
 

 

  

 

 

 

 

Nonlinear Phase Noise in Fiber Optical 

Communication 

 
MOHSAN NIAZ CHUGHTAI 

Communication Systems Group 

Department of Signals and Systems 

Chalmers University of Technology 

Göteborg, Sweden, 2009 EX031/2009



 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iii 

 

ABSTRACT 

Electronic compensation of nonlinear phase noise (NLPN) has been analyzed in the thesis work. 

Performance comparison of two methods to mitigate nonlinear phase noise has been carried out with 

Quadrature Amplitude Modulation (16 QAM) for data transmission in fiber optical communication. 

These methods focus on linear minimum mean square error (MMSE) minimization and optimal 

nonlinear post compensation. 

In the previous results, the best system performance is achieved by nonlinear post compensation with 

uniformly distributed phase 16 QAM constellation. The performance of nonlinear post compensation is 

further improved by optimization of 16-QAM constellation which has four shells with uniform 

distribution of radii. Each shell has four points with uniformly distributed phases. 

With the proposed constellation the complexity of the receiver remains unchanged and it becomes 

more immune to nonlinear phase noise at higher transmission powers. The optimum launch power is 

increased by 2 dB with reduction of SER to about 10
-8

. With this improvement the transmission distance 

of the system is also increased from 3000 km to 3540 km at the previous minimum SER of 10-6. So in 

terms of transmission distance the system has an improvement of 540 km. 
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CHAPTER 1 

1. INTRODUCTION  

The evolution of advanced digital modulation schemes such as Quadrature Phase Shift Keying (QPSK) 

and Quadrature Amplitude Modulation (QAM) in wireless and land line communications have attracted 

significant importance as new alternatives to boost the capacity of fiber optical communication systems. 

But with every new alternative come new limitations. Fiber optical communication channels are limited 

by linear and nonlinear impairments. Linear impairments include chromatic dispersion (CD) and 

polarization mode dispersion (PMD).   

Nonlinear impairments originate from the variation of the refractive index of the optical fiber dependent 

on the launched power. This phenomenon is called Kerr effect named after the Scottish Physicist John 

Kerr. Nonlinear impairments include self phase modulation (SPM), cross phase modulation (XPM) and 

four wave mixing (FWM). 

Specifically SPM causes the signal travelling through the fiber to change its own phase. In the case of 

optically amplified fiber optical communication links, noise introduced by erbium doped fiber amplifiers 

(EDFA) causes the self phase modulation to change in a random fashion and is referred to as nonlinear 

phase noise (NLPN) which has been mathematically analyzed in the initial chapters 2 and 3. 

Since information in advanced digital modulation formats is encoded in both phase and amplitude, 

NLPN becomes a dominant source of symbol errors during demodulation at the receiver. Therefore the 

integration of digital modulation formats in fiber optical communication requires modifications in digital 

modulation schemes and the compensation of NLPN and other optical impairments at both transmitter 

and receiver.  

In recent years the increasing speed of digital signal processors has made possible the compensation of 

optical impairments in the electronic domain, very cost effective. Thus various signal processing 

algorithms, both new and existing, are being proposed to compensate optical impairments in the 

electronic domain. 

Techniques to mitigate NLPN in electronic domain have been proposed based on minimization of 

variance of NLPN. Earlier works have been focused entirely on the analysis of NLPN compensation for 

binary phase shift keying (BPSK) and Quadrature Phase Shift keying (QPSK) modulation studied in 

chapter 4. In this thesis work performance of a fiber optical communication system with 16 QAM 

modulation and NLPN compensation has been analyzed in last chapter 5 which also contains the 

discussion of the simulations and the contribution made to previously obtained results. 
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CHAPTER 2 

2. LINEAR PHASE NOISE 

In every communication system, the channel has impacts on the signal travelling through it. One of the 

most common impacts is the Additive White Gaussian Noise (AWGN) added to the signal. This noise 

impacts the signal equally in all degrees of freedom in which the signal is defined thus changing the 

phase and amplitude of the received signal in a random fashion and having a specific distribution. 

2.1. AMPLIFIED SPONTANEOUS EMISSION NOISE 

Amplified spontaneous emission (ASE) noise in the EDFAs is due to spontaneous emission of photons 

generated from inversion of electrons from the Meta stable state to the stable state. These 

spontaneously generated photons are also amplified within the amplifier and thus act as noise source in 

the system. The power spectral density of ASE noise is given by [1 p.188-189] 

( ) ( 1)
ASE o sp o

S G hν η ν= −  

where 
o

ν is the central frequency, G is the gain of the amplifier, h  is the Planck’s constant, 
spη  is the 

spontaneous emission factor defined below 

2

2 1

sp

N

N N
η =

−
 , 

where 
2N and 

1N  are the atomic populations for the excited and ground states. 

