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Probing two-level systems with a surface acoustic wave resonator
NUTTAMAS TUBSRINUAN
Department of Microtechnology and Nanoscience
Quantum Technology Laboratory
Chalmers University of Technology

Abstract
Parasitic two-level systems (TLSs) cause detrimental effects on the performance
of superconducting quantum devices. To mitigate this problem, a better physical
understanding of the TLS coupling mechanism is crucial. In this thesis, a new ap-
proach for probing TLSs using a surface acoustic wave (SAW) resonator is presented.
Having a small mode spacing, the SAW resonator enables an investigation of the
frequency noises caused by TLSs at many different frequencies simultaneously.
We report a novel result of the correlated frequency noise caused by TLSs. The
correlations of the noise diminish with increasing detuning, which is in agreement
with the prediction of the TLS model. However, the frequency noises also show
negative correlations, which cannot be explained by the current physical model. Ad-
ditionally, the frequency noise correlation between different modes shows a power
and temperature-dependent behavior. Although some previous experiments have
reported the power and temperature dependence of the frequency noise spectra,
the relationships of the noise at several different frequencies have not been studied.
Therefore, further investigations, both experimental and theoretical aspects, of the
multifrequency noise beyond this work are required.

Keywords: two-level system, surface acoustic wave, SAW resonator, resonance fre-
quency fluctuation, tunneling model, frequency noise, correlation, frequency comb
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1
Introduction

Quantum computers show high potential to overcome the computational limit of
classical computers and offer computing power beyond state-of-the-art technology
[1]. To implement the concept of quantum computing, a reliable fundamental unit
of information (a qubit) must be achieved. One of the proposed candidates for a
qubit that is promising for the transfer from the research field towards real applica-
tions is the superconducting qubit. Despite having the advantages of scalability and
compatibility with the existing microwave control systems, the energy loss in a su-
perconducting quantum circuit due to the coupling with parasitic two-level systems
(TLSs) remains unsolved. This is one of the main factors that limits the coherence
time of a superconducting qubit [2].
Although the understanding of the nature of the TLS is not comprehensive, it is
known that there two types of TLSs, namely coherent TLSs and thermal fluctua-
tors. The interaction between coherent TLSs and thermal (incoherent) fluctuators
gives rise to TLS energy drift [3]. At the same time, the coherent TLSs dispersively
couple with a qubit, leading to the fluctuations of the qubit resonance frequency [4].
This time-dependent resonance frequency shift shows a 1/f spectrum, which has
been observed in both superconducting qubits [2] and microwave resonators [3, 5].
Surface acoustic wave (SAW) devices have been emerging in the quantum device
research field [6, 7, 8]. Manenti et al. [9] have shown the evidence that the losses
in a SAW resonator at cryogenic temperatures are partly caused by the device cou-
pling with TLSs. In the later experiment by Andersson et al., TLSs were shown
to dominate the losses [10]. Since an electromagnetic wave travels in a microwave
circuit with a velocity slightly lower than 3× 108 m/s, a microwave resonator has a
large mode spacing, which restricts experiments only a few frequencies. In contrast,
the velocity of a sound wave is approximately 3 × 103 m/s. As a consequence, the
spacing between modes is smaller, enabling the study of the TLS coupling between
many different modes.
Using a SAW resonator, we can probe TLSs at many frequencies simultaneously. In-
vestigating the correlation of the resonance frequency fluctuation between different
modes could lead to a better understanding of the TLS coupling mechanism. An
insight into the TLS nature could support the development of a superconducting
quantum computer, e.g. suggest how often to perform qubit calibration and, poten-
tially, a method to mitigate the loss due to the qubit coupling with the TLSs.
In this thesis, the theoretical background of TLSs and the physics of the experi-
ment are explained in Chapter 2. Chapter 3 describes the experimental setup, data
acquisition, and analysis methods. Chapter 4 demonstrates how data are analyzed
and interpreted, as well as discusses the results. Finally, Chapter 5 summarizes the

1



1. Introduction

project and conveys some ideas for future work.
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2
Theory

This chapter provides the theoretical background of each element for readers to
understand the work done in this thesis. Section 2.1 briefly describes the physics
of two-level systems (TLSs) and their impacts on a superconducting qubit and a
resonator. Section 2.2 introduces a surface acoustic wave (SAW) resonator and
explains its advantage over a microwave resonator for studying the correlations of
resonance frequency fluctuations between different modes. To investigate the reso-
nance frequency shift, we measure phase noise by pumping a multi-frequency signal
and measuring reflection coefficients of a SAW resonator. The measurement requires
a frequency mixer and a lock-in amplifier. Their working principles are explained in
sections 2.3 and 2.4.

