:) CHALMERS

UNIVERSITY OF TECHNOLOGY

Data-Driven Modelling for Health Estima-
tion of High-Voltage Battery Systems

Master’s Thesis in Systems, Control and Mechatronics

LUKAS RAUH

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

MASTER’S THESIS 2020

Data-Driven Modelling for Health Estimation
of High-Voltage Battery Systems

LUKAS RAUH

CHALMERS University of Stuttgart
UNIVERSITY OF TECHNOLOGY °
Germany
Department of Electrical Engineering Institute for System Dynamics
CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF STUTTGART

Gothenburg, Sweden Stuttgart, Germany

Data-Driven Modelling for Health Estimation of High-Voltage Battery Systems

LUKAS RAUH

© LUKAS RAUH, 2020.

Supervisor: Sandeep David, China Euro Vehicle Technology (CEVT) AB

Victor Judez, China Euro Vehicle Technology (CEVT) AB

Yizhou Zhang, China Euro Vehicle Technology (CEVT) AB

Patric Skalecki, Institute for System Dynamics, University of Stuttgart
Examiner: Torsten Wik, Department of Electrical Engineering, Chalmers

Cristina Tarin, Institute for System Dynamics, University of Stuttgart

Master’s Thesis in cooperation of:

Department of Electrical Engineering Institute for System Dynamics
Chalmers University of Technology University of Stuttgart

SE-412 96 Gothenburg DE-70563 Stuttgart
Telephone +46 31 772 1000 Telephone +49 711 68566302

Cover: Schematic illustration of a plug-in hybrid electric vehicle connected with fleet
of vehicles through a multi layer perceptron network.

Typeset in BKTEX
Printed by Chalmers Reproservice

Gothenburg, Sweden 2020

v

Data-Driven Modelling for Health Estimation of High-Voltage Battery Systems

LUKAS RAUH
Department of Electrical Engineering
Chalmers University of Technology

Abstract

With the introduction of electrified vehicles to the mass car market, battery develop-
ment has gained momentum and nowadays appears as one of the major challenges of
modern, future-oriented vehicle development. An accurate determination of battery
health and life prediction is essential to ensure reliable, efficient and durable battery
performance along the full lifetime of a vehicle. However, the currently most popular
methods for ageing prognosis are either based on fast and imprecise or complex and
slow battery models, which generally opens up the gap for data-driven modelling
techniques as an efficient and accurate alternative.

This thesis builds on achievements with data-driven modelling to determine the
behaviour of complex dynamical systems through machine learning techniques, to
meet the demands of the battery lifetime estimation problem. A conducted survey
over a wide range of model techniques, from standard baseline up to state-of-the-
art approaches, indicates the power and flexibility of data-driven models in the
directions of per vehicle and fleet use cases.

Therefore, a basic pipeline capable of handling big data as an input was implemented
on diagnostic readout data from a fleet of plug-in hybrid electric vehicles (PHEV).
The data was analysed with a feature selection filter to reduce redundancy in the
data and improve the portability of the model. It was found that a trained model
with sequential long short-term memory (LSTM) and static artificial neural network
(ANN) modelling branches performed best for the available data. The mean absolute
error (MAE) for a single value state of health (SOH), considered in the percentage
scale for the typical SOH range between 100% and 80% SOH, was 0.68 [%-SOH] for
the fleet dataset. For the population of data used, the comparison clearly identifies
the best results when using mixed rather than pure sequential or static data.

Finally, with a simple usage propagation application, it has been shown that the
featured model has potential for further investigation of lifetime prediction use-cases.

Keywords: Data-Driven Modelling, Machine Learning, State of Health Analysis,
State of Health Prognosis.

Acknowledgments

This thesis work would not have been possible without the support of several key
people. 1 appreciate their kind support and would therefore like to express my
deepest gratitude to all of them at this place.

First, I want to thank my supervisors Sandeep David, Victor Judez and Yizhou
Zhang at China Euro Vehicle Technology AB (CEVT) in cooperation with my su-
pervisor and examiner Torsten Wik at Chalmers for the arrangement of this master
thesis work opportunity. I would also like to extend my gratitude to my supvervisor
Patric Skalecki and examiner Christina Tarin at the University of Stuttgart, as this
thesis became a cooperation, due to my double degree masters program. All their
support, trust and guidance brought me through this thesis work and helped me to
gain new insights into research and practical application of battery technology and
data-driven modeling.

I would also like to acknowledge the support and great love of my family, my girl-
friend, my friends and all the great people at CEVT, who have not been mentioned
so far. They have kept me going and made this thesis possible with their support.

Lukas Rauh, Gothenburg, June 2020

vii

Contents

List of Figures
List of Tables

1 Introduction
1.1 Related Work
1.2 Goals.
1.3 Thesis Outline

2 Theoretical Concepts
2.1 Battery Health Principles
2.1.1 Battery Health Condition Indicators
2.1.2 Battery Lifetime Indicators
2.1.3 Battery Ageing Degradation
2.2 Statistical Learning Theory
2.2.1 The Learning Framework
2.2.2 Supervised Learning (Representation)
2.2.3 Objective Function (Evaluation)
2.2.4 Gradient Descent (Optimization)
2.2.5 Generalizationo
2.3 Data-Driven Modelling Theory
2.3.1 Neural Network Fundamentals
2.3.2 Recurrent Time-series Prediction Models
2.3.3 Convolutional Time-series Prediction Models

3 Data Exploration
3.1 Data Gathering
3.2 Data Type Exploration
3.2.1 Sequential Data oL
3.2.2 StaticData oo

4 Methodology
4.1 The CRISP-DM Methodology
4.2 Dataset Creation
4.2.1 Feature Selection Procedure
4.2.2 Data Standardization

xi

xiii

21
21
22
23
24

27
27
28
28
30

ix

Contents

4.2.3 Sliding Window Transformation 30

4.2.4 Data Arrangement 31

4.3 Model Selection 31
4.3.1 Prognosis Approach Selection 32

4.3.2 SOH Estimation Setup 33

4.3.3 SOH Prediction Application Setup 37

4.4 Model Training L 38
4.4.1 Loss Function 38

4.4.2 Hyper-parameter Optimization 39

4.4.3 Early Stopping 39

4.4.4 Cross-validation training 39

4.5 Model Evaluation and Benchmarking 40
4.5.1 Performance Metrics 41

4.5.2 Cross-validation Scoring 41

4.5.3 FError Distribution 41

4.54 Residual Ploto 42

5 Results and Discussion 43
5.1 SOH Estimation Performance 43
5.1.1 Varying Data Input for Static Estimation Output 45

5.1.2 Varying Data Input for Sequence Estimation Output 52

5.1.3 Recursive Step Estimation 56

5.1.4 Summary of Estimation Findings 59

5.2 Data Reduction Analysis 60
5.2.1 Time-series Data Reduction 60

5.2.2 Static Data Reduction 62

5.2.3 Feature Reduction Analysis 64

5.2.4 Selection Analysis Summary 66

5.3 SOH Prediction Application Performance 67
5.3.1 Iterative-Step Sequence Prediction 67

5.3.2 Multi-Step Sequence Prediction 70

5.3.3 Summary Prediction Findings 73

6 Conclusion 75
6.1 Further Research and Improvement 76
Bibliography 77
A Error Distribution Properties |
B Feature Correlation Matrices 111

1.1

1.2

2.1

2.2
2.3

2.4

2.5
2.6
2.7
2.8
2.9

2.10

2.11

3.1
3.2

4.1
4.2
4.3
4.4
4.5

4.6

List of Figures

Annual market share forecast of combustion engine and electrified
vehicles, adapted from [1]. L 1
[llustration of model accuracy over CPU time for ECM, PBM and
DDM models for predicting battery characteristics, adapted from [6]. 2

Ilustration of the RUL lifetime indicator on the SOH health indicator

for an arbitrary time ¢ in the life of a battery. 7
[Mlustration of a gradient descent parameter update. 11
[lustration of a too high (red), too small (blue) and adaptive (green)
learning rate for gradient descent parameter update. 12
[llustration of model complexity and prediction error defining poten-

tial underfitting and overfitting ranges. 13
[Mlustration of the computational model of a neuron. 14
[lustration of feed-forward MLP consisting one hidden layer. 15
[Mustrative comparison of an ANN neuron cell and RNN neuron cell. 16
[Mustration of an unravelled RNN cell architecture. 17
[llustrative comparison of regular and causal 1D convolution for time-
series data. L 18
[llustrative comparison of causal 1D convolution for different dilation
factors with the same kernel size on time-series data. 19
Ilustration of a 1D causal, dilated convolution filter with kernel size k =
danddepth 3.. 19
[llustration of the data gathering process from fleet to database. . . . 22
[llustration of included data content in each readout from a workshop

SEOD. . . e 23
[lustration of the CRISP-DM standard process. 27
[llustration of the complete feature selection process. 29
[lustration of sliding window transformation with window size w = 3. 31
Illustration of static features to static target model. 34
[llustration of sequential feature input models with varying output
format. 34
[llustration of mixed input features to either static or sequential out-

put format model. 35

X1

List of Figures

xii

4.7

4.8

4.9

4.10

4.11

5.1

5.2
2.3

0.4

2.5
2.6
5.7
2.8
2.9
5.10

5.11

5.12
5.13

5.14

[llustration of the concatenation of static and sequential branch for a
static model output format.
[llustration of the concatenation of static and sequential branch for a
sequential model output format. oL L.
[ustration of the step model as windowed input stateful modelling
approach.
Illustration of the comparison between full and half sequential input
data handling.
[lustration of a five fold (K = 5) cross-validation schema.

Error distribution comparison over different models for varying input
and static output on the test dataset.
Residual comparison for static data on the test dataset.
Error distribution comparison for recurrent (R2, R4) and convolu-
tional (C2, C4) models on varying input for sequential output.
Comparison of target and predicted sequences, including the predic-
tion error, for five sequence samples of the test dataset.
Comparison of prediction error for sequence data in step model.
Comparison of prediction error for sequence data in step model.
Combined Spearman correlation matrix plot for time-series data. . . .

Combined Spearman correlation matrix plot for generated feature data.

Last time-step residual comparison for the step prediction model.
Last time-step deviation error distribution between full- and half-
length sequence prediction.
Comparison of sequence predictions from step model for half and full
sequence input. L L e
Last time-step residual comparison for the sequence prediction model.
Last time-step deviation error distribution between full- and half-
length sequence prediction.
Comparison of prediction error for the sequence model.

35

36

36

38
40

49
o1

53

95
57
o8
61
63
68

68

69
70

3.1
3.2
3.3

4.1
4.2

5.1
5.2
2.3
5.4
2.5
2.6
2.7
5.8
5.9

5.10
5.11

5.12
0.13
5.14
5.15

List of Tables

Dimensions of the final data collection
List of all gathered sequential diagnostic time-series
List of grouped histograms, their dimensions and feature extraction

calculation properties Lo

List of all considered datasets
List of statistical properties applied on the error distributions

List of evaluated models for the SOH estimation predictive task .
Elastic Net (B2) SOH estimation hyper-parameters
Random Forest (B3) SOH estimation hyper-parameters
ANN (B4) SOH estimation hyper-parameters
LSTM (R1, R3) SOH estimation hyper-parameters
TCN (C1, C3) SOH estimation hyper-parameters
Comparison of static SOH estimation scores for varying models
Comparison of sequence SOH estimation scores for varying models . .
Training metric performance on static SOH estimation scores for the
stepmodel
Comparison of static SOH estimation scores for varying models

Most contributing time-series features for a remaining variance over
90% . . e
PCA component result for histogram feature subsets
Most contributing histogram features
List of evaluated feature selections subsets
Error and duration results comparison for the evaluated feature se-
lection subsets Lo

xiii

List of Tables

Xiv

1

Introduction

In the transport sector, the predicted demand for electrified mobility is enormous.
Within the next 20 years significant changes in technology, long-term decarboni-
sation targets and the competition to build the next clusters of high-value future-
oriented industry will reshape the worldwide automotive and freight market [1].

Although the electrified global market share is still small (about 2.5% of new car
registrations in 2019), the annual growth has picked up speed, mainly driven by gov-
ernment support, fleet emission restrictions, infrastructure investments and increase
in cost benefits. This leads to growing familiarity and willingness on the customer
side to consider electrified vehicles in the purchasing decision [2, 3]. According to
a study of Bloomberg New Energy Finance (BNEF) research organization this will
lead to a fast growth of annual electrified vehicles (EV) sales in the next 20 years,
as illustrated by the sharp increase of annual sales market share in Figure 1.1 [1].

100% b

Combustion Engine

BO% | s NG

60% | o NG

Q0% | o g

Market Share

20% | e

Electrified Vehicle
0% —7— T T T T T
2015 2020 2025 2030 2035 2040 year

»
>

Figure 1.1: Annual market share forecast of combustion engine and electrified
vehicles, adapted from [1].

The forecast expects a burgeoning market, creating enormous opportunities for the
automotive and supplying industry. On the other hand, despite this large-scale
growth there are uncertainties on how car manufacturers will face the fundamen-
tal problem of battery degradation towards sustainable lifetime performance. This
major challenge consists of balancing the trade-off between usable energy, power,
lifetime and cost. Currently, lithium-ion batteries are the main battery type for

1. Introduction

vehicle applications, thanks to their flexibility and performance in this trade-off.
However, one main drawback relates to their degradation occurring during the life-
time, whether the battery is used or not, starting on the date it is produced. Due to
the cross-dependence of degradation factors plus the dependency on the individual
battery environment and use, the ageing phenomena are complicated to determine,
characterize and optimize towards health-conscious future usage. Thus, much of the
attention in battery technology research has been focused on health management
and prognostics, to face the complexity of the degradation phenomena and pro-
vide insights into how the batteries actually should be used to achieve long lifetime
without sacrificing performance [4, 5].

An integral part of battery health management and prognosis is the battery model.
The currently most studied types of lithium-ion battery models in the literature for
predicting battery characteristics are the equivalent circuit (ECM) and physics-based
models (PBM). However, both models are limited, either in prediction accuracy or
performance. For this reason, data-driven models (DDM) are a promising oppor-
tunity for efficient and accurate battery modelling, due to recent achievements in
modelling complex dynamic systems. Figure 1.2 arranges the potential placing of
DDMs through expected attributes compared to ECMs and PBMs [4, 6].

PBMs
_ N
Q
s
=
54
< ECMs
CPU time g

Figure 1.2: Illustration of model accuracy over CPU time for ECM, PBM and
DDM models for predicting battery characteristics, adapted from [6].

ECMs are currently the major models used in vehicle Battery Management Systems
(BMS), due to their computational efficiency which enables real time battery be-
haviour prediction even on performance-limited electrical control units (ECU) in the
vehicles. The majority of ECM models are derived by empirical modelling and are
represented as electronic circuit models consisting of a network of capacitors and re-
sistors. Their required circuit model parameters are based on battery experiments in
laboratory conditions, which is why attaining high accuracy in the individual vehicle
remains a challenge, especially for predictive tasks [6]. In contrast, PBM has been
developed to give detailed insights on the battery internal dynamics, such as lithium-
ion diffusion or electro-chemical kinetics. However, this detail in the modelling is
associated with a high computational effort, since PBMs are generally described by
sets of partial differential equations (PDE). Hence, an implementation of the PBM

2

1. Introduction

for a real-time application is generally impossible due to the performance limitations
in the BMS controller [6, 7].

1.1 Related Work

With the emerging success of DDMs in modelling dynamic systems, studies have
been considered to facilitate the battery ageing problem under different aspects,
i.e. considering varying time scales or data input. Most of these studies have in
common that they build on the investigation of the State of Health (SOH) of a
battery. The SOH is a figure of merit that rates the battery condition compared to
an ideal, factor-new condition state. While there is no clear definition of how the
SOH is determined, an assessment of capacity fluctuation or the increase in internal
resistance has become widely established in science and industry.

SOH estimation and prognosis has been demonstrated with promising results in
accuracy by using different machine learning algorithms. Most of the algorithms can
be categorized into: rather simple and lightweight models as regression and their
regularized extensions (as in Severson et al. [8]); ensemble decision tree methods as
random forest regression (as in Mansouri et al. [9]); support vector machines (as
in Nuhic et al. [10]) and neural networks (as in Ren et al. [11]), which are more
expensive to train. Each of these algorithms has its own merits and challenges and
a selection of the most appropriate approaches is a multi-faced problem, depending
on the demands for the specific application. Some examples of factors to be taken
into account are the type and amount of data available, the desired quality of results
and the physical interpretability of the trained model. In this work the problem is
addressed for the demands of an application in cooperation with China Euro Vehicle
Technology AB (CEVT), as a company developing electrification of vehicles, by
utilizing the available diagnostic readout data to train the data-driven models.

1.2 Goals

This thesis explores supervised learning approaches for battery SOH estimation and
prediction, that can be used as an alternative to the ECM and PBM models. The
goal is to define and build a modelling structure, that is capable of handling big
data from a fleet as input and deliver the desired battery parameter value predic-
tions as an output. Therefore, the thesis attempts to compare a wide range of
modelling methods and identify the best suitable model that meets the demands of
this application. Besides linear baseline models for the reference, machine learning
model types were selected for a single value and sequential regression task. The con-
sidered model types are artificial neural networks (ANN), long short-term memory
(LSTM) and temporal convolutional networks (TCN), as well as combined model
architectures.

The work involves following key steps: As a starting point the available data is
analysed to find an appropriate feature extraction that can be applied on the big

1. Introduction

data pool. With this data understanding, the feature extraction can then be imple-
mented as the first step in a flexible tool chain, which allows the replacement of data
preparation steps, modelling architectures or evaluation methods. For each model
type the model architecture is implemented with a machine learning framework.
This allows the optimization of model hyper-parameters with integrated tools to
maximize the training metric performance per model. The final step is to find the
most suitable model candidate by comparing the performance of the model metrics
and visualizing the prediction errors in order to draw conclusions for further work.

1.3 Thesis Outline

The remaining content of this thesis is structured as follows: In Chapter 2, the
theoretical concepts of battery health and data-driven models are described, from the
underlying statistical framework up to state-of-the-art models. The data gathering
and collection as starting point for this thesis are shown in Chapter 3. This includes
the feature extraction of the raw data sources as well as the definition of the input
and target for the modelling task. Results of the data exploration motivates the
selection of modelling approach and implementations in Chapter 4. Results obtained
for the SOH diagnosis, a further investigation of data reduction in the context of a
performance-limited in-car application and an attempt to predict future SOH of a
vehicle are presented and discussed in Chapter 5. Finally, Chapter 6 summaries the
thesis findings, delivers final conclusions and provides an outlook on further research
possibilities.

2

Theoretical Concepts

In this chapter theoretical concepts used in this thesis work are reviewed. This
chapter intends to build a basic understanding of battery degradation and data-
driven models, through a brief introduction from basic concepts up to state of the
art models.

2.1 Battery Health Principles

This section gives a brief introduction on the field of battery lifetime research. First,
different battery health condition indicators are listed and how they contribute to
lifetime analysis. In the end, battery degradation mechanisms are reviewed to un-
derstand battery ageing.

2.1.1 Battery Health Condition Indicators

Throughout literature and industry, two standard indicators have been established
to evaluate the health of a battery system, either on battery pack or on cell level.

The State of Charge (SOC) is an indicator of available energy in a battery system.
It measures the remaining energy which is available for use, compared to the energy
which was available after being fully charged. Therefore, SOC is defined as

C'curr
Cqull

i.e. the relation between the currently available capacity C.,.. and the capacity
available when fully charged Cy,y, in percent, each for either pack or cell values.
In this context, the fully available capacity is usually referred to as the capacity
reached during the last completed charging of the battery. The SOC indicates how
much energy can be used from the battery system until it needs to be recharged and
therefore acts like a fuel level indicator in combustion drive systems [6, 12].

SOC = x 100%, (2.1)

The State of Health (SOH) indicates the durability of a battery system, comparing
the current battery system health to a factory-new battery state.

There is no fixed definition for determining SOH as an indicator of the gradual de-
terioration of battery performance due to irreversible chemical reactions. For this

5

2. Theory

reason, each battery manufacturer can decide individually on the assessment when
developing a battery management system. However, the determination of the SOH
has been addressed in studies evaluating the significance of various performance pa-
rameters in changing with age. In a broad consensus, capacity decrease and internal
resistance increase appear as qualified physical quantities for the EV application.
Both quantities are used to address different long term objectives. In the case of re-
sistance increase, the objective is power density. Hence it is used mainly to determine
SOH in applications where delivering a specific power level is most important, e.g.
for accelerating a high-performance EV or for the starter battery of a combustion
engine. In contrast, for the determination in range or lifetime oriented applications
the capacity decrease is used for the SOH assessment as

x 100%, (2.2)

between the current fully available capacity Cy,; and the factory-new nominal ca-
pacity C,n in percent. This capacity based SOH determination is used in the
thesis [6].

