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Cover: Regular hexagons in the Poincaré disk, a 2-dimensional space with negative
curvature like AdS.
Figure generated through the Wolfram Demonstrations Project:
Tiling the Hyperbolic Plane with Regular Polygons
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Holographic Plasmons in Graphene
Gauge/Gravity-duality as a Means to Describe Strongly Coupled Collective
Excitations in Strange Metals
MARCUS ARONSSON
Department of Physics
Chalmers University of Technology

Abstract

Since its discovery in 2004, graphene has been a hot topic in research. As it is a
two-dimensional material it has many exciting and often extreme properties. It has
recently been shown to possess strongly coupled properties, implying that standard
methods such as perturbation theory fails to properly depict the behaviour of
graphene in certain regimes. One way to get around this is using the AdS/CFT-
duality discovered by Maldacena in 1997. This approach has previously been
carried out with success, predicting several properties of similar materials. One
property that has yet to be described by such models however is the existence of
plasmons.

The purpose of this thesis was therefore to investigate this issue. We built a
top-down D3-D7’-model in the same fashion as previously done by Jokela et al.
The model was then incorporated into Wolfram Mathematica for the numerical
calculations. In the model we had a number of different choices that were either
model specific (e.g. embeddings, stabilizing magnetic fluxes, boundary conditions)
or physical quantities (e.g. temperature, charge density) that allowed for searches
in a large parameter space. This flexibility allowed us to compare the results
from our model with similar studies. However, no plasmons were found within the
model. We discuss some possible shortcomings of the model and outline future
research directions.

Keywords: gauge/gravity duality, holography, string theory, graphene, plas-
mons.
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Chapter 1

Introduction

1.1 Motivation

Graphene is a new and not very well studied material compared to many others.
However it holds an immense potential with its unique properties in many differ-
ent applications, making it the subject for intensive studies at many institutions
around the world. It has also recently been observed that the electron-electron
interaction in graphene is strongly coupled in a certain regime of parameter space,
which is making it difficult, if not straight up impossible, to properly describe
graphene theoretically with traditional means. Thanks to its many exciting prop-
erties, a model properly describing these strongly coupled tendencies is desired.
One method that can be used to describe strongly coupled electromagnetic sys-
tems is the AdS/CFT-correspondence, which is a duality between a gravitational
theory in anti-de Sitter-space and a conformal field theory on the boundary of
that spacetime. This has been done to model graphene previously, however, to our
knowledge, no plasmons have been modeled.

1.2 Aim

In this project, we aim to investigate a holographic model to describe graphene in
a strongly coupled regime.

1.3 Objectives

There are several objectives we wish to achieve:

• We wish to build a Mathematica model that describes a holographic dual of
a two dimensional material and lets the user compute relevant quantities.

1



2 1.4. SCOPE

• We wish to map which free parameters such a system has, for instance in-
vestigate which of them that can be fixed and which that are truly degrees
of freedom.

• We wish to make the model customizable as to impose conditions on the
material which can be translated into the dual, such as specifying charge
densities, magnetic and electric fields.

• We wish to replicate results from other studies: Both theoretical studies
of similar duality models but also experimental results, in particular the
plasmon dispersion.

1.4 Scope

The project has many possible branches to work along once the model is con-
structed. Our main restrictions have been

• to work with a D3/D7’ probe brane model,

• to have no dependencies on internal spheres

• and to have no external fields (although keep them possible for further stud-
ies).

1.5 Method

Firstly we did a literature study, identifying two fairly recent books, [1, 2], as an
excellent starting point. Thereafter the D3/D7’ probe brane model proposed by
Jokela et al. in [3] was used. We have kept the system general and extended it along
the directions of allowing fluctuations, and allowing anyonic boundary conditions.
For near horizon boundary conditions we have used Frobenius expansions to solve
the regular singular differential equations. For the far horizon boundary conditions
the natural determinant method suggested in [4] was used.



Chapter 2

Background

This work is focused on the intersection of three individually promising areas of
research; graphene, the AdS/CFT correspondence and plasmons.

2.1 Graphene

Graphene is a rather new and not very well studied material, but with immense
potential. It consists of a single atomic layer of carbon, structured into a reg-
ular hexagonal grid. Theoretical descriptions of graphene have been done sev-
eral decades ago, as a consideration of mono-layer graphite [5]. It was however
considered a theoretical construction only, not practically obtainable. Novoselov
and Geim managed to isolate these previously deemed impossible mono-layers of
graphite in 2004 [6], and were awarded the Nobel Prize in Physics 2010 for this
and the subsequent studies of graphene [7]. Several other perfectly two-dimensional
materials have since then been produced and studied. Being two-dimensional gives
these materials several exciting and often extreme properties. In addition to this,
graphene has no band gap and a linear dispersion at the Dirac points, which makes
it even more special. It is immensely strong and well conducting, but it also dis-
plays several more exotic properties such as an unusual quantum Hall effect and
special types of tunneling [7]. Great scientific effort is put into graphene research,
most notably the “Graphene Flagship” launched by the European Commission
to take graphene out from academic laboratories and into society over the next
decade.

Graphene has however been observed to behave strongly coupled in certain
regimes. It being strongly coupled is in itself nothing uncommon; most metals
have a coupling constant > 1, but they can often be described properly with
Fermi-Landau theory as Fermi-liquids, a continuation of the weakly coupled elec-
tron gas. This circumstance is in some sense fortunate; that although the coupling

3



4 2.2. ADS/CFT

constant is large, turning up the coupling constant from small values passes no
poles, no phase transition occurs and similar behaviour is expected [8]. This for-
tunate circumstance is not the case with graphene near the tip of the energy cone,
where the Fermi surface effectively disappears and the screening is ineffective. This
is why we say that the material behaves strongly coupled (and is often what one
means when just saying that a material is strongly coupled) [9]. This means that
the most common mathematical methods to study and model it, such as pertur-
bation theory, falls short. There are very few other ways to study strongly coupled
matter, but one promising candidate is the AdS/CFT correspondence.