2.1 Two-level system
Two-level system (TLS) is a term referring to a defect that is the main source of
noise and decoherence in superconducting quantum devices [4]. One of the models
proposed to explain the origin and the behavior of TLSs is the standard tunneling
model (STM) [11, 12]. According to the STM, TLSs arise from dangling bonds, tun-
neling of single atoms, or a small group of atoms that moves between two potential
minima in amorphous materials [4]. TLSs can couple both with an electromagnetic
field [13, 14] and a strain field [15, 16], allowing the transition between a ground
state and an excited state. The energy landscape of the TLS is described by a
double-well potential. At very low temperatures, a thermal excitation over the bar-
rier is limited. Therefore, the dynamics of the TLS is dominated by a tunneling
process. An illustration of the TLS origins and a model of its energy landscape are
shown in Figure 2.1. The energy associated with tunneling is described by ∆0. The
energy asymmetry of the wells, assumed to be uniformly distributed, is represented
by a parameter ε. The Hamiltonian of an individual TLS in the rotated basis can
be expressed as

HTLS = 1
2ESz, (2.1)

where Sz = 1
2(cos θσz + sin θσx) with tan θ = ∆0/ε. The σx and σz are Pauli’s

matrices. The energy difference between the two eigenstates |Ψ+〉 and |Ψ−〉 can be
derived from the energy asymmetry parameter and the energy associated with the
tunneling process

E = E+ − E− =
√
ε2 + ∆2

0 (2.2)
In the weak coupling regime, the coupling strength, g, is much smaller than the

3
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Figure 2.1: (Left) an illustration of the formation of TLS and (right) the double-
well potential.

detuning between the TLS and the resonator, ∆f , i.e. g � ∆f . The interaction
between the TLS and the resonator is described by the dispersive Jaynes-Cummings
Hamiltonian [17]

Ĥdisp = 1
2

(
hf0 −

hg2

∆f

)
σ̂z +

(
hfr −

hg2

∆f

σ̂z

)
â†â, (2.3)

where f0 represents the resonance frequency of the TLS, fr is the frequency of the
resonator. The detuning, ∆f , is defined as the difference between the frequency
of the TLS and the resonator, i.e. ∆f = f0 − fr. The operator â and â† are the
resonator annihilation and the creation operator respectively. Equation 2.3 implies
that the effective resonance frequency of the resonator depends on the state of the
TLS. Consequently, its resonance frequency shifts. The shift of the resonance fre-
quency is proportional to ±g2/∆f , according to the TLS state.
Two-level systems can be categorized into two classes; coherent TLSs and incoherent
TLSs. Coherent TLSs are characterized by a small decoherent rate Γ2 < E, where
E is typically larger than kBT . They weakly interact with the environment and
retain coherence on an experimental timescale. On the contrary, incoherent TLSs
have Γ2 ≥ E. Having energy corresponding to a temperature of millikelvin, they
can be thermally activated. The fluctuators strongly interact with their environ-
ment and incoherently switch their state on an experimental timescale. Hence, they
are also referred to as thermal fluctuators [4, 18]. Since the resonator frequency
fr � kBT , we can claim that the TLSs that contribute to the noise are the high-
energy coherent TLSs, which have energy close to the resonator frequency. In the
STM, coherent TLSs couple directly to a quantum device, leading to energy loss.
Meanwhile, fluctuators interact weakly and can contribute to low-frequency noise
only at low temperatures. Notably, in the STM, the interaction between coherent
TLSs and incoherent TLSs is neglected.
However, recent studies have shown that, besides coupling to a quantum circuit,
the coherent TLSs also interact with the surrounding fluctuators [5, 16, 19]. This
coupling affects the energy splitting of the coherent TLSs. If the coherent TLS in-
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teracts with only one thermal fluctuator, it can show a telegraphic energy drift. If
the coherent TLS couples with many thermal fluctuators, there will be continuous
time-dependent energy drift, known as spectral diffusion [20]. At the same time, the
coherent TLS that undergoes spectral diffusion interacts with a resonator, leading
to an energy shift of the resonator. The change of resonator energy corresponds to
the fluctuation of the resonance frequency, which is translated to phase noise in a
superconducting resonator [4]. This model is referred to as the generalized tunneling
model (GTM) [5, 18], in which two modifications are made:

1. The interaction among TLSs cannot be omitted because it has a substantial
impact on the TLS relaxation at low temperature.

