

Implementation of NFS functionality
in a 10G Ethernet based embedded field recorder in the domain of

professional video storage

Master of Science Thesis in Integrated Electronic Systems Design program

HOANG NGUYEN

Department of Computer Science and Engineering

Division of Computer Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, November 2014

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Implementation of NFS functionality

in a 10G Ethernet based embedded field recorder in the domain of professional video

storage

HOANG NGUYEN

© HOANG NGUYEN, November 2014.

Examiner: LARS SVENSSON

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden, November 2014

Abstract

The objective of this thesis project is to integrate a hardware-based network file system (NFS)

functionality module into an existing FPGA-based network file interface (NFI) system - a

project currently under development at Technicolor Hannover. In order to support the NFS

functionality, a data transfer mechanism between the NFI system on the 10Gigabit Ethernet

interface board (10GE board) and the user interface board is also implemented. For these

purposes, several hardware modules, software modifications, and relevant data transfer

mechanism are introduced. The particular challenges to solve are the compatibility of the new

modules with the existing system, and the limitation of the interface pins between the boards.

In the course of this thesis work, the project’s system architecture is presented and analyzed.

A new communication architecture for data transfer between the boards has been proposed

and implemented with the support of the currently available DCR bus and I2C bus interface.

Furthermore, NFS functionality module, together with the support modules (timeout detector,

application wrapper) are also implemented within the NFI system. Last but not least, the

software on the FPGA embedded processor (the PowerPC) was modified in order to support

the operations of NFS functionality and data transfer mechanism. Several interrupt signals

with their handling procedures were added to ensure proper functionality of the new enhanced

system. All those modules and mechanism were conceptually designed and implemented

using Xilinx ISE development tools and VHDL, and verified with Mentor ModelSim and

Xilinx ChipScope. The underlying FPGA technology is Xilinx Virtex 5.

Keywords: NFS functionality, data transfer mechanism, timeout detector, application

wrapper, software enhancement.

Acknowledgement

This report constitutes my Master of Science thesis at Chalmers University of Technology.

The work has been done within the 2020 3D Media project of Technicolor company.

I would like to give special thanks to my supervisors at Technicolor, Thomas Brüne and

especially Stefan Abeling, for their great supports to my work. Without them, probably this

thesis would not be done.

I also acknowledge the guidance of my examiner at Chalmers, Lars Svensson, for my thesis

management and documentation issues. Furthermore, I would like to give thanks to the

following persons in Technicolor:

• Michael Drexler for software support.

• Klaus Gaedke – Laboratory Manager Image Processing, Carolin Schmaehl and Heike

Diekmann – HR staffs, for non-technical issues.

Finally, I would like to acknowledge to Technicolor company for the nice working

environment during my thesis work.

Table of Contents

1 INTRODUCTION ..1

2 OVERVIEW OF THE NFI-10GE SYSTEM ...3

2.1 ARCHITECTURE OF THE NFI-10GE SYSTEM ..4

2.2 HARDWARE MODULES OF THE NFI-10GE SYSTEM ..6

2.2.1 PHY and MAC ..6

2.2.2 Parser and Scheduler Unit (PSUnit) ..6

2.2.3 Stream module ..7

2.2.4 Application module ...7

2.2.5 PowerPC ...7

2.3 SOFTWARE ARCHITECTURE OF THE NFI-10GE SYSTEM ...8

2.3.1 NFS functionality ..8

2.3.2 File system structure ...8

3 ENVIRONMENTS FOR SYSTEM DEVELOPMENT .. 10

3.1 FPGA ... 10

3.1.1 Overview ... 10

3.1.2 FPGA architecture .. 10

3.2 VHDL ... 14

3.3 SOFTWARE TOOLS .. 14

3.3.1 For system development .. 14

3.3.2 For system verification .. 16

4 NFI-10GE SYSTEM: CURRENT STATUS AND PROPOSED ARCHITECTURE

ENHANCEMENTS .. 18

4.1 THE DESIRED SYSTEM FUNCTIONALITY ... 18

4.2 THE CURRENT FUNCTIONALITY ... 18

4.2.1 PHY and MAC .. 18

4.2.2 PSUnit .. 18

4.2.3 Stream module .. 19

4.2.4 Application module ... 19

4.2.5 PowerPC ... 19

4.3 PROPOSAL FOR THE SYSTEM ENHANCEMENTS ... 20

4.3.1 Hardware .. 20

4.3.2 Software .. 24

4.4 DESCRIPTION OF THE IMPLEMENTATIONS .. 24

4.4.1 NFS-sub module .. 24

4.4.2 Data transfer mechanism between 10GE and user interface board 25

4.4.3 Application wrapper .. 28

4.4.4 Timeout detector ... 28

4.4.5 Software enhancement ... 30

5 VERIFICATION .. 31

5.1 VERIFICATION WITH MODELSIM .. 31

5.1.1 Unit test .. 31

5.1.2 System test ... 32

5.2 VERIFICATION WITH CHIPSCOPE .. 32

5.3 PERFORMANCE BENCHMARKING ... 32

6 OUTLOOK ... 34

7 CONCLUSION ... 35

REFERENCES ... 36

Table of Figures

Figure 1.1 Digital cinematography based on 10 Gigabit Ethernet connection1

Figure 2.1 Structure of the Field Recorder ...3

Figure 2.2 Architecture of XGE board ...4

Figure 2.3 Module structure and data flow of NFI-10GE system on XGE board5

Figure 3.1 FPGA architecture .. 11

Figure 3.2 Virtex-5 logic element .. 11

Figure 3.3 Virtex-5 CLB architecture .. 12

Figure 3.4 Column and row organization of CLBs and slices ... 12

Figure 3.5 Basic structure of an IOB .. 13

Figure 3.6 (a) direct interconnection and (b) general purpose interconnection 13

Figure 3.7 Design flow of the ISE ... 16

Figure 3.8 ChipScope tool operation .. 17

Figure 4.1 NFS read-reply packet format ... 21

Figure 4.2 Proposed data transfer mechanism between 10GE and user interface board 22

Figure 4.3 Application wrapper structure with common registers supported 23

Figure 4.4 NFS functionality module architecture .. 25

Figure 4.5 Data transfer mechanism between 10GE and user interface board 27

Figure 4.6 Timeout detector module .. 29

Figure 4.7 Timeout detector timing diagram .. 30

Introduction

Chalmers University of Technology P a g e | 1

1 Introduction

Nowadays, the demand of media entertainment is increasing rapidly. Higher video quality

requires more powerful cinematography systems.

Current film infrastructure – so called digital cinematography (DC) - is based on HD-SDI [1]

device connections, allowing the maximum data transmission between film devices of 1,5

Gbps [2].

The foreseen problem is the bandwidth requirements of data transmission: for 3D productions

with full-HD or higher in resolution, we need more than 3 Gbps. Furthermore, the current

infrastructure has no advanced control for devices (e.g. it is impossible to control/configure

the device remotely), nor full duplex picture streaming nor versatile meta-data treatment.

These shortcomings motivate the derivation of the new connection architecture: the high-

speed Ethernet interface. The benefit of this usage is the cost and time saving, since the

Ethernet interface is widely used in IT domain. Furthermore, with peak speeds up to 10 Gbps,

even 100 Gbps on the horizon, together with the versatile protocol layers, the above

connection speed disadvantages of current HD-SDI interface can be overcome.

