
Evaluating Haste.App: Haskell in a web setting
Effects of using a seamless, linear, client-centric programming model

Bachelor Science Thesis in Computer Science and Engineering

Benjamin Block
Joel Gustafsson
Michael Milakovic
Mattias Nilsen
André Samuelsson

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden, June 2016

Bachelor of science thesis

Evaluating Haste.App: Haskell in a web setting

Effects of using a seamless, linear, client-centric programming model

Benjamin Block
Joel Gustafsson

Michael Milakovic
Mattias Nilsen

André Samuelsson

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden, June 2016

Evaluating Haste.App: Haskell in a web setting
Effects of using a seamless, linear, client-centric programming model

Benjamin Block
Joel Gustafsson
Michael Milakovic
Mattias Nilsen
André Samuelsson

c© Benjamin Block, 2016.
c© Joel Gustafsson, 2016.
c© Michael Milakovic, 2016.
c© Mattias Nilsen, 2016.
c© André Samuelsson, 2016.

Supervisor: Emil Axelsson
Examiner: Niklas Broberg, Department of Computer Science and Engineering

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone +46 31 772 1000

The Authors grants to Chalmers University of Technology the non-exclusive right to publish the
Work electronically and in a non-commercial purpose make it accessible on the Internet. The
Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher
or a company), acknowledge the third party about this agreement. If the Author has signed a
copyright agreement with a third party regarding the Work, the Author warrants hereby that
he/she has obtained any necessary permission from this third party to let Chalmers University of
Technology store the Work electronically and make it accessible on the Internet.

Department of Computer Science and Engineering
Gothenburg, Sweden 2016

iii

Evaluating Haste.App: Haskell in a web setting
Effects of using a seamless, linear, client-centric programming model
Benjamin Block
Joel Gustafsson
Michael Milakovic
Mattias Nilsen
André Samuelsson
Department of Computer Science and Engineering
Chalmers University of Technology

Bachelor of Science Thesis

Preface

We would like to thank our supervisor Emil Axelsson for his invaluable support and guidance
during this project. We would also like to thank Anton Ekblad, the primary developer of Haste
and Haste.App, for answering our questions throughout the work.

Abstract

In this paper, we evaluate Haste.App, a newly developed Haskell library for distributed web appli-
cations. Haste.App promises to deliver multiple ease of use factors in addition to allowing the static
type checking of Haskell to be extended over the network. It also pairs with the Haste compiler
which compiles Haskell code to JavaScript. We conclude that Haste.App is a promising library that
allows real world distributed web applications to be written in Haskell with ease. The seamless,
client-centric programming model also has positive effects on programmer productivity. There are,
however, some issues that will need to be addressed with Haste.App: some way of making sure the
JavaScript is updated when the server is, standardisation when it comes to project structure, and
some convenient way of handling DOM. In order to reach this conclusion, we evaluate Haste.App
primarily based on three key aspects: performance, stability, and programmer productivity. The
evaluation is performed by creating a simple online multiplayer board game and an attached lobby
system.

Keywords: Haskell, Haste.App, Haste, functional programming, web development.

iv

Sammandrag

I denna rapport utvärderar vi det nyutvecklade Haskellbiblioteket Haste.App, som syftar till att
underlätta implementeringen av distribuerade webbapplikationer. Haste.App gör det möjligt att
utöka Haskells statiska typkontroll över nätverkskommunikation samt ger programmeraren tillg̊ang
till ett antal bekvämlighetsfaktorer. Utöver det, levereras Haste.App tillsammans med Haskell till
JavaScript kompilatorn Haste. Vi kommer fram till att Haste.App är ett lovande bibliotek som
enkelt till̊ater webbapplikationer att skrivas i Haskell. Den sömlösa, klientcentrerade program-
meringsmodellen som Haste.App erbjuder har ocks̊a positiva effekter p̊a programmerares produk-
tivitet. Däremot finns det ett f̊atal problem som behöver ses över: den kompilerade Javscript-koden
m̊aste bli uppdaterad när servern blir uppdaterad, det behövs standarder för struktur p̊a projekt
i Haste.App, samt ett mer effektivt sätt att hantera DOM-manipulation. Vi n̊adde denna slutsats
genom att undersöka Haste.App ur tre synvinklar: prestanda, stabilitet samt programmerares pro-
duktivitet. Denna undersökning genomförs genom att implementera ett enkelt brädspel för flera
spelare som en webbapplikation med ett tillhörande lobbysystem.

Nyckelord: Haskell, Haste.App, Haste, funktionell programmering, webbutveckling.

v

CONTENTS CONTENTS

Contents
1 Introduction 1

1.1 Background . 1
1.2 Purpose . 1
1.3 Limitations . 1

2 Problem description 2
2.1 Performance description . 2
2.2 Stability description . 2
2.3 Programmer productivity description . 2

3 Technical background 4
3.1 Haskell . 4
3.2 JavaScript . 4
3.3 Haste . 4
3.4 Haste.App . 5
3.5 DOM . 6
3.6 SQL & MySQL . 6

4 Method 7
4.1 How to measure performance . 7
4.2 How to measure stability . 7
4.3 How to measure programmer productivity . 8
4.4 An application to measure Haste.App . 8

4.4.1 The Lobby system . 9
4.4.2 Chinese Chequers . 9

5 Development 10
5.1 Dependency management using Haste.App . 10
5.2 Updating the client . 10
5.3 Development of the game . 12

5.3.1 Implementation of the game rules . 12
5.3.2 Game logic and data types . 12
5.3.3 Graphical implementation . 13
5.3.4 Network communication . 14

5.4 Development of the lobby system . 14
5.4.1 Lobby implementation . 15
5.4.2 Data types of the Lobby . 16

5.5 Issues encountered with Haste and Haste.App . 16

6 Results 19
6.1 Game and Lobby implementation results . 19
6.2 Results regarding performance . 19

6.2.1 Server-Side performance . 19
6.2.2 Client-Side performance . 22
6.2.3 Bandwidth when using Haste.App . 23

6.3 Results regarding stability . 23
6.4 Results regarding programmer productivity . 24

6.4.1 Haskell versus JavaScript during development 24
6.4.2 Runtime errors and debugging . 25
6.4.3 Database usage influence on programmer productivity 26
6.4.4 A client-centric, seamless, and linear program flow 26
6.4.5 Project standards and module structure . 27
6.4.6 Lines of code . 27

7 Discussion 29

vi

CONTENTS CONTENTS

7.1 Method discussion . 29
7.1.1 Lobby implementation . 29
7.1.2 Game implementation . 29
7.1.3 Measuring performance . 30
7.1.4 Measuring stability . 31
7.1.5 Measuring programmer productivity . 31

7.2 Result discussion . 32
7.2.1 Performance of Haste.App . 32
7.2.2 Stability of Haste.App . 33
7.2.3 Programmer productivity when working with Haste.App 33

7.3 Haste.App in society . 35

8 Conclusion 36

References 37

9 Attachments 38
9.1 System hardware details . 38
9.2 Performance test of clientside JavaScript . 39
9.3 Performance test of the server application . 42

vii

Glossary Glossary

Glossary

DOM Document Object Model. A standard for representing and interacting with a
document.

EcmaScript A standard for scripting languages, JavaScript being one of the most notable
languages to implement this standard.

FFI A Foreign Function Interface allows functions written in one language to call
functions written in another language.

GHC The Glasgow Haskell Compiler.

Haste A Haskell to EcmaScript compiler.

HTML HTML is a markup language for describing web pages.

HTTP Hypertext Transfer Protocol is the standard protocol used by web browsers to
communicate with web servers.

HTTPS HTTPS is secure HTTP by adding encryption to the HTTP protocol.

MVar Concurrent variable from Haskell’s Control.Concurrent library.

RPC A Remote Procedure Call is a function that is called over the network.

WebSocket WebSocket is a protocol for network communication designed to be imple-
mented by web clients and web servers.

viii

1 INTRODUCTION

1 Introduction

Haste.App is a new Haskell library for writing seamless client-server applications. The library
addresses some of the prevailing issues with traditional web development. It allows the programmer
to write a client-server application in a single file and extends type checking over the network.
There are a lot of promising advantages with Haste.App and utilising functional programming
when developing web applications.

1.1 Background

Writing interactive web applications typically involves JavaScript for a significant portion of the
client-side code. The prevalence of JavaScript stems from the fact that it is supported by all signif-
icant web browsers and virtually all websites use some form of JavaScript [1]. Because JavaScript
is popular, it has a large community supporting it and a large number of libraries. Haskell, on the
other hand, is not as popular as JavaScript but it has other benefits, such as its advanced type
system. Other advantages include the ability to perform equational reasoning on the code [2] and
a powerful testing library called QuickCheck [3].

Haste is a Haskell to JavaScript compiler. It makes it possible to use the advantages of a pure
functional language in a web setting. Haste is based on the Glasgow Haskell Compiler, and its
primary aim is to produce compact JavaScript code [4].

Haste is bundled with the library Haste.App which allows both the client- and server-side code to
be written in one program [5]. The library takes care of the network communication, alleviating
the programmer from writing it explicitly. As such, the programmer is relieved from this tedious
and error-prone task. Moreover, Haste.App is pursuing a client-centric programming model, which
means that the programmer writes the code from the client’s perspective [4]. At the time of writing
this thesis, Haste.App is still very new and requires more testing and investigation.

1.2 Purpose

The purpose of this paper is to evaluate the advantages and disadvantages of writing client-server
applications using the library Haste.App, with all of the properties of using a pure functional
language. The language used is Haskell and Haste.App is an extension of the Haskell to JavaScript
compiler Haste. Firstly, it is investigated whether or not there is any effect on performance, secondly,
if there are any benefits regarding the stability of the application, and thirdly, if there are any
advantages in regard to programmer productivity. An additional purpose of the project is to supply
comments and feedback on Haste and Haste.App back to the developer, who is a Ph.D. student at
Chalmers University of Technology.

1.3 Limitations

The work does not assess demanding real-time applications and graphics with Haste.App since the
focus of the project is mainly to evaluate the suitability of using Haste.App and Haskell to program
for the web. Neither is a second application created using a more traditional library, for purposes
of comparison. Furthermore, the usability [6] of programming in Haste.App is only considered on
one point, namely by programmer productivity which is what is called efficiency in usability terms,
the other parts are out of scope for this work.

1

2 PROBLEM DESCRIPTION

2 Problem description

The purpose of this paper is analysed by splitting it into several smaller parts. These deal with
different aspects of writing client-server applications with the help of Haste.App. As mentioned
in section 1.2 the purpose can be split into effects on performance, stability and programmer
productivity. These are, however, also large and hard to analyse without further breaking them
into even smaller parts.

2.1 Performance description

Performance is a crucial aspect when writing client-server applications, and therefore a crucial
aspect when assessing Haste.App. On the server-side, the application created with Haste.App can
not be too demanding regarding system resources. This is important both because it is often
desirable to have as inexpensive servers as possible (while maintaining enough performance), and
because it allows more clients to be connected to the server. On the client-side, the application
and code generated by Haste need to be efficient for the user’s computer to run smoothly and to
not experience any delays from performance issues. As such it is important that there is not a
significant discrepancy between using Haste.App and a more traditional client-server approach.

There could be several reasons for a significant divergence: firstly, on the client-side, the Haste
compiler might generate JavaScript that is slower than equivalent JavaScript written directly in the
language. Secondly, the server part of an application written in Haste.App must not be considerably
slower than writing an application using a different library.