When an optical band pass filter is used before the receiver the power of ASE noise is limited to the   

bandwidth of the filter. A signal travelling in fiber optical channels has two states of polarization. ASE 

noise acts in the two polarizations independently thus increasing the power spectral density of ASE 

noise by a factor of two. The power spectral density or the variance of ASE noise is given as follows: 

2 ( ) 2
ASE ASE f o ASE o

P S H d Sν ν ν ν
∞

−∞

= − ≈ ∆∫  

where 
fH is the transfer function of the optical band pass filter and 

o
ν∆ is the effective bandwidth of 

the optical filter. The power spectral density is considered to be almost flat with in the bandwidth of the 

optical filter so ASE noise is AWGN with mean zero and variance 
ASE

P . 
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2.2. LINEAR PHASE NOISE IN FIBER OPTICAL COMMUNICATION LINK 

 

The total received phase of PSK sytems is given by  

r o nφ θ θ= +
 

where 
r

φ  is the total is received phase, oθ is the transmitted phase and nθ is the linear phase noise due 

to ASE noise. The distribution of linear phase noise can be approximated by [2, p.139] 

2sin
( ) cos s n

n

s
n np e

ρ θ
θ

ρ
θ θ

π
−≈  

where
sρ is the optical signal to noise ratio (OSNR) defined below 

2

22
s

A

A

N
ρ

σ
=  

where A is the transmitted amplitude,
AN is the number of amplifiers in the system and 2σ is the 

variance of ASE noise from EDFAs. The variance of linear phase noise is given as  

2 1

2n

s
θ

σ
ρ

≈ . 

The distribution of phase noise can also be approximated by Gaussian distribution given below by [2, 

p.139] 

2
( ) exp

n

s
n n spθ

ρ
θ θ ρ

π
 ≈ − 

. 

2.3. SYMBOL ERROR PROBABILITY OF PSK SYSTEM 

The probability of symbol error for an M-ary PSK system is related to linear phase noise by the following 

expression [3, p.226] 

/

/

1
n

M

e n

M

P p d

π

θ

π

θ
−

= − ∫  

which gives the following  expression  

2 2 sine sP Q
M

π
ρ

 
≈  

 
 

where M is the modulation level. It is plotted in figure 1 on the next page. 
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Figure 1: Probability of bit error for various modulation schemes. 
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CHAPTER 3 

3. NONLINEAR PHASE NOISE 

3.1. OPTICAL KERR EFFECT  

Optical Kerr effect was discovered by a Scottish physicist in 1875 John Kerr. Optical Kerr effect or AC Kerr 

effect causes the refractive index of the material to change in proportion to the intensity or power of 

the electromagnetic field. The change in refractive index is as follows [4]: 

2

eff

P
n n

A

 
∆ =   

 
 

where n2 is the nonlinear refractive index, P is the launched power and Aeff is the effective core area of 

the optical fiber. This change in refractive index is responsible for the signal to change its own phase i.e., 

self phase modulation. 

3.2. SELF PHASE MODULATION 

The mathematical equation governing the propagation of light in optical fibers is the nonlinear 

Schrödinger equation given as follows [1, p.108]: 

 

2
22

22 2

A i A A
i A

z t

β
γ α

∂ ∂
+ = −

∂ ∂
 

where A is launched amplitude, z is the distance, t is time, α is the attenuation coefficient, � is the 

nonlinear parameter defined as 

22

o eff

n

A

π
γ

λ
=  

where
oλ is the central wavelength,

2
n is the nonlinear refractive index, and eff

A is the effective core 

area. The solution to the nonlinear Schrödinger equation when
2 0β = , which governs dispersion, is 

given below 

( , ) (0, ) exp[ ( , )]NLA z t A t i z tφ=
 

where A(z,t) is the amplitude of signal pulse as a function of distance and time 

and  
NLφ is given as                                              

2

0

(0, )

L

NL A t dzφ γ= ∫  

                                                                            
2

(0, )NL effL A tφ γ=                                                                      (1)    
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where                                                

0

[1 ]/ /A

L

Lz

eff A AL e dz N e N
αα α α−−= = − ≈∫  

is the effective length of a link with 
AN amplifiers spaced at distance of A

L . 

The expression (1) indicates that the phase modulation is directly proportional to the instantaneous 

power of the signal being transmitted. Figure 2 illustrates self phase modulation. The first curve shows 

pulse amplitude and the second curve shows the deviation of frequency from the central frequency. The 

second curve is the derivate of the first curve since frequency is time derivate of phase change and 

phase change is directly proportional to the instantaneous amplitude. This discussion is mathematically 

summarized as follows [1, p.109]: 

 

2
( ) (0, )NL

efft L A t
t t

φ
δω γ

∂ ∂
= − = −

∂ ∂
. 

where ( )tδω  is the deviation from the central frequency of the system. 

3.3. SPM IN AMPLIFIED FIBER OPTICAL COMMUNICATION LINK 

In the context of phase modulated and amplified optical communication links the interplay of amplified 

spontaneous emission noise and Kerr effect causes the received constellation to rotate in a random 

fashion and is referred as Gorden-Mollenauer effect. [5] For long haul fiber optical communication (FOC) 

links with cascaded EDFAs, the NLPN added into the system, is expressed mathematically as follows [6]: 

22 2 2

1 1 2 1 2 3 1 2 3{ ....... ...... }
ANL eff NL A n A n n A n n n A n n n nφ γ= + + + + + + + + + + + + + + +

       
 (2) 

 

where A is the amplitude of the transmitted signals and , 1,......,
k A

n k N=  are the noise terms that have 

chi squared distribution with two degrees of freedom since noise affects both the In-phase and 

Quadrature components of the signal. The variance of 
kn is

2 22kn σ= . 