2. The GTM considers a non-uniform probability density of the energy asymme-
try ε.

One of the main predictions of the GTM is that the mutual interaction of the TLSs
gives rise to the increased noise at low temperatures. Despite being counter-intuitive,
it can be explained by the fact that coherent TLSs become more susceptible to in-
teract with the thermal fluctuators when the temperature decreases. The detailed
explanation and derivation are given in Ref.[18]. The frequency noise spectrum in
the low-temperature limit (T � hfr/kB) depends on the temperature:

Sδf
f2
r

∼ T (1−µ)/2 in a strong electric field
(
|
−→
E | � Ec

)
;

Sδf
f2
r

∼ T−(1+µ) in a weak electric field
(
|
−→
E | � Ec

)
.

Here, the resonator frequency is denoted by fr. The frequency noise spectrum is Sδf .
T represents the temperature. The electric field and the critical electric field are ex-
pressed by E and Ec, respectively. The phenomenological parameter µ indicates the
TLS density of states as ρ(E) ∝ Eµ. Previous experiments [5, 21, 22] have reported
µ ≈ 0.2− 0.3. In addition, the noise spectrum is power-dependent, i.e. Sy ∼ P−0.5

at the high field limit. While, in the low field limit, it is power independent.

The power spectral density of the frequency noise Sy can be estimated from the
Fourier transform of the autocorrelation function [18],

Sy = Sδf
f 2
r

= lim
T→∞

∫ T

0

∫ T

0

〈δf(t1)δf(t2)〉
f 2
r

eiω(t1−t2)dt1dt2. (2.4)

Burnett et al. [23] have demonstrated that the noise power spectral density can be
fitted with the general noise model.

Sy(f) = h−1

f ν
+ h0, (2.5)

where h0 is a white noise level, h−1 is a 1/f (flicker) noise level. The exponent ν
indicates the strength of the low-frequency noise. If ν = 1, the term h−1/f portrays
a true flicker noise process.
The resonance frequency fluctuation is translated to excessive phase noise in the
resonator; whereas the amplitude noise is suppressed [4, 24]. Gao et al. [19, 25]
have experimentally demonstrated the phase noise is caused by the TLSs and is
equivalent to the fluctuation of the resonance frequency.
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2.2 Surface acoustic wave resonator
A surface acoustic wave (SAW) resonator relies on the concept of piezoelectricity.
The main elements of a SAW resonator are an interdigital transducer (IDT) and
gratings. An IDT is a thin, patterned metal deposited on a piezoelectric material,
depicted in Figure 2.2a. Once an oscillating voltage is applied to the two bus bars,
the piezoelectric material below the IDT contracts and expands periodically, pro-
ducing two SAWs in opposite directions. Each wave travels to the grating, reflects,
and generates a standing wave in the cavity [26]. Figure 2.2b illustrates a one-port
SAW resonator, which is used in this work.

Figure 2.2: (a) an interdigital transducer (IDT) in operation and (b) a one-port
SAW resonator.

To obtain a standing wave, the constructive interference condition must be satisfied:

d =
(

2n± 1
2

)
λ

2 , (2.6)

where d is the distance between two gratings, λ is the wavelength of the SAW, and
n is an integer. The velocity of SAW is approximately 3× 103 m/s. Given that the
frequency of SAW is in the GHz range, the wavelength of SAW is around one µm.
The mode spacing of the SAW is thus very small, allowing an experiment at many
different frequencies. Unlike a SAW, an electromagnetic (EM) wave travels with a
velocity slightly lower 3 × 108 m/s in a microwave circuit. The wavelength of the
EM wave is of the order of 10 cm, which is larger than the resonator length. As the
mode spacing of the EM wave is large, an experiment with a microwave resonator
is limited to one or a few frequencies. Typically, a resonator is characterized by its
resonance frequency fr and a quality factor Q, which is defined as a ratio of energy
stored in a resonator and energy loss per radian. The internal loss is described by
an internal quality factor Qi. The external loss, caused by coupling with other parts
of a circuit, is described by a coupling or external quality factor QC . The total or
loaded quality factor, QL, is determined by

1
QL

= 1
Qi

+ 1
QC

. (2.7)

There are three possible coupling regimes, characterized by the coupling coefficient
k, where k = Qi/QC :

6
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Qi > QC (k > 1) overcoupled,
Qi = QC (k = 1) critically coupled,
Qi < QC (k < 1) undercoupled.