The DC’s next generation uses the advantages of existing Ethernet network instead of

proprietary connections. Besides, it combines the control stream and data stream in the same

physical connection. The proposed physical connection for the new DC is the 10 Gigabit

Ethernet (10GE) interface, as in Figure 1.1.

Figure 1.1 Digital cinematography based on 10 Gigabit Ethernet connection

Media data captured by a main camera and several satellite cameras will be transferred to the

field recorder for intermediate storage (via record operation). This data can be reviewed on a

Introduction

Chalmers University of Technology P a g e | 2

monitor (via playback operation), or can be downloaded to another storage device for further

processing. These operations may be carried out either from the field recorder (record,

playback) or from a client in the same network (record, playback, download).

In this architecture, all device interfaces and functional behaviors are based on Ethernet, with

support of media data streaming as well as full device control in both directions at the same

time. All devices are connected through an Ethernet switch.

Overview of the NFI-10GE system

Chalmers University of Technology P a g e | 3

2 Overview of the NFI-10GE system

In this thesis project, the work involves the field recorder, named “FlashPakII”. Its function is

to store “pure” video data, which comes directly from a trifocal camera, with multi-stream

supported. It also manages data for user interface: playback to monitor, copy to post

production, delete available data, so on. The field recorder is composed from three main

components: the XGE board (for interface control and data streaming), the memory board (for

data storage) and the user-interface board (for direct control by users). Figure 2.1 shows the

opened field recorder.

Figure 2.1 Structure of the Field Recorder

In the context of this thesis work, we will investigate in detail the XGE board, which is

responsible for data transmission between the cameras (data source) and all other devices. The

system in XGE board is contained in a FPGA chip, the Virtex-5 from Xilinx Inc, as seen in

Figure 2.2. The task of this project is to enhance the functionality of this system.

Overview of the NFI-10GE system

Chalmers University of Technology P a g e | 4

Figure 2.2 Architecture of XGE board

2.1 Architecture of the NFI-10GE system

This is the embedded soft- hardware system which resides on the XGE board. As indicated by

its name, the Network File Interface – 10 Gigabit Ethernet based (NFI-10GE) processes all

Ethernet and IP related protocol layers and responds to any requests, whether with video data

or not, depending on the type of request. For the ease of processing management, data is

routed through the real-time path (high throughput) or the non-real-time path (low

throughput). Non-real-time data will be processed by the PowerPC microprocessor (software

based) with a data rate up to 1 Gbps and mainly for control purpose, while real-time data will

go through hardware modules up to 10 Gbps, and be able to transport AV-data due to the

complete support of hardware UDP and IP protocol implementation.

Overview of the NFI-10GE system

Chalmers University of Technology P a g e | 5

Figure 2.3 Module structure and data flow of NFI-10GE system on XGE board

In Figure 2.3, the structure and main data flow of the NFI-10GE system is sketched out. There

are 6 main modules:

• The PHY module: implementing the physical layer of the OSI model [3], this module

is in charge of receiving/transmitting data from/to XFP module to/from higher layers.

• The MAC module: implementing the data-link layer, this module is responsible for the

Ethernet protocol. Ethernet header of packets is processed here.

• Parser and Scheduler unit (PSUnit): in this unit the real-time-critical AV-data is

separated from the non real-time-critical control data. For TX behavior, data from

different sources (RT and non-RT) are joined into one unified stream to be

transmitted. Additionally, UDP/IP header is de-packetized here. PSUnit is in charge of

network layer and transport layer in the system.

• Stream module: this module does the UDP packetizing for transmitting data from the

application unit, and then passes the packets to the PSUnit for further processing.

Stream module implements the transport layer in the OSI model.

• PowerPC: this module acts as an embedded processor within the FPGA chip. In the

NFI-10GE system, it processes all non-RT packets (e.g. ping) as determined by the

Overview of the NFI-10GE system

Chalmers University of Technology P a g e | 6

PSUnit. Furthermore, it takes the role as the system controller by configuring all other

units via the device-control-register (DCR) bus [4].

• Application module: this module processes the incoming packets from the PSUnit. In

this module, high throughput data operations are executed (RTP playback, RTP

recording). Application module implements the application layer in the OSI model.

There are also some additional modules for intermediate purposes, such as a multiport

SDRAM controller (for interfacing the on-board SDRAM to the PSUnit and the PowerPC),

the memory board interface (for interfacing between memory controller board and the

application module), and the FIFO64_32 module (for converting 64-bit data bus line to 32-bit

data bus line and vice versa).

2.2 Hardware modules of the NFI-10GE system

Now we will have a deeper look on the hardware modules above.

2.2.1 PHY and MAC

Here the XAUI IP core is implemented, supporting four separated RX-TX lanes times 3.125

Gbps bandwidth connection to XFP transceiver.

Implementing the data-link layer, the MAC core contains a 10 Gigabit Ethernet MAC IP core

compatible with IEEE 802.3ae-2002 (this IP core is available from Xilinx). It supports jumbo

frames with data payload up to 9000 bytes. The peripheral of this IP core consists of a TX

path with checksum calculation, a TX FIFO of 18KB, and a RX path. The FIFO is optimized

for jumbo frames. The configuration of this module is done by the PowerPC via DCR bus

interface.

2.2.2 Parser and Scheduler Unit (PSUnit)

This unit manages the data flow among the application module, the PowerPC module, the

stream module, and the MAC module. In RX mode, it receives data packets from MAC with

Ethernet header removed, and decides by parsing whether to use the non-real-time path to

PowerPC (for software processing) or the real-time path to application module for data packet

processing. In TX mode, this unit multiplexes data packets from PowerPC and stream

module, and passes them to the MAC unit. The IP header of packets is formed/stripped in the

PSUnit. The PSUnit control and status registers are accessible via DCR bus interface.

The possible data transfer directions through the PSUnit are:

• The PowerPC is about to send non-real-time data (TCP/UDP packed): The PowerPC

builds a packet or a packet chain into a TX queue (frame buffer) and then signals the

PSUnit to process the frame. The PSUnit fetches the frame from the TX queue and

buffers it in the 9KB FIFO. Finally the scheduled MUX sends the frame with 1 Gbps

to the 10GE MAC unit.

Overview of the NFI-10GE system

Chalmers University of Technology P a g e | 7

• The PowerPC processes non-real-time data (TCP/UDP packed): The received frames

from client are parsed by the header-parser of the PSUnit to decide whether they are

non-real-time or real-time frames. Non-real-time frames are written into the 108KB

FIFO because it could be that the SDRAM controller has to wait some cycles to get

access to the SDRAM.

• The stream unit is about to send real-time UDP packets: The stream unit writes the

real-time frame into a FIFO of 18KB that is able to store two jumbo frames. The

schedule MUX will send the frame with 10 Gbps to the 10GE MAC unit.

• The application unit processes real-time UDP packets: Frames that are parsed for

real-time distribution to the application are immediately transmitted without caching

mechanism to guarantee the data rate of about 10 Gbps.

2.2.3 Stream module

This module provides the high bandwidth stream up to 10 Gbps throughput towards the

PSUnit. Stream module also has a DCR interface for configuration and initialization by the

PowerPC. Its implementation supports a simplified IP layer (without options and without

segmentation & reassembling and reordering capabilities) and an UDP layer. Data throughput

of stream module has to be 10 Gbps.