2.2 Stability description

On a language level, Haskell brings many benefits to the stability of an application, as it is a
strongly typed static language. The static type checking verifies type correctness at compile time
which allows bugs which are trivial but hard to find to be tracked down more easily. Another
important benefit the type system in Haskell brings is that it allows for pure logic to be separated
from its impure counterparts. This type system brings a benefit by allowing the use of tools like
QuickCheck to test the pure logic of the application [3]. Haste.App also extends the static type
checking over the network through its remote procedure calls (RPC), which might remove confusing
network errors.

The programmer can use these benefits when writing code for Haste.App. Stability is thus inves-
tigated in order to see if the advantages Haskell brings, in terms of program correctness, is of any
practical use when writing client-server applications.

Besides language level correctness, the stability of the Haste compiler needs to be taken into
account. Particularly the Haste.App module, which this project primarily focuses on, has to be
evaluated to detect any errors. While these errors might decrease the stability of the application,
they are not the fault of the program itself. This is where giving feedback on Haste and Haste.App
becomes important as it allows bugs to be tracked down and fixed.

2.3 Programmer productivity description

Traditional client-server applications, in contrast to Haste.App, force the programmer to write two
separate applications and the communication between them. Writing two applications can be an
error-prone and tedious task as it forces the programmer to make sure the type of the data sent
between the client and server match. Moreover, the arbitrary communication pattern can make the

2

2.3 Programmer productivity description 2 PROBLEM DESCRIPTION

program flow confusing and difficult to grasp as well as introduce errors. In this traditional model,
both the server and client can drive the program flow, something that also serves to make the
program flow unpredictable. These are all problems when considering programmer productivity.

Haste.App tries to counter these issues in a number of ways. Most importantly it allows the
programmer to write both the client code and the server code in the same file and makes use of
Haskell’s strong and static type checking to handle the communication. It also lets the client be
the only driving force in the application and uses a synchronous, linear programming model [5].
Furthermore, Haskell has been shown to have some ease-of-use aspects compared to imperative
languages, such as not having to consider statement sequence, [7]. These ease-of-use aspects may
influence programmer productivity.

3

3 TECHNICAL BACKGROUND

3 Technical background

Developing a web application using Haskell and Haste.App requires the use of a number of tech-
nical tools, languages, and standards. What follows is a description of these tools, languages, and
standards.

3.1 Haskell

Haskell is a pure functional language with static typing and lazy evaluation. In a pure functional
language it is possible to separate functions with side-effects, such as writing to file or user input,
from functions which only depend on the parameters given to that function. Moreover, Haskell is
a statically typed language and offers compact syntax.

Handling side effects, or more generally computational contexts, is done by using monads. For
programmers unfamiliar with the concept, it might seem like an unnecessary obstacle which is
a byproduct of the language being fully functional. There are, however, many benefits of using
monads, one being that it affects the type system in a positive way. Because monads are explicitly
seen in the type system, the programmer can at a glance see which code runs in what computational
context.

Being a statically typed language means that all types are resolved at compile time instead of
run time as it would have in a dynamically typed language. Static type checking brings benefits,
mainly that trivial bugs can be caught at compile time. Knowing types at compile time also allows
the compiler to do various optimisations otherwise not possible. The size of the compiled binaries
also tends to become smaller and run more quickly because the code for checking types during run
time can be omitted.

Haskell also offers very compact syntax, which may allow complex code to be expressed clearly. The
clarity and reduced size of Haskell code can make it easier to digest functionality when reading new
code. There is data supporting the fact that Haskell programs tend to be a lot more concise and
smaller than object-oriented and imperative programs [8]. In addition, there exists a proportional
relationship between the number of bugs and lines of code, generally independent of what language
is used [9]. The brevity of Haskell and the relationship between lines of code and bugs could mean
that an experienced programmer is more productive in a functional language than in an imperative
one, if a programmer spends less time writing Haskell code than debugging.

3.2 JavaScript

JavaScript is a high-level, dynamic and interpreted language which is standardised by the Ec-
maScript specification [1]. Furthermore, it is supported by all major web browsers that are used to-
day; this has made JavaScript a very popular language. However, despite its popularity, JavaScript
still has several shortcomings. According to Ekblad, JavaScript suffers from several problems, in-
cluding bad scoping semantics, weak typing, and poor support for the functional paradigm [10].

3.3 Haste

Haste is a Haskell to EcmaScript compiler developed by Anton Ekblad, a Ph.D. student at Chalmers
University of Technology. The output from Haste will be referred to as JavaScript in this work
since the most common implementation of EcmaScript is JavaScript as described in section 3.2.
Haste is based on the Glasgow Haskell Compiler (GHC) because the bulk of the work that goes into
improving the Haskell language is implemented in GHC [11]. GHC also includes many language

4

3.4 Haste.App 3 TECHNICAL BACKGROUND

extensions that are widely used today [5]. Because Haste utilise GHC, it can make use of almost
all of the optimisations the GHC makes to Haskell code before converting the code to JavaScript.
In addition, Haste is integrated with the Google Closure Compiler. The Google Closure Compiler
is a JavaScript-to-JavaScript compiler that minimises and optimises the code [12].

One of the primary aims for the Haste compiler is to produce lightweight and optimised code.
Because of this, Haste does not support everything the GHC compiler does. Instead, Haste makes
some compromises in order to perform optimisations of the generated code [5].

3.4 Haste.App

Haste.App is a library compatible with the Haste compiler used for writing client-server applica-
tions. There are several properties that make Haste.App different in comparison to the traditional
way of writing network applications.

Probably the most notable difference is that both the client and server logic is written in the same
program. This allows for an extension of the powerful type system over the network. Haste.App
makes it possible at compile time to verify that the type of data the client or server send and
receive are correct. It is also easier to move functionality from the client to the server and vice
versa.

Another significant feature of Haste.App is the abstraction of network communication. The pro-
grammer does not have to explicitly write the communication between the client and server. Instead
of calling a function to send data over the network, the client can call the function on the server di-
rectly using special constructs, a combination of the remote and onServer functions. Functions that
are called over the network in this way are always synchronous, which means that the client will
wait for a response from the server before continuing the execution of the program. The abstraction
of network communication is implemented using HTML5 WebSockets in Haste.App [4].

Having all the logic in one program might seem to blur the distinction between the code executed
on the client or server, but a separation is achieved using the Haskell type system. The code that
is only executed on the server is wrapped in the Server monad and the client code is wrapped in
the Client monad. Both monads are instances of the IO monad.

Uniting the client and server code also requires a different way of compiling the program. The
code is first compiled with GHC, which generates the binary that is executed on the server. After
GHC is done, the code is compiled with Haste which produces the JavaScript code that runs on
the client.

A simple example of Haste.App can be seen in fig. 1. The main function starts the app by creating
a list variable containing names of the connected clients, wrapped in a MVar, which is used as the
server state. The MVar (a synchronous variable) is lifted, i.e. has its context changed, into the
Server context which tells Haste.App that it should only be available on the server. Also, in the
main function the connect and countClients functions are wrapped in a remote context to enable
them as remote procedural calls (RPCs). Being remote means that the function exists on the server
but can be accessed by the client through a onServer call. Following the creation of the remote
function the client code begins, it prompts the client for a name and calls the remoteConnect to
add the acquired name to the servers state. It then calls the remoteCountClients function and
receives the number of connected players which is displayed to the client.

5

3.5 DOM 3 TECHNICAL BACKGROUND

-- Entry point for both the Server and Client .
main = runApp defaultConfig $ do

-- Mvar is a synchronized variable .
clients <- liftServerIO $ newMVar []

-- Create the remote functions which the
-- client can call and execute on the server .
remoteConnect <- remote $ connect clients
remoteCountClients <- remote $ countClients clients

-- Here client only code begins .
runClient $ do

name <- prompt " Hello ! Name please !"
-- <.> applies name as parameter to the remote function .
onServer $ remoteConnect <.> name
nbrOfClients <- onServer $ remoteCountClients
alert (" Hello number " ++ show nbrOfClients)

-- | Add clients nick to server state i.e. the list of names .
connect :: Server (MVar [String]) -> String -> Server ()
connect remoteClientList name = do

clients <- remoteClientList
liftIO . modifyMVar_ clients $ \cs -> return $ name : cs

-- | Count the total number of clients connected .
countClients :: Server (MVar [String]) -> Server Int
countClients remoteClients = do

clients <- remoteClients
clientList <- liftIO $ readMVar clients
return $ length clientList

Figure 1: Simple Haste.App example that stores your name on the server and displays
how many clients have entered to the connecting client.

3.5 DOM

DOM or Document Object Model is a standard for representing documents that contain some
markup languages, such as HTML. It allows for HTML pages to be written in a hierarchical tree-
like manner and it allows for programs to interact with the contents of the page to create interactive
websites. HTML, or HyperText Markup Language, is the standard for creating web pages.

The DOM in the form of HTML can be created in various ways. One approach is to use a separate
file where raw HTML is accepted. Another approach is using JavaScript, or Haste in the case of
this project, to create HTML elements and add them to the DOM tree. Another approach is to
use an external library created for use with Haste.

3.6 SQL & MySQL

Structured Query Language (SQL) is a domain specific language designed to interact with a re-
lational database management system (RDMS). In an RDMS data is stored in tables where each
table is organised into columns and rows. Columns represent which type of data may be retained
in the table and the list of rows represent the data stored in the table. MySQL is an open source
implementation of most parts of the SQL standard. Its main features are the ability to handle large
amounts of data and that it is relatively easy to setup [13]. Databases are an important aspect of
web development.

6

4 METHOD

4 Method

To reach a conclusion regarding the purpose of the project a number of methodologies of evaluating
performance, programmer productivity, and stability have been used. An application was written
with Haste.App to enable data gathering from measurements and tests. Specifically, a lobby system
for games was developed together with an implementation of the game Chinese Chequers. Further
evaluation was based on observations and tests performed during or after the creation of the
application. How the assessment of these areas of interest was done is discussed in more detail
below.

4.1 How to measure performance

Several different aspects needed to be taken into account to assess the overall performance of the
application. Most notably, the speed of the application was measured. Because the application is
hosted on a web page, there were primarily two metrics to be considered when measuring its speed.
The amount of bandwidth sent between the server and the client and how much system resources
were used by the application. The different methods used to measure system resources on the client
and the server are explored below.

The bandwidth needed by the application was divided into two parts, the bandwidth required to
transfer the JavaScript to the client from the server, and the bandwidth required when a client is
using the application. This data was compared to other sites offering similar content to assess if
the application requires a reasonable amount of bandwidth for what it does. Measuring the initial
bandwidth was done by measuring the size of the generated JavaScript. Moreover, the bandwidth
required during the connection was measured via Wireshark [14], a tool for monitoring network
traffic.

The system resources used by the application on the server-side are defined by the CPU-usage,
load average, network utilisation, and the amount of RAM required. To monitor these values the
resource monitoring tool munin [15] was used. On the client-side, on the other hand, performance
was measured by looking at the total CPU time used by the executed JavaScript. The web browser
Chrome was used together with its built-in developer tools to measure the total CPU time.

To test the performance of the server when there are many clients connected and interacting with
the website, scripts were written with the help of the Ruby library Watir [16]. The library enabled
a script to interact with the DOM elements of a web page. Watir made it possible to simulate
connected clients and simultaneously monitor and quantify CPU and memory usage on the server
when a number of clients were connected.

