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AV-SLAM: Autonomous Vehicle SLAM with Gravity Direction Initialization
BARIS SUSLU
KAAN YILMAZ
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The simultaneous localization and mapping (SLAM) algorithms aimed for autonomous
vehicles (AVs) are required to utilize sensor redundancies specific to AVs and enable
accurate, fast, and repeatable estimations of pose and path trajectories. In this
work, a combination of three SLAM algorithms is proposed that utilizes a different
subset of available sensors such as inertial measurement unit (IMU), a gray-scale
mono-camera, and a Lidar. Furthermore, a novel acceleration-based gravity direc-
tion initialization (AGI) method for the visual-inertial SLAM (VI-SLAM) algorithm
is proposed. The SLAM algorithms, initialization methods for pose estimation ac-
curacy, speed of convergence, and repeatability on the KITTI odometry sequences
are analysed. The proposed VI-SLAM with AGI method achieves significant im-
provement in relative pose errors, i.e., less than 2% error, the convergence time is
reduced to half a minute or less, and also, the convergence time variability is less
than 3 seconds, which makes the proposed approach a perfect solution for the AVs.

Keywords: SLAM, Graph-SLAM, sensor-fusion, localization, autonomous vehicle,
extended Kalman filter, navigation, computer vision.
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1
Introduction

1.1 A Brief Introduction on Simultaneous Local-
ization and Mapping

Any ideal autonomous machine is expected to function without any external help
from humans which requires the equipment of multiple autonomous features such
as perceiving the environment, avoiding objects, path planning, etc. All of these
capabilities rely heavily on navigation and particularly; localization. Localization is
the task of locating an entity’s position within an environment. The entity can be
anything from an (Unmanned Aerial Vehicle) UAV to a car or an airplane. Different
localization solutions can be integrated into a vehicle depending on the environment
in which the vehicle is expected to be localized.
One of the most common solutions to the problem of localization is to use a GPS.
GPS can provide localization information by receiving signals broadcasted from
multiple satellites. The received GPS signals are trilaterated to have an estimation
of the vehicle’s location in terms of latitude and longitude. High availability of GPS
localization makes it a go-to solution, however, an important limitation of GPS-
based localization is that GPS signals often cannot penetrate to indoor environments
such as covered parking areas and tunnels [2]. In addition, the location estimated by
common GPS devices is accurate to approximately 6 meters which is not enough for
localizing a vehicle in cases where tolerable localization error is small such as parking
areas [3]. Even in outdoor conditions, GPS data transmission can get corrupted for
small intervals [4].
The inaccuracy and unavailability of GPS data in certain scenarios such as dense
areas, tunnels, covered parking lots or jamming effects, require a different, always-
available and accurate localization solution.

Simultaneous localization and mapping (SLAM) is one of the methods that pro-
vides such a solution. A SLAM algorithm maps the environment of the vehicle by
using on-board sensors and localizes the vehicle within the extracted map. The fact
that SLAM relies on on-board sensors makes it an independent localization solution
which does not require any communication with an external device such as a satellite
or a beacon. As a result, SLAM algorithms can work both in indoor and outdoor
environments given that the vehicle is equipped with suitable sensors. In addition,
SLAM algorithms can provide localization estimation as accurate as ±10 cm de-
pending on the time passed since the starting of the algorithm [5, 6].
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1. Introduction

1.2 Types of SLAM Algorithms
According to the way SLAM algorithms make state estimations, they can be divided
as Online-slam vs Full-slam [7]. In addition, SLAM algorithms can also be divided
into three categories, namely filter-based, graph-based and learning-based [7].

1.2.1 Online-slam vs Full-slam
Some SLAM algorithms estimate only the current pose of the vehicle while others
keep a history of the poses and occasionally optimize the pose history w.r.t. certain
constraints. Algorithms that marginalize out the pose history and estimate only the
current pose are called online-SLAM algorithms. Online-SLAM algorithms can be
mathematically generalized as : 1.1.

x∗k, M∗ = argmax
xk, M

p(xk,M|xk−1,uk, zk) (1.1)

Equation 1.1 estimates the current state of the car, xk and a map M given the
measurements zk and the control inputs uk. Here, M := {Mk}F−1

k=0 represents the
collection of sets of observed 3D map points where Mk = {mki ∈ R3}Nk−1

i=0 repre-
sents the set of observed 3D map points. F is the total number of timesteps and
Nk is the total number of 3D map points observed at time step k. Online SLAM
algorithms are not capable of detecting and fixing errors in the pose history. As a
result, an error made during the estimation of a past pose propagates to the current
pose in an unrecoverable way. EKF-SLAM algorithms are examples of online-SLAM
algorithms.

In contrary to online-SLAM, full-SLAM algorithms are able to keep track of the
pose history. ORB-SLAM2 [8] and SOFT-SLAM [9] are some of the examples of
the full-SLAM algorithms. This type of algorithms occasionally optimize the pose
history w.r.t. newly discovered constraints.

x∗0:k, M∗ = argmax
x0:k, M

p(x0:k,M|x0:k−1,u1:k, z1:k), (1.2)

The problem of full-SLAM can be generalized as shown in 1.2. It should be noted
that full-SLAM algorithms tend to be more computationally demanding because of
the fact that they optimize a larger scope of variables compared to online-SLAM
algorithms.

1.2.2 Filter-Based SLAM
Initial solutions to the SLAM problem were developed based on filtering techniques
where Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) were
used to estimate the location of the robot and the map of an unknown environment.
Both UKF and EKF are the nonlinear version of the Kalman Filter where they
linearize the nonlinear state transition and the measurement matrices around the
current estimate and gives approximation of mean and the covarience of nonlinear
measurement and state transition matrices. Beside UKF-SLAM and EKF-SLAM,

2



1. Introduction

particle-filters are also used in SLAM algorithms where the most famous particle-
filter based approach is FastSLAM [10]. However, particle-filter based algorithms
will not be explained detailed in this thesis.
The EKF-SLAM is a type of SLAM algorithm which uses EKF for online-SLAM
problem. It is based on gathering rotational and the translational data using visual,
range-bearing, etc. sensors and IMU in order to estimate the robot’s pose and the
position of the landmarks extracted from the environment. Using the data acquired
from those sensors, EKF-SLAM uses maximum likelihood estimation for data as-
sociation where it understands the uncertainty propagation during the operation
under Gaussian noise assumption [11].

After EKF-SLAM first introduced in 2001, different sensors were adapted in an
EKF-SLAM approach for various environments using different sets of sensor types
[12, 13, 14, 15, 16]. There has been some works which fuse visual sensors (monocular
or stereo camera) together with IMU to utilize the extracted features under the EKF
framework [17, 18]. EKF-SLAM is still one of the effective algorithms used to solve
low level SLAM problems.

1.2.3 Graph-based SLAM

A significant part of the literature about SLAM relies on constructing a graph dur-
ing the mapping process. The graph consists of nodes which represent the estimated
vehicle poses and measurements while edges are the spatial constraints which arise
from measurements [5, 8]. Whenever a new pose or measurement is added to the
graph as a new node, a new spatial constraint edge is constructed between the newly
added node and the relevant node.

Often, the said spatial constraints are not satisfied perfectly which leading to residu-
als. These residuals are reduced into a cost function by summation. The idea behind
Graph-SLAM is to construct such a graph and find the node configuration, or in
other words, robot pose configuration and measurements, that minimize the cost
introduced by the spatial constraints. The optimized node configuration becomes
the robot’s path history and the map which is used by the vehicle for localization
purposes.

1.2.4 Learning-based SLAM

Some SLAM algorithms do not rely on geometric constraints. Instead, they rely on
end-to-end learning of the localization problem [7]. GCN-SLAM and DF-SLAM are
examples of such learning-based SLAM algorithms where they use a Convolutional
Neural Network (CNN) architecture that takes two successively captured grayscale
images as input and output the 3D relative pose estimation between the two images
[19, 20].

3



1. Introduction

1.3 Scope of the Thesis

The main purpose of this thesis is to developed a SLAM algorithm which works with
IMU, camera and LIDAR to be used in multi-sensor fusion use-cases. The proposed
SLAM algorithm is able to make 6DOF pose estimations even in the absence of
IMU or in the absence of camera and LIDAR. In addition to that, the thesis aims
to develop a gravity direction initialization method for IMUs used in autonomous
vehicle scenarios. The proposed gravity direcion initialization method is used by the
proposed SLAM algorithm when all three sensors are available.

1.4 Related Work

SLAM algorithms may depend on different types of on-board sensor configurations
such as mono-camera-only, mono camera and (Inertial Measurement Unit) IMU,
stereo camera, mono camera and LIDAR and many other setups [21, 10, 5, 6, 22].
It is ideal to fuse all available sensors to increase redundancy and to have sensor’s
deficiencies covered by rest of the sensors.

However, having more sensors also means that it is more likely to have at least
one sensor failed at some point in time. From a practical perspective, sensors are
prone to failures. Although seldom, the accuracy of sensor outputs can degrade due
to hardware wear. It is also possible that a sensor may stop working completely
because the environmental conditions exceeds the operational limits of the sensors.
This might happen when rain drops or fog interfere with camera(s) [23, 24]. In such
cases, it is beneficial to have a SLAM algorithm or a combination of multiple SLAM
algorithms that have fail-safe modes which allows the overall SLAM algorithm to
work correctly in the absence of some of the sensors. For this purpose, in this thesis,
three different localization algorithms are developed for the cases when only IMU is
functional, when only mono-camera and LIDAR functional and when mono-camera,
LIDAR and IMU are functional.

Whenever IMU is a part of the sensor configuration, It becomes essential to develop
a robust initialization procedure for SLAM algorithm to estimate the sensor biases
and the initial orientation of the ego-vehicle´s IMU with respect to (w.r.t.) gravity
direction. This makes the algorithm usable in different types of scenarios. IMU
initialization has recently received much attention for accurate and computationally
efficient pose estimation of UAVs [6, 25]. However, IMU initialization techniques
developed for UAV may perform differently in the cars. This is because of the fact
that UAVs tend to make larger and more sudden displacements on z-axis which
makes initialization variables related with z-axis more observable compared to the
cars. Robust IMU initialization techniques which can initialize cars in different
scenarios are required for autonomous car industry. Therefore, in this thesis, a
gravity direction initialization method is developed and evaluated in visual-inertial
SLAM algorithm.

4



1. Introduction

1.5 Contributions and Organization

In this thesis, three different localization algorithms are proposed where each one
relies on different sensor setups are proposed. A high-level architecture of the pro-
posed SLAM algorithm is shown in figure 1.1. The first one is an IMU-only EKF-
Localization, the second one is an RGBD Graph-SLAM where a grayscale mono
camera and a LIDAR is are combined and the third one is a Visual-Inertial Graph-
SLAM (VI-SLAM) where an Inertial Measurement Unit (IMU) is combined with
the RGBD Graph-SLAM.

In addition, an acceleration-based gravity direction initialization (AGI) method is
proposed which is used within the VI-SLAM algorithms. The accuracy of VI-SLAM
is evaluated under different gravity direction initialization methods which are the
proposed AGI method, the method proposed in [6] and a baseline method where the
initial roll and pitch angles of the vehicle are initialized to zero degrees. All SLAM
algorithms and the gravity direction initialization methods are evaluated on KITTI
dataset.

In this work, we present three SLAM algorithms that in combination can over-
come unavoidable sensor failures, and a novel acceleration-based gravity initial-
ization (AGI) method that is faster, generalizable and more repeatable than the
state-of-the art work in [6] for ego-vehicles operating under 38km/hr. The main
contributions in this work are:

• We propose a modular SLAM framework that is resilient to sensor failures by
exploiting different combination of sensor modalities.

• We develop a robust initialization method (AGI) for loosely-coupled visual
inertial SLAM (VI-SLAM) algorithm that estimates the gravity direction from
an initial unknown pose of the ego-vehicle in about half a minute for most data
sequences. The AGI module is highly repeatable with less than 3s variations
across initialization runs. Also, the AGI module converges in high and low
ego-vehicle speed conditions.

• We demonstrate an integrated VI-SLAM algorithm with initialization module
that is capable of achieving root mean squared error (RMSE) in estimated
path trajectory in the range of 4-29 m.

• We present a generalized Python implementation of the gravity direction ini-
tialization method proposed in VINS-Mono [6], which enables initialization
scalability from UAVs to AVs with RMSE in range 12-41 m.

5



1. Introduction

Figure 1.1: Different SLAM module implementations for varying combination of
sensors
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2
Background Theory

Chapter two explains the mathematical notations that are used throughout the
thesis. Afterwards, it provides a brief background theory to form a basis for better
understanding the implementations and results presented within the thesis.

2.1 Notation and Models

2.1.1 Coordinate Systems and Notation
In this thesis, IMU, a mono-camera and a LIDAR are used under different sensor
setups for developing the SLAM algorithms. Figure 2.1 shows each sensor’s coor-
dinate system and the relation between different coordinate systems. Knowledge
about the relationships between multiple coordinate systems is required in order to
understand the equations given in the following sections.

Throughout the thesis, the world frame is denoted as (.)w which is tangent to the
world’s surface. The x-axis of the world frame faces north. In addition, ck and
bk refer to the camera and IMU coordinate system at timestep k, respectively.
Throughout the thesis, letters t and k are both used for denoting timesteps. The
reason for using two different letters for timesteps is to account for a possible fre-
quency difference between mono-camera and IMU. In this work, all 3 sensors are
time-synchronized which means that they publish data at the same time. However,
in some real-world scenarios, IMU may publish data at a higher rate than other
sensors. To make the thesis more generalizable for unsynchronized cases, t is used
for denoting IMU’s each timestep and k is used for denoting camera’s each timestep.

The matrix Tc
b = [Rc

b | pc
b] ∈ SE3 shown in Figure 2.1 represents the transformation

from the IMU coordinate system b to camera coordinate system c where Rc
b ∈ SO3

and pc
b ∈ R3 represent the rotation matrix and the translation vector of the trans-

formation, respectively. Here, SE3 represents the Special Euclidean group in 3
dimensions, SO3 represents the Special Orthogonal group in 3 dimensions, R3 rep-
resents the real vectors of length 3, pw

bt
denotes the translation of IMU w.r.t. world

frame at timestep t. Rc
b and pc

b are also called as extrinsic parameters.

Likewise, (.)l corresponds to LIDAR coordinate system where the transformation
matrix Tc

l = [Rc
l | pc

l ] ∈ SE(3) transforms from LIDAR frame to camera frame.

7



2. Background Theory

The pre-superscripts are used to denote by which sensor the variable is calculated.
For example, IMU(.) means that a given variable is calculated by IMU measurements.
Other pre-superscripts that are used are VIS and VI which mean visual odometry
and visual-inertial odometry.

Figure 2.1: Relation between the world frame, IMU frame (b), camera frame (c)
and the LIDAR frame (l) . Gravity vector G is expressed in world frame (w).

2.1.2 State-Space Representation
In classical control theory, transfer functions are mostly used to describe the dy-
namics of the systems. However, transfer functions are limited to be used in the
single-input single-output (SISO) systems. Therefore, term called state-space rep-
resentation is applied in today’s modern control theory to characterize the plant
dynamics in a systematical way.

State-space model converts the N th order differential equation into N number of
first order differential equations in order to fully describe the system dynamics.
Continuous-time linear system has state space form,

ẋ(t) = Acx(t) + Bcu(t)
y(t) = Ccx(t) + Dcu(t)

(2.1)

where x ∈ Rn is the state vector which represents the system at any given time,
y ∈ Rp is the vector of outputs and u ∈ Rm is the vector of control inputs. Matrices
A ∈ Rn×n and b ∈ Rn×m are called as state matrix and input matrix, respectively.
It is followed by output section, where output equation matrices C ∈ Rp×n and
D ∈ Rp×m are called as output and feed-through matrices. The time variable t can
be discrete or continuous. A linear discrete-time system can be formulated as,

x(t+ 1) = Adx(t) + Bdu(t)
y(t) = Cdx(t) + Ddu(t)

(2.2)

8



2. Background Theory

However, in general, motion model used to describe the system behaviour is nonlin-
ear. Nonlinear system can be formulated as,

ẋ(t) = f(x(t),u(t))
y(t) = h(x(t),u(t))

(2.3)

where f(.) and h(.) are the nonlinear state and output equations that govern the
system dynamics.

