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A modeling framework for resolving non-linear
infrared absorption in an FTIR cell

AXEL OLSSON
Department of Chemistry and Chemical Engineering
Chalmers University of Technology

Abstract
The need to extract kinetic information from reaction systems in order to determine
kinetic parameters is of high importance within chemical engineering and other
research fields. The information relies on measured data using infrared absorption
technique. As a consequence the quality of the kinetic information is directly linked
to the quality of the experimental data. Recent studies to determine the quality has
shown that there is a systematic error that arises when compounds that exhibits
non-linear relationship between infrared absorption and concentration are measured
in transient experiments. This error arises from the infrared analyzer itself and is
compensated by the development of a compartment model that works as a corrective
algorithm. The compartment model is developed to be of low computational cost
in order to resolve transient kinetics by non-linear regression analysis, while still
accurately resemble a much more complex computation fluid dynamic model that lay
as basis for the compartment model. The models were then compared to evaluate the
quality of the developed compartment model by changing the operating conditions
of concentrations, flow-rates and signal profile. The high correlation coefficient for
the final compartment model R2 = 0.99945 shows great potential for the model to
predict the segregation inside the FTIR cell. The computational time was reduced
from approximately 96 hours to 0.05 seconds for a simulated 11 seconds sequence.

Keywords: FTIR, Non-linear absorption, Regression analysis, Compartment model,
CSTR, Residence time distribution
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1
Introduction

Research on reactive systems in chemical engineering are dependent on reliable in-
formation about reactions, therefore the need to fully understand the kinetics is of
high importance in order to make predictions. To fully understand the reactions
it is important to identify the mechanisms, pathways and individual step or steps
that may be rate determined. This information is important for processes that are
unsteady or as at the Competence Centre for Catalysis at Chalmers University of
technology, certain surface reactions in heterogeneous catalysis.

1.1 Background

In order to reveal this underlying information about the reactions from experiments,
the data from the reactions have to be collected and analyzed in their transient pe-
riod. Analyzing the reaction data from steady-state experiments this information
would be hidden due to that the individual reaction-steps involved would have ad-
justed to each other. In the transient period of the experiment these mechanisms
has not yet adjusted into a state of equilibrium and the information about individ-
ual steps, mechanisms and proposed pathways can therefore be collected [1]. The
information about the reactions are derived from kinetic analysis which is based on
a kinetic model with proposed reaction mechanisms and reaction parameters. This
model is then fitted to results from experimental data from the reaction in the tran-
sient period. The model and its parameters will then be changed and updated by
regression analysis until a good fit between experimental data and the kinetic model
is achieved. And the best fit between the proposed kinetic model and experimental
data is the model that contains the most accurate information of parameters and
reaction-steps. Figure 1.1 below shows the schematic of the procedure on how the
parameters for a proposed kinetic model is obtained.
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1. Introduction

Figure 1.1: Schematic layout depicting the procedure used for kinetic modeling.

The experimental data are collected by measuring the products from the reaction
of interest in a controlled experimental set-up. A technique available for measur-
ing gaseous product streams from the experimental set-up is the Fourier transform
infrared gas analyzer (FTIR) which has a high detection accuracy within the parts
per billion, ppb, range for most compounds [10]. By this procedure it is therefore
evident that the quality of the kinetic models will rely on the quality of the exper-
imental results. This accuracy has been tested by performing a step-response test
over the experimental set-up which therefore can be considered a known input. The
difference between this known input and measured output is the time-lag that arises
through the system. It was shown that indeed there was an time-lag that arose from
the experimental set-up including the FTIR detector. From the step-response test
is could be concluded that the actual experimental set-up was of less importance
as the major contributor of the total error was found to be in the FTIR itself, 94
% of the total signal distortion [2]. This distortion adheres from hydrodynamic dis-
persion of the input signal in the detector cell within the FTIR gas analyzer [3].
Signal distortion will mean a loss in temporal resolution which is very important
for transient experiments as each individual time step contains valuable informa-
tion. However this problem has been solved by development of a deconvolution
algorithm. The hydrodynamic dispersion adds another problem when the measured
compound exhibit a non-linear relationship between concentration and infrared ab-
sorption, which is the detection technique used in FTIR. Hydrodynamic dispersion
within the cell together with the non-linear absorption cause a systematic error in
the transient measurements between detected concentration and actual concentra-
tion. Soheil Soltani et al. proved this systematic error by the means of a transient
computational fluid dynamic (CFD) simulation of the detector cell with incorpora-
tion of infrared absorption. By simulating a step-response with carbon monoxide
which is a compound that exhibit the non-linear relationship it was shown that there
indeed was a difference between the detected concentration and actual concentra-
tion in the detector cell during the transient period [4], which is shown in Figure 1.2
below.
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1. Introduction

Figure 1.2: Systematic error between actual concentration (blue) and detected
concentration from infrared absorption (red) for step response 900 ppm CO.

1.2 Problem description

The hydrodynamic dispersion together with the non-linear infrared absorption is
the source of the systematic error [2]. The error will reduce the quality of the
experimental data and have a negative impact on the accuracy of the kinetic models.
To increase the quality of the experimental data the systematic error has to be
accounted for by a corrective algorithm. The CFD model described above can
correct for the systematic error and can therefore be considered as a corrective
algorithm. However a major drawback for the CFD model is the need of a known
transient input signal to simulate a correct detected result. The solution would be
to incorporate the CFD model into the regression analysis of the kinetic model to
update the input signal of the CFD model in a iterative procedure to account for
the systematic error. The current CFD model takes approximately 96 hours for
10 seconds simulated sequence, which in an iterative procedure will end up using
decades of computational time which is unfeasible.

The proposed solution for finding a corrective algorithm is to replace the compu-
tational demanding CFD model with a low-cost compartment model that is con-
structed based on the results from the CFD model. The main focus for the com-
partment model are that the computational time must be drastically reduced while
still producing results that can be comparable to the CFD model.

3



1. Introduction

Figure 1.3: Schematic block diagram representing the CFD model (top) and com-
partment model (bottom) with identical input, x(t), and corresponding output y(t)
and y’(t).

The general aim of the study can be generalized by the block diagram in Figure 1.3
where the error between the two models using identical input should be minimized
to assure that the compartment model will predict as similar results as the much
more advanced CFD model by minimizing the sum off square error (SSE) for every
time-step (t).

SSEmin = (y(t)− y′(t))2 (1.1)

1.3 Thesis outline
The thesis will start off with theory to provide information about the FTIR anal-
ysis and how the experimental results of ir absorption are put into mathematical
formulas that can be used in simulations. This is followed by theory in how the
governing mass-balance equation are derived and how they can be connected into
a compartment model. Thereafter, theory on how to interpret the concentration
output (Residence time distribution, RTD) from the CFD model and transfer the
behaviour over to the compartment model. Results from the compartment model
will then be compared to a variety of simulated results from the CFD model.
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2
Theory

In the framework of the model a variety of physical phenomena has to be incor-
porated and interconnected. The theory has to be translated into mathematical
formulations and the experimental data has to be analysed in order to propose a
model that will make accurate predictions.

2.1 Infrared absorbance
In order to quantitatively and qualitatively analyze the species of interest in flu-
ids the technique of infrared spectroscopy is applied. This technique identifies the
molecule by logging which unique bands of ir-frequency is absorbed by the molecules
functional groups [6]. The carbon monoxide is a diatomic molecule with a triplet
covalent bond which allow for a distinctive molecular vibration when ir-radiation is
absorbed.

C O
For diatomic molecules with covalent bonds there are general principles to calcu-
late the wavenumber using the harmonic oscillator model, which is the ir-frequency
the molecule absorbs energy. The wavenumber can be calculated by viewing the
molecule as spheres with masses connected with a spring by applying it to Eq. 2.1
to calculate the diatomic wavenumber. For this purpose Argon will act as a perfect
solute to CO as the single, non-polarized atom will not absorb any energy which
could interfere with the absorbed energy for CO [8].