4.2 How to measure stability

To measure the stability of the developed application, it was decided that a number of states should
be monitored to make sure they were resistant to unrecoverable errors. An unrecoverable error is
an error that cannot be handled by the application and forces a reset of the application state. The
states were:

1. When the server gets updated/restarted during an active session.
2. If the client has outdated JavaScript when trying to communicate with the server.
3. Runtime errors on the server.
4. Runtime errors in the clients JavaScript.

The first state was decided to be monitored as it is common that an update has to be made to

7

4.3 How to measure programmer productivity 4 METHOD

the server. Preferably it should be possible to perform such an update without the user noticing
a reconnection of the web socket. It could also be the case that the server crashes. In the event
of such a crash, it would be preferable if the server could restart without the clients noticing the
crash.

The second state was monitored since the source code is compiled twice, once with Haste and once
with GHC. It could be easy to accidentally update only one of the two compiled sources. When
this happens, either the client or the server can receive an unexpected value and may crash.

The third state was considered because Haste.App can potentially cause crashes on its own as it is
a new library. Since it is a new library, it was important to measure if these issues were a problem.
While crashes can occur based upon logical errors, such crashes were not taken into account.

The final state was also considered since Haste is a relatively new library. Once again, what was
primarily considered are crashes caused by Haste.App or Haste, since logical errors will be present
regardless of the library. In the client JavaScript, however, there is another dimension compared
to runtime errors on the server since the JavaScript is compiled with the Haste compiler.

4.3 How to measure programmer productivity

Assessing the programmer productivity of using Haste.App was difficult. Initially, it might seem
like a very subjective criterion, and it partly is, but there were further aspects taken into account
when measuring programmer productivity. What was considered were, errors present in Haste and
Haste.App, possible effects of the client-centric and linear programming model of Haste.App, if the
strong static type system of Haskell has any effects, and comparing the lines of code with other
similar applications.

Looking at errors present in Haste and Haste.App was an important aspect. Since Haste is on ver-
sion 0.5.4 during writing, there may be some prominent issues in both Haste and Haste.App, which
would have to be worked around during development. They would be detrimental to programmer
productivity.

The client-centric and linear programming model of Haste.App is another interesting aspect. Since
this programming model differs to traditional web development [5], it was an important aspect to
assess. The developer of Haste.App claims that this programming model can make the program
flow easier to grasp [5]. Therefore, it would have a positive effect on programmer productivity.

Moreover, programmer productivity can also be affected by the strong static type system of Haskell.
The type system is considered in respect to if the number of hard-to-find errors in the code
is reduced. Since Haste.App also allows Haskell’s type system to be extended over the network
communication, aspects regarding errors in network communication are also considered.

Finally, the development of the application in this project was compared to other similar appli-
cations. Other applications were examined because difference in programmer productivity can be
influenced by the number of lines of code required for that implementation. Lines of code in a
project is an important aspect since it affects the maintainability as well as the development time.

4.4 An application to measure Haste.App

To accurately assess Haste.App an application was developed in two parts, a lobby system and a
game. These two parts were chosen because they could be used to look at different areas of the
problems described in section 2. What follows is a brief description of the different parts as well as
what problems they illustrate.

8

4.4 An application to measure Haste.App 4 METHOD

4.4.1 The Lobby system

The lobby system enables connected clients to start conversations with each other and create their
own session of the game. When creating a new game session other clients are able to join until the
game is full or until the creator starts the game, thus enabling games to be played.

A lobby system was created to assess scalability and performance of Haste.App. The scalability
and performance was to be tested through the lobby since it does not have an upper limit of con-
nected clients or concurrently active games. The aim was to find, if it exists, a correlation between
performance and connected clients. Another important benefit of developing a lobby system was to
enable thorough testing of programmer productivity when working with Haste.App since it would
be possible to test various libraries for common web development purposes.

4.4.2 Chinese Chequers

To test more of the performance and continuous communication between clients aspects of Haste.App
a board game was implemented. Chinese Chequers was chosen for its simplicity since Haste.App
might not yet be suitable for dealing with demanding real-time applications.

Chinese Chequers is a turn-based board game available for two, four or six players. The rules are
fairly simple. Each player is assigned pieces of one colour. In order to win, a player has to move all
pieces of the player’s colour to the opposite side of the board. The six moves a player can make
are moving horizontally down or up to the left or right, or vertically. A player may only move their
piece to either one of those positions if they are empty. In case a position that can be moved to is
occupied, it can be jumped over. An example is shown in fig. 2. Jumping over a piece makes the
player eligible to move the same piece by jumping over another piece again.

Figure 2: Shows all the possible moves the blue chequer can do.

9

5 DEVELOPMENT

5 Development

Developing an application in Haste.App may differ somewhat from the development of an applica-
tion in a different programming model. Therefore, the process of developing an application using
Haste.App is here described. The process of development was split into two parts: the game and
the lobby system, which were developed in parallel. This section describes how the development
was performed and crucial decisions which had to be made along with other important issues that
had to be solved.

5.1 Dependency management using Haste.App

Since an application in Haste.App is compiled using two compilers, GHC and Haste; this presents
some problems when using some external libraries as Haste does not support everything GHC
supports. To solve this problem, conditional compilation was used, which enables the programmer
to tell the compiler to ignore certain parts of the code when compiling with a specific compiler.
An example of how this was done is shown in fig. 3.

#ifdef __HASTE__
import LobbyClient
#define disconnect (x) (_ -> return ())
#else
import LobbyServer
#define clientMain (_ -> return ())
#endif

Figure 3: Definitions made to work around dependency problems.

In fig. 3 it is stated that if ’ HASTE ’ is defined i.e. the code is compiled by the Haste compiler,
import LobbyClient, but also make a dummy definition of the disconnect function, since the actual
disconnect function is defined in LobbyServer. Likewise, if ’ HASTE ’ is not defined i.e. GHC is
compiling, import only LobbyServer and make a dummy definition of the clientMain.

In general, if a Haskell library which Haste cannot compile is desired to be utilised on the client-
side then the server needs to provide it through a remote function and return it in some data type
which Haste can handle.

5.2 Updating the client

During the development, there was a problem with updating the client when a state change oc-
curred. For example, when a client connects to the server all other clients should be notified. Since
Haste.App is client-centric, the client has to be the one to initiate communication with the server.
Two methods were considered to solve this problem. The first method works by reading a state
from the server and then updating every couple of seconds. The second method instead uses a
synchronous channel at the server. The server writes to the channel when an update occurs and
the client reads from the channel continuously.

The first method, reading a state from the server, is more intuitive to construct than the second.
It is also in line with the client-centric model of Haste.App, which makes the program flow easy to
understand. However, this method drains additional resources as the client has a process reading
the state of the server every couple of seconds. Upon reading the state, the process has to determine
if the state has changed and then update accordingly. The method is illustrated in fig. 4.

The second method, reading a synchronous channel, solves the problem with consuming resources
that the first method has. This method is, however, more complicated in its construction. Since the

10

5.2 Updating the client 5 DEVELOPMENT

-- Waits for an update in state to occur and then updates if it has
listenForUpdates :: State -> (State -> Client ()) -> Client ()
listenForUpdates oldState callback = do

newState <- onServer readState
if oldState == newState

then do
-- if nothing has changed , wait a second before checking again
setTimeout 1000 $ listenForUpdates oldState callback

else do
callback newState -- Update the client in some way
listenForUpdates newState callBack

(a) Client code, reads the state and then updates if it has changed

-- Simply reads the server state belonging to that client
readState :: StateList -> Server State
readState states = do

sid <- getSessionID -- gets the unique session id
liftIO $ do

case sid ‘lookup ‘ states of
Nothing -> return emptyState -- " should not happen "
Just state -> return state

(b) Server code, returns the state

Figure 4: The method of reading a state from the server and then deciding if to
update.

channels are created and kept by the server, there has to be a function on the server for reading the
channel. Reading from the channel is a blocking operation so there is, for each channel, a process
waiting to read. Upon reading a value from a channel, through a remote call to the server, the
client has to react to the message in some way. This method is illustrated in fig. 5. After careful
consideration, this approach was decided to be used to communicate state changes in both the
game and the lobby.

-- Client - side method for reading a message from the server
listenForMessages :: Remote (Server Message) -> (Message -> Client ()) -> Client ()
listenForMessages serverReadChannel callBack = do

msg <- onServer serverReadChannel -- call the server with the readChannel function
callBack msg -- React to the read message in some way

-- Perhaps by getting a new state
listenForChatMessages callBack -- recurse indefinitely

(a) Reads the channel (at the server) and then reacts to the message, maybe by getting new state.

-- Called by a client to read its channel
readChannel :: Server (MVar [a]) -> Server Message
readChannel remoteClientChannels = do

sid <- getSessionID -- gets the unique session id
mVarClientChannels <- remoteClientChannels
liftIO $ do

clientList <- readMVar mVarClientChannels
case sid ‘lookup ‘ clientList of

Nothing -> return $ ErrorMessage "Couldn ’t find client ."
Just clientChannel -> readChan clientChannel -- readChan is blocking

(b) Reads the client’s state, if it can be found.

Figure 5: The method of reading a synchronous channel.

11

5.3 Development of the game 5 DEVELOPMENT

5.3 Development of the game

This section describes the rule set that was implemented in the game and the technical implemen-
tation. It also illustrates the choices taken during the development of the game sequentially.

5.3.1 Implementation of the game rules

The diagram in fig. 6 describes the actions a player can make. After a jump the game automatically
moves to the next player but when a double jump (a jump over a chequer) is made it is possible
to move again as seen in the flowchart, but only with the same chequer. In this implementation of
the game, it is also possible to rotate the current player without moving a chequer.

Figure 6: Displaying all possible actions a player can make within the game.

5.3.2 Game logic and data types

The fig. 7 illustrates the hierarchy in which the types depend on each other together with their
definitions. The Content data type was created to represent what every position can hold: it is
either Empty or it has a coloured piece, which is represented by the data constructor Piece Color.
The next crucial data type is Square. Square is a product type containing a: Color, Content
and Coord. The Coord type is simply a type synonym for (Int, Int), representing the game logic
coordinates. With the help of these types, the game table could be defined and it is represented
by the Table type. Table is also a type synonym for [Square].

Furthermore, a way to represent the current state of the game was needed, and therefore, the
GameState type was created. GameState contains the following:

• A Table holding the current game table.
• The field Players which is of type [(Player, Color)] containing all the active players with

their respective colour implemented as a regular queue.
• CurrentP layer is defined as a Player which is a type synonym for a String.
• MoveAgain which is of type Bool used for checking if the current player can move again.

12

5.3 Development of the game 5 DEVELOPMENT

(a) Visualisation of the game data types hierarchy. The root of the tree is the GameState.

data Content = Empty | Piece Color

data Square = Square Content Color Coord

type Coord = (Int ,Int)

type Table = [Square]

type Player = String

data GameState = GameState { players :: [(String , Color)]
, gameTable :: Table
, playerMoveAgain :: Bool }
, currentPlayer :: String
, fromCoord :: Maybe Coord

(b) The Haskell data types that are used in the game

Figure 7: Illustration of the data types that are used in the game

The GameState is thus holding all information about a game session and is the root of the type
tree in fig. 7. Each client stores their GameState locally in an MV ar.

5.3.3 Graphical implementation

Haste provides a library for drawing and filling regular geometrical figures, but using these functions
only achieves a pretty outdated graphical look. A decision was made to use bitmaps, which are
just pictures that can be rendered on the screen. This gives a more modern graphical look, as seen
in fig. 8. Furthermore, a highlighting effect was achieved by changing the contrast and brightness
of the bitmaps used to represent the chequers.