2.1.3 Motion Model

An IMU provides angular velocity ωbt ∈ R3 and acceleration abt ∈ R3 measurements
in IMU frame b at each timestep t, where measured data is fed into system to update
the kinematic models. Both measurements are noisy and affected by bias term [26].

âbt = abt + (Rw
bt

)−1gw + na

ω̂bt = ωbt + nw
(2.4)

where (Rw
bt

)−1 is the rotational matrix which maps the gravitational acceleration
from world coordinate system to body coordinate system. Both acceleration and an-
gular velocity are subjected to the additive Gaussian white noise na ∼ N (0, σ2

aI3) ,nω ∼
N (0, σ2

ωI3).
In this thesis, state-space of our dynamical system is given as follow,

x := [qw
b ,pw

b ,vw
b ] (2.5)

where qw
b ∈ R4 is the quaternion vector. Quaternions provide mathematical notation

to represent the rotation and orientation of objects(ego-vehicle) in three dimensional
space where it solves the problem of gimbal lock related with Euler angles [27]. qw

b
maps the IMU frame to the world frame, pw

b ∈ R3 is the position of the car in the
world frame and vw

b ∈ R3 is the velocity of the car in the world frame. The gravity
vector gw ∈ R3 is constant and it is represented in the world frame.
Motion model that governs the system dynamics can be listed as [28],

qw
bt+1 = qw

bt
+ dt

2
(
qw

bt
⊗ ω̂bt

)
︸ ︷︷ ︸

q̇

(2.6)

vw
bt+1 = vw

bt
+
(
qw

bt
âbt + g

)
∆t (2.7)

pw
bt+1 = pw

bt
+ vw

bt
∆t+ 1

2 ât∆t2 (2.8)

where ⊗ is called quaternion product. Elements ω̂t and ât are true angular ve-
locity and acceleration vectors which are the inputs to the plant. Quaternion part
represented by q̇ in (2.6) is written as [29],

9



2. Background Theory

q̇ = 1
2S(ω)q = 1

2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0


︸ ︷︷ ︸

(ω̂)×

q (2.9)

Term (ω̂)× shown in 2.9 is the 3×3 skew-symmetric angular velocity matrix. Overall,
our model consists of 10 states used to localize the car in the world frame.

2.2 Bayesian Filtering

2.2.1 The Bayes Filter
The Bayes filter is the most general algorithm to calculate the belief distribution
”bel” of the state from the observations and the control input. It is a general
probabilistic method which calculates the probability density function (PDF) of the
unknown state vector xt which implies a collection of all possible events [30].

Those states ,i.e., pose of the ego-vehicle, cannot be measured directly where it
should be calculated from the acquired data. Therefore, the term belief bel is used
regarding to those states. It is called recursive Bayes filter if the belief is updated
using previous belief bel(xt−1).
The algorithm consists of two steps called prediction bel(xt) and the update bel(xt)
step. Pseudo-algorithmic form of the Bayes filter is shown in Algorithm 1.

Algorithm 1 Bayes Filter Algorithm
1: function Bayes_Filter(bel(xt−1),ut, zt)
2: for all xt do
3: bel (xt) =

∫
p (xt|ut,xt−1) bel (xt−1) dx . Prediction Step

4: bel (xt) = η p (zt|xt) bel (xt) . Update Step
5: return bel(xt)

In prediction part, state xt is predicted based on the prior state xt−1 and the control
input ut. Term p (xt|ut,xt−1) is called the motion model. In order to get a better
estimation, prediction is followed by an update step where the estimated value is
combined with the measurement zt using sensor or observation model p (zt|xt). The
term µ is called the normalization constant and used to normalize the update step.

2.2.2 Kalman Filter
The Kalman filter is one of the most common recursive Bayes filtering techniques
[30]. It works under the assumption of Gaussian distribution where it represents the
states posterior belief, bel(x) by covariance Σt and the mean µt for each time step
t. This state consists of pose information regarding the vehicle and the position of
the landmarks [30].
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In order to get the posterior as a Gaussian, there are three specific requirements for
Kalman filter.

• Predicted state, xt, probability must be represented by linear function with
additive time varying Gaussian noise ε. It can be expressed as:

xt = Atxt−1 + Btut + εt (2.10)

where xt and xt−1 denote the state vector at time t and t− 1. Also, ut is the
control input at time t. At and Bt are the state transition and input matrices,
respectively. ε is Gaussian noise in vector form which has the same dimension
as the state vector. It has zero mean (µ = 0) and covariance Qt. The mean
value for posterior state can be written in following form using (2.10) and the
covariance Qt.

p (xt|ut,xt−1)
= det (2πQt)

− 1
2 exp

{
−1

2 (xt −Atxt−1 −Btut)T Q−1
t (xt −Atxt−1 −Btut)

}
(2.11)

• The measurement probability at time t requires its arguments to be linear with
additive Gaussian noise:

zt = Ctxt + δt (2.12)

where Ct is the output matrix and the vector δt denotes the measurement
noise. δt is a Gaussian noise with zero mean and covariance Rt. It is clear
that current measurement only depends on current noise δt and the current
state xt. Given the current state xt, the measurement probability is shown by:

p (zt|xt) = det (2πRt)−
1
2 exp

{
−1

2 (zt −Ctxt)>Rt (zt −Ctxt)
}

(2.13)

• The final prerequisite is that the initial belief bel(x0) must be normally dis-
tributed. Given the mean of initial belief mean and the covariance Σ0:

bel (x0) = p (x0) = det (2πΣ0)−
1
2 exp

{
−1

2 (x0 − µ0)T Σ−1
0 (x0 − µ0)

}
(2.14)

Here exp and det correspond to exponential and determinant respectively. These
assumptions ensure that the posterior is always a Gaussian.

The Kalman Filter algorithm is shown in Algorithm 2 where it has a similar pro-
cedure as the Bayes Filter. There are two main steps called prediction and update
steps [30].
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Algorithm 2 Kalman Filter Algorithm
1: function Kalman_Filter(µt−1,Σt−1, ut, zt)
2: µt = Atµt−1 +Btut . Prediction Step
3: Σt = AtΣt−1A

T
t +Qt

4:
5: Kt = ΣtC

T
t

(
CtΣtC

T
t +Rt

)−1

6: µt = µt +Kt (zt − Ctµt) . Update Step
7: Σt = (I −KtCt) Σt

8: return µt,Σt

In lines 2 and 3, the prediction of mean µ̄t and the covariance Σ̄t are calculated us-
ing the control input ut at time t. Specifically, covariance matrix Σt is the measure
of an uncertainty in the estimated state xt. It should be noted that, current state
estimate does not require all the past information, it only takes the error covariance
matrix, estimated state from previous time step and the current control input.

In line 5, Kalman gain Kt is calculated which minimizes the posterior error covari-
ance. It is followed by sixth step where the mean, µt, is calculated by incorporating
with the prior mean µ̄t, the measurement zt and the multiplication of predicted
measurement Ctµ̄t and the Kalman gain Kt. This step is also called as "innova-
tion" step in Kalman filter framework. In line 7, covariance matrix is updated using
predicted covariance matrix Σ̄t, Kalman gain and the measurement matrix Ct.

2.2.3 Extended Kalman Filter

It was mentioned that Kalman filter can handle linear measurement and the linear
state transition matrices. However, this is not the case in reality.
The EKF takes the nonlinearity into account where the output is an approximation
of nonlinear noise in the form of a Gaussian distribution. Nonlinear functions that
govern the measurement probability and the state transition probability f and h are
given as [30]:

xt = f(xt−1,ut) + εt (2.15)
zt = h(xt) + δt (2.16)

In fact, using arbitrary f and h, calculated belief, bel(xt), is not Gaussian. Therefore,
EKF calculates an approximation of bel(xt) by using linearization technique where
it can be represented in Gaussian form with an estimated covariance and mean.
Functions f and h are linearized using a (first order) Taylor expansion in which the
mean for approximated Gaussian distribution is equal to linearization point.
Nonlinear functions f and h are linearized by taking the partial derivatives (Taylor
expansion):
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F = ∂f (xt−1,ut)
∂x

∣∣∣∣∣
xt−1

(2.17)

V = ∂f (xt−1,ut)
∂x

∣∣∣∣∣
ut

(2.18)

H = ∂h (xt)
∂x

∣∣∣∣∣
xt

(2.19)

where F and V are called the Jacobian of f w.r.t. predicted state estimate xt−1 and
control input ut, respectively. H is the Jacobian of h w.r.t. current state xt. Given
these information, modified version of EKF algorithm written in [30] can be seen in
algorithm 3.

Algorithm 3 Extended Kalman Filter Algorithm
1: function Extended Kalman_Filter(µt−1,Σt−1, ut, zt)
2: µt = f(xt−1, ut)
3: Σt = FtΣt−1F

T
t + VtQtVt

4: . Prediction Step
5: Kt = ΣtH

T
t

(
HtΣtH

T
t +Rt

)−1

6: µt = µt +Kt (zt − h(µt)) . Update Step
7: Σt = (I −KtHt) Σt

8: return µt,Σt

As it can be seen, EKF utilizes Jacobian matrices Ft and Ht instead of linear
matrices At, Bt and Ct given in Kalman filter section.

2.3 Visual Module
Visual module of a SLAM algorithm involves processing 2D images with the aim
of transforming 2D images into corresponding 3D entities and vice versa. At a
high level, the visual module leverages a model called pinhole camera to construct
geometric relationship between 2D image space and the corresponding 3D scene.
Since this thesis is based on visual SLAM where images are primary inputs, the the-
ory behind visual module forms the backbone of the implemented SLAM algorithms.

In the following subsections, projective geometry, pinhole camera model, detection
of visual features, describing visual features and matching feature descriptors are
thoroughly explained. The section continues with explaining LIDAR-based point
depth estimation and camera pose estimation using 3D-2D point correspondences.

2.3.1 Projective Geometry and Pinhole Camera
In this part, a brief explanation of projective geometry will be given as a basis for
pinhole camera model which will be explained thereafter. At the end of this section,
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the reader will have an understanding about how a 3D scene point is transformed
into a pixel on an image. The equations shown in this section are based on [31].

The projective geometry is a branch of Mathematics which deals with mapping 3D
objects to 2D surfaces by projection. In the fields like 3D computer vision and 3D
computer graphics, the projective geometry is commonly used to explain how a 3D
scene is projected onto a 2D image.

As opposed to Euclidean geometry where points are represented by their Cartesian
coordinates, in the projective geometry, points are represented by their the homo-
geneous coordinates. A 2D point s is said to be in the homogeneous coordinates if
it is true that s represents the same entity as λs for any λ 6= 0.

It is possible to transform a point in Cartesian coordinates to the homogeneous
coordinates as shown in (2.20).

s =
[
o
v

]
︸︷︷︸

Cartesian

=

ov
1

 =

λ oλ v
λ


︸ ︷︷ ︸
Homogeneous

(2.20)

As shown in (2.20), transition from Cartesian to the homogeneous coordinates is
as straightforward as appending 1 to the Cartesian coordinate vector. The reverse
transformation is done by dividing the whole the homogeneous coordinate vector by
the last row of the the homogeneous coordinate vector which is shown in (2.21).

s =

λoλv
λ

 =

λo/λλv/λ
λ/λ

 =

ov
1


︸ ︷︷ ︸

Homogeneous

=
[
o
v

]
︸︷︷︸

Cartesian

(2.21)

In case of visual SLAM algorithms, the projective geometry is used in order to con-
struct the camera model. Due to its simplicity and effectiveness, it is common to
model the camera as a pinhole camera [5, 8, 22].

the pinhole camera model explains how a 3D point is projected onto a 2D image
plane. Such an explanation is important to understand how a 2D image point ge-
ometrically represents a 3D scene so that one can make inference about the scene
by looking at an image or a series of images. The Pinhole camera makes such an
inference possible by a simple approach without taking camera-related details into
account such as lens effect, etc.

Geometrically, the projection of a 3D point is explained by a straight line passing
through the 3D point and the origin of the camera frame. This is shown in figure
2.2.
According to pinhole camera model, the camera is represented by a separate coor-
dinate system/frame called camera coordinate system, which is related to the world
frame by an affine transformation. The origin of the camera coordinate system is
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Figure 2.2: Simple visualization of pinhole camera model [32].

where the camera stands at. There are two types of planes that are often repre-
sented w.r.t. camera coordinate system namely focal plane and image plane. The
focal plane is the plane onto which the 3D points are initially projected. Coordi-
nates of the points projected on the focal plane are represented by metric units.
Focal plane is embedded inside R3, and it has unit depth meaning that it has a unit
distance to the origin of the camera.

Image plane is where the points seen by the camera on the focal plane are represented
in pixel coordinates. By applying a projective transformation, one can transform
points from focal plane to image plane.

Pinhole camera model has two types of parameters namely extrinsic and intrinsic
parameters. Extrinsic parameters form a 3x4 matrix which describes an affine trans-
formation, Pc

w, that brings a 3D point from world coordinate system to the camera
coordinate system. The matrix form of the extrinsic parameters are also called
uncalibrated camera matrix. Transformation of a 3D point in homogeneous coor-
dinates X = (X1, X2, X3, 1) from world frame to camera frame is shown in (2.22)
where s = (s1, s2, s3) is the 3D Cartesian coordinates of X in camera frame, Pc

w
is the 3 × 4 uncalibrated camera matrix, Rc

w is a 3 × 3 rotation matrix describing
a rotation from world frame to camera frame and tc

w is a 3 × 1 translation vector
which describes the translation of the camera in camera coordinate system.

s = [Rc
w | tc

w]︸ ︷︷ ︸
Pc

w

X (2.22)

3D Cartesian coordinates of s can also be treated as 2D homogeneous coordinates.
This can be seen by looking at figure 2.2. Suppose that the point s = (s1, s2, s3) is
projected on focal plane. Suppose there is another point s′ = (λs1, λs2, λs3) where
λ 6= 0. By a simple inspection of figure 2.2, one can see that s and s′ lie on the
same line passing through s and the origin of the camera frame. Consequently, s
and s′ represent the same point on focal plane. By treating s as 2D homogeneous
coordinates, the projection of x on focal plane can be calculated as shown in (2.23).

15



2. Background Theory

s =

s1
s2
s3


︸ ︷︷ ︸

Cartesian

= λ︸︷︷︸
s3

s1/s3
s2/s3

1


︸ ︷︷ ︸

sfocal︸ ︷︷ ︸
Homogeneous

(2.23)

The projection logic of (2.23) can be substituted in (2.22) as shown in (2.24) where
sfocal represents the 2D homogeneous coordinates of the projection of point X on
focal plane.

λsfocal = λ

s
focal
1
sfocal

2
1

 = [Rc
w | tc

w]︸ ︷︷ ︸
Pc

w

X (2.24)

In (2.24), sfocal represents a point in focal plane which is in metric units. However, in
practice, image points are represented in image plane which is in pixel coordinates.
Therefore, points in focal plane has to be represented in image plane. This is done
by applying projective transformation matrix K as shown in (2.25).

λsproj = Ksfocal (2.25)
λsproj = K[Rc

w | tc
w]︸ ︷︷ ︸

P̂c
w

X (2.26)

In (2.25), sproj is the pixel coordinates of the projection of point X, P̂c
w is the

calibrated transformation matrix which maps 3D Cartesian points to image plane’s
2D pixel coordinate system and K is the 3 × 3 projective transformation matrix
which is responsible for mapping a point from focal plane to image plane. K is
called the calibration matrix or intrinsic parameters. Composition of K is shown in
(2.27) where ax = fmx and ay = fmy are the focal lengths in x and y axes in pixels, f
is the metric focal length, mx and my are the scale factors, γ is the skew coefficient
between x and y axes, and cx and cy are the coordinates of the principal point of
the camera. These parameters are unique to each camera.