ῡ = 1
2πc

√
K
( 1
m1

+ 1
m2

)
(2.1)

All data to calculate the wave-number (cm−1) are listed in the Table below.

Table 2.1: Parameter values to calculate wave-number.

Parameter Value Units
K 18 md/Å
c 299 792 458 m/s
m1 12.0107 amu
m2 15.9994 amu

The resulting wavenumber was calculated to 2110.6 cm−1 which by the experimen-
tal result by Jimmy Bak et al. [5] was determined to 2178.8 and 2148.6 cm−1 .

5



2. Theory

Measurements at different concentration determined that the relationship between
detected concentration and absorption is nonlinear and from these data a fifth order
polynomial was fitted in order to computationally simulate the correlation between
absorbance and concentration [5].

C = −0.981 + 8.781A+ 0.0554A2 + 0.00849A3 − 1.58× 10−4A4 + 7.70× 105 (2.2)

The concentration response (Cλ) from the FTIR at the CO absorption wavelength
(λ) will be simulated by the known relationship of Beer-Lambert law, Aλ = ελCs [9].
Here the term ελ is the molar absorptivity which is the proportionality constant for
the absorption (Aλ) that is depending on the optical length (s) and concentration
(Cλ) in the cell.

ελ = Aλ
Cs

(2.3)

Knowing the concentration range of interest, the experimental nonlinear relationship
between absorption, concentration and optical length in the experiment, the molar
absorptivity (ε) is computed from a function of concentration (y) given by Eq. 2.4
[5].

ε = −7.864× 1010 + 0.002278× 1012y2 + 4.497× 106y + 22.24
1012y2 + 333.6× 106y − 0.5537 (2.4)

From this known triplet of molar absorptivity, optical length and actual concen-
tration a representative FTIR response that relies on experimental results can be
modeled. This method was implemented by Soltani et al. to show that there will
be a systematic error in the FTIR detection during transient experiment [4]. The
systematic error from these data was illustrated in Figure 1.2 and adheres from the
non-homogeneous concentration that the detector cell will have during a transient
measurement.

2.1.1 Fourier transform infrared gas analyser
The detector used in the experiments is a MultiGas 2030 gas analyzer from MKS.
At the heart of the analyzer is the detector cell which is the focus for this work and.
Inside the heated detector cell the gas emissions from the experimental set-up flows
through and absorb energy from the ir-beam which is sent between the end caps 32
times (∼5 m optical length) in order to detect the specie concentration throughout
the whole cell [10].

2.2 Computational fluid dynamics
In order to gain insight of the fluid mechanics inside the detector cell, CFD simu-
lations are highly useful tool to get detailed information which otherwise would be
impossible. Previous study of the detector cell made use of a CFD simulation to de-
termine the quality of the FTIR measurements [3]. The simulation were conducted
in 3D and based on the internal geometry of the detector cell and the measurements
are shown in Figure 2.1.
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2. Theory

Figure 2.1: Detector cell geometry used in CFD simulations.

The CFD model will also be the underlying foundation from which the new simplified
model will be compared and assessed on in terms of quality of the predicted results.
All the data extracted from the CFD model will be seen as experimental results
that the new compartment model should predict. For this reason the quality of the
CFD model has to high to assure that the CFD simulation behaves as realistic as
possible. The software used for this model is the ANSYS academic package. First
of is to assess the flow properties and calculate the Reynold number to verify if
the choice to exclude the turbulent flow model and assume that the flow is laminar
is correct. The Reynold number calculated at the experimental conditions in the
narrowest section in the cell with only argon present. The data used for Eq. 2.5 are
are listed in Table 2.2.

Re = ρDhv

µ
Dh = 4A

p
(2.5)

Table 2.2: Parameters for calculations.

Parameter Value Units Description
ρ 1.05 kg/m3 Density1

Dh 0.0232 m Hydraulic diameter
A 8.3955× 10−4 m2 Area
p 0.1448 [m] Wetted perimeter
µ 3.284× 10−5 kg/(s×m) Viscosity (200◦C)2

v 0.11 m/s Velocity
1) PV=nRT 2)[11]

These conditions results in a Reynold number of 81.7 which is far from the ∼ 1000
where the turbulence starts between walls, therefore the laminar condition holds
true [12]. Further aspects of the model is the mesh quality, and tests by refine
the mesh showed that there were no measurable difference in the result, i.e. the
simulated results are not mesh dependent. The total number of cells for this mesh
independent solution is approximately. 400000 cells. And the aspect ratio for this
mesh shows good quality. The transport equations for this type of laminar flow with

7



2. Theory

a flow field that is expected to twist and might even swirl should by recommendation
to be solved by a second order up-wind scheme or MUSCL scheme [13] in order to
get transportiveness in the schemes, this was also fulfilled [4]. The simulation is a
transient simulation meaning that for each time step the solution must converge.
The number of iterations needed for each time step to converge is dependent on
how low residual is allowed in the continuity and species transport equations. To
maintain high quality a low residual limit is set for the individual equations as shown
in Table 2.3.

Table 2.3: Residual limits for CFD simulation.

Parameter Value
Continuity 10−4

momentum 10−4

Specie 10−4

Initially the number of iterations to converge a solution for the initial time steps
might reach approximately 500-600 iterations with a time step of 0.05 seconds. As
the simulation flow time increases the iterations is reduced to around 200 before
the solution converges. To reduce the iterations further the time step needs to be
smaller, this would decrease the computational time for each time step but on the
other hand increase the number of time steps in the simulation. Still, the quality
check shows that the CFD model are of high quality and can be used as a reliable
source of data.

2.3 Fluid mechanics

In order to properly design the compartment model the characterization of how the
concentration profile develops inside the FTIR detector cell is the most important
information to be able to enhance the quality of the model [7,14,15].

From fluid mechanics the technique of tracer technology is used to determine flow
behavior and to analyze how the concentration profile develops inside the vessel. The
concentration profile (RTD) can be determined by running a stable rate of solute
trough the vessel, and add a known concentration of tracer with similar properties
at the inlet. By measuring the concentration of tracer at the outlet as a function
of time, the results will determine how the flow acts inside the vessel [7]. In the
experiment Argon is used as the carrier gas due to its inert properties to other
gases, and as the tracer CO is used as it is the gas of interest in the experiment.
By measuring the time from which the tracer was added at the inlet and then
measuring the concentration of the tracer at the outlet the result can be presented
as a RTD. There are of course a number of ways to add the tracer that all gives their
characteristic response. Most common is the pulse and step response which also will
be used in this study to evaluate the hydrodynamic dispersion and convective flow
pattern occurring in the cell. Below in Figure 2.2 are illustrations of the pulse and

8



2. Theory

step-response which will be used. Later, the periodic signal will be used to test and
evaluate the compartment model [7].

Figure 2.2: Different tracer injection methods.

The pulse input can be described as a very quick burst of tracer into the inlet at the
start of the experiment. The step response on the other hand has a continuous supply
of tracer at a constant rate throughout the whole length of the experiment. From
this known input, the output signal will be interpreted on how distorted it is coming
out. In fairly ideal conditions the outlet signal will usually be a stretched version of
the inlet tracer signal. The outlet response of the known inlet tracer signal can then
be modeled with the known parameters, flow, volume, accumulation, dissipation etc
[14].