2.1.2 Battery Lifetime Indicators

Remaining Useful Life (RUL) is a second concept to describe the ageing of a battery
system. It is closely related to the concept of SOH as battery system health indicator.
RUL as concept has emerged from the paradigm of predictive maintenance and
describes the value of remaining life, either in time or use-case specific domain (i.e.
remaining battery cycles), until a failure event occurs. In the context of predictive
maintenance this is mainly connected to the failure or breakdown of machine parts
and thus followed by downtime of the defective machine. As a result of the failure
occurred, the part often is broken or no longer usable, which is why this point in
time is referred as End of Life (EOL), and the time remaining until as the remaining
useful life. Compared to the predictive maintenance context, the EOL for a battery
system is commonly referred to the moment where the battery system has lost 20%
of the nominal total factory-new capacity, or in the context of SOH, where the
SOH falls below a threshold value of 80%. Figure 2.1 illustrates this SOH and
RUL relationship, for an arbitrary point in time ¢ between the begin of battery
live, referred as Begin of Life (BOL), and the EOL. The SOH curve in this figure
only represents exemplary SOH course. However, the SOH most likely drops in the
beginning of the battery life and gains negative momentum towards its end.

In predictive maintenance the result of a reliable RUL estimation is used to opti-
mize maintenance schedules in order to reduce downtime and decrease maintenance
cost. According to the same principle, a RUL and SOH estimation and prediction
can help preventing battery malfunction or used as assessment tool to rate lifetime
expectations of potential new battery generations during development.

6

2. Theory

SOH
100% —

80% —

>

BOL t EOL time

Figure 2.1: Tlustration of the RUL lifetime indicator on the SOH health indicator
for an arbitrary time t in the life of a battery.

2.1.3 Battery Ageing Degradation

Battery systems, due to the complex chemical composition and physical processes
inside the battery cells, are complex non-linear dynamic systems. During usage
many different ageing effects occur, interfere with each other and degrade the bat-
tery depending on the usage and surrounding environment [5]. Identifying the age-
ing mechanisms, understanding the causes and the optimizing battery technology
or substance composition is the main task in battery cell development. Battery
technology optimization is related to balance the trade-off between energy density,
power density, lifetime and cost. Lithium-ion has stand out in this development as
an efficient, high-power and durable choice among other cell chemistry composition
types [13].

Nevertheless, the ageing process of lithium-ion batteries is complex and remains the
major challenge for sustainable lifetime performance. In battery related studies, the
ageing phenomenon is typically split into two types: calendar and cycling ageing.
Both ageing types coexist and interact in the electrical vehicle application. Cycling
ageing occurs when the battery is in active use, including charge and discharging.
Moreover, calendar ageing occurs even when the battery is in rest, due to the in-
nate chemical reaction between negative electrode and electrolyte. In other words,
calendar ageing appears continuously in the battery, starting from the time it leaves
the production.

The severity of the ageing is in the first instance dependent on the relationship
between battery design and battery usage. In addition to a steady ageing caused
by the design of the battery, there are additional factors that can dramatically
accelerate the inevitable ageing of the battery. The so-called battery stress factors
vary with the type of ageing.

In the case of calendar ageing, the main accelerating stress factors include:

« storage of the battery fully charged or discharged for long periods

2. Theory

» storage of the battery at high temperature.
On the other hand, for cycling ageing main stress factors include:

e high charging and discharging current rates

o charging the battery at low temperature

o over-charging or over-discharging beyond the capacity limits

o cycling the battery with large unloading volume, the so-called depth of dis-
charge (DOD).

The fact that these factors amplify each other and apply to each cell individually
makes the ageing process of a full battery pack considerably more complicated for
the battery management system. To this end, a fine tuning of the battery operating
conditions through adapting current regulations, charging speed and thermal man-
agement can contribute to extending the durability and ensuring safe operation [5,
14].

In summary, the ageing characteristic of lithium-ion batteries is complex and in-
cludes treatment and the environment in which it is operated. Correspondingly, the
main ageing and stress factors are contained by an observation of overall use, charge
levels, charging and discharging speed, depth of discharge and battery temperature.
To this end, the objective for the feature extraction presented in Chapter 3 is to
focus the extraction to ensure that these conditions are well reflected in the data
used for modelling.

2.2 Statistical Learning Theory

Statistical learning theory provides the framework for machine learning. As a sub-
category of artificial intelligence, machine learning refers to the method of analyzing
data observations in order to automatically build a numerical model that generalizes
learned knowledge from the data. For this purpose, machine learning algorithms are
based on statistical principles and can therefore be seen as part of the statistical
learning framework.

The theory of the framework draws from the field of statistics and functional analysis
and dates back to the late 1960’s. In the early days, until 1990, statistical learning
was a purely theoretical analysis of function estimation for small scopes of data,
since the computational effort was too heavy for the computers at that time. In the
advent of new algorithms and more computational performance this changed and
statistical learning became applicable to problems in practice. Popular examples
for statistical learning in practice are image, speech or pattern recognition, fault or
disease detection in medicine and parameter identification [15, 16, 17].

2.2.1 The Learning Framework

The main goal of the statistical learning framework is to find a mapping model
constructed on observed data, which can then be used for unseen data to make pre-

8

2. Theory

dictions. The framework assumes the representation of such a mapping model as a
function. Therefore, let £ € R? be a random number input vector of dimension d
and y € R a random output variable, jointly connected by the probability distribu-
tion P(x,y). Then the task is to find the mapping function f that best predicts y
for a given x, in the form of

y= (). (2.3)

This search process to find the best possible function is called training or learning.
In order to describe the process of learning and define an appropriate modelling
problem, three components have to be considered: representation, evaluation and
optimization. This division into three components also helps to find a suitable
methods and algorithms for a given problem and guides the way through the related
project [15, 18].

In the following sections, the three components are presented in detail.

2.2.2 Supervised Learning (Representation)

The representation of the modelling problem is the initial step in the statistical
learning framework. It addresses the representation of the modelling problem, which
forms the space of allowed models, referred to as hypothesis space. This hypothesis
space shrinks the total number of available machine learning models to a smaller
number of feasible models for the project under investigation. If a model type is not
in the hypothesis space it is not considered in the further steps.

In this thesis the representation is a regression problem, mapping numerical inputs
to numerical outputs. In contrast, classification is another common type of problem
in machine learning, which refers to the mapping of numerical inputs to different
classes. Regression is part of the supervised learning field. The goal in supervised
learning is to predict the value of an output based on a number of input output
measurement pairs. In contrast, in unsupervised learning, there are no output mea-
surements. The goal is to detect associations or patterns among the set of input
measurements and distinguish relevant information from structure-less noise in the
input.

The theory of supervised regression learning defines the learning of a function
f: X—Y (2.4)

as an element of the hypothesis space F, mapping the feature space X as input
to the target space Y as output, based on the basic statistical learning equation
(Equation 2.3). Therefore, the data is regarded as a number of [independent and
identically distributed pairs (x;, y,), so-called samples, such that each input feature
vector x; corresponds to the target vector y,. The total set of available data pairs
D = (z1,y1), ..., (z, y) is called dataset.

2. Theory

2.2.3 Objective Function (Evaluation)

A measurement of the accuracy is required, to find which function f out of the
hypothesis space F' best predicts the output vector y, for a given input vector x;.
The goal is to find the function obtaining the minimal error between the predicted
value ¢; of the true output y, for the same ;. For this reason, an error measuring
function is defined, called objective or loss function. In supervised learning the loss
of a predicted value §; of a function f for a given data sample (x;,y;) is defined as

Accordingly, the best function f out of F'is the function which obtains the minimal
loss for all available data samples. For a number of [independent and identically
distributed samples this extends Equation 2.5 to

1 l
72 (L 9), (2.6)

i=1

by averaging the loss function over the data. In the literature, this loss L(f) is often
referred as empirical risk Remy(f) of the function f, following the idea that an actual
performance of the function is uncertain in practice. It is only possible to evaluate
the function on the observed data samples, leading to the name of empirical risk.

A common choice for a loss function in regression problems is the Mean Squared
Error (MSE), which is defined as

1< N2
MSE =33 (Ily: 9l)" (2.7)
i=1
where || - || signifies the ¢5-norm between the true vector output y, and prediction

vector g, for each of [given data samples (x;,y;) [19].

2.2.4 Gradient Descent (Optimization)

The last component of the learning framework and optimization is required to im-
prove the result of the objective function. Therefore, the parameter vector @ is
introduced into the mapping function model f as

y = f(10). (2.8)

For instance, a simple mapping function model choice with parameters is the linear
function
y=mz+Db (2.9)

where m is the slope and b marks the intercept, often referred as bias in the machine
learning context. Hence, the parameter vector @ contains the two parameters {m, b}.

With this definition of the mapping function the function loss also becomes depen-
dent on the parameters. A frequently used method to decrease the loss due to the

10

2. Theory

choice of parameters is to update the parameters with gradient descent. Gradient
descent is an update procedure to the parameters in the model to be changed with
small incremental steps in the direction of the optimal parameter configuration. For
this purpose, the loss function L must be differentiable. The update formula for the
model parameters) at time ¢ is given by

00— 01— 2y Ly, F(wl0" 1)), (2.10)

where Vy is the parameter gradient of the loss function L for the prediction of the
model given the parameters 8¢~ of the last time step. Therefore, the step size for
each update step is scaled with the learning rate .

This procedure can be illustrated intuitively in a simple toy example with a single
parameter 61, which is presented in Figure 2.2. The loss function depending on the
parameter 6; is then given as curve L(6;). The parameter update of the parameter
0, at time t, represented as grey ball on the curve, corresponds to the movement of
the ball to the optimal parameter value 6] with the minimum achievable loss. For
this reason, the ball moves in the negative direction of the gradient with a step size
according to the learning rate \.

A

L)) |

»
»

61

Figure 2.2: Illustration of a gradient descent parameter update.

This makes the learning rate an important hyper-parameter during the learning
process. A small learning rate A leads to a stable but slow learning process. A
too high learning rate can lead to an overshooting update, such that the optimal
parameter value can never be reached or the training becomes unstable. This is
illustrated in Figure 2.3, where the optimization of the parameter 6; is visualized.
The random initialized value for the parameter is marked with the grey dot and the
optimal, minimal value is marked with the yellow dot. The blue arrows visualize a
small learning rate. Hence the optimal parameter value can be found but it takes
a lot of update steps. The red arrows visualize a too high learning rate. In this
example the optimum can never be reached, because the gradient is overshooting
around the optimum. The green arrows show a adaptive decreasing learning rate,
which leads to optimum in fewer steps than the blue iterations.

11

2. Theory

L®) |

>
>

0,

Figure 2.3: Illustration of a too high (red), too small (blue) and adaptive (green)
learning rate for gradient descent parameter update.

Following this learning rate adaption, several learning rate optimization methods
have been developed based on the gradient descent principle. Some common ex-
amples are RMSprop, ADAM, NADAM [20], whereby there is no ultimate best of
the algorithms, hence the choice of the algorithm is usually made on a case-by-case
basis or identified by hyper-parameter optimization.

2.2.5 Generalization

Generalization in statistical learning refers to the ability of a model to predict prop-
erly to new, previously unseen data. The goal is to get similar prediction perfor-
mance, for example in the sense of prediction errors, for the unseen data as for the
training data. If this is the case, then the model is said to have generalized well.

In order to evaluate the generalization of a model with a limited data set, usually
the full available data is split into two subsets before training. One subset is used for
the training of the model and one for the evaluation. Accordingly, the subsets are
often referred as train dataset and test dataset. A common split rate is 80%/20%,
where the former value is used for the training and the latter for the testing.

Splitting the data is usually done randomly to ensure that similar data is represented
in both subsets. However, it is still possible that certain imbalances occur. Training
on imbalanced datasets is one of the main reasons for overfitted models. A model
is said to overfit, if it tends to predict significantly worse on unseen data than on
data that it was trained on. This effect occurs when the model adapts explicitly on
the training data and does not generalise sufficiently. An other reason for this can
be that the model is overly complex. The model then rather learns input-output
combinations than an underlying relation. In contrast to overfitting, underfitting
occurs if the chosen model complexity is too low or was not trained enough, resulting
in high errors with a low variance. The relation between prediction error and model
complexity is illustrated in following Figure 2.4. This clearly indicates the sweet

12

2. Theory

spot between underfitting and overfitting as the goal of the training process.

high bias low bias
low variance high variance
BTN >
‘?D A
i underfitting overfitting
likely likely

S

=

]

=

g

3

2

=

e

z
2

low model complexity high'

Figure 2.4: Illustration of model complexity and prediction error defining potential
underfitting and overfitting ranges.

2.3 Data-Driven Modelling Theory

Following the framework of statistical learning from the previous section, this section
introduces relevant theory for the specific network implementations used in this
thesis. The section portrays theory and some background on how models evolved
to their current technical state of the art.

2.3.1 Neural Network Fundamentals

One type of statistical learning model is Artificial Neural Networks (ANN), often
just referred as a generic Neural Networks (NN) type. The model is inspired by the
architecture of the human brain and is designed to solve a problem in the way the
human brain would solve it. Therefore, an ANN is a collection of interconnected
neurons, where each neuron is a simplified model of the neural cell in a biological
brain.

Neuron

A neuron in an ANN has been conceived as a model of the neural cell in a human
brain. Based on the biological archetype a neuron is triggered when signals above
a certain threshold are applied to its receptors. The activated neuron then fires a
signal via its output which in turn can activate other neurons.

An illustration of a neuron is given in Figure 2.5, where n inputs zq,...,z, are
weighted by associated weights wq, ..., w, for every input branch. In the neuron
node the weighted inputs are summed up including the node bias b. This results in

13

2. Theory

a single value, which is then feed into the activation function ¢ to get the output
value y of the neuron.

, (®)

¢() =Y

Figure 2.5: Illustration of the computational model of a neuron.

Following the illustration the output of a neuron is given by

y:qﬁ(zn:wixi%—b). (2.11)

=0

Activation Function

The activation function ¢ of a neuron acts as a mathematical gate in between the
neuron state and its output to other neurons. As an enclosing function the activation
function has an influence on the shape of the neuron output. For example, the basic
Heaviside step function, defined as

0, n<0
=7 ’ 2.12
H(n) {1’ e (212

can be used to switch on and off the neuron output, depending on a rule or threshold.
This is an abstraction of the activation potential firing between neural cells.

Besides the binary output of the Heaviside function a popular choice, especially for
deep neural networks, is the rectified linear unit function (ReLU), which is defined
as

¢reru(n) = max(0,n). (2.13)

ReLU is a piece-wise linear function that will directly output a positive neuron
result, otherwise, it will output zero. ReLU has become the standard activation
function amongst others in many machine learning implementations, thanks to its
simplicity, consistency and effectiveness. Alternatives have not managed to replace
it, although extensions of ReLLU such as the so-called leaky or gated variant may
outperform the standard variant in some use cases. [21].

14

2. Theory

Multi Layer Perceptron

From Equation 2.11 it can be seen that a neuron is only capable of representing a
linear relation between inputs and outputs. To extend this to the representation
of non-linear relations, multiple neurons are stacked together in a so-called layer.
According to the single neuron model each neuron in a layer receives the same
inputs but has its individual parameters (weights and bias). The layer output is
a concatenation of the neuron outputs, so a layer with n neurons will deliver an
n-dimensional output. By stacking multiple layers sequentially, a so-called Multi
Layer Perceptron (MLP), it is possible to train a network to perform much more
complex function approximations than a single neuron perceptron.

In order to pass data through a multi layer network three types of layers are required:
input, hidden and output layers. Naturally, input and output layers are required
to put data in and take data out of the network. Hidden Layer refers to any layer
between the input and output of a network. Figure 2.6 illustrates a simple MLP
network with one hidden layer consisting three hidden neurons.

\

N\
-
e

ofhefhe

AR

Input Hidden Output
Layer Layer Layer

Figure 2.6: Illustration of feed-forward MLP consisting one hidden layer.

According to the universal approximation theorem, a network with one single hidden
layer, referred as shallow neural network, with a large but finite number of neurons
can approximate a wide range of continuous functions arbitrarily well. However, it
has been shown that instead of a shallow network, a network with several hidden
layers with fewer neurons is more effective, due to the fact that each layer can learn
different abstractions of the transiting data. This type of network is called deep
neural network. The term deep is not strictly defined, but to distinguish a deep
network from a flat network, a network is referred to as deep if it contains at least
three hidden layers [22, 23].

According to the architecture the data in a MLP follows the feed forward principle,

15

2. Theory

flowing from the inputs through the hidden layers to the output of the network.
Consequentially, the MLP is often referred as feed forward network. The parameters
(weights and biases) affecting the flow of the data through the network to produce the
output. According to Section 2.2.4, during training the parameters are optimized.
Therefore the error gradient occurring on the output of the network flows backwards
through the network, updating the parameters layer by layer on its way. So the
update on a layer is defined through its subsequent layer. Due to this opposite
direction of the flow to the feed forward pass, this method to construct the gradient
is called backpropagation.

2.3.2 Recurrent Time-series Prediction Models

Another statistical learning model type is Recurrent Neural Network (RNN). RNN
is a specific ANN type especially designed for modelling sequential data. Sequential
data comes in many forms, i.e. audio as a numerical time-series, video as a sequence
of picture frames or text as sequence of words.

To learn time-dependent information from data, RNN is based on a special kind
of neuron. This neuron is inspired by the concept of sequential memory, which
mimics the ability in the human brain to recognize sequences. A toy example is
the sequence of all letters in the alphabet, which is recognizable by the brain. In
a RNN this ability of recognizing a sequence and making predictions is enabled by
changing the architecture of an ANN neuron slightly. Figure 2.7 illustrates both
neuron architectures, also know as neuron cell. On the left side, the regular ANN
cell is shown, passing the input through the unit to the output in a single pass. In
contrast on the right, for the RNN cell a loop is added, which allows information to
flow from one step in time to the next. This time-coded information is called the
hidden state and contains information from previous cell inputs.

Output ? O
i

Hidden L j

oL g

ANN RNN

Figure 2.7: Illustrative comparison of an ANN neuron cell and RNN neuron cell.

A sequence of input data is considered as a series of input values in a RNN. The data
for each step in this series is passed to the RNN cell iteratively and is combined in the
cell with the hidden state. Consequentially, the hidden state of the current time-step
includes recursively the output of all previous inputs. An illustration of this recursive
data flow through a RNN cell is presented for an input data sequence zq, ..., z, as
unravelled architecture in Figure 2.8. Furthermore, the figure clearly shows the two

16

2. Theory

output formats that RNN-based architectures can provide. The RNN cell can be
used for either static (only the last step y,,) or sequential (all yq, ..., y,) output.

gé g; g;
Y, -,
X0 X Xq

Figure 2.8: Illustration of an unravelled RNN cell architecture.

For each time step, a weight w; is applied to the hidden state when it is passed
through the sequence. This weighted looping through the sequential data creates
the issue of short-term memory. This problem is also know as the vanishing gradient
problem, which occurs on deep neural networks as well due to how they are trained
with backpropagation. In RNN the vanishing gradient effect is caused by the recur-
sive connection and thus depending on information processed before. Similar to a
layer in a feed forward neural network during backpropagation each layer depends
on the gradient of later layers in the network. Multiplying the gradient from layer
to layer backwards exponentially shrinks the gradient. This causes the earlier layers
to fail optimizing the parameters as they are barely adjusted. Following this issue
in the recursive architecture on a RNN, this makes it hard to capture long-term
dependencies.

A solution to face the vanishing gradient problem was presented by Hochreiter and
Schmidhuber in 1997. They introduced an evolved RNN cell architecture using an
internal cell memory and additional gates. Gates allow the RNN cell to regulate
the flow of the information and thus which information to add to or remove from
the cell memory. This enables the ability to learn long-term dependencies that can
relate to events thousands of discrete time steps in the past, hence this architecture
is called Long Short-Term Memory (LSTM) [24].

2.3.3 Convolutional Time-series Prediction Models

Until recently sequence modelling in machine learning was synonymous with re-
current networks. However, recent results indicate convolutional architectures as
powerful alternative on sequence modelling, coming mainly from the real-time au-
dio synthesis and machine translation [25, 26, 27]. In 2018, a generic family for
convolutional sequence modelling architectures was introduced as Temporal Convo-
lutional Networks (TCN). This generic TCN architecture combines the best practices
of modern convolutional architectures of a wide range of research studies [28].

The main difference in TCN compared to recurrent networks is how the data is

17

2. Theory

processed. As shown in the previous sections, recurrent networks transport im-
portant information as internal states through the sequence while processing. In
contrast convolutional networks use filters to condense the important information
from sequences to a reduced sequence representation, the so-called latent space rep-
resentation.

The TCN architecture can be distinguished from the regular convolution used mainly
for processing images, with one main concept, causal convolution. Causal convolu-
tion is a variant of ordinary convolution where the causal property is preserved for
time-series data. A comparison of regular and causal convolution is illustrated in
Figure 2.9. On the left side, the regular convolution is illustrated as a filter with a
kernel size of three passed through the time-series sequence. In contrast to the causal
kernel on the right this reveals that the regular convolution violates the causal prop-
erty and zp; is involved in the receptive field of the kernel at time x1 to produce
the output yr.

time time
o X Xp X o X Xpgp Xp Xy
Input Series
Kernel — —
Output Series
. yl'—l y'l y]'*l wee e y'l'—l yI yl'+l aee
Regular 1D-Convolution Causal 1D-Convolution

Figure 2.9: Illustrative comparison of regular and causal 1D convolution for time-
series data.