Upon clicking on the screen to interact with the game, the input coordinates need to be parsed to
represent game logic coordinates. There were issues with generating the correct input coordinates
when using the function supplied with Haste. To solve the coordinates issue, the FFI for getting
the game board position on the screen was needed. The FFI is used to call JavaScript directly from
Haskell. Knowing the game board position and the current scrolled offset on the page, the correct
input coordinates could be calculated.

13

5.4 Development of the lobby system 5 DEVELOPMENT

Figure 8: The resulting game graphics.

5.3.4 Network communication

The first approach to communication between the client and server was to let the server give each
client channels, from Haskell’s Control.Concurrent package. They did not work with Haste, which
seemed strange since the MV ars from Control.Concurrent had been used without a flaw.

The issue regarding the channels was solved by only reading and writing to the channels on server-
side. The client simply requests the server to read or write to the channels located on the server.
Using the channels from Control.Concurrent works on server-side since the code is only compiled
with GHC. Updating the client is described in more detail in section 5.2.

As mentioned in section 5.3.3 interaction with the game is done via the graphical game table,
which upon clicking parses the coordinates. These coordinates are wrapped in a GameAction type
and sent to the server which broadcasts this message to all active clients. Upon receiving the
GameAction each client parses it and calls a function for updating the local game state.

The GameAction type was created to avoid sending the whole GameState over the network, and
it represents each possible manipulation a client can make to the local GameState. The definition
can be seen in fig. 9, and the data constructors are self-explanatory.

Verifying the validity of a move is only done on client-side. This is an issue regarding the safety
of the game. This allows for client-side manipulation of the code, which could make illegal moves
possible. Doing the verification on server-side was left out mainly due to the limited amount of
time.

data GameAction = StartGame
| RotatePlayer
| GameActionError String
| Coordinate (Int ,Int)

Figure 9: Illustration of the data types that were used in the game

5.4 Development of the lobby system

This section serves to describe the implementation of the lobby system. It describes the technical
implementation and issues encountered along the way. After that it describes the data types of the

14

5.4 Development of the lobby system 5 DEVELOPMENT

lobby and why they are constructed as they are.

5.4.1 Lobby implementation

The development of the lobby system started out straightforward and was divided into three
milestones:

1. Client does a handshake connection with the server to enter the lobby.
2. Create a game and start it when enough people have joined.
3. Implement a chat to enable communication between players.

These goals might seem simple enough but they include other small issues. To only mention a few,
a client should be able to see which games are active,change their name, edit settings of a game
they own and see names of the other players in the lobby. Here a couple of important decisions
taken during the development are described.

The problem mentioned in section 5.2 was encountered early in development. As stated, there are
some advantages to the second method, such as taking fewer system resources, and it was therefore
adopted. Several channels were created, one for each type of communication. The clients could
then listen for messages being written to the channel to update their state.

Moreover, to allow communication between connected players a chat was implemented using con-
current channels the same way as previously mentioned. For each client joining a chat the corre-
sponding channel on the server is duplicated and saved in a client entry for that specific client. An
illustration of the flow of reading a chat channel can be seen in fig. 10.

Figure 10: Visualisation of data flow when a client uses a RPC to remotely access the
API function readChatChannel.

In addition, to properly evaluate the development of a web application using Haste.App it was
decided that the lobby should save most of its data in a database, since they are commonly used
with web applications. MySQL was chosen as the backend database server and to interface with it
from Haskell the libraries Persistent [17] and Esqueleto [18] were used. Persistent contains most of
the database functionality used in this project, including declaring type-safe SQL tables in Haskell
code and Haskell functions that support basic database queries. Esqueleto extends the functionality
of Persistent to allow custom, type-safe SQL queries that are more complex. At the beginning of
the development, all games were stored in a list on the server, but this data was migrated to be
stored only in the database to test its properties.

Furthermore, it was decided to test how password management would work with Haste.App, since
authentication of users is another important aspect in web development. Therefore, some Haskell

15

5.5 Issues encountered with Haste and Haste.App 5 DEVELOPMENT

libraries offering to hash passwords were considered and it was decided to use Crypto.PasswordStore
[19]. However, since it would take too long to develop a user authentication system, it was decided
that users should be able to protect their games with passwords. At first, the passwords were meant
to be hashed at the client, but the library was not compatible with Haste. As such the passwords
are sent in plain text and hashed at the server.

5.4.2 Data types of the Lobby

To create the lobby as previously described, a number of data types were created, which can be
seen in fig. 11. The data types are mostly self-descriptive, but some of the design decisions are
illustrated here.

First, two lists were encapsulated in an MVar, namely ConcurrentClientList and ConcurrentChatList.
They were decided to be MVars since they are passed to the remote server functions at the entry
point of the program and then modified inside those functions. This was necessary since it allows
them to work in a similar way to a state, and since it allows only one process to access them simul-
taneously. Originally there was one more MVar list, ConcurrentGameList, but it was removed as
all game data was instead saved in the database.

Next, there are two Message data types, ChatMessage and LobbyMessage. These were created
in order to communicate change to clients. They are encapsulated in Concurrent Channels in order
to allow the server, via a call from a client, write several messages to a client. These messages are
then read via a remote call from a client to the server as illustrated in fig. 5.

5.5 Issues encountered with Haste and Haste.App

During the development of the lobby and game a number of issues with Haste and Haste.App
arose. The issues were related to working with channels, using the FFI, rendering, dependency
management, password management and security, and generating HTML.

Channels from the Control.Concurrent package does not seem to work with Haste. Writing to a
channel works fine, but any other operation such as reading from the channel did not work. The
application simply crashes when using any of those functions.

Using the library function for getting mouse coordinates in a canvas returns the x coordinate
relative to the whole screen, and y coordinate relative to the canvas, which of course is not correct.
This seems to be a problem with JavaScript and not Haste, since the library function in Haste is
implemented using the foreign function interface (FFI), thus calling JavaScript code.

Moreover, the highlighted bitmaps in the game are not always rendered on the canvas, and it seems
to be arbitrary when the rendering starts. It is assumed that the issue related to rendering the
highlighted bitmaps is caused by a bug in the Haste compiler.

In addition, problems with dependencies with GHC and Haste also exists and are discussed in
more detail in section 5.1. Such a problem was encountered when using the Data.UUID library for
giving games a unique identifier. The library cannot be installed with Haste, thus forcing a very
sharp separation between Server and Client code.

Furthermore, as described in section 5.4 passwords are sent in clear text to the server to be hashed.
Sending the passwords in clear text revealed an important issue with Haste.App: Haste.App does
not provide secure web sockets. Even when forcing an HTTPS connection via the web server the
web sockets used by Haste always default to insecure.

Generating HTML using Haste was a tedious task. The functions that operate on HTML elements,

16

5.5 Issues encountered with Haste and Haste.App 5 DEVELOPMENT

(a) The diagram displays the hierarchy in which the data types depend on each other.

type LobbyState = (Server ConcurrentClientList , Server ConcurrentChatList)
type ConcurrentClientList = MVar [ClientEntry]
type ConcurrentChatList = MVar [Chat]

type Chat = (Name , Chan ChatMessage)

type Name = String

data ClientEntry = ClientEntry { sessionID :: SessionID
,name :: Name
,chats :: [Chat]
,lobbyChannel :: Chan LobbyMessage
,gameChannel :: Chan GameAction }

data ChatMessage = ChatMessage {from :: Name
,content :: String }

| ChatJoin
| ChatAnnounceJoin {from :: Name}
| ChatLeave
| ChatAnnounceLeave {from :: Name}
| ChatError { errorMessage :: String }

data LobbyMessage = NickChange | GameNameChange | KickedFromGame | GameAdded
| ClientJoined | ClientLeft | PlayerJoinedGame | PlayerLeftGame
| StartGame | LobbyError { lobbyErrorMessage :: String }

(b) The data types as they are defined in Haskell. GameAction is defined in the Game section.

Figure 11: Illustration of the data types in the lobby.

such as < div > and < body >, work by first getting an element using its id and then modifying
that element. It works in the same way as generating an entire HTML page from JavaScript would.
The difference between writing a simple HTML tree in Haste compared to pure HTML can be seen
in fig. 12. There are a couple of libraries developed for Haste that attempt to simplify generating
HTML. Most of these libraries are, however, not up to date and will not work with the current
version of Haste due to the rapid development of Haste itself.

17

5.5 Issues encountered with Haste and Haste.App 5 DEVELOPMENT

parentDiv <- newElem "div" ‘with ‘
[

attr "id" =: "parent -div",
attr " class " =: "input - group "

]

inputField <- newElem " input " ‘with ‘
[

attr "type" =: "text",
attr "id" =: "text - field ",
attr " class " =: "form - control "

]

buttonSpan <- newElem "span" ‘with ‘
[

attr " class " =: "input -group -btn"
]

button <- newElem " button " ‘with ‘
[

attr "id" =: "input - button ",
attr "type" =: " button ",
attr " class " =: "btn"

]
buttonText <- newTextElem " Change "

appendChild button buttonText
appendChild buttonSpan button
appendChild parentDiv inputField
appendChild parentDiv buttonSpan
appendChild documentBody parentDiv

(a) Creating HTML in Haste

<body >
<div id="parent -div" class ="input - group ">

<input type ="text" id="text - field " class ="form - control ">

<button id="input - button " type =" button " class ="btn">
" Change "

<button >
</ span >

</div >
</ body >

(b) The same HTML in an .html file

Figure 12: Comparison of generating HTML in pure .html files and in Haste

However, an alternative to writing the HTML in Haste would be to have several HTML files that
could be switched to during the use of the lobby. However, this exposed an issue with Haste.App:
When the HTML file was switched the client disconnects from the server and then reconnects.
Since the client has to reconnect, the server cannot easily identify this client as being the same
as before. While this is an issue that can be bypassed by adding some identification to the client
stored in HTML5 Local Storage (that Haste has support for), it was considered out of the scope
of the project.

18

6 RESULTS

6 Results

The aim of this project was to evaluate, based on a few topics, how suitable Haste.App is for web
development. The topics were: Performance, stability and programmer productivity. The results
are split into two parts. The first part addresses what was created, namely the game and the
lobby and their respective functionality. The second part presents the results of the three points
of interest and is evaluated as described in section 4.

6.1 Game and Lobby implementation results

The game of Chinese Chequers was implemented according to description in section 5.3.1. The
resulting graphics can be seen in fig. 8.

The implementation of the lobby system resulted in a system that does the following things:

• Start a game that others can join.
• Changing settings of a game, including name, password and, max number of players allowed.
• Chat with other players.
• Saving games and players in an external database.

The source code is available on GitHub, allowing a deeper review of the implementation:

• Game: https://github.com/DATx02-16-14/ChineseCheckers
• Lobby: https://github.com/DATx02-16-14/Hastings

6.2 Results regarding performance

The performance of the application is measured by, as stated in section 4.1, the bandwidth required
and system resources used. The bandwidth considered is primarily the data required to send the
JavaScript since the data required to send images, text, and other static content is not unique to
Haste.App. Moreover, the bandwidth needed when communicating with the server during use is
also considered to make sure the client-centric programming model does not yield an unnecessary
amount of network traffic. Furthermore, the system resources used on the server is measured, in
respect to how many players are online. In addition, the system resources used on the client is
measured.