2.2.4 Application module

Consisting of an RTP sub-module, the application module analyzes the payload data from the

PSUnit and processes it in case it is an RTP packet. Before this project work, there were two

paths of data through application module depending on its operation mode:

• Recording mode: RTP packet stream comes from the cameras after being removed

IP/UDP header by PSUnit, will be stripped out the RTP header and transmitted to the

memory board for storage.

• Playback mode: raw video data from memory board will be packetized in RTP format

and transmitted out to a displayed device for viewing.

The user changes the operation mode via the user interface board by directly pressing the

control buttons on the field recorder (PLAYBACK or RECORD). The user interface board

communicates with the application module (also with the whole XGE board) by the I2C bus

line [5].

2.2.5 PowerPC

This is an embedded processor within the FPGA chip, which supports the processing of non

real-time packets. All types of non-real-time packets coming from other devices in the

network will be routed to this processor. The PowerPC configures all hardware units via its

DCR bus.

Overview of the NFI-10GE system

Chalmers University of Technology P a g e | 8

2.3 Software architecture of the NFI-10GE system

The software using in PowerPC is decided to be a light operational system since the tasks

processed by PowerPC are few and very primitive; moreover, the processing speed is also a

big concern as the data throughput of non-real-time path is much lower than real-time path.

2.3.1 NFS functionality

Network File System (NFS) [6] is a network protocol allowing a client computer to access

files contained in a server (here: the NFI-10GE system) over a network in the same way as

accessing local files. Several tasks need to be carried out to perform this file system access

activity:

Mount to server: the first procedure is to establish the connection between the client and the

server, thus making the file system on the server available to the client. This is done using the

mount protocol. This protocol gives the client access to the server by providing to the client

information about the server (e.g. the port number to which the client should send NFS

packets) as well as information about the files residing on the server (e.g. the file handles

which represent unique files) to provide the ability to access files in later procedures.

Get directory information: with the connection enabled, more detailed information about the

files (i.e. file attributes) and about the directories (e.g. directory hierarchy) can be read. In the

current version of the system software (before this thesis work), for simplicity, no hierarchy is

used, i.e. all files are contained in the root directory. Via this procedure, the file size, file

creation date, file accessibility (e.g. readable, writeable), etc… will be provided to the client.

The procedure may be invoked by running the ls command from the client.

Download file contents to client: finally, the file contents can be downloaded to the client by

running the cp command, the same way as a file-copy operation on local storage of a

computer. In this operation, the copied file will be packetized into 4KB packets, and

transferred to the client continuously.

2.3.2 File system structure

The file system contains information of all available files, and will be used for file

management activities. In this file server (the NFI-10GE system), the file system is stored in

SDRAM [7], and is managed by the software using in PowerPC. Information in the file

system includes:

• File name: the name which will be displayed on screen.

• File handle: a unique code for each file.

• File length: the number if bytes occupied by a file

• Block number: the number of 512-byte blocks occupied by a file

Overview of the NFI-10GE system

Chalmers University of Technology P a g e | 9

Before this project work, the file system was simulated with two files in NFI-10GE system.

They were called simulated files because only the file system was generated, but not the real

file contents. Hence, the software-task of this project is to modify the available software to

maintain a real file system when new real data is recorded into the server via a recording

operation.

Environments for system development

Chalmers University of Technology P a g e | 10

3 Environments for system development

This chapter will give the readers a fundamental background on the environments for the

thesis work, from the chip on which the system is developed to the supporting tools for

system implementation and verification.

3.1 FPGA

3.1.1 Overview

Simulation and prototyping have been very important parts of the electronic industry as they

ensure the correctness of the product functionality before it is fabricated. These verification

steps save much time and cost in a system development process. Among the most effective

prototyping tools are FPGA chips, which combine advantages of programmability (like

software/micro-processor) and fast signal processing (like ASICs).

A Field Programmable Gate Array (FPGA) is an integrated circuit which can be electrically

configured to implement different functionalities. To this end, the FPGA chip contains many

identical logic blocks, each can be configured to implement an independent logic function. All

these blocks can be interconnected by programmable interconnect network, so that the user

may generate different functions by setting a dedicated function to each logic block and

connecting them by configuring the interconnect. As a result, a desired circuit has been

created.

3.1.2 FPGA architecture

Now we will take a deeper look into the architecture of a typical FPGA chip. As mentioned

above, FPGA consists of three main parts: the configurable logic blocks (CLB), the

input/output blocks (IOB), and the programmable interconnection network, as sketched out in

Figure 3.1.

Environments for system development

Chalmers University of Technology P a g e | 11

Figure 3.1 FPGA architecture [21]

3.1.2.1 Configurable logic block

This is the main logic resource of the FPGA performing user-specified logic functions. The

quantity and features of CLBs in a FPGA chip vary from device to device, but every CLB

consists of a configurable look-up-table (LUT) with typically four or six inputs, some

circuitry for selection (e.g. multiplexer), and flip-flops. The LUT can be configured to handle

combinational logic, shift registers, or RAM; the flip-flops are for clocked storage elements;

while multiplexers are for routing signals within the block and to and from external resources.

More detail in CLB structure is provided via the CLB of the Virtex-5 family FPGA chip [8]

as used in our system.

The basic Virtex-5 logic element consists of one six-input LUT, one configurable flip-flop,

and three multiplexers [9]. A fast dedicated carry logic is added for special logic and

arithmetic function performance. In some elements, the LUTs can be configured as a RAM,

so called distributed RAM, or as a shift register. These elements are grouped together forming

a slice, providing logic, arithmetic and storage functions, as shown in Figure 3.2.

Figure 3.2 Virtex-5 logic element

One CLB element is composed of a pair of slices, as illustrated in Figure 3.3. Depending on

the function of the LUT in a slice, it is divided into memory slice (sliceM) and logic slice

Environments for system development

Chalmers University of Technology P a g e | 12

(sliceL). These two slices have no direct connections to each other, and each slice is organized

as a column, with independent carry chain. Each CLB is connected to local and global routing

resources via a switch matrix. All CLBs in an FPGA chip are identical, and are arranged in

columns and rows [9]. Figure 3.4 demonstrates the organization in columns and rows of the

CLBs and slices in the Virtex-5 chip.

Figure 3.3 Virtex-5 CLB architecture

Figure 3.4 Column and row organization of CLBs and slices

3.1.2.2 Input/output block

A configurable input/output block (IOB) is used to bring signals into a FPGA chip from

outside circuits, and also send out signals from internal chip circuits. A basic IOB contains a

tri-state output buffer, an input buffer, and two flip-flops. One flip-flop is used to clock the

output signal in order to shorten the clock-to-output delay of the output signal. Another one is

for registering the input signal in order to reduce the hold time requirement of the device.

Figure 3.5 sketches out a basic structure of an IOB.

Environments for system development

Chalmers University of Technology P a g e | 13

Figure 3.5 Basic structure of an IOB

Special IOBs with high-drive clock buffers (known as clock drivers) are distributed around

the FPGA chip. These buffers connect to clock input pads, and drive clock signals from the

outside onto fast, low-skew global clock lines within the FPGA.