 

Figure 2: Frequency shift ( )tδω due to self phase modulation. 
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Analysis of the expression (2) shows that the process of addition of nonlinear phase noise is a nonlinear 

time dependent process opposite to that of a linear time independent process. This is because once 

NLPN is added in the system it remains in the system till it reaches the receiver for demodulation. 

 

Figure 3 shows the process of evolution of NLPN as a BPSK signal is being propagated through the fiber. 

Figure 3(a) shows the probability density function (PDF) of scatter plot when the mean nonlinear phase 

shift is 0.7 radians and figure 3(b) shows the PDF of scatter plot when the mean nonlinear phase shift is 

1.5 radians. This shows that as the signal propagates the mean nonlinear phase shift increases as well as 

the variance of the NLPN also increases. 

3.4. STATISTICS OF NLPN 

The term 
2

1A n+ in expression (2) has a non central chi squared distribution with two degrees of 

freedom. So the mean and variance of 
2

1A n+ is given as follows [6]:  

2 2 2

1 2A n A σ+ = +  

2
1

2 2 2 2 4
{ } ( ) 4 4A n f Aσ σ σ σ+ = = + . 

The covariance between the two terms in expression (2) is given by 

2 2 2 2 2 4

1 1 2( , ) ( ) 4 4Cov A n A n n f Aσ σ σ+ + + = = + .
 

So the total variance of expression (2) can be expressed as follows: 

2 2 2 2

1 1

( ) ( ) 2 ( ) ( )
A AN N

NL eff A

K K

L f K N K f Kσ γ σ σ
= =

 
= + − 

 
∑ ∑  

                           

   (a)      (b) 

Figure 3: PDF of received BPSK signal with NLPN for mean nonlinear phase shift of (a) 0.7 radians after 

2000 km (b) 1.5 radians after 4000 km for a transmitted power of -5 dBm. 
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which by using mathematical induction gives the following expression 

2 2 2 2 22
( 1)( ) (2 1) ( 1)

3NL effN N L N A N Nφσ γ σ σ = + + + + +  . 

The variance of nonlinear phase noise can be related to OSNR by the following relation 

2

2 2

3NL

NL

s

φ

φ
σ

ρ
≈ . 

The mean of NLPN is expressed as follows: 

( )
2 22[ 1 ]NL A eff A A effN L A N N L Aφ γ σ γ= + + ≈ . 

At first glance, from central limit theorem, it seems that nonlinear phase noise should have a Gaussian 

distribution but this is not the case since the random NLPN at every amplifier stage is correlated to the 

NLPN in the previous amplifier stages. Expression (2) can be expressed in form of a matrix as follows          

[2, p. 148-150]: 

                                                                           
2 2 T T

NL AN A Aw x x Cxφ = + +                                                (3) 

 

where [ , 1, ......, 2,1]T

A Aw N N= − and 
1 2

[ , ,....., ]
A

T

N
x n n n=

 

and C is the covariance matrix which is a product of the two matrices defined as 
T

C MM= ,where M is as follows: 

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

M

 
 
 
 =
 
 
  

�

�

�

� � � � �

�

. 

The exact PDF of the NLPN is difficult to compute so it is computed by taking the inverse Fourier 

transform of the characteristic function of expression (3) which is given by [2, p.150] 

2

2 2
1

(v ) /1
( ) exp

1 2 1 2

A

NL

TN

k k

K k k

jvA w
jv

jv jv
φ

λ

σ λ σ λ=

 
Ψ =  

− − 
∏

 
 

where v
T

k and 
kλ are eigen vectors and eigen values of the covariance matrix C. 

The characteristic function is further simplified by expressing NLPN as normalized NLPN given as follows 

[7]: 

( ) sec exp[ tan ]sjv jv jv jvφ ρΨ =  
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Figure 4: PDF of Normalized nonlinear phase noise φ  for various OSNRs. 

 

where scaling from normalized nonlinear phase noise to nonlinear phase noise is defined as 

0.5

NL

NL

s

φ
φ φ

ρ
=

+
 

where φ is the normalized nonlinear phase shift and  �� is the OSNR. 

A comparison between actual and Gaussian approximation of the NLPN is shown in figure 4 which 

indicates that the exact distribution of NLPN is not Gaussian but very near to it. 

3.5. SYMBOL ERROR PRORBABILTY  OF PSK SYSTEM IN NLPN 

The total received phase of  PSK sytems is given by [8] 

r o n NLφ θ θ φ= + +  

where 
o

θ is the transmitted phase,
n

θ is the linear phase noise and 
NL

φ is the nonlinear phase noise. The 

total received phase can also be expressed in terms of normalized NLPN. 

0.5

NL

r o n

s

φ
φ θ θ φ

ρ
= + +

+
. 

Now considering that the transmitted phase 
oθ is zero then received phase can be expressed as follows: 

0.5

NL

r n

s

φ
φ θ φ

ρ
= +

+
. 
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The characteristic function of linear phase noise can be calculated from 

( ) ( ) n

n n

jv

n njv p e d

π
θ

θ θ

π

θ θ−

−

Ψ = ∫  

where ( )
n n

pθ θ is the PDF of linear phase noise defined earlier in section 2.2. The PDF of total received 

phase signal is the inverse Fourier transform of the product of characteristic functions of linear and 

nonlinear phase noise given by.