2.2 AdS/CFT

The AdS/CFT correspondence is a powerful duality which was discovered by Mal-
dacena in 1997 [10]. It is a duality between a string theory and a quantum field
theory (or rather a conformal field theory). It allows one to describe an SU(N)
gauge theory instead with a string theory in anti-de Sitter space. There are a few
different limits that can be taken on the parameters on either side of the duality.
The most common one takes the limit of N >> 1 and the coupling in the field
theory to be strong. In this case, the string theory is still weakly coupled, which
means that the strongly coupled field theory, in which most standard methods fail,
can be accurately described by a weakly coupled theory. This is part of a larger
statement, the holographic principle, which states that gravitational theories can
aptly be described by their boundary. To have a four-dimensional field theory
be described by the boundary of a ten-dimensional string theory, one introduces
spherical coordinates for the remaining six coordinates. The boundary then means
r →∞, and one is left with four-dimensional spacetime times a compact manifold,
which can be reduced.

Several strongly coupled systems have been previously described using this
gauge/gravity duality, most notably superconducting systems. It has also been
used with success to describe strongly coupled two dimensional materials, describ-
ing several exotic phenomena such as the fractional quantum Hall effect [3] and
roton states [11], as well as predicting more common properties such as conductiv-
ity. One thing that (to our knowledge) has yet to be described using this duality
is the existence of plasmonic states.

2.3 Plasmons

Plasmons are collective excitations in a plasma, typically excited by incident light,
hybridizing photons with electrons, producing almost sound-like waves, before
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these decay and once again emit the bound light. The visible effects of such have
been used for centuries, for instance using small metal grains to get the colours
in stained glass [12]. It is however only during the last century in which they
have been properly studied and understood, thanks to the development of elec-
tromagnetic theory. There are several different kinds of plasmons; transverse and
longitudinal waves as well as bulk or surface bound plasmons. Thanks to their
ability to have a shorter wave length than the incident light, there is hope to build
very small optical devices, as the size of such are determined by the free wave
length [13].

How to construct desirable plasmonic systems is of course a big question, and
one of the leading candidates as a material to work with is graphene. Plasmons
in graphene stands out from many different materials for several reasons, among
these are the exceptionally low losses and large wave localization compared to
other materials considered [13].

In this thesis we will focus mainly on longitudinal surface plasmons. These
are very reminiscent of sound waves, but with charged particles transmitting the
wave. They are also the charged version of zero sound modes, which are basically
the wave modes at zero temperature for bosonic systems [14].
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Chapter 3

Method and Theoretical
Framework

The AdS/CFT correspondence is an explicit realisation of the holographic princi-
ple. The holographic principle states that in a general gravitational theory, in this
case a string theory, the information contained in a bulk volume is described by
information on its boundary [1].

In this project a very specific setup of the AdS/CFT correspondence was used.
We consider a strongly coupled N = 4 Super Yang-Mills SU(N)-theory in 3 +
1 dimensions which is dual to a type IIB string theory in anti-de Sitter space,
AdS5 × S5. In the field theory we have a coupling strength gYM and the SU(N)-
group number N , and in the string theory we have a string length ls =

√
α′ and a

coupling constant gs. These are related to each other as

g2
YM = 2πgs, (3.1)

2g2
YMN = L4/α′2, (3.2)

where L is the AdS radius of curvature (that is, the cosmological constant part of

the gravitational action is 1
16πG

d(d−1)
L2 in (d+ 1)-dimensional space time) [1].

This is the general form, but typically one works in a limit of these parameters.
We will be working in the limit

g2
YM → 0, (3.3)

g2
YMN →∞. (3.4)

3.1 The Metric

This system is rather well studied from before that can shortly be argued for. An
SU(N)-theory is roughly a U(N)-theory, which is what we get from a stack of N

7



8 3.2. THE D3/DQ-BRANE SETUP

coincident D-branes, on which the strings may have their endpoints. With our
EM field theory living in 3+1 dimensions, so must the D-branes, that is we have
D3-branes. Respecting the symmetries we get the following metric

ds2 = H(r)−1/2ηµνdx
µdxν +H(r)1/2δijdx

idxj, (3.5)

where H(r) = 1 + L4/r4 and µ,ν = 0,1,2,3, i,j = 4, . . . ,9 [1]. We are working in
what is known as the near horizon limit, r � L, in which case the metric simplifies.
Let the stack of D3-branes denote the origin for the remaining 6 dimensions. These
can be further decomposed into a distance from the D3-branes, r, and 5 angular
coordinates, Ω5. With the stack of D3-branes being a gravitational source, the
metric becomes

ds2 =
r2

L2

(
−h(r)dt2 + dx2 + dy2 + dz2

)
+

L2

r2h(r)
dr2 + L2dΩ2

5, (3.6)

where h(r) is the emblackening factor (1− r4T
r4

). Note that this is AdS for all values
of r, where (3.5) would flatten for large r.

We rescale with L to work in dimensionless coordinates,

t→ Lt, (3.7)

x→ Lx, (3.8)

y → Ly, (3.9)

z → Lz, (3.10)

r → Lr, (3.11)

and end up with the rather standard black hole (brane) metric in AdS-space

L−2ds2 = r2
(
−h(r)dt2 + dx2 + dy2 + dz2

)
+

dr2

r2h(r)
+ dΩ2

5. (3.12)

The (dimensionless) horizon radius rT can be related to temperature T as

T =
rT
πL

. (3.13)

This can be shown by performing a Wick rotation and observing the periodicity
of the euclidean time coordinate at the horizon. The radius of curvature can be
related to the coupling constants gs and α′ by (3.2).

3.2 The D3/Dq-brane setup

To realize charged fermions living in the desired plane describing graphene, we
want to consider open strings from this stack of branes but confining them to end
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on another stack of D-branes which shares the first two spatial directions, allowing
the strings to move freely only in the desired plane. As this is a type IIB-string
theory, only odd-numbered D-branes are stable, leaving only three candidates:
D3-, D5- and D7-branes (a D1-brane could not possibly share both the x and y
directions and a D9-brane must share the z-direction as it fills the entire space).
The geometrically possible D-brane setups can be viewed in table 3.1, with our
specific choice of labeling the coordinates.