6.2.1 Server-Side performance

Using watir it was possible to simulate 80 clients which joined the lobby, wrote messages in the
chat and created games. The 80 clients were split up on four computers with 20 simulated clients
each. The CPU usage, memory usage, load average and network traffic can be seen in fig. 13 and
fig. 28, fig. 14 and fig. 29, fig. 15 and fig. 30, fig. 16 and fig. 31, respectively. The server running the
application has 8 GB RAM and an Intel(R) Core(TM)2 Duo CPU E8400 3.00GHz, running Ubuntu
15.10. The full system specifications can be found in section 9.1. Two tests were performed and are
described below along with observations on CPU, memory, network traffic, and load average.

The first test showed the load when creating games on the server and as such tested performance
when accessing the database. At 14:30 the 80 clients joined a game. At 14:45 the 80 clients created
games and upon creating the games they change the games name, password and max amount of
players. At 15:05 all clients start to leave the server.

19

https://github.com/DATx02-16-14/ChineseCheckers
https://github.com/DATx02-16-14/Hastings

6.2 Results regarding performance 6 RESULTS

The second test evaluated pure Haste.App performance by chatting in the server, it did not require
any access to the database. The 80 clients joined at 16:25, and at 16:40 they start to chat. At 16:50
the clients then disconnect from the server.

Firstly, regarding CPU on the server, which is illustrated in fig. 13 and fig. 28, it increases to about
5% when 80 clients join the server. It can be seen that the most CPU intensive tasks occur when
games are created and settings on them changed. This is either because of passwords for the games
are set and then hashed on the server or because all game data is entered into the database and as
such when a setting is changed and a game created the database is accessed. When chatting, that
is only sending messages through Haste.App, the CPU usage stays at roughly 5%.

Figure 13: CPU usage on the server during the first test

The memory usage on the server, which is illustrated in fig. 14 and fig. 29, stays about the same
during both tests. The only time where there is noticeable memory usage is when the initial
connection is established.

Furthermore, network traffic on the server during the two tests are shown in fig. 15 and fig. 30.
The server sends more data than it receives when the clients connect. During the phase where the
clients either chat or create games, the server sends about the same amount of data as it receives
as all clients receive messages as described in section 5.4. When disconnecting some data is sent,
but not much.

20

6.2 Results regarding performance 6 RESULTS

Figure 14: Memory usage on the server during the first test

Figure 15: Network traffic on the server during the first test

The load average can be seen in fig. 16 and fig. 31. The load stays below one throughout the tests
which indicates that no process has to wait to be run. The max load average is 0.43, which is not
especially high since 1.0 indicates that one process is waiting for CPU time.

21

6.2 Results regarding performance 6 RESULTS

Figure 16: Load average on the server during the first test

6.2.2 Client-Side performance

The measured performance on the client-side was done in two parts. The JavaScript was profiled
three times, with 0, 30 and 90 games created in the lobby respectively, results from that profiling
are shown in fig. 17. The figure shows that the relationship between the number of games created
in the lobby and the total loading time for the website has a linear relationship. Additionally,
in fig. 18 two other websites that offer a lobby system were profiled, brasee.com and lichess.org.
Lichess is a very popular website with 6000 concurrent users and 1500 simultaneous games at the
time of profiling. Brasee, on the other hand, is not as popular with only a couple of games and
about as many users online when the profiling was run. Nonetheless, it is interesting to note that
while Lichess was noticeably slower, it also had a lot more games and players connected.

(a) 1 player connected and 0
games created.

(b) 1 player connected and 30
games created.

(c) 1 player connected and 90
games created.

Figure 17: Breakdown of computation time when loading the website in Chrome.

22

6.3 Results regarding stability 6 RESULTS

(a) Loading our website with 0
games created.

(b) Loading of the lobby on
Brasee.

(c) Loading of the lobby on
Lichess.

Figure 18: Breakdown of computation time when loading three similar websites in
Chrome.

6.2.3 Bandwidth when using Haste.App

In order to profile the bandwidth used by the websites, the program Wireshark was used. All
packets sent and received by the host address during a period of ten minutes were captured and
analysed. In table 1, data is differentiated by static and dynamic data. Static data is images and
website content that are sent on page load. Dynamic data is data transmitted in response to an
event by the application, for example, a player joining the lobby or when a chat message is sent.

In table 1 there are a couple of noteworthy differences. Firstly, Brasee has considerably more
static data which can be attributed to the large number of images on that website compared to
the others. Secondly, the Lichess lobby sent more dynamic data; probably because Lichess had a
greater number of players connected.

Web Site Total Data Sent(kb) Dynamic data(kb) Static Data(kb)
Lichess Lobby 1185,737 1181,276 4,461
Lichess Game 122,067 116,512 5,555
Brasee Lobby 1496,903 254,435 1242,468
Brasee Game 2108,192 692,241 1415,951
Our Lobby 281,692 278,035 3,657
Our Game 162,067 156,705 5,362

Table 1: Data sent (in kilobytes) between the client and server for different lobby and
game systems during 10 minutes.

6.3 Results regarding stability

The stability of the application was considered out of four aspects, as defined in section 4.2:
updating the server, a client connecting with outdated JavaScript, runtime errors on the Server,
and runtime errors on the client.

Because of the static type checking if Haskell the amount of runtime errors related to types on
the client were reduced compared to writing JavaScript code. They are reduced since the static
type checking captures all type errors in compile time. It did, however, not completely rid the
application from them. Moreover, there are errors that are recoverable which seem to be inherent
to Haste, namely when there is an HTML input field. The first character written into the field
throws an error with the message:

Uncaught [object Object]

23

6.4 Results regarding programmer productivity 6 RESULTS

When continuing to write it throws an error with the message for every letter typed:

Uncaught Infinite loop!

These errors, however, do not seem to have any effect on the application.

The unrecoverable errors that can occur do so when working with the DOM, and specifically when
trying to retrieve objects with an ID that does not exist. This is, however, a problem that has to
be dealt with both when using Haste and when using JavaScript.

Moreover, the server also very rarely has runtime errors. The programming model of Haste.App,
with type safe network communication, appears to work very well. There has been no instance of
a crash or bug occurring because of a network communication problem.

Updating the server, however, seems to be a prominent issue with Haste.App. There is currently
no way of updating the server without disconnecting all clients connected. As the communication
is handled via HTML5 WebSockets, these close when the server is restarted and there is no way
in Haste.App to resume the same connection. The client has to reset the connection and thus it
has to restart from the same state it was in when it first connected to the server. There is no way
to keep current connections alive while updating the server so that new connections receives the
updated state.

Since the code is compiled twice, the server and the client code needs to match. Matching the code
can be tedious since the HTML has to be placed/updated at the web servers root and then the
server has to be restarted. Should one of the two steps not be performed, the application can enter
a faulty state and crash.

Moreover, to ensure the logical correctness of the code, the testing library QuickCheck was used.
The ability to use a powerful testing library helps in eliminating logical errors in the code. As such,
QuickCheck has helped to ensure the stability of the application.

Furthermore, there is no memory leakage on the server. The server application was left running
for seven days during which the application was moderately used. During this time there were no
evident increase in memory usage on the server.

6.4 Results regarding programmer productivity

Programmer productivity when writing a web application using Haste.App was heavily influenced
by a number of factors. A large influence is that all code is written in Haskell, compared to writing
JavaScript client-side and some language server-side. Other influences on programmer productivity
have been debugging and runtime errors, database usage, the linear, client-centric approach taken
by Haste.App, and the fact that the whole application is written in the same language and the
same project. The lines of code in the complete application are also compared to other similar
applications and games.

6.4.1 Haskell versus JavaScript during development

An advantage to writing the client-side code using Haskell instead of JavaScript has been the static
type system of Haskell. Instead of manually checking the types of a function or data type (or object
in JavaScript), one can rely on the static type checking to report any type errors. Allowing types
to be checked during compilation has reduced the number of bugs encountered to a very limited
set of runtime errors. In addition, since the type checking can also be used over the network, type
checking network code is an easy matter.

Another advantage of Haskell is the clear separation between pure code and code with side effects.

24

6.4 Results regarding programmer productivity 6 RESULTS

Most of the code with side effects in the developed game were Haste code. The graphical and
network implementations are the parts where Haste was needed, while the game logic was written
purely in Haskell. This clean separation made it easy to use QuickCheck to test the pure and
impure code as shown in fig. 19, and fig. 20.

-- | Property that checks that a square is not empty after having piece put into it.
prop_putPiece :: TableCoords -> OnlyPiece -> Bool
prop_putPiece (TableCoords (t, _, coord)) (OnlyPiece p) =

squareContent (putPiece t p coord) coord /= Empty

Figure 19: Testing pure code using QuickCheck.

-- | Property that makes sure a game can be properly created .
prop_createGame :: [ClientEntry] -> Int -> Property
prop_createGame clientList maxPlayers = monadicIO $ do

pre $
not (null clientList) &&
maxPlayers /= 0

let sid = sessionID $ head clientList
let playerName = name $ head clientList
run preProp

--Setup test preconditions .
clientMVar <- run $ newMVar clientList

run $ PlayerDB . saveOnlinePlayer playerName sid
uuid <- run $ Server .Game. createGame clientMVar sid maxPlayers

game <- run $ GameDB . retrieveGameBySid sid

-- Cleanup test
run postProp

assert $
--Check that the UUID returned exists .
isJust uuid &&
--Check that the game exists in the database .
isJust game &&
--Check that the max amount of players is correct .
(Fields . gameMaxAmountOfPlayers . Esql. entityVal . fromJust) game == maxPlayers

Figure 20: Testing impure code in the IO monad using QuickCheck.

However, when writing a client-server application in Haste.App almost all client and server specific
code has side effects. The client code is naturally placed in the Client monad, and the server code in
the Server monad. The client mostly creates and updates HTML, which is naturally side-effecting.
Furthermore, the server code mostly modifies a state, either in a database or a synchronous variable,
both of which are also side-effecting. However, most code is easily testable by lifting the functions
into the IO monad, which QuickCheck supports natively.

6.4.2 Runtime errors and debugging

One disadvantage of using Haste.App is that when runtime errors occur in the JavaScript code they
can be hard to debug properly. This is because the JavaScript generated by Haste is hard to read
by humans, even if the debug flag is supplied to skip some of the optimisation and minimisation
steps. Also, as mentioned in section 6.3, the error messages that are generated by JavaScript does
not indicate what caused the error or which Haskell function gave the error.

Furthermore, it is problematic to use a debugger on the generated JavaScript. A debugger enables

25

6.4 Results regarding programmer productivity 6 RESULTS

the programmer to pause the execution of a program at a particular point and look at the current
state of the program. While it is possible to use a debugger on the code, the code is still very
cryptic in its construction. Because debugging is difficult, it can be hard to find where the faulty
computations occur.

6.4.3 Database usage influence on programmer productivity

There are several benefits to programmer productivity when working with a database library that
extends Haskell’s type system to the SQL domain. The most notable positive aspects include
declaring native Haskell types as database tables and the fact that virtually all SQL errors are
detected at compile time. However, one disadvantage is that the syntax is different to traditional
SQL syntax.

The advantages manifest primarily in two distinct cases. Firstly, when writing functions that inter-
face with the database there is no need to convert between types that the database can understand
and types that Haskell can understand. Secondly, when a change is made to the structure of a
database table, the error is detected at compile time. When using ordinary SQL such errors are
not detected. Instead, the error occurs when the application is running. If the code that causes the
error is not executed very often it can take a long time before the error is detected.

A disadvantage, however, is the difference in syntax between SQL and the syntax employed by
the library Esquelto, which is illustrated in fig. 21. The figure shows an SQL query that retrieves
all players that are currently in a game, along with the Haskell code that generates an equivalent
query. A notable difference is the fact that the Haskell code is more verbose than the SQL code,
and the Haskell code uses operators that are not immediately obvious what they do. Because the
library uses such a different syntax, it could affect programmer productivity since a programmer
that is already accustomed to SQL has to learn how to use Esqueleto as well.