Given the characteristics of a resonator, one can estimate the resonator response.
In this study, we measure the signal reflected from a resonator in terms of the
reflection coefficient S11. The mathematical expression of S11 for an ideal resonator
with respect to Q is written as

S11(f) = 1− 2(QL/QC)
1 + 2iQL(f−fr

fr
)
, (2.8)

where f , and fr represent the probing frequency, and the resonance frequency, re-
spectively. Amplitude and phase response as functions of the probing frequency are
demonstrated in Figure 2.3. If a resonator is overcoupled with a feedline, dissipa-
tion is low. Therefore, most of the phonons can leave the resonator and travel back
to be measured. When the resonator is critically coupled, phonons are maximally
transferred between the feedline and the resonator. Thus, the reflection coefficient
is suppressed to zero at the resonance frequency. In the undercoupled case, phonons
are dissipated in the resonator.

2.3 Lock-in amplifier
A lock-in amplifier is used for measuring a weak signal at one specific frequency by
comparing the input with a reference signal. Suppose an input signal is described
by

Vin = Ain sin(ωint+ φin), (2.9)
and a reference signal is represented by

Vref = Aref sin(ωref t+ φref ). (2.10)

where the frequency of the input ωin and the reference frequency ωref are equal. The
product of the two signals has one DC and one AC component. The AC component
will be removed by a low-pass filter; whereas a DC component remains. The output
signal is

Vout = AinAref
2 cos (φin − φref ). (2.11)

Since the amplitude and phase of the reference signal are known, the amplitude of
the input signal can be determined [27].

2.4 Frequency mixer
A frequency mixer is an electrical circuit for generating a signal with the desired fre-
quency from two other input signals. A general mixer has three ports, namely local
oscillator (LO), radiofrequency (RF) and intermediate frequency (IF). Depending
on the choices of input ports, one can choose to perform either up-conversion or
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Figure 2.3: Amplitude and phase response of a SAW resonator as a function of
frequency in three different coupling regimes: (top) overcoupled, (middle) critically
coupled, and (bottom) undercoupled. The red crosses represent amplitude and phase
response at the resonance frequency.

down-conversion.
To shift a signal from one frequency range to a higher range, one performs up-
conversion by taking the LO and the IF port as inputs. The output from the RF
port will have the frequency

fRF = fLO ± fIF . (2.12)

On the other hand, in down-conversion, the LO and the RF are inputs. The down-
converted signal comes out from the IF port with frequency

fIF = fLO ± fRF . (2.13)

The output from both cases has two symmetric sidebands located on each side of
the LO in the frequency domain. Nonetheless, in this work, only high sideband is
desired. The lower sideband could cause interference when measuring the resonator.
Therefore, instead of a normal mixer, an I/Q mixer is employed to suppress the
lower sideband. An I/Q mixer works in the same principle as a normal mixer. The
difference is that it has 4 ports as the IF is separated into two ports, i.e. I and Q. I

8
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Figure 2.4: Frequency mixer basic operation

stands for in-phase and Q stands for quadrature. When the I and the Q ports have π
2

phase shift, the lower sideband will be suppressed, resulting in a center frequency and
only high sideband. The derivation of up-conversion and down-conversion equations
for an I/Q mixer is provided in Ref. [28].
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3
Methods

To observe correlations of resonance frequency fluctuations of different modes, we
investigate the reflection coefficient S11 while driving many resonance modes of a
SAW resonator simultaneously. The experiment requires a signal generator that can
produce and measure multiple tones simultaneously. We utilize the multi-frequency
lock-in amplifier (MLA), which operates in the MHz range, to drive and read many
frequencies at the same time. Since resonance frequencies of the SAW resonator are
in the GHz range, the MLA signal has to be up-converted before sending it to the
sample and down-converted before reading. This process is performed by a frequency
mixer. Section 3.1 gives details of the devices used in this study and demonstrates
the experimental setup. Measurement methods are explained in section 3.2, 3.3, and
3.4. The S11 data obtained from the measurement are converted to the resonance fre-
quency, discussed in section 3.5. Finally, the resonance frequency fluctuations from
different modes are investigated by considering Welch power spectral density, Allan
deviation, correlation coefficient, and magnitude-squared coherence as described in
section 3.6.