This basic temporal convolution architecture can look back at previous time-steps
with size linear in the depth of the network and the filter size, and thus capturing
long term dependencies becomes challenging, i.e. the receptive field in the figure
above shows a depth of one and a kernel size of three. To overcome this problem
TCN benefits from the concept of dilated convolution. Dilated convolution allows
to increase the receptive field width of the convolution kernel, without requiring an
increase in the number of parameters. This is done by only considering every [,
element of a sequence in a [-dilated convolution with dilation factor [. The [-dilated
convolution operation F' for an element s of the input time-series « is defined as

k—1

F(s) = (z f)(s) = D_ f(i) Tt (2.14)

1=0

where f:{0,....,k — 1} — R is a filter of kernel size k and s — [- i accounts for the
direction of the past. Hence the regular convolution is a dilated convolution with

18

2. Theory

factor of one [28, 29].

This allows to increase the receptive field and thus the considered length of input
sequence for the TCN. Figure 2.10 illustrates a comparison of dilation factor [=1
and [= 2 for a causal convolution filter with kernel size £ = 3. This already results
in a receptive field of five with the same number of parameters.

time time
o X Xpp Xp Xy v Xpg Xpy Xpp X Xp Xpypo..
Input Series
Kernel — .
Output Series
. yT—l yT yT>l yT—l yT yT\l
Causal Convolution (I1=1) Causal Convolution (1=2)

Figure 2.10: Illustrative comparison of causal 1D convolution for different dilation
factors with the same kernel size on time-series data.

To further increase the receptive field, dilated convolution is used as a stack with
varying dilation factors. Therefore, the dilation factor increases exponential with
depth of the stack. This ensures that each time step of an input is captured by the
filter, while at the same time allowing the capture of an extensive history. Follow-
ing Figure 2.11 illustrates this with 3 layers of dilated convolution with increasing
dilation factor | = [1,2,4] and kernel size k¥ = 3. This leads to a receptive field of
width 15 compared to a non-dilated convolution width of 7 for the same kernel and
depth. The illustrated convolution filter is in literature referred to as TCN block
or stack. Stacking several of these blocks also increases the recording field by the
factor of the number of stacked blocks. Hence, the number of stacked blocks is an
additional hyper-parameter of the TCN architecture.

time
JUTD € SR X3 Xr2 Xy Xp Xpogo.. -
Input HNEEEREEEEEEEEER
dilation (I=1)
dilation (1=2) —>
dilation (1=4)
Output
e Y Yr Yo

Figure 2.11: [Illustration of a 1D causal, dilated convolution filter with kernel
size k = 3 and depth 3.

19

2. Theory

Since the size and architecture of the receptive field is fixed, to deliver an output yq
for the first input sequence time-step =z there are no previous values available in
order to fill the complete kernel while ensuring the causal property. For this reason,
zeros are added before the first time-step in the input sequence, to ensure that input
and output sequence are of the same length. This is called input zero padding.

As a conclusion, temporal convolutional networks seem to be a great alternative to
recurrent networks. The different approach to handle sequential data has several
advantages [28]:

20

Convolution networks pair well with parallel matrix computations, i.e. on a
GPU, because they do not require shared internal states.

Convolution is flexible. Parameters such as filter size or depth and dilation
factor easily increase the receptive field.

Convolution layers are not affected by the vanishing gradient problem.

Convolution is lighter on memory.

3

Data Exploration

This chapter portrays the available data in the project and how it was used as
dataset, since data understanding is an essential step in data-driven modelling
projects. All data used in this thesis project was provided by CEVT AB and is
not available in public. No other data was used, neither additional nor generated
datasets.

3.1 Data Gathering

The provided data was collected from a fleet of Plug-in Hybrid vehicles (PHEV).
As a part of the after market tools at CEVT, the data is gathered from the vehicles
during workshop visits. Accordingly, the data collection is a continuous process
where data is added to the available data pool every day through new workshop
visits. This is typical for data collection in the Internet of Things (IOT) era, where
data is collected everywhere even without plans to use it directly, but to keep for
later use. This was the case for the data used in this thesis. The data was originally
not intended to be used for research project like this thesis project. Hence, it was
impossible to change contained data fields, shape, frequency of logging, precision of
logging etc.

The data gathering process from the fleet to the cloud, is illustrated in Figure 3.1,
starting with the gathering in the fleet. In a vehicle, multiple electronic control units
(ECU) continuously monitor sensors, control the vehicle and track measurement
data. Plug-In and fully electrified vehicles usually have a separate ECU module
responsible for battery functions, known as the Battery Energy Control Module
(BECM). This module is responsible for taking readings of battery internal values
(i.e current, voltage or temperature), ensuring safety functions, computing battery
states (i.e. SOC or SOH) and reporting the state of the battery to other ECUs in the
vehicle. Besides an internal memory for the battery state functionality the BECM
also has a diagnostic data memory. In general, the diagnostic data is saved in this
memory to be able to screen the battery status and history during a workshop stop
in case that there is a problem with the battery. Therefore, the diagnostic data is
regularly stored even if the vehicle is not driven, for example if it charges during
parking or when it wakes up during parking to ensure that the battery is in a stable
condition and within the temperature limits. Because of this design for diagnostic

21

3. Data

purpose, the data is only read out during workshop stops. At the stop, a worker
connects the vehicle and a software tool to read out the diagnostic data, which is
then stored in a cloud database.

Data Gathering Data Readout Data Storing

in fleet at workshop stop in database
oy~
fomarn -
oo~

o
'o
L o

Figure 3.1: Illustration of the data gathering process from fleet to database.

Due to the mentioned continuous growth of the big data pool, differently sized data
collections were used during the thesis. The dimensions of the final data collection,
which was used to evaluate the different models, are given in Table 3.1. Only
complete readouts were considered. As missing data is a common effect in many
real life data sources, this reduced the total number of usable vehicles to 3150, due
to problems with the data readout specifications. To only consider most recent data
per vehicle, only the last available readout for each of these vehicles was considered.

Table 3.1: Dimensions of the final data collection

Property Value

Number of vehicles | 3150
Number of readouts | 3 150
Data file size ~ 2 GB

3.2 Data Type Exploration

Before any closer analysis of the data it is necessary to familiarise with the over-
all structure and content of the readout data. In order to reduce the diagnostic
data memory in the vehicle, the data gathered over lifetime is partly converted into
histograms. Besides the gathering of periodically saved values with accumulating
time or distance, data is added to the histogram bins with the occurrence of certain
events, for example when starting the vehicle or battery limits are violated. Conse-
quently, multiple data types are collected in the diagnostic memory. An overview
of the available data types per readout is given in Figure 3.2.

The data can be split into two main data types, static and sequential data. Owing to
the vastly different data types, the sequential and static data are explored separately
in following Section 3.2.1 and 3.2.2.

22

3. Data

All Data

I
v v

Static Data Sequential Data

I I
v v v v

Histogram Data Single Value Data Time-Series Data Distance-Series Data

Figure 3.2: Illustration of included data content in each readout from a workshop
stop.

3.2.1 Sequential Data

The sequential data gathered from the vehicle fleet contains time-dependent and
distance-dependent variables. The sequential variables are computed continuously
in the vehicles, but are only stored in the diagnostic memory at certain frequencies
or events, depending on the type of series. For time-dependent data the saving
frequency is three months for the first two years and decreases afterwards down to
a frequency of only one saving per year. The distance-dependent data is in the
beginning stored every 1000 kilometres, up to every 20000 kilometres beyond a
certain mileage.

This design was chosen during the battery software design phase to ensure that data
can be collected over a long lifetime without requiring extensive diagnostic data
memory in the vehicle. For a data-driven modelling process, this brings advantages
and disadvantages. On the first hand a rare storage of data reduces the overall data
volume. Hence, the whole data gathering process including readout or uploading to
the cloud is faster. On the other hand side, data-driven models benefit from large
training data volume and the accuracy of a model usually improves as the available
data increases.

A complete list of the sequential diagnostic data gathered per vehicle can be found
in Table 3.2. Each listed variable is recorded over time and distance. Only in
special cases, e.g. when a vehicle is not moved for a long time, the data between the
time and distance series for one variable are non-redundant. Hence, only the time-
dependent type of series was considered during this thesis to avoid redundancy in the
variables. From the dimension column in the table, it can be seen that almost every
variable gathered can be further divided into multiple single time-series, i.e. the
variable "Accumulated Energy Throughput"' is gathered as three individual series,
one series per drive mode. Thus 16 recorded time series per vehicle are obtained
for the variables listed in the table below. This includes the capacity SOH series,
which was used in this thesis as target for the sequential modelling tasks. Given the
fact that input and target are gathered in parallel is an advantage for the modelling
problem, because it ensures that the data is collected at the same frequency and is

23

3. Data

consistent in length. A potential drawback of this could be that if the SOH data is
inaccurate, a model trained on it will not produce more accurate results. However,
this reliance on the quality of the data applies to all supervised learning problems.

Additionally to the capacity SOH, the BMS stores the intermediate products for the
calculations as variables "0C/1C Capacity" and "Available Energy" in the diagnostic
memory. To avoid that a model only learns the relation between intermediate vari-
ables and the SOH as a target, these variables have been excluded from the training
data in this thesis.

Since all the sequential data is numeric, there is no need to format or encode the
data to be used in the data-driven models.

Table 3.2: List of all gathered sequential diagnostic time-series

Variable Name ‘ Dimension ‘ Description ‘

Charge Resistance (2 x steps) | Charge resistance for different
SOC levels (70 and 50 %)

Discharge Resistance (2 x steps) | Discharge resistance for different
SOC levels (50 and 20 %)

Available Energy (2 x steps) | Available energy (kWh) for
charge and discharge

0C Capacity (2 x steps) | The min. and max. 0C cell
capacity in the battery

1C Capacity (2 x steps) | The min. and max. 1C cell
capacity in the battery

2s Resistance (2 x steps) | The min. and max. 2s cell
resistance in the battery

SOH capacity (1 x steps) | The SOH capacity of the
full battery (target)

Acc. Energy throughput | (3 x steps) | Accumulated energy throughput
for three drive modes

3.2.2 Static Data

Similar to the sequential diagnostic data, the corresponding source variables for the
static diagnostic data are continuously calculated in the BMS. However, in contrast
to the sequential data, the time or distance axis is not taken into account for storing
and thus the data is only stored as absolute values or as part of a histogram. As a
result, the data of one readout only represent the state of the vehicle on the readout
day, similar to a snapshot of the vehicle state. For this reason, a lot of potentially
relevant information is already lost in the data gathering process.

In total around 30 histograms are included in a readout. A selection has been carried
out to exclude histograms from the thesis that seem defective or irrelevant for the
battery condition. The selection was based on domain knowledge provided by the

24

3. Data

supervisors at CEVT and the known battery degradation factors from Section 2.1.3.
This has led to a reduction in the number of histograms from 30 to 16.

Additionally, the selected histograms were grouped based on the battery degradation
factor they belong to. This has been done to determine the most relevant histograms
within the defined degradation factor groups. The resulting groups together with the
number and dimensions of included histograms are listed below in Table 3.3. The
third column in the table lists the applied feature extraction calculation performed
on the histograms per feature group. This has been applied to histograms in order to
extract their main information and reduce the data per vehicle significantly, intended
to be informative and non-redundant.

For instance, features from the histograms in the depth of discharge group are ex-
tracted with the statistical properties of total sum, mean, median, standard devia-
tion, skewness, kurtosis and cycles. Cycles in this case is a rough approximation of
cycles through the division of the total sum of discharged SOC with 100%. Skewness
is a statistical measure that describes the nature and strength of the asymmetry of
a distribution. It indicates whether and to what extent the distribution is inclined
to one side. Kurtosis is a measure for the steepness or 'relative peakedness" of a
distribution function. Since all the extracted feature data is numeric, there was no
reason for further formatting or encoding of the data to be used in the models.

For the static target, two features have been extracted from the corresponding his-
togram. Under the assumption that the minimum SOH value is obtained at the last
measured SOH value, both features describe the same variance. That this assump-
tion holds will be shown in Section 5.2. Hence, only the minimum SOH value was
selected as static target feature, since it appears to be more intuitive to understand.

Table 3.3: List of grouped histograms, their dimensions and feature extraction
calculation properties

Feature group Type of Histograms | Feature calculations

Energy Throughput 4 x 3D sum

Depth of Discharge 1x 2D sum, mean, median, std.,
skewness, kurtosis, cycles

Current 1 x 2D and 2 x 3D | sum, mean, median, std.

Temperature 5x 3D mean, median, std., min, max

State of Charge 5 x 3D mean, median, std.

Over-charge/discharge | 2 x 3D count, mean, median, std.

Age 1x1D total

SOH (Target) 1x1D min, difference (between initial
and last value)

25

3. Data

26

4

Methodology

This chapter serves the methodology used during the thesis work. As a higher-
level methodology, a widely used data-mining standard process has been used to
bring structure into the thesis work. This procedure is presented in Section 4.1 in
order to explain covered major steps, which are described in detail in the remaining
Sections, 4.2 to 4.5, of this chapter.

4.1 The CRISP-DM Methodology

Considering the strong relation of this thesis work to data-mining methods, the
Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology was
followed to a large extent as basis for the work process.

The CRISP-DM process is a standard cross-sector procedure promoted by the Euro-
pean Union for data-driven modelling development. The methodology was conceived
in 1996 as a step-by-step guide for data-driven projects by a core consortium of com-
panies from the data mining, data warehouse, insurance and automotive sector. In
total, the process methodology covers the full development phase of a data-driven
project with six major phases, from an understanding part over the model engineer-
ing part to a deployment part. The major phases in the process are not strictly set
and iterating back and forth is part of the process. In Figure 4.1 the most important
and frequent transitions between the major phases are marked with arrows [30].

Training Pipeline

<

Start —1 Business Understanding := Data Understanding » Data Preparation [«
A

\ 4
Modeling

A

S —— \

Deployment [« Satisfied? > Evaluation

Figure 4.1: Illustration of the CRISP-DM standard process.

27

4. Method

According to the CRISP-DM methodology the modelling phase, as an iterative pro-
cess involving data preparation and evaluation, benefits from the use of a pipeline.
This allows flexibility for varying data, preparation steps and model architectures.

During this thesis project such a pipeline was implemented, to act as a flexible
backbone for improvement iterations during modelling. The associated or required
methods for each major step of the methodology are listed in the next sections.
Starting with the preparation of the available data into a dataset in Section 4.2. The
modelling problem description is presented in Section 4.3, including the selection
of promising model architecture. Thereafter, the training procedure for selected
models is described in Section 4.4 and finally Section 4.5 is devoted to evaluation of
the model, in order to benchmark the investigated models.

4.2 Dataset Creation

The first major step in the CRISP-DM process attempts the dataset creation. The
goal of this step is to use domain knowledge combined with best practice tools to
create a comprehensive, condensed dataset from the raw data extracted features
discussed in Chapter 3.

It is important to mention in advance that the methodology for reducing the data
volume described in Section 4.2.1 was not a permanent component of the tool chain,
and will instead be examined separately in Section 5.2 of the results chapter.

4.2.1 Feature Selection Procedure

Feature Subset Selection (FSS), or feature selection in short, denotes the process
of selecting a subset of features from the total number of available features before
training a learning algorithm. The central goal of using feature selection techniques
is to remove either redundant or irrelevant features before model training, with-
out incurring much loss of information. Redundant and irrelevant are two distinct
notions, since two relevant features may be redundant if they are strongly pair-
wise correlated. The objectives to be achieved with features selection promise three
advantages: improving the prediction accuracy, improving training efficiency and
providing better understanding of the data generating process [31].

In this thesis, a simple correlation-based filtering method is used to select the fea-
tures. Therefore, the correlation is calculated between each feature and the target
feature as a dimensionless correlation coefficient that measures strength and direc-
tion of association between two continuous variables. The coefficient is a varying
value between +1 and -1, where a coefficient close to 1 indicates strong positive or
negative correlation between the two variables. Hence, the best features have been
selected by picking the features with the top absolute coefficient value between fea-
ture and target, to achieve a strong correlation to the target and discard irrelevant
features.

28

4. Method

This correlation-based filtering method is quickly calculable, can be applied without
any usage of a model and is intuitively interpretable. However, the sole consideration
of correlation with respect to the target can leave redundant features in the data
and can not take into account an impact of the learning algorithm. To prevent the
former, the correlation analysis has been combined with a cross-correlation analysis
and principle component analysis (PCA), to reduce redundant features.

The cross-correlation analysis is a pairwise correlation analysis among the features
without the target. Features with a high cross-correlation are more linearly depen-
dent and hence have almost the same effect with respect to the target feature. So,
when two features have high cross-correlation, one feature can be dropped to reduce
redundancy.

In addition, PCA was applied on the input features to further reduce the feature
space. The main objective of PCA is to find a transformation from the feature data
space onto a component data space, where dimensions are orthogonal and span
into largest variance directions. As a result, PCA returns the principal components
ordered by their largest explained variance. This is helpful to reduce the dimension
of the feature data by discarding the least informative principal components, hence
dropping less relevant features.

The full feature selection procedure is illustrated in Figure 4.2. In the beginning,
all input and target features are given. In a first step, the features are assigned to
feature groups. This has been done according to the battery degradation factors,
leading to the same groups as in Section 3.2.2. Each features group then has been
analysed individually with a correlation analysis with respect to the SOH target and
pairwise cross-correlation analysis among the features per group, followed by PCA.
As a final result, the feature selection procedure delivers a subset of high target
correlating and redundancy-free features.

Domain Knowledge All features Target

(]

s A

Feature grouping

y

Grouped features
I

A /

L] Combined LA
Cross-correlation | Correlation | Target correlation
analysis Analysis analysis
(* R
PCA analysis
L]

Selected features

Figure 4.2: Illustration of the complete feature selection process.

29

4. Method

4.2.2 Data Standardization

Input data scaling is a well-established technique for improving the convergence
characteristics of a network. Scaling inputs does not affect the network accuracy
performance, due to the compensation from the network weights, i.e. largely scaled
inputs are compensated with largely scaled weights. However, scaling affects the
training performance, i.e. networks with large weights are more sensitive to the
input, which may lead to unstable training performance and lower generalization.
For this reason, scaling is an essential pre-processing step and was applied on the
data in this project.

There are different scalers available to transform input data. Probably the most used
scaler is the standardization scaler. It scales the data per feature to the statistical
properties of a standard Gaussian distribution by removing the mean feature mean
and scaling to unit variance. This leads to an unbiased, standardized input data.
However, standardization can be affected by outlier values in the data. In order to
get around this problem another common choices is the so-called robust scaler. This
scaler uses the interquartile range to identify the scaling parameters, and is thus
unaffected by outliers in the data, allowing the main portion of the dataset to be
more spread out.

4.2.3 Sliding Window Transformation

The sliding window transformation was used in this thesis to transform sequential
to static data. This is a data preparation step that is specifically used for the step
model architecture in the SOH estimation model comparison and, hence, is not used
as a permanent preparation for all input datasets.

An illustration of this transformation for an uni-variate time-series is given in Fig-
ure 4.3 with window size w = 3. The transformation cuts uni-variate or multi-variate
time-series data into time-series parts equal to the window size w. In the case of
the step model the data of each window was subsequently transformed to static
data. Therefore the sum for each time-series per window was calculated and thus a
1 X Nfeqtures Shaped vector was obtained for each window. Furthermore, the target
SOH time-series was split with the same window size. The first element of each tar-
get window was additionally added to the transformed input windowed data vector
and the last element as static target for the window.

The sliding window transformation has only been applied on sequential data in this
thesis. This is due to the readout dependency of the static feature data. Since
only one readout per vehicle is used, all static features must be interpolatable for
the transformation. However, this does not apply to all available static features.
For example, the static value of battery age can be interpolated over the elapsed
lifetime by default, whereas a temperature value cannot. The temperature history,
as an example, is additionally dependent on the temperature variation through
the seasons since the date of production. Therefore, a vehicle manufactured in
winter and checked in summer cannot be interpolated in the same way as a vehicle

30

4. Method

time _

>

Time-Series| | | | | | | |

1st Window D:D
2nd Window |:|:|:|
3rd Window D:D

Window Size w

Figure 4.3: Illustration of sliding window transformation with window size w = 3.

manufactured in winter and checked in the succeeding winter. To this end, the static
feature data has been excluded in the sliding window transformation.

4.2.4 Data Arrangement

As a final step in the dataset creation the full input data was split into training and
evaluation data subsets. This has been done over the total number of all remaining
vehicles. The data was randomly split according to an 80/20 split rate, such that
the data of 80% of the total vehicles is used for training and the remaining 20% for
evaluation.

In addition, the data was arranged to supply the correct data format for each model
in the model comparison. This results in four different datasets: pure static, pure
sequential, mixed and windowed sequential. In summary, Table 4.1 lists all con-
sidered datasets used for generating the results, based on the data from Chapter
3.

Table 4.1: List of all considered datasets

Dataset Name Included Data Types ‘ Split ‘
static dataset static 80/20
sequential dataset | sequential 80/20
mixed dataset static & sequential 80/20
windowed dataset | window transformed sequential | 80/20

4.3 Model Selection

A model comparison was conducted, since the available data with several data types
allow the application of different prognosis approaches. The goal of the comparison
was therefore to find a suitable prognosis approach and a matching model architec-
ture to solve the modelling problem.