Table 3.1: Geometrically possible D-brane setups.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

t x y z r θ φ α β ψ

D3 • • • •
D3 • • • •
D5 • • • • • •
D7 • • • • • • • •

Of these three, only D7-branes are of particular interest to us as another stack
of D3-branes would result in a tachyonic ground state, and a stack of D5-branes
would leave the system supersymmetric. We are thus left with a stack of D7-
branes. This leaves only the Ramond sector containing a massless state which is
good because we wish to have only fermions in the plane [15]..

An important remark; We let a stack of D3-branes govern the metric, and then
we introduce another stack of D7-branes. This stack would in theory also affect
the metric, but what is significant is the number of such branes. If the number of
D7-branes is negligible compared to the number of the D3-branes, their impact on
the metric should be negligible too. This is called a probe limit, which we will be
working with, and the D7-branes are what is referred to as probe-branes.

Another note to be made is that the D3-D7-brane setup selected is not yet
unique. There are many different ways to chose a compact subset of S5, with the
different choices having a more significant impact, depending on how much you
let the system depend on these not physically obvious angles. The three most
intuitive choices are letting the ψ-coordinate split the “extra” 6-dimensional space
into 1+5, 2+4 or 3+3 dimensions, as in table 3.2, and weight the content of each.
Note that we still want r to be the distance to the origin, so these must square to
1, but that the choices of coordinates on the Sn of course could be made in other
ways.
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Table 3.2: Some divisions of the last 6 (cartesian) coordinates angular parts by ψ.

S4 S1 × S3 S2 × S2

cosψ cosψ cos θ cosψ cos θ

sinψ cos θ cosψ sin θ cosψ sin θ cosφ

sinψ sin θ cosφ sinψ cosφ cosψ sin θ sinφ

sinψ sin θ sinφ cosα sinψ sinφ cosα sinψ cosα

sinψ sin θ sinφ sinα cos β sinψ sinφ sinα cos β sinψ sinα cos β

sinψ sin θ sinφ sinα sin β sinψ sinφ sinα sin β sinψ sinα sin β

The last of these options was used, letting the four compact coordinates in-
cluded in the D7-branes be S2 × S2, in what has been called the D3-D7’ setup
(with D3-D7 implying the S4 version).

Table 3.3: Domains for the angular coordinates for the D3/D7’-brane setup

ψ ∈ [0,π/2]

θ ∈ [0,π]

φ ∈ [0,2π)

α ∈ [0,π]

β ∈ [0,2π)

Another aspect to be considered is the extension of our coordinates. Where
spacetime is naturally expanded, we have the consideration of the remaining co-
ordinates, primarily the radial coordinate r for the D7-branes, for which we have
basically two different possibilities. Either there is a gap between the two stacks
of branes, giving a finite, non-zero minimum string length, or there is none.

The first case means the brane needs to have a tip of some sort, located at
ψ = 0 or ψ = π/2, and some r = r0, which dictates the minimal distance between
the two stacks of branes.

The second case, where there is no gap between the two stacks of branes, is
what is called a black hole embedding. As the name suggests, at some point the
D7-branes cross the black brane horizon r = rT . The degree of freedom that was
before the minimal string length now becomes the angle ψ where the D7-branes
cross the horizon. An angle that is not ψ = ψ∞ would suggest a non-zero minimal
string length within the horizon, which is arguably not quite non-zero, but still
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less than the energy scale of the system. The different types of embeddings can be
seen in figure 3.1.

As we wish to model graphene, which has a linear cone in its band structure
with no gap, black hole-embeddings is the choice made, and most likely with an
initial angle that is ψ0 = ψ∞. In this report however, we will try to keep most
calculations general.

Figure 3.1: Different embeddings for the D7-branes. The black line corresponds
to Minkowski-embeddings, where there is a non-zero minimal distance between the
D7-branes and the D3-branes (located at the origin in the figure). The dashed, gray
line corresponds to a black hole-embedding, where the D7-branes crosses the horizon
induced by the D3-branes. The fundamental freedom for the different embeddings
are the minimal distance between branes in the Minkowski-embedding (where the
brane reaches the vertical axis) and for black hole-embeddings the angle at which
the horizon is crossed.

3.3 The Action

D3-D3-strings and closed strings are part of the background theory and not inter-
esting here. D7-D7-strings are negligible because of the probe approximation. Left
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is only the action for the open strings between D3 and D7-branes. This means it
suffices to consider a Dirac-Born-Infeld (DBI) action, with a Chern-Simons term
(CS), ∫

L =

∫
LDBI +

∫
LCS. (3.14)

where

LDBI = −T7

√
−Det (gij + 2πα′Fij), (3.15)

(i,j are indices on the D7-branes).
With the metric in (3.12) and letting the excluded coordinates depend on only

r,

z = z(r), (3.16)

ψ = ψ(r), (3.17)

we get the induced metric on the D7-branes to be

L−2ds2
7 =r2

(
−h(r)dt2 + dx2 + dy2

)
+

1

h(r)r2

(
1 + h(r)r4 z′(r)2 + h(r)r2ψ′(r)2

)
dr2+

sinψ2
(
dθ2 + sin2θ dφ2

)
+ cosψ2

(
dα2 + sin2α dβ2

)
. (3.18)

The Chern-Simons term is a topological addition to the action [1]

LCS = −T7

∑
q

P [C(q+1)]e
2πα′F , (3.19)

where the exponential should be seen as the corresponding series but in terms of
the wedge product. It has two possible non-vanishing terms:

LCS = −T7
(2πα′)2

2
P [C4] ∧ F ∧ F, (3.20)

LCS = −T7
(2πα′)4

4!
P [C0]F ∧ F ∧ F ∧ F, (3.21)

where the 4-form in (3.20) comes from the D3-branes and the 0-form in (3.21) from
the D7-branes. The latter is negligible for this reason (and arguably also because
of the higher order of α′). The 4-form can be written as
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C4 = L4