3.1 Experimental setup

3.1.1 SAW resonator
The SAW resonator used in this work is made of aluminum on a GaAs substrate.
The device is composed of two Bragg mirrors, separated from each other by 1440
µm. Each mirror has 800 fingers. An IDT is located at the center of the cavity,
functioning as an input and an output port. More details about the SAW resonator
are described in Ref. [10]. The device has 20 resonance modes, ranging from 2.37
to 2.41 GHz. Each mode is located approximately 2 MHz apart. However, the free
spectral range between neighboring mode is not exactly equal. Figure 3.1 shows the
SAW resonator and its spectrum. The device is mounted in a dilution refrigerator
and cooled down to cryogenic temperature, around 10 mK.

3.1.2 Multi-frequency lock-in amplifier
The multi-frequency lock-in amplifier (MLA) has the same working principle as
the lock-in amplifier explained in Chapter 2, although the implementation is more
complicated. MLA S/N3104 [29] can produce and measure up to 32 tones simulta-
neously. It operates from 0 to 80 MHz, and the input and output ports have 50 Ω
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Figure 3.1: The SAW resonator used in this study [10].

impedance. The software is programmed in python. More details about set-up and
scripts are given in Appendix A.

3.1.3 Frequency conversion
Frequency conversion is performed by an up-conversion and a down-conversion mixer
in a frequency modulation board [28]. Both frequency mixers are I/Q mixers, to
suppress the lower sideband resulting from frequency mixing. To drive only a high
sideband, it requires two input signals from the I and the Q port with the same
amplitudes (AI = AQ), but phase of the signal in the I port must be π

2 ahead of
that in the Q port (φI − φQ = π

2 ).

3.1.4 Measurement configuration
Figure 3.3 displays an overview of the measurement setup. The LO is set to 2.32
GHz. The MLA generates a multifrequency signal to the input I and Q ports of
the mixer. The up-converted signal is sent through the RF output port to the SAW
resonator, which is installed in a dilution refrigerator as shown in Figure 3.2. The
signal reflected from the resonator is amplified by a low-temperature amplifier in the
cryostat, sent to the input RF port of the conversion board, and down-converted to
MHz frequencies, which will be read by the MLA. To enhance the signal-to-noise
ratio, a room temperature amplifier is used to boost the signal from the resonator
before the down-conversion. A 20 dB attenuator is also added to the MLA output
port, enabling measurements at low power. Additionally, a bandpass filter 2375-
2425 MHz is installed at the output port of the mixer board to suppress unwanted
sidebands.

3.2 SAW resonator characterization
To characterize the SAW resonator, we sweep the frequency from 2.37 to 2.40 GHz
and measure amplitude and phase response at input power -47, -57, and -67 dBm.
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Figure 3.2: A diagram illustrating the SAW resonator installed in a dilution re-
frigerator.

These estimated powers are calibrated with a spectrum analyzer. The frequency
resolution is 1 kHz, allowing to obtain a good parameter fitting result later on. Since
the internal quality factor of a resonator is power-dependent [30], we measure the
amplitude and phase response of each SAWmode when it is driven by a similar input
power to that in the phase noise measurement. The SAW mode characterization is
carried out by pumping all resonance modes simultaneously while performing the
frequency sweep. The input amplitude of the sweeping tone is set to be 10 dBm
lower than the amplitudes of the lock-in tones.
Subsequently, the data are divided into modes and fitted for Q values using the
CircleFit notebook [31]. Figure 3.4 shows the resonator response at input power -47
dBm. There are 14 resonance modes within the range of 2.37 - 2.40 GHz. A python
script for frequency sweeping is included in Appendix B.
Based on these frequency sweep data, we can extract resonance frequencies of the
SAW resonator and define our probing frequencies for measuring the phase noise.
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Figure 3.3: A circuit diagram representing the experiment setup. The LO pumps
a GHz signal. The MLA generates a multifrequency signal to be up-converted
by the up-conversion mixer. The signal is up-converted to the GHz range. The
up-converted signal is sent to the SAW device. The reflected signal goes to the
bandpass filter and the room temperature amplifier before being down-converted by
the down-conversion mixer. Finally, the down-converted signal is read by the MLA.

The position that gives the highest sensitivity for observing resonance frequency
fluctuations is, ideally, at f = fr, which corresponds to the minimum point in
amplitude and the steepest point of slope in the phase curve. To ensure that the
probing frequency is at the optimum point, we apply the Nelder-Mead minimization
method [32] to obtain the frequency that gives the minimum amplitude for each
resonance mode.