2.3.1 Mean and variance of residence time distribution

Important properties from the tracer-response experiment is the mean, t̄, which
will determine the center of the signal at the outlet and the variance, σ2, that
will determine the magnitude of dispersion from the output signal in the detector
cell [7]. After running the experiment a certain time, the entire amount of tracer
has been detected at the outlet and it can be seen from Figure 2.3 below that the
Dirac signal from a pulse injection have dispersed from the initial condition i.e. the
concentration variance has increased during the residence time in the vessel. To find
the mean of the curve, the sum of the products of concentration at a given time and
its corresponding time

∫∞
0 tCdt is divided by the area under the curve

∫∞
0 Cdt. The

variance is calculated in a similar fashion as seen in Eq. 2.6 [7].

t̄ =
∫∞

0 tCdt∫∞
0 Cdt

σ2 =
∫∞

0 t2Cdt∫∞
0 Cdt

− t̄2 (2.6)

Using Eq. 2.6 to calculate t̄ for the ideal vessel gives a mean residence time of
1.99 seconds, which is indicted by the Dirac signal in Figure 2.3. This is what
the impulse response would look like if there was no dispersion inside the vessel,
and clearly this is not the case here. The variance is calculated to ± 1.66 seconds
around the mean residence time ( t̄ ). These early peaks before t̄ indicate that specie
is transported faster than expected but also that some specie lagging behind after,
important indications that will be described further.

9



2. Theory

Figure 2.3: Mean residence time and variance distribution from a pulse injection.

2.3.2 Stagnant zones
If the entire amount of tracer is accounted for, the integral

∫∞
0 Cdt in Eq. 2.6

should be equal to the concentration of tracer at the input. The known tracer input
concentration can be compared to the outlet concentration, as they should be equal
to fulfill the mass balance (in=out). If not, this is a sign that there are stagnant
or dead zones in the vessel that has accumulated tracer specie by diffusion or very
slow convection and has therefore remained in the cell or seeping out at very slow
rate [7].

Figure 2.4: a) Detector cell with low concentration in stagnant zone. b) Impulse
response at the outlet from the detector cell.

Figure 2.4a illustrates a stagnant zone in the cell, and as can be seen the main bulk
flow takes the closest route i.e. bypassing to the outlet which leaves part of the
vessel stagnant with only tracer transport though very slow convection or diffusion.
This will lead to a concentration profile that has a characterized tailing. Seen in
Figure 2.4b as a low concentration tailing that eventually will perish. When testing
the gas cell with a pulse test off 11.25 sec it can be calculated that there is a small
fraction of stagnant zone in the cell. As a rule of thumb [7] the tailing should be
cut of at approx. 3× t̄ and the rest of the tailing is considered to be stagnant fluid.

10



2. Theory

This means that from 6 sec into the test the outgoing tracer is considered to be
contributed by stagnant zone(s).

t̄ =
∫ t

3t̄Cdt∫ tf
0 Cdt

(2.7)

For our cell this means that a 1.72 % or 3.158 mL of the volume is considered
stagnant and looking at the Figure 2.4a above there is a small corner in the cell,
which most probably can be considered a stagnant zone. Findings like this is of
importance as this small fraction of stagnant volume can be ignored and modeled
as regular convective flow as the stagnant volume fraction is so very small. If the
volume were to be larger the impact on the model would be considerable.

2.3.3 Bypass
Another event that can occur in the vessel is bypassing, the fluid takes the path of
least resistance and depending on the geometry of the vessel there can be different
routes for the fluid to pass. The bypass is characterized by initial peak(s) of con-
centration that occur before t̄ [7,15]. This indicates that a partition of the tracer
has found a passing that has a faster flow path then the mean bulk fluid. From the
concentration profile in Figure 2.3 the high early peaks in the curve is most certainly
due to a bypass, and plotting the flow pathways inside the cell shows that there is
a flow fraction going directly from inlet following the wall directly to the outlet.

2.3.4 Signal conversion
To get as much information and understanding from the experimental data it can
be valuable to visually interpret both a pulse-test and a step-response test. Pulse
response has the advantage of resolving the events in more detail then the step-
response. However the magnitude of the events in a pulse-response can be misleading
off the actual impact they pose. This can be seen in Figure 2.5 where the same
experiment is presented as both step and impulse response.

Figure 2.5: a) step-response, F-curve. b) Impulse response, E-curve.

11



2. Theory

The step-response are of equal importance as it presents the concentration front
more intuitively for the viewer. Luckily there is no need to do both experiments as
they are mathematically related by Eqs. 2.8 and 2.9. Impulse to step response by
Eq. 2.8 and rearranged to get the pulse response from the step-response by Eq. 2.9
[7,12,15].

E = dF

dt
(2.8)

F =
∫ t

0
Edt (2.9)

2.4 Ideal vessels

In order to describe the concentration profile from the detector cell we will formulate
a model using the same parameters as the detector cell in the experiment from
volume, flow-rate and concentration. As the formulations are theoretical and only
contain basic information without accounting for any practical events they are known
as ideal vessels. And there are two ideal vessels that can be used to describe the
experimental results. The first is a continuous stirred-tank reactor, CSTR, and as
the name describes it is a well-mixed vessel that always has a uniform concentration
throughout the vessel at any given time. This means as soon the concentration
front enters the CSTR, the tracer will be dispersed throughout the vessel and be
very diluted. But as the steady input of tracer continues, the concentration of tracer
will build up in the vessel until the vessel has the same concentration as the inlet.
The second unit is a plug flow reactor, PFR, it will only act as a time delay equal
to the mean residence time t̄, the concentration front going through the vessel will
have the exact same concentration profile going out without any distortion [7]. The
ideal vessels are illustrated in Figure 2.6 with their corresponding response to an
step-input signal.

Figure 2.6: a) Idealized plug flow reactor. b) and continuous stirred tank reactor.

As evident, using the parameters of cell volume and flow rate for the ideal vessels
and comparing them to the experimental result as shown in Figure 2.7, neither of
the two idealized vessels show any good comparison and the assumption of idealized
flow clearly describe the detector cell poorly. Therefore more in-depth analysis of
the detection cell has to be done to allow for a more advanced model to describe
the cell behavior, a compartment model.
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2. Theory

Figure 2.7: Comparison between experimental results and idealized vessels.

Understanding the idealized reactors and why these give the result that they do are
of importance as they will give an understanding of flow behavior, this insight will
be valuable when interpreting the experimental results. Important to say is that
ideal reactor vessels are dimensionless and does not contain any spatial information
in terms of length, width or height, the vessels only contain volume, and has no
known physical shape i.e. the volume of the vessel can have any irregular form [17].
This notion is important later on when the objective is to impose the ir-beam that
crosses the vessel with a defined length.

2.4.1 Mathematical formulation
In order to simulate the response as shown in Figure 2.7 the formulation had to be
translated into a mathematical relationship. This model originate from the general
material balance over a control volume which would be our ideal vessel. This com-
plete formulation listed in Eq. 2.10 contains events that can be assumed negligible
in the detector cell we want to model [17].
 Mass flow of

the component
into the system

−
 Mass flow of

the component
out from the system

+


Rate of

generation/dissipation
of tracer by

chemical reaction

 =


Rate of

accumulation
of mass

in the system


(2.10)

The CSTR described in Eq. 2.10 can be simplified and still accurately describe the
tracer behaviour. Still, it is important to review all the statements in the material
balance to review the significance of each term’s to the end result. Starting off with
the ‘Rate in of tracer’, this is the inflow of tracer concentration rate mol

s
and it is a

product of bulk fluid flow rate (Q̇ m3

s
) and tracer concentration (C mol

m3 ). The same
applies to rate of tracer out, the ideal CSTR only has one inlet and outlet of CO
and will therefore has the same bulk flow rate going out as it has going in. As the
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2. Theory

step-response suggest, the concentration of CO (component) will gradually increase
from 0 to final concentration, this implies that there will be accumulation of CO.
Finally the generation and/or dissipation of tracer by chemical reaction, these are
the terms that does not add any significant magnitude to the terms to be included.
There is no reaction occurring in the detector cell and is therefore excluded from
the material balance. The component balance is therefore simplified [17] and can
be rearranged to Eq. 2.11.