 

( ) ( )
0.5r n NL

NL

s

jv jv jvφ θ φ

φ

ρ

 
Ψ = Ψ Ψ − 

+ 
 

where 
NLφΨ is the characteristic function of nonlinear phase noise defined in section 3.4. The PDF of 

total received phase is the inverse Fourier transform of the above given by 

1
( ) ( )

2
r

r r

jv

r rp jv e d
φ

φ φφ φ
π

∞

−∞

= Ψ∫ . 

The probability of error for a binary phase shift keying (BPSK) system is calculated by following 

expression 

/ 2

/ 2

1 ( )
NL

r

NL

r r
Pe p d

π φ

φ

π φ

φ φ
−

− −

= − ∫ . 

 

Figure 5: Symbol error rate for BPSK signal as a function of OSNR. ([8]; reprinted with permission) 
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Figure 5 shows the plot for probability of bit error as a function of optical signal to noise ratio (OSNR) for 

various mean nonlinear phase shifts. The plot depicts the increase in error probability as the mean 

nonlinear phase shift increases. 

3.6.  JOINT PDF OF NLPN AND RECEIVED AMPLITUDE 

The joint PDF of received phase θ  and amplitude r, for a transmitted power P and phase 
oθ is given as 

follows [9]: 

                                              
{ }( )

,

1

( , ) 1
( , ) Re ( )

2
o

o

jmR
P m

m

f r P
f r C r e

θ θ
θ θ

π π

∞
−

=

= + ∑ .                                         (4) 

The first expression is the PDF of received amplitude for transmitted amplitude R and power P which is 

given by Rice distribution as follows: 

2 2( / ) 2( , ) 2 (2 / )r P

R of r P re I r P
σ σ− += +  

  where ( )mC r is defined as 

2 2

tan 2sec
( )

m

s m

r

jmx jmx s m
m m

m m

r jmx r
C r e e I

s s

α

ρ α
+

−  
=  

   

where 
mI  is the m

th
-order modified Bessel function of the first kind and 

0.5s

PL
x

γ

ρ
=

+
 , secm s jmxα ρ= , 

tan

2
m

jmx
s

jmx
= . 
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CHAPTER 4 

4. COMPENSATION OF NLPN 
 

4.1. DIGITAL BACK PROPAGATION  

 

Digital back propagation has been proposed for joint mitigation of SPM and chromatic dispersion [10]. 

Digital back propagation is based on the nonlinear Schrödinger equation given as follows: 

 
2

22

22 2

A i A
A i A A

z t

β α
γ

∂ ∂
+ + =

∂ ∂
. 

Nonlinear Schrödinger equation is invertible and can be expressed as  

 
2

22

22 2

A i A
A i A A

z t

β α
γ

∂ ∂
− − = −

∂ ∂
 

( )' 'A
N D A

z

∂
= +

∂  

 

where N’ and D’ are defined as                        
2'

N i Aγ=   

 

2
' 2

22 2

i
D

t

β α∂
=− −

∂
. 

 

So the receiver can be designed based on reverse NLSE in which the received signal can be reverse       

propagated through a filter with opposite signs of �, �� 
and � for the joint mitigation of NLPN and 

chromatic dispersion. 

 

4.2. SPLIT STEP FOURIER METHOD  

 

Split step Fourier method (SSFM) is used to simulate self phase modulation and chromatic dispersion in 

fiber optical communication simultaneously. In the split step Fourier method nonlinearity acts on the 

signal alone in time domain then Fourier transform is applied to the signal. In the second step, 

dispersion is applied in the frequency domain by replacing the 
t

∂
∂

 in nonlinear Schrödinger equation 

by iω .  Finally the signal is retrieved by taking the inverse Fourier transform of the signal. The overall 

operation can be expressed as follows [11]: 
 

1 ( )( , ) [ [ ( , )]]hD i hN
A z h t F e F e A z t

ω−+ =
 

 

where F is the Fast Fourier transform (FFT) operation and h is the small incremental distance.
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Figure 6: Illustration of symmetric split Fourier method. 

 

4.3. ITERATIVE AND SYMMETRIC SPLIT STEP FOURIER METHOD  

 

In this method the signal is propagated through half of the distance `h´ with dispersion acting on it and 

then at middle of the distance nonlinearity acts on it and then in the remaining half of the distance 

dispersion acts on it again depicted in the figure 6. The process is approximated by the following 

equation [12, p.42-44]: 

( ) ( )
( , ) exp exp exp ( , )

2 2 2

h N z N z h h
A z h t D D A z t

+ +     
+ =      

     
 

 

In the case of an amplified optical communication link, for each span between amplifiers several 

iterations, according to the number of divisions `h´, have to be performed for the mitigation of 

nonlinearity and dispersion, leading to a very high complexity.  

 

4.4. NONITERATIVE ASYMETRIC SPLIT STEP FOURIER METHOD 

 

Simplification of the above mentioned method is done by assuming that nonlinearity is only 

concentrated at the beginning of each amplifier link hence only one iteration is performed for each span 

of fiber thus greatly reducing the complexity of the system for mitigation of nonlinear phase noise. [10] 

 

The performance of noniterative asymmetric SSFM is 2 to 3 dB poor than iterative symmetric SSFM but 

the computations are fewer as only one iteration has to be performed for every span of the link.  SSFM 

is indeed quite a powerful method to mitigate both nonlinearity and dispersion yet it still has a high 

computational cost of approximately 10
5 

multiplications per symbol per channel. [13] 
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4.5. LINEAR MMSE BASED COMPENSATION  

 

The received power in an amplified fiber optical communication link is      

�	 = �� + �� + �� … … . +�	�
�

�
 which is also the last term in expression (2) of NLPN and the only 

quantitative information at receiver about the NLPN added to the signal. Nonlinear phase noise can then 

be compensated at the receiver by subtracting a phase proportional to �	 
 
from the received signal 

phase. 
 