K =

ax γ cx
0 ay cy
0 0 1

 (2.27)

2.3.2 Visual Keypoint Detection
While pinhole camera model is based on projection of points, real world scenarios
are based on dense scenes. Consequently, usage of pinhole camera model requires
the representation of a dense scene by a set of points i.e. visual keypoints. This
section explains how visual keypoints are detected from a given image of a dense
scene.
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A visual keypoint, or in other words; visual landmark/feature, refers to a 2D image
point which, together with its neighboring pixels, form a visually distinct image re-
gion. A keypoint is the center of such a distinct region and it statistically represents
the area around itself by a deterministic descriptor which behaves as a signature of
the surrounding pixels. Most of the time a 2D image has multiple visual keypoints
which are stored in a database for later use.

The notion of visual distinctiveness is vague and this is why there are different ways
to compute visual keypoints. Some of the most commonly used visual landmarks are:
Features from Accelerated Segment Test (FAST), Scale-Invariant Feature Transform
(SIFT), A-KAZE etc. Different types of features have different characteristics such
as computational demand and invariance under rotation, scaling and translation. In
the context of visual keypoints, invariance under rotation, scaling and translation
refers to a particular keypoint’s re-detectability in case of image of a scene is retaken
when the camera is rotated, scaled and/or translated. For sparse visual odometry,
invariance under these conditions are crucial because sparse visual odometry, under
the hood, is the process of re-detecting and tracking visual keypoints while the cam-
era is rotated, scaled and/or translated.

Most SLAM algorithms are designed for real-time usage in mind and it is not un-
common to run the algorithm in an embedded system where the computational
power is often limited. Therefore, it is also ideal to have a visual keypoint detection
method that runs with minimal computational demand in order to increase a SLAM
algorithm’s frame per second (fps) during runtime.

A common feature extraction algorithm called Features from Accelerated Segment
Test (FAST), is a corner detection algorithm which works on grayscale images. Ac-
cording to FAST, in order to determine if a pixel p with intensity Ip is a keypoint or
not, a 16 pixels-long circular path centered around pixel p is examined. Simply, p is
said to be a keypoint if there exists a set of n continuous pixels on the circular path
whose pixel intensities are all greater than Ip + ε or less than Ip − ε. Here, n and ε
are two hyper-parameters acting as thresholds. It is known that FAST features are
not rotation and scale invariant because of the way FAST features are extracted [33].

In this thesis, Oriented FAST and Rotated BRIEF (ORB) which is a free to use
feature extraction algorithm, is used for tracking purposes. ORB improves FAST
by adding a rotation component and introducing multi-scale image pyramid which
together makes ORB a rotation and scale invariant version of FAST. ORB feature
is comparable to proprietary feature extraction algorithms such as SIFT and SURF
while also being computationally efficient enough [34].

2.3.3 Keypoint Descriptors
This subsection explains the how visual keypoints are described by a vector of vari-
ables. The equations shown in this section are based on [35].

17



2. Background Theory

Keypoints must have a signature in order to check if two keypoints are the same
which is often done in feature matching and feature tracking. The feature signatures
which act like feature identifiers are called feature descriptors. The calculation of
a feature’s descriptor involves different aspects of the feature such as texture and
grayscale in the region around the feature. Descriptors are generated by encoding
the properties of the pixels around the keypoint’s location into a numerical vector.
It is desired to have descriptors that are fast to compute and match for computa-
tional purposes.

In this thesis, Rotated Binary Robust Independent Elementary Features (BRIEF)
types descriptors are utilized for descriptor assignment where it is robust to any
geometrical image transformations [35]. BRIEF is mostly preferred in real-time ap-
plications since it does not consume large CPU power. BRIEF basically uses image
patches from where it directly computes the binary strings.

Obtained BRIEF descriptor consists of 1’s and 0’s and described by 128-512 bits
strings. After smoothing operation is applied on an image patch, algorithm applies
binary test τ response on a created patch p. Test, τ , is written as:

τ(p;x, y) :=
{

1 if p(x) < p(y)
0 otherwise (2.28)

where p(x) and p(y) are the pixel intensity values of location pairs x and y, respec-
tively. A set of n(x, y) location pairs, where n defines the size of the binary feature
vector. The way of selecting (x, y) pairs inside these patches is explained in [35].
Finally, brief descriptor is calculated as follows:

fn(p) :=
n∑
1

2i−1τ (p; xi,yi) (2.29)

Using descriptors, one can compare features by checking the Euclidean distance
between each other. This will be explained more detailed in section 2.3.4. In this
thesis, each element of a descriptor is an 8-bit unsigned integer ranging between 0
and 255 which was implemented by OpenCV [36]. An example of a feature descriptor
can be seen below where the values vary between 0 and 255.

fn(p) = [254, 119, . . . , 98, 46, 155, 127]︸ ︷︷ ︸
32 8−bit unsigned integers

2.3.4 Descriptor Matching
Descriptor matching is the process of finding the distance between two feature de-
scriptors. Two features are said to be representing the same area if the distance
between their descriptors is less than a threshold.

Feature descriptors can be in different forms. Some descriptors are represented as
32-bit streams while some are represented as a stream of 32 8-bit unsigned integers
which is the case for this thesis. The distance calculation between two integer-based
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descriptor streams can be handled by calculating a distance metric like L1-norm or
L2-norm between the two descriptors. If the distance metric between two descriptors
happen to be less than a given threshold, the features are said to be matching. (2.30)
shows the calculation of L1-norm given two descriptors d1 and d2 where the minus
sign is applied element-wise on the given two vectors.

dist(d1,d2) =
32∑
i=0
|d1(i)− d2(i)| (2.30)

It should be noted that a successful descriptor-based matching only means that
the region around the two features are similar but it does not guarantee that the
matching is geometrically consistent. In other words, a successful match does not
mean the features are actually the exact same features. They can be similar features
whose coordinates are extremely different.

2.3.5 Bundle Adjustment

In the context of SLAM, the pose of the ego-vehicle is estimated by observing a set of
2D features in the image, matching the 2D points with the already available map of
3D points and estimating the camera matrix, i.e., the 6-DOF pose of the ego-vehicle
by estimating the optimum camera matrix. According to Pinhole camera model,
the optimum camera matrix is the one that projects the 3D map points onto their
corresponding 2D image points by least possible error.

Given a set of 3D points, X = {Xi ∈ R3}Ni=0 and their corresponding 2D features’
pixel coordinates S = {si ∈ R2}Ni=0 where N is the number of 3D-2D matches,
bundle adjustment is the optimization process which is used for estimating the
extrinsic parameters i.e. the uncalibrated camera matrix, Pc

w and each 2D point’s
scale, λi. This problem can be formulated as

Pc
w
∗,λ∗ = argmax

Pc
w,λ

p(Pc
w,λ|X ,S) (2.31)

In section 2.3.1, it was shown that λisfocal
i = Pc

wXHom
i where XHom

i is the ith 3D
point’s homogeneous coordinates w.r.t. world coordinate system, sfocal

i is the ith
point’s 2D homogeneous coordinates in focal plane.

According to bundle adjustment, the optimum camera matrix, Pc
w
∗, is estimated

such that it projects a given set of 3D points on image plane in a way that it mini-
mizes the reprojection error between the pixel coordinates of 3D points’ projections
Sproj = {sproji ∈ R2}Ni=0 and their matching 2D features’ pixel coordinates S. Bun-
dle adjustment is capable of estimating the pose of one or several cameras. For
simplification, the problem for single camera will be explained in this section. The
projection of a 3D point on image plane is formulated in [31] and it is shown below.
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Pc
w
∗ = argmin

Pc
w

N∑
i=0

deuc(π(Xi,Pc
w), si) (2.32)

π(Xi,Pc
w) = KPc

wXHom
i

λi
=

xi
proj
1

xiproj
2
1

 (2.33)

where,

XHomo
i =


Xi1
Xi2
Xi3
1

 (2.34)

Estimating the optimum camera matrix is formulated as shown in (2.32) where
deuc(.) is the euclidean distance between two same-size vectors (i.e. reprojection
error) and π(.) is the projection function which maps a 3D point from Cartesian
coordinates in world frame to pixel coordinates in image plane.

The problem of finding Pc
w
∗ is known as the resection problem which is done by

solving the optimization problem shown in (2.32) by using either Direct Linear
Transformation (DLT), Gauss-Newton or Levenberg-Marquardt algorithms. In this
thesis, the resection problem is solved by a non-linear graph optimization based on
least squares method which is going to be explained in section 2.5.2.2.

2.4 LIDAR Depth Estimation
In LIDAR depth estimation module, raw 3D LIDAR point cloud is processed into a
depth image which is used for obtaining the scale of the feature points detected on
an image. LIDAR depth estimation algorithm is implemented as shown below.

1. Raw 3D LIDAR point cloud is acquired in LIDAR’s coordinate system (.)l.
First of all, the point cloud is transformed to camera’s coordinate system using
the transformation Tc

l . This transformation is made for relating the LIDAR’s
depth information with the visual keypoints extracted in camera frame.

Figure 2.3: Gray scale image of the scene. (Second frame in KITTI sequence 08)
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Same scene obtained with LIDAR can also be shown with a grayscale image
(2.3).

2. The whole point cloud is projected onto the camera’s image plane. Projected
points that fall out of the image boundaries are considered as not visible by the
camera and therefore disregarded. In contrast, projected points that are lo-
cated within the image boundary are kept for further processing. The resulting
image can be seen in Figure 2.4.

Figure 2.4: Projection of LIDAR point cloud onto camera’s image plane. Brighter
points are further. (Second frame in KITTI sequence 08)

3. Before applying linear interpolation on figure 2.4 which will generate the final
depth image, regions that are sparsely populated by point cloud are excluded.
This is because, applying linear interpolation on sparse point cloud regions
will result in erroneous linear approximations which is not the case for dense
regions. In order to do this, a binary mask is constructed by applying morpho-
logical closing operation on the binarized version of the initial image shown
in figure 2.4 which contains the projection of visible point cloud. The mask
created after closing transformation is shown in figure 2.5.

Figure 2.5: Morphological closing operation applied on figure 2.4

The morphological closing operation is done by using an elliptical/circular
5×5 kernel which is shown in (3). Kernel is a small matrix where it is used for
image processing operations such as blurring, dilation, opening and closing.
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fk =


0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0


4. The linearly interpolation is applied on figure 2.4 where the obtained binary

mask is true. By doing so, less accurate depth information on the depth image
become avoided.

Figure 2.6: LIDAR masked depth image before linear interpolation is applied.

5. Finally, the remaining points are linearly interpolated to generate the final
depth image D which has the same shape as the input gray-scale image. The
colormap plot can be seen in figure 2.7.

Figure 2.7: Depth image after linear interpolation is applied. Colorbar is the depth
in meters. White regions are set to NaN to signal that no feature extraction should
be made from white regions.

2.5 Graph SLAM
This section makes a generic explanation of graph representation of the SLAM prob-
lem and the optimization framework which forms the back bone of graph represen-
tation. All the equations shown in this section are based on [37].
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Representing a SLAM problem by a directed graph is called Graph SLAM, and it is
commonly used in literature [5, 8, 22]. Contrary to filter-based SLAM algorithms,
graph representation brings a different view-point to the solution of SLAM problem
by introducing an optimization framework. In this framework, all measurements
and their associated constraints are reduced into residuals which are embedded in a
cost function. The main purpose of graph SLAM is to find the optimum ego-vehicle
pose and measurement configuration that minimizes the cost function by satisfying
all of the constraints as much as possible.

Figure 2.8 shows the graph representation of SLAM problem for better understand-
ing.

Figure 2.8: Simple visualization of graph representation of SLAM.

The triangle nodes shown in figure 2.8 are vehicle poses calculated at each timestep.
These nodes are called pose nodes. Each pose Pw

ck
∈ SE(3)), represents the rotation

and translation of ego-vehicle’s pose at timestep k w.r.t. world frame. In figure
2.8, one can also see black edges between two consecutive pose nodes. These edges,
marked by Ti

j ∈ SE(3), represent the relative pose constraints between two poses.
Ti
j = [Ri

j tij] is composed of a rotation Ri
j ∈ SO(3) and a translation part tij ∈ R3.

This kind of relative pose constraint can arise from wheel odometry, inertial odom-
etry or any other suitable measurement.

Apart from pose nodes, there are also green diamond nodes which represent the
observed measurements. The green diamond nodes are called measurement nodes.
In the context of SLAM, although the green diamond nodes are generally 3D map
points, for the sake generality these nodes are treated as generic measurements. An
observed measurement can be any sensor’s measurement such as a 3D map point’s
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coordinates in world frame, a 3D LIDAR point, 3D triangulation of stereo points,
a barometer reading, a GPS reading or any other measurement that can be fit into
the framework of residuals by a residual function which will be explained below.

The red edges in figure 2.8 represent the residual functions. There might be a single
or multiple types of residual functions used in graph representation depending on
the variety of measurement types being used. This is why each red edge in figure
2.8, denoted as c, is super-scripted with different letters. A residual function is
responsible for calculating the error r, between a pair of observed and predicted
measurements. Thus, in order for the notion of residuals make sense, each observed
measurement has to have an associated predicted measurement.

In this thesis, set of all observed measurements in a graph are represented as M.
M = {Mk}Fk=0 where Mk is the set of observed measurements observed by pose
node k and F is the total number of pose nodes. Mk = {Mki}Nk

k=0 whereMki rep-
resents the ith measurement observed by kth pose node and Nk is the total number
of measurements observed by pose node k. For predicted measurementsMpred, the
exact same representation/notation is used asM.

A pair of observed and predicted measurements may represent different units. It is
possible that the predicted measurement is a 2D pixel coordinate in an image and
the observed measurement is a 3D map point’s Cartesian coordinates or predicted
and observed measurements can both be 3D Cartesian coordinates but w.r.t. differ-
ent coordinate systems. Therefore, in order to correctly calculate the error vector r,
one of the measurements has to be transformed to the same units as the other. For
example, it is common to transform the 3D coordinates of the map point to 2D pixel
coordinates by using a projective function. More details about projective function
will be given in chapter 4. Once observed and predicted measurements have same
units and coordinate systems, residual vector r can be calculated. The processes of
transforming observed and predicted measurements into same units and coordinates
systems and calculating the residual vector between them are handled by residual
functions. A generic formulation of a residual function res(.) is shown below.

rki = res(Mki,Mpred
ki ,Pw

ck
) = d(Mpred

ki − πx(Mki,Pw
ck

)) (2.35)

In (2.35), d(.) is a distance function, i.e. euclidean distance, , rki represents the resid-
ual vector calculated for the ith measurement pair made by kth pose node. πx(.)
is a function that behaves as a measurement model which transforms an observed
measurement in order to make it comparable with its corresponding predicted mea-
surement. Depending on the context, π(.) can be a projective function as it was
given as an example in above paragraph, an SE(3) error function or any other suit-
able function .

As mentioned before, the purpose of residual functions is to transform a pair of
observed and predicted measurement into a vector of errors. In this sense, the
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output of the residual function rki, is a metric which signals how well the observed
and predicted measurements satisfy the constraint enforced by the residual function.
If the measurements perfectly satisfy the constraint, rki should consist of zero(s).

2.5.1 Modules of Graph SLAM
Having a modular algorithm is beneficial in terms of maintainability of the algo-
rithm. If there are multiple methods that solve the problem in different ways,
having a modular architecture allows different methods’ seamless integration into
the already existing SLAM algorithm given that the method being integrated offers
a suitable interface.

For this purpose, it is common to divide the concept of graph SLAM to front end
and back end [5, 8, 22].

