and
Systems (MODELS). IEEE, 2015, pp. 64–69.

[19] “Revamp2 - round-trip engineering and variability management platform and
process,” http://www.revamp2-project.eu/, accessed: 2019-03-20.

[20] C. Kästner, S. Trujillo, and S. Apel, “Visualizing software product line vari-
abilities in source code.” in SPLC (2), 2008, pp. 303–312.

[21] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and
S. Apel, “Featureide: A tool framework for feature-oriented software develop-
ment,” in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009, pp. 611–614.

[22] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich, and G. Saake, Mas-
tering Software Variability with FeatureIDE. Springer, 2017.

56

http://www.revamp2-project.eu/

Bibliography

[23] M. Stengel, M. Frisch, S. Apel, J. Feigenspan, C. Kastner, and R. Dachselt,
“View infinity: a zoomable interface for feature-oriented software development,”
in 2011 33rd International Conference on Software Engineering (ICSE). IEEE,
2011, pp. 1031–1033.

[24] S. Apel and D. Beyer, “Feature cohesion in software product lines: an ex-
ploratory study,” in 2011 33rd International Conference on Software Engineer-
ing (ICSE). IEEE, 2011, pp. 421–430.

[25] J. Feigenspan, M. Papendieck, C. Kästner, M. Frisch, and R. Dachselt, “Fea-
turecommander: colorful# ifdef world.” in SPLC Workshops, 2011, p. 48.

[26] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze, R. Dachselt, M. Pa-
pendieck, T. Leich, and G. Saake, “Do background colors improve program
comprehension in the# ifdef hell?” Empirical Software Engineering, vol. 18,
no. 4, pp. 699–745, 2013.

[27] “Gef - graphical editing framework,” https://www.eclipse.org/gef/, accessed:
2019-05-07.

[28] “Version control systems popularity in 2016,” https://rhodecode.com/insights/
version-control-systems-2016, accessed: 2019-05-09.

[29] K. Bak, “Clafer: a unified language for class and feature modeling,” Technical
report, Generative Software Development Lab, Tech. Rep., 2010.

[30] M. Antkiewicz, K. Bak, A. Murashkin, R. Olaechea, J. Hui, and K. Czarnecki,
“Clafer tools for product line engineering.” in SPLC Workshops, 2013, pp. 130–
135.

[31] J. Brooke, “Sus-a quick and dirty usability scale,” Usability evaluation in in-
dustry, vol. 189, no. 194, pp. 4–7, 1996.

[32] “System usability scale (sus),” https://www.usability.gov/how-to-and-tools/
methods/system-usability-scale.html, accessed: 2019-04-28.

[33] H. Alathas, “How to measure product usability with the
system usability scale (sus) score,” https://uxplanet.org/
how-to-measure-product-usability-with-the-system-usability-scale-sus-score-69f3875b858f,
accessed: 2019-05-28.

[34] “Measuring and interpreting system usability scale (sus),” https://uiuxtrend.
com/measuring-system-usability-scale-sus/, accessed: 2019-05-28.

57

https://www.eclipse.org/gef/
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://uxplanet.org/how-to-measure-product-usability-with-the-system-usability-scale-sus-score-69f3875b858f
https://uxplanet.org/how-to-measure-product-usability-with-the-system-usability-scale-sus-score-69f3875b858f
https://uiuxtrend.com/measuring-system-usability-scale-sus/
https://uiuxtrend.com/measuring-system-usability-scale-sus/

Bibliography

58

A
Appendix

In the appendix things that can be good for the reader to know or that provide
additional value are listed.

A.1 Views

In this section, examples of the views shown to subjects during the semi-structured
interviews are shown.

Figure A.1: Feature-to-File

I

A. Appendix

Figure A.2: Feature-to-Folder

Figure A.3: Feature list

II

A. Appendix

Figure A.4: Feature metrics

A.2 Evaluation 1 protocol
In this section, the protocol that was used during the semi-structured interview is
presented.

Listing A.1: Interview protocol
Feature Selection View
Q: What did you think of the Feature list view?

Q: Were there any features missing from this view?

Q: If anything , what would you have changed ?
Feature-to-File View
Q: What did you think of the feature -to -file view?

III

A. Appendix

Q: Was the view successful in enabling
feature - traceability ?

Q: What would you like to see changed with the view and why?

Q: Would you also like to have tree -list version ?

Feature-to-Folder View
Q: What did you think of the feature -to - folder view?

Q: Was the view successful in enabling
feature - traceability ?

Q: What would you like to see changed with the view and why?

Feature Metrics View
Q: What did you think of the Feature metrics view?

Q: Did you find these metrics useful ?

Q: Is there any metrics that you thought were missing ?

Q: Any additional functionality that you were missing ?

Project Metrics View
Q: What did you think of the Project metrics view?

Q: Did you find these metrics useful ?

Q: Is there any metrics that you thought were missing ?

Q: Any additional functionality that you were missing ?

History Metrics view
Q: Is it important for you to understand how a feature
has evolved over time in terms of the metrics presented
in the Feature / Project metrics view?

History Branch/Project View
Q: What did you think of this view?

Q: Any functionality that you think is missing ?

Overall feedback
Q: What were your impressions of the tool? Do you think
that it could be useful in your type of workflow ?

Q: Were there any views that were missing ?

Q: Is this a type of tool that you could see yourself using?

Q: This of the use case that this tool could be used for is
general understandability and maintainability of software .
If you were for instance a new developer and would have to
get to know a codebase better , would you think that this
tool would help you understand the codebase faster ?

IV

A. Appendix

Q: Do you think that the maintainability of a codebase would be
improved with a tools such as this?

V

	List of Figures
	List of Tables
	Listings
	Introduction
	Context
	Problem
	Tracing features
	Understandability
	Maintainability
	Visualizing feature-to-code traces

	Goal
	Purpose
	Method
	Outline

	Background
	What is a feature?
	Software product line
	Feature model
	Clone & own
	Trace recovery
	Manual
	Automated

	Methodology
	Research Questions
	Thesis workflow
	Literature survey
	Search process
	Paper relevance
	Paper contents

	Evaluation
	Semi-structured interviews
	Questionnaire
	Controlled experiments

	Design Science
	Problem relevance
	Design as a search process
	Design as an artifact
	Design evaluation
	Research contributions

	Result
	Literature survey
	Result
	Identified issues
	Colors
	Visual bloat
	Overview

	Initial views
	Feature-to-File
	Feature-to-Folder
	History
	Determining delta
	Concepts

	Feature dashboard
	Annotations
	Mapping files
	Views
	Feature Dashboard View
	Feature-to-File view
	Feature-to-Folder view
	Metrics view
	Tangling view
	Common features view

	Evaluation
	Semi-structured interviews
	Questionnaire
	Feature-to-File
	Feature-to-Folder
	Feature tangling view
	Common features view
	Metrics view
	General

	Scalability
	Feature Dashboard View
	Feature-file
	Feature-to-Folder
	Feature tangling view
	Common features
	Metrics view

	Discussion
	Result
	Evaluation
	Interviews
	Questionnaire
	Scalability tests

	Threats to validity
	Result
	Interviews
	Internal

	Questionnaire
	Internal
	External

	Scalability tests
	Internal
	External

	Research questions

	Conclusion
	Future Work

	Appendix
	Views
	Evaluation 1 protocol