3.1.2.3 Programmable interconnection

All component logic resources after being configured will be connected together to create a

complete circuit via programmable interconnection. This step is an important part of a FPGA

design as it decides the speed of the whole system. There are two types of interconnection:

direct and general purpose interconnections, as illustrates in Figure 3.6.

Direct connection is a connection between neighboring logic blocks, with short distance

wires. This provides a fast speed since no switching matrix is used.

General purpose connection is a routing type using switching matrix when there is no direct

connection available. It is slower than the direct method, but it can be used for all distances.

Figure 3.6 (a) direct interconnection and (b) general purpose interconnection

Environments for system development

Chalmers University of Technology P a g e | 14

Different synthesis tools have different algorithms of wire routing, and the successful one is

the one which has the best circuit performance in terms of speed, power consumption, and

occupied area.

3.2 VHDL

Nowadays, circuits are very complex. An abstract view is needed to handle this complexity. It

is common practice to use a hardware-description language (HDL) to describe a digital

circuit. A HDL is a type of computer language used for modeling a (digital) electronic system.

Starting from an architecture design of a system, such modeling is the first step in order to

synthesize and verify the system with the help of computer-aided design (CAD) tools.

There are several HDL, such as Verilog, VHDL, SystemVerilog, SystemC, etc. Among them,

Verilog and VHDL are in common use. In this system development, VHDL is used.

VHDL (stands for VHSIC HDL: very high speed integrated circuit HDL) was standardized by

IEEE (Institute of Electrical and Electronics Engineers) in the early 1980s. Through some

revisions, the current most widely used version is the 1987 version which has been adopted by

IEEE as a standard (IEEE Std. 1076-1987), sometimes referred as VHDL’87. However, there

is a newer version VHDL’93 which is in the process of replacing VHDL’87 [10].

VHDL is a powerful language for hardware design as it can satisfy the demands of a hardware

design process:

• The structure of the design can be described in VHDL with components, sub-

components, and how they are connected.

• The behavior of the design can be described in VHDL as such behavior is familiar

with programming language format.

• There is a possibility of verification as the design is possible to simulate before

manufacturing.

For more detail of how to become familiar with VHDL coding, it is recommended to have a

look at [11] and [12].

3.3 Software tools

3.3.1 For system development

3.3.1.1 Xilinx ISE

Xilinx ISE is a digital hardware design environment developed by Xilinx to be used for

designing, implementing, simulating and downloading digital systems into a FPGA or CPLD

target device [13]. The version of ISE used in this thesis work is ISE v10.1.

Environments for system development

Chalmers University of Technology P a g e | 15

3.3.1.2 EDK

Xilinx EDK (embedded development kit) is a tool for embedded processor (both hard and soft

core) development within a FPGA system [14]. With the support of this tool, it is possible to

add an embedded processor beside the hardware logic part, to make the system more powerful

and flexible with additional software solutions. There are two main environments inside

EDK: the XPS (Xilinx platform studio) for hardware portion of the embedded processor

design, and the SDK (software development kit) for the software portion of the processor with

C/C++ supported. The version of EDK used in this thesis work is EDK v10.1.

3.3.1.3 Overview of the design flow

A typical design flow of a digital hardware system by ISE includes six main steps as shown in

Figure 3.7.

• Starting from design creation, a project for the proposed system will be generated.

With the help of ISE project navigator tool, all hardware modules (source files) with

structured interconnections are built in VHDL.

• In the second step, the design will be synthesized. The synthesis engine with the

support of Xilinx Synthesis Technology [15] compiles the design to transform VHDL

source codes into an architecture-specific design netlist. In this step, the register

transfer level (RTL) schematic (level of generic symbols such as adders, multipliers,

counters, logic gates...) and the technology schematic (e.g. LUTs, carry logic, IOBs or

other technology-specific components level) of the design are generated.

• In the third step, constraint parameters can be added to the design, via the ISE

constraint editor tool. Here the system can be constrained in timing, occupied area, IO

pins and other parameters.

• Next step is the design implementation, where the design will be turned into physical

resources of a target device (a FPGA chip or a PROM chip). This step is divided into

three processes: translate process (for merging the netlist from the synthesis step with

the constraint parameters from the third step), map process (for turning the previous

netlist into the real device resources), and place and route process (for putting those

elements on the chip surface and connecting them to form a complete system).

• In the fifth step, the result of the design implementation is analyzed. Device resource

utilization, timing performance, power utilization and performance against constraints

can be analyzed in this step.

• The last step in the design flow is device configuration and programming where the

configuration files will be generate and downloaded onto the target device.

Environments for system development

Chalmers University of Technology P a g e | 16

Figure 3.7 Design flow of the ISE

In between of some steps of this design flow, it is possible to verify the design with the help

of simulation tools. In this thesis work, the two tools used for system verification are

ModelSim and Xilinx’s ChipScope. In the next section, more detail will be provided for these

tools.

3.3.2 For system verification

3.3.2.1 ModelSim

ModelSim is a tool developed by Mentor Graphics Inc which is used to simulate and verify

the functionality of a digital design. Actually, ISE tools also support functional simulation,

however with ease of use as well as powerful performance, ModelSim is widely used as an

effective verification tool for digital hardware design.

In order to simulate a design, ModelSim goes through five basic steps [16]:

• Collecting files and mapping libraries: all source files and libraries of the design are

collected preparing to be simulated.

• Compiling the design: these source codes will be compiled with one of the three

supported language compilers: Verilog, VHDL, or SystemC.

• Loading the design for simulation: after being compiled, all modules will be put into a

hierarchy and linked together by connecting their ports.

Environments for system development

Chalmers University of Technology P a g e | 17

• Simulating the design: after loading successfully, the design will be simulated from

the time zero. The simulation duration is set by the user.

• Debugging the design: after running the simulation, it is possible to debug the design

using many supported functionalities such as waveform analysis, tracing signal.

3.3.2.2 ChipScope

ChipScope [17] is a set of tools developed by Xilinx which allows a designer to probe the

internal signals of a design inside an FPGA chip, as one can do with a logic analyzer. In order

to use the ChipScope in an existing design project, first the Core Generator tool is used to

generate the ChipScope cores, which perform the trigger and waveform capturing

functionality on the FPGA. Afterwards, these cores need to be instantiated in the VHDL code,

and those cores need to be connected to the signals to be monitored. The complete design is

then recompiled.

There are two main types of Chipscope cores:

• ICON core: stands for integrated controller core; it provides a communication path

between the JTAG boundary scan [18] port of the target FPGA and ILA cores.

• ILA core: stands for integrated logic analyzer core, it is customizable and can be used

to monitor any internal signal of the design.

Figure 3.8 ChipScope tool operation [17]

Figure 3.8 demonstrates an operation of the ChipScope tool for capturing and analyzing

signals of a FPGA system. ILA cores are generated and probed to signals of the design which

are needed to be analyzed. Through ICON core, these probed signals will be transferred (via

JTAG connection) to the ChipScope software on the computer for displaying and analyzing.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 18

4 NFI-10GE system: current status and

proposed architecture enhancements

4.1 The desired system functionality

In the cinematography system, the NFI-10GE system of the field recorder was designed to be:

• An intermediate media data storage for the cameras at a maximum resolution and

frame rate of 4K (4096×2160) format with 30-bit color depth in 4:4:4 chroma

subsampling rate [19] at 30 frames per second. Uncompressed video with multi-stream

supported producing by camera devices will be stored in real-time speed to the internal

solid-state memory board of the field recorder. The data bandwidth of the whole

system is targeting 9 Gbps to support single stream recording at highest quality or

multi-stream with different 2K format or below, with maximum of eight streams

supported. This media data can also be reviewed in real-time using display devices

(monitors).