2.5.1.1 Front-End

Front-end of graph SLAM algorithms is responsible for all the steps required for
making observations, associating observed measurements with predicted measure-
ments and finally estimating the pose at current timestep given a set of observed-
predicted measurement pairs. Concisely, front end module is responsible for creating
and adding nodes to the graph which are going to be optimized by the back end
module. As a result, all the steps such as feature extraction, feature matching, IMU-
preintegration, bundle adjustment, depth estimation and new map point creation
belongs to the front end module.

2.5.1.2 Back-End

The back-end module is responsible for optimizing the graph created by the front-
end module. Back-end module can optimize a section of the graph as well as the
whole graph. The former is called local optimization while the latter is called global
optimization. The graph optimization can be based on non-linear least squares
method. The way that the graph optimization is constructed and solved is going to
be discussed in section 2.5.2.

2.5.2 Solving Graph SLAM
For simplifications, in this section, it is assumed that there is only one type of
residual function to calculate the residuals between observed and predicted mea-
surements. The residual function will be denoted as c(.).

As mentioned before, the purpose of graph representation is to find the pose node
configuration, P = {Pw

ck
∈ SE(3)}Nk=0} and measurement node configuration M

that minimizes the cost given a set of measurement predictionsMpred and a residual
function res(.).

P∗,M∗ = argmax
P,M∗

p(P , M | Mpred) (2.36)
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A generic cost function can be constructed as shown below.

f(P ,M,Mpred) =
∑
〈k,i〉∈C

res(Mki,Mpred
ki ,Pw

k )T Ω res(Mki,Mpred
ki ,Pw

k ) (2.37)

P∗,M∗ = argmin
P,M∗

f(P ,M,Mpred) (2.38)

In (2.37), C is the set of all possible pairs of k and i andMki is the ith measurement
observed by kth node. Ωc is the information matrix associated with residual function
res(.).

Solving (2.38) for P∗ gives the ego-vehicle pose history that minimizes the residuals.
However, the cost function shown in (2.37) covers all the nodes inside the graph
which is useful when it is necessary to obtain a global refinement over the graph.
Global refinement is commonly employed when a loop closure is detected [5, 8, 22].
However, it should be noted that the graph representation makes it possible to ob-
tain a local map around a specific node by making a breath-first search. Obtaining
a local map also allows one to optimize only local pose nodes. This optimization
can be set by running the optimization shown in (2.38) for a subset of pose nodes
and their associated measurements.

One of the benefits of local optimization is the fact that it offers a reduced time
complexity while still ensuring measurement and pose consistency albeit locally. In
terms of time complexity, global optimization has a time complexity of O(n) in the
number of pose nodes in the overall graph. However, for local optimization, it is
common to enforce an upper limit on the number of local pose nodes [5, 38]. This
makes local optimizations to have a time complexity of O(1).

2.5.2.1 Linear Graph Optimization Using Least Squares

In this part, general framework of graph optimization using least-squares is ex-
plained. The explanation and implementation of this framework is based on g2o: A
General Framework for Graph Optimization [37].

For the sake of generality, assume that a residual function has the general form of
res(xi,xj, zij) where xi and xj are two generic variables and zij is the constraint
between the two variables. In the context of graph optimization, xi and xj are
represented as nodes and zij is represented as a directed edge from node i to node
j. In order to simplify notation, the following reduction will be made:

res(xi,xj, zij) = resij(x) = rij (2.39)
where res(.) is a generic residual function which was introduced previously in this
chapter.

Least squares problems in Euclidean space can be solved by Gauss-Newton (GN)
and Levenberg-Marquardt (LM) methods. Both algorithms try to approximate a
cost function by its first-order Taylor expansion around an initial guess x̂
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res(x̂i + ∆xi, x̂j + ∆xj) = resij(x̂ + ∆x) ∼= rij + Jij∆x (2.40)
where Jij is the Jacobian of reski(x) computed at x̂. As it was mentioned before, in
the context of SLAM, it is common to have a cost function in the form of f(xi,xj) =
rTij Ωij rij. Approximating the first-order Taylor expansion of this cost function at
x̂ yields:

fij(x̂ + ∆x) = resij(x̂ + ∆x)T Ωij resij(x̂ + ∆x) (2.41)
= (rij + Jij∆x)T Ωij rij + Jij∆x (2.42)
= rTij Ωij rij︸ ︷︷ ︸

aij

+2 rTijΩijJij︸ ︷︷ ︸
bij

∆x + ∆xT JTijΩijJij︸ ︷︷ ︸
Hij

∆x (2.43)

= aij + 2bij∆x + ∆xTHij∆x (2.44)
(2.45)

The above approximation is valid for a single pair of i and j. Generalizing it for
multiple pairs of i and j yields:

f(x̂ + ∆x) =
∑
〈i,j〉∈K

fij(x̂ + ∆x) (2.46)

∼=
∑
〈i,j〉∈K

aij + 2bij∆x + ∆xTHij∆x (2.47)

= a + 2b∆x + ∆xTH∆x (2.48)
(2.49)

where a = ∑
〈i,j〉∈K aij, b = ∑

〈i,j〉∈K bij and H = ∑
〈i,j〉∈KHij. According to Gauss-

Newton, the cost function f(.) can be minimized in ∆x by solving (2.50). Then,
the initial guess can be updated by (2.51).

H∆x∗ = −b (2.50)
x∗ = x̂ + ∆x∗ (2.51)

(2.52)

On the other hand, Levenberg-Marquardt solves (2.50) by using a damping factor
λ.

(H + λI)∆x∗ = −b (2.53)
LM dynamically controls the value of λ during optimization. A higher λ value re-
sults in a smaller ∆x value. This logic allows the algorithm to have control over the
step size which is a useful feature in non-linear surfaces.

In the context of SLAM, the translation of a vehicle or 3D Cartesian coordinates
of a map point are examples of variables which are represented in Euclidean space,
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therefore they can be optimized by using a linear least-squares method. However,
some variables do not lie in Euclidean space, therefore they require a non-linear
optimizer.

2.5.2.2 Non-linear Graph Optimization Using Least Squares

In the context of SLAM, variables belonging to SO(2) or SO(3) groups which de-
scribe rotations are often used to represent the state of vehicle. These variables
often take place in a cost function which needs to be optimized. SO(2) and SO(3)
rotations are represented in an over-parameterized way because minimal represen-
tations such as euler angles are subjected to singularities. However, in order to
over-parameterize a variable in a consistent way, one has to enforce inner constraints
associated with the over-parameterization. For example, a rotation matrix which is
a common over-paremeterized rotation representation must be in orthonormal form.
(2.51) suggests a simple update rule which cannot preserve the inner constraints of
an over-parameterized variable.

Therefore, there has to be an appropriate non-linear update operator which can work
in a non-Euclidean space i.e when there are inner constraints associated with state
variables. A non-linear update rule which uses a special operator can be defined as

x∗i = x̂i ⊕∆x∗i (2.54)

where ⊕ : Dom(x∗i )← Dom(x̂i)×Dom(∆x∗i ).

In the context of SLAM, x often have a translation component and a rotation
component in terms of quaternion which makes ⊕ the standard motion composition
operator [39].
In the presence of ⊕ operator, the residual function c(.) becomes:

res(x̂i ⊕∆xi, x̂j ⊕∆xj) = reski(x̂⊕∆x) ∼= rki + Jij∆x (2.55)

where the numerical calculation of jacobian Jij is

Jij = ∂rij(x̂⊕∆x)
∂∆x

∣∣∣∣∣
∆x=0

(2.56)
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Evaluation Methodology

3.1 Dataset
The datasets used for evaluating the proposed SLAM algorithm are the synchronized
raw KITTI odometry datasets which are often used to benchmark SLAM algorithms
[4]. In this context, synchronized means that all sensors fire data at the time and
with the same frequency which is 10 Hz. There are multiple datasets available in
KITTI raw odometry datasets. Some of the datasets are frequently used in visual
and/or LIDAR SLAM algorithms which are called KITTI sequences which originally
do not provide any IMU data. On the other hand, the raw versions of these sequences
do provide IMU data. In order to increase comparability of the algorithms proposed
in this thesis, the raw versions of the KITTI sequences are used except KITTI
sequence 03 because of its raw dataset’s unavailability. The mapping from KITTI
sequence number to raw KITTI identifier is given in table 3.1.

Seq No Raw Identifier Start End
KITTI Date KITTI Drive

00 2011_10_03 0027 0 4540
01 2011_10_03 0042 0 1100
02 2011_10_03 0034 0 4660
04 2011_09_30 0016 0 270
05 2011_09_30 0018 0 2760
06 2011_09_30 0020 0 1100
07 2011_09_30 0027 0 1100
08 2011_09_30 0028 1100 5170
09 2011_09_30 0033 0 1590
10 2011_09_30 0034 0 1200

Table 3.1: Mapping from KITTI sequence to raw KITTI identifier. Start and End
are the starting and ending timesteps of the raw dataset. Start and end timesteps are
required to align a raw KITTI dataset with its corresponding KITTI sequence. This
is important because most non-inertial SLAM algorithms are evaluated on KITTI
sequences which do not provide IMU data. Such an alignment is important for
better comparison between algorithms which use KITTI sequence and those which
use raw dataset.

The data acquisition rate of all three sensors is 10Hz. All datasets involve vehicle
turns except for sequence 04, which is the shortest sequence with 270 timesteps of a
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straight path. The average velocity of ego-vehicle for most sequences is representa-
tive of low to medium vehicle speed of about 10.4 m/s. The only high ego-vehicle
speed sequence is 01, where, the average velocity is 21.8 m/s. Also, most sequences
under analysis have an average length of 2240 timesteps, i.e., 224 s of drive time.
The data sequences have diverse and complex sceneries varying from city, to high-
way and rural scenarios. The data sequence under analysis represent environments
with varying degrees of complexities in terms of the numbers of static and dynamic
objects within the scenes.
KITTI includes data which belong to different type of sensors such as high precision
GPS/IMU, high resolution stereo camera setup and 3D Velodyne LIDAR data. Both
of these sensors have high quality where they have higher prices compared to other
sensor. Detailed information regarding sensors are given ın the next sections.

3.1.1 OXTS RT 3003

The OXTS RT3000 series is an quite advanced, 6-axis inertial navigation and GPS
system which provides a ground truth data for the orientation and the position
of the ego vehicle [40]. It includes 3-axis gyroscope and the 3-axis accelerometer
in it’s configuration. The data acquisition rate is 100 Hz and velocity accuracy is
0.05kh/h RMS. Roll/pitch accuracy and the heading accuracy values are given
as 0.03◦(1σ) and 0.1◦(1σ), respectively. Velocity histogram can be checked in Ap-
pendix.

3.1.2 Velodyne HDL-64E

The Velodyne HDL-64E is a LIDAR sensor which is designed to navigate the au-
tonomous vehicles for obstacle detection [41]. It provides high resolution and high
data rate for mapping applications. It performs measuring distance operation using
64 layers of laser which provides 360◦ map of the surrounding. The vertical field of
view varies between +2.0◦ to −24.9◦ where it has 0.4◦ angular resolution. It has
distance accuracy of ±2 and the maximum range capability is 120 m . The Velodyne
HDL-64E can capture ∼ 1.3 million data points per second.
In KITTI datasets’ LIDAR data, each point is registered with its 3D Cartesian
coordinates along with its reflectance value (r).

3.1.3 Flea2 Grayscale Cameras

Vehicle is equipped with two PointGray Flea2 grayscale cameras. Resolution is 1.4
Megapixels where the readout method is global shutter. One of the images taken
in KITTI dataset is shown in Figure 3.1. Both intrinsic and extrinsic parameters
of given are known. Relative position between grayscale cameras is also given in
KITTI.
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Figure 3.1: An example of grayscale image (KITTI dataset sequence 07)

3.2 Evaluation Metrics

Throughout the thesis, two evaluation metrics, Relative Pose Error (RPE) and Ab-
solute Trajectory Error (ATE) will be monitored. RPE and ATE are RMSE-based
metrics which are commonly used for evaluating SLAM algorithms.

3.2.1 Relative Pose Error
Relative Pose Error of a given SLAM algorithm is commonly used for vision-only
SLAM algorithms where the absolute path is not observable due to the fact that
vision-only systems cannot estimate gravity direction. RPE compares the relative
poses estimated by the SLAM algorithm and relative poses given by ground truth.
Therefore, RPE is a more practical metric when the ground truth and estimated
poses are calculated with respect to different coordinate systems. In case of this
thesis, RPE is calculated by the original evaluation kit provided by KITTI.

RPE has two components namely percetange translational RPE, RPEtrans
% , and

rotational RPE, RPErot
% . Their calculations are explained below.

Given n frames, and a timestep offset 4, RPE is calculated as shown in equation
3.4. Depending on the length of dataset being ran, 4 can refer to the timesteps
that correspond to the 100th, 200th, ..., 800th meters of the path.

Ei = (G−1
i Gi+4)−1(P−1

i Pi+4) (3.1)
m = n−4 (3.2)

RMSE(E1:n,4)trans =
(

1
m

m∑
i=1

trans(Ei)
)1/2

(3.3)

RMSE(E1:n)trans = 1
n

n∑
i=4
||RMSE(E1:n,4)|| (3.4)

where Gi ∈ SE(3) and Pi ∈ SE(3) refer to ground truth and estimated poses for
frame i, trans(.) refers to the translational part of a SE(3) pose and it outputs a
3-vector. In order to standardize RPE error across different datasets with different
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lengths, it is common to report percentage RPE which is calculated by dividing the
RPE by the length of the path [5, 8, 22, 42].

RPEtrans
% = 1

n

n∑
i=4

RMSE(E1:n,4)trans
Path Length(4) (3.5)

Path Length(4) refers to the path length covered by the ego-vehicle from 0th time
step to time step 4.
The calculation of RPErot is also similar and shown below where rot(.) refers to the
rotation matrix part of a SE(3) pose.

errorrot
i = acos(tr(rot(Ei))− 1

2 ) (3.6)

RMSE(E1:n,4)rot =
(

1
m

m∑
i=1

errorrot
i

)1/2

(3.7)

RMSE(E1:n)rot = 1
n

n∑
i=4
||RMSE(E1:n,4)|| (3.8)

3.2.2 Absolute Trajectory Error
In inertial and visual-inertial setups, the purpose is to estimate the absolute tra-
jectory with respect to gravity. Therefore, it is more expressive to report Absolute
Trajectory Error (ATE) in meters when the purpose is to estimate the absolute path.

The difference between ATE and RPE is the fact that ATE directly compares ground
truth and estimated poses with each other while RPE compares the relative ground
truth and estimated poses with each other. Since ATE provides a more direct com-
parison by directly taking the difference between ground truth and estimated poses,
it is more realistic to report ATE whenever estimations are made with respect to
the same coordinate system as the ground truth poses.

In this thesis, ATE metrics are calculated by an open-source project called evo [43].
Calculation of ATE is shown in equation 3.9 where n is the total number of frames
in the dataset, Pi is the ith estimated pose, and Gi is the ith ground truth pose.

ATE1:n =
(

1
n

n∑
i=1

trans(Fi)
)1/2

(3.9)

Fi = G−1
i Pi (3.10)

3.2.3 Absolute Error of Gravity Direction
Evaluation metric of gravity direction initialization methods is based on absolute
errors between the estimated (ĝ) and ground truth (gGT ) values of roll and pitch,
and it is calculated as |ĝroll,pitch − gGTroll,pitch|.
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3.3 Summary
In Chapter 3, KITTI odometry datasets and the sensors used in KITTI setup were
explained. It was followed by the definition of evaluation metrics called Relative
Pose Error and Absolute Trajectory Error.
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4
Implementation

In this thesis, three different localization algorithms are implemented. First one is
an IMU-Only EKF-Localization, second one is a RGBD Graph-SLAM which uses a
mono-camera and a LIDAR and the third one is Visual-Inertial (VI) Graph-SLAM
which combines RGBD Graph-SLAM with an IMU.