(
r4dt ∧ dx ∧ dy ∧ dz − 1

2
c(ψ)dΩ

(1)
2 ∧ dΩ

(2)
2

)
. (3.22)

A short derivation of this; Starting with the 4-form

L4r4dt ∧ dx ∧ dy ∧ dz, (3.23)

we get the 5-form dC4 to be

4L4r3dt ∧ dx ∧ dy ∧ dz ∧ dr. (3.24)

This should be self dual, so the S2 × S2 contribution to the 5-form must be

− 4L4 sinα sin θ sin2ψ cos2ψ dψ ∧ dθ ∧ dφ ∧ dα ∧ dβ = −4L4 dΩ5. (3.25)

Integrating back this expression yields

−1

2

(
ψ − 1

4
sin 4ψ + const

)
L4 sin θ sinαdθ∧dφ∧dα∧dβ = −1

2
c(ψ)L4dΩ

(1)
2 ∧dΩ

(2)
2 ,

(3.26)
where we have defined c(ψ) = ψ − 1

4
sin 4ψ + const. Setting this constant corre-

sponds to adding a boundary term to the action, which does not change the bulk
physics. Here we set it so that c(ψ∞) = 0.

The next step is to consider the field strength Fij, where we firstly need to
introduce fluxes through the S2-spheres. This must be done to stabilize the setup,
otherwise the different D-brane stacks would repel each other and the system
would be unstable. This magnetic field needs no theoretical motivation, as it
is rather a degree of freedom for any system. This is the same effect one gets
when dissolving lower-dimensional D-branes in the D7-branes, which consequently
quantifies the fluxes [16]. This is where the choice of angular coordinates really
makes a difference. In our case, we get one flux through each S2, and it is quite
obvious that the other setups get different fluxes,

2πα′Fθφ =− L2

2
sin θf1, (3.27)

2πα′Fαβ =− L2

2
sinαf2, (3.28)

where the fluxes are quantized fi = 2πα′

L2 ni, with ni some integers. It is worth
noting that for the system to remain parity invariant, something that is of physical
relevance for graphene, the spheres must be interchangeable, and thus the fluxes
be equal [17].
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We should also include a radial part of the gauge field, ar(. . .), but our gauge
choice is to keep this identically zero.

Lastly one must allow for a charge density in the bulk of the D7-branes, giving
rise to

2πα′Ftr = L2a′0(r). (3.29)

This is the base system, onto which we may add more fields to get other inter-
esting systems.

The Lagrangians can now be written more concisely

LDBI = N
∫

dr
r2

2

√
(f 2

1 + 4 cos4 ψ)
(
f 2

2 + 4 sin4 ψ
)
×√

1− a′20 + r4h(r)z′2 + r2h(r)ψ′2, (3.30)

LCS = N
∫

dr
1

2
f1f2r

4z′(r), (3.31)

where we have defined N = 8L8π2T7V1,2 and V1,2 =
∫

dtdxdy.

3.4 Equations of motion

To find the background equation of motions the action is varied with respect to z,
a0 and ψ yielding:

∂r

(
g(r)r8h(r)z′ − 1

2
f1f2r

4

)
= 0, (3.32)

∂r
(
g(r)r4a′0

)
= 0, (3.33)

and

∂r
(
g(r)r6h(r)ψ′

)
−

2 sinψ cosψ

g(r)

(
sin2ψ

(
f 2

1 + 4 cos4ψ
)
− cos2 ψ

(
f 2

2 + 4 sin4ψ
))

= 0, (3.34)

where we have defined

g(r) =

√
f 2

1 + 4 cos4ψ
√
f 2

2 + 4 sin4ψ

2r2
√

1− a′20 + r4h(r)z′(r)2 + r2h(r)ψ′(r)2
. (3.35)

The z and a0 equations are fairly straightforward to solve as functions of ψ
but the ψ equation itself is rather a mess to sort out. The first two equations can
clearly be integrated once, giving a pair of integration constants in the process,
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cz = g(r)r8h(r)z′ − 1

2
f1f2r

4, (3.36)

d = g(r)r4a′0. (3.37)

The z equation’s integration constant can be found, as only a specific value
of it is consistent, depending on the embedding. The a0 equation’s integration
constant however is truly a degree of freedom corresponding to that of a physical
charge density. As only a′0 and z′ show up in calculations, these derivatives may
instead be considered the fields to find, rendering their corresponding equations of
motion algebraic,

g =

√
4r4h

(
d2 + 1

4
r4
(
f 2

2 + 4 sin4 ψ
)

(f 2
1 + 4 cos4 ψ)

)
− (f1f2r4 + 2cz) 2

2r6
√
h
√
r2hψ′2 + 1

, (3.38)

z′ =
(f1f2r

4 + 2cz)
√
r2hψ′2 + 1

r2
√
h
√

4r4h
(
d2 + 1

4
r4
(
f 2

2 + 4 sin4 ψ
)

(f 2
1 + 4 cos4 ψ)

)
− (f1f2r4 + 2cz) 2

,

(3.39)

a′0 = − 2r2d
√
h
√
r2hψ′2 + 1√

4r4h
(
d2 + 1

4
r4
(
f 2

2 + 4 sin4 ψ
)

(f 2
1 + 4 cos4 ψ)

)
− (f1f2r4 + 2cz) 2

.

(3.40)

Some other physical quantities one might want are electric fields, magnetic
fields and currents in the system, corresponding to the integration constants for
the additional equations of motion one gets from adding those.

Expanding the ψ equation at r = ∞ lets one relate the magnetic fluxes to
geometrical quantities instead. The dominating non-vanishing term lets us specify
the end angle, as a function of f1 and f2. To keep them both real, the end angle is
only allowed in an interval 0.2π . ψ∞ . 0.3π, with the extrema corresponding to
one field being zero, and the mid-value corresponding to them being equal. This
is shown in figure 3.2. The latter is specifically chosen, to keep the system parity
invariant.