The modelling problem and the prognosis approach that solves it depend on the
available data. With a finalized dataset the input and output data shape for the

31

4. Method

modelling problem is given and the prognosis approach can be established. Hence,
based on the datasets introduced in the previous Section 4.2.4, in Section 4.3.1 an
overview on the considered modelling problem formulations is given. Afterwards the
setup for the SOH estimation model comparison is presented in Section 4.3.2 and
the prognosis setup in Section 4.3.3.

4.3.1 Prognosis Approach Selection

Following the general statistical learning idea, a model representation as an entry
point helps to reduce the hypothesis space to find a suitable and appropriate model.
For this purpose, the representation is based on the available data, more precisely the
shape and type of the input and output data. Consequentially, the following model
representation rely on the presented dataset options from Table 4.1 in Section 4.2.4.

Stateless function approximator

The intuitive approach to use the model to approximate a sole input output mapping
leads to the simplest approach in this comparison. In this case the model can be
seen as a stateless function approximator, where

SOH(t,) = ModelNetwork (usage(tk - to)) (4.1)

gives the relation between input and output data. The machine learning model
ModelNetwork just takes the complete usage history of one vehicle, from the date
of production ¢, until the arbitrary day of readout t;, and returns the estimated
absolute SOH value at the readout day SOH(t;) as output. Correspondingly, the
same stateless function aproximator concept can be applied for sequential data and
thus the sequential dataset by extending the return output to a sequence format.
This extends Equation 4.1 to

SOH(tx — to) = ModelNetwork(usage(tk - to)), (4.2)

where sequential SOH output is given for an equal sequence length as the input
sequence length ¢ — tg.

In both approaches 4.1 and 4.2 the definition of usage is explicitly chosen flexible
and not restricted to a specific dataset type. Hence, both approaches can be directly
applied to the static, sequential and mixed datasets presented.

Stateful function approximator

In a stateful approach the model attempts to predict the relative change of the SOH
rather than the total value. Therefore the SOH is also included in the input of the
model, so the model gains an update characteristics. For this case, the output of
the model is the relative SOH change dsom(tx+1) given by

dson(tkr1) = ModelNetwork(usage(tkH —tr), SOH(tk)). (4.3a)

In order to obtain the updated absolute value SOH(#41), the relative SOH up-
date dson(tx+1) then has to be applied to the previous state SOH(#x) in an additional
step by

SOH(tk+1) = SOH(tk) + 5SOH(tk+1>- (43b)

32

4. Method

Instead of only learning the update difference to perform the update manually, the
absolute SOH value can also be learned directly by

SOH(tx41) = ModelNetwork(usage(tkH —tr), SOH(tk)>. (4.4)

Since the approaches in Equation 4.3b and 4.4 aim for the identical result, only the
second variant was further considered due to the resulting lower implementation
effort. The approach can be directly applied on the window transformed sequential
dataset.

4.3.2 SOH Estimation Setup

According to the first goal of this thesis, to investigate different modelling approaches
in order to find a suitable model being capable of handling big data as input and
delivering battery SOH as an output, this section presents a selection of models
based on the modelling approaches of the previous section.

As aforementioned, the stateless approach for static (Equation 4.1) and sequential
(Equation 4.2) SOH output are able to be applied to static, sequential and mixed
input data. In general, this leads to a total combination of six possible input-output
combinations. However, the static input to sequential output combination is known
as impractical, due to the missing time-dependency in the input. For this reason, it
was excluded from the considered combinations.

For the remaining combinations the following model architectures have been selected
to predict the SOH based on the usage history.

Static input models

The restriction that purely static input data can only be considered for the static
output data leads to the static to static architecture shown in Figure 4.4. Being
probably the most popular machine learning algorithm for static output data, the
artificial neural network type (ANN) was taken into account in a comparison for this
modelling approach. However, depending on the actual selected hyper-parameters,
ANN networks can require a lot of parameters to train. In order to evaluate if
more resource-efficient algorithms can already provide a suitable solution, three less
complex models were added to the comparison:

o Linear Regression, as the name indicates, provides a linear least square fitted
model. It is considered to be the most basic machine learning model, based
on the closed-form ordinary least square solution.

e FElastic Net is an extension of linear regression with additional ¢; and /5 reg-
ularization terms.

o Random Forest for regression is a so-called ensemble model, aggregating the
results of multiple decision trees, where each decision tree provides a prediction
output. It is known for efficient processing of large data volume and can handle
non-linear data relations.

33

4. Method

f1
fH —— | Model | — [target
fa[]

Figure 4.4: Illustration of static features to static target model.

Sequential input models

To additionally incorporate the available sequential data, networks with long short-
term memory (LSTM) cells or temporal convolutional networks (TCN) cells were
considered in the comparison. The models can be used either for sequential or static
output format, as illustrated in Figure 4.5. In a direct comparison, LSTM has been
the default model choice for sequential data, where TCN recently appeared as an
powerful alternative. Hence, the idea was to considered both allowing a side-by-side
comparison.

For this reason, the cell types of the model are capable of handling sequential input
data and can return sequential or static output data, by returning either the full
length of the sequence output or just the last value of the sequence. The LSTM or
TCN cells are used in stacks in the models similar to neurons in a layer. Thus, their
output format is concatenated either as 1D vector for the static output or 2D matrix
for the sequential output format, where the first dimension refers to the time-steps
of the sequential output. Hence, the dimensions have to be reduced to match the
available target format, either single value or single time-series.

In the case of the vector cell output, a ANN-like architecture can be used to bring
bring the vector to the single value output format for the complete model. On the
other hand for the multi-variate 2D cell output the reduction to a single time-series
can be achieved with time-distributed wrapped neuron layers. A time-distributed
wrapper around a regular neuron layer architecture allows to apply the layer trans-
formation to every time-step in the sequence, so the time dimension is not reduced
in the transformation. So if the neuronal layers return a single value as a result,
the expected uni-variate time series is obtained due to the preservation of the time
dimension.

time

[target

ts1

s — | Model |[<OR .

tso [T TTTTT] e
CTTT T 1T Jtarget

Figure 4.5: Illustration of sequential feature input models with varying output
format.

34

4. Method

Mixed input models

As investigation if combining both available feature input data types, and thus
more data input volume, leads to another results than utilizing them individually, a
mixed input architecture was added to the comparison. Therefore the static ANN
model was combined with either a LSTM or TCN model, to further benchmark the
cell types with each other. An illustration of a mixed input model architecture is
presented in Figure 4.6, combining the static ANN model branch with a sequential
LSTM/TCN branch into a concatenated branch. The concatenated branch then can
be used to either return static or sequential output.

Model
?H static
2 — target
fnij branch 1 [targe
concat.
time branch OR
ts1 j time
:
b2 ||t (LTI Jareet
tss [T TTTTT]

Figure 4.6: Illustration of mixed input features to either static or sequential output
format model.

The concatenation of the static and sequential branch in the model depends on the
expected output format of the network. For a static output format, the last layer of
neurons in the static and sequential branch only contain a fixed number of output
neurons. This is illustrated in Figure 4.7. For example, if both branches contain
four neurons in the last layer, these eight real value outputs can be stacked in one
vector with the length of eight, by concatenating one output after the other. Hence,
the following concatenated branch has a static input and behaves in this case like
the previous static branch, with additional layers and the single static output value
format.

Concatenation
static H
branch

O

concat.

branch —» [Jtarget

sequential Y H .
branch
O

Figure 4.7: Illustration of the concatenation of static and sequential branch for a
static model output format.

O 0+ [0
'

35

4. Method

For a sequential output format, Figure 4.8 illustrates the procedure. The LSTM or
TCN cell return full sequential output and thus the output of the sequential branch
is a 2D matrix for each sample, referring to the number of time-steps in the sequence
times the number of neurons per time-step. This number of neurons initially was
equal to the number of sequential features in the input. However, with the LSTM
or TCN cell and subsequent layers this can be different from the initial feature
number. In order to enable the concatenation of the static and sequential branch,
the 1D output of the static branch has to be modified. In this thesis, the 1D output
is just repeated for the number of time-steps in the sequential branch. This leads to
a 2D branch output for the static branch, which enables the concatenation of both
branch outputs over the axis of time-steps. Hence, in this case the concatenation
branch handles 2D data and has to reduce the second dimension to only one value
at the end. Thus the total output of the model equals the SOH sequence target
format, with number of time-steps times one value.

: H H Concatenation

static - . o

branch “ee steps cee
O O .

(L] - concat. - _>tar o
time branch LT T Jtarg
—
sequential -
branch |1

CITT]

Figure 4.8: Illustration of the concatenation of static and sequential branch for a
sequential model output format.

Windowed input step model

Finally, the windowed input model was added to the comparison to investigate the
stateful modelling approach from Equation 4.4. This is illustrated in Figure 4.9. As
previously discussed, only sequential data is used here for the step approach, due to
the missing interpolability of some static features.

. Window
time .
—_— Transformation

tsn[T T 11 an|
out(t-1)
time Model

Concatenation

target[T [[] <«—|[] [+ +—out[] I

ts1 | le
s — — @ " —

Figure 4.9: Illustration of the step model as windowed input stateful modelling
approach.

36

4. Method

The sequential input data is transformed into static data with the introduced window
transformation in Section 4.2.3, for each sample in the dataset. Depending on the
input sequence length of the sample and window size of the transformation this
delivers a number of static feature sets, one set per window. The sets are passed
through the model iteratively, where for each set the SOH is added as additional
feature before feeding the data into the model. For the first set. the SOH feature
is initialized with a value of 100 %-SOH. For every subsequent set, the SOH output
of the model from the previous window is used as SOH input for the set.

Since the model considers a static input to static output modelling problem, the
ANN model was chosen in this approach. To obtain a sequential output format, each
model output is stored and concatenated to produce an output of the same length
as the sequential input data. Thus the concatenated prediction can be evaluated
with respect to the available sequential target.

4.3.3 SOH Prediction Application Setup

As an application showcase, the SOH estimation models from the setup introduced
in Section 4.3.2 were tested on a simplified prognosis scenario. The goal was to show
chances and limitations of using the investigated estimation models in a prediction
setup, where they are tested to predict the future SOH of an individual vehicle based
on its history.

Therefore, the data for training and testing was different. The considered application
concerns a training on full length sequential data samples of a training dataset, where
the full sequence output of the network is compared to the full target SOH sequence
to calculate the prediction error, build the gradient and optimize the weights.

The testing is performed on modified samples from the test dataset. The test samples
are modified by truncating the sequential input data at half of the sequence and
padding it back to the full length with the average of the last three values per input
data time-series. This was done to allow a full sequence to sequence prediction.
This truncated and padded input sequence is referred to as "half' sequence input
in this thesis. In a comparison, the predicted output for the half sequence input
is compared with the target of the original test sample and the prediction output
for the unmodified sequence input. An illustrative comparison between the full and
half sequence input is displayed in Figure 4.10.

37

4. Method

time
ts1 &nfuuu
sequence
ts2 — | Model | —> OO giction
tss [T T T T TT1]
time
ts1 time
——————® "hal{" sequence
ts2 — | Model | —> CTIITT jiction
tsn [T 1]
N
Padded Data

Figure 4.10: Illustration of the comparison between full and half sequential input
data handling.

This scenario corresponds to a prediction of the SOH at a readout date at half
of the sample forward, using forward propagation of the historic usage into the
future, to predict the future SOH. Naturally, the informative value of this predictive
application is limited, since this model design with linear usage dispersion does not
take into account dynamic usage prediction. Hence, it was expected that if the
assumption of consistent future usage forward starting at the half of the sample
does not hold, then the prediction will clearly show an increasing bias over time.

4.4 Model Training

This section portrays the considered methods during model training. This includes
the used training loss function, hyper-parameter optimization and cross-validation
with early stopping.

4.4.1 Loss Function

According to the introduction of statistical learning in Section 2.2, machine learning
models use the loss or objective function during training to evaluate the prediction
in comparison to the expected output. Therefore, the model is trained with the
data using multiple of so-called epochs. A complete run through of all input data is
called one epoch. The network parameters are updated after each epoch, based on
the calculated loss, to improve the prediction in the next epoch iteration.

In this project, the prediction error between target output data and the prediction
output was calculated by the mean squared error (MSE), based on the introduced
error metric version in Equation 2.7. However, unlike the definition of MSE as
evaluation metric, being calculated once per epoch, MSE as loss function during
training is calculated for multiple batches of the total dataset. For this reason, the
entire dataset is split randomly per epoch into the so-called mini-batches, containing
a number of samples determined by the hyper-parameter batch-size. Applying the

38

4. Method

MSE error per mini-batch instead of the entire dataset allows more frequent, smaller
updating of the weights during training. This mimics the effect of a small learning-
rate and improves convergence robustness.

4.4.2 Hyper-parameter Optimization

In machine learning, hyper-parameter optimization concerns the problem of choosing
the optimal set of hyper-parameters for the training of a learning algorithm. The
goal is to find the set of parameters that achieve the best possible evaluation score.

A hyper-parameter can be a parameter controlling the model architecture or the
training of the model. For example for the former, common hyper-parameters con-
cern the dimension of an ANN network by using the number of layers and the number
of neurons per layer as hyper-parameters. For the training usually the batch-size,
learning-rate or learning-rate optimizer algorithm are used as hyper-parameters.

In order to find the optimal value for each considered hyper-parameter the range
to be investigated has to be defined for each parameter. In this thesis a grid-search
algorithm was used to search for the tuple of optimal parameter values, by iterating
through the grid of given parameter ranges.

4.4.3 Early Stopping

Early stopping is used during the training of a model to reduce training duration
and avoid overfitting to the training data. Often, in a long training procedure of a
data-driven model, at some point the model does not improve further in the sense
of minimizing the loss error, and tends to overfit to the data instead. To avoid
this effect a monitoring of the loss error along the trained epochs can be utilized to
stop on critical points in time rather than forcing the training for the pre-defined
number of epochs. For this purpose, the MSE loss for the available training data set
is monitored. As the objective during training is to minimize the loss, the training
is stopped as soon as the monitored variable falls beneath a level of change for a
selected number of epochs. In this thesis, the level was an absolute total loss error
difference of 0.001 for the last 10 past epochs.

4.4.4 Cross-validation training

Cross-validation can be used during training to validate the performance and to
allow an assessment of the generalization of a parameterized model. The cross-
validation setup is a statistical technique illustrated in Figure 4.11. For the setup,
the available training dataset is further divided into several subsets, determined by
the cross-validation factor K. According to the number of subsets a number of K
models is trained. Hence, for a K = 5 cross-validation setup, the available data is
split into five subsets of equal size and five different models are trained. For the
training of each model, one of the subsets of data is omitted. This remaining subset
is used as a so-called wvalidation data subset for this specific model. So in total K
models are trained for K variations of the training and validation data.

39

4. Method

Validation subset Training subset[|
— ——
st
=
< 2nd
N
.5 3rd
5 4th
' 5th
(- J

Entire Bgta Pool

Figure 4.11: Illustration of a five fold (K = 5) cross-validation schema.

After each epoch during the training of a model, the validation data is used to
calculate the validation loss. This is done similarly to the training loss, with the
calculation of MSE as an error metric between the true output and the predicted
output of the model for the samples of the validation data subset. Hence, after
each trained epoch the training and validation loss is available. According to the
discussion on generalization in Section 2.2.5 this is helpful in combination with early
stopping, since the training can be stopped either when the validation error seems
to stagnate at a certain loss value or is even increasing while the training error still
decreases. For the latter this leads to an increase of the difference between training
and validation error and thus overfitting is more likely to occur.

For this reason, cross-validation is often used during model selection as well to iden-
tify model architectures that are likely to overfit and therefore do not generalize well.
For example, cross-validation can be used during the hyper-parameter optimization.
However, this would require a significantly longer training period, if each considered
configuration in the hyper-parameter grid is trained and evaluated for a number of
K modelling folds.

4.5 Model Evaluation and Benchmarking

In the CRISP-DM procedure model evaluation is described as key step to consider
how well the trained model generalizes to unseen data. This is important to rate if
the trained model acts as expected and consequently if the prediction can be trusted.

How well a model performs is on the first hand measured with mean error per-
formance metrics. However, taking the mean of errors over a large set of samples
vanishes the weight on each sample error. Consequently, a small mean error is not
reliable enough to measure the performance of a model. Other relevant information
about the error is missing in that consideration, i.e. how is the error distributed, is
it evenly distributed or with a shift, are there outliers?

The following model evaluation methods were used to provide insights on the model

40

4. Method

performance and enable the rating of different approaches to provide a solid basis
for a discussion and conclusions.

4.5.1 Performance Metrics
Besides the MSE metric, the Mean Absolute Error (MAE) and the Coefficient of

Determination (R?) scores are additionally used as performance metrics during eval-
uation. Therefore, the trained models are evaluated with the performance metrics
over the entire test dataset.

In difference to the MSE metric, the MAE returns the mean over samples of the
absolute prediction error. This indicates a scale-dependent measure on the deviation
between prediction and target, which can be more intuitive than the squared equiv-
alent MSE. Nevertheless, the MSE is considered in the evaluation as well because
it helps to rate the deviation for errors with larger magnitude, as a result of the
consideration of the squared prediction error. In addition, the regression specific
R? score metric, pronounced 'R squared', is used to rate the fitting of the mod-
els. The R? coefficient is a statistical measure how well the regression predictions
of the model approximate the true values. A higher score signifies that a network
does a better job of predicting expected true values correctly. The best and highest
possible R? score is 1.0, indicating a 100% fit between predictions and true values.
The smaller the value, the worse the prediction. As a drawback of this metric, the
score is not well-defined and also depends on the characteristics of the true values.
With values that are less scattered being easier to explain the score becomes less
important when comparing models with different target values.

4.5.2 Cross-validation Scoring

Aside from the importance of cross-validation for model selection and training, the
method is popular to use for evaluation of trained models on limited-sized datasets.
According to Section 4.4.4 the K-fold approach helps to identify over-fitting archi-
tectures, if they show inconsistent performance end scores when iterating through
the modelling folds and the subsets of data, respectively.

For K different folds K different models of the same architecture are trained and
evaluated. A consideration of the minimum, maximum and mean value of the per-
formance results thus allows an assessment about the consistency of the achieved
scores and therefore about the generalization of the architecture. This helps to rate
an architecture amongst other architectures to find the most suitable.

4.5.3 Error Distribution

For a detailed examination of the prediction errors, the model evaluation is sup-
ported visually and in statistical terms with the consideration of the prediction
error distribution.

In the case of visual support, a common approach is to take the prediction error for

41

4. Method

each sample in the test dataset and to illustrate them in the form of a histogram
along with a fitted kernel density estimation (KDE) function. The presentation as
a histogram gives an overview of the frequency distribution of the prediction errors
and the KDE function portrays a smoothed curve of the distribution. This combined
illustration allows a quantitative view on the prediction errors and thus can reveal
the occurrence of outliers in the total amount of errors, which would be undetected
if only a mean error value were taken into account.

In addition, the consideration of the statistical properties of the prediction errors
extends this into further details to a qualitative view. This enables a detailed side-
by-side comparison between model results. Table 4.2 presents the list of evaluated
statistical properties and how they contribute to a better understanding and com-
parison.

Table 4.2: List of statistical properties applied on the error distributions

Statistical Property Contribution

Mean, deviation, variance Evaluates the spread of prediction errors
Minimum, maximum values | Reveals extreme outliers, that are vanished

in a mean score treatment

Skewness Measures the symmetry of the errors, hence
if the model is more likely over- or under-
estimating

Kurtosis Is a measure of the steepness of a (single-

peak) probability function, hence describes

the ratio of outliers in the distribution

4.5.4 Residual Plot

One of the most used evaluation metrics for machine learning classification prob-
lems is the confusion matriz. 1t is used to compare the true output class with the
predicted output class of the model for every sample in the test dataset. However,
due to the continuous value predicted in regression problems a confusion matrix is
not appropriate for regression problems. As an alternative, a residual plot is com-
monly used. Therefore, instead of distinct classes the real value of observation and
prediction is compared.

The residual value is calculated for each sample in the test dataset as prediction error
following the equation residualygiye = valueirye —Valtueprediction- In the residual plot,
the test dataset residuals are plotted in relation to the true target value range as
scatter point, where: (z,y) = (valueiye, (Valuesye — valtueprediction)). For an ideal
accurate prediction, with residuals of zero, this would lead to an constant straight
line at y = 0.

To this end, the residual plot allows an detailed analysis of the prediction errors:
How much is the spread of the errors? Is the spread equal over the true value range?
Are there outliers in a specific range?

42

O

Results and Discussion

This chapter presents the results found during different stages of the thesis work.
Therefore, the chapter is split into three main sections. Section 5.1 provides the
comparison over a range of models to approach the predictive task of SOH estimation
for a given vehicle usage. The models are grouped into sets by their delivered
output to compare varying data inputs for multiple outputs. In order to achieve
unbiased results the models in this section were trained with the full available data.
In Section 5.2, a detailed investigation of the impact of data condensation with
the feature selection approach is performed. Finally in this chapter, Section 5.3
attempts the prediction of the SOH for a simple prognosis scenario implemented
with the models validated in Section 5.1.

All results have been obtained in Python 3.6.8 on an Intel i5 CPU with 8 GB RAM.
Used software libraries were, among others, Scikit-learn for the baseline machine
learning models and Keras with a Google Tensorflow backend for the neural network
models [32, 33].