4.1 Definition of Localization Problem
The three localization solutions presented in this thesis addresses the problem local-
ization in different ways. While, IMU-Only solution is a pure localization solution,
RGBD and Visual-Inertial SLAM algorithms provide a SLAM based localization
solution. Different algorithms have different underlying mathematical logic’s which
are going to be explained in this section.

For the case of IMU-only localization solution, assume that the initial position of a
vehicle in world frame, Pw

b0 ∈ R3 and the initial velocity in IMU frame, vb0
b0 ∈ R3

are given. The solution to localization problem is an algorithm which estimates
the position, pwbk

, and the orientation, qwbk
, using the readings acquired from both

gyroscope ω̂bk
and the accelerometer, âbk

.

qwbk
defines a rotation which maps the kth IMU frame to the world frame. It should

be noted that qwb0 is initially unknown. The initialization method which estimates
qwb0 is explained in section 4.4.2-4.4.2. The task of online-SLAM is to solve the
following problem

x∗t = arg max
xt

p(xt|xt−1,ut, zt). (4.1)

To remind that, in (4.1), uk and zk represents the controls inputs and measurements.
xk is the state vector at time k and is constructed as shown below,

xk :=
(
qw

bk
,pw

bk
,vw

bk

)
,

The solution to localization problem can be summarized as: Given initial conditions
vw

b0 ,v
w
b0 ,P

w
b0 , the purpose is to develop an algorithm which estimates the states xk

where 0 < k.
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In case of RGBD and Visual-Inertial SLAM algorithms, the problem of localization
is handled in a slightly different way. The probability distribution that is to be
estimated by RGBD Graph-SLAM is shown in (4.2).

x∗0:t,M∗ = arg max
x0:t,M

p(x0:t,M|x0:t−1, z0:t), (4.2)

In (4.2), M = {Mk : 0 ≤ k < N} represents the collection of sets of 3D map
points observed at each timestep k. Mk = {mki ∈ R3 where 0 ≤ i < Nk} represents
the set of 3D map points seen at timestep k. N is the total number of timesteps
and Nk is the total number of 3D map points seen at timestep k. In the context of
graph slam, z0:k represents the measurements which ties a particular 3D map point
to its corresponding 2D image keypoint. In addition, a slightly simpler state vector
is used for graph slam where vw

bt
is excluded from xk.

x∗0:t,M∗ = arg max
x0:t,M

p(x0:t,M|x0:t−1,u0:t, z0:t). (4.3)

The problem of Visual-Inertial Graph-SLAM is also similar to what is shown in (4.2)
except VI-SLAM also takes control inputs u0:k into account which is shown in (4.3)
In the next section, IMU only EKF SLAM will be explained. It will be followed
by implementation of RGBD Graph-Based SLAM and Visual Inertial Graph-Based
SLAM algorithms. System layout with different sensor setups can be checked in
figure 1.1.

4.2 IMU-Only EKF-Localization

Filter-based localization aims to optimally estimate the state vector using a motion
model and sensor data. In IMU-Only EKF-Localization algorithm, EKF framework
combined with IMU is applied to perform IMU dead-reckoning, i.e estimate the pose
of the ego-vehicle. In case of visual sensor failure, localization is achieved by pro-
posed IMU only EKF-Localization algorithm.

EKF-Localization is the extension of Kalman filter in the form of nonlinear case.
EKF-Localization utilizes an error covariance matrix in order to store the state
uncertainties. In this algorithm, measurement information is given in the form of
equality constraint. It is aimed to generate fictitious measurement equation:

zt = h(xt) + δt (4.4)

where h(xt) ≈ 0. This method allows one to feed the EKF with the information
that zt = 0 (pseudo-measurement). This method is first introduced in [44] and used
together with neural network to estimate the process noise covariance matrix Qt and
the measurement noise covariance matrix Rt at each time step in [28].
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Figure 4.1: Flow diagram of the pseudo-measurement based EKF SLAM algorithm

It is assumed that, the lateral and the vertical velocities of the car (in IMU frame)
is roughly zero. We generate the two pseudo measurements in the form of:

zt =
[
zlat
t

zver
t

]
=
[
hlat (xn) + δlat

t

hver (xn) + δver
t

]
=
[
vlat
t

vver
t

]
+ nn (4.5)

where δlat
t and δver

t are the zero mean and Gaussian noises δlat
t ∼ N (0,σ2

lat) , δver
t ∼

N (0,σ2
ver). As it was mentioned before, this assumption allows us to perform an

update step in EKF algorithm (Line 7 in Algorithm 3).

4.3 RGBD Graph-SLAM
RGBD-SLAM uses a gray-scale mono camera and a LIDAR to estimate the 3D pose
of the ego-vehicle. In each timestep, a single grayscale image and a LIDAR point
cloud is received and upon receiving the data, LIDAR point cloud is transformed
into a depth image D by following the steps explained in 2.4. The process continues
with the feature extraction from mono-camera.

4.3.1 Feature Extraction
In this step, 750 ORB features are extracted from the grayscale image at 8 different
scales where the scale factor is 1.2 and the fast threshold is 12. A plain feature extrac-
tion algorithm results in a heterogeneous distribution of features points. Extracted
features were clustered around feature rich regions such as grass and trees. This
is problematic behavior since features that are extremely close to each other have
also similar descriptors which makes feature matching process more error-prone. In
addition, since there is an upper limit on the number of features, when most of the
features are extracted from particular areas, little to no feature capacity is left to ex-
tract features from less feature rich but still important regions such as road, cars and
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traffic signs. This phenomenon resulted in poor feature matching performance and
often led to loss of tracking. In order to improve this phenomenon, a non-maximal
suppression (NMS) based method is used to ensure a certain distance between two
adjacent features. A NMS method called Suppression via Square Covering (SSC)
which was proposed by Oleksandr Bailo et. al. is used in our pipeline because of the
method’s better scalability and feature homogeneity compared to other methods [45].

Figure 4.2: Plain ORB feature extraction (Green squares)

Figure 4.3: ORB feature extraction with SSC method (Green squares)

20000 ORB features are extracted as candidates. These features are sorted with
respect to their response in descending order. Then, SSC is used to filter the most
responsive and the most homogeneous 750 features. Finally, the extracted features
are described by BRIEF descriptors.

Storing the extracted features in a list would be a simple approach, but a list does
not allow storing and accessing individual features with respect to their 2D pixel
coordinates. Matching a 3D map point with a 2D feature, which is going to be
explained below, requires a brute force search over the 2D feature candidates. If
2D features were stored in a list, in the worst case scenario, 750 comparisons would
be needed to match a 3D map point with a 2D point. To cut down the number of
comparisons in worst case, the extracted 2D features are stored in a 64X128 grid
structure. The exact usage of grid structure will be clarified later on.
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At this point, if the algorithm is to process the very first image and LIDAR data,
a simple initialization phase is conducted to set an initial, Pw

0 ∈ SE(3) pose and
create the 3D map points out of the 2D features. The newly generated 3D map
points serve as an initial map for estimating the poses at later timesteps. The first
timestep’s IMU pose, Pw

b0 , and camera pose, Pw
c0 , are initialized as below where I4

is a 4x4 identity matrix and Tb
c is the 4x4 time-invariant extrinsic transformation

matrix between camera and IMU frame which was provided by the KITTI dataset.

Pw
b0 = I4 Pw

c0 = Pw
b0T

b
c (4.6)

After the initial poses are set, all the 2D features’ depths are estimated from the
depth image which was provided by the LIDAR point cloud.

4.3.2 Feature Matching and Pose Estimation
If the image and LIDAR data that are being processed are not the very first data,
which means that an initial map and an initial pose already has been set, the algo-
rithm continues with estimating the pose at the current timestep, Pw

ck
, k 6= 0. The

process of pose estimation is handled in two parts.

In the first part, previous frame’s 3D map points and current frame’s 2D features
are matched with each other. At this point, the current frame’s pose is unknown.
For this purpose, the current frame’s pose, Pw

ck
, is initially assumed to be the same

as the previous frame’s pose, Pw
ck−1

. Then, each 3D map point associated with the
previous frame is projected onto the current frame’s image in pixel coordinates.
For example, say that a 3D map point is projected on the current image and the
projected pixel coordinates are (oi,vi). In order to match two features with each
other, a set of 2D feature candidates should be obtained as matching candidates for
the 3D map point. For this purpose, the current frame’s 2D feature candidates are
extracted from a rectangular region with boundaries at (oi ± ∆r,vi ± ∆r) where
∆r, the 2D feature candidate search radius, is set to 30 pixels. Accessing and fil-
tering feature candidates that are within given boundaries is handled in O(1) time
complexity in the number of features. This is because the features are stored in a
grid structure which allows constant time accession when the features are accessed
by their coordinates. If the features were stored in a regular list structure, the time
complexity would be O(n).

After extracting the 2D feature candidates for matching with a particular 3D map
point, a brute-force BRIEF descriptor matching is done between the map point and
each of the 2D features. Those 2D features, whose matching distance with the map
point’s descriptor are lower than µ = 40, are considered as good matches, and the
good match with the lowest matching distance is considered as the best match. The
best match is saved for pose estimation. If the map point could not be matched
with a 2D feature, the map point’s outlier counter is incremented by one. If a
map point’s outlier counter becomes greater than 2, no matching attempt will be
made between that map point and any 2D feature in future. The matching method
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explained above is repeated between all the 3D map points associated with the pre-
vious frame and the 2D features extracted from current frame. If the total number
of good matches is less than 20, the 2D feature candidate search radius, ∆r, is re-
laxed to 60 pixels, and all the matching steps are repeated from scratch. This kind of
second chance is implemented for better matching performance in turning scenarios.

All the matches obtained from the matching phase are used in the second part which
is the estimation of current frame’s pose, Pw

ck
. The pose of the current frame is esti-

mated in two phases. In the first phase, initial pose of the frame is estimated using
the 3D-2D matches made between the previous and current frame. In the second
phase, a local map is used to refine the initially estimated pose.

Figure 4.4: Overall architecture for RGBD-SLAM (white blocks) and VI-SLAM
(white and blue blocks). The red area represents the front-end module while the
green area represents the back-end modules. Gray blocks show where loop closure
support would be integrated in the architecture. Gray blocks are there to guide
future work.

In both phases, the pose estimation is conducted in the same way. Given a set of
3D map points associated with frame k, Xk = {Xki ∈ R3}Nk

i=0, and their matching
2D features in image plane’s pixel coordinate system, Sk = {ski ∈ R2}Nk

i=0, the pose
of the kth frame, Pw

ck

∗ ∈ SE(3) is estimated in a way that Pw
ck

∗ best satisfies the
projection constraint, resproj, between the 3D map points and 2D features. Xki is
the 3D Cartesian coordinates of the ith map point associated with kth frame, ski is
the pixel coordinates of the 2D feature in image plane, and Nk is the number of
3D-2D matches found for the kth frame. This problem is formulated in [37] and it
is shown below:
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Pw
ck

∗ = argmax
Pw

ck

p(Pw
ck
| Xk,Sk) (4.7)

Pw
ck

∗ = argmin
Pw

ck

f(Pw
ck
,Xk,Sk) (4.8)

fk(Pw
ck
,Xk,Sk) =

Nk∑
i=0

rproj
ki

T Ωproj rproj
ki (4.9)

f(Pw
k ,Xk,Sk) =

Nk∑
i=0

resproj(Xki,xki,Pw
ck

)T Ωproj resproj(Xki,xki,Pw
ck

) (4.10)

(4.11)

where,

resproj(Xki,xki,Pw
ck

) = π(Pw
ck
,Xki)− xki (4.12)

π(Pw
ck
,Xki) = K(Pw

ck
)−1XHom

ki (4.13)

In the above set of equations, XHom
ki is the homogeneous coordinates of Xki, π(.) is

the projection function which projects a 3D map point’s homogeneous coordinates
onto the image plane’s pixel coordinate system, K is the intrinsic parameter matrix
and rproj

ki ∈ R2 is the residual vector in pixel coordinates. Since, rproj
ki is a 2 × 1

vector, Ωproj is in the form of Ωproj =
[
Ωproj
x 0
0 Ωproj

y

]
where first diagonal element

governs the information related with the x component of the estimations, while the
second diagonal element governs the y component’s.

The minimization problem in (4.8) is solved by g2o: General Graph Optimiza-
tion package which runs a Levenberg-Marquardt based on non-linear least-squares
method [37].

Solving the above minimization problem in a plain way is subjected to errors. Due
to imaging noises, some of the 3D-2D matches made in the matching process might
be erroneous leading to outlier matches. In order to account for outliers and reject
them, Random Sample Consensus (RANSAC) scheme is wrapped around the above
pose estimation method in order to make robust estimations under the influence of
outliers.

RANSAC scheme is an iterative method that allows one to discard outliers that do
not fit a mathematical model [46]. In case of projective geometry, the mathematical
model is that all 3D map points must get projected onto their corresponding 2D
features given a camera matrix, i.e., pose Pw

ck
. This mathematical model arises from

the physics governing the projective geometry which is the model used to explain
how a camera senses its environment. In each iteration of RANSAC, 3 random
matching pairs of map points and 2d features are selected without replacements
from sets Xk and Sk, respectively. Then, the selected 3 measurement pairs are used
in (4.8) to estimate the pose, Pw

ck
. The estimated pose is used to project all the 3D
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map points in Xk onto the kth image’s pixel coordinate system and the re-projection
error is calculated between each projected 3D map point and its corresponding 2D
feature in Sk. Measurement pairs which have a re-projection error that is greater
than a threshold are said to be violated the mathematical model and considered
as outliers. The number of inliers signals specify how good the estimated pose fits
the underlying Pinhole camera model. Higher number of inliers means that the
estimated pose is more accurate. The complete algorithm of RANSAC is shown
in algorithm 4 where ReprojErrorTH is the re-projection error threshold used for
identifying inliers, MaxIterRANSAC is the number of iterations that the RANSAC
scheme will be run, Card(.) is the cardinality of a given set, and Cart(.) transforms
homogeneous coordinates to Cartesian coordinates.

Algorithm 5 Explanation of RANSAC wrapped around Bundle Adjustment.
RANSAC explanation is based on [46]

1: function Estimate_Pose_RANSAC(Xk,Sk, ReprojErrorTH, MaxIter-
RANSAC)

2: MaxNumberOfInliers ← −1
3: BestPose ← None
4: for all 0 to MaxIterRANSAC do
5: Pick 3 random numbers in [0, Nk) without replacement
6: Get Xki and Ski for the 3 different i
7: Estimate Pw

ck
using the selected 3 random measurements

8: Calculate λkisproj
ki = KPck

w
TXHom

ki
T for all 0 ≤ i < Nk

9: Calculate reprojection error e = |Cart(sproj
ki

T ) − ski| where e has shape
Nk × 2 for all i

10: enorm ← {||ei|| : 0 ≤ i < Nk}
11: einliers ← {enormi : enormi < ReprojErrorTH for 0 ≤ i < Nk}
12: if Card(einliers) > MaxNumberOfInliers then
13: MaxNumberOfInliers ← length(einliers)
14: BestPose ← Pw

ck

15: return BestPose, MaxNumberOfInliers

The above procedure is repeated for a certain number of iterations. After finishing
all iterations, the estimated pose that led to the highest number of inliers is selected
as the most accurate pose. Afterwards, a final optimization is made by using only
the inlier measurements associated with the most accurate pose.

In this implementation, RANSAC parameters such as the number of RANSAC it-
erations and re-projection error threshold are set to 1000 iterations and 2 pixels,
respectively.

If the number of inliers obtained in RANSAC-based pose estimation is greater than
10, the initially estimated pose is accepted as accurate enough to go through a re-
finement step. Otherwise, the estimated pose is considered as unreliable and the
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tracking is considered as lost, and no pose estimation is made for future timesteps.

The refinement step, which is the second phase of pose estimation, is implemented
similar to the first phase. The difference is that a local map is also used in the pose
estimation. A local map is constructed by gathering the 3D map points that have
observed by the last 3 keyframes. After constructing the local map, 3D-2D matching
is made in the exact same way as it was explained previously. The obtained matches
are merged with the inlier measurements obtained from first phase and a new pose
estimation is done as explained above.