Rate of
accumulation of mass

of component
in the system

 =

 Mass flow of
the component
into the system

−
 Mass flow of

the component
out from the system

 (2.11)

The following first order differential equation (ODE) Eq. 2.12 is now used to describe
the CSTR flow of tracer. This ODE can now be used together with the parameters
used in the experiment: volume, volumetric flow and a concentration of tracer to
solve for the transient period we want to model [15].

V
dCout
dt

= QinCin −QoutCout (2.12)
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At this stage it is obvious that the fluid mechanics of the gas cell cannot be modeled
using a single conventional CSTR or PFR, as the gas cell does not exhibit these
idealized flow fields predicted by the ideal vessels. Therefore a new approach to
the problem is at hand. This is done by viewing the gas vessel as a combination of
smaller sections that are interlinked by flow and all these individual sections behaves
as ideal reactors (CSTR/PFR) [7,15].

3.1 Compartment modeling
The basic modeling units used to puzzle together a compartment model are the
CSTR and PFR vessels and the definitions of bypass and stagnant zones. These
can be connected in many different ways that yields individual and characteristic
concentration profiles. Below in Figure 3.1 are a single CSTR vessel connected with
a variety of streams and their resulting RTD are depicted underneath.

Figure 3.1: Different combination of idealized vessels and their outlet response.

Figure 3.1a shows a single CSTR unit with its ideal response. Figure 3.1b shows a
CSTR that partially consist of a stagnant zone. This gives a steeper decline in the
concentration because it travels more quickly through the part of the CSTR that
is active. Figure 3.1c consist of a CSTR but with a bypass, this will lead a part of
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the incoming fluid instantaneously to the outlet characterized in the concentration
profile as the peak at the start. The rest of the fluid which travels through the
CSTR shows the familiar response of the CSTR at a reduced flow-rate caused by
the bypass. Which shows as a more flattened decline compared to a standalone
CSTR [7].

3.1.1 Degrees of freedom
As can be seen from the profiles from the interconnected vessels in Figure 3.1 the
resulting concentration profile can be modeled with great flexibility and therefor
it should surly not be impossible to puzzle vessels together to get a model almost
identical to the experiment. And it is not impossible, but rather labor-intensive
as the flexibility in the model increases exponentially as soon as two or more units
are connected. For every compartment denoted n in Eq. 3.1 below, there are a
number of parameter freedoms that will have to be set in order to obtain a unique
solution. The contribution of parameters for every compartment (n) are n2 number
of streams, and 3n is the volumes, initial conditions and final conditions [18].

DOF = n2 + 3n (3.1)

This increase in degrees of freedom (DOF) in the model is due to how the total vol-
ume should be allocated among the different units and also how the streams should
be connected and which streams that are included. Imposing the material balance,
the total volume and flow-rate to the streams the compartment model reduces the
DOF for a physical compartment model with ‘n’ individual compartments by Eq.
3.2.

DOF = n2 + n− 2 (3.2)

Eq. 3.2 indicates an exponential growth of parameters as the number of compart-
ments increases, The left scheme in Figure 3.2 below show an example of n=2 for
both the unconstrained case and the constrained case.

Figure 3.2: a) Degrees of freedom in an unconstrained two compartment model.
b) Reduced freedoms model based on regular assumptions.

Already here the DOF for two parallel connected CSTR units have numerous ways
to split or exclude the flow altogether among the CSTRs, then also how to divide
the total volume between the vessels. All of these parameter freedom will have
impact on the concentration profile, and adding another reactor unit will increase
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the DOF and add complexity. In order to further decrease the DOF there are several
assumptions to implement. First of is the assumption that there is no recirculation
in the cell, therefore the model is labeled as a ‘trap model’ meaning there is no
streams leading back, all the fluid that has entered the system is trapped and can
only move forward [18]. The impact of the bypass shown earlier in the experimental
data had no significant contribution and could therefore be removed from the model.
There is also only a single input and a single output (SISO) from the system, cutting
the DOF for each added CSTR by one as it otherwise would have an exit stream
for each CSTR unit. Therefore in the end a more bearable number of DOF are left
in the end. These parameters concerns the allocation of volume and initial split of
flow between the first two parallel CSTR vessels. The DOF in the example above is
left with four parameters to model and will be parametrized and fitted by regression
analysis.

3.1.2 Model condition

In order for the compartment model to predict accurate and reliable results it has
to use the same physical properties used in the experiment. The CFD model has
used these conditions and are therefore extracted from the software to be used for
the compartment model. The conditions of interest from the detector cell are the
flow rate and detector cell volume, the spatial information is of no interest as the
model is in zero dimensions. The model parameters are set at operating conditions
which is defined at atmospheric pressure (101325 Pa) and an elevated temperature
at 191◦C as the detector cell is heated. These operating parameters are listed in
Table 3.1 and can be considered absolute as they will always have to be fulfilled.

Table 3.1: Model parameters at operating conditions.

Condition Value
total volume 183.845 mL
total flow-rate 92.355 mL/s

3.1.3 Tanks in series

Before going any further, it can be of interest to see how the response curve (concen-
tration profile) of the compartment model will look by just dividing the cell volume
into two or three ideal CSTRs. Illustrated in Figure 3.3 these simple models of two
and three tanks in series already represents the experimental data much better than
the single CSTR unit.

17



3. Methods

Figure 3.3: Tanks in series model fitted towards experimental results.

Figure 3.3 shows how the increasing number of tanks in series converges onto the
experimental data. In fact adding on to this series of tanks will slowly move the
concentration profile steeper around the pivot point of t̄. Until you reached a vertical
increase when the number of tanks reaches infinity, the same response a PFR would
give. This therefore also confirms that a PFR is nothing more than an infinity
long tank in series [7]. Therefore if we have need for a PFR as a time-delay we
can either model it as the f(t-τ) [15] or a long series of CSTR tanks, already at
around 100 CSTRs the profile resembles a step response. In the models used in
Figure 3.3 the volumes are not equally divided between the CSTR, their volume
fraction is optimized to get the highest resemblance towards the experimental data.
This optimization is in most regards the core of the compartment modeling and is
equally important to optimize as the model architecture itself. The whole process
is an iterative procedure where first a model structure is proposed and then the
parameters are optimized to the experimental data. The mathematical formulation
for these tanks in series will be built up from a system of ODEs and are solved
simultaneously and as can be seen from Eqs. 3.3-3.5. The concentration that is
derived from the first ODE (C1) cascades down throughout the ODEs, and the final
RTD can be monitored by looking at the solution for the ODE containing the output
[17].

V1
dC1

dt
= q0C0 − q1C1 (3.3)

V2
dC2

dt
= q1C1 − q2C2 (3.4)

V3
dC3

dt
= q2C2 − q3C3 (3.5)
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There should be stated that there is no proof that the tanks in series model actually
behaves internally in terms of flow as the actual cell even with a good fit between
the experimental data and the model. Therefore the aim is to set out to find a more
optimal model for our gas cell. It can be assumed that the flow needs a more complex
model than a simple tank in series to predict the internal flow of the detector cell.

3.2 Regression analysis

Regression analysis is nothing more than optimizing a mathematical model for de-
scribing particular types of pattern in empirical data, and the empirical data would
in this case be the concentration profile retrieved from the CFD simulation. Regres-
sion analysis is therefore the tool we will use to find the minimal error between the
empirical data and our model prediction by having the freedom of changing the vol-
ume and flow parameters throughout the compartments model [19]. It is important
to know that models never emerge from data, it is we who impose a model on the
data and by doing so the model can show changes in the quality of the results from
case to case.

“A model is only a representation designed to display the basic structure of a more
complex set of phenomena.” [20].

For our simplified model this is exactly such a case. A highly complex CFD model
that consist of approximately 400000 cells and numerous transport equation of mass,
momentum and energy including diffusion that all interact and are solved for three
spatial coordinates and time to present the resulting data. The model that are
imposed on these data is a much simpler model consisting of 6 cells and one com-
ponent balance equation without any spatial dimensions except time. It can only be
expected that the model only will resolve the basic hydrodynamic dispersion inside
the cell [20].