5.1 SOH Estimation Performance

This section presents the performance of the implemented models to rate and com-
pare their suitability for the predictive SOH estimation task. To receive reliable
results all models were trained on the same final dataset (description in Table 3.1)
with an 80/20 train and test data split and additionally five-fold cross-validation
setup on the retaining 80% training data.

After this introduction part the results of the performance comparison are split into
three sections, in order to benchmark models with the same predictive approach
respectively the same input and output data. Therefore, models with a static output
are compared in Section 5.1.1, models with sequential output in Section 5.1.2 and
the step approach, as a mixture of both, in Section 5.1.3. In each of these sections,
the model hyper-parameters are presented before the performance metric results.
The error distribution examination and residual plots are presented for a detailed
understanding, according to the introduction in Section 4.5. Finally, Section 5.1.4
summarizes the findings per approach and evaluates the best per category among
the three predictive approaches.

43

5. Results

According to the model selection in Section 4.3.2 four different subsets (static, se-
quence, mixed and windowed) of the final dataset were used as input and two differ-
ent subsets (static, sequence) for the SOH target output. Each investigated input
and output combination can be found in Table 5.1 below.

The baseline models Regression, Elastic Net, Random Forest and plain ANN are
not able to handle sequence or mixed data input. Hence theses models could only
be trained on static input and deliver static output. Furthermore, LSTM and TCN
models require sequential data as input. Hence, for these models pure static input
has not been considered. In addition, to the variant with static output for com-
parison against the purely static models, a sequential output was also evaluated for
the sequential models. As a transition between static and sequential data the step
model, according to Section 4.3.2, handles the windowed sequential dataset.

Table 5.1: List of evaluated models for the SOH estimation predictive task

Model Type ‘ ID ‘ Model Input Output See Section
B1 | Linear Regression | static static 5.1.1
Baseline B2 | Elastic Net static static 5.1.1
B3 | Random Forest static static 5.1.1
B4 | ANN static static 5.1.1
R1 | LSTM sequence static 5.1.1
Sequential R2 | LSTM sequence sequence 5.1.2
(Recurrent) | R3 | LSTM with ANN | mixed static 5.1.1
R4 | LSTM with ANN | mixed sequence 5.1.2
C1l | TCN sequence static 5.1.1
Sequential C2 | TCN sequence sequence 5.1.2
(Convolution) | C3 | TCN with ANN | mixed static 5.1.1
C4 | TCN with ANN | mixed sequence 5.1.2
Sequential S1 | ANN step model | sequence sequence 5.1.3

(Step) (windowed) | (windowed)

44

5. Results

5.1.1 Varying Data Input for Static Estimation Output

This section presents the performance results for the part of the model comparison
that have a static output format. The considered input choices are static, sequence
and mixed (combination of static and sequence) datasets for the same static output
data format. First, a description of the models used in this section follows, divided
according to the combination of input and output data types.

Baseline Models (static input, static output)

The four baseline models were implemented in different software libraries. The
first three models, Linear Regression (B1), Elastic Net (B2) and Random Forest
(B3) were implemented with the SciKit-Learn package [32]. The package provides
a grid-search hyper-parameter optimization which was applied. However, the Lin-
ear Regression implementation in the Scikit-learn package does not require hyper-
parameter optimization since the implementation is based on the closed-math or-
dinary least square function. Therefore, the model type was then trained without
grid-search.

For the Elastic Net the resulting hyper-parameters and their provided range for the
optimization are presented in Table 5.2. The grid-search optimum value for each
parameter is listed in the last column.

Table 5.2: Elastic Net (B2) SOH estimation hyper-parameters

’ Parameter ‘ Values ‘ Optimum

Alpha 0.0001, ..., 5] 1.25
L1 Ratio | [0.01, 0.25, 0.5, 0.75, 1.] | 0.01

Similarly, the grid-search optimization result for the parameters of the random forest
is presented in Table 5.3.

Table 5.3: Random Forest (B3) SOH estimation hyper-parameters

’ Parameter ‘ Values ‘ Optimum

Max Depth | [2, 3] 3
Estimators | [10, 100, 1000] | 100

The fourth baseline model, ANN (B4), was implemented with the Keras package [33],
which allows a detailed network modelling. Hence, more parameters were given for
the optimization. Grid-search was applied and the hyper-parameters that resulted
in the lowest MSE validation error are presented in Table 5.4.

45

5. Results

Table 5.4: ANN (B4) SOH estimation hyper-parameters

’ Parameter ‘ Values ‘ Optimum
Max. Number of Epochs | [1000] 1000
Batch Size [4, 128] 16
Number of Layers 1, ..., 10] 2
Number of Neurons 16, 256] 128
Dropout Rate [O, 0.5] 0.2
Learning Rate [le , 1le-6] 5e-3
Optimizer Algorithm [RMSprop, Adam| | Adam

Recurrent Sequence Models (sequence or mixed input, static output)
The group of recurrent sequence models was implemented with the Keras package
[33], which enables native LSTM cell support for recurrent architectures. The main
difference between the models in this group is the input used. A mixed input requires
a static branch in addition to the sequence branch to be able to process the complete
data. Due to time limitations in this thesis, the static branch was adapted from the
best found static ANN (B4) model and no further optimisation was conducted. It
only retains hyper-parameters of the sequence branch, the concatenated branch and
the overall training hyper-parameters to optimize with the grid-search. Table 5.5
presents the best found hyper-parameters.

Table 5.5: LSTM (R1, R3) SOH estimation hyper-parameters

Parameter ‘ Values ‘ Optimum
Max. Number of Epochs [1000} 1000
Batch Size [4, ..., 64] 16
Number of LSTM Blocks 1,2] 2
Number of Hidden Neurons 16, 32 64, 128] 64
Number of Neurons (Branch Output) | [1, 16, 32} 16
Number of Neurons (Concatenated) | [16, 32 64, 128] 32
Dropout Rate 0, ..., 0.5] 0.2
Learning Rate [le-1, ..., 1le-6] 5e-3
Optimizer Algorithm [RMSprop, Adam] | Adam

Convolutional Sequence Models (sequence or mixed input, static output)
The third group related to convolutional sequence models was implemented with
the Keras package [33], where the implementation of the TCN cell was taken over
from Philippe Rémy [34], who adapted the implementation from the original paper
for the used Keras package. Similar to recurrent sequential modelling, the models
in this TCN group differ in the input data used. The additional static branch and
concatenated branch for mixed input was adapted from the LSTM model with mixed
input. This allows to compare the convolutional and recurrent approaches side-by-
side. Consequently, only TCN-related hyper-parameters were optimized. Table 5.6
presents the best found hyper-parameters.

46

5. Results

Table 5.6: TCN (C1, C3) SOH estimation hyper-parameters

Parameter ‘ Values ‘ Optimum
Max. Number of Epochs [1000] 1000
Batch Size [4, ..., 64] 16
Number of TCN Filters [16, 32 64] 64
Number of TCN Stacks 1, 2,] 2
TCN maximum Dilation Factor 4, 8} 4
TCN Kernel Size 1, 2, 4, § 2
Number of Neurons (Branch Output) | [1, 16, 32} 16
Number of Neurons (Concatenated) | [16, 32 64, 128] 32
Dropout Rate 0, ..., 0.5] 0.0
Learning Rate [le-1, ..., le-6] 5e-3
Optimizer Algorithm [RMSprop, Adam] | Adam

According to this hyper-parameter selection the receptive field for each TCN filter

was
Dilation x Kernel Size x TCN Stacks =4 x 2 x 2 = 16. (5.1)

Metric Performance

The performance has been determined with five fold cross-validation on the remain-
ing 80% train dataset, to further retain a rate of 80/20 between actual training data
and validation data for the training procedure. To this end, five models are trained
on the training dataset of all eight models in this section. Table 5.7 summarizes the
results collected for each model fold iteration by selecting the best score achieved
per model. For MSE and MAE, the smaller the score, the better the result and thus
only the minimum score for the five trained models is presented. In contrast, for
the R? metric, the best result is the highest score. For each metric the best score
over all models is marked by blue font in the table.

Three assertions are apparent from Table 5.7. At first, the pure static linear baseline
models (B1, B2) perform worst over all metrics in this comparison. The switch to
non-linear pure static models (B3, B4) shows a clear improvement, which supports
the assumption of a non-linear association of the modelling problem for the available
data. Secondly, it is apparent that the best performing model is the mixed input
LSTM model (R3), with the exception on the MSE metric, where the mixed input
TCN model (C3) performs best. This leads to the third assertion, that mixed
input models (R3, C3) outperform their pure sequential (R1, C1) or static (B4)
equivalents.

47

5. Results

Table 5.7: Comparison of static SOH estimation scores for varying models

Model ‘ ID ‘ Input ‘ MSE (min.) ‘ MAE (min.) ‘ R? (max.) ‘
Linear Regression | B1 | static 4.1863 1.4971 0.7400
Elastic Net B2 | static 4.4476 1.5402 0.7238
Random Forest B3 | static 2.7149 1.1953 0.8314
ANN B4 | static 1.3232 0.7779 0.9178
LTSM R1 | sequence | 1.4392 0.7996 0.9106
LTSM + ANN R3 | mixed 1.0032 0.6825 0.9377
TCN C1 | sequence | 3.9953 1.4157 0.75190
TCN 4+ ANN C3 | mixed 0.9624 0.7751 0.9123

Prediction Error Consideration

Regarding the prediction error distribution, Figure 5.1 serves a comparison across
the different models. An overview of the prediction error on each sample of the test
dataset is given in form of a histogram with additional kernel density estimation,
as introduced in Section 4.5.3. In order to enable intuitive analysis and present
differences and similarities, the results are divided into two groups, according to the
difference in the input data whether sequential data was considered or not. This
results in two groups with four models each. In addition to the visual impression of
the distributions, the statistical properties for the distribution per model have been
calculated and can be found in Table A.1 in Appendix A.

The error distributions confirm the results from the metric evaluation of Table 5.7.
Among the baseline models, Figure 5.1a confirms the ANN (B4) model as the best
model, with a slim (low variance, high kurtosis), centered (zero mean) peak in the
prediction error distribution. In addition, the Random Forest model (B3) results in
only a slight increase in the variance compared to the ANN (B4). Both linear models
(B1, B2) show higher variance and thus the worst results in this comparison. This
supports the assumption, that linear models cannot deal correctly with the modelling
problem dynamics. Surprisingly, it is noticeable that all four models show a centered
peak in the distribution.

This does not hold for all models in Figure 5.1b, investigating sequential data input.
Both TCN models (C1, C3) are shifted to the side, whereby a shift to the right
corresponds to an overly degraded estimate, according to the calculation of y — ¢ in
the MSE. Hence, the left shifted peak of C1 indicates an underestimation and C3 an
overestimation of the ageing. The LSTM models (R1, R3) in this second comparison
show a more centered (zero mean) and equally shaped distribution peak, which aligns
with the overall better performance metric results of the LSTM models (R1, R3)
compared to the TCN models (C1, C3) in Table 5.7.

Moreover, the explanation for the lowest MSE value of the mixed input TCN (C3)
in the previous Table 5.7 can be derived from Figure 5.1b. In a comparison with the
otherwise best mixed input LSTM (R3) model a narrower distribution in deviation,
variance, minimum and maximum value reveals the better MSE metric score. How-

48

5. Results

ever, the shifted mean of this mixed input TCN (C3) model explaining the worse
performance in MAE and R? score.

0.5 1 —— [B1]Linear Regression
04 —— [B2|Elastic Net
: —— [B3]Random Forest
>
< s —— [B4JANN
=
=
&
= 0.2
0.1 1
0.0 T T '

-10 -5 0 5 10
Absolute Error

(a) Linear Regression (B1), Elastic Net (B2), Random Forest (B3) and ANN (B4).

0] — [RILSTM
| — [C1]TCN
—— [R3JLSTM+ANN
> 0.6 1
2 —— [C3]JTCN+ANN
=
g04-
£
0.2 1
0,0 T T T T T T T T T
-10 -8 —6 —4 —2 0 2 4 6

Absolute Error
(b) Recurrent (R1, R3) and convolutional (C1, C3) sequential models.

Figure 5.1: Error distribution comparison over different models for varying input
and static output on the test dataset.

49

5. Results

Residual Inspection

The residual inspection per model in the comparison is presented below in Figure 5.2,
as introduced in Section 4.5.4. Therefore, the actual model prediction results are
compared to the target SOH in form of a residual plot. These plots illustrate the
spread and shape of the predictions, along the range of target values, which is applied
on the horizontal x-axis in its original percentage SOH scale. Each point in the plot
marks the residual value over the target value on the x-axis for each sample in the
test dataset. An ideal result would be a match of true target and model prediction
output resulting in a straight constant line at y = 0, representing a total positive
correlation of 1. This straight line is marked in the figure as green line. Additionally,
a £2.5% and £5% deviation interval is marked as parallel lines to the ideal line, to
allow rating of the results visually.

The plots are consistent with the previously described results. In the first row,
the less accurate prediction of the three baseline models (B1, B2, B3) can be seen.
Linear Regression (B1) and Elastic Net (B2) show similar performance, both having
a wide spread of the residuals and a wave is recognizable around the ideal line. It
can also be seen that for a target of 100, there is a wide dispersion from of £5% for
the residuals. The Random Forest model (B3) performs better in this high target
value range, with a spread almost constantly below 2.5%. However, it is not able to
predict values below 90, which causes the straight diagonal line in the residual plot,
crossing the ideal line at the target value of 90. A possible explanation for this could
be the overall imbalance in the amount of data over the range of the target value.
This is indicated by the same imbalance in the shown test dataset. If there is less
training data in the lower range, models can tend to predict wrongly. Especially the
baseline models are affected by an unbalance in the data, due to their less complex
architecture and thus lower ability to learn complex mappings on unbalanced data.

The ANN (B4), visually outperforms the other baseline models, with significantly
less noticeable spread. Most residual spread is below 2.5%. Only a few outliers
reach the 5% mark, in the lower half of the target value range. Additionally, the
shape of the prediction points is more evenly distributed around the ideal line.
In the same row, both LSTM models (R1, R3) can further reduce the dispersion
visually. However, some outliers still reach the 5% mark. Outstanding is the accurate
prediction of both models in the below SOH 85% target value range, where both
models compared to all models mentioned before.

The TCN models complete the comparison and repeatedly confirm the metric and
error distribution results. The mixed input TCN (C3) model clearly has the best
visual results, with the lowest spread and good performance in the low SOH target
range. However, the shift to underestimated ageing can be seen from the shift of
residuals to the negative side.

50

5. Results

10} - Ideal o . 10 - Ideal . T 10} - Ideal .
+/-2.5% +/-2.5% LY +/- 2.5%
E 5 -« Residual - e E 5 {- » Residual *'.—:AW— E 5 -« Residual
< : < o el livm <
> > >
= 0 = =
= = =
= g) 2
& -5 5 E -5 e i E -5
~ . o A
-10 -10 -10
80 8 90 95 100 80 8 90 95 100 80 8 90 95 100
Target Values Target Values Target Values
(a) Linear Regression (B1) (b) Elastic Net (B2) (c¢) Random Forest (B3)
10 — Ideal 10 - Ideal 10 — Ideal
b/ 2.5% v/ 2.5% b/ 2.5%
3] - 4/-5%) - /5% 3] - 4/-5%
E 5 + Residual - E 51+ Residual E H——————————— ¢ Residual -
< o < < . .
> > >
= 0 = —
= = =
= 3 2
& -5 & &
~ o A
-10 -10 : -10
80 8 90 95 100 80 8 90 95 100 80 8 90 95 100
Target Values Target Values Target Values
(d) ANN (B4) (e) LSTM (R1) (f) LSTM + ANN (R3)
10} - Ideal 10 — Ideal
b/ 2.5% b/ 2.5%
3] - /5% 3] - 4/-5%
E 5t + Residual E 5t—————————— ¢ Residual -
< <
> >
E 3 0
< < e
g g -5 :
A~ A~
-10 L -10
80 8 90 95 100 80 8 90 95 100
Target Values Target Values
(g) TCN (C1) (h) TCN + ANN (C3)

Figure 5.2: Residual comparison for static data on the test dataset.

In summary, in terms of accurate predictions the models with added sequential input
data outperform the pure static models in all evaluated metrics. This emphasizes the
utilization of available sequential data for the task. However, only using sequential
data appears generally worse than using the mixed data variants. The linear baseline
models (B1, B2) in this comparison perform worse, which aligns with the assumption
that the underlying mapping function between input and output data is non-linear.
In addition, all models except the mixed LSTM and TCN models (R3, C3) perform
poor in the lower SOH target range, most probably due to the imbalance of data

amount over the target value range.

51

5. Results

5.1.2 Varying Data Input for Sequence Estimation Output

In addition to the considered static output in the previous section, this chapter
presents a comparison of different input formats for sequential data as the target
output format. The considered choices for the input format are pure sequential (in
R2, C2) and mixed data (in R4, C4). Pure static input cannot be used as sole input
to predict sequence data, hence the ANN and baseline models and are excluded from
the compared models. The following two paragraphs introduce the compared model
architectures.

Sequence input architecture (sequence input, sequence output)

The sequential models from the previous section have been adopted to predict se-
quential instead of a static output. Therefore, the LSTM (in R2) and TCN (in C2)
cells have been setup according to the sequential to sequential model setup from
Figure 4.5 in Section 4.3.2.

Mixed input architecture (mixed input, sequence output)

To additionally handle the static data input, the mixed input architecture from the
previous section was adopted for sequential instead of static output, based on the
architecture introduced in Figure 4.8 of Section 4.3.2. Therefore, the output format
of a static branch must be changed so that the actual output is repeated as often as
required to achieve the same sequence length as the multi-variate sequential branch
output. After this transformation, the sequence branch output and the repeated
static output can be concatenated over the axis of time.

Metric Performance

The metric performance per model is displayed in Table 5.8. Both TCN models
(C2, C4) perform worse than the LSTM models (R2, R4) per input to output data
combination. The best model in this comparison is the mixed input LSTM model
(C4) with the best results in all metrics, marked with the blue font in the table.

In addition, it is apparent from this table that the R? score metric is less meaningful
for sequential data output. The score is only slightly lower than the perfect score
for all models, which is due to the fact that the variance for target and forecast
values is almost the same. However, this does not consider the chronological order
of variance in the sequence and therefore less significance for the comparison. For
the LSTM models (R2, R4) the table finally continues the relationship from the
previous section for adding different data type input, such that a combination as
mixed data brings better performance than pure sequential input. Surprisingly, this
does not hold for the TCN models (C2, C4). Most probably this is due to insufficient
hyper-parameter optimization of the mixed input TCN model (C4) and thus worse
scores than the pure sequential input model (C2).

52

5. Results

Table 5.8: Comparison of sequence SOH estimation scores for varying models

Model ‘ ID ‘ Input ‘ MSE (min.) ‘ MAE (min.) ‘ R? (max.) ‘
LTSM R2 | sequence | 1.4794 0.6453 0.9993
LTSM + ANN | R4 | mixed 0.9927 0.5409 0.9995
TCN C2 | sequence | 1.8786 0.9182 0.9962
TCN + ANN | C4 | mixed 2.2646 1.1423 0.9969

Prediction Error Consideration

Regarding the prediction error, Figure 5.3 gives a comparison across the different
sequential output models. The corresponding detailed statistical properties for each
error distribution is appended in Table A.2 in Appendix A. The error is calculated
as the sum over the full length of the sequence of the absolute error per time step.
Hence, each sequence sample is evaluated as one prediction error value. Accordingly
the distribution of all samples can be represented in form of a histogram.

For all distributions no strong shift is visible. In addition to the performance metric
results before, the figure shows the more accurate performance of the LSTM models
(R2, R4) compared to the TCN models (C2, C4) recognizable through their smaller
spread in deviation, larger minimum values and higher Kurtosis values, representing
a smaller prediction error. Accordingly, the LSTM models perform better in task of
sequential SOH estimation.

064 — [R2JLSTM
s [C2]TCN
_ | 7 [R4LSTMTANN
=049 —— [C4TCN+ANN
=}
£ 0.3 1
=
0.2 1
0.1 1
0.0 . . .

—12.5 —10.0 7.5 —-5.0 —2.5 0.0 2.5 5.0
Absolute Error

Figure 5.3: Error distribution comparison for recurrent (R2, R4) and convolutional
(C2, C4) models on varying input for sequential output.

Sequence Residual Inspection

As equivalent to the residual plot for static output values, sequence residuals can be
represented as error sequences, where the error is evaluated per time-step. In addi-
tion, a visualization of predicted sequence output helps to compare the performance

53

5. Results

visually.

Since it would not be an illustrative comparison to display all sequences at once,
five sequences were selected semi-randomly from the test set. A random selection
of five sample was repeated until these illustrated a broad spectrum of sequence
diagrams, in order to be able to view the sequence diagram for as different time-
series as possible. To allow a side-by-side comparison of all four models, the selected
sequences were steady for all models. The color of the individual sequences remains
constant over all sub-figures. The three column plots show the original five sequences
on the left, the predicted sequence model output in the middle and the error per
time-step on the right. The smaller the error per time-step, the better the prediction.

The first two rows in Figure 5.4 represent the results from the LSTM models (R2,
R4). For both models, the predicted sequences show smooth graphs, without no-
ticeable corners. Overall, the predictions approximate the targets closely, although
the errors tend to increase over the length of the sequences. However, the prediction
in the first four time-units is noticeable negatively for those target sequences that
show no change in SOH during this period. For this period, the models predict an
increase in SOH above a value of 100 %-SOH. This is not consistent with the target.