4.3.3 Creating New Map Points and Keyframes
After refining the pose, the 6dof pose at current timestep takes its final state. This
allows one to create new 3D map points out of 2D features that were not matched
with previous 3D map points in the earlier matching phases. Since the camera pose
is known at this point, a 2D feature’s up-to-scale 2D homogeneous coordinates in
camera coordinate system, Qck ∈ R3, can be calculated given the 2D feature’s 2D
pixel coordinates in image plane κ ∈ R2. This is shown in (4.14) where K is the
3x3 by intrinsic parameters.

Qck =

ab
1

 = K−1κHom (4.14)

Given 2D up-to-scale homogeneous coordinates of point XHom
s , the 3D Cartesian

coordinates w.r.t. world coordinate system at the correct scale can be calculated
as shown in (4.15) where D(κ) represents the value of the depth image at pixel
coordinates κ.

X̂ = Pw
ck

∗

a×D(κ)
b×D(κ)

D(κ)

 (4.15)

Finally, the algorithm checks whether a new keyframe needs to be added to the
map. The decision of whether a new keyframe has to be added or not is handled by
a simple policy. According to this policy, a new keyframe is created once in three
frames. Every time a new keyframe is added to the map, a local bundle adjustment
is ran which optimizes the poses of last 3 keyframes and the map points associated
with them.

4.4 Visual Inertial Graph-SLAM
As explained before, Visual-only SLAM algorithms suffer from various conditions
such as fast rotations, sun glare, textureless areas [47]. The fact that IMU provides
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reasonably accurate pose estimations for short duration promises an improvement
in the estimation accuracy. These are some of the reasons why it is common to
integrate the visual sensor setup with an IMU in order to increase the robustness of
the algorithm [6, 22].

Integrating IMU to visual-only SLAM setups requires three main parts to be con-
sidered namely IMU pre-integration, IMU initialization and coupling of visual and
inertial pose estimations, which are going to be explained in next sections, respec-
tively.

4.4.1 IMU Pre-integration

In the optimization part of a visual-inertial SLAM and visual-inertial alignment sec-
tion of an initialization, visual and inertial constraints are required to be optimized.
In most of the cases, the camera and the IMU run at different rates where the IMU
has higher data acquisition frequency. Therefore, IMU measurements between two
consecutive frames need to be integrated into one constraint. It is assumed that,
the camera is synchronized with the IMU and they both provide discrete measure-
ments at times t in this thesis. However, it is critical to give entire background for
the IMU pre-integration theory which makes our algorithm more generic to use it
even in unsynchronized IMU and the camera configuration. A visual explanation
of IMU-preintegration is shown in figure 4.5. The equations that are shown in this
section are based on [6].

IMU pre-integration technique was proposed in [48]. This method was further re-
fined and enhanced in [49] where posterior IMU bias correction is applied. In [6],
IMU pre-integration method was improved to incorporate with IMU bias correction.
In this thesis, the method proposed by VINS-MONO [6] is used.

An IMU consists of a 3-axis accelerometer and a 3-axis gyroscope sensors, where
they provide discrete angular velocity and the acceleration measurements in body
frame at a high rate compared to data acquired by the camera. The raw measure-
ment of gyroscope and the accelerometer, ω̂ and â provided by IMU are shown in
(2.4).
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Figure 4.5: Different data acquisition rates for the camera and the IMU. Pre-
integrated IMU measurement is used as geometric constraint between two keyframes.

Given two key frames i, j and ∆t. t ∈ [i, j] which denotes the IMU sampling
interval, propagation for position, velocity and the rotation between two consecutive
keyframes can be calculated using:

pw
bj

= pw
bi

+ vw
bi

∆t+
∫∫

t∈[i,j]
(Rw

t (ât − na)− gw) ∆t2 (4.16)

vw
bj

= vw
bi

+
∫
t∈[i,j]

(Rw
t (ât − na)− gw) ∆t (4.17)

qw
bj

= qw
bi
⊗
∫
t∈[i,j]

1
2Ω (ω̂t − nω) qbk

t ∆t (4.18)

where Ω(ω) is skew-symmetric matrix and,

Ω(ω) =
[
−ω× ωx
−ωx 0

]
, ω× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (4.19)

Equations 4.16, 4.17 and 4.18 describe that position,velocity and position is required
to be expressed in body frame for IMU state propagation. In the optimization part
of back-end process where the visual and the inertial parts are tightly coupled with
each other, IMU state variables are continuously updated in the sliding window.
When this operation starts to update the states at time t = i, IMU measurements
are needed to be re-propagated and pose that corresponds to time t = j should be
calculated again. This procedure is repeated at every iteration step which makes it
computationally expensive and time consuming. In order to avoid this issue, IMU
pre-integration method used in VINS-MONO will be adopted in our algorithm.
Equations 4.16-4.18 can be written as:

Rbi
w pw

bj
= Rbi

w

(
pw

bi
+ vw

bi
∆t− 1

2gw∆2
)

+αbi
bj

(4.20)

Rbi
w vw

bj
= Rbi

w

(
vw

bi
− gw∆t

)
+ βbi

bj
(4.21)

qbi
w ⊗ qw

bj
= γbi

bj
(4.22)
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where,

αbi
bj

=
∫∫

t∈[i,j]
Rbk
t (ât − na) ∆t2 (4.23)

βbi
bj

=
∫
t∈[i,j]

Rbk
t (ât − na) ∆t (4.24)

γbi
bj

=
∫
t∈[i,j]

1
2Ω (ω̂t − nω) γbk

t ∆t (4.25)

Operation ⊗ implies the multiplication between two quaternions. Equations 4.23-
4.25 clearly show that pre-integration terms αbi

bj
, βbi

bj
,γbi

bj
only depend on bias terms.

IMU pre-integration terms can be calculated by taking the bi as the reference frame.
Since this calculation is done between two relative frame, bi and bj, there is no need
to make any recalculation. In discrete time implementation of IMU pre-integration,
Euler method is used in this thesis.

IMU pre-integration terms are only dependent on IMU biases where there is no
relation between other states and the pre-integration terms. Bias values for both
angular velocity and the acceleration are considered to be constant during the time
∆t. However, possibly, estimated bias changes small amount over time. In order
to compensate the error caused by bias change, pre-integration terms αbi

bj
, αbi

bj
,αbi

bj

are adjusted where small bias correction is applied using first-order approximation
method. However, if the estimated bias change is larger than predefined value, re-
propagation will be done. Pre-integration terms are updated w.r.t. the gyroscope
and the accelerometer biases as follows,

αbi
bj
≈ α̂bi

bj
+ Jαba

δba + Jαbw
δbw (4.26)

βbi
bj
≈ β̂bi

bj
+ Jβba

δba + Jβbω
δbw (4.27)

γbi
bj
≈ γ̂bi

bj
⊗
[

11
2Jγbω

δbw
]

(4.28)

where Jαba , Jαbω
, Jβba , Jβbω

, Jγbω
are the Jacobian matrices w.r.t. sensor biases.

It would be good to remind that, when the estimated bias values change slightly,
equations 4.26, 4.27 and 4.28 are used to correct pre-integration terms.

4.4.2 IMU Initialization
IMU initialization is the process of estimating certain parameters of the IMU in or-
der to make more accurate estimation using the data provided by IMU. Commonly,
parameters that are estimated within the IMU initialization phase are gravity di-
rection, gyroscope bias and accelerometer bias [6, 22]. Among the IMU parameters
that need to be estimated, gravity direction is the most important one. Because,
accelerometer readings also include acceleration due to gravity which should be re-
moved for a correct translation estimation. This is because an accelerometer would
read aw = [0, 0, 9.80665] m/s2 even when the IMU is stationary. Double integrating
this acceleration reading without removing the effect of gravity would yield to a
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non-zero displacement in the z-axis while the sensor have not moved at all. This is
why, the effect of gravity is misleading and must be removed.

Within this thesis, gravity direction is estimated in the IMU initialization phase, but
gyroscope and accelerometer bias estimation is not performed and they are assumed
to be zero-vectors.

In this thesis, three different gravity direction initialization methods are imple-
mented and compared with each other. These methods are baseline method, the
proposed acceleration-based method, and the method proposed in VINS-MONO [6].

Baseline for Gravity Direction Estimation

In baseline initialization, ego-vehicle’s initial roll and pitch values with respect to
world frame are initialized to zero. Although this is a crude way to initialize the
gravity direction, given that cars generally start their trip within certain roll and
pitch values, initializing roll and pitch angles to zero might be superior against other
model-based initialization methods in some scenarios.

AGI: Acceleration-Based Gravity Direction Estimation

The proposed acceleration-based gravity initialization method (AGI) is based on ex-
tracting the gravitational acceleration by estimating the inertial accelerations using
the visual pose estimations and subtracting the inertial accelerations from the raw
accelerometer readings. Here, inertial acceleration refers to the acceleration that
actually changes the velocity of the ego-vehicle.

VISac0(i) = ∂2

∂i2
trans(Pc0

ci
), (4.29)

Gravab0(i) = Rb0
bi

abi
−Tb

c
VISac0(i), (4.30)

ê(i) = Θ
(

arg min
Rw

b0

Rw
b0

Gravab0(i)− gw
)
, (4.31)

ĝ(t)roll, pitch = 1
t

t∑
i=0

ê(i)roll, pitch. (4.32)

In (4.29), ĝ(t) is the gravity direction estimated at timestep t in Euler angles, Θ(.)
transforms a given rotation matrix into Euler angles, IMUabk refers to the 3-axis
acceleration data read from IMU in IMU frame at timestep k, VISaw

k is the 3-axis
acceleration data w.r.t. world frame estimated by taking the double time derivative
of the translation part of the pose estimated by visual odometry at timestep k. In
each timestep, derivatives are calculated by taking the forward, central and back-
ward differences in order to have equal number of derivatives as the the quantity
whose derivative is being calculated.
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Figure 4.6: KITTI sequence 02 - Left: Visually estimated and smoothed accelera-
tions vs accelerometer readings. Right: Gravitational acceleration estimated by the
different between visually estimated accelerations and accelerometer readings

Due to the fact that the translation estimations made by the visual odometry are
not smooth, the derivatives, namely velocities and accelerations, are extremely noisy.
Noisy velocity estimations result in erroneous acceleration estimations which severely
degrades the performance of gravity direction initialization.

To account for noisy behavior, moving average of the derivatives are calculated to
smooth out the noise. That being said, estimated positions are smoothed by tak-
ing the moving average which is followed by calculation of velocity from smoothed
positions and smoothing of velocity as well. The moving average lag is set to 5 by
trial and error. Since the moving average of a quantity follows the original data by a
certain lag, correction for such lag is applied by simply shifting the moving average.
Thus, each time a derivative is calculated, a smoothing by moving average opera-
tion is applied, the lag is corrected, and only then the second derivative is calculated
over the moving average of the first derivative. The left subplot in figure 4.6 shows
the raw accelerometer readings against the smoothed visual acceleration readings.
The right subplot in the same figure shows the subtraction between the two readings.

The convergence policy is based on the difference between consecutive roll and pitch
estimations. The convergence criteria is to have the difference between two consec-
utive roll and pitch estimations less than 0.005 degrees. If this criteria holds for 3
timesteps, the gravity direction initialization is assumed to be converged.
The proposed AGI method is explained in algorithm 6.

VINS-MONO Gravity Direction Initialization

One of the three gravity direction initialization methods investigated in this thesis is
the one that was proposed in VINS-MONO [6]. It should be noted that the method
proposed in VINS-MONO is reimplemented in this thesis. The implementation and
results of this method are the outcomes of our understanding and the equations
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Algorithm 6 Proposed Gravity Direction Initialization (AGI)
1: function Estimate_Gravity_Direction(a0:t,Pc0

c0:ct
)

2: L← [ ]
3: VISvc0 ← DERIVATIVE(trans(Pc0

c0:ct
))

4: VISac0 ← DERIVATIVE(VISvc0)
5: for i = 0 to t do
6: Gravab0(i)← Rb0

bi
ai −Tb

c
VISac0(i)

7: ê(i)← Θ
(

arg min
Rw

b0

Rw
b0

Gravab0(i)− gw
)

8: Push ê(i) to L
9: ĝ(t)roll, pitch ← mean(Lroll, pitch)

10: return ĝ(t)roll, pitch
11: function Derivative(x)
12: x̄← moving average of x
13: Shift x̄ forward in time
14: Calculate ∂

∂t
x̄ by finite differences

15: return ∂
∂t

x̄

presented in this part are based on [6].

VINS-MONO jointly estimates the scale of the scene, the gravity direction gc0 ,
and the initial velocities vbk

bk
. However, since the scale of the scene is already de-

termined by LIDAR, scale is removed from the initialization method proposed in
VINS-MONO.

According to VINS-MONO’s method, the vector that consists of initialization vari-
ables can be written as:

XI =
[

vb0
b0 vb1

b1 . . . vbn
bn gc0

]
(4.33)

Likewise, pre-integration terms ((4.22)) between two consecutive frames, i and j can
be written as:

αbi
bj

= Rbi
c0

(
pc0

bj
− pc0

bi
+ 1

2gc0∆t2i −Rc0
bi

vbi
bi

∆ti
)

(4.34)

βbi
bj

= Rbi
c0

(
Rc0

bj
vbj

bj
+ gc0∆ti −Rc0

bi
vbi

bi

)
(4.35)

After simplifying above equations, the following formula is derived:

ẑbi
bj

=
 α̂bi

bj

β̂
bi

bj

 = Hbi
bj
XI + nbi

bj
(4.36)

where,

Hbi
bj

=
 −I∆ti 0 1

2Rbi
c0∆t2i Rbi

c0

(
pc0

cj
− pc0

ci

)
−I Rbi

c0R
c0
bj

Rbi
c0∆ti 0

 (4.37)
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Finally, estimating XI comes down to solving the following linear least squares prob-
lem:

min
XI

∑
i,j∈B

∥∥∥ẑbi
bj
−Hbi

bj
XI

∥∥∥2
(4.38)

where B notates all of the frames. By solving (4.38), initial velocities for each
frame and the gravity direction gc0 are estimated. (4.38) is solved using Cholesky
decomposition method.

Propagating IMU Initialization Results

Until the correct IMU parameters are initialized, the pose estimations are made
at a reduced accuracy because of the erroneous IMU parameters which are used
in the estimations. Once the correct IMU parameters are estimated, it is ideal to
correct the past pose estimations in order to have a more accurate estimated path
and map. For this purpose, when the gravity direction is initialized, a global bundle
adjustment is applied to the whole graph using the inertial pose estimations made
by correct IMU parameters.

4.4.3 Visual-Inertial Coupling
When the gravity direction is initialized, it becomes possible to correctly calculate
inertial measurements and couple inertial measurements with visual estimations.
There are two common types of visual-inertial couplings which are loosely and tightly
couplings [50]. Among those, a loosely coupling is implemented in this thesis. The
equations presented in this section are based on [37].
In the case of loose coupling, the visual and inertial pose estimations are made in-
dependently. Then, the independent pose estimations are combined with respect to
the weights associated with each of the two types of pose estimations.

The loose coupling is implemented as follows: In each timestep, IMU pre-integration
terms γck−1

ck
and αck−1

ck
are calculated as shown in section 4.4.1. Then, given the

visual-inertially estimated pose in previous timestep VIPw
ck−1

, the visually estimated
pose for current timestep Pw

ck
∈ SE(3) and a relative pose estimated by inertial

measurements IMUTck−1
ck
∈ SE(3), for timestep k, the combined pose estimation is

calculated as show in (4.39).

VIPw
ck

= argmin
Pw

ck

f(IMUTck−1
ck

, VIPw
ck−1

,Pw
ck

) (4.39)

f(.) = (VISrk−1,k)T ΩVIS
VISrk−1,k + (IMUrk−1,k)T ΩIMU

IMUrk−1,k (4.40)

The above optimization problem is also solved using non-linear least-squares method
implemented in g2o [37].