3.3 Normalizing the number of phonons in the
resonator

Due to the different quality factors among the different resonance modes, driving all
resonance modes using the same input power causes an unequal number of phonons.
For better comparison, we pump each resonance mode using different power in order
to obtain the same phonon number in each mode. According to Kirch et al. [33],
the number of photons in a microwave resonator in a steady-state, 〈N〉, is estimated
by

〈N〉 = 4QL

ωr

QL

QC

1
1 + (2QL∆/ωr)2

P

~ωp
, (3.1)

where ωr is the resonance frequency, ωp is the pumping frequency, and the detuning
∆ is defined as ωp − ωr. P is the input power, defined as ~ω×rate of phonons
arriving in the resonator [34]. The quality factors QL and QC are derived by fitting
the frequency sweep data. In this case, we pump the resonator at its resonance
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Figure 3.4: Amplitude and phase response of the SAW resonator, measured in
reflection at input power -47 dBm.

frequency (ωp = ωr). Hence, the detuning ∆ = 0. Therefore, by using the amplitude
response, Aref , from one particular mode as a reference, the output amplitude of
mode ith, Ai, from the MLA is scaled by

Ai = QL,ref

QL,i

ω0,i

ω0,ref

√
QC,i

QC,ref

Aref . (3.2)

3.4 Phase noise measurement

After defining the probing frequencies, we use the MLA to drive the SAW resonator
and measure phase noise as a function of time. When performing a phase noise
measurement, we add an off-resonance tone at 2.39 GHz in addition to the resonance
frequencies of the SAW resonator. The objective of this off-resonance tone is to be
used as a control tone, which will indicate whether the measured signal is caused by
the SAW device or by other perturbations from the environment. As the reflection
coefficient S11 is a complex number, the measured data is recorded in the form of
amplitude and phase. The sampling rate of the measurement is 100 Hz. We take an
average of the measured data every 10 points to increase the signal-to-noise ratio.
Hence, the sampling rate of the data is 10 Hz. According to Burnett et al. [35], the
TLS switching rate is 75 µHz - 2 mHz. Hence, we perform each measurement for
2.6×104 seconds (approximately seven hours) in order to capture the TLS switching.
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3.5 Resonance frequency calculation
We calculate the frequency from the measured reflection coefficient S11 using the
parameters obtained by fitting the resonance profile. According to Probst et al.
[31], the reflection coefficient of a superconducting resonator is described by

S11 = −ae−i(π−α)

1− 2(QL/QC)eiφ0

1 + 2iQL(f−fr
fr

)

 , (3.3)

where a is an amplitude scaling coefficient. A phase shift is denoted by α. The
loaded quality factor and the external quality factor are represented by QL and
QC , respectively. An impedance mismatch is accounted for by the parameter φ0.
The term −ae−i(π−α) represents effects from the environment, i.e. effects not being
contributed by the SAW resonator. In addition, there is a frequency-dependent
phase shift created by a finite speed of light and the cable length, referred to as an
electrical delay or a cable delay τ0. Taking these effects and the background into
account, the reflection coefficient S11 that is measured from the experiment can be
expressed as

S11 = 10m(f−frotate) × e−2πifτ0 ×

−ae−i(π−α)

1− 2(QL/QC)eiφ0

1 + 2iQL(f−fr
fr

)

 , (3.4)

where frotate and the parameter m are obtained from the CircleFit. Considering
equation 3.4, there is only one unknown, i.e. resonance frequency fr. Hence, it can
be determined by simply solving this equation. Firstly, the equation is re-written as

S11 = Ame
φm = Aenve

iφenv

1− 2(QL/QC)eiφ0

1 + 2iQL(f−fr
fr

)

 , (3.5)

where Am, φm, Aenv, and φenv are measured amplitude, measured phase, amplitude,
and phase shift of signal contributed by the environment, respectively. The equation
can be re-arranged to

e−iφ0 − Am
Aenv

ei(φm−φenv−φ0) = 2(QL/QC)
1 + 2iQL(f−fr

fr
)
. (3.6)

Multiplying both sides of equation by eiπ/2 yields

e−i(φ0−π/2) − Am
Aenv

ei(φm−φenv−φ0+π
2 ) = 2i(QL/QC)

1 + 2iQL(f−fr
fr

)
. (3.7)

Let us call the term of the left a complex number Z, where

Z =
4(QL/QC)QL

(
f−fr
fr

)
+ 2i(QL/QC)

1 + 4Q2
L

(
f−fr
fr

)2 . (3.8)

The phase, δ, of the complex number is determined by

δ =

−
π
2 − arctan (2QL

(
f−fr
fr

)
) for y<0,

π
2 − arctan (2QL

(
f−fr
fr

)
) for y>0.