The compensated phase is 
r N

Pφ α− , where 
rφ  

is the received phase,α is the optimal compensating 

factor that minimizes the variance of residual nonlinear phase noise calculated by 2 ( ) / 0
NL NPd dφ ασ α α− =  

and is found to be [6] 

1

2
eff

N
Lα γ

+
≈ − . 

The variance of nonlinear phase noise is given by   

2

2 2

3NL

NL

s

φ

φ
σ

ρ
≈   

and the variance of residual nonlinear phase noise is given by 

  

2

2

6NL N

NL

P

s

φ α

φ
σ

ρ
+ ≈ . 

The reduction in nonlinear phase noise variance is depicted in figure 7 for an SNR of 16.02 dB versus 

increasing mean nonlinear phase shift which is a function of number of spans in the link. Figure 8 on the 

next page indicates the performance of linear MMSE compensation through the visual analysis of the 

received signal PDF before and after compensation.  

 

 

Figure 7: Performance linear MMSE compensator. 

0 0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

nonlinear phase shift in radians

v
a
ri
a
n
c
e
 o

f 
N

L
P

N

performance of linear MMSE compensation

 

 

NLPN variance

compensated NLPN variance



 

 

15 

 

 

(a)             (b) 

 

(c)     (d) 

Figure 8: Received (a),(c) and compensated (b) (d) PDF for transmitted power of -3 dBm after 4000 km 

and 8000 km . 

Figure 8 clearly shows that the higher the nonlinear phase noise, the higher is the residual nonlinear 

phase noise variance after compensation as indicative in figures 8(c) and 8(d). Figure 9 on the next page 

analyzes the effect of NLPN through another prespective. It shows the plot of phases for transmitted 

symbols and their PDF. It also shows the the compensated phases and their PDF which indicates that the 

PDF of phase comes back to zero mean after compensation. 

Now under the assumption that linear and nonlinear phase noises are independent the total variance of 

received signal is the sum of both the variances and so the total variance can be expressed as follows: 

2

2 2 2 21

2 3r NLn

NL

s s

θφ φ

φ
σ σ σ

ρ ρ
= + ≈ +  

and after linear MMSE compensation the total variance can be expressed as follows: 

2

2 2 2 1

2 6r NL Nn

NL

P

s s

θφ φ α

φ
σ σ σ

ρ ρ
+= + ≈ + . 
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Figure 9: Plot and histogram of NLPN for transmitted power of -3dBm and system length of 4000 km. 

 

Figure 10 compares the theoretical and simulated variances of the total received phase versus 

propagation distance expressed in number of amplifier spans. The results indicate an almost match 

between simulated and theoretical variances before and after compensation of NLPN. 

 

 

Figure 10:  Theoretical and simulated total phase variance for a system length of 4000 km and 

transmitted power of -3 dBm. 
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4.6. NONLINEAR MAP COMPENSATION  

Nonlinear compensation compensates the NLPN by subtracting from the received phase an optimal 

phase ( )c rθ  that represents the centre phase which satisfies the following condition [9]  

, ,( , ( ) / ) ( , ( ) / )
P c P c

f r r M f r r Mθ θθ π θ π+ = −  

where M is the modulation level, ��,�(�, ��) is the joint PDF of the received amplitude r and phase ��  

for a transmitted power P and phase � as presented in section 3.6 and ���(�) ± �/!" are the rotated 

maximum likelihood (ML) boundaries in NLPN. This optimal phase compensator is a nonlinear function 

of r in the form of 

��(�) = #��� + #�� + #$ 

and hence a nonlinear compensator. It is also a (maximum a posteriori probability) MAP compensator 

since the constants #�, #�and #$ are functions of the transmitted power P. The constants are formulated 

in Appendix A. 

Figure 11 shows the PDF of a received signal and its ML boundaries for a QPSK signal at an average 

received power of -4 dBm, for a distance of 5000 km. Figure 12 on the next page shows the PDF of a 

compensated signal and its ML boundaries. The ML boundaries become straight after compensation 

which can easily be implemented in the receiver.  

 

    (a)         (b) 

Figure 11: (a) Received PDF at -4 dBm after 5000 km (b) ML decision boundaries  
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     (a)            (b) 

Figure 12: (a) Compensated PDF at -4 dBm after 5000 km (b) ML decision boundaries. 
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CHAPTER 5 

5. SIMULATION RESULTS 

5.1. SYSTEM MODEL 

Table 1 lists the parameters used for simulations .The parameters are same as in [9]. 

γ  
Nonlinear coefficient 

1.2W
-1

/Km 

optv∆  Optical filter bandwidth 
42.7 GHz 

λ  Wavelength 
1.55 um 

α  
Attenuation coefficient 

0.25 dB/km 

spη  
Spontaneous emission factor 

1.41 

 

Table 1: Parameters for simulations. 