In (4.40), ΩVIS and ΩIMU are 6x6 information matrices associated with visual and
inertial residual vectors. Adjusting each information matrix allows one to assign
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weights to either type of estimations. VISrk−1,k and IMUrk−1,k are the SE(3) residual
vectors. They are called SE(3) vectors not because rk−1,k belongs to SE(3) group,
but because the residual vectors calculated by a residual function resSE3(.) which
creates a SE(3) transformation between two SE(3) poses. Calculation of IMUrk−1,k
is handled as explained below.

IMUrk−1,k =
[
trans(IMUEk−1,k)
rot(IMUEk−1,k)

]
6x1

(4.41)

IMUEk−1,k = resSE3(VIPw
ck−1

,Pw
ck
, IMUTck−1

ck
) (4.42)

IMUTck−1
ck

=
[
matrix(γck−1

ck
) αck−1

ck

01x3 1

]
(4.43)

In (4.42), Ek−1,k is a 3×3 matrix which represents how good two poses, VIPck−1 and
Pck

, satisfy a given SE(3) constraint IMUTck−1
ck

. In (4.43), γck−1
ck

and αck−1
ck

are the
rotational and translational IMU preintegration terms between cameras ck−1 and ck.

By using the above logic, residual vector IMUrk−1,k is constructed as shown in (4.42)
where trans(P) is the translation part of P, rot(P) is the rotation part of P rep-
resented in Rodrigues vectors and matrix(q) is the 3× 3 rotation matrix form of a
quaternion q. The calculation of resSE3(.) is handled as in (4.44).

resSE3(VIPw
ck−1

,Pw
ck
,Tck−1

ck
) = (Tck−1

ck
)−1(VIPw

ck−1
)−1Pw

ck
(4.44)

Calculation of VISrk−1,k is done in a similar way which is shown in (4.45).

VISrk−1,k =
[
trans(VISEck−1

ck
)

rot(VISEck−1
ck

)

]
6x1

(4.45)

VISEck−1
ck

= (VISTck−1
ck

)−1(VIPck−1)−1 Pck
(4.46)

VISTck−1
ck

= (VIPw
ck−1

)−1 Pw
ck

(4.47)

ΩVIS and ΩIMU are both set to 6x6 identity matrix I6 for an equal-weighted coupling.

4.5 Summary
In this chapter, details about the three localization algorithms used inside AV-
SLAM are given. Among them, the first one is the IMU-Only EKF-Localization
which uses a pseudo-measurement based algorithm. The second algorithm is called
RGBD-SLAM which leverages mono-camera and LIDAR to make pose and sparse
map estimations in a graph-slam framework. The last component of AV-SLAM
is the Visual-Inertial SLAM (VI-SLAM) which combines RGBD-SLAM with IMU
measurements to use all the three available sensors for making more accurate pose
estimations.
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5
Results

In this chapter, results of three different SLAM algorithms namely IMU-only EKF-
Localization, RGBD-SLAM and VI-SLAM are presented. For each algorithm, rel-
ative pose errors and plots of estimated paths are presented. RPE is reported for
easier comparison with other vision-only based SLAM algorithms which were eval-
uated in the KITTI Visual Odometry contest.

Additionally, for VI-SLAM, gravity direction initialization errors are presented along
with convergence plots of the proposed and VINS-Mono’s initialization methods. In
addition, absolute trajectory errors of VI-SLAM under different gravity direction
initialization method are also presented.

In order to give an overall idea about the proposed localization algorithms, table 5.1
is presented in advance. The table compares the translational RPE of the proposed
algorithms with each other as well as with state-of-the-art SLAM algorithms.

Seq No % RPEtrans
IMU-
Only
(Pro-
posed)

RGBD-
SLAM
(Pro-
posed)

VI-SLAM LOAM
[51]

ORB-
SLAM2
[8]

Cube-
SLAM
[52]

PL-
SLAM
[53]

Baseline AGI
(Pro-
posed)

VINS-
Mono
[6]

00 362 1.62 2.0 2.03 2.13 0.78 0.7 1.97 2.38
01 14.0 31.1 30.6 32.1 30.7 1.43 1.39 - 3.23
02 91.5 1.25 1.18 1.19 1.13 0.92 0.76 2.48 2.2
04 2.23 0.9 1.06 1.16 4.44 0.71 0.55 1.12 1.57
05 24.2 1.53 1.23 1.31 2.82 0.57 0.37 1.64 1.67
06 6.65 1.69 1.24 1.36 2.78 0.65 0.43 2.26 2.02
07 3.95 2.01 1.17 1.21 2.34 0.63 0.45 1.63 1.57
08 22.7 1.78 1.35 1.3 2.73 1.12 1.06 2.05 2.42
09 11.1 1.05 0.66 0.65 2.65 0.77 0.83 1.66 1.49
10 11.9 1.04 0.75 0.75 3.19 0.79 0.55 1.46 1.61

Table 5.1: Comparison of percentage translational RPE of all proposed localiza-
tion algorithms and other state-of-the-art SLAM algorithms (Best is marked with
bold). Baseline, Proposed AGI and VINS-Mono shown under VI-SLAM represent
the gravity direction initialization methods used in VI-SLAM.
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Seq No Length(km) Environment % RPE-trans RPE-rot (deg/100m)
00 3.7 Urban 362 0.945
01 4.2 Highway 14.0 0.09
02 5.07 Urban 91.5 0.264
04 0.4 Country 2.23 0.101
05 2.2 Urban 24.20 0.38
06 1.2 Urban 6.65 0.12
07 0.7 Urban 3.95 0.17
08 3.2 Urban,Country 22.70 0.22
09 1.7 Urban,Country 11.10 0.17
10 0.9 Urban,Country 11.90 0.21

Table 5.3: RPE of IMU-Only EKF-Localization for all KITTI sequences

5.1 IMU-Only EKF-Localization

The proposed IMU-only EKF-Localization algorithm is tested with different KITTI
Test sequences. The given sensor inputs involve only IMU signals. The hyper-
parameters used in this algorithm are illustrated in Table 5.2.

Parameter Symbol Value
Standard deviation of lat. velocity σlat 20
Standard deviation of ver. velocity σver 20
Standard deviation of angular velocity σω 0.05
Standard deviation of acceleration σa 0.03

Table 5.2: IMU only EKF-Localization parameters

where process noise covariance matrix is diag (σ2
ωI3, σ

2
aI3), and noise covariance ma-

trix is defined as diag (σ2
latI3, σ

2
verI3). Both noise covariance matrix and the process

noise covariance matrix, R and Q are assumed to be constant over time.

Results which belong to IMU-Only EKF-Localization where the pseudo-measurement
concept are used can be seen in table 5.3.

Table 5.4 shows the results of the IMU-Only EKF-Localization without the pseudo-
measurement based update step.
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KITTI Sequence Length(km) Environment % RPE-trans RPE-rot (deg/100m)
00 3.7 Urban 634 0.945
01 4.2 Highway 115 0.09
02 5.07 Urban 268 0.264
04 0.4 Country 2.03 0.101
05 2.2 Urban 97.1 0.38
06 1.2 Urban 108 0.12
07 0.7 Urban 85.9 0.17
08 3.2 Urban,Country 206 0.22
09 1.7 Urban,Country 146 0.17
10 0.9 Urban,Country 85.2 0.21

Table 5.4: RPE of IMU-Only EKF-Localization without pseudo-measurement con-
cept for all KITTI sequences

As it can be seen in tables 5.3 and 5.4, the pseudo-measurement concept has high
effect on the accuracy of pose estimation of the ego-vehicle. The proposed as-
sumption achieved approximately 300% better translational estimation beside the
double-integration case.

It is critical to remind that current IMU-Only localization algorithm assumes that
measurement noise covariance matrix R and the process noise covariance metric Q
are constant over time. It is known that these parameters can dramatically change
the performance of EKF. Therefore, this could lead degraded pose estimation of
ego-vehicle.

It was mentioned that gyroscope used in KITTI setup is highly accurate where
the OXTS is utilized. Therefore RPErot values stay minimal beside the rotation
estimations done by Visual-SLAM algorithms. It will be seen that Visual-SLAM al-
gorithms are not able to achieve same rotation estimation accuracy as in IMU-Only
EKF-Localization.

Figure 5.1 shows the path estimated by IMU-Only EKF-Localization algorithm. It
can be seen that IMU-Only algorithm manages to make heading estimations at an
acceptable accuracy when travelling on a straight path. This is thanks to pseudo-
measurement update. However the algorithm still suffers from long-term drift due
to the noisy nature of IMU.

5.2 RGBD-SLAM
In this section, RGBD-SLAM results are presented. Proposed algorithm is tested
in KITTI datasets for different scenarios. Parameters used in this algorithm can be
checked in table 5.5.

In table 5.5, #Features is the maximum number of extracted features, #ScaleLevels
is the number of scale levels used, and ScaleFactor represents the pyramid decimation
ratio for ORB features and the number of pyramid levels.
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Graph-SLAM Parameters Value
#Features 750
Scale Factor 1.2
#ScaleLevels 8
RANSAC Reprojection Error 2
RANSAC #Iterations 1000

Table 5.5: Parameters used in ORB feature extraction process. Same parameters
are used for VI-SLAM

Table 5.6 shows the translational and rotational RPE of RGBD-SLAM on all avail-
able KITTI datasets.

Figures 5.2 shows the ground truth and estimated paths for datasets 00 and 02. The
rest of the estimated path plots can be seen in appendix A.1.

Although lack of loop closure support is one of the reasons for errors in RGBD-
SLAM, it is worth mentioning other aspects of the fact that the proposed algorithm
leads to accumulation of errors. The main causes of errors can be explained under
three sections which are feature matching related, pose estimation related errors,
and high velocity related errors.

5.2.1 Feature Matching Related Errors
Even if two features are said to be matched with each other, this only means that
they are similar enough to be treated as two features representing the same physical
point. However, there is often a small disparity between the physical 3D locations
of two matched features due to non-zero matching distance. As it was mentioned
before, two features are considered matched if the distance between their descrip-
tors is less than a threshold. A lower threshold would result in more confident
feature matches, but there would be less number of features. Such a strict threshold
setting is expected to result in loss of tracking at some point due to little to no
feature matches. Therefore, it was necessary to keep the threshold that results in

Seq No Length(km) Environment % RPE-trans RPE-rot (deg/100m)
00 3.7 Urban 1.62 0.62
01 4.2 Highway 31.1 2.17
02 5.07 Urban 1.25 0.48
04 0.4 Country 0.9 0.52
05 2.2 Urban 1.53 0.58
06 1.2 Urban 1.69 0.52
07 0.7 Urban 2.01 0.91
08 3.2 Country 1.78 0.69
09 1.7 Country 1.05 0.48
10 0.9 Country 1.04 0.52

Table 5.6: RPE of RGBD-SLAM for all KITTI sequences
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enough number of features but more erroneous matches. These erroneous matches
accumulate over time and result in errors.

Figure 5.3: Matching distance histogram of randomly selected two frames

Figure 5.3 shows the two common matching distance histograms. On the left sub-
figure, we see a mixture of two Gaussian distributions where the left Gaussian is the
source of most inliers matches. On the right sub-figure, we see a single Gaussian
where the low-distance matches are not dominant enough to form a second Gaussian.
Therefore, the left sub-figure signals a better matching performance.

5.2.2 Pose Estimation Related Errors

Pose estimation was embedded in a RANSAC scheme in order to address the er-
roneous matches made in feature matching step. By its nature, RANSAC scheme
has to allow for some level of reprojection error because only matches with reprojec-
tion errors less than a threshold are considered as inliers. If the reprojection error
threshold was set to a value close to zero, there would be too little inliers.

The noise inherent in images and feature extraction process makes matching far
from perfect. Given that no matches has zero reprojection errors, RANSAC scheme
has to allow for some errors which are going to accumulate in time. Thus, the
same trade-off as in section 5.2.1 is valid for reprojection error threshold. A lower
reprojection error results in more confident but fewer inlier matches which might
result in loss of tracking.
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Figure 5.4: Reprojection error (in pixels) histogram of frames shown in figure 5.3.

Figure 5.4 shows the reprojection error histograms of the two frames shown in figure
5.3. It can be seen that the frame which had a mixture of Gaussians in figure 5.3
made the reprojection errors more concentrated towards zero compared to the frame
which had a single Gaussian in figure 5.3. Both histograms show that applying a
reprojection error threshold of 2 pixels discards most of the highly erroneous outliers
however there are still some reprojection errors allowed to pass which accumulate in
time and result in drifting from ground truth path.

5.2.3 Errors in high velocity cases

We further analyze the reason for superior pose estimations using the RGBD-SLAM
method on datasets 07, 08, 09, 10 over data set 01 in Fig. 5.5. Here, we observe
that for sequence 01, there is a significant disparity in the ratio of inlier feature
matches to all the matches(inliers and outliers) with respect to sequences 07-10 due
to the fast ego-vehicle speed. The number of inlier matches refers to the number of
3D-2D matches that have a re-projection error < 2 pixels, and the total number of
matches refers to all the 3D-2D matches regardless of the re-projection error [54].
This analysis shows that ego-vehicle speed affects visual feature mapping heavily,
which in turn influences the accuracy of AV-SLAM.
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Figure 5.5: Ratio of inliers to total number of matches for each timesteps calculated
for datasets 01, 07, 08, 09 and 10, respectively.

5.3 Visual-Inertial Graph-SLAM
In this section, gravity direction initialization results are presented first. Then,
RPE, ATE, and estimated path of VI-SLAM are presented. It should be noted that
VINS-MONO-related results shown under this section are the results of our imple-
mentation and understanding from [6].

5.3.1 Gravity Direction Initialization
Table 5.7 shows the gravity direction initialization errors under different initializa-
tion methods for VI-SLAM. The proposed AGI method managed to make estimation
with varying accuracy. Initialization of sequences 02, 07, 08 and 10 are made with
less than 1 degree of absolute error for both roll and pitch. In addition, the proposed
AGI method outperformed the baseline scenario in terms of absolute error of roll
and pitch in the mentioned datasets including the dataset 09.

The proposed AGI method is expected to be as accurate as the accuracy of ac-
celerometer data and the visually estimated acceleration. The fact that accelerom-
eter biases are not estimated and assumed to be zero, affects the accuracy of the
initialization method at a certain degree. In addition, the proposed methods’ vi-
sual position estimations are slightly inferior than state-of-the-art algorithms. Since
visual acceleration estimations are product of visual translation estimations, more
accurate translation estimations are expected to result in more accurate visually
estimated accelerations. During the initialization, position estimations are made
with the Baseline VI-SLAM algorithm and according to table 5.10, %RPEtrans of
Baseline VI-SLAM values are much less than state-of-the-art visual-only SLAM al-
gorithms which points out that there is a significant room for improving the position
estimations, and thus, the proposed AGI method’s initialization results.
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Furthermore, Table 5.7 shows the absolute initialization errors between ground truth
and estimated roll and pitch using the three initialization methods under analysis
where we observe that the AGI method outperforms other two methods in datasets
07, 08, 09 and 10. This is due to the ego-vehicle making significant displacements
in lateral and/or vertical directions during the initialization phase of the aforemen-
tioned datasets. These displacements in all directions increase the observability of
accelerometer, therefore making the comparison between visual and inertial accel-
erations more accurate. Therefore, due to errors in pose estimations, we observe
low accuracy for initialization on dataset 01, which is consistent with our findings
in Table 5.1.

Number of time steps required to initialize gravity direction with VINS-Mono method
are as shown in table 5.8. It shows that whenever VINS-Mono manages to converge
it converges faster than the proposed AGI method. However, as shown in figure 5.7,
this convergence can get disrupted in some datasets which requires one to question
convergence of VINS-Mono’s method. On the other hand, figure 5.6 shows that the
proposed AGI method’s convergence is much more stable.
Compared to the proposed algorithm, VINS-Mono has some initialization issues
where it could not manage to converge for datasets 04, 05, 07 and 10. VINS-Mono
resulted in less accurate results compared to our initialization algorithm for most of
cases. This might be caused by VINS-Mono’s inapplicability to autonomous vehicle
scenarios since VINS-Mono was developed to initialize the gravity direction and the
bias terms for MAV’s.