In contrast to the smooth predictions from the LSTM models, the predictions of
the TCN models (C2, C4) appear trembling and oscillating. The sequences are
recognizable as erratic. Especially the mixed input TCN model (C4) shows an
erroneous trend for high SOH values over the first time-units, i.e. the blue curve
already start with an SOH value over 100. However, both models show better results
than the LSTM models for the constant blue curve, resulting in a zero error for the
rest of the sequence.

For all models in this comparison it is noticeable that the prediction for extreme
cases, as represented in the examples by the blue and green curve, usually runs
towards the mean of the data, thus creating the error for those examples. For
instance, the green sequence predictions tend to slow down the decrease or even
increase the value within the last time-steps in each model. This might be explained
by the unbalanced amount of data, where extreme cases are less present in the data
population. Hence, the models tend to predict in the direction where more data is
available. Here, this direction is the rather moderate ageing, which could be the
reason why the extreme cases tend to converge toward the center.

o4

5. Results

Target Sequences Predicted Sequences
100 1 100 1
X 3
& 951 & 951
= jas)
@) @)
1%5) 1%5)
90 1 90 1
0246810121416 0246810121416
Total Time (in time units) Total Time (in time units)
(a) Pure sequential input LSTM (R2
Target Sequences Predicted Sequences
100 A 100 1
3 3
£ 951 £ 951
jani =
@) @)
1%5) 1%5)
90 1 90 1
0246810121416 0246810121416
Total Time (in time units) Total Time (in time units)

Prediction Error

14

Absolute Error (in SOH-%)
o —

0246810121416
Total Time (in time units)

~—

Prediction Error

Absolute Error (in SOH-%)
_ o

0246810121416
Total Time (in time units)

(b) Mixed sequential and static input LSTM+ANN (R4)

Prediction Error

Absolute Error (in SOH-%)
) AR) —

0246 810121416
Total Time (in time units)

Prediction Error

Absolute Error (in SOH-%)
o o o

0246 81012141618

Target Sequences Predicted Sequences
100 A 100 1
X X
& 951 & 951
jani jani
@) @)
0 5]
90 1 90 1
0246810121416 0246810121416
Total Time (in time units) Total Time (in time units)
(c) Pure sequential input TCN (C2)
Target Sequences Predicted Sequences
100 A 100 A
3 3
£ 951 & 951
= jas)
@) (@)
5] n
90 90 1
0246 81012141618 0246 81012141618
Total Time (in time units) Total Time (in time units)

Total Time (in time units)

(d) Mixed sequential and static input TCN+ANN (C4)

Figure 5.4: Comparison of target and predicted sequences, including the prediction

error, for five sequence samples of the test dataset.

55

5. Results

In summary, the presented sequence prediction models show promising results in
performance metrics and prediction error distributions. However, as already ex-
pected, the actual resulting predicted sequences show significant differences in terms
of smoothness and accuracy in extreme cases. Based on the results, the mixed input
LSTM model (R4) appears as the best model for this sequence output comparison.

5.1.3 Recursive Step Estimation

The recursive model stands out among the previously considered estimation models,
because it requires more complex data preparation and post-processing. The model
follows the stateful windowed step model approach from Figure 4.9 in Section 4.3.2.
The sequential input data is pre-processed with the sliding window transformation,
resulting in the set of static input data vectors per window for each sample. Hence,
a static input to static output model was required and the ANN model (B4) has
been selected as the best performing model evaluated in Section 5.1.1. No further
hyper-parameter optimisation has been conducted.

Metric Performance
During training, the step model results in metric scores on windowed data samples
from the test dataset with significantly low error over all metrics (see Table 5.9).

Table 5.9: Training metric performance on static SOH estimation scores for the
step model

Model ‘ ID ‘ Input ‘ MSE (min.) ‘ MAE (min.) ‘ R? (max.) ‘
Step model | S1 | sequence 0.0531 0.1512 0.9903
(windowed)

However, this training performance does not apply to a similar sequence length of
consideration as in the previous section, due to the training on the windowed data
in contrast to the full length sequences. To compare with the sequence models,
the input data windows for each sample of the test dataset are used in a specific
evaluation method. In this method, the input is initialised with a 100 %-SOH value
in the first window of the sequence. For each following input data window the SOH
prediction of the previous window is added to the input data and the full prediction
length is obtained by iterating over all windows of the sequence. Naturally, due to
potential error propagation, this does not lead to similar performance results for the
entire sequence length as the per step perspective from Table 5.9.

A comparison of the both perspectives is shown in Figure 5.5. Supporting statistical
properties for the prediction error are appended in Table A.3 in Appendix A. The left
plot in Figure 5.5 shows the per step prediction error on the windowed test dataset.
The errors appear mostly below an absolute value of 1 but tend to be negative.
Hence, the model is underestimating the ageing to some extent. In the right figure,
the full sequence prediction error on the test dataset shows a significantly larger
error, occurring almost completely on the negative side. Naturally, the error for

56

5. Results

the entire sequence is higher, since the error per step is propagated when the faulty
output is used as input for the subsequent time-step.

The figure indicates an error increment rate of around 10 between the left and right
plot, with the exception of error outliers up to the value of —40 %-SOH. The rate
factor can be explained by the average evaluated sequence length of 10 to 20 steps.
Hence, in the worst case an error is propagated up to 20 times. However, for the
outlying extreme values of more than 10 %-SOH prediction error, it must be noted
that the complete SOH in the data only has an absolute value variance of 16. The
outliers are predicted completely wrong, most probably due to the error propagation.

3 0.20
> >
go 5 0.15
<5} <5}
= =
o o
& £ 0.10
F— F—
1 4
0.05
0 -2 -1 0 1 0.00 -40 -20 0
Absolute Error Absolute Error
(a) Per step error (b) Per sequence error

Figure 5.5: Comparison of prediction error for sequence data in step model.

Full sequence residuals

According to the sequence residual showcase in the previous chapter, Figure 5.6
presents two predicted sequences from the step model compared to the target se-
quence. The selected samples represent the lowest and highest prediction error for
all samples in the test dataset to allow a broad review of the results.

The top sample shows an accurate prediction over the full sequence. There is hardly
any visually discernible difference between target and prediction visual. However,
the sequence with the worst prediction error indicates a clear incorrect and unusable
sequence prediction. Presumably this behaviour results from error propagation, i.e.,
if an extremely high error is propagated a few steps further and thus the input leaves
the range of learned input values. This indicates a poor generalization of the model
on the data.

57

5. Results

100 1
o 997
=
= 90 1
o
3!
851 — Prediction
—— Target
80 T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18
Total Time (in time units)
(a) Prediction sample with low prediction error.
100 1
9 95
=
= 907
o
5!
859 — Prediction
—— Target
80 T T T T T T T T T T

0 2 4 6 8 10 12 14 16 18
Total Time (in time units)

(b) Prediction sample with highest prediction error, unstable
behaviour.

Figure 5.6: Comparison of prediction error for sequence data in step model.

58

5. Results

5.1.4 Summary of Estimation Findings

As a conclusion, the results from the last three sections are summarized. For each
considered input output combination approach, only the best model is presented in
Table 5.10. The models were selected according to the number of leading scores in
each metric, the more leading scores the better. All other models and their results
are skipped in this comparison.

It is important to mention, that a presence of a low error value is not sufficient to
select the best approach and can be deceptive if error distributions and residuals
are not considered. Each approach and corresponding models has its own merits
and challenges, which must be weighed up depending on the application in order to
make the selection.

On the assumption that the data available is representative, Table 5.10 indicates a
clear association that mixed data input outperforms pure static or sequential input.
For both output formats, the models with mixed data input have the lowest MSE
and MAE error and the highest R? score. In addition, to the examination of the
metric performance, the examination of error diagrams and residual plots in the
previous sections indicates the mixed input LSTM and ANN model as most suitable
and reliable candidate for the task of predictive SOH estimation, both for a static
and sequential prediction output format.

Table 5.10: Comparison of static SOH estimation scores for varying models

Model ‘ ID ‘ Input Output ‘ MSE (min.) ‘ MAE (min.) ‘ R? (max.) ‘
ANN B4 | static static 1.3232 0.7779 0.9178
LTSM R1 | sequence | static 1.4392 0.7996 0.9106
LTSM + ANN | R3 | mixed static 1.0032 0.6825 0.9377
LTSM R2 | sequence | sequence | 1.4794 0.6453 0.9993
LTSM + ANN | R4 | mixed sequence | 0.9927 0.5409 0.9995

59

5. Results

5.2 Data Reduction Analysis

The procedure of feature selection as described in Section 4.2.1 is an important
step to improve the training efficiency regarding training time and inference time.
In addition it may also improve the model performance in evaluation metrics if
relevant data can be extracted and irrelevant, redundant or even miss-leading data
can be excluded.

However, the implementation of a selection will always shrink available input data
and thus can unintentionally exclude relevant information for the model to identify
the underlying system dynamics mapping function. For instance, if the goal is to
learn a complex non-linear function and available training data is reduced, this
reduced data might just lead to a simplified, even linear version of the complex
dynamics, hence the approximation would be unsuitable. This is the reason why
the models in the last section have been trained and evaluated on the full available
data to evaluate the existence and approximation with a model in a first stage. Due
to the satisfying results from the previous section, as a second stage, this section
evaluates what performance can be achieved when data is reduced.

The results of the filter selection procedure are presented in the following sections.
Due to the mixed data types available in the data basis, the feature selection has been
applied to the time-series and feature-based data separately, divided in Section 5.2.1
and 5.2.2 respectively. Moreover, in Section 5.2.3 a model was trained on multiple
subsets according to the selection to evaluate the performance of reduced feature
subsets as results of the selection procedure. For this evaluation, the mixed data
LSTM (R2) was selected, being the best model from the previous section.

According to the method described in Section 4.2.1, , the Spearman correlation
coefficient and regular PCA was used for the procedure.

5.2.1 Time-series Data Reduction

As the first step of the selection procedure, the correlation coefficients were computed
pairwise for each time-series data feature. Therefore, the time-series for each feature
were concatenated for all vehicles to receive one long column per feature. Time-series
which are internally used in the BMS to directly calculate the SOH are excluded,
in this case the available energy, 0C and 1C capacity. No further feature grouping
was applied, since only 9 features remained.

Figure 5.7 shows the Spearman correlation result represented as combined corre-
lation matrix plot. On the left side the cross-correlation matrix is plotted for all
selected time-series data features. Since the correlation is computed pairwise the
computed coefficient of one feature pair is shown twice in the cross-correlation ma-
trix plot, above and below the diagonal entries, which represent the identity (1.00)
between the same feature. The right side of the figure shows the correlation of all
time-series data features with respect to the target time-series, the capacity SOH
time-series. Both plots share the same color bar scale. Deep blue cells correspond

60

5. Results

to a strong positive correlation (=~ 1) and deep red to a strong negative correlation
(= —1). The lighter the color, the lower the correlation, down to correlation-free,
which is recognizable as whitish.

On the cross-correlation side, a high positive correlation (> 0.82) is presented
between the different Energy Throughput features, representing the accumulated
throughput while charging, regeneration and driving. Additionally these features
correlate weakly negative with the minimum and maximum 2s Resistance features.
Another relevant cross-correlation cluster can be seen between charge and discharge
resistance (=]0.3|), where the 20% SOC Resistance among the others shows no
correlation. All other cross-correlation coefficients show no relevant values.

For the correlation with respect to the target time-series, the SOH capacity series,
the correlation column on the right of the figure indicates a strong positive corre-
lation (0.64 — 0.82) between the energy throughput features and the SOH capacity
time-series. Furthermore, a weaker negative correlation (—0.21) is indicated between
the maximum 2s Resistance and the target time-series. In summary, this confirms
the theoretical background that resistance and capacity change in opposite direc-
tions, the former increasing and the latter decreasing with increasing age. Hence,
the available data population represents the effects of chemical and physical ageing
processes from Section 2.1.3.

Charge Resistance - 70% SOC -0.29 0.39 -0.00 -0.00 0.02 0.01 0.00 0.01 o 0.00
Charge Resistance - 50% soc--0.29-0.34 0.00 0.01 0.05 -0.02 -0.02 -0.02 075 oo
Discharge Resistance - 50% SOC - 0.39 -0.34-0‘00 -0.01 0.00 0.05 0.03 0.04 | 950 o4
Discharge Resistance - 20% SOC--0.00 0.00 -0.00-0.01 -0.02 0.03 0.05 0.04 -0.25 0.05
25 Resistance - min--0.00 0.01 -0.01 -0.01 0.14 -0.14 -0.09 -0.11 -0.00 -0.00

2s Resistance - max- 0.02 0.05 0.00 -0.02 0.14 -0.32 -0.32 -0.32 095 021

Acc. Energy throughput - charge - 0.01 -0.02 0.05 0.03 -0.14 -0.32 0.82|0.87 WY 06!

Acc. Energy throughput - regen - 0.00 -0.02 0.03 0.05 -0.09 -0.32 {URPARNVANIR N
-0.75

Acc. Energy throughput - drive- 0.01 -0.02 0.04 0.04 -0.11 -0.32 JURYREINcYE

-1.00

SOH capacity E.

2s Resistance - min -
2s Resistance - max -

Charge Resistance - 70% SOC -
Charge Resistance - 50% SOC -
Acc. Energy throughput - drive

Discharge Resistance - 50% SOC -
Acc. Energy throughput - regen

@
&0
&

=
=}

]
-
=1
o
=
o0
=)
<]
-
=
+~
By
80
-
3}
=]
=
S
51
<

Discharge Resistance - 20% SOC -

Figure 5.7: Combined Spearman correlation matrix plot for time-series data.

61

5. Results

Following the feature selection procedure, PCA was subsequently applied to reduce
the dimension of input data. Therefore, a common threshold of 90% explained
variance of the data was used for the reduction. PCA delivered a total number of
3 required components to retain an explained variance of 92.25%, while reducing
the dimension from 9 to 3 dimensions. Following this reduction decision, PCA was
used to identify the features that contribute most to the selected number of three
components. Table 5.11 lists the most important features given by the PCA. Only
accumulated energy throughput time-series remain. However, when looking at the
correlation in Figure 5.7, it is clear that the remaining three features are at least
partially redundant and a prior selection of non-redundant features could prevent
this.

Table 5.11: Most contributing time-series features for a remaining variance over

90%

| Features I

Accumulated Energy throughput over time - during charging
Accumulated Energy throughput over time - during regeneration
Accumulated Energy throughput over time - during driving

5.2.2 Static Data Reduction

The reduction analysis for static data was performed on the grouped static features
generated and grouped as described in Section 3.2.2.

To avoid the correlation analysis between all 80 generated features, and therefore a
80 x 80 sized matrix, a pre-analysis has been done on each feature group to already
exclude irrelevant features, before analysing the correlation between remaining fea-
tures of all groups. For this purpose, two strongly correlated features with respect
to the target features were selected from each group, while considering that the
cross-correlation between them is low, to keep redundancy low between the input
features from the same group. The correlation matrix plots for all groups, used for
the pre-analysis, are given in Appendix B.

Figure 5.8 shows the resulting combined correlation plot for a maximum of two
generated features per feature group. On the right part of the figure, the correlation
with respect to the target is shown. Each feature is named following the convention
"name of histogram - extracted statistical feature", for example "Depth of Discharge
- sum" is the extracted sum of the depth of discharge histogram for each vehicle.

Due to the pre-selection of highly correlated features from the groups, the plot
indicates high correlation on almost every feature, whereby the cross-correlation
is in general lower than the correlation with respect to the targets. Outstanding
is the cross-correlation of minimum temperature during charging, which is the only
negative correlation to all other features. In addition, it is apparent that both depth
of discharge features, sum and cycles, share the exact same correlations and their

62

5. Results

cross-correlation is 1. Hence, these features are redundant and one feature can be
removed.

With respect to the target, on the right side of the figure, the high correlation in
every feature is noticeable. No correlation between feature and the targets is below
|0.5]. Additionally, it can be directly seen that the extracted two target features
(SOH minimum and difference) correlate in the completely opposite direction. This
holds for the SOH as long as the minimum SOH is one of the last values in the time-
series, so both variables describe the same variance bidirectionally. This confirms
the expectation, that only one target feature is sufficient as target.

Depth of Discharge - sum -JRSUUNRVIRRVVERRIRY) -0.89 | 0.89
-0.89 | 0.89

Depth of Discharge - cycles -JEUVNBRUUIRVER IR

Acc. Charging Energy - sum -} 1.00 [0.62

-0.75 ’ 0.75

-0.83 | 0.83

Acc. Driving CD Energy - sum

Sys. Voltage & Current - std-curr

-0.25
Sys. Voltage & Current - mean-curr
Battery Age - total -0.00
Delta Charge Power - median i i
--0.25

Delta Charge Power - count -0.78 | 0.78

Acc. Charging Time - min-temp
Acc. Charging Time - max-temp

Acc. Parking Time - mean-soc i L0

Acc. Driving CD Time - mean-soc JUERRIRH) 0.34 .- .-- d

-0.50

-0.75

-1.00

E 3] = = =) 53] = & a9 o = =
s = = = E] = £ = | g g 2 2 g =
7 [7 7 3} 3}] = 5] z T T
| 3 ' B 5 & - 3]] < = g g B '
I ' > . = 3 ! g8 ' =] < 151 51 ™ .-*4
P g B o® T £ & . 5 E EF & E g
& 2
L - T S) S ©
2 E-1] <3| o} - o Z g o e
2 S = = 3 S & £ g g g 4
a Z o0 [a) 5 5} 2 o < = E A = g g
S £ = % B BB &
o a LS O = 3 @ 2 5 o
° = o0 = M a0 < 0 op ¥ Q o
= s = =z 8 O g = £ £ & O o 3
2 £ T B g 3 - I T B Q2 3
2 g i 0 o = 3 = 3 g x
j=% . 1] & [S < a, =)
(=]) I3 a = 50 < = = = =
a 51 N 3 = = [} @] 5 S 2
< 3] = = 3 A L g 8 A
S .S A g g <= .
P 87
Z <
7

Figure 5.8: Combined Spearman correlation matrix plot for generated feature
data.

Following the feature selection procedure, PCA was applied on the remaining fea-
ture subset of 13 features, following the pre-selection with two top, redundancy-free
correlated features per group. As comparison PCA was additionally applied on the
full feature set of 80 features. Table 5.12 shows a summary of the PCA component
analysis for the two feature sets. The total number of required components per anal-
ysis was chosen to retain an explained variance over 90% per subset. The resulting
explained variance for the selected number of components is listed as well. However,
this comparison must be considered with caution, since the explained variance only

63

5. Results

applies on the number of total components of the selected subset. Hence, an evalu-
ation of the effect of feature reduction on the training performance is presented in
the next section.

Table 5.12: PCA component result for histogram feature subsets

Feature subset Total Needed components Resulting

components for variance > 90% explained variance

All generated features 80 21 0.9034

All pre-selected features | 13 5 0.9905

Finally, PCA was additionally used to identify the most important features through
their contribution on a selected number of components. Table 5.13 lists the most im-
portant static features given by the PCA contributing to the required 5 components.
The remaining features consider the system current, charging power, charging tem-
perature and battery age. On a wide extent this corresponds to the known chemical
and physical ageing factors presented previously in Section 2.1.3, as this selection
contains information about the important degradation mechanisms of over-charging,
battery temperature, current and battery age.

Table 5.13: Most contributing histogram features

Features
Histogram Name Statistical Property
System Voltage and Current std. deviation of current
Delta Charge Power limit violation count
Battery Age total number of months
Acc. Charging Time over SOC and temperature maximum temperature
Acc. Charging Time over SOC and temperature minimum temperature

5.2.3 Feature Reduction Analysis

The general filter approach for the feature selection, as performed in the previous
two sections, is a quick and intuitive procedure. However, due to the fact that it is
only performed on the data, dependencies on the learning algorithm, or the model
approach, are not considered. To investigate the impact on the network training and
resulting performance, this section presents a comparison of different data subsets.

The evaluated subsets are based on the selection results from the previous sec-
tions. A list of all evaluated subsets including the number of features is presented
in Table 5.14. Besides the full available data and the full reduced selection result
(combined sequential and static from the previous two sections), intermediate selec-
tion results only from the correlation analysis and only from the PCA were added
to the comparison. Furthermore, the use of pure sequential and static features has
been evaluated as well.

64

5. Results

Table 5.14: List of evaluated feature selections subsets

Subset name Sequential feature count Static feature count
All features available 9 80

Full selection result 3)

Correlation result all features | 3 13

PCA results all features 3 21

Only sequential features 9 0

Only static features 0 80

For the comparison, the overall best model with mixed input opportunity has been
selected based on the comparison in Section 5.1.4. The mixed input LSTM model
(R3) was selected for the evaluation, on a five-fold cross-validation setup. As metric
for the comparison MSE has been selected, because it is used during training for the
optimization.

A summary of the results is presented in Table 5.15. In terms of metric results,
the model trained with full available data performs best. This is followed by the
models trained with pure static and pure sequential data. The remaining three
models, trained with mixed reduced data with varying reduction, performed worse
with respect to the minimum MSE. In addition, they show unstable training results
over multiple cross-validation models per data subset. Thus, the effect of a high
MSE score for one of the five trained models per data subset can be identified with
the significantly higher mean MSE score.