A remark should be made on the modeling structure, there are different ways to
attain a model from an empirical data-set. There are of course models that can be
fitted to the data without any type of physical relationship, just a purely mathe-
matical construction of polynomials. The possibility to use physical mathematical
expressions that are fitted to mimic the flow without any internal structural resem-
blance to the real flow are also possible, but these two aforementioned models might
only show a predictable function for the exact set of data-set used to construct the
model against, any changes to the flow which would alter the empirical data-set
would not be predictable from the now unreliable models. Figure 3.4 illustrates the
flaw in unrealistic modeling as a 7th degree polynomial fit can easily and quickly
be made with a reasonably good fit within the data-set time-frame. However it is
obviate that any predictions further than the 12 sec will be worthless, for this model
a small unrealistic/unphysical negative concentration in the very beginning of the
experiment will contribute to unrealistic predictions.
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Figure 3.4: 7th degree polynomial fitted to experimental results.

3.2.1 Non-linear regression

To avoid unrealistic models effort have to be made to properly analyze and include
relevant terms to assure that the model make physical sense. By investigating the
relationship between the dependent (y) and independent (x) variable it is initially
established that the regression analysis has to be non-linear for the parameter fitting
and will impact the way on how to tackle the regression analysis. The non-linearity
comes from the relationship of concentration and flow/volume from the governing
CSTR equation. And it is seen by Eqs. 3.6 to 3.9 stating the mathematical rela-
tionship analytically.

dC1

dt
= q1

v1
C0 −

q1

v1
C1 (3.6)

∫ C1

0

dC1

(C1 − C0) = −q1

v1

∫ t

0
dt (3.7)

ln
(

1− C1

C0

)
= −q1

v1
t (3.8)

C1 = C0

(
1− e−

q1
v1
t
)

(3.9)

From the Eq. 3.9 above the relationship between concentration and flow/volume
which is to be parametrized is not linear, it is in fact non-linear as nature tends to be
[19]. This is a consequence from the independent variables that will be parametrized
in the equation are in a exponential position on Euler’s number.
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3.2.2 Parametrization

The main difference in the final results from linear regression compared to non-
linear regression analysis is the approach to find the minimal sum of square error,
SSE, between the empirical and model data-set. For the linear regression it can be
determined to the absolute or global minimum SSE which comes from that it is a
closed data-set and there would be an analytical approach to reach the minimum
[19]. The nonlinear regression does not have this analytical approach, instead it
uses an iterative procedure. The parametrization for the compartment model uses
the ‘trust-region-reflective’ algorithm provided by MATLAB®, which is the
default algorithm. This algorithm uses an initial guess and thereafter measures
the magnitude of the error derivative, and a new guess is proposed based on the
error derivative. This is then repeated until there is no further decrease in the SSE
by the minimization algorithm. The internal workings of the algorithm is out of
scope for this report and is only mentioned for informational/clarification purpose.
By this iterative way of minimizing the SSE there can only be established that a
local minimum has been reached. Therefore the quality of the initial guess is very
important to make reliable predictions [19].

SSE =
n∑
i=1

(yCFD,i − ymodel,i)2 (3.10)

For the example earlier with 3 CSTR in series there would be from DOF analysis
10 parameters to specify in order to get a unique solution. This is immediately
reduced as we know everything except the individual allocation of the total volume.
Therefore there is only two parameters left to be optimized as the third volume will
be the remaining volume left from the total volume minus the sum of the other two,
v3 = vtot − (v1 + v2). The magnitude of the SSE for the three CSTR tank model
are dependent on how the two parameters v1 and v2 are chosen. Therefore the
algorithm will try to minimize the error with respect to v1 and v2, and the following
mathematical expression can be derived [24].

dSSE

dv1
= 0 (3.11)

dSSE

dv2
= 0 (3.12)

One step after the initial guess these terms will provide a value on how to update
the next guess that will minimize the terms until they reach zero and thereby finds
an SSE minimum. For a two parameter case this can be visualized by an error
surface where you can see the algorithm travel towards the deepest point. From the
error surface in Figure 3.5 the solid red line indicate the steps the algorithm takes
to reach a minimum.
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Figure 3.5: Normalized error surface for a three tanks in series model.

Depending on the initial guess from the error surface plot in Figure 3.5 there are
three possible local minima points visible where the algorithm can travel down to
minimize the error. The initial guess was chosen to v1 = 165 mL and v2 = 12 mL.
Following the red line shows how the algorithm stepped over the error surface until
finding the lowest point at one of the three wells. From the surface plot it is clear
that we have found one of the three wells that would converge into a minimum error.
And without the error plot we would only know that we hit a local minimum. If
we try other initial guesses we might end up in another well that has an even lower
error sum. The error surface plot is not to be considered a tool which can be used to
determine if the best fit has been found or not. The visualization is only possible for
one or two parameters as more parameters cannot be visualized in three dimensions.
In order to visualize an error surface you need to compute all possible solutions in
the boundary range which is highly computationally costly and the error surface
here is only to visualize the process of minimizing the SSE.

3.2.3 Model structure
To further minimize the SSE between the experimental data and model there is a
need to add complexity to the structure to resolve for a more advanced internal flow
compared to the simple tank in series model. The new model has a parallel scheme
added and internal streams are cross connected to more resemble the internal flow
which can be expected in the detector cell. The new compartment model structure
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is shown in Figure 3.6 and illustrates the compartment volumes and streams that
have to be optimized in order to fit the response profile from the compartment model
onto the profile from the CFD model.

Figure 3.6: Compartment model structure with parameters for optimization.

3.2.4 Constrained optimization
In the optimizing function there is a need to specify the boundary’s for which the
parameters should be kept within. The basic outer boundaries are the physical laws
that say that there can be no negative volumes, at a minimum they can be zero.
We also only have flow in one direction which implies that the flow will only be in
a positive direction, and also here a minimum of zero. These will form an outer
perimeter on which the parameter will be optimized within and are included in the
lsqnonlin function as two boundary vectors. For the case where we have reduced a
CFD model into 6 compartments the upper and lower boundary constraints can be
specified by these physical boundary’s.

[ v1 v2 v3 v4 v5 q1 d1 ]
lb = [ 0 0 0 0 0 0 0 ]
ub = [183.845 183.845 183.845 183.845 92.355 92.355 92.355]

As can be seen from the boundary vectors above the last remaining volume and
flow parameters are left out. This is due to that these are not parameters that will
be optimized. As the DOF analysis showed these last terms are functions of the
previous parameters through material balance by Eq. 3.13.

v6 = vtot −
5∑
i=1

vi q2 = qtot − q1 (3.13)

All the six individual internal concentration profiles has been included in the penalty
function to be optimized. Much of the information can be extracted from the section
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CFD model to narrow down the span of what volume each compartment would be.
In Eq. 3.14 the sum of squared error, SSE is dependent on the error over the whole
simulation time here denoted j = 1 to n n = tf . And also for each of the six internal
profiles i=1 to 6.

SSE =
6∑
i=1

n∑
j=1

(yj,CFD − yj,model)2
i (3.14)

The CFD model provides data from the internal flow which is the best scenario as
it will provide the internal flow structure. If however this would not be available
the experiment could be performed by two different signals, for example one step
response and one sinusoidal signal. Both could be performed in parallel in the
objective function and both would be included in the penalty function, illustrated
by Figure 3.7 . This would force the parameters to make the best fit of both signals
and would increase the chances to fit the compartment model to the internal flow
more correctly. However this procedure was not used here as the CFD data provided
more detailed information to use.

Figure 3.7: Introduction of multiple data-set for regression analysis.