It should be noted that the smoothing applied on derivatives of visual position esti-
mations also alters the estimations. Instead of moving average-based smoothing, a
low-pass filter based smoothing could potentially be a better solution because such
smoothing would remove the high-frequency noise without altering the underlying
trend.

Finally, the convergence criteria also has an effect on the accuracy of the initialization
method. A more strict convergence policy could potentially improve the results, but
it also means that the initialization will take place at a later point in time.

5.3.2 VI-SLAM Related Results
Table 5.9 shows the expected time for each primary component of the tracking pro-
cess and figure 5.8 shows the total elapsed time per timestep as a function of time.
The results of VI-SLAM shown in the mentioned table and figure are similar to that
of RGBD-SLAM’s therefore only VI-SLAM’s results are shown.

Table 5.10 shows VI-SLAM’s percentage translational RPE for each dataset under
different initialization methods.
VI-SLAM outperformed RGBD-SLAM in all datasets except in datasets 00, 01 and
04. The superior VI-SLAM results in rest of the datasets are results of IMU’s accu-
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rate short-term pose estimations. However, in dataset 00, the reduced accuracy in
VI-SLAM arises from erroneous gyroscope readings inherent in dataset 00. Figure
5.9 compares ground truth orientation and orientation estimation by propagating
gyroscope readings. It is clear that in dataset 00, gyroscope readings corresponding
to roll and pitch axes diverge from ground truth values immediately compared to
dataset 02. Here, dataset 02 is chosen randomly as a counter-example, but any other
dataset except dataset 00 does result in same comparison results.

Figure 5.9: Orientation estimation by integration of gyroscope readings. Initial
orientation is taken from ground truth. (Left: KITTI sequence 00, Right: KITTI
sequence 02, Blue: Estimated, Orange: Ground Truth).

Table 5.11 shows VI-SLAM’s rotational RPE for each dataset under different ini-
tialization methods. It shows that even-though the gravity initialization method
indirectly affects the rotation estimations because rotation estimations are jointly
estimated with translation estimations therefore the two types of estimations are
coupled.

Figures 5.10 show the ground truth path and the path estimated by VI-SLAM. In
order to give a complete understanding about how VI-SLAM estimates path for rest
of the KITTI sequences, the rest of the estimated path plots are presented in figures
A.1-A.10 in appendix A.1.

Table 5.12 shows VI-SLAM’s RMSE of ATE for each dataset under different initial-
ization methods. Erroneous roll and pitch estimations in table 5.12 result in erro-
neous translation estimations as well since subtraction of gravitational acceleration
from raw accelerometer readings also become erroneous. Therefore, translational
estimation also gets affected by wrong roll and pitch estimations.

On the other hand, the inferiority in datasets 01 and 04 are due to initialization error
that is dominant enough to wipe out all the pose estimation contribution made by
IMU.

As shown in table 5.1, the errors of proposed methods including VI-SLAM are
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higher than most of the state-of-the-art SLAM algorithms such as LOAM and ORB-
SLAM2. This was an expected results since the proposed graph SLAM algorithms do
not support loop closure which is supported by most of the latest SLAM algorithms.

Figures 5.11 and 5.12 show the ATE plots of VI-SLAM for datasets 02 and 07 under
different initialization methods. It can be seen that the ATE has a dependency on
the accuracy of the gravity direction initialization.

5.4 Summary
In this chapter, the three components of the AV-SLAM and the proposed gravity
direction initialization method are evaluated by using the relevant metrics. It was
seen that the accuracy of the localization algorithms improves as new sensors are
introduced to the sensor suite with the exception of sequence 00 where the gyro-
scope readings are faulty. In all cases except sequence 09, state-of-the-art SLAM
algorithms outperformed the proposed algorithms due to proposed algorithms’ lack
of loop-closure and tracking method of map points. Other sources of pose estimation
errors in proposed algorithms detected to be feature-matching and pose estimation
related. When it comes to IMU initialization, the proposed gravity direction initial-
ization method managed to initialize roll and pitch angles at acceptable accuracy in
half of the datasets however it resulted in more than 3 degrees of error in 4 of the
datasets. The proposed method also managed to initialize roll and pitch angles in
less than half a minute in 9 of the datasets.
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Figure 5.1: Trajectory results for IMU-Only EKF-Localization for KITTI se-
quences 01 (upper-left), 05 (upper-right), 06 (lower-left) and 09 (lower-right).
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Figure 5.2: Path estimated by RGBD Graph-SLAM on datasets 00 (upper-left),
02 (upper-right), 06 (lower-left) and 09 (lower-right). (Red: Ground Truth, Blue:
Estimated)

64



5. Results

Seq No Roll - Abs Error (deg) Pitch - Abs Error (deg)
Baseline AGI (Pro-

posed)
VINS-
Mono
[6]

Baseline AGI (Pro-
posed)

VINS-
Mono
[6]

00 2.41 0.8± 0.03 0.57± 0.1 1.27 2.38± 0.05 1.06±0.02
01 0.73 1.07± 0.95 9.6± 0.06 3.01 6.78± 0.45 4.44± 0.03
02 0.9 0.68± 0.01 0.19± 0.01 0.23 0.34± 0.05 0.19±0.08
04 2.44 3.22± 0.06 - 0.66 1.3± 0.08 -
05 1.87 3.85± 0.01 - 1.22 0.09± 0.02 -
06 2.65 5.3± 0.01 5.42± 0.02 0.55 1.38± 0.22 0.93± 0.01
07 1.29 0.38± 0.06 3.35± 0.2 0.64 0.93± 0.06 0.73± 0.01
08 2.95 0.49± 0.14 8.52± 0.3 1.37 0.52± 0.04 1.5± 0.02
09 1.92 1.46± 0.05 0.94± 0.05 1.76 0.1± 0.01 1.83± 0.01
10 1.4 0.82± 0.03 - 3.22 0.33± 0.05 -

Table 5.7: Absolute error of gravity direction initialization methods calculated
using the estimated and ground truth roll and pitch angles of gravity direction.
Results are averaged over 5 runs and ± represents 1 standard deviation. Non-
converged datasets are marked with -.

Figure 5.6: Convergence plot of the proposed AGI method w.r.t. time for KITTI
sequence 09 and 10. The orange points are the individual roll and pitch estimations
made at each timestep (Represented by ê(i) in algorithm 6). The green line is
the moving average of the individual estimations (Represented by ĝ(t)roll, pitch in
algorithm 6) while the red lines are the ground truth values.
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Figure 5.7: Convergence plot of VINS-MONO’s gravity direction initialization
method w.r.t. time for KITTI sequence 09 and 10. The green line is the estimations
while the red lines are the ground truth values.

Seq No #Timesteps to Initialization
AGI (Proposed) VINS-Mono [6]

00 169± 48 741± 2
01 599± 62 170± 3
02 343± 2 186± 60
04 243± 38 -
05 279± 28 -
06 202± 29 78± 8
07 211± 22 125± 2
08 174± 23 154± 4
09 325± 0 177± 1
10 211± 0 -

Table 5.8: Number of timesteps required to initialize gravity direction (Bold is
marked as bold). Non-converged datasets are marked with dash. Results are aver-
aged over 5 runs and ± is 1 standard deviation.

Module Mean Time ± std (s)
Depth Image Generation 0.39 ±0.019
IMU Preintegration 0.00014 ±1.91e− 5
Feature Matching 0.17 ± 0.03
RANSAC Pose Estimation 0.4 ± 0.196
Generating New Map Points 0.005 ± 0.009
Creating New Key Frame 0.0008 ± 0.0002
Local BA 0.016 ± 0.0085

Table 5.9: Expected time of each module used during the tracking process. Results
are given for one timestep in seconds.
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Figure 5.8: Elapsed time vs timestep for VI-SLAM. Mean time is 1.28 ± 0.22 (1
std) seconds

Seq No Length(km) Environment %RPEtrans

Baseline AGI (Pro-
posed)

VINS
MONO

00 3.7 Urban 2.0 2.0 2.13
01 4.2 Highway 30.6 32.1 30.7
02 5.07 Urban 1.18 1.19 1.13
04 0.4 Country 1.06 1.16 4.44
05 2.2 Urban 1.23 1.31 2.82
06 1.2 Urban 1.24 1.36 2.78
07 0.7 Urban 1.17 1.21 2.34
08 3.2 Country 1.35 1.3 2.73
09 1.7 Country 0.66 0.65 2.65
10 0.9 Country 0.75 0.75 3.19

Table 5.10: Relative translation error in % of VI-SLAM under different gravity
direction initialization methods. (Best results are marked bold)
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Seq No Length(km) Environment RPE (deg/100m)
Baseline AGI

(Pro-
posed)

VINS
MONO

00 3.7 Urban 0.64 0.64 0.63
01 4.2 Highway 0.86 1.09 0.955
02 5.07 Urban 0.33 0.32 0.327
04 0.4 Country 0.38 0.34 0.621
05 2.2 Urban 0.34 0.36 0.556
06 1.2 Urban 0.30 0.32 0.572
07 0.7 Urban 0.5 0.48 0.509
08 3.2 Country 0.36 0.36 0.673
09 1.7 Country 0.25 0.22 0.62
10 0.9 Country 0.34 0.32 0.842

Table 5.11: Mean relative rotational error of VI-SLAM under different gravity
initialization methods (Best results are marked bold)
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Figure 5.10: Path estimated by VI-SLAM on datasets 00 (upper-left), 02 (upper-
right), 06 (lower-left) and 09 (lower-right). (Red: Ground Truth, Blue: Estimated)
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Seq No Absolute RMSE (m)
Baseline AGI (Proposed) VINS-Mono [6]

00 27.63 29.32 33.3
01 480 516 518.71
02 34.75 31.19 28.54
04 2.49 6.61 10.68
05 12.61 16.14 17.29
06 5.12 6.51 12.25
07 4.64 4.17 10.53
08 22.06 20.28 41.74
09 9.72 5.51 14.46
10 13.4 12.28 20.26

Table 5.12: VI-SLAM’s RMSE of ATE under different gravity initialization meth-
ods (Best results are marked bold)
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Figure 5.11: ATE comparison of VI-SLAM on KITTI sequence 02 under different
gravity direction initialization methods (Baseline method, proposed AGI method
and the method proposed by VINS-Mono)
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5. Results
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Figure 5.12: ATE comparison of VI-SLAM on KITTI sequence 07 under different
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6
Conclusion

In this work, we present a novel localization and mapping framework that relies
on a variety of automotive sensors including IMU, camera and depth sensors and
a robust gravity initialization method to enable fault tolerant performance in the
event of sensor failures. The proposed framework is capable of functioning with
IMU only, with camera and depth sensors only and with all these sensors combined.
Such a fail-safe SLAM framework that is developed specifically around automotive
needs has never been developed before. The proposed framework enables sensor
redundancies for AVs and its fast and generalizable sensing functionalities make it
suitable for adequate ego-vehicle reaction in complex environments.

We analyze the performance and limitations of the proposed multi-sensor fail safe
SLAM with a novel initialization algorithm (AGI) on several public domain visual
odometry datasets. From our analysis, we formulate three major conclusions. First,
the proposed framework ensures relative percentage error in pose of < 2.03 using
visual and combination with IMU sensors for low to medium speed ego-vehicle sce-
narios (speed < 38km/hr) that are conducive to rural and urban driving scenarios.
Also, we observe that the SLAM algorithm with IMU-only sensor suffers from higher
degrees of pose error with respect to the visual sensors owing to sensor biases, while
conserving trajectory shape. Second, the proposed SLAM framework with AGI
method without loop closure modules outperforms state-of-the-art methods with
loop closure modules on select data sequences. For instance in data sequences 09
and 10, the proposed VI-SLAM with AGI method results in RPE (pitch/roll errors)
of 0.65 (1.46/0.1) and 0.75 (0.82/0.33), respectively, which is an improvement over
the method in [51] with RPE of 0.77 and 0.79, respectively. Thus, loop closure
modules can be further integrated with the proposed AV-SLAM system in future
works for additional localization improvements.

Third, the proposed VI-SLAM with AGI algorithm provides faster and more reliable
and repeatable initialization when compared to the existing method in [6]. The pro-
posed framework is capable of initializing in about half a minute for most odometry
sequences, which makes it preferable for AVs over existing modules.
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7
Future Work

The current implementations done in this thesis lack some important aspects of a
complete SLAM algorithm. Firstly, the fact that SLAM algorithms are developed for
real-time operations leads to high frame per second (fps) requirements. Currently,
the developed VI-SLAM algorithm run on 0.8 fps. Re-implementing the algorithm
in C++ in a multi-threaded way would significantly increase the fps. In addition,
the visual part of the SLAM algorithms such as feature extraction, feature match-
ing, and RANSAC iterations are extremely suitable for parallelization and offloading
some of these tasks to GPU would also increase the fps.

Secondly, the current implementation does not support loop closure which is an im-
portant feature to reduce the RMSE, therefore adding loop closure support would
have high priority within future works.

A third future work would focus on the proposed IMU initialization method’s
smoothing component. In the current implementation, derivatives of visual posi-
tion estimations are smoothed by moving average which disturbs the trend of the
data while filtering the noise out. A low-pass filter based smoothing could potentially
preserve the trend of the data while doing much better work at filtering the noise out.

One of the problems solved in this thesis involves having a SLAM algorithm which
is able to run when a sensor or multiple sensors are unavailable. While some of the
unavailability scenarios are addressed in the thesis, the scenario where the LIDAR
becomes unavailable is not addressed. In future, a fourth SLAM algorithm that can
run with a mono-camera and IMU setup would be implemented.

It was mentioned that our current implementation switches to IMU-Only EKF-
SLAM in case of visual and LIDAR sensor failure. However, this algorithm does not
perform well compared to other SLAM algorithms. Making noise covariance matri-
ces time adaptive using neural network in future work can increase the estimation
accuracy.

The final future work is to test the proposed algorithm in a real car dataset which
has production-grade sensors. KITTI uses high quality camera, LIDAR and IMU
sensors which are not available in production cars. In addition, some cars have 2-axis
gyroscope instead of 3-axis. Ultimately, SLAM algorithms are developed for produc-
tion car use cases. Therefore, testing the proposed algorithms in a production-grade
sensor setup would show more realistic results.
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A
Appendix 1

A.1 Path Plots for All SLAM Algorithms

In all path plot figures A.1-A.10, top-left subplots are IMU-only estimations, top-
right subplots are RGBD-SLAM’s estimations, bottom-left subplots are VI-SLAM’s
estimations initialized with AGI method and bottom-right subplots are VI-SLAM’s
estimations initialized with VINS-Mono’s initialization method where ground truth
is shown as red, estimated path is shown in blue.
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Figure A.1: Path plots of data set 00 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.
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Figure A.2: Path plots of data set 01 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.

A.2 Velocity Profile
Velocity histograms that belong to different KITTI test sequences can be checked
in A.11.
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Figure A.3: Path plots of data set 02 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.
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Figure A.4: Path plots of data set 04 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.
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Figure A.5: Path plots of data set 05 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.
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Figure A.6: Path plots of data set 06 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.
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Figure A.7: Path plots of data set 07 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.
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Figure A.8: Path plots of data set 08 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.
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Figure A.9: Path plots of data set 09 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.
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Figure A.10: Path plots of data set 10 for all three localization algorithms where
bottom-left is VI-SLAM initialized with proposed AGI method and bottom-right is
VI-SLAM initialized with the VINS-Mono method.

VI
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Figure A.11: Velocity histogram of all KITTI test sequences. Plot located in
lower-right corner shows the average velocity values for each dataset. The highest
average velocity is observed in sequence 01 (2011/10/03 Drive 0042).
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