The next order of terms in the expansion lets us specify the fashion in which
ψ approaches ψ∞. In an expansion ψ = ψ∞ + mr∆, it lets us specify ∆. The
equations to first order in m become

∆(∆ + 3) =
f 2

1 + 4 (2 cos (2ψ∞)− 1) cos4 (ψ∞)

f 2
1 + 4 cos6 (ψ∞)

. (3.41)
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Figure 3.2: Values of the magnetic fluxes through the S2’s as functions of ψ.
Curves from the left are the values of f2, from the right are for f1. From top to
bottom (darkest to lightest) the curves correspond to ∆ → 0, ∆ = −1/2, ∆ = −1
and ∆ = −3/2. If for a given ∆ and ψ∞ only one of the fluxes have a real value,
the choice of asymptote is unstable. Note that only for ψ∞ = π/4 is f1 = f2.

One sees that ∆ can take values from 0 to −3/2 (0 or above makes no sense in
an expansion, and below −3/2 is subleading, as the roots to (3.41) are symmetric
around −3/2). The most noteworthy candidates are ∆ = −1 in which case the
parameter m can actually be interpreted as a mass, and ∆ = −1/2 and ∆ = −3/2
as potential candidates to reflect the non-relativistic behaviour of a plasmon (ω ∼√
k).

3.5 Perturbations

Our interests lie mainly in the perturbations of this system, as that is where we
would find (collective) excitations so now we introduce small fluctuations of the
system. To keep these fluctuations consistent, one must include all possible types
of fluctuations. This means perturbations need to be allowed in most fields and
depend on many of the D7-brane coordinates. We follow the lines of [11]:
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z → z(r) + εδz(t,x,y,r), (3.42)

ψ → ψ(r) + εδψ(t,x,y,r), (3.43)

at → a0(r) + εδat(t,x,y,r), (3.44)

ax → εδax(t,x,y,r), (3.45)

ay → εδay(t,x,y,r), (3.46)

ar → εδar(t,x,y,r), (3.47)

where we have made the reasonable restriction to exclude dependencies on the four
internal angular coordinates.

Inserting these into the action gives us

L = L(0) + εL(1) + ε2L(2) + . . . . (3.48)

The zero-order Lagrangian gives the background equations of motion. The first or-
der Lagrangian is automatically zero by the solutions to the zero-order Lagrangian
and the second order Lagrangian gives a set of equations of motions for the per-
turbations.

After the variation, wavelike conditions are imposed on the fluctuations. Due
to rotational invariance in the xy-plane, we set the wave to be in the x-direction:

δz(t,x,y,r)→ δz(r)e−iωt+kx,

. . . (3.49)

We also switch to the gauge invariant combination using δex = kδat + ωδax.
The reason for this is primarily that it is the more naturally occuring combination
in expressions, which is of interest when we do various transformations. Our gauge
choice is to keep ar = 0, which we must also impose on the perturbations. This is
of course done after the variations, which means there will be one more equation
than the number of variables. This provides a check on the obtained equations,
that one of the equations must be a linear combination of the others.

In the following equations, the dependence on r is omitted to save space. Any
primes are derivatives with respect to r (derivatives on t only return a −iω, on x
return a ik and on y nothing).

Varying the action with respect to δex yields

∂r

( g
ω
r4h (δe′x − kδa′t)

)
= gkr4ωa′0z

′δz + gkr2ωa′0ψ
′δψ

+ iω∂r(c(ψ))δay −
gω (hr4z′2 + hr2ψ′2 + 1)

h
δex, (3.50)
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with respect to δay yields

∂r
(
gr4hδa′y

)
= ika′0 sin2(2ψ)δψ

− g
(
ω2 (hr4z′2 + hr2ψ′2 + 1)

h
− k2A

)
δay − i∂r(c(ψ))δex, (3.51)

with respect to δz yields

∂r

(
gh2r10ψ

′z′

A
δψ′
)
− ∂r

(
ghr8a

′
0z
′

A
δa′t

)
+ ∂r

(
ghr8 (a′0

2 − r2hψ′2 − 1)

A
δz′
)

+ ∂r
(
gr8hBz′δψ

)
=

(
gk2r4

(
a′0

2 − r2hψ′2 − 1
)

+
gr2ω2 (r4hψ′2 + r2)

h

)
δz

− gkr4a′0z
′δex + gr6

(
k2h− ω2

)
ψ′z′δψ, (3.52)

with respect to δψ yields

∂r
(
gr6hBψ′δψ

)
+ ∂r

(
gr10h2 z

′ψ′

A
δz′
)

− ∂r
(
gr6h

ψ′a′0
A

δa′t

)
− ∂r

(
gr6h

(hz′2r4 − a′02 + 1)

A
δψ′
)

=

+ hgr8Bz′δz′ + hgr6Bψ′δψ′ + gr6
(
k2h− ω2

)
z′ψ′δz + gr4Ba′0δa

′
t

+ gr4CAδψ

gr2

(
ω2

(
z′2r4 +

1

h

)
− k2

(
hz′2r4 − a′02 + 1

))
δψ

− gkψ′a′0r2δex + 2ik sin2(2ψ)a′0δay, (3.53)

with respect to δat yields

∂r
(
gr4Ba′0δψ

)
+ ∂r

(
ghr8a

′
0z
′

A
δz′
)

+ ∂r

(
ghr6a

′
0ψ
′

A
δψ′
)

− ∂r
(
gr4hr

4z′2 + hr2ψ′2 + 1

A
δa′t

)
− ik∂r(c(ψ)δay)

= gk2r4a′0z
′δz + gk2r2a′0ψ

′δψ − ikc(ψ)δa′y

− gk
(

1

h
+ r4z′2 + r2ψ′2

)
δex, (3.54)
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and a final constraint from varying with respect to δar,

0 = ωgr4Ba′0δψ + gr8ωha
′
0

A
z′δz′ + gr6ωha

′
0

A
ψ′δψ′

− gr4ω
hr4z′2 + hr2ψ′2 + 1

A
δa′t − ghr4 k

ω
(δe′x − kδa′t) . (3.55)

Here we have defined

A = h
(
r2z′2 + ψ′2

)
r2 − a′02 + 1, (3.56)

B =

(
8 sinψ cos3ψ

f 2
1 + 4 cos4 ψ

− 8 sin3ψ cosψ

f 2
2 + 4 sin4 ψ

)
, (3.57)

and

C =

((
8 cosψ sin3 ψ

4 sin4 ψ + f 2
2

+
8 cos3 ψ sinψ

4 cos4 ψ + f 2
1

)2

− 8 (1 + 2 cos(2ψ)) sin2 ψ

4 sin4 ψ + f 2
2

− 8 (1− 2 cos(2ψ)) cos2 ψ

4 cos4 ψ + f 2
1

)
. (3.58)

Imposing the constraint on the other equations lets us eliminate δat, and also
gives that the δat equation of motion is a linear combination of the others, leaving
us with four coupled, linear, second-order differential equations and four fields.