(3.9)
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Finally, the resonance frequency can be obtained.

f − fr
fr

− 1 =

−
1

2QL tan
(
π
2 + δ

)
for y<0,

1
2QL tan

(
π
2 − δ

)
for y>0.

(3.10)

Then, the frequency fluctuation ∆fr is determined by subtracting the calculated
frequency with its corresponding resonance frequency. Subsequently, the correlation
between fluctuations of each mode is computed. This resonance frequency calcula-
tion is performed in MATLAB.

3.6 Data analysis
Resonance frequencies determined from the measured reflection coefficient S11 is in-
vestigated to see the correlation between different modes. We estimate the power
spectral density and Allan deviation to identify types of noise. Moreover, relation-
ships across different modes are evaluated by examining the correlation coefficient
of ∆fr, and magnitude-squared coherence.

3.6.1 Welch power spectral density
The power spectral density of the resonance frequency fluctuation is estimated using
Welch’s method. Unlike a standard spectrum estimation approach, Welch’s method
divides the signal into overlapping segments and applies a window function before
performing a discrete Fourier transform. Here, the data are divided into eight seg-
ments with 50% overlap. The squared magnitude of the result is the Welch power
spectral density. This technique gives a lower frequency resolution in return for
reduced noise. The resulting power spectral density is subsequently compared with
a general noise model

Sy(f) = h−1

f ν
+ h0 (3.11)

where h−1 is a flicker noise level. ν is an exponent associating with the strength of
the low-frequency noise. h0 is a white frequency noise level.

3.6.2 Allan deviation
The Allan deviation (ADEV) is the square root of the Allan variance (AVAR), which
is introduced to describe the stability of signal caused by noise processes, such as
frequency drift. This time-analysis method is useful for investigating long-timescale
processes, which are more difficult to analyze from the power spectral density. The
mathematical expression of the AVAR can be written as

σ2
y(τ) = 1

2〈(ȳn+1 − ȳn)2〉 = 1
2τ 2 〈(xn+2 − 2xn+1 + xn)2〉 (3.12)

where τ is an observation period, ȳn is the nth fractional frequency averaged over the
period τ . The nth time error function xn is derived from the difference between the
expected nominal time and the actual normal time. The mathematical expression
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of the averaged fractional frequency over an observation time τ is

ȳ(t, τ) = 1
τ

∫ τ

0
y(t+ tν)dtν = x(t+ τ)− x(t)

τ
. (3.13)

Straightforwardly, the ADEV is the square root of the AVAR,

σy(τ) =
√
σ2
y(τ). (3.14)

The ADEV is used as a tool for addressing the source of fluctuation in qubits [35].
According to the power noise law, a 1/f noise process shows a constant ADEV;
while a white noise exhibits 1/

√
τ dependent behavior [36]. The benefit of using the

ADEV is that it can reveal the TLS-based Lorentzian noise because the Lorentzian
noise produces a peak, whereas there is no power-law noise process that can produce
local maxima in the ADEV.

3.6.3 Correlation coefficient
The Pearson correlation coefficient describes the strength of the linear relationship
between the relative change of two variables x and y, which is calculated by

ρ(x, y) = 1
N − 1

N∑
i=1

(
xi − µx
σx

)(
yi − µy
σy

)
, (3.15)

where µ and σ are the mean and standard deviation, respectively. The correlation
coefficient value is between -1 (total negative linear correlation) and 1 (total positive
linear correlation).