3.2.5 ODE Solver
There are numerous ODE solvers in MATLAB® that solve ODEs differently. There-
fore an analysis of the differential equation is good to optimize the choice of the
solver. It has to be taken into account what information we have on the extra
conditions. For this mass-balance we have the lower condition for the independent
variable, C(t) at t=0 which is when the cell is empty, therefore C(0)=0. This calls
for an initial-value problem, IVP solver. The compartment model can be exposed
to fast changes in the concentration which suggests that the model is stiff. In order
to remain accurate and numerically stable, the preferred solver would therefore be
an implicit solver that has better stability properties over the explicit solver. From
MATLAB® documentation the solver for this problem is the ODE15s solver [24].

3.2.6 Script algorithm
Regardless of the layout of the compartment model, from a two series of tanks to
a much more complex compartment architecture the same fundamental framework
of the MATLAB® script is used to find the optimized parameters. The script has
a rather complex structure when it is broken down to the individual components,
and therefore a more schematic description of the script is more representative.
Starting from the upper left corner in Figure 3.8 all the data that is used are stored
in the main script and then transported/sent to the underlying functions, objective
functions.
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Figure 3.8: Procedure for solving nonlinear regression analysis.

3.3 Resolving internal flow structure

From earlier sections the focus has been on very simple models as a tanks in se-
ries structure to visualize and explain the underlying theory without making the
models too complex. These models are however not adequate to model the more
complex flow structures inside the detector cell. The algorithm to derive the more
complex model structure in order to resolve the internal flow will be reviewed more
thoroughly.

3.3.1 Structural design

In order to work out the best mathematical description for the compartment model
that fits to the internal flow, the natural step would be to switch the focus from
trying to fit the model response to the output (RTD) and instead try to look on how
the residence time is actually distributed within the cell. The CFD model of the gas
cell was discretized into 18 evenly spaced sections, to be able to monitor the rise of
concentration during the transient period which can be seen as an internal RTD for
each cell. The individual volumes had also to be extracted from the model as they all
varied slightly in size due to that the cell walls vary in curvature as well as the whole
cell has a slight wedge geometry. These sections would then have an independently
average concentration that would reach the steady state independently from the
other sections and will give a sense on how the concentration is spread throughout
the cell.
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Figure 3.9: Discretization of the CFD model into compartments for individual
concentration monitoring.

The simulation was run at 50 ppm CO, standard conditions listed in Table 2.1 from
the CFD theory section. All the individual sections were monitored until steady-
state condition was met. Figure 3.10 below shows the individual sections c-t profiles
and the numbers refers to each section. Plotting them together will give a sense of
how they interact, as can be seen there are profiles that seems to be similar and are
almost intertwined, this gives a clear indication that these sections of volume can
be merged together as they overall show similar behavior. This is only true if the
profiles follow each other closely during the whole transient period.
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Figure 3.10: Individual concentration profiles from the discretized CFD model.
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Merging sections that are close together will result in fewer sections that will cap-
ture the overall flow pattern and concentration profile throughout the cell. Recorded
animations of the internal flow from the CFD simulation which showed the concen-
tration front moving through the cell was used to decide how the streams among
the sections should be connected. This work is not a straightforward procedure, and
for every section of volume the possibilities of connecting the streams among the
compartments starts to branch out as a tree.

The most successful way of performing the procedure and with the best result and
fewest possible sidetracks to test, was to first analyze and pair individual sections
together, and then one-by-one adding on another section that showed a similar
profile. This is where the animation proved most useful to make a more intuitive
decision based on how the concentration propagates in the cell. The resulting scheme
of how the cell should be discretized in size/volume and sequence/order are shown
in Figure 3.11a and the resulting profiles of this scheme is plotted in Figure 3.11b.

Figure 3.11: a) Visualization of the reduced compartments. b) Discretized CFD
concentration profiles after cell reduction.

This gives an overall layout that can be used for the compartment modeling. Now the
next step is to connect the sections with the significantly most important streams.
The most successful way to execute this was to start out with as few connections
among the cells as possible to minimize the complexity. Accordingly, the mathemat-
ical compartment model was updated in-line with the analysis of the CFD model.

3.4 Virtual FTIR
As the original CFD model, the compartment model will be used to compute the
FTIR response from the non-homogeneous concentration in the transient period in
the cell. And to recapture from the FTIR chapter, due to the nonlinear absorbance
spectra from CO the response from the FTIR detector will deviate from what the
actual concentration [5]. Therefore the set of equations described in the FTIR section
will utilize the transient concentration profiles and volume from each compartment
to calculate a concentration based on the Beer-Lambert law, basically the set of
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equations will work as a virtual FTIR gas cell. The FTIR equations that are to
be implemented are dependent on length which in the zero-dimensional model does
not exist. Therefore a weighting factor is used to allocate the total length from the
detector used by Bak et al. to derive the non-linear relationship used for the Beer
Lambert equation, 6.4 m [5]. The weighting factor used is simply that each volume
fractions get an equivalent length fraction depending on the size of the fraction. As
put in algebraic expression 3.15 explains.

~Si = 6.4
vtot

[v1 v2 v3 v4 v5 v6] (3.15)

The structure how the FTIR response is computed starts off by collecting the op-
timized volume for each of the six compartments and then allocating a fraction of
length to each compartment, as the volumes are static scalars throughout the sim-
ulation the same is true for the allocated length, they remain scalar values. The
next equation calculates epsilon in each compartment, this is a scalar value for each
compartment that is not dependent on the size of the volume in the compartment
but only the magnitude of concentration in it. And because the dependent variable
is the compartment concentration which is itself dependent on time, the epsilon is
therefore also a dynamic variable over time. And for our model the equation will
produce six independent epsilon values, one for each compartment. The triplet of
epsilon (e), length (s) and concentration (C) can now be used to calculate an over-
all absorbance in the cell. Note that the non-linearity has been accounted for by
calculating an individual epsilon for each compartment depending on the individual
concentration and is now added together, much like the actual detector using the
Beer-Lambert law eq 3.16

A =
6∑
i=1

SiCiεi (3.16)

The total absorbance (scalar value) is a function of the dependent variable, i.e.
concentration, which makes absorbance to be time-dependent. This is of course
true as the concentration in the compartment changes over time. The last step is
to calculate the concentration detected by the amount of energy absorbed by the
previous computations over the compartments. And this is done by making use of
the experimentally derived equation from [5] shown in Eq. 3.17.

C = −0.981+8.781A+0.554A2 +0.00849A3−1.58×10−4A4 +7.70×10−7A5 (3.17)

This response can now be compared with the actual concentration in the cell and
as shown in Figure 3.12b there is a systematic error from the actual concentration
and the calculated FTIR concentration. This is expected, as the same behavior was
present in the CFD model seen in Figure 3.12a and is the main purpose to con-
struct the compartment model that can model the deviance that arise from how the
actual FTIR handles non-linear absorbance with non-homogeneous concentration
distribution.
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Figure 3.12: Systematic error between detected and actual cell concentration for
500 ppm CO in a) CFD model. b) Compartment model.

In order to determine the ability to predict the same systematic error seen in the
CFD model, the result from the six cell compartment model is compared to the
CFD model that is made up of 4 × 105 computational cells.The resulting profiles
using identical input for both models is shown in Figure 3.13 and show a good fit
between the models.

Figure 3.13: 50 ppm CO Step response comparison between compartment model
and CFD model.
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There is now a model optimized for the step response of an initially empty com-
partment to homogeneous steady state of 50 ppm CO at constant flow. For this
signal the model predicts well, but the model should preferably be such a good rep-
resentation of the actual cell that it would do accurate predictions for other types
of signals. Therefore the compartment model is tested against new types of signals,
flow-rates and concentrations to determine the quality of the model.

4.1 Final compartment model
In the beginning it was concluded by analysis of the step response that there was a
minimal volume of a stagnant zone of approx. 2 %, and in this model this stagnant
zone has been omitted. However the compartment no: 4 is modeled as a compart-
ment that has a reduced convective flow and this has a higher fraction of volume
visible as the lagging profile in the Figure 4.1b.