3.6 Boundary conditions

3.6.1 Background fields

For Minkowski embeddings, the tip needs to be smooth, which sets a condition on
the derivatives at this point. In a formulation with r and ψ, this condition turns
into ψ′(r) → ∞ as r → r0, implying that the brane expansion is set by a single
parameter, the minimal distance r0.

For black hole embeddings the ψ equation of motion is singular at the horizon.
Making an expansion at the horizon reveals that the second derivative disappears
at the horizon, and the system is fully defined by the ψ angle at which the brane
crosses the horizon. That is, although it is a second order differential equation, we
only get one degree of freedom, just as in the Minkowski case.

Regularity conditions sets the value of the z-equation of motion integration
constant.
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In Minkowski embeddings, regularity of the metric at r = r0 enforces

cz = −1

2
f1f2r

4
0, (3.59)

as the rr-part of the metric at that point, using dr = (ψ′)−1dψ, is

1

h(r0)r2
0

1 + h(r0)r4
0z
′(r0)2 + h(r0)r2

0ψ
′(r0)2

ψ′(r0)2
dψ2 (3.60)

and thus z′(r0) can not be more singular than ψ′(r0).
In black hole embeddings, consistency of the of the z-equation of motion (3.39)

demands

cz = −1

2
f1f2r

4
T , (3.61)

or else z′ ∼ (r − rT )−1/2 as for r close to rT .

3.6.2 Perturbation fields

The boundary conditions imposed on the perturbation fields depend on the choice
of embedding used. For Minkowski embeddings, we require that the tip is smooth,
meaning that the derivatives of all fields have to be zero. This eliminates half of
the boundary conditions and we have four degrees of freedom left out of the eight
we started with.

For black hole embeddings the equations become regular singular at the hori-
zon. A Frobenius expansion at the horizon lets us bypass this problem, as well as
split the 8 degrees of freedom into two groups: In-falling solutions and out-going
ones. By requiring in-falling solutions, any linear combination of those four are a
solution, and we are once again left with four degrees of freedom.

A Frobenius expansion is classically only done in one variable, but the extension
to multivariable systems is quite intuitive. At it’s core, what one does is to replace
a field by an expansion

q(r) = (r − r0)γ
(
α0 + (r − r0)α1 + (r − r0)2α2 + . . .

)
, (3.62)

which for a system where the coefficient in front of the second derivative has
a zero of multiplicity 2 at r0 and the coefficient in front of the first derivative
has a zero of multiplicity 1 at r0 naturally has two different solutions based on
γ, with them being the solutions to a quadratic equation. This implies that we
get complex exponents where we can identify one as in-falling and one as out-
going. Clearly each of these solutions are scalable by a numerical factor, so for
uniqueness, one sets α0 = 1. The multivariate expansion is nothing but expanding
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the other fields in the same fashion, but keeping the same exponent as the in-
falling behaviour should be the same. As the solutions are scalable we can set the
zero order coefficient of one of the expansions to be unity. A good check to verify
the obtained solutions is that one gets 8 distinct solutions, paired up, and with
dependencies on all different zero-orders (implying we have the maximum number
of solutions in a linear system).

The remaining degrees of freedom are fixed by a condition at r →∞. The com-
mon requirement is that the perturbations should go to zero (Dirichlet boundary
conditions), but there are other possibilities, such as Neumann boundary condi-
tions or more generic Robin conditions. These are alternative quantizations of
particles (bosonic, anyonic rather than fermionic) [18].

As the system is linear, a convenient method of obtaining the solution is the
following determinant method as suggested by Amado et al [4]. Suppose that
there is a solution with the desired boundary conditions. Then it can be written
as a linear combination of the individual solutions we acquired from the Frobenius
expansion,

sol = c1sol1 + c2sol2 + c3sol3 + c4sol4. (3.63)

Writing the boundary values as a system of linear equations

δz|r→∞ = c1δz1 + c2δz2 + c3δz3 + c4δz4|r→∞,
δex|r→∞ = c1δex1 + c2δex2 + c3δex3 + c4δex4|r→∞,
δay|r→∞ = c1δay1 + c2δay2 + c3δay3 + c4δay4|r→∞,
δψ|r→∞ = c1δψ1 + c2δψ2 + c3δψ3 + c4δψ4|r→∞,

we can identify a matrix equation,
δz

δex

δay

δψ

|r→∞ =


δz1 δz2 δz3 δz4

δex1 δex2 δex3 δex4

δay1 δay2 δay3 δay4

δψ1 δψ2 δψ3 δψ4


M

×


c1

c2

c3

c4

|r→∞. (3.64)

This system only has a non-trivial solution if DetM = 0. That is, we evaluate the
determinant of this matrix (or the corresponding one for the choice of boundary
condition at infinity) for different values of k and ω. For each value of k, a range of
values for ω are tried, and from the resulting values of the determinant, solutions
are extracted where those are zero.

The differential equations decouples for certain parameter values, such as ψ′ = 0
and d = 0. This can be used to inspect the observed dispersion relations’ origin.
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Tracing a curve to this decoupling limit allows one to see which particular fields
become linearly dependent. As we are interested in longitudinal modes mainly, we
wish to study what comes from δex rather than δay.



Chapter 4

Model overview

The model was realized in Wolfram Mathematica. Symbolic derivations of the
equations were made as to confirm the results obtained by pen and paper and
numeric calculations were carried out to obtain the final results.