 Attenuation in the fiber is completely compensated by the EDFAs and the ASE noise added to the 

system is given by 2 2 2
sp opt sp opt A

S v hv v Lσ η α= ∆ = ∆  which has already been defined in section 2.1.  The 

gain of each amplifier is equal to 
ALα where 

AL  is fiber length between each amplifier. 

5.2. DISTRIBUTED AMPLIFICATION 

In distributed amplifications the signal travelling through the fiber is amplified throughout the fiber 

length or in other words the system has a uniform amplification throughout the fiber. It can also be 

assumed as a system with very small incremental lengths between amplifiers and having a large number 

of amplifiers.  

5.3. LUMPED AMPLIFICATIONS 

Lumped amplification is practically implemented in long haul fiber optical communication links. Each 

amplifier is placed at distances from about 40 to 100 kilometers for 10 Gbps systems. The gain of each 

amplifier is equal the loss in the span between the EDFAs. 
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Figure 13: lumped and distributed amplification. 

5.4. AVERAGE POWER DEFINITION 

The average power travelling through the fiber is given as follows: 

0

0

1 1A A
L L

z

A A

e
P P e dz

L L

α
α

α

−
− −

= =∫  

where �$ is the  launched power and �% is the average power travelling through the fiber. In order to 

maintain the average received power almost equal to that of launched power distributed amplification 

is used in simulations. Figure 13 illustrates difference between lumped and distributed amplification in 

terms of powers travelling through the fiber. In lumped amplification, launched power and average 

power are different where as in distributed amplification launched power and average powers are 

almost the same indicated by red line.  

In [9] distributed amplification model has been used, so the simulations in the thesis work also use 

distributed amplification. 

 

5.5. BASE BAND SIMULATION 

The simulations were carried out by only considering the base band symbols of the modulated signal. 

Then NLPN noise was added in steps equal to the number of the amplifiers in the system. In the 

simulations shot noise and thermal noise [1, p.153-154] from the receiver diodes was ignored. 

Chromatic dispersion was also ignored in the simulations. 
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5.6. INTERPRETATION OF SIMULATION MODEL 

The first step in the simulations was to confirm whether the simulation results match with the 

theoretical model or not? Here Gaussian approximation of the exact model presented in earlier chapters 

about linear phase noise and NLPN is used to confirm the simulation model. The received signal is sum 

of the linear and nonlinear phase noise given by 

r n NLφ θ φ= +  

where 
r

φ is the total received phase,
nθ is linear phase noise and 

NLφ is NLPN. The distribution of total 

received phase, approximated by Gaussian distribution is as follows: 

 

( )
2

2

1
( ) exp

22
r

r r

r NL

r
p

φ

φ

φ

φ φ
φ

σσ π

 −
 = −
 
 

 

Where 
NL

φ  is the mean nonlinear phase shift and total received phase variance is given by 

2 2 2

r NL nφ φ θσ σ σ= +
 

 

where
2

NLφσ and
2

nθσ are the variances of NLPN and linear phase noise. The variances have been quantified 

in the chapters 3 and chapter 2. Figure 14 shows the received signal PDF of a BPSK modulated signal, 

with an average received power of -5 dBm and system length of 3000 km which has been used to 

confirm the Gaussian approximation of the received phase. 

 

Figure 14: Received signal PDF for a BPSK signal for a system length of 3000 km and average received 

power of -5 dBm 
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Figure 15: Distribution of total phase of BPSK signal in Figure 14. 

Figure 15 shows that there is a good match between the Gaussian approximation and simulated results 

which confirms the correctness of the simulation model. 

In following sections three methods to compensate NLPN are discussed when 16 QAM is used for data 

transmission. 

5.7. PRE COMPENSATION  

Pre compensation in [9] is implemented by pre rotating the constellation at the transmitter, by the 

mean nonlinear phase shift 
NL

φ . The pre rotation for each point in a square 16 QAM constellation is 

different since the mean nonlinear phase shift is a function of transmitted amplitude given by
2

NL A effN L Aφ γ≈ .  

5.8. POST COMPENSATION 

Post compensation in [9] is implemented by linear MMSE compensation along with pre compensation at 

the transmitter. When pre compensation is used along with post compensation the pre compensation is 

not 
2

NL A effN L Aφ γ≈ rather the pre compensation is given by 

( )2

2 2

eff teff rec

NL NL

L PL P γ σγ
φ φ

+
− = −  

where 
re cP is the received power and 

tP is the transmitted power and  
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                                           (a)                                                                          (b) 

Figure 16: Received signal PDF after (a) pre compensation and (b) post compensation for system length 

of 3000 km and at received power of -1 dBm. 

2

eff rec

r rec

L P
P

γ
φ α= −  

is the mean of the phase after post compensation given by 
r recPφ α− . It can be further elaborated in 

terms of transmitted amplitude A as follows: 

( )22 2

1 ......

2 2

A
effeff N

NL NL

L AL A n n γ σγ
φ φ

++ + +
− = −

 

In other words the mean, r rec
Pφ α−  is subtracted from 

2

NL A effN L Aφ γ≈  so that the post 

compensation doesn’t over compensate the received signal. 

Figure 16 shows the PDF of a 16 QAM signal after pre and post compensation. NLPN is significantly 

reduced when post compensation is used along with pre compensation, as apparent in figure 16(b). 