DELETE FROM PlayersInGame
WHERE game = ’gameKey ’ AND player = ’playerSessionId ’;

(a) SQL statement that removes a specific player from a specific game.

removePlayerFromGame sessionID gameKey = runDB $
delete $ from $ \ playersInGame ->

where_ (playersInGame ˆ. PlayerInGameGame ==. val gameKey
&&. playersInGame ˆ. PlayerInGamePlayer ==. val sessionID)

(b) Esqueleto code that generates the SQL statement in (a)

Figure 21: The difference between Esqueleto syntax and SQL syntax.

6.4.4 A client-centric, seamless, and linear program flow

The seamless, linear, client-centric approach of Haste.App has boosted programmer productivity.
Not only the fact that the programmer is relieved of dealing with the network communication, and
as such allow the type-checking to check remote calls. It is also helpful that the entire application
is written in the same language and driven by the client. However, the fact that the same sources
are compiled twice with different compilers has led to some issues with dependencies.

Firstly, the fact that the programmer never has to consider the network communication may not
be a large problem if one is comfortable with network communication. For someone new to the
field it can be a huge relief. As such it has a positive effect on programmer productivity since the
communication is built into Haste.App. The fact that all network communication is type checked
also has positive effects on programmer productivity since it removes confusing network errors

26

6.4 Results regarding programmer productivity 6 RESULTS

from the application.

Using the same programming language throughout the application also has a positive effect on
programmer productivity. Both because a programmer does not have to be confident in two different
languages and because the same code can be reused on both the client and on the server. However,
during this project barely any of the code written has appropriate reuse on both the client and the
server side. Therefore, the effects of reusability might be rather small. It is however still useful not
having to change language when switching between client code and server code.

Moreover, the same sources are compiled twice, but all libraries that work with GHC does not
work with Haste, which is a problem. Since all libraries do not function with both compilers, a
separation had to be made between the code that is compiled with GHC and Haste respectively.
The separation took some time to do, and it made some code confusing.

The client-centric approach of Haste.App has helped reduce the amount of errors that can occur
because the client and server do not execute code in parallel. Because the client is the driving
force, it is easier to reason about the state of the program since the server will not execute any
code without the client explicitly telling it to. Furthermore, there is no need to handle the client
waiting for information from the server; the client calls a blocking function that requests data from
the server.

6.4.5 Project standards and module structure

Neither Haste nor Haste.App brought any project structure standards, which may result in the
need to refactor code after some development, which can be unproductive. In the game and lobby
there was a lack of structure in multiple areas: how to create and update views, extracting pure
logic to enable testability and also separating client and server code. The resulting project structure
can be seen in fig. 22.

Figure 22: The resulting module structure in the project.

6.4.6 Lines of code

The source lines of code (SLOC) in the finished game and lobby were compared to other similar
applications, both games and lobby systems in the table 2. The applications that were compared
to can be found at GitHub:

27

6.4 Results regarding programmer productivity 6 RESULTS

1. Offline two-player Chinese Chequers in C++ called Checkers, here referred to as Chinese
Chequers #1, https://github.com/chandramaloo/Checkers

2. Offline full Chinese Chequers in Java called Chinese Checkers, here referred to as Chinese
Chequers #2, https://github.com/rycnhoj/Chinese_Checkers

3. Offline two-player Chinese Chequers with an additional puzzle mode in Java called chinese-
checkers, here referred to as Chinese Chequers #3, https://github.com/mavlee/chinese-checkers

4. Web application for Chinese Chequers with backend in Java called ChineseCheckersWebApp,
https://github.com/liornaar/ChineseCheckersWebApp

Name SLOC
This project’s applications

This project’s Chinese chequers 633 Haskell
This project’s lobby system 1754 Haskell
Lobby integrated with game 2387 Haskell

Other applications
Chinese Chequers #1 483 C++
Chinese Chequers #2 1011 Java
Chinese Chequers #3 1377 Java
ChineseCheckersWebApp 2404 Java, 1277 JavaScript

Table 2: SLOC comparison between the developed application and other similar ap-
plications.

The results in table 2 illustrate that an application written in Haskell and Haste.App is smaller in
all cases but one. The C++ implementation is about 150 lines of code smaller than the Haste.App
Chinese chequers, it is however only for two players and offline. The Java implementations are 300
respectively 600 lines longer than the Haste.App implementation, while also being implemented
with offline multiplayer. Moreover, the web application implemented in Java is about 1200 lines
longer than the lobby integrated with the game.

28

https://github.com/chandramaloo/Checkers
https://github.com/rycnhoj/Chinese_Checkers
https://github.com/mavlee/chinese-checkers
https://github.com/liornaar/ChineseCheckersWebApp

7 DISCUSSION

7 Discussion

Throughout the project, a number of interesting decisions have been made and interesting results
have been reached. Here follows first a discussion on the methodology of the project, if the decisions
taken were good and whether the ways of measuring were enough. Secondly, a discussion on the
results that were reached follows, if they can be considered valuable and how they hold up compared
to other libraries.

7.1 Method discussion

During the initial stages of the project, a number of design decisions were made, some of these
decisions changed during development. What follows is a discussion on the various details of the
implementation as well as the methods used to measure performance, stability and programmer
productivity.

7.1.1 Lobby implementation

The lobby implementation that is described in section 6.1 is not entirely what was initially planned.
There were a lot of changes to its design throughout the process of the project, from not being
included to being a fully fledged lobby. What follows is a discussion on the design choices during
the project.

Creating a lobby system was considered since it would make it possible to test more qualities of
Haste.App than if only a simple game was developed. It allowed testing of aspects such as database
usage, secure connections, password management, serving static content, scalability, and real-time
interaction with the server. It has, however, made the project substantially larger resulting in longer
development time. Moreover, the lobby is potentially superfluous considering that most things it
tests could just as easily be tested in the game by modifying the implementation.

The choice to include a chat in the lobby has led to being able to test real-time interaction with
Haste.App in a way that shows if there is any delay. The same thing could, however, have been
tested in other ways, such as measuring the time it takes for a request to get a response from
the server. It does, nevertheless, serve as a proof of concept that chats, with different people or
channels, is possible to implement in an easy way in Haste.App.

Implementing password management was also something that the project felt was crucial to assess
the suitability of Haste.App for web development. It was essential since user authentication is
a critical part of the web. Implementing password management revealed a security issue with
Haste.App. Namely that it is currently not possible to use secure HTML5 WebSockets for the
communication between clients. According to Ekblad, however, this should be trivial to change [4].

Furthermore, a database was used on the server-side of the application to store the games created.
Databases are very relevant to test since they are a crucial aspect of web development as they
allows for storing data between sessions, even when the server has to be restarted.

7.1.2 Game implementation

The game of Chinese Chequers had a pretty linear development path and not many changes
were made to the design described in section 4. The game aspect of this project is more of a
complementary element to the lobby rather than being the primary focus of the project itself. This
means that Haste.App and to some extent the Haste compiler could not be tested sufficiently by

29

7.1 Method discussion 7 DISCUSSION

just consulting the game. What follows is a more in-depth discussion on what the game could
evaluate and potential changes that could have been made.

Because the game is turn-based, the network communication between the server and the client is
relatively insignificant. A real time game, on the other hand, has to handle a lot more network
communication, and the communication has much more erratic behaviour. Regarding Haste.App
this would have been interesting to test, but due to the limited amount of time this had to be cut.

The game is also limited in the amount of players it can handle, with a maximum of six. It would
have been interesting to have a game which allowed for more players, or maybe one that has no
upper limit. This would allow stress testing of Haste.App even more, although the lobby serves
this purpose this work. Moreover, the game implementation could be extended with each game
having a unique hash in the URL, which also would allow for more players to connect to a game
without using a lobby system.

7.1.3 Measuring performance

Measuring the performance of an application can be done in many ways. What follows is a dis-
cussion of the criteria chosen to measure the performance of Haste.App. This is followed by a
discussion of the methods used to measure the selected criteria.

Firstly, measuring bandwidth is very relevant, if the application requires too much bandwidth it
could indicate a problem with Haste.App. However, the larger part of bandwidth for a website
is more often than not static content such as images or videos. Haste.App can not influence the
amount of static content. The bandwidth required to send the JavaScript, to keep the connection
alive, and the communication between server and client are the only aspects taken into account.
However, these are often quite small in comparison to static content. As such bandwidth is probably
not a huge problem with Haste.App, regardless of if it requires more than other libraries or not.

Measuring the amount of required system resources can be a more prominent issue. If the generated
JavaScript is very slow or uses an unnecessary amount of system resources (compared to other
similar sites), it can be considered to be a prominent issue with Haste.App. If the server seems to
use significant amounts of system resources, that is also an issue with Haste.App, especially when
there are a lot of active clients.

Moreover, the way the performance of the server was measured can be questioned. While it was
decided to use scripting to simulate clients, such tests do not necessarily simulate real conditions.
The scripts are in general faster than a real user and they cannot in a simplistic way interact with
the game. The game, however, communicates in the same way with the server as the rest of the
lobby. Moreover, the speed of interaction of the scripts could be interpreted as the scripts acting
as more than one client. The use of automated scripts means that the results of these performance
tests will have to be considered carefully, but the general picture of the performance of Haste.App
is illustrated well enough.

In addition, the system (Munin) used to measure the CPU utilisation, memory usage, network
traffic, and load average was not optimal. It gathered data on a resolution of 5 minutes which
meant that it was hard to get accurate data. It had been easier to see the results of the performance
of Haste.App if it had been possible to gather data every few seconds over an interval and then
plot that data. As it is, however, since the tests were run in such a short interval, they can be
difficult to interpret.

Furthermore, the tool used to measure the client-side performance, Chrome Developer Tools, can
be regarded as quite good. The statistics the tools displays are relevant and sufficiently accurate.
Additionally, to measure client-side bandwidth the application Wireshark was used. Wireshark is
primarily a packet sniffer but it is possible to filter all packets sent by a particular connection
and by packet type and then look at some overall statistics. Because of these filtering capabilities

30

7.1 Method discussion 7 DISCUSSION

Wireshark is an excellent tool to use when measuring bandwidth since it is possible to look at only
the relevant packets sent on a particular connection.

7.1.4 Measuring stability

The overall stability of an application is an important aspect to measure since an application is
unusable if it crashes frequently. As such, it is important that the libraries used by an application
are stable. Therefore, it is a critical aspect to consider when evaluating Haste.App. The stability
of Haste.App was primarily measured by the occurrence of unrecoverable errors when looking at
four different scenarios: updating the server during an active session, when the client has outdated
JavaScript, runtime errors on the server, and runtime errors on the client.

The first scenario was a critical aspect to consider as servers often get restarted. They get restarted
either to perform an update or because a crash has occurred. When this happens, it is preferable
that the clients do not crash. However, looking at other online games, updates often occur during
server downtime. Therefore, it is not unreasonable that a game created using Haste.App would
have to be updated when the server was offline. On the other hand, if a regular web application is
developed in Haste.App, such as a lobby system, it should be possible to update that application
without crashing the client.

The second scenario was mainly considered since the code has to be compiled twice, once with
GHC and once with Haste. Because of this, a problem could exist with syncing the client and
server versions. However, this is probably an issue a web server should deal with, assuming the
deployment of the application is done correctly.