3.6.4 Magnitude-squared coherence
Coherence, in signal processing, describes the linear correlation of two zero-mean
variables at each frequency [37]. The coherence function, cxy, of the variable x and
y is defined as

cxy(f) = Pxy(f)
[Pxx(f)Pyy(f)]1/2 , (3.16)

where Pxx(f) and Pyy(f) are the power spectral densities of x and y, respectively.
Pxy(f) is the cross power spectral density of x and y. These power spectral densities
are computed using Welch’s method. Note that the coherence cxy is a complex
number. The magnitude of the coherence function ranges from 0 to 1. If |cxy| = 1,
the variable x and y are completely coherent. If |cxy| = 0, then the two variables
are totally uncorrelated. Equation 3.16 has a geometrical interpretation as the
magnitude of the cosine of the angle between the vector {x(t)}∞−∞ and {y(t)}∞−∞
[38].
In this work, we calculate the magnitude-squared coherence, Cxy, which is defined
as

Cxy(f) = |cxy(f)|2 = |Pxy(f)|2
Pxx(f)Pyy(f) . (3.17)
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The magnitude-squared coherence, Cxy, is a real number, in which the interpretation
is more straightforward than the coherence function cxy. If the variable x and y are
ergodic and the system function is linear, the Cxy indicates how well the variable y
can be estimated from the variable x using the linear least-square function.
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4
Results and discussion

This chapter presents the characteristics of the SAW resonator at various input pow-
ers and temperatures. Following the resonator profiles in section 4.1, the phase noise
measurement results and the correlations of the resonance frequency fluctuations be-
tween different modes are discussed in section 4.2. The noise process identification
is explained in subsection 4.2.1. The following subsection 4.2.2 discusses the cor-
relation of the frequency noise. Subsection 4.2.3 describes the power dependence
of resonance frequency fluctuations at a fixed temperature, approximately 10 mK.
Subsection 4.2.4 discusses the temperature dependence of the resonance frequency
fluctuations at input power -47 dBm. Finally, the investigation of local TLS effects
is explained in section 4.3.

4.1 SAW resonator profile
The SAW resonator characteristics are derived by performing a frequency sweep and
measuring the amplitude and the phase responses at different input powers; -47, -57,
and -67 dBm. The results are displayed in Figure 4.1. Subsequently, the data from
each mode are fitted using the CircleFit notebook [31].

The quality factors extracted from the fitting are presented in Figure 4.2. When
driving with a high input power, more TLSs are saturated, resulting in less energy
loss in the resonator. Hence, the internal quality factor of the resonator is high.
Applying input power -47 dBm, the internal quality factors are larger than the
external quality factors. All resonance modes are then overcoupled. At the low
power, -67 dBm, the extracted internal quality factors are smaller than the coupling
quality factors. The resonator becomes undercoupled. Applying -57 dBm input
drive, the edge modes, for example, mode #1,#2,#13, and #14, are undercoupled.

4.2 Investigating the noise caused by TLSs
The time traces of the reflection coefficients are recorded in terms of amplitude and
phase. An example of the time traces is shown in Figure 4.3 - 4.4. Note that each
trace in all plots is normalized by its standard deviation and shifted vertically for
better visualization. The amplitude and phase plots also show the responses from
the control tone, which is an off-resonance tone located at 2.39 GHz. The control
traces remain steady for the entire measurement timescale, confirming that there is
no external perturbation from the environment.
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Figure 4.1: Amplitude and phase responses of a the SAW resonator response at
input power (top) -47 dBm, (middle) -57 dBm, and (bottom) -67 dBm. The blue
text indicates the mode index, which will be referred to in the following discussions.

Considering the phase traces, there are noticeable similar features in many modes,
indicating the significant correlation between different modes. For example, there
are spikes in the phase traces at time 1 × 104 seconds. These characteristics are
preserved in the resonance frequency shifts. In the ∆fr plot, the first seven modes
exhibit negative fluctuations. Notably, the magnitude of the fluctuations decreases
as the mode number increases. For 9th and 10th modes, the peaks diminish, hence,
the correlations. Interestingly, the resonance frequency shifts become positive in the
last four modes, implying the reverse correlations with the data from the first mode.
To determine the correlations of the frequency noise induced by the interaction of
TLSs, we first identify the noise processes. Then, the relationships of the noise
between different modes are analyzed in both the time and frequency domain by
calculating the correlation coefficient and the magnitude-squared coherence, respec-
tively. The results are discussed in the following subsections.

4.2.1 Noise process identification

As mentioned in Chapter 2, the frequency noise induced by the TLSs is expected
to show 1/f characteristics. However, there can be other noises, such as the noise
exhibiting the Lorentzian processes [35] and the noise from instruments [39], added
to the data. The sources of the noises are identified by examining the power spectral
density of the frequency shifts and the Allan deviation of the resonance frequency.
In addition, we carry out a long measurement (24 hours), using -47 dBm input
power. The results and analysis of the measurement are included in Appendix C.1.
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Figure 4.2: (Top) the loaded quality factors QL, (middle) the external quality
factors QC , and (bottom) the