5.9. NONLINEAR COMPENSATION 

 

A 16 QAM constellation has three shells with three different amplitudes. In order to implement 

nonlinear compensation discussed in section 4.6 for a 16 QAM signal, the receiver requires the 

knowledge of transmitted power. This is so because the constants #�, #� and #$ are functions of 

transmitted powers. Thus at the receiver 16 QAM received signal is separated into three amplitudes by 

ML detection to determine the transmitted powers for each received symbol. After this post nonlinear 

compensation is applied to each received signal depending on the estimated value of transmitted the 

power.  
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5.10. COMPARISON OF PHASE AND AMPLITUDE STANDARD DEVIATIONS 

As described in section 3.6 the distribution of received amplitudes have Rice distribution which is given 

by  

2 2( / ) 2( , ) 2 (2 / )r P

R o
f r P re I r P

σ σ− += +
 

and the variance of is given by 

2 2
2 2 2 2

1/2 2
2

2 2
r

r
r L

πσ
σ σ

σ

 
= + − − 

 
 

where 2σ is the variance of ASE noise and 
2

1/ 2L is the Laguerre polynomial defined as  

 

2 /2

1/ 2 0 1( ) (1 )
2 2

x x x
L x e x I xI

 − −    
= − −    

    
 

where 
0I  and 

1
I  are the modified Bessel functions of first kind of order 0 and 1. 

From section 4.6 the variance of the total received phase is given by 

2

2 2 2
21

2 3r NLn

NL

s s

θφ φ

φ
σ σ σ

ρ ρ
= + ≈ +

 

A comparison of the variances of the received amplitude and total phase is illustrated in figure 17. From 

the analysis of figure 17 we observe that at low power levels the OSNR is low, so received amplitudes 

have high standard deviation. As the transmitted power is increased the OSNR increases resulting in the 

decrease of standard deviation of the received amplitudes. On the other hand, at high OSNRs the NLPN 

becomes dominant increasing the standard deviation of the received phase.
  

 

Figure 17 : Comparison of received amplitude and phase standard deviation.
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(a)                                                                                (b) 

Figure 18: (a) Received 16 QAM constellation at -5dBm. 

(b) Distribution of received amplitudes of 16 QAM Constellation at -5 dBm . 

 

Figure 19: Constellation after nonlinear post compensation at -5 dBm. 

Scatter plot of a 16 QAM signal at -5 dBm is shown in figure 18(a). The distribution of amplitudes of the 

constellation in figure 18(a) is shown in the figure 18(b). From the analysis of figure 18(b) we can 

observe that the ML detection of the second and third shell amplitudes is erroneous as the PDFs of 

second and third shell overlap. In such a situation the received signal constellation after nonlinear post 

compensation is shown in figure 19. We can observe in the scatter plot in figure 19, that some of the 

points in the second shell are over compensated. This over compensation results in poor performance of 

nonlinear compensation at low transmitted powers. 
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5.11. EQUALLY SPACED PHASE CONSTELLATION 

 

In a square 16 QAM constellation the points in the middle shell are not uniformly distributed as shown 

in figure 20. This results in unequal decision regions due to nonlinear phase noise. So the performance 

of nonlinear post compensation can be further improved by uniformly distributing the points in the 

middle shell of a square 16 QAM constellation as shown in figure 20 by dots. 

Based on earlier discussion a simple conclusion is drawn that by using a multilevel constellation having 

uniform distribution in terms of amplitude and phase the performance of the nonlinear post 

compensation can be further improved.  

Keeping in view the square 16 QAM constellation, optimization of 16 QAM constellation is done by 

uniformly distributing all 16 points in four shells instead of three, keeping the lowest and highest shell 

radii equivalent to that of square 16 QAM constellation, which are calculated in appendix B. The 

modified circular 16 QAM constellation along with its ML decision regions is shown in figure 21 on next 

page. 

 

 

Figure 20: Constellation of square and equal phase 16 QAM constellation. 
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Figure 21: Circular 16 QAM constellation and decision regions. 

 

     (a)                                                                       (b) 

Figure 22: (a) NLPN in circular 16 QAM (b) Compensated circular 16 QAM Constellation and decision 

boundaries. 

Figure 22(a) illustrates the received constellation of a circular 16 QAM constellation after a propagation 

distance of 3000 km and average received power of 0 dBm. Figure 22(b) shows the compensated 

constellation by nonlinear post compensation. From the analysis of figure 22(b) it is apparent that noise 

has higher variance in terms of phase than amplitude so the decision boundaries are close to ML. The 

advantage of the these approximate ML boundaries is that they can be easily implemented in the 

receiver if decisions are made in terms of amplitude and phase since they can be considered as straight 

decision boundaries in terms of amplitude and phase. 
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5.12. PERFORMANCE COMPARISON OF NLPN COMENSATION TECHNIQUES 

 

Figure 23: Performance comparison of compensation techniques  

Figure 23 compares the performance of compensation techniques for mitigating nonlinear phase noise, 

for transmission distance of 3000 km and with all constellations normalized at the same transmit 

energy. 

With square 16 QAM constellation, the optimum point of performance for only pre compensation is at   

-7 dBm. When linear MMSE post compensation is used along with pre compensation the optimum 

performance point increases to -4 dBm with symbol error rate (SER) at around 10
-4

. As the transmit 

power increases the NLPN again comes into play further degrading the performance of the system. 