• A media server for data downloading from client devices (computer based). One

option is a faster than real-time download of a single stream. As a file server, basic

functions for file management are required, such as provide file table information,

delete file(s), and erase all files.

4.2 The current functionality

According to the design above, a field recorder has been prototyped, and known by the name

“FlashPak”. In the time of writing this thesis, the second version of FlashPak – the FlashPakII

- is being used, which has been sketched out in previous chapters. Now is the time to look

back at the module structure of NFI-10GE to see if it can support the design functionality.

4.2.1 PHY and MAC

They are the completed IP cores from Xilinx: XAUI v7.3 and 10-Gigabit Ethernet MAC v8.4.

Full functionality is supported within these licensed cores.

4.2.2 PSUnit

This module is developed by Technicolor. At the time of writing this thesis, development has

been completed. Only RTP streaming record (multi-record supported) and playback are

directed to the application module (hardware path); all other type packets goes to the

PowerPC module (software path) to be processed by the embedded software.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 19

4.2.3 Stream module

This module is developed by Technicolor. It had also been completed when the work of this

thesis started. Interfacing with the real-time data path, the stream module works at a clock of

156 MHz with 64-bit data bus, and then the maximum throughput bandwidth can reach 10

Gbps, enough to meet the requirements on the system. The UDP header of the TX packet is

formed in the stream module, with the header information provided by the PowerPC via DCR

bus interface.

4.2.4 Application module

This module is developed by Technicolor. Only RTP module is completed at the time of

starting the thesis work. This RTP module is in charge of two main functions: playback and

recording.

• For playback scenario: the playback request from user interface board (triggered by

PLAY button) was replied with the real-time RTP packets stream containing video

data in the memory controller board. In fact, the memory controller board receives the

playback command from the user interface board first, prepares to put video data to its

FIFO, and then informs the NFI-10GE system via I2C bus connection. The PowerPC

of NFI-10GE will trigger the hardware preparing to form and transmit playback video

data taking from the FIFO of memory board. The playback process will be stopped

only if there is no more data in the FIFO (end of file) or by user intervention (press

STOP button).

• For recording scenario: has the same procedure as the playback, but the data path of

the recording scenario is reversed: a real-time TX path from cameras to RTP module

writing into FIFO. This operation is stopped only if the STOP button on user interface

is triggered.

Application unit has not been completed due to a lack of NFS packet processing for non-real-

time data. Accordingly, one of the main tasks of this thesis work is to develop the NFS

module functionality.

4.2.5 PowerPC

This is the embedded hard-processor within the Virtex-5 FPGA chip. The software

environment of PowerPC is developed by Technicolor. At the time of the thesis work started,

it was done for non-real-time packet processing, and the NFS file management (e.g. mount,

access, readdirplus, unmount…). However, the NFS functionality is emulated completely in

software, with the simulated files generated by the software itself. Hence, another task of this

thesis work is to develop the software in order to be compatible with the NFS hardware-based

which will also be developed.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 20

4.3 Proposal for the system enhancements

4.3.1 Hardware

4.3.1.1 NFS module

In order to complement the NFS real-time path processing into the NFI-10GE system, the

NFS functionality module needed to be implemented in parallel with the RTP module. This

new module will process the NFS read request packets coming from a client device, and

respond with an appropriate NFS packet (e.g. non-real-time video data in case of valid

request, or error acknowledgment in case of invalid request). A connection with PowerPC is

necessary as the PowerPC is the only module which is able to request video data from

memory board.

The operation of the NFS module:

• NFS read request packet which is sent from a client after passing lower level network

layer processing (e.g. MAC unit to remove Ethernet header, PSUnit to remove IP

header) will be passed to NFS module for analyzing request type.

• Information of request will be extracted from NFS header. Parameters such as XID

(transaction ID – a random number to distinguish different packets), requested size

will be stored in specific registers for later reply packet formation.

• In case of valid read request, the read-reply module will be triggered. It is a finite-

state-machine (FSM) based module. Read-reply module is in idle state, waiting for the

trigger signals to switch to reply states. In these states, all necessary information of the

NFS reply packet is formed; some parameters are taken from previous request

information (e.g. XID, size). Video data is also requested in this phase, so that the

video data will “jump” exactly right next to the last header word. As a result, the NFS

read reply is generated, and be forwarded to TX path for transmission. Figure 4.1

shows a typical valid NFS read-reply packet format generated by NFS functionality

module.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 21

Figure 4.1 NFS read-reply packet format

• In case of invalid read request, the error-reply module will be triggered. Having the

same structure as the read-reply module, error-reply module will generate a NFS error

reply packet using FSM, which will also be sent to TX path for transmission.

4.3.1.2 Data transfer mechanism between NFI-10GE and user interface board

In the current FlashPakII architecture, the NFI-10GE interface board and user interface board

communicate via an I2C bus (NFI-10GE is the slave device). There is an interrupt connection

between them, but it has not been used yet. With the growth in the complexity of

communication between these two boards when new functionality is added (e.g. NFS file

table transfer, communicating commands…), a new communication mechanism for this

interface is essential. Here the author proposed a data transfer mechanism using the available

resources of this interface, to ensure the reliable of data for NFS functionality between the

two boards, as seen in Figure 4.2.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 22

Figure 4.2 Proposed data transfer mechanism between 10GE and user interface board

With this transmission mechanism, the communication between the two boards would

become more reliable and flexible. With the possibility of adding user-defined commands,

further system upgrade can be done easily and quickly by upgrading the software of the two

boards, without touching their hardware architectures.

4.3.1.3 Application wrapper

As the current RTP module and the proposed NFS module have the same data interface

signals to other modules (e.g. the 32-bit data bus, the data-direction control buses), it is

necessary to have a multiplexer in order to select the appropriate path, avoiding the conflict of

data flow which may lead to malfunction. Figure 4.3 refers to the structure of the application

wrapper with multiplexer implemented.

The common register space is another problem to be solved by this application wrapper

module. It is necessary to have common registers which can be accessed from both user

interface board and 10GE board in order to establish a connection between them serving for

data transfer mechanism mentioned above. Since there are two different bus interfaces for

RTP functionality (I2C bus connected with user interface board) and NFS functionality (DCR

bus connected with PowerPC), the common registers which can be accessed both from

PowerPC and user interface board are essential for the mutual communication (e.g. file table

transfer, command transfer). With the wrapper module, multi-port access registers are

available for NFS functionality supported. Figure 4.3 illustrates the proposed common

registers (c.reg) implemented with both DCR and I2C controlled.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 23

Figure 4.3 Application wrapper structure with common registers supported

4.3.1.4 Timeout detector

Due to the original RTP record mechanism of the system, there is no byte-exact information

of every take stored in the memory controller board, but only the timing length. Hence, when

the NFS read request command is performed (which need exact take size), the take size value

given to a client can be inaccurate compared with its actual size. There will be two

possibilities:

• The client reads the take with a requested size larger than the actual size. In this case,

when the whole take in the memory board has been read out, the NFS functionality

module still waits for take data since request(s) from the client still comes.