There are two possible explanations for this: first and most likely the remaining
training data is insufficient for the model complexity or the model architecture is
unsuitable for training problem. Secondly, the random initialisation of weights and
biases may have lead to a local loss minimum and the optimization fails to reach
the global optimum. This is also facilitated by an inappropriate model architecture.

Table 5.15: Error and duration results comparison for the evaluated feature selec-
tion subsets

Name ‘ MSE (min.) MSE (mean) ‘ Training duration
All features 1.0032 1.5082 5.9min

Full selection result 3.0527 3566.8720 6.89min
Correlation result all features | 2.0649 1784.4278 9.79min

PCA results all features 2.0681 3565.5066 8.49min

Only sequential features 1.4794 1.8577 8.5min

Only static features 1.3231 1.4438 4.2min

The training duration consideration does not indicate a clear result. Presumably,

65

5. Results

this is caused by the early stopping method, leading to an inconsistent training
duration over the cross-validation fold. Furthermore, an additional hyper-parameter
optimization could change the training duration times significantly. Finally, the
random initialization for the weights in the model can lead to getting stuck in a
local minimum of the objective function during training. This is more likely to occur
when data is reduced, since over-fitting often occurs when the model complexity is
inappropriate high for the given amount of training data. In total, the significance
of the duration consideration is limited.

5.2.4 Selection Analysis Summary

In conclusion, for the available data the feature filter approach delivers a reduction
from 9 to 3 time-series features. According to Figure 5.7 and Table 5.11 the most
important features are the three accumulated energy throughput over time features.
This corresponds to the theoretical considerations of chemical and physical ageing
factors from Section 2.1.3, so the data represents an adequate population for these
factors.

For the static features the selection result is not unique and depends on the selection
parameters, i.e. the number of high-correlated features chosen. Therefore, different
selections have been evaluated. The most extensive reduction was achieved by us-
ing correlation-based filtering in combination with subsequent principle component
analysis. This reduced the total number of 80 static features to 5. According to Ta-
ble 5.13 the most important features derived from the data, are deviation of system
current, number of charge power limit violations, battery age, minimum and max-
imum temperature during charging. This repeatedly correlates with the chemical
and physical ageing factors.

In contrary to expectations, the reduction has failed to achieve effective results in
the sense of training efficiency and consistent performance metric results. According
to Table 5.15 the reduction analysis on the selected subset of data revealed uncer-
tainties in generalization of the model. No consistent error could be obtained for the
five trained cross-validation models per data subset. All three filtered subsets had
minimum one failed model training, where the model showed insufficient learning.

There are several possible explanations for this result. First, it may be explained
by the fact that the selection approach was inappropriate or has been applied in
an over-reducing manner. In addition, the total amount of available data might be
sufficient for training when all data is considered, but is insufficient if only a subset is
considered. Finally, improper hyper-parameters of the used model may have caused
this issue and further optimization might have been necessary.

In summary, for a final assessment further investigations are required. However,
the achieved performance values for a low reduction and the partially successful
performance for an extensive reduction indicate that a reduction is feasible.

66

5. Results

5.3 SOH Prediction Application Performance

This section attempts the predictive application showcase, as introduced in Sec-
tion 4.3.3, by utilizing the in Section 5.1 evaluated models to predict the future
SOH of an individual vehicle based on its history.

According to the introduced showcase, only sequential data was considered. How-
ever, the step model with windowed data input allows a transformation from sequen-
tial to static data values. Hence, for the showcase two models have been evaluated:
the step model and the sequence to sequence LSTM model, presented in the follow-
ing sections 5.3.1 and 5.3.2, respectively.

5.3.1 Iterative-Step Sequence Prediction

First, the results for iterative sequence prediction with the step model approach are
presented. For this purpose, the implemented step model (S1) from Section 5.1.3 was
used, following the windowed data transformation of sequential data to static values.
According to the difference equation (Equation 4.4) the output of each prediction is
reused as input for the following time-step. Thus the sequential output is given as
the concatenation of the network output per step.

Last Time-step Residual Inspection

The prediction application is considered as comparison between the full sequence
input and the half sequence input with modified second half input, according to the
introduction of the showcase in Section 4.3.3. Hence, two different input datasets
are given for the comparison. Although the step model additionally allows a con-
sideration of the per step residual, only the residual of the last time-step of each
sequence was taken into account for this comparison. This has been done to be
able to compare the model results with the LSTM model, which only allows the last
time-step comparison.

Consequently, Figure 5.9 compares the last time-step residual plot for both input
variations. The comparison shows a significant difference in the residual values. The
half sequence input shows a generally wider spread. This is most probably due to
the fact, that the considered dataset does not fulfill the constant usage assumption
and thus a simple usage propagation as for the half sequence is more likely to not
be predicted correctly. Besides this difference, between both input variations, the
residual plots show high residuals with extreme values of —40%-SOH. This indicates
a poor performance of the model, similar to the performance of the step model in
the previously comparison in Section 5.1.3. Due to the fact that the same model
from that comparison is reused in this section, the large residuals most likely occur
due to the error propagation problem.

67

5. Results

) 1 %W:.",No:) 1
i:); O"f:-r.‘v;.'.:‘.';!i o¥e o q:)j 0
< o’ 2 =
> >
= -20 : = -20
¢ ¢
K K

—40 . I‘Ké.;igi)ugxl —40 . lr){éé\;igi)u;l

80 8 90 95 100 80 8 90 95 100

Target Values

Target Values

(a) Full sequence input (b) Half sequence input

Figure 5.9: Last time-step residual comparison for the step prediction model.

Prediction Error Consideration

For a more detailed look on the prediction difference between full and half modified
sequence input, Figure 5.10 presents the distribution of absolute error between the
predictions for both data input variations, for an average sequence length of 16 time-
units. The difference is defined as the half sequence input prediction subtracted from
the full sequence input prediction §ru; — Jnays for each sample in the test dataset.
Surprisingly, the distribution is more equally distributed on positive and negative
error direction. An explanation for this might be that for a rather same amount of
sample in the test dataset, the prediction for the full sequence length worked well,
while the prediction for half the sequence length failed, and vice versa. However,
the absolute error value up to £30 %-SOH confirms the previously observed overall
poor performance of the step model.

0.25

Frequency
e
— [\™]
ot o

o
—
@)

e
o
&t

0-00—735 0 25
Absolute Error

Figure 5.10: Last time-step deviation error distribution between full- and half-
length sequence prediction.

68

5. Results

Sequence Inspection
In order to allow a visual interpretation of the achieved residual performance, the

following Figure 5.11 presents the prediction results of the step model for two samples
from the test dataset. The samples are picked by hand to present a positive and a
negative performance example from the step model for the SOH prediction showcase.

In the upper figure the positive performance sample is presented. Both input varia-
tions only show a low deviation from the target sequence. However, with increasing
time the difference between the input variations increases as well. Unsurprisingly,
the prediction for both input variations before the prediction start are the same,
since the input data only differs beyond this point in time. In contrast, the bottom
sample shows a negative performance for the considered half sequence input predic-
tion. The step model shows an incorrect prediction for the modified half sequence
input, presumably due to the poor generalization and the error propagation issue.
Surprisingly, the prediction with full length unmodified sequential input shows a
rather correct prediction, although the prediction error is large between time-unit

12 and 16.

100 1

= 95 1
i)
E 9041 —— Prediction (full input)
8 Prediction (half input)

854 —— Target

------ Prediction Start
80 T T T T T T T T

0 é 4 6 8 110 12 14 16 18
Total Time (in time units)

(a) Prediction sample with low prediction error.

100 —_—
< 95 1
A
E 904 —— Prediction (full input)
2 Prediction (half input)
8514 —— Target
------ Prediction Start

80 T T T T T : T
0 2 4 6 8 10 12 14 16 18

Total Time (in time units)

(b) Prediction sample with highest half sequence input prediction error.

Figure 5.11: Comparison of sequence predictions from step model for half and full
sequence input.

69

5. Results

In summary, this section showed that the step model (S1) in the implemented con-
figuration for the available data is not a suitable solution. As expected, the error
that already occurred in the estimation of the SOH value with full available data has
further deteriorated in the evaluation of the half sequence input for on the blind us-
age propagation showcase. Further detailed examination of wrong predicted samples
could provide an insight on whether the constant usage assumption is the decisive
factor.

5.3.2 Multi-Step Sequence Prediction

As second prediction approach the full sequence to sequence prediction has been
evaluated. Therefore the sequential input LSTM model (R2) has been selected from
the evaluation in Section 5.1.2. As with the step model, the input data was modified
for the prediction showcase. In contrast to the step model, this full and half sequence
input data has been used directly in the model, without a window transformation
into static values.

Last Time-step Residual Inspection

Following the evaluation procedure of the previous section, the prediction residuals
are first given in Figure 5.12. In contrast to the results of the step model in Figure 5.9
of the previous section, the residuals are significantly smaller. The majority of the
residuals appears smaller than +3 %-SOH. Only a few outliers have an absolute
residual value above 5 %-SOH, especially in the lower target SOH range. In addition,
the residuals are more equally distributed around the ideal residual value straight
line at y = 0.

) 5)
n . o, ‘ n . S
5 RN = RN
G| i < M G > & . BT~
> R DA > TR D
= I R 2 BN
= - . = . . F
= -5 : < .5 .
8 - Id([}al I % . * — Ideal I
~ B = .' B
_10 ° ¢ Residual _10 * Residual
80 8 90 95 100 80 8 90 95 100
Target Values Target Values
(a) Full sequence input (b) Half sequence input

Figure 5.12: Last time-step residual comparison for the sequence prediction model.

Prediction Error Consideration
Taken together, the difference between residuals on full and half-length sequence
data is illustrated by Figure 5.13, where the error is defined as difference of the

70

5. Results

half sequence input prediction subtracted from the full sequence input prediction
Uputl — Ynaif-

The significant difference to the results of the step model in Figure 5.10 of the
previous section, the error between the different data considered is substantially
smaller. Besides the peak at zero, the figure shows only an absolute error of up to
+2.5. This small difference for the varying data, can potentially be explained in
two different ways. On the one hand side, due to the fact that the data in the test
dataset meets the assumption that vehicles are used consistently heavy or that the
main variance in the usage of the vehicles only occurs during the first few time-steps
and the shrinks afterwards. Hence, a propagation of the input data from a certain
time-step can achieve these rather accurate results for a blind prediction. On the
other hand, the underlying supervised learning approach always prones to over-fit
to the training data, due to the teacher learning environment. Hence, if training
data and test data are rather similar, then the prediction error on the test set should
appear low.

1.01

Frequency
o o o
= D [0¢)

<
B

0.0 -2.5 0.0 2.5

Absolute Error

Figure 5.13: Last time-step deviation error distribution between full- and half-
length sequence prediction.

Sequence Inspection
For the visualization of the predicted output sequences the same vehicle samples
were selected as for the step model. The result is presented in Figure 5.14.

The top figure repeatedly indicates an accurate prediction. Besides the expected
same prediction before the prediction start time-step, there is hardly any noticeable
difference in the prediction on full and modified half sequence input. In contrast,
the bottom figure shows a noticeable difference between full and modified input.
However, this difference seems reasonable if the available data for the prediction is
considered. It seems like the usage has been consistently low in the first half of
the sequence. It is assumed that this changed after roughly 10 time-units, since
the SOH target decreased beyond this time. Unsurprisingly, the prediction with

71

5. Results

the full sequence input can capture the change and continuously predict the SOH
accurately. In contrast, the blind usage propagation can naturally not predict this
change and, hence, is unable to predict accurately.

100 1 -
= 95 1
E TT———
E 901 —— Prediction (full input) —————
2 Prediction (half input)
859 —— Target
------ Prediction Start

80 T T T T T : T
0 2 4 6 8 10 12 14 16 18

Total Time (in time units)

(a) Prediction sample with low prediction error.

100 - e —

= 95 A
A
E 9041 —— Prediction (full input)
2 Prediction (half input)

859 —— Target

------ Prediction Start
80 T T T T T T T T T

0 2 4 6 8 10 12 14 16 18
Total Time (in time units)

(b) Prediction sample with high prediction error.

Figure 5.14: Comparison of prediction error for the sequence model.

Compared to the step model in the section before, the sequence to sequence LSTM
model showed significantly improved results for the considered prediction showcase.
Nevertheless, for instance the prediction sample in Figure 5.14b reveals the limita-
tions of the presented prediction application, due to fact that it was not designed to
include the prediction of the future driver behaviour and assumes it to be constant.
This will always remain a crucial disadvantage of the model architectures presented,
since it is unlikely that linear propagation works well in a prediction task.

72

5. Results

5.3.3 Summary Prediction Findings

In summary, in this section two models from Section 5.1 evaluated SOH estimation
task have been selected to investigate a basic SOH prediction application, based on
usage propagation of historical usage per vehicle.

On the basis that a SOH prediction is generally demanding because assumptions
about the future use have to be made, the models evaluated have shown simple
results. If these assumptions do not hold, because the vehicle is moved in a fun-
damentally inconsistent way beyond a prediction start, the models naturally show
a deviation, i.e. as shown in Figure 5.14b. However, if the assumption holds and
the vehicle is used consistently, for example as a commuter or taxi vehicle, then the
models presented can offer an appropriate prediction, as indicated in Figure 5.14a.

There is one more drawback of this method for SOH prediction, besides the constant
usage assumption. Data of the entire life cycle must be available for the training,
in order to allow the training with sequential data in the supervised learning frame-
work. Although, this data might be collected from fast ageing laboratory tests or
prototyping drive test, the method seems difficult to realize. For instance, if the soft-
ware is developed together with the hardware, the required test data would not be
available during development. Consequently, either the development process or the
method have to be modified. This clearly reveals the limitations of pure supervised
learning methods for the predictive ageing task and opens the scope to investigate
unsupervised or hybrid learning methods.

With an intensified focus on the predictive usage propagation, rather than assuming
consistent behaviour, i.e. in a combination with a driving behaviour prediction
model, this model could produce interesting findings in further research.

73

5. Results

74

O

Conclusion

In this thesis, an appropriate tool chain has been established, that is capable of
handling big data as input and delivers the desired state of health (SOH) predictions
as output for vehicles in a fleet. The constructed pipeline has been used to investigate
the feasibility, effectiveness and accuracy over a wide range of data-driven modelling
approaches and model architectures.

For this purpose, CEVT AB provided diagnostic battery readout data of an entire
plug-in hybrid vehicle fleet, including static and sequential data types. This gath-
ered data was analyzed intensively and features have been extracted in order to serve
the data in a compact representation. It has been found that the extracted feature
data confirms the theoretical background of the chemical and physical internal bat-
tery processes for ageing. Hence, the provided features appear as an appropriate
population for the investigation of the battery ageing problem. In addition to this
feature analysis, a selection filter approach was applied on the features to separate
relevant from redundant or irrelevant data. This would improve portability due to
the reduced data volume, in the context of an in-car application. However, the
selection approach was found to be inadequate, since the training on the result-
ing selection became unstable. A possible explanation for this could be that the
remaining reduced amount of data was insufficient for the training.

The conducted model comparison revealed significant deviations between the consid-
ered model architectures. The pure linear models, closed-form linear regression and
elastic net, have not been able to provide accurate results. Hence, it was assumed
that models have to be capable of non-linearity for the battery ageing problem. To
this end, artificial neural networks (ANN), long short-term memory (LSTM) and
temporal convolutional networks (TCN) have been identified as suitable candidates.

Through the possibility of utilizing static and sequential data as input and output
format, multiple format combinations could be investigated. The comparison has
clearly identified the best results when using a mixed input format consisting of
static and sequential data instead of using them individually. To this end, among
all models considered, the combination of LSTM and ANN branches in a model to
allow mixed input data, appeared as the most accurate model, for both the static
and the sequential SOH output format. The static output SOH determination based
on the historical usage of the vehicles achieved a mean absolute error (MAE) of

75

6. Conclusion

0.68%-SOH. For the sequential output format, the MAE was calculated as single
value for the full output SOH sequence. In this case, the LSTM and ANN mixed
input model achieved a MAE of 0.54%-SOH for the fleet dataset. This evaluation
indicates the utilization of usage history fleet data for the SOH determination per
vehicle is feasible and reliable.

Finally, a selection from the evaluated models for SOH determination was applied
in a basic application for SOH prediction. Therefore, the average usage was linearly
propagated per vehicle from half of the sequence and the resulting SOH output was
compared to the full length available target. For this simple test case, under the
assumption of constant use, the models evaluated showed a clear positive correlation
to the correct results. However, this assumption of constant use will not be valid in
all real use cases.

6.1 Further Research and Improvement

Reason for this thesis has mainly been an exploratory endeavour, seeking to inves-
tigate new usage of already collected diagnostic readout data. Although the data
that could actually be used is only a fraction of the available data, the work has still
given rise to topics for further work on utilizing field big data. During the project,
three main areas for further research have been identified.

First, the established basic pipeline including feature selection, can be improved. In
this thesis, only statistical properties of the diagnostic histogram data have been in-
vestigated. However, histograms contain more information, due to their condensing
information gathering. Further investigation could analyse the effectiveness when
introducing 2D convolution architectures into the model to capture differences on
the raw histogram rather than on calculated statistical properties of it. However,
this would first require an investigation of how to link irregularly taken snapshots
of the histograms in form of successive readouts with battery ageing.

In addition, a comprehensive model architecture design and broad hyper-parameter
optimization have not been taken into account in this thesis. The training duration
and results are likely to improve if the model parameters are further optimised.
Naturally, optimizing could be more detailed if it is limited to one specific model
type. An extensive analysis of the best found model could be applied to optimize
training and output accuracy.

Finally, it remains to be evaluated whether a comparison with other training ap-
proaches, such as unsupervised or hybrid learning, could produce more robust results
for the case in question. Robust algorithms for prediction have to be found at least
for a SOH prognosis application since the availability of clean validation data limits
today’s supervised methods.

76

[10]

Bibliography

Bloomberg New Energy Finance. Electric Vehicle Outlook 2020. URL: https:
//about .bnef .com/electric-vehicle-outlook/ (visited on 05/25/2020).
Amsterdam Roundtable Foundation and McKinsey & Company. Evolution.
FElectric vehicles in Furope: Gearing up for a new phase? 2014. URL: https:
//www.mckinsey.com/featured-insights/europe/electric-vehicles-
in-europe-gearing-up-for-a-new-phase (visited on 05/25/2020).

Roland Irle. Global BEV € PHEV Sales for 2019. 2020. URL: https://www.
ev-volumes.com/ (visited on 05/25/2020).

Anthony Barré, Benjamin Deguilhem, Sébastien Grolleau, Mathias Gérard,
Frédéric Suard, and Delphine Riu. “A review on lithium-ion battery age-
ing mechanisms and estimations for automotive applications”. In: Journal of
Power Sources 241 (2013), pp. 680-689. DOI: 10.1016/j . jpowsour . 2013.
05.040.

Christoph R. Birkl, Matthew R. Roberts, Euan McTurk, Peter G. Bruce, and
David A. Howey. “Degradation diagnostics for lithium ion cells”. In: Journal
of Power Sources 341 (2017), pp. 373-386. DOI: 10.1016/j. jpowsour.2016.
12.011.

Man-Fai Ng, Jin Zhao, Qingyu Yan, Gareth J. Conduit, and Zhi Wei
Seh. “Predicting the state of charge and health of batteries using data-driven
machine learning”. In: Nature Machine Intelligence 114 (2020), p. 11414. por:
10.1038/s42256-020-0156-7.

Ali Jokar, Barzin Rajabloo, Martin Désilets, and Marcel Lacroix. “Review of
simplified Pseudo-two-Dimensional models of lithium-ion batteries”. In: Jour-
nal of Power Sources 327 (2016), pp. 44-55. DOI: 10.1016/j . jpowsour.2016.
07.036.

Kristen A. Severson et al. “Data-driven prediction of battery cycle life before
capacity degradation”. In: Nature Energy 4.5 (2019), pp. 383-391. DOI: 10.
1038/s41560-019-0356-8.

Sina Sharif Mansouri, Petros Karvelis, George Georgoulas, and George Niko-
lakopoulos. “Remaining Useful Battery Life Prediction for UAVs based on
Machine Learning”. In: IFAC-PapersOnLine 50.1 (2017), pp. 4727-4732. DOL:
10.1016/j.ifaco0l.2017.08.863.