The model was split in several pieces as suitable.

4.1 Mathematica: Initialization

The program begins with an initial part that sets the metric and applied fields
and produces the explicit form of the action. Variation then gives the equations
of motion.

Main restrictions from a general model that are made here are

• S2 × S2 geometry of the D7-branes.

• Only a charge density in the gauge fields (no external magnetic fields, electric
fields or currents).

• The signs on the Chern-Simons term.

A special note to be made is the choice of signs for the Chern-Simons term
and the four-form. Some literature differ in regards to what signs those should
be, but we have chosen to have the space-time part positive and the angular part
negative. This appears to have a rather negligible effect on the results and it can
be argued that this should be the case (little change between branes/anti-branes,
dual/anti-dual).

23
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4.2 Mathematica: Large r asymptote

The second part treated the zero order fields at r → ∞ as to let us control the
system by adjusting the asymptotic behaviour, rewriting f1 and f2 as functions of
ψ∞ and ∆ in the expansion ψ = ψ∞ +mr∆ for large r.

Main restrictions from a general model that are made here are

• Parity invariance (f1 = f2, equivalent to setting ψ∞ = π/4).

• Asymptotic exponent, ∆ = −1/2,− 1,− 3/2.

This completely fixes f1 and f2.

4.3 Mathematica: Horizon limit

The third part treated the near horizon part. Here we made an ordinary Taylor
expansion for the ψ field as the numerical solver of Mathematica struggles with the
disappearing second order derivative. This expansion is only used in a very small
part, until we solve for a generic ψ in the majority of the r-domain. Similarly, the
perturbation fields were treated with a multivariate Frobenius expansion to fifth
order.

Main restrictions from a general model that are made here are

• Black hole embeddings.

• Initial starting condition, ψ0 = π/4,1.1π/4.

• Temperature radius, rT = 0.01, 0.1, 1, 101.

• Charge density, d = 0,1,10,1000.

• Numerical offset from the horizon, ∆r = 0.001.

• Numerical infinity, R∞ = 105.

The ψ equation was here solved with Mathematica’s NDSolve routine. The
solution, along with the Frobenius expansions, were passed on to the last part.

1The effect of changing the temperature radius will be discussed in the next section
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4.4 Mathematica: Solver

The last part solved the equations of motion by supplying the final two unknown
quantities, ω and k. The equations of motion were solved with the different initial
conditions supplied by the Frobenius expansion. The solutions where then taken
to the numerical infinity, where the determinant was computed as proposed in the
theory section.

Main restrictions from a general model that are made here are

• Boundary end-conditions (δψ = δz = 0, δe′x = δa′y = 0) and (δψ = δz =
δex = δay = 0)

For each pair of (ω,k) the determinant was computed. Sweeping over a range
of different ω’s for a fixed k, yields a complex curve. Where this curve has zeroes,
the total boundary conditions has a non-trivial solution, and there exists particle
states. Doing this, for a range of different k’s yields a dispersion relation for those
particle states.

It is important to note that the ω’s can be complex, implying decaying modes,
which is the expected behaviour for collective excitations at non-zero temperature.

4.5 Validation

Apart from examining possible plasmon modes in the model, we also made sure
the model could reproduce the results from similar projects (for instance [19]).
This was done both for the equations obtained, as well as the dispersion relations
coming from the numerical calculations.
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Chapter 5

Results

Despite extensive searches in the possible parameter space, we did not find any
plasmons. This includes both the ω ∼

√
k behaviour predicted by Hwang et al.

[20] for zero temperatures, or a massive plasmon mode, see for instance Godfrin
et al. [14]

This includes alternating the signs of the 4-form, alternating between Dirich-
let and Neumann boundary conditions for the gauge fields, zero and a non-zero
mass, zero and non-zero charge density, the asymptotic exponent ∆ and non-zero
temperatures. The four latter were tried out for a range of different values. It
should however be noted that one can rescale the frequency, wave vector and fields
to make the equations of motion independent of the temperature, as is done by
Jokela et al[19]. This implies that the model is not dependent on temperature and
charge density individually, but rather on the ratio between them (for the existence
of excitation modes that is).

We did find a zero-sound mode, with either Neumann or Dirichlet conditions.
The Dirichlet conditions have a decaying zero-sound mode, as was shown in [19],
whereas the zero-sound mode for Neumann conditions was stable. The latter
is aThese results are shown in figure 5.1. For Dirichlet conditions, we see an
initial purely dissipative mode for very small values of k. We also found another
completely dissipative mode which originates from the transverse part δay, but as
we are interested in longitudinal modes, we did not investigate this mode further.

5.1 Individual parameter impacts

As there are relatively many different parameters that were adjusted, here follows
a brief summary of the impact of these individual parameters.

27
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Figure 5.1: Real parts of the dispersion relations with the greatest (least nega-
tive, in this case) imaginary part, for d = 10, ψ0 = 0.3π, ∆ = −1. The upper,
darker curve corresponds to Neumann boundary conditions and had no imaginary
part. The lower, lighter curve, corresponding to Dirichlet boundary conditions, had
an imaginary part identical to the circle-curve in Figure 5.3. Note especially the
complete linear behaviour for Neumann conditions, and the slight difference in slope
between the asymptotes.

5.1.1 d

As argued in [19], one can scale the different fields and parameters with rT to
make the system independent on rT . Setting rT = 1 thus yields this effect, and
d → 0 is the equivalent of no charge and d → ∞ is the equivalent of T → 0, and
different balances in between. Increasing d thus decreases the dissipation area of
the dispersion relation, and asymptotically the relation gets linear all the way to
zero. This is the behaviour expected of a zero sound mode. The result of taking
d→ 0 is shown in figure 5.2.