Consequently, the system will stall.

• The client reads the take with a request size smaller than the actual size. In this case,

when all requests has been replied, the memory board still stores remained data of the

reading take (since not all are requested). As a result, the memory will not be flushed

for the new take read request processing; the data of the previous take may be mixed

with the data of the next take reading leading to incorrect take data in one file.

In order to handle these unwanted cases, the additional timeout_detector has been

implemented within NFI-10GE system. It detects the long-time response of the NFS module

counting from the time of finishing the reply activity: if it is longer than a certain period, it

will be considered as the last read request from client (of the requesting file); no more read

request available. An output signal will be triggered. Receiving this triggering, the NFS

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 24

module will be reset to be ready for other requests. At the same time, the PowerPC is also

interrupted to stop the data transfer operation of the memory board (by sending command to

the user interface board). As a result, the system switches back to the idle state, waiting for

new requests from client.

4.3.2 Software

The current software has performed the basic NFS functionality: mount (establish the

connection between the FlashPakII and the client), ls (request for the list of files), cp (copy

the selected file data to client). However, the files are still simulated, rather than real files with

real information on the memory board. In order to save time and also to inherit the result of

the previous work, all software based NFS functionality will be utilized; only the simulated

file information will be replaced by the real one getting from the user interface board. Hence,

the software enhancement in this thesis work focuses on the transmission of the file

information from the user interface board to the 10GE board, so that the PowerPC can use it

for replying to a client, replacing the simulated information.

4.4 Description of the implementations

4.4.1 NFS-sub module

In fact, the NFS functionality module was developed in the previous FlashPak version, and is

re-used in the FlashPakII system. Only some minor modifications are needed for the

compatibility with FlashPakII. Basically, its architecture is completed, as seen in Figure 4.4.

NFS functionality module is composed of three main parts: RPC_NFS, reply, and

configuration modules.

• RPC_NFS module: this module plays a role as a NFS header analyzer. Receiving an

input NFS packet from PSUnit, RPC_NFS module analyzes its packet header, extracts

information from it and stores them into specific registers (NFS_reg). This

information will be used for later reply packet. Furthermore, the NFS header of a

packet is also checked for validity. In case an invalidity is found, an error reply signal

will be triggered controlling the reply module for an error reply answer.

• Reply module: this module acts as a NFS reply packet generator. In the current

system, two types of reply are possible: read reply (answer a valid NFS read request)

and error reply (answer an invalid NFS read request). For read reply operation, a NFS

reply header will be formed with reply information storing in NFS_reg registers (e.g.

XID, payload size), continuing by video data from memory board (via memory

interface module). In case of error reply activation, a standard error reply packet will

be generated and transmitted to the client.

• Configuration module: the PowerPC configures the whole NFS functionality module

(e.g. the operation modes) by accessing the configuration registers in this module via

DCR bus.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 25

With the availability of this module in the cinematography system, the hardware part of NFS

functionality has been implemented, enabling the raw media data transmission from the

memory board of the field recorder to a client device for post video processing.

Figure 4.4 NFS functionality module architecture

4.4.2 Data transfer mechanism between 10GE and user

interface board

The physical links between the 10GE board and user interface board have been built, but not

fully used. Only I2C connection was used, with one-way-connection. To establish the two-

way-connection between them, some additional registers are generated:

• Reg_NFS_command: For sending commands to the user interface board, the PowerPC

will write a specific value (user-defined) into this register. The LSB bit of

reg_NFS_command is directly connected to the external interrupt pin of the user

interface board.

• Reg_take_order: stores the take order in the memory. The first and last take is also

indicated here:

� Bit 5-0: indicates the order of current take (min=0, 1, 2, … 127=max)

� Bit 6: indicates the first take (1) or not (0)

� Bit 7: indicates the last take (1) or not (0)

• Reg_take_nr: stores the number of the current take.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 26

• Reg_stream_nr: stores the stream number of the current take.

• Reg_take_size: (five eight-bit registers) stores the size in byte of the current take.

• Reg_NFS_intr: connected directly to the PowerPC as an interrupt signal. This register

is written by the user interface board when it finishes filling the file-table information

and wants to signal the PowerPC.

These registers also need to be accessible from both PowerPC and user interface board. This

is done by implementing the common registers within the application wrapper. The addresses

of these registers is shown in Table 1.

Register name Address Remark

NFS_take_nr 0x6d For NFS read reply

NFS_stream_nr 0x6e For NFS read reply

Reg_NFS_command 0x6f

Reg_take_order 0x70

Reg_take_nr 0x71 For FT request

Reg_stream_nr 0x72 For FT request

Reg_take_size1 0x73 Highest significant byte

Reg_take_size2 0x74

Reg_take_size3 0x75

Reg_take_size4 0x76

Reg_take_size5 0x77 Lowest significant byte

Reg_intr_FT 0x78

Table 1: Registers’ addresses

Furthermore, new interrupt signals need to be established to the PowerPC: intr_NFS, intr_FT,

and intr_timeout.

• Intr_NFS: this is an interrupt from the NFS module, triggering when a first read reply

packet is generated, asking for video data of a requested take. When the PowerPC gets

the intr_NFS, it will ask the memory board for data by writing a specific command to

the reg_NFS_command register.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 27

• Intr_FT: this is an interrupt from the user interface board via reg_intr_FT register,

signaling the PowerPC about the availability of a file-table information in file-table

registers.

• Intr_timeout: this is an interrupt from the timeout detector, signaling the PowerPC

when an NFS timeout is detected. Receiving this signal, the PowerPC knows that the

read reply operation is finished, and the memory board needs to stop transfering data.

As a result, PowerPC will write a specific command to the reg_NFS_command

register.

Figure 4.5 illustrates the architecture and operational procedures of this mechanism.

Figure 4.5 Data transfer mechanism between 10GE and user interface board

Here is the procedure to transfer the file-table from the user interface board to the 10GE

interface board:

• First, the PowerPC of NFI-10GE system receives the ‘ls’ command from a client,

requesting a list of the files on the memory board.

• The PowerPC then asks the memory controller board for the file table by writing to a

register named reg_NFS_command, a self-defined command.

• The memory controller board will be interrupted by that writing activity, read out the

command from that register, and clear it.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 28

• The memory controller board writes the file-table information into specific registers.

Then it notifies the PowerPC by writing to reg_intr_FT, a register which triggers the

interrupt to the PowerPC.

• The PowerPC gets the interrupt, reads the file-table information, and replies to the

client.

• After that, the PowerPC will ask for the next file-table (if available). This procedure

will repeat until the last file-table is reached.

With this mechanism, file-table information is transferred one by one with fixed size, no

dynamic memory needed, so system resources are saved. With the availability of the self-

defined command register, it will be easy to update/modify/add communication procedures

between these two boards without changing the hardware architecture.

4.4.3 Application wrapper

The multiplexer is included for selecting one of the two output paths: RTP or NFS data. When

the RTP path is chosen, the data transmitted onto the network will be from the RTP module.

Conversely, the NFS data will be transferred when the NFS path is selected. The signals

responsible for the selection are new_NFS_read_request, play_enable, and record_enable:

• New_NFS_read_request is the signal generated by PSUnit, signaling the availability

of a new NFS read request packet from a client. In case this signal is triggered, the

multiplexer will switch to NFS path.