Adnan Nuhic, Tarik Terzimehic, Thomas Soczka-Guth, Michael Buchholz,
and Klaus Dietmayer. “Health diagnosis and remaining useful life prognos-

7

https://about.bnef.com/electric-vehicle-outlook/
https://about.bnef.com/electric-vehicle-outlook/
https://www.mckinsey.com/featured-insights/europe/electric-vehicles-in-europe-gearing-up-for-a-new-phase
https://www.mckinsey.com/featured-insights/europe/electric-vehicles-in-europe-gearing-up-for-a-new-phase
https://www.mckinsey.com/featured-insights/europe/electric-vehicles-in-europe-gearing-up-for-a-new-phase
https://www.ev-volumes.com/
https://www.ev-volumes.com/
https://doi.org/10.1016/j.jpowsour.2013.05.040
https://doi.org/10.1016/j.jpowsour.2013.05.040
https://doi.org/10.1016/j.jpowsour.2016.12.011
https://doi.org/10.1016/j.jpowsour.2016.12.011
https://doi.org/10.1038/s42256-020-0156-7
https://doi.org/10.1016/j.jpowsour.2016.07.036
https://doi.org/10.1016/j.jpowsour.2016.07.036
https://doi.org/10.1038/s41560-019-0356-8
https://doi.org/10.1038/s41560-019-0356-8
https://doi.org/10.1016/j.ifacol.2017.08.863

Bibliography

[11]

[12]

78

tics of lithium-ion batteries using data-driven methods”. In: Journal of Power
Sources 239 (2013), pp. 680-688. DOI: 10.1016/j. jpowsour.2012.11.146.
Lei Ren, Li Zhao, Sheng Hong, Shigiang Zhao, Hao Wang, and Lin Zhang.
“Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learn-
ing Approach”. In: IEEE Access 6 (2018), pp. 50587-50598. poI: 10.1109/
ACCESS.2018.2858856.

Seyed Mohammad Rezvanizaniani, Zongchang Liu, Yan Chen, and Jay Lee.
“Review and recent advances in battery health monitoring and prognostics
technologies for electric vehicle (EV) safety and mobility”. In: Journal of
Power Sources 256 (2014), pp. 110-124. por: 10.1016/j . jpowsour . 2014 .
01.085.

Arthur K. Barnes, Juan Carlos Balda, Scott O. Geurin, and Andres Escobar-
Mejia. “Optimal battery chemistry, capacity selection, charge/discharge sched-
ule, and lifetime of energy storage under time-of-use pricing”. In: 2011 2nd
IEEE PES International Conference and FExhibition on Innovative Smart Grid
Technologies. 2011, pp. 1-7. DOI: 10.1109/ISGTEurope.2011.6162702.

Yi Li, Kailong Liu, Aoife M. Foley, Alana Ziilke, Maitane Berecibar, Elise
Nanini-Maury, Joeri van Mierlo, and Harry E. Hoster. “Data-driven health
estimation and lifetime prediction of lithium-ion batteries: A review”. In: Re-
newable and Sustainable Energy Reviews 113 (2019), p. 109254. por: 10.1016/
j.rser.2019.109254.

Vladimir Vapnik. “An overview of statistical learning theory”. In: IEEE Trans-
actions on Neural Networks 10.5 (1999), pp. 988-999. por: 10.1109/72.
788640.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The FElements of
Statistical Learning. New York, NY: Springer New York, 2009. por: 10.1007/
978-0-387-84858-7.

Olivier Bousquet, Stéphane Boucheron, and Gabor Lugosi. “Introduction to
Statistical Learning Theory”. In: Advanced Lectures on Machine Learning.
Vol. 3176. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 169-207. DO1: 10.1007/978-3-540-28650-9-8.
Pedro Domingos. “A few useful things to know about machine learning”. In:
Communications of the ACM 55.10 (2012), pp. 78-87. DOT: 10.1145/2347736.
2347755.

Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems. Sec-
ond edition. O’Reilly UK Ltd., 2019. 1sBN: 9781492032649.

Sebastian Ruder. An overview of gradient descent optimization algorithms.
2016. URL: https://arxiv.org/abs/1609.04747.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation
Functions. URL: https://arxiv.org/abs/1710.05941.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521.7553 (2015), pp. 436—444. por: 10.1038/nature14539.

Jiurgen Schmidhuber. “Deep learning in neural networks: an overview”. In:
Neural networks : the official journal of the International Neural Network So-
ciety 61 (2015), pp. 85-117. DOI: 10.1016/j .neunet.2014.09.003.

https://doi.org/10.1016/j.jpowsour.2012.11.146
https://doi.org/10.1109/ACCESS.2018.2858856
https://doi.org/10.1109/ACCESS.2018.2858856
https://doi.org/10.1016/j.jpowsour.2014.01.085
https://doi.org/10.1016/j.jpowsour.2014.01.085
https://doi.org/10.1109/ISGTEurope.2011.6162702
https://doi.org/10.1016/j.rser.2019.109254
https://doi.org/10.1016/j.rser.2019.109254
https://doi.org/10.1109/72.788640
https://doi.org/10.1109/72.788640
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-540-28650-9-8
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1145/2347736.2347755
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1710.05941
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neunet.2014.09.003

Bibliography

Sepp Hochreiter and Jirgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735-1780. DOI: 10.1162/neco.1997.9.
8.1735.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
WaveNet: A Generative Model for Raw Audio. 2016. URL: https://arxiv.
org/abs/1609.03499.

Jonas Gehring, Michael Auli, David Grangier, and Yann Dauphin. “A Con-
volutional Encoder Model for Neural Machine Translation”. In: Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Vancouver, Canada: Association for Computational
Linguistics, 2017, pp. 123-135. poI: 10.18653/v1/P17-1012.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N.
Dauphin. “Convolutional Sequence to Sequence Learning”. In: Proceedings of
the 34th International Conference on Machine Learning - Volume 70. ICML’17.
JMLR.org, 2017, pp. 1243-1252.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Modeling. URL:
https://arxiv.org/abs/1803.01271.

Fisher Yu and Vladlen Koltun. “Multi-Scale Context Aggregation by Dilated
Convolutions”. In: 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016.

Umair Shafique and Haseeb Qaiser. “A Comparative Study of Data Mining
Process Models (KDD, CRISP-DM and SEMMA)”. In: International Journal
of Innovation and Scientific Research 12.1 (2014).

Isabelle Guyon and André Elisseeff. “: An introduction to variable and feature
selection”. In: Journal of machine learning research 3 (2003), pp. 1157-1182.
Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825-2830.

Frangois Chollet et al. Keras: The Python deep learning API 2015. URL:
https://keras.io.

Philippe Rémy. Temporal Convolutional Network implementation for Keras.
2020. URL: https://github.com/philipperemy/keras-tcn.

79

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://doi.org/10.18653/v1/P17-1012
https://arxiv.org/abs/1803.01271
https://keras.io
https://github.com/philipperemy/keras-tcn

Bibliography

80

A

Error Distribution Properties

This appendix section presents all detailed statistical error distribution properties
They are listed in the order of their corre-

considered in the result section 5.1.

sponding sub-section 5.1.1, 5.1.2 and 5.1.3, according to the different investigated
data input output combinations pure static, pure sequential and windowed data

respectively.

All statistical properties have been calculated on the set of prediction errors for all
samples in the test dataset, following the 80/20 split rate introduced in section 4.2.4.

Table A.1: Statistical properties of the error distributions for the static output
format SOH determination models. Calculated per model for the comparison in

section 5.1.1

o & g g 2 .

2 % Z = <z

= 2 3 g 2 = 2

3 = = k= % g =

8| = ra = = = % e
Linear Reg. | B1]0.046 2.047 4.191 -8.504 10.326 0.102 2.840
Elastic Net | B2 | 0.037 2110 4.453 -8.291 10.647 0.333 2.899
Rand. Forest | B3 | -0.034 1.649 2.718 -8.008 4.547 -0.880 2.458
ANN B4 | -0.011 1.151 1.325 -7.004 4.008 -1.249 4.889
LSTM R1|-0.173 1.188 1.411 -9.157 4.374 -1.543 7.312
LSTM+ANN | R3 | -0.155 0.990 0981 -6.396 3.701 -0.799 4.163
TCN C1]0.123 1997 3.98 -10.579 4571 -1.370 3.658
TCN+ANN | C3 | -0.670 0.717 0515 -4.381 2.904 -0.569 5.475

A. Error Distribution Properties

Table A.2: Statistical properties of the error distributions for the sequential out-
put format SOH determination models. Calculated per model for the comparison
in section 5.1.2

"Gg @ 5 E) 0w

s <95 5 B = £ &

3 5z % £ - 5

2 | = ha = = = 7 <
LSTM R2 |-0.053 1215 1.477 -8.969 5.856 -1.053 10.092
LSTM+ANN | R4 | 0.235 0.968 0.938 -7.748 5.201 -0.703 10.110
TCN C2|-0.083 1.368 1.872 -11.666 4.514 -1.863 7.735
TCN+ANN | C4 | 0.135 1.499 2247 -7.468 5512 -0.414 1.457

Table A.3: Statistical properties of the error distribution for the step SOH de-
termination model. Calculated per step and per sequence for the comparison in
section 5.1.3

Deviation
Skewness
Kurtosis

ID

S || Standard

® = E
E z
= = =
1. -2 1.

=
g

=

-0.

—_

595

Ne}

Step model S1 062 222 193 .095 193 - 525

(per step)
Step model S1 | -4.258 6.060 36.729 -39.693 2.562 -3.310 12.712
(per sequence)

IT

B

Feature Correlation Matrices

This appendix section presents all correlation matrices considered in the pre-selection
analysis of features per feature group in section 5.2.2. They are listed in the following
order, where each list item contains the features of the corresponding group:

e B.1: Temperature

o B.2: State of Charge

e B.3: Over charge and discharge
o« B.4: Age

« B.5: Current

e B.6: Energy Throughput

o B.7: Depth of discharge

For each feature group the cross-correlation matrix between all features of the group
and a correlation matrix with respect to the target are combined in one figure
as combined correlation plot. The Spearman correlation coefficient was used to
calculate the correlation coefficients.

ITT

B. Feature Correlation Matrices

Ace. Charging Time - uun—wmp‘n' 007 -0.10 m 008 037 036 003 -0.16 W»Mo 039 036 -0.25 -0.25 024 -0.25 -0.24 -0.00 030 027 016
o SRR 001 015 [0 oot [T 03 032 0on 0e

Acc. Charging Time - mean-temp- 0.07 0.01 ' 024 027 007 033 032 028 022 013 034 032 -026 -0.03 -0.04 -001 -0.03 -0.04 026 0.6 037 036 -0.18

036 023 023 023 023 023 un;.o.zs 023 016

Acc. Charging Time - m:

Acc. Charging Time - median-temp=-0.10 0.15 nm 003 025 012 035 034 031 024 013 038 036 -022 -0.00 -0.01 -0.00 -0.00 -0.01 025 0.18 036 034 -0.18
Acc. clmgmg"num.\ummp. 0.24 -ouz- 011 031 030 025 -0.14 031 013 026 024 005 023 023 024 024 022 016 012 019 017 -0.04
Ace. Driving CD Time - min-temp--0.08 0.04 027 025 0.1 uulam .ooz 002 003 0.03 002 . 0.13 m-.
007 012 5 023 029 029 029 029 028 ulu.m 037 015

Acc. Driving CD Time - mean-temp--0.87 033 033 0.35

Acc. Driving CD Time - max-temp

Acc. Driving CD Time - median-temp <036 032 032 034 0.22 022
Ace. Driving CD Time - std-temp=~ 0.03 -0.01 -0.28 -0.31 0.02 003 002 002 003 0.25 0.08 -0.08
Acc. Driving €S Time - min-temp=-0.16 014 0.2 0.24 009 009 009 008 0.10 0.10
Ace. Driving CS Tunuvm)sx-wmp.) 013 0.8 022 022 023 0.19 --
Ace. Driving CS Time - mean-temp--0.39 036 0.31 038 023 023 024 022 -0.00 036 0.36

Ace. Driving CS Time - median-temp =039 0.36 0.32 036 24 023 023 024 023 036 036
Ace. Driving CS Time - std-temp--036 036 0.26 -0.22 0.05 - 023 023 -0 19 .29 032 - 008 008 0.08 009 020 020

Acc. WUTC Time - min-temp--025 0.23 -0.03 -0.00 0.23 003 029 025 025 002 009 023 024 024 034 021 019 0.10 025 037 037
Ace. WUTC Time - max-temp=-025 0.23 -0.04 -0.01 023 002 029 024 025 003 009 022 023 023 035 020 015 0.10 037 037
Acc. WUTC Time - mean-temp--0.24 023 -0.04 000 0.24 003 020 0.25 025 002 009 022 023 023 034 021 019 0.10 037 037
Acc. WUTC Time - median-temp-025 0.23 -0.03 -0.00 024 003 029 025 025 002 009 023 024 024 034 021 019 0.10 o5 037 037
Ace. WUTC Time - std-temp--024 023 -0.04 -0.01 0.22 002 028 024 024 003 008 022 022 023 034 020 018 0.10 038 038
Ace. Parking Time - min-temp=-0.09 0.05 026 0.25 004 004 004 004 0.03
Ace. Parking Time - max- l«.mp.. 016 015 0.2 034 -
Ace. Parking Time - mean-temp - 037 036 : 20 021 '
Acc. Parking Time - median-temp--027 023 0.36 034 nn 026 0.19 018 019 019 0.2 0.12
Ace. Parking Time - std-temp--0.16 0.16 018 -0.18 -0.14 ro.ug 010 010 010 0.0
. 100

SOH Pack Cleck - diff- 5

Ace. Charging Time - std-temp~
Acc. WUTC Time - min-temp-
Ace. WUTC Time - max-temp-

Acc. Parking Time - std-temp
SOH Pack Check -

Ace. WUTC Time - median-temp- 2
Acc. Parking

Ace. Charging Time - min-temp~
Acc. Charging Time - max-temp -
Acc. Driving CS Time - std-temp-

o
g
2
=z

Acc. Parking

s
H

Acc. Driving CD Tim
Acc. Driving CD Time - mean-temp~

Acc. Driving CS T
Ace. Driving CS Time - median-temp-

Acc. Driving CD Ti

Figure B.1: Spearman correlation matrices for the temperature feature group.

. 022 021
0.21 021 0.20

025 -0.07 014 015 005 014 -0.04 0 8

Acc. Charging Time - mean-soc

0.22

Ace. Charging Time - median-soc

Acc. Charging Time - std-soc= 0.04 0.07

Acc. DrivingCDTimo—nmzm—s()(-m 0.49 WP -0.11 023 -0.11 031 031 0.26

040 0.22 -0.18 015 -0.18 0.29 029 0.25

Acc. Driving CD Time - median

Acc. Driving CD Time - std-soc 012 026 014 012 012 0.04

Acc. Driving CS Time - mean-soc 010 -0. ! . n.n 001 0.01 0.05 -0.09 0.09
Acc. Driving CS Time - median-soc- 0.25 0.22 0.25 0. .15 0.26 .n 039 013 013 010 015 005 028 -0.00 -0.28 0.28
Ace. Driving CS Time - std-soc 20.07 -0.11 -0.18 0.4 n .39 0.02 006 026 026 020 -0.11 0.11
Acc. WUTC Time - mean-soc- 0.22 021 0.4 031 029 0.12 0.02)| 0.69 WO . X =025 -0.36 0.36

Acc. WUTC Time - median-soc- 022 021 015 031 029 012 001 013 002 0.6 -0.36 0.36
Acc. WUTC Time - std-soc- 0.21 020 0.05 026 025 004 005 010 0.06 -0.30 0.30

0.14 0.26 015 0.26

Ac. Parking Time - mean-soc
Ace. Parking Time - median 027 005 026

Acc. Parking Time - std-soc 0.18 0.28 0.20

me - std-soc -

g CS Time - std

SOH Pack Check - di

ing CD Time - sf
SOH Pack Check -

Ace. WUTC

Ace. Pasking Tim - sdsoc E.

Ace. Charging Time - s
Acc. Parking Time - mean

Acc. WUTC Time - me:

Ace. WUTC Time - medi
Acc. Parking Time - med

Acc. Charging Time - medi
Ace. Dri

Acc. Driving CD Time - medi

Figure B.2: Spearman correlation matrices for the SOC feature group.

IV

B. Feature Correlation Matrices

1.00
Delta Charge Power - count -JRUl 0.00 0.03 0.02 0.04

0.75
.
Delta Charge Power - median 0.32
Delta Charge Power - std .- 0.32

1.00
-0.00
Delta Discharge Power - count- 0.00 ~ 0.05 -0.01 0.07

--0.25

Delta Charge Power - mean 0.05 0.07 0.06 0.08

-0.01 -0.01 -0.02 0.02

0.07 0.10 0.09 0.10

0.02 -0.02

Delta Discharge Power - mean- 0.03 ~ 0.07 -0.01 0.10

-0.50

Delta Discharge Power - median- 0.02 0.06 -0.02 0.09 d 0.02 -0.02
-0.75

Delta Discharge Power - std- 0.04 0.08 0.02 -0.02

-1.00

Delta Charge Power - count -
Delta Charge Power - mean -
Delta Charge Power - median - §
Delta Charge Power - std -
Delta Discharge Power - count
Delta Discharge Power - mean
Delta Discharge Power - median
Delta Discharge Power - std
SOH Pack Check - min -
SOH Pack Check - diff -

Figure B.3: Spearman correlation matrices for the over charge/discharge fea-
ture group.

Battery Age - total

Battery Age - total

SOH Pack Check - min
SOH Pack Check - diff

Figure B.4: Spearman correlation matrices for the age feature group.

B. Feature Correlation Matrices

Sys. Voltage & Current - min-curr

Sys. Voltage & Current - max-curr -

Sys. Voltage & Current - mean-curr -

Sys. Voltage & Current - median-curr -

Sys. Voltage & Current - std-curr -

1.00 -0.33 -0.25 -0.32
-0.33 1.00 0.13 0.19
-0.25 0.13 1.00 0.40
-0.32 0.19 0.40 1.00
-0.39 0.20 0.39 0.11

Sys. Voltage & Current - min-curr -
Sys. Voltage & Current - max-curr -
Sys. Voltage & Current - mean-curr -

Sys. Voltage & Current - median-curr -

-0.39

1.00

Sys. Voltage & Current - std-curr

0.39

-0.19

-0.23

SOH Pack Check - min

Figure B.5: Spearman correlation matrices for the current feature group.

Acc. Charging Energy - sum

Acc. Driving CD Energy - sum

Acc. Driving CS Energy - sum -

Acc. WUTC Energy - sum -

1.00

0.25 0.41 0.09
g g g
=1 =1 =1
n n w0
o]) >
o0 o0 o0
3 3 5]
=1 =1 =1
5]) 5|
o0 w2
2 g 8
ED =) 20
3 =) g
5 = =

2 Z

o A A
= s g
<

= <

0.25

0.41

g
E
n
1
>
55
g
5|
|®)
H
)
=
3
<
<

1.00

0.75

0.50

-0.25

-0.00

--0.25

-0.50

-0.75

-1.00

-0.39

0.19

0.23

g
s}
]
o
o
i
=
o
e~
o
]
a9
jast
o
N

-0.38

-0.37

SOH Pack Check - min -

0.38

=)
3
3

SOH Pack Check - diff -

Figure B.6: Spearman correlation matrices for the energy throughput feature

group.

VI

B. Feature Correlation Matrices

1.00
0.75

Depth of Discharge - sum -ty

Depth of Discharge - mean- 0.22 0.95 0.57 0.22 0.50 -0.42 0.42

Depth of Discharge - median- 0.17 S0EE 0.17 20.95 -0.24 0.24

Depth of Discharge - std- 0.17 . 4 . -0.00 -0.36 0.36

Depth of Discharge - skew - 0.22 --0.25 -0.00 0.00
-0.50

-0.07 0.07

Depth of Discharge - kurt - 0.28 -0.17

-0.75
Depth of Discharge - cycles n 0.22
-1.00

Depth of Discharge - std -
SOH Pack Check - min
SOH Pack Check - diff

oo}
%)
=
o
>
o
!
5
80
=
<
<
9
B
A
o
S
<=
=
=%
9]
A

Depth of Discharge - sum
Depth of Discharge - mean -
Depth of Discharge - median -

Figure B.7: Spearman correlation matrices for the depth of discharge feature
group.

VII

	List of Figures
	List of Tables
	Introduction
	Related Work
	Goals
	Thesis Outline

	Theoretical Concepts
	Battery Health Principles
	Battery Health Condition Indicators
	Battery Lifetime Indicators
	Battery Ageing Degradation

	Statistical Learning Theory
	The Learning Framework
	Supervised Learning (Representation)
	Objective Function (Evaluation)
	Gradient Descent (Optimization)
	Generalization

	Data-Driven Modelling Theory
	Neural Network Fundamentals
	Recurrent Time-series Prediction Models
	Convolutional Time-series Prediction Models

	Data Exploration
	Data Gathering
	Data Type Exploration
	Sequential Data
	Static Data

	Methodology
	The CRISP-DM Methodology
	Dataset Creation
	Feature Selection Procedure
	Data Standardization
	Sliding Window Transformation
	Data Arrangement

	Model Selection
	Prognosis Approach Selection
	SOH Estimation Setup
	SOH Prediction Application Setup

	Model Training
	Loss Function
	Hyper-parameter Optimization
	Early Stopping
	Cross-validation training

	Model Evaluation and Benchmarking
	Performance Metrics
	Cross-validation Scoring
	Error Distribution
	Residual Plot

	Results and Discussion
	SOH Estimation Performance
	Varying Data Input for Static Estimation Output
	Varying Data Input for Sequence Estimation Output
	Recursive Step Estimation
	Summary of Estimation Findings

	Data Reduction Analysis
	Time-series Data Reduction
	Static Data Reduction
	Feature Reduction Analysis
	Selection Analysis Summary

	SOH Prediction Application Performance
	Iterative-Step Sequence Prediction
	Multi-Step Sequence Prediction
	Summary Prediction Findings

	Conclusion
	Further Research and Improvement

	Bibliography
	Error Distribution Properties
	Feature Correlation Matrices