Figure 4.1: a) Proposed compartment model with individual step response. b)
Comparison between compartment model and CFD results. Solid line CFD profiles,
dotted line model profiles.

The compartment model layout that yielded the best resemblance from the opti-
mization to the actual residence time distribution is the scheme in Figure 4.1a .The
results between the final compartment model and the sectioned volumes from CFD
data can be seen from the plot in Figure 4.1b. Here there is an over estimation in
the first CSTR of the compartment model compared to the corresponding section of
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the CFD model. However, as will be shown later, this works out by letting the other
compartments be slightly underestimated, however the effect on the FTIR response
of this error is vanishingly small and is considered acceptable.

Table 4.1: Optimal model parameters.

Parameter Size
v1 38 mL
v2 33.046 mL
v3 17.843 mL
v4 23.758 mL
v5 25.937 mL
v6 45.261 mL
q1 53.432 mL/s
q2 38.923 mL/s
d1 10.105 mL/s

4.2 Goodness of fit

When constructing a mathematical model based on a set of parameters in the equa-
tions it is valuable to know exactly how much the individual parameters affect each
other [20]. Optimally a parameter in the model should not affect another parame-
ter in the model. If it does it can be an indication of poor design or the model is
over-parametrized. It can however also be built-in, especially for physical models
that are correlated by physical law.

4.2.1 Correlation matrix

A first step to investigate the correlation is to look at how two variables change
together. The magnitude of covariance between a pair of variables are difficult to
interpret, but when divided by the total number of data points, the result will
determine the strength of correlation between the variable pair investigated [22].

cov(X, Y ) =
N∑
i=1

(xi − x̄)(yi − ȳ)
N

(4.1)

The sign of the covariance are more easily interpreted as how the variables are cor-
related. A negative covariance tells us that an increase in one variable will decrease
the other variable or vice versa [23]. All the parameter should be tested against
each other and Eq. 4.3 shows the resulting variance matrix for 7 parameters. In the
matrix the diagonal is the covariance between the same parameter which will be the
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variance as cov(pi, pi) = var(pi).

V(p) =



cov(v1, v1) cov(v1, v2) cov(v1, v3) cov(v1, v4) cov(v1, v5) cov(v1, q1) cov(v1, d1)
cov(v2, v1) cov(v2, v2) cov(v2, v3) cov(v2, v4) cov(v2, v5) cov(v2, q1) cov(v2, d1)
cov(v3, v1) cov(v3, v2) cov(v3, v3) cov(v3, v4) cov(v3, v5) cov(v3, q1) cov(v3, d1)
cov(v4, v1) cov(v4, v2) cov(v4, v3) cov(v4, v4) cov(v4, v5) cov(v4, q1) cov(v4, d1)
cov(v5, v1) cov(v5, v2) cov(v5, v3) cov(v5, v4) cov(v5, v5) cov(v5, q1) cov(v5, d1)
cov(q1, v1) cov(q1, v2) cov(q1, v3) cov(q1, v4) cov(q1, v5) cov(q1, q1) cov(q1, d1)
cov(d1, v1) cov(d1, v2) cov(d1, v3) cov(d1, v4) cov(d1, v5) cov(d1, q1) cov(d1, d1)


(4.2)

The information in the variance matrix (V) is used to normalize the correlation
between the parameters with the parameter variance as seen by Eq. 4.3 [24].

C(pi, pj) = cov(pi, pj)√
var(pi)var(pj)

(4.3)

This will result in a correlation matrix which show the correlation between param-
eters between the normalized span of -1 to 1. As in the the variance matrix the
perfect -1 correlation between two parameters indicate that a positive effect in one
will have the exact opposite effect on the other. Indicated by the diagonal a +1
correlation implies that an effect in one parameter will have the exact same effect in
the other [23]. Here in the diagonal this is true as the effect is measured between the
same parameter. Within the span of -1 to 1 the value will indicate just how strong
the correlation are, as a rule, off-diagonal elements does not considered correlation
problematic within |0.980| [19]. The correlation matrix in Eq. 4.4 shows the result
of the 7 parameter model with overall very low correlations between parameters
which is desirable state.

Cij =

v1 v2 v3 v4 v5 q1 d1
v1
v2
v3
v4
v5
q1
d1



1.0000 −0.0411 −0.0195 −0.0089 −0.0458 −0.0337 0.0193
−0.0411 1.0000 0.9096 −0.0080 0.9513 −0.4783 0.0108
−0.0195 0.9096 1.0000 0.2957 0.8002 −0.6606 −0.3018
−0.0089 −0.0080 0.2957 1.0000 −0.2185 −0.6454 −0.9981
−0.0458 0.9513 0.8002 −0.2185 1.0000 −0.1881 0.2168
−0.0337 −0.4783 −0.6606 −0.6454 −0.1881 1.0000 0.6324
0.0193 0.0108 −0.3018 −0.9981 0.2168 0.6324 1.0000


(4.4)

It can be seen from the correlation matrix that the stagnant zone (compartment 4)
is highly correlated/dependent on the flow parameter (d1). For compartment 4, a
single vessel with a single inlet and identical outlet, with a specified concentration
would for any divergence from the specified concentration be penalized. This implies
that if you change the volume of the vessel you will have to change the flow-rate to
keep the concentration constant to avoid penalty. The effect will be the same for
changes in volume were the flow would adjust to keep the concentration constant.
This is more evident by looking at the ODE Eq. 4.5.

dC4

dt
= d1

v4
C3 −

d1

v4
C4 (4.5)
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Concentration in compartment 4 (C4) have a profile depending on flow (d1) and vol-
ume (V), this profile is fitted to be as similar to the concentration profile from CFD
simulation and for every divergence there is a penalty added. The only parameters
available for adjustment of C4 are the flow (d1) entering and leaving the volume (V)
which both are embedded in the same term as a fraction. No other parameter has
anything to do with these to parameters and they are therefore highly correlated.
Therefore the correlation is built-in to the model and the correlation cannot be re-
moved without removing the whole stagnant zone which is highly necessary for the
physical flow properties in the model. The resulting mathematical system of linear
ODEs are shown here below by Eqs. 4.6 to 4.11.

dC1

dt
= q1

v1
C0 −

q1

v1
C1 (4.6)

dC2

dt
= q1

v2
C1 −

q1

v2
C2 (4.7)

dC3

dt
= q1

v3
C2 −

d1

v3
C3 −

(q1 − d1)
v3

C3 (4.8)

dC4

dt
= d1

v4
C3 −

d1

v4
C4 (4.9)

dC5

dt
= q2

v5
C1 −

q2

v5
C5 (4.10)

dC6

dt
= (q1 − d1)

v6
C3 + d1

v6
C4 + q2

v6
C5 −

(q1 + q2)
v6

C6 (4.11)

4.2.2 Correlation coefficient
In order to determine the goodness of fit between the final compartment model and
the CFD model the output signals are evaluated by the strength of correlation. The
magnitude of the correlation coefficient have the same implication as the correlation
matrix, the difference lies in that the correlation coefficient will be used to compare
the two model functions which results in a scalar value, R2 instead of all individual
variables in the model as the correlation matrix. The output from the compartment
model (ŷ) and the CFD model (y) which it was fitted towards is R2 = 0.9994 and can
be considered very strong. The definition is therefore also similar to the correlation
matrix which can be seen in Eq. 4.12, where the variable ȳ denotes the mean [24].

R2 = SSReg
SStot,corr

=
∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2 (4.12)
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By dividing the sum of squared residuals SSReg with the total sum of squares
SStot,corr the goodness of fit between the compartment model and the CFD model
curve can be assessed by the resulting correlation coefficient R2, the result shown
below indicates a very good fit, partly in this case as the compartment model is
specifically fitted towards the CFD model.