• Play_enable and record_enable are the signals coming from RTP functionality

module when a request for playback or recording appears. These cases happen when

an user presses a PLAY or RECORD button on the user interface board, requesting a

playback (display video data on a monitor device) or record (store in real-time the

video data from camera(s)). If one of these signals triggers, the multiplexer will switch

to the RTP path.

For the common register space implementation, both the I2C slave and the DCR slave

modules are utilized. The new registers have been created inside NFS module, within the

current configuration registers. The difference is that beside the current DCR bus interface,

the new registers have an additional I2C bus interface taking from the I2C slave of RTP

module. As a result, common registers with two bus interfaces (DCR and I2C) have been

generated, responsible for the data transfer mechanism between the 10GE board and the user

interface board.

4.4.4 Timeout detector

For the operation of this module, two input signal types are used, as illustrated in Figure 4.6:

• New_NFS_read_request: this signal comes from the PSUnit, indicating the availability

of a read request packet of a client requesting for video data of a certain take. PSUnit

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 29

has a function to detect such type of request and indicate it by the

new_NFS_read_request signal.

• Reply-activity indicator: this is a group of signals coming from the memory controller

board (data_ready and data_valid: indicating the status of the memory’s FIFO) and

the NFS functionality module (data_request: used for requesting data from memory

controller board). Reply-activity indicator is active when one of its signals activated.

Otherwise it is not considered as a read reply activity.

Figure 4.6 Timeout detector module

Figure 4.7 demonstrates the timing diagram of the timeout detector operation. Like other

timeout detections, its operation is based on an internal counter. An additional signal

counter_lock is used in order to ensure that the interrupt is triggered only one times when

timeout is detected. In the beginning, the counter is reset to zero. Counter_lock is active, and

the no detection operates. When new NFS read request packet comes, the counter_lock is

inactive, but the module is still in the idle state since reply-activity is happening. When finish

replying, the timeout counter starts (detect state). There are two possibilities:

• The new NFS read request packet comes, but the counter did not reach a certain

timeout value. In this case, the state is back to idle, and the counter is reset to zero.

• The counter reaches the timeout value. In this case, it is considered as no more NFS

request packet will come; the last read request of a take has reached. An output

interrupt_timeout signal is triggered, sending to the PowerPC to stop the memory

controller board which is still in sending data state. Its memory’s FIFO is also flushed

to be ready for a new take read out process. On the other hand, the interrupt signal is

also sent to the NFS functionality module to stop its replying state, coming back to the

idle state and waiting for a new read reply operation. For the internal operation, the

counter_lock is activated, and the timeout detector will be locked until a new read

activity (for new take, of course) comes.

NFI-10GE system: current status and proposed architecture enhancements

Chalmers University of Technology P a g e | 30

Figure 4.7 Timeout detector timing diagram

4.4.5 Software enhancement

As described in the data transfer mechanism implementation, the PowerPC software

communicates with the user interface board by writing commands onto the

reg_NFS_command register and reading information from file-table registers when receiving

an interrupt intr_FT.

Previously, the PowerPC software generates two simulated files with their simulated

parameters (e.g. file name, file size, file attributes) once when booting up; the directory

contents will be fixed during the whole working time. When processing and replying the NFS

requests of the client, this file information will be used.

Now, the procedures to generate simulated files are kept, but the number of files generated

and their information will be taken from the user interface board where the real file

information is stored. In this case, the data transfer mechanism will be applied to get the file

information. Whenever the client requests for the file information, the PowerPC software re-

generates the files again. This ensures that the file information sending to the client is always

up-to-date. Implementing in this way, all the previous work of software can be utilized, and

then time is saved.

Verification

Chalmers University of Technology P a g e | 31

5 Verification

5.1 Verification with ModelSim

5.1.1 Unit test

For functional verification, three hardware modules have been checked with ModelSim [20]:

NFS functionality module, application wrapper, and timeout detector. The data transfer

mechanism has not been tested with ModelSim due to the involvement of the processor

(PowerPC) which cannot be simulated on this version of ModelSim.

5.1.1.1 NFS functionality module

In order to verify this module’s operation, simulated NFS read request packets with IP and

UDP header removed have been applied to the input port. Other control signals are also

simulated (e.g. data valid, data ready from memory controller board).

Two types of read request are used: a valid one and an invalid one. Both have correct results

at the output: for valid read request packets, the output is correct read reply packets.

Conversely, for invalid read request packets, error packets were sent out. And then, it is

concluded that the NFS module is correct in functional behavior.

5.1.1.2 Application wrapper

Two main functions of the application wrapper have been implemented: the multiplexer and

the common register space. Only the multiplexer is verified with ModelSim.

The three selecting signals for the multiplexer (new_NFS_read_request, play_enable and

record_enable) are simulated, switching values randomly. In all cases, the result signals

(RTP_path and NFS_path) are correct. And then, it is concluded that the multiplexer is correct

in functional behavior.

5.1.1.3 Timeout detector

For testing the functionality of this module, its input signals have been simulated similar to

reality: a new_NFS_read_request comes followed by the reply activity indicator, repeating

for several times and then inactive. The timeout counter has detected successfully the long

inactive period, and raising the interrupt_timeout correctly. The lock signal is also activated,

and then active again when new_NFS_read_request signal is triggered. From this result, it is

concluded that the timeout detector is correct in functional behavior.

Verification

Chalmers University of Technology P a g e | 32

5.1.2 System test

In this verification phase, the whole hardware system (not including the PowerPC) has been

simulated in ModelSim. It is checked for NFS read request, RTP playback and RTP record

operations.

• For NFS read request: the full read request packets have been used, serving as the

input of the PSUnit. All configuration parameters for all needed modules have been

set by setting the default values on their config registers since PowerPC software was

not involved. As a result, the output packets from PSUnit are in a correct format with

correct data payload as expected.

• For RTP playback: simulated data from memory controller has been generated using

an additional counter. The signal indicating the playback mode from the user interface

board also be triggered manually in order to set the whole 10GE system into playback

mode. As a result, the packets at the output of PSUnit are in a correct format with

correct data payload as expected.

• For RTP record: simulated data packet from cameras are generated and put into the

input of PSUnit. Via hardware modules, the IP, UDP, RTP header of these packets

have been stripped out. Coming out from the output of application module, all raw

(simulated) video data have been verified correctly intuitively.

For these positive results, it is concluded that the 10GE system is correct in functional

behavior.

5.2 Verification with ChipScope

During the real operation of the FlashPakII, the ChipScope cell is added for unit and system

verification. When a bug (unwanted result) is found, all concerning modules will be probed to

find the bug. Then the design will be examined and modified. This debug procedure is

repeated until the system is bug-free. All control and data signals are added into ChipScope to

examined state by state, even clock cycle by clock cycle.

5.3 Performance benchmarking

At the time of writing this section, the NFS functionality hardware module has been

implemented successfully on the FlashPakII. From a Linux client, the connection to the

FlashPakII can be established with ‘mount‘ procedure. Performing ‘ls‘ or ‘ll‘ commands, the

list of all available files together with their sizes and attributes will appear on the screen. Files

can be downloaded to the client by the copy command ‘cp‘ normally.