5.1.2 ψ0

Using the intersection angle of the D7-branes as the controlling parameter for the
branes does not seem to be the most common way to control the system. A perhaps
more common parameter that is equivalent is the m-parameter in the asymptotic
expansion. We opted not to use it, as it is implicitly given by ψ0 and ψ0 occurs
explicitly in the expression. m can also only be identified as a mass if ∆ = −1
something we did not want to restrict ourselves to, which severely reduces the
intuitive gain of using m. It is also worth mentioning that just as not all values
of ψ∞ are possible with real fn, not all values of ψ0 are possible with the desired
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Figure 5.2: Dispersion relation with the greatest (least negative) imaginary part,
for d = 0, ψ0 = 0.3π, ∆ = −1 and Dirichlet boundary conditions. The lower
curve is the imaginary part and the upper curve is the real part. At k ≈ 0.6
the displayed mode intersects another mode with a previously lesser (that is, more
negative) imaginary part. These two continue as with a positive or negative real
part. Here, only the positive real mode is shown.

asymptote of ψ(r). For sufficiently large angles, the solution tends to ψ∞ = π/2
(or ψ∞ = 0), which is another trivial solutions, which allows for all possible values
of fn. As two coordinates on the brane disappears for such solutions, we decide
to not look further into these ”shrinking” embeddings. This sets a constrain of the
initial angle to be 0.125π < ψ0 < 0.375π.

When ψ0 = ψ∞ the solution is ψ′ = 0. This decouples several of the differential
equations, which significantly helps in the process of identifying what kind of
modes are found. Apart from this, the initial angle has a surprisingly small impact.
Where one might expect a mass gap such as in [14], none is found. A progression
in starting angles, and their corresponding m-values are shown in 5.3.

5.1.3 ∆

The ∆-exponent had, contrary to our hypothesis, a negligible impact on the lon-
gitudinal mode. We do expect it to primarily have an effect when m is non-zero
although it could possibly have an effect regardless, as f1 and f2 are the parameters
that decide ∆ and these are still present in the equations. A progression in ∆ for
general parameters are shown in figure 5.4.
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Figure 5.3: Dispersion relation with the greatest (least negative) imaginary part,
for d = 10, ∆ = −1 and Dirichlet boundary conditions. Darker squares, circles and
brighter stars correspond to ψ0 = 0.35π, 0.3π, 0.25π respectively (corresponding to
m = 11.1, 1.46, 0). The lower points are the imaginary parts and the upper points
the real parts. No notable difference between the sets in this particular mode.

Figure 5.4: Dispersion relation with the greatest (least negative) imaginary part,
for d = 10, ψ0 = 0.3π and Dirichlet boundary conditions. Darker squares, circles
and brighter stars correspond to ∆ = −1/2,−1,−3/2 respectively. The lower points
are the imaginary parts and the upper points the real parts. No notable difference
between the sets in this particular mode.

5.1.4 Boundary conditions

Switching between Dirichlet and Neumann boundary conditions had as expected
a relatively large impact. The only mode we could find with Neumann boundary
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conditions was perfectly linear ω = k, with no imaginary part. It is an interesting
observation, but it is not plasmonic behaviour. A comparison between a general
system with either boundary conditions can be seen in figure 5.1. It is worth noting
that the real parts, although asymptotically linear, differs slightly in slope. The
main difference however is found for small values of k.
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Chapter 6

Discussion and Conclusions

6.1 Reliability of the model

The Mathematica inplementation of the model appeared stable. It reproduced
the equations of motion from similar articles, as well as the numerical solution to
these. It thus seemed that the model was indeed correctly implemented.

6.2 The plasmon mode

We did not find the plasmon mode. The implications of this are important enough
to warrant a thorough check of the implemented model. The plasmon is a relatively
simple phenomenon, compared to other things the model has been used to describe,
as for instance the roton in [11]. A model used to describe advanced phenomena
that fails to portray the simple ones is not (entirely) reliable. So, where do we fail
to describe the plasmon?

6.2.1 Parameter space

It is possible that the plasmon solutions are out there in the model to see, but
are simply not located near the values of the parameters we have examined. As
our parameter space is relatively large, given the number of parameters we can
change, and the ranges for those parameters too, it is possible. It is however
unlikely, because we find the zero-sound mode. As described in for instance [14],
the zero sound mode turns into the plasmon mode when a charge density is added.
Regardless of whether we have a charge density or not, the zero sound mode is
present, with its very characteristic behaviour of no gap and linear asymptote. It
is also a note to be made of the dependence on charge vs dependence on charge
carriers. The surface plasmons of [13] scales with the number of charge carriers,
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but this is not what we change when we tune d. We rather tune a net charge of
the system.

6.2.2 Model improvements

It is possible that this particular behaviour of collective excitation demands that
the stack of D7-branes does not yield a negligible contribution to the metric of the
system, and thus requires that this is taken into account. This is what is called a
”backreaction”, and it significantly complicates the model.

It is also possible that the charged fermions needs to be specified more explicitly
than in this model. This has been done in “bottom-up” models, where instead of
starting from a string theory realisation and adding components, one starts from
the gravitational description of stars.

Another less likely prospect is that when we model our system we set the
coupling constant to be infinitely strong. This has implications to the curvature
length L, which impacts on two particular points. Firstly, for the metric we assume
a near horizon theory r � L, which might seem like a weird thing to keep fixed,
even when we let r → ∞. This is done to ensure AdS for all r, and is a very key
thing in the duality. Keeping the curvature length relevant in calculations gives
another scale parameter, which in this case would impact the temperature radius.
We would then have dependencies on the temperature and the charge individually,
which in itself seems desirable.

6.3 Outlook

Although it is disheartening that the model did not portray plasmons, this is still
an interesting result. The model should be able to depict plasmons. Similar models
are used to model two-dimensional materials in other contexts, most notably as
with some choices of parameters, the conductivities returned are similar to the
observed ones. However, if one wants a reliable model of for instance graphene,
the model really should be able to reproduce the known behaviours of graphene
before one makes daring predictions for graphene based on the results from a
model. This result is thus an indicator that these models may be too simple, and
needs some further enhancement.

The model in itself still has several more features and areas of applicability
that have not been utilized. These include examining other properties and how
the system changes when other fields or currents are applied. Once the necessary
tweaks to the system have been made, the model can be used to predict these more
advanced properties and thus, these have not been explored here.
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