When nonlinear post compensation is used the optimum point of performance is increased to about       

-1 dBm with SER reduced to 10
-4

. When equal phase 16 QAM constellation is used the performance of 

nonlinear compensation is further improved as the optimum point of performance is increased to 

around 0 dBm with SER reduced to 10
-6

. This improvement is because nonlinear post compensation 

assumes uniform ML boundaries in NLPN and the uniform distribution of points in terms of phase 

implements the assumption. 
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Figure 24: SER versus system length with nonlinear compensation. 

After this circular 16 QAM constellation is tested along with nonlinear post compensation. The results 

achieved are further improved as the optimum point of the performance is pushed to 2 dBm with SER 

reduced to around 10
-8

.  This improvement is due to two reasons. The circular 16 QAM constellation has 

a uniform distribution of phases. Secondly introduction of four shells reduces the amplitude of points in 

second shell thus reducing the total variance of NLPN of the constellation at higher transmit powers. 

The key advantage here is that with the same complexity of the receiver, the system becomes more 

immune to nonlinear phase noise at higher transmitted powers thus enabling the system to transmit 

data to further distances for the same symbol error probability. 

 

Figure 24 compares the performance of nonlinear post compensation versus increasing system lengths 

at optimum launched powers of 0 dBm, for equal phase 16 QAM constellation, and 2 dBm for circular 16 

QAM constellation. The system length increases from 3000 km to 3540 km for the symbol error rate of 

10
-6

 with circular 16 QAM constellation. So the overall advantage in terms of distance is around 540 km 

for the least SER of 10
-6 

achieved in [9]. 
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CHAPTER 6 

6. FUTURE WORK 

6.1. DISPERSION ANALYSIS 

 

Chromatic dispersion causes the signal to spread in time causing the amplitude of the signal pulse to 

decrease. Since nonlinear phase shift is directly proportional to the signal amplitude so the variance of 

the nonlinear phase shift should also decrease with increase in chromatic dispersion [14]. A similar 

conclusion has also been drawn in [15] but with a different mathematical approach. 

 

But the above results have been contradicted in [16] as no role of Intra Cross Phase Modulation (IXPM), 

due to inter symbol interference as a result of chromatic dispersion, has been considered. 

 

For future work it would be a good task to analyze the behavior of interplay of nonlinear phase noise 

and chromatic dispersion as well as statistically modeling the NLPN in that case.  

 

6.2. CODING ANALYSIS 

 
For the analysis of symbol error probability of a 16 QAM constellation, noise is considered to be 

Gaussian and having same variance in the two degrees of freedom for all the points in the constellation 

[17]. But from the analysis of figure 22(a) and figure 22(b) we observe that higher signal amplitudes have 

higher variance of nonlinear phase noise. It clearly indicates that an imbalanced error control coding 

scheme is required that encodes the data with higher signal amplitudes with more powerful codes than 

the ones with low signal amplitudes. 

 

So an imbalanced but optimized error control coding scheme can further improve the system 

performance or in other words by optimizing the over head of error control coding scheme the bit error 

rate can be further reduced. 

 

For future it would be an interesting task to optimize the previously proposed error control coding 

schemes for fiber optical communication in the context of nonlinear phase noise in the system. 
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APPENDIX A 

The detailed expression for nonlinear post compensation  ��(�) = #��� + #�� + #$ from [9] is presented 

in this appendix and it refers to section 4.6 and 5.9 in the main text. 

2

sin cosh cos sinh
sin 2 sinh 2 2 2 2 2( ) 4 ( , )

2 2cosh 2 cos 2 cosh 2 cos 2

s

c s

x x x x

xx x x
r r r h x

x x x x

ρ
θ ρ

−
−

= − +
− −

 

Where  

2

2
2

s

A

A

N
ρ

σ
=  is the OSNR and ( , )sh x ρ is defined as follows: 

1 sin 2 sinh 2 sin 2 cosh 2 cos 2 sinh 2
( , ) tan cot tanh 4

4 2 2 2 cosh 2 cos 2 cosh 2 2 cos 2 2
s s s

x x x x x x x x x
h x

x x x x

π
ρ ρ ρ−

  + −
=− + − +   + − 

 

and x is defined as follows: 

0.5
s

PL
x

γ

ρ
=

+
 

where P and L are the transmitted powers and system lengths. 
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APPENDIX B 

The calculations for the radii of modified circular 16 QAM constellation are presented in this appendix 

and they are referred to section 5.11 in the main text. 

 

Radius of shell 1 in square 16 QAM constellation is given by  2 21 1 1 2r = + =  

Radius of shell 2 in square 16 QAM constellation is given by  2 2
2 1 3 10r = + =  

Radius of shell 3 in square 16 QAM constellation is given by  2 2
3 3 3 18 3 2r = + = =  

Difference of radius 1 and radius 3 of square 16 QAM constellation = 3 1 3 2 2 2 2r r r∆ = − = − =  

Radius of 1
st

 shell of circular 16 QAM constellation                         = 1' 2r =  

Radius of 2
nd

 shell of circular 16 QAM constellation                        = 
2 2 5 2

2 ' 1' 2
3 3 3

r
r r

∆
= + = + =  

 Radius of 3
rd

 shell of circular 16 QAM constellation                       = 
2 2 5 2 7 2

3' 2 '
3 3 3 3

r
r r

∆
= + = + =  

Radius of 4
th

 shell of circular 16 QAM constellation              = 4 ' 3 3 2r r= =  
 