The average download operation is at a speed of approximately 25 MBytes per second. In

more detail:

Verification

Chalmers University of Technology P a g e | 33

• The response time of the FlashPakII for each read request is 16 micro-seconds. It is

calculated from the time of receiving a read request to the time that the reply packet

for that request transmitted completely.

• The gap between two consecutive read request packets is 164 micro-seconds.

• These values are taken from ChipScope, with additional clock counter in order to

determine exactly the number of clock cycle gap.

• The number of packets transmitted in one second will be 1/164.10
-6

 = 6097 packets.

Each packet is 4096 bytes, resulting in data transmission speed of approximately 25

Mbytes per second.

Outlook

Chalmers University of Technology P a g e | 34

6 Outlook

The NFS performance speed is not really impressive. Each video file can be up to tens of

gigabyte. With the current transfer speed, it may consume tens of minute to download. There

are several ways to improve it:

• By increasing the NFS packet format. The current NFS payload size is 4KB. If the

payload of 8KB is used (jumbo frame), the number of read request packet will be

reduced to a half. As mentioned in the performance benchmark section, the response

time for each read request is 16 micro-seconds, while the time between two

consecutive read request packets is 164 micro-seconds. It means the main time

consuming phase is the reply packet processing and request sending of the client. If

the number of these process reduces by a half, the transfer speed can be improved

much: new transmission time will be (16×2 + 164÷2) = 114 micro-seconds (the

number of request reduces a half, while the time response of each request is double as

the file size is now two times bigger), comparing with the old transmission time of (16

+ 164) = 180 micro-seconds, i.e. 58% faster. Some modifications in the NFS

functionality module of the FlashPakII are needed in this case.

• By continuous reply mechanism. Currently, the FlashPakII and the Linux client

processes request packet one by one: when a request releases, it needs to be processed

and reply successfully before the next request is generated. This is also the mechanism

of NFS protocol. If all requests can be generated and sent continuously without

needing acknowledgements of the previous ones; similarly, the FlashPakII is able to

store and process all receiving request packets, then the huge wasting time (up to 90%

of the total transmission time) of waiting for the client to process each reply packet

will be eliminated. This solution is more speed gained than the first one, but the

modification in hardware is more complicated. Nevertheless, this will not be the

standard NFS mechanism.

Here are some proposed solutions for the performance improvement of the system. Due to the

limitation time of the thesis work, they could not be done. However, for the future system

upgrading, they can be considered as the effective solutions.

Conclusion

Chalmers University of Technology P a g e | 35

7 Conclusion

The objectives of this thesis have been successfully fulfilled. The NFS functionality module

has been implemented into the NFI system with the support for function from the timeout

detector. Besides, the data transfer mechanism between the NFS system and the user interface

board has also been implemented, making the availability of the interconnection between the

two boards.

The NFS module has been implemented and combined with the available RTP module. These

two modules are wrapped by the application wrapper module which multiplexes the data

paths of the two modules into one unified path for the compatibility with the current interfaces

of other relevant modules such as the PSUnit, the memory board interface module. The

wrapper module has run properly by correctly switching between the usage of NFS module

(in case of NFS replying the request from a Linux client) and RTP module (in case of

playback or recording mode requesting by button pressed on the FlashPakII). The timeout

detector also supports the NFS functionality by triggering an interrupt correctly when

detecting the end of a read request sequence, stopping the whole system, turning it to the idle

state waiting for a new NFS read request sequence from client. As a result, the video data

from the memory board has been downloaded successfully to a requested client via NFS

functionality.

Next, the data transfer mechanism has also been implemented successfully. Via this way of

communication, the file table as well as other type of commands (e.g. NFS stop, NFS copy)

are delivered correctly between NFI system and the user interface board. With the support of

the common register space implemented in application wrapper module, it is now possible for

two boards to send and receive data/command by accessing these registers using DCR (for

NFI system) and I2C (for user interface board). By utilizing the advantage of the common

register space, the challenge of the interface pin limitation has been overcome without using

more pins. Two-way communication is reached with the flexibility in updating – only by

adding more user-defined command format.

The software program on PowerPC runs properly with the new updated functions and

procedures handling the new data transfer mechanism and the new NFS functionality. All file

information contained in the memory board has been delivered exactly to a requested client

via Linux ‘ls’ command. The read request from the client also be recognized correctly (with

correct take number and stream number) by the PowerPC. Consequently, the correct video

data is sent out via NFS module.

All new implemented modules have been verified successfully with ModelSim and

ChipScope. The NFS functionality has been verified correctly with correct video data

received by the client.

References

Chalmers University of Technology P a g e | 36

References

[1] Charles A. Poynton, Digital Video and HDTV, Morgan Kaufmann. ISBN 1-55860-792-7,

2003

[2] Thomas Brune, Kai Dorau and Holger Kropp, 10GEth-IO-Module system specification

revision 1.5, Deutsche Thomson Brandt GmbH Hannover, September 2007

[3] Zimmermann, Hubert, OSI Reference Model — The ISO Model of Architecture for Open

Systems Interconnection, IEEE Transactions on Communications (Volume 28, Issue 4), pp.

425–432, April 1980

[4] Device Control Register Bus 3.5 Architecture Specifications, IBM Inc., Jan 2006

[5] Dominique Paret, The I2C Bus : From Theory to Practice, ISBN 978-0-471-96268-7,

1997

[6] Russel Sandberg, The Sun Network Filesystem: Design, Implementation and

Experience, Sun Microsystems, Inc.

[7] Bougerol, A. ; Miller, F. ; Buard, N., SDRAM Architecture & Single Event Effects

Revealed with Laser, On-Line Testing Symposium, 2008. IOLTS '08. 14th IEEE

International , pp. 283-288, 2008

[8] Virtex-5 FPGA User Guide, UG190 (v4.2), Xilinx Inc., San Jose, CA, May 2008

[9] Bradley F. Dutton and Charley E. Stroud, Built-In Self-Test of Configurable Logic Blocks

in Virtex-5 FPGAs, Proc. IEEE Southeastern Symp. on System Theory, pp. 230-234, 2009

[10] Peter J. Ashenden and Jim Lewis, The Designer's Guide to VHDL, Third Edition,

Systems on Silicon, ISBN 0-1208-8785-1, 2008

[11] Peter J. Ashenden, The VHDL cookbook, First edition, July 1990

[12] Perry, Douglas L., VHDL programming by example, Fourth Edition, ISBN 0-07-140070-

2

[13] ISE In-Depth Tutorial version 10.1, Xilinx Inc., Copyright 1995 – 2007

[14] EDK concepts, tools, and techniques, UG863, Xilinx Inc., April 13, 2011

[15] XST User Guide, UG627 (v11.3), Xilinx Inc., San Jose, CA, Sep 2009

[16] ModelSim SE user manual version 6.0b, Mentor Graphics Corporation, Published 15

Nov 2004

References

Chalmers University of Technology P a g e | 37

[17] ChipScope Pro Software and Cores User Guide, UG029 (v13.4), Xilinx Inc., San Jose,

CA, Jan 2012

[18] IEEE Std 1149.1 (JTAG) Testability, Texas Instruments Inc., 1997

[19] Kerr, Douglas A., Chrominance Subsampling in Digital Images, Jan 2012

[20] ModelSim® Tutorial, Mentor Graphics Corporation, ©1991 – 2008

[21] Bob Zeidman, The death of the structured ASIC, Chip Design Magazine, April 2006