The two final scenarios were considered because Haste.App or Haste might have some internal
problems that could lead to crashes. While this was an important aspect to consider, it is not
inherent to the programming model of Haste.App. Therefore, it might not be a particularly relevant
scenario to consider.

7.1.5 Measuring programmer productivity

Programmer productivity is an important aspect of web development. It is important mainly since
it directly plays into how much work a single programmer can produce. However, programmer
productivity is not as crucial as stability and performance. There are several examples of companies
working in an outdated or unproductive language because it allows increased security, performance
or stability. Nevertheless, programmer productivity is still an important aspect when assessing
Haste.App. The primary aspects that were considered in this project, as stated in section 4.3, were
errors present in Haste or Haste.App, the client-centric linear programming model of Haste.App,
Haskell’s strong static type system, and the lines of code of the finished application.

Measuring programmer productivity is inherently a hard problem since the metrics considered are
largely subjective. Especially measuring how much effort is put into a program depends on many
factors that range from aspects that should not be considered, such as previous knowledge, to
aspects that should be considered such as the general stability and complexity of the library. The
problem, in this case, is to recognise how much the subjective metrics contributed to programmer
productivity in relation to the objective metrics.

Out of the chosen criteria, one that can be mostly considered objective is the first one, errors present
in Haste or Haste.App. This criterion is mostly objective because the errors that can occur due
to bugs in the library should be the same regardless of other circumstances, such as the previous
knowledge of the programmers. Furthermore, if any errors are encountered, they can be counted
and put in relation to other similar libraries.

31

7.2 Result discussion 7 DISCUSSION

The next two criteria are mostly subjective, a client-centric linear programming model influence on
the project is very much dependent on the previous knowledge of the programmers using it. If the
programmers have used a similar programming model before their perception of it will be coloured
by their former experiences. On the other hand, if they have not used anything similar in the
past, their ability to grasp this new concept could unfairly sway their opinion on way or the other.
Similarly, views on Haskell’s strong static type system depends on how used the programmers are
to static typing in general and if they have or have not done similar projects in other languages.

The last criterion, the number of lines of code in the finished application, can be considered both
objective and subjective. It is objective in the sense that the comparison between written lines of
code is straight forward, and it indicates the effort put into constructing the application. However,
the number of lines of code is influenced by the programmer writing the code and can, therefore,
vary regardless of language or programming model. Nevertheless, there exist evidence supporting
a correlation between the number of errors in an application and the number of lines of code [9],
which could then be an objective measurement of programmer productivity.

In conclusion, the criteria chosen to measure programmer productivity in this project are mostly
subjective. Because of this, the results regarding programmer productivity could be influenced
more by prejudiced opinions or previous knowledge and experience by the project participants
than objective facts.

7.2 Result discussion

The results reached regarding performance, stability and programmer productivity are discussed
here. They are discussed in regard to how well they performed, and what the results can indicate.

7.2.1 Performance of Haste.App

Haste.App does not seem to have any particular issues with performance. The results in section 6.2,
however, does not show much concerning Haste.App’s performance. The results are split into server-
side performance, client-side performance, and bandwidth.

Firstly, the server-side performance results illustrate the general picture of the server part of
Haste.App. They do not show any specific issues. The conclusion that can be made from the
results in section 6.2.1 is that there are no critical issues with performance. The only point that
seems to illustrate a problem is at 14:45 in fig. 13 where the 80 clients manage to reach 30% CPU
utilisation as they create a game each and then changes its name, max number of players and pass-
word. Although this could be an issue if there are instead 200 clients connected to the server, the
measurements were also made on a server with an eight-year-old processor, which could account
for the high CPU usage.

Regarding the client-side performance, there is not a large difference between the performance of the
application and other similar sites. A disadvantage with the application developed in this project
is that the loading time increases linearly with the number of games. This would be a critical issue
when the number of games is large. However, it is most probably because of a naive implementation
of loading all active games upon entering the lobby into a table. The client performance tests show
that there is no critical issue with client performance in Haste.App, but not much else.

The results from the bandwidth tests of the server show that the bandwidth required during a
moderate load (80-90 simultaneous clients) is not concerning. The results indicate that each user
uses about 9.00Kb/s during the network test in fig. 15, which is quite small. The only concerning
result from the server-side bandwidth test would have been if the test indicated that each connection
had a significant overhead, but there were no such indications.

32

7.2 Result discussion 7 DISCUSSION

Furthermore, the bandwidth required by the application was not concerning either, when compared
to similar sites on the client-side. As shown in table 1, the bandwidth needed during a 10 minute
period either in the lobby or game of this project is not particularly large. When compared to other
sites the difference in bandwidth can be explained by the difference in active users when comparing
to Lichess and a difference in static content when comparing to Brasee. All of this concludes that
there are not any particular problems with the bandwidth requirements by Haste.App.

7.2.2 Stability of Haste.App

The stability of Haste.App does not seem to be a large problem, based on the results in section 6.3.
The amount of unrecoverable errors in Haste.App seems minimal, and in comparison to other web
libraries Haste.App performs well. The only prominent issues are updating the server without
losing connection to the clients and having to resort to using FFI.

With the combination of a statically typed system both on the client, the server, and the network
communication many unrecoverable errors are caught by the compiler. In addition, with the help
of the testing library QuickCheck, the code can be verified not to have any logical errors that would
cause a crash. In this respect, Haste.App seems to perform very well.

Moreover, compared to the stability of other web libraries, it is hard to find anything detrimental to
Haste.App. When compared to other web applications that are written in loosely typed languages,
such as the popular Ruby on Rails framework, Haste.App performs well since most errors occurs
at compile time instead of run time.

However, when the server needs to be restarted, which happens whenever the server crashes or
an update occurs all clients loses the connection. This is a prominent issue with Haste.App as
restarts to a server can be frequent in a deployed application. Whenever the server has to restart,
the clients has to restart from the entry point of the application. In a different framework, a server
can be restarted without the clients noticing, where the effect instead would be latency or a failed
request.

In addition, when using FFI functions, the strong type system of Haskell is completely absent. The
JavaScript code executed by the FFI is written in a JSString type (similar to string) which easily
type checks at compile time. The compiler, however, does nothing to ensure the correctness of the
JavaScript code.

Finally, this project has had a limited time in assessing the stability of a finished application
in Haste.App. In most real world scenarios, bugs are sometimes discovered after some time of
deployment. As such it can be difficult, at this stage, to give a correct depiction of the stability of
Haste.App, based on the small amount of time with a deployed application.

7.2.3 Programmer productivity when working with Haste.App

Many aspects influence programmer productivity, as is described in section 6.4. Here a discussion
of their importance to the overall programmer productivity of working with web development in
Haste.App follows.

On several occasions when developing the application, some solutions that were unintuitive had
to be used, they are described in section 5.2. These unintuitive solutions could affect programmer
productivity in a negative way. Some of these problems could be solved by introducing higher level
abstractions in the libraries bundled with Haste. However, increasing the amount of abstractions in
the core libraries is not likely to happen, since the focus of the core libraries is mainly on low-level
operations. The abstractions will then be introduced in other libraries developed by Haste.App’s
user base.

33

7.2 Result discussion 7 DISCUSSION

An additional effect on programmer productivity is the amount of lines of code, which in sec-
tion 6.4.6 is compared to other similar applications. The lines of code of an online multiplayer
version of Chinese Chequers in Haste.App was about 150 more than an offline two-player version
in C++. In 150 lines the C++ game would have to be extended with online functionality, and
on top of that allowing four and six players, which is a lot of functionality for 150 lines of code.
Moreover, the Haste.App application is about 300 respectively 600 lines shorter than the two offline
Chinese Chequers implemented in Java. While one of these applications has implemented some ad-
ditional variants of Chinese Chequers, it still illustrates that an online Haste.App implementation
is smaller than an offline Java implementation. A similar decrease in lines of code can be seen when
comparing the Java web application with the complete Haste.App application. This decrease in
lines of code may be an indication that writing an application in Haste.App is more productive
than using a different library.

Using a library that extends the type safety of Haskell to SQL has had both positive and adverse
effects on programmer productivity, as outlined in section 6.4.3. However, the conclusion is that,
most likely, it has had a positive influence on programmer productivity. Even though the learning
time was longer than using an untyped SQL library the benefits of both detecting errors at compile
time and the guaranteed stability of the application has freed up time that would otherwise be
spent proofreading code and writing tests.

It is not the purpose of this paper to compare the declarative and imperative paradigm. There are,
however, some notable differences when writing Haskell versus writing JavaScript, which influences
programmer productivity. One disadvantage with Haskell is that it can be a hard language to mas-
ter. A report mentions that the sophisticated type system of Haskell is appreciated by experienced
programmers [20]. The same report, however, also notes that the generality of Haskell can lead to
confusing error messages and as such frustrate learners. These error messages might scare some
adopters away from Haskell and Haste.App.

Furthermore, the run time errors that occur are hard to debug. These errors do not occur very
often because of the static type checking and in this project they have not been significantly
harder to solve. However, when they do occur, they rarely affect the execution of the application
and therefore, can commonly be ignored. Yet, run time error can also happen because of logical
errors in the code. This concludes that even though the errors reported by the JavaScript generated
by Haste could be better, they do not have any significant effect on programmer productivity.

Neither did the ability to separate code with side effects (impure code) from code without side
effects (pure code), as described in section 6.4.1, have a large impact. The only pure part of the
code is the game logic which is therefore easily testable. All other code had, and could not be
implemented without side effects. The code with side effects on the server was still tested with
QuickCheck, but the tests are more verbose and not as elegant as the test for the pure code.
Because so much of the code is impure, the otherwise positive effects of being able to separate pure
code from impure code did not have a large positive influence on programmer productivity.

While developing with Haste and Haste.App the only structural help received was that of the
Haskell tool stack. During the development of the lobby system, the module structure was re-
designed twice, indicating a lack of standards. However, since Haste.App is fairly unique in its
seamless client to server communication philosophy; no existing standard was directly applicable.
More in general, it would be helpful to have some preset norms to follow. These standards could,
very appropriately, be in the form of a framework which would define standards regarding module
structure and, for example, a structure for views and how to update them. However, one has to
understand that Haste.App is a library, not a framework.

34

7.3 Haste.App in society 7 DISCUSSION

7.3 Haste.App in society

Our study concludes that Haste.App might bring several positive benefits when compared to tra-
ditional frameworks. Haste.App is more than just a library, it is a proof of concept for a lot of
principles not widely used in modern web development. These include, which have been mentioned
before: Linearity and client-centricity, which our study have shown to influence programmer produc-
tivity in a positive way. Increasing programmer productivity could potentially have very beneficial
effects in society.

Firstly, increasing productivity might be positive for the local, national or even international econ-
omy. The increase of functionality that a single programmer could produce might also stimulate
innovation and startups, which of course also has a positive influence on the economy.

Moreover, the seamless and linear programming model could also be an effective way for a first
approach to web programming at school, since it abstracts the network communication, relieving
the programmer from dealing with fuzzy and perhaps unfamiliar network protocols. The linearity
makes the program flow easier to follow.

In addition, it is also worth mentioning that even though Haste.App might not break through as
the only library supporting these principles, it could influence other more widely used libraries. If
this happens some of the benefits mentioned above could still be expected.

Even though some benefits might not require a programming overhaul in the industry, gaining
the majority or all of the advantages offered by Haste.App most certainly does. Some advantages
relies on a functional approach to programming, for instance the advanced type system in Haskell.
Shifting the dominating programming paradigm in industry is a major obstacle.