R2 = 0.99945 (4.13)

4.3 Concentration
Changes in the magnitude of concentration in the step-response from the compart-
ment model and CFD model will result in the exact same concentration profile
(RTD), the only change is in the concentration magnitude and thus not change any
of the flow properties [3]. Increase in the inlet concentration does not alter the flow
structure by the optimized parameters. The concentration profile will therefore re-
main constant when changing the magnitude of concentration at inlet as indicated
by Figure 4.2. The fixed profile is due to the specie transport through the detector
cell remain constant regardless the concentration as the concentration magnitude
does not affect the RTD.

Figure 4.2: Step-response for 50,100,500,600 and 900 ppm CO concentrations
simulated by (Left) CFD, (Right) compartment model.
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4.4 Variance

Throughout the transient period of both CFD and the compartment model there
is a non-homogeneous concentration in the cell. The magnitude of this variance
will indicate a degree of non-homogeneity. Figure 4.3 compares the results from the
compartment model and CFD simulations. The most striking difference between
the two are the lower variance after they both have reached their peak. This is most
probably due to that the compartment model overestimates the degree of mixing in
the cell. However the impact on this difference in variance will be shown to have
little effect on the model quality, as shown later in this chapter.

Figure 4.3: Comparison of variance from a step response between CFD model and
compartment model at 50 ppm CO.

4.5 Sinusoidal signal

The model ability to predict the response from a sinusoidal test signal was evaluated
for a simulated flow time of 27 seconds in a transient simulation with the same
properties as before, but with a sinusoidal frequency 1rad/s (1rad/s = 1/2πHz).
The signal alternated between zero and 500 ppm of CO and from Figure 4.4 it
is observed that the model correlates to the CFD model fairly well. While CFD
simulation which took approximately 96 h to compute, the compartment model
took only 0.08 s. It is also shows in the graph that the concentration actually never
reaches the set point, i.e. 500 ppm. This is due to the fast changes in the sinusoidal
signal which the overall cell concentration cannot keep up with.
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Figure 4.4: Comparison between CFD and compartment model of a 27.3 sec
Sinusoidal test signal.

An extra remark should be made that the compartment model is fitted from a 11.3
sec long data-set, and is in the test above able to predict a response with high
accuracy that was almost 3 times as long. The accuracy for this test signal is still
high with a correlation coefficient between the sinusoidal data-set and model at
R2 = 0.9990.

4.6 Variable flow-rates

The credibility of model accuracy regarding the prediction of concentration profile
is strong and the focus is therefore shifted from the concentration variable to the
flow. The aim is to investigate if the model can be used at other flow-rates then it
was fitted for and still remain accurate. The CFD model was simulated with -60
%, 50 % and 60 % of the nominal flow-rate of 92.355 mL/s at 191°C and 1 atm.
The result still shows a good match which is confirmed by Figure 4.5, solid lines
represent the CFD response, and the dashed lines are the model response.
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Figure 4.5: Comparison between CFD and compartment model at -60%, std., 50%
and 60 % the nominal (92.355 mL/s) mass flow-rate.

The correlation coefficients from the variable flow-rates areR2
−60% = 0.9986, R2

+50% =
0.9988 and R2

+60% = 0.9982. The model therefore show to make accurate predictions
reasonably well in this -60 % to 60 % flow variation. It is therefore possible to add
a dynamic flow variable to the model (assuming the flow rate of the gas mix in the
experiment fluctuates within ± 60 %).

4.7 FTIR comparison

As the internal flow has been thoroughly tested and evaluated, the final test is
now to compare the detected concentration profile from the implemented non-linear
absorbance relationship. The resemblance in the predicted result from the virtual
FTIR detected response is the main objective and as Figure 4.6 shows for the case
of 500 ppm CO the fit between the models are accurate and shows that the com-
partment model can accurately predict and account for the systematic error.
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Figure 4.6: Detected concentration by the CFD and compartment model at 500
ppm.

4.8 Computational time
An important aspect of the compartment model is how well it reduces the computa-
tional power compared to the CFD model. The CFD model requires a large amount
of computational power and time to compute useful data. The compartment model
on the other hand does not require any substantial computational power and the
computational time is in the span of a 23 millionth of what the CFD uses. For com-
parison the computer specification together with the computational time is listed in
the Table 4.2.

Table 4.2: Computer and software specifications.

TYPE: CPU RAM MODEL TIME OS SOFTWARE SIZE
MODEL 2.6 GHz 8GB Laptop 0.05 sec Win 8 MATLAB R2013b 1KB
CFD 3.1 GHz 16GB Desktop 96 h Win 7 Ansys Fluent R15.0 166MB

A series of simulation with varying simulation length was performed to look at
the increase in computational time. The signal used for this simulation was the
sinusoidal test signal with an amplitude between zero and 500 ppm CO, and each
simulated second contained 20 data points. The results determined a linear relation-
ship with simulated time and the time it took to compute the resulting simulation.
This makes it easy to predict the computational time for longer simulations. And
the still very low computational times makes the model highly useful to incorporate
in an iterative algorithm where it can be used repeatedly tenths of thousands of
times without adding any substantial time to the simulation.
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5
Conclusion

Using the CFD model as a basis to develop the compartment model was shown to be
an excellent source in the sense of the ability to extract information about flow, con-
centration and dynamic behaviour. The quality of the proposed framework for the
compartment model was tested by changing the main operating condition of flow-
rate, concentration and the profile of the ingoing signal. All results were compared
by statistical methods. The high correlation coefficient for the final compartment
model R2 = 0.99945 shows great potential for the model to predict the segregation
inside the FTIR cell. Additional tests confirm the model allows prediction with high
accuracy also at conditions different from the one used in the regression analysis.
The compartment model was able to reduce the computational time for an 11 sec
simulated sequence from 96 h to 0.05 sec on a standard desktop computer. This
reduction in computational demand was a important criteria to fulfill, and enables
the model to be incorporated in non-linear regression analysis.

These initial results produced by the compartment model indicates that the model
will provide reliable data as a corrective algorithm when resolving the transient
kinetic information and as result, provide higher quality in the parametrization and
understanding of transient kinetics supplied by the experimental data.
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Appendix 1

A.1 Investigation of time invariance in CFDmodel
The system is assumed to be time invariant, meaning that it does not matter at
which time the signal is put on the system. Therefore a series of time delays was
simulated and compared to be matched with each other. The series of simulations
was implemented by delaying the start of the step response at the simulation start.
i.e. the simulation started at t = 0 but the step response signal was not implemented
onto the system until a certain delay had past. All the other parameters on the
simulations remained equal to each other except theses time delays of 0.3, 0.4, 0.5,
0.6, 0.7 seconds. In a time invariant system the concentration profiles keep identical
to each other only spaced out on the time axis due to the delay. The Figure A.1
below the delays has been removed to superimpose the profiles to easily visualize
any divergences.

Figure A.1: Comparison between CFD simulated time delays with normalized
starting point at t = 0.

As the picture shows there are no larger deviations but still they are not exactly
equal which implies that the system in fact is not time independent, it makes a
difference when the signal or experiment starts. By comparing the error between
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the profile without delay to all individual profiles with delay there cannot be seen a
pattern that can be converted to a cyclic mathematical function that can be imposed
onto the compartment model as Figure A.2 below shows.

Figure A.2: Error between no delay and 0.3, 0.4, 0.5, 0.6 and 0.7 sec time delay.

The cause for this time variant behavior is assumed to be due to the convective flow
at the inlet that forms as jet. On transient animation this jet has shown to have
a cyclic motion that swirls around the inlet axis. This motion seems to be fairly
chaotic and does not follow any obvious pattern that can be predicted with any high
precision to incorporate it in the compartment model. However the magnitudes of
the differences are relatively small and the assumption will therefore be that the
system still is time invariant.
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