35

8 CONCLUSION

8 Conclusion

The purpose of this paper was to evaluate Haste.App in regard to programmer productivity, per-
formance, and stability. An application was created using Haste.App, a game with a lobby. The
lobby system tested the scalability of Haste.App while the game tested the communication between
clients. From the development of this application, the programmer productivity of developing with
Haste.App was examined. The application was also deployed to a server to test the performance
and stability of Haste.App.

Firstly, the performance of Haste.App was examined, and it was not possible to find any significant
discrepancy between using Haste.App and any other web library regarding server-side performance,
client-side performance, or bandwidth. It was, however, not possible to find any advantage to using
Haste.App in this respect either. Furthermore, the performance testing was performed on an eight-
year-old processor, which adds uncertainty to the results of the tests.

Next, the stability of Haste.App was evaluated, and it was found that stability is not a problem
but rather a positive aspect of working with Haste.App. Few errors occurred in the application
developed with Haste.App since Haskell is statically typed and Haste.App extends this static type
checking over the network. One key aspect that can be an issue with stability is that the JavaScript
is sometimes cached at the client and may get outdated and cause a crash at either the client or
server. However, stability issues are often not revealed until after an application has been deployed
for some time, and as such there may be stability issues that this paper has not covered.

Lastly, the programmer productivity when writing an application using Haste.App is influenced by
its seamless, linear, client-centric programming model, errors present in Haste.App and the static
type checking present in Haskell. Haste.App allows the network communication to be type checked,
which relieves the programmer from manually checking all types. Not having to check the types
manually was shown to have a positive effect on programmer productivity since all type errors
are caught effortlessly. The seamless, linear, and client-centric programming model was also shown
to have a positive influence on programmer productivity. Moreover, the application developed in
this project has fewer lines of code compared to other similar applications. Nevertheless, there
are mainly two negative points in regard to programmer productivity. The first being standards
in Haste.App, there is, for example, no obvious way to organise a project or send data between
the client and server. The second is the low level the functions that operate on DOM elements
are on. More up to date libraries that handle DOM manipulation will hopefully be available when
Haste.App reaches a more stable state with more users. However, these results on programmer
productivity could be heavily influenced by subjective criteria, such as our previous experience in
similar programming models.

To conclude, Haste.App is a great library that enables real distributed client-server applications to
be written using Haskell and all the benefits that it delivers. It is shown to bring a lot regarding
programmer productivity but has a few, not critical, issues. Furthermore, it was not possible to
find any critical problems with the performance of Haste.App, and while not much can be said
about the stability due to the short lifespan of the testing, it appears to be stable enough.

36

REFERENCES REFERENCES

References

[1] D. Flanagan, JavaScript: The definitive guide: Activate your web pages. ” O’Reilly Media,
Inc.”, 2011.

[2] J. Gibbons and R. Hinze, “Just do it: Simple monadic equational reasoning”, in ACM SIG-
PLAN Notices, ACM, vol. 46, 2011, pp. 2–14.

[3] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random testing of haskell
programs”, SIGPLAN Not., vol. 46, no. 4, pp. 53–64, May 2011, issn: 0362-1340. doi: 10.
1145/1988042.1988046. [Online]. Available: http://doi.acm.org/10.1145/1988042.
1988046.

[4] A. Ekblad, “A distributed haskell for the modern web”, PhD thesis, Chalmers Institute of
Technology, 2015.

[5] A. Ekblad and K. Claessen, “A seamless, client-centric programming model for type safe web
applications”, ACM SIGPLAN Notices, vol. 49, no. 12, pp. 79–89, 2015.

[6] (2015). Usability iso standard, [Online]. Available: http://www.usabilitynet.org/management/
b_what.htm (visited on 05/03/2016).

[7] S. Frame and J. W. Coffey, “A comparison of functional and imperative programming tech-
niques for mathematical software development”, English, Journal of Systemics, vol. 12, no.
2, pp. 49–53, 2014, issn: 1690-4524. [Online]. Available: http://www.iiisci.org/journal/
CV$/sci/pdfs/MA079VM12.pdf.

[8] P. Hudak and M. P. Jones, “Haskell vs. ada vs. c++ vs. awk vs.... an experiment in software
prototyping productivity”, Contract, vol. 14, no. 92-C, p. 0153, 1994.

[9] S. McConnell, Code complete. Pearson Education, 2004.
[10] A. Ekblad, “Towards a declarative web”, Master of Science Thesis, University of Gothenburg,

2012.
[11] (2015). The glasgow haskell compiler, [Online]. Available: https://www.haskell.org/ghc/

(visited on 05/03/2016).
[12] (2016). What is the google closure compiler?, [Online]. Available: https://developers.

google.com/closure/compiler/ (visited on 05/02/2016).
[13] (2016). Mysql 5.7 features, [Online]. Available: https://dev.mysql.com/doc/refman/5.7/

en/features.html (visited on 04/21/2016).
[14] (2016). Network monitoring tool wireshark, [Online]. Available: https://www.wireshark.

org/ (visited on 05/13/2016).
[15] (2016). Resource monitoring tool munin, [Online]. Available: http://munin-monitoring.

org/ (visited on 05/13/2016).
[16] (2015). Watir, web application testing in ruby, [Online]. Available: https://watir.com/

(visited on 05/03/2016).
[17] M. Snoyman, “Developing web applications with haskell and yesod”, in, 1.4, O’Reilly Media,

2012, ch. Basic - Persistent, p. 298, isbn: 978-1-4493-1697-6.
[18] F. Lessa. (2016). Esqueleto - haskell package, [Online]. Available: https : / / hackage .

haskell.org/package/esqueleto (visited on 04/12/2016).
[19] P. Scott. (2014). Passwordstore, [Online]. Available: https : / / hackage . haskell . org /

package/pwstore-fast-2.4.4 (visited on 04/19/2016).
[20] B. Heeren, D. Leijen, and A. van IJzendoorn, “Helium, for learning haskell”, in Proceedings

of the 2003 ACM SIGPLAN workshop on Haskell, ACM, 2003, pp. 62–71.

37

http://dx.doi.org/10.1145/1988042.1988046
http://dx.doi.org/10.1145/1988042.1988046
http://doi.acm.org/10.1145/1988042.1988046
http://doi.acm.org/10.1145/1988042.1988046
http://www.usabilitynet.org/management/b_what.htm
http://www.usabilitynet.org/management/b_what.htm
http://www.iiisci.org/journal/CV$/sci/pdfs/MA079VM12.pdf
http://www.iiisci.org/journal/CV$/sci/pdfs/MA079VM12.pdf
https://www.haskell.org/ghc/
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
https://dev.mysql.com/doc/refman/5.7/en/features.html
https://dev.mysql.com/doc/refman/5.7/en/features.html
https://www.wireshark.org/
https://www.wireshark.org/
http://munin-monitoring.org/
http://munin-monitoring.org/
https://watir.com/
https://hackage.haskell.org/package/esqueleto
https://hackage.haskell.org/package/esqueleto
https://hackage.haskell.org/package/pwstore-fast-2.4.4
https://hackage.haskell.org/package/pwstore-fast-2.4.4

9 ATTACHMENTS

9 Attachments

9.1 System hardware details

System : Host: Hastings
Kernel : 4.2.0 -30 - generic x86_64 (64 bit gcc: 5.2.1)
Console : tty 2
Distro : Ubuntu 15.10 wily

Machine : System : Dell product : OptiPlex 960 serial : 1 GCNK4J
Mobo: Dell model : 0 Y958C v: A00 serial : .. CN708219AMH0BL .
Bios: Dell v: A05 date: 07/31/2009

CPU: Dual core Intel Core2 Duo E8400 (-MCP -) cache : 6144 KB
flags : (lm nx sse sse2 sse3 sse4_1 ssse3 vmx) bmips : 11969
clock speeds : max: 3000 MHz 1: 2667 MHz 2: 2000 MHz

Memory : Array -1 capacity : 8 GB devices : 4 EC: None
Device -1: DIMM_1 size: 2 GB speed : 800 MHz type: DDR2 part: NT2GT64U8HD0BY -AD
Device -2: DIMM_3 size: 2 GB speed : 800 MHz type: DDR2 part: NT2GT64U8HD0BY -AD
Device -3: DIMM_2 size: 2 GB speed : 800 MHz type: DDR2 part: NT2GT64U8HD0BY -AD
Device -4: DIMM_4 size: 2 GB speed : 800 MHz type: DDR2 part: NT2GT64U8HD0BY -AD
Device -5: N/A size: N/A speed : N/A type: N/A part: N/A

Network : Card: Intel 82567 LM -3 Gigabit Network Connection
driver : e1000e v: 3.2.5 -k
port: ecc0 bus -ID: 00:19.0
IF: enp0s25 state : up
speed : 1000 Mbps
duplex : full mac: 00:26: b9 :75:99:1 b

Drives : HDD Total Size: 320.1 GB (6.2% used)
ID -1: /dev/sda
model : WDC_WD3200AAKS
size: 320.1 GB
temp: 34C
Optical : /dev/sr0
model : PLDS DVD+-RW DH -16 AAS
rev: JD12
dev - links : cdrom ,cdrw ,dvd , dvdrw

38

9.2 Performance test of clientside JavaScript 9 ATTACHMENTS

9.2 Performance test of clientside JavaScript

Figure 23: Loading the clientside javascript on our application with no games and 1
player connected.

Figure 24: Loading the clientside javascript on our application with 30 games and 1
player connected.

39

9.2 Performance test of clientside JavaScript 9 ATTACHMENTS

Figure 25: Loading the clientside javascript on our application with 90 games and 1
player connected.

Figure 26: Loading brasee.com lobby with approximately 10 players and 3 games.

40

9.2 Performance test of clientside JavaScript 9 ATTACHMENTS

Figure 27: Loading lichess.org with approximately 6000 players and 1500 games.

41

9.3 Performance test of the server application 9 ATTACHMENTS

9.3 Performance test of the server application

Figure 28: CPU usage during the chat test

Figure 29: Memory usage on the server during the chat test

42

9.3 Performance test of the server application 9 ATTACHMENTS

Figure 30: Network traffic on the server during the chat test

Figure 31: Load average on the server during the chat test

43

	Introduction
	Background
	Purpose
	Limitations

	Problem description
	Performance description
	Stability description
	Programmer productivity description

	Technical background
	Haskell
	JavaScript
	Haste
	Haste.App
	DOM
	SQL & MySQL

	Method
	How to measure performance
	How to measure stability
	How to measure programmer productivity
	An application to measure Haste.App
	The Lobby system
	Chinese Chequers

	Development
	Dependency management using Haste.App
	Updating the client
	Development of the game
	Implementation of the game rules
	Game logic and data types
	Graphical implementation
	Network communication

	Development of the lobby system
	Lobby implementation
	Data types of the Lobby

	Issues encountered with Haste and Haste.App

	Results
	Game and Lobby implementation results
	Results regarding performance
	Server-Side performance
	Client-Side performance
	Bandwidth when using Haste.App

	Results regarding stability
	Results regarding programmer productivity
	Haskell versus JavaScript during development
	Runtime errors and debugging
	Database usage influence on programmer productivity
	A client-centric, seamless, and linear program flow
	Project standards and module structure
	Lines of code

	Discussion
	Method discussion
	Lobby implementation
	Game implementation
	Measuring performance
	Measuring stability
	Measuring programmer productivity

	Result discussion
	Performance of Haste.App
	Stability of Haste.App
	Programmer productivity when working with Haste.App

	Haste.App in society

	Conclusion
	References
	Attachments
	System hardware details
	Performance test of clientside JavaScript
	Performance test of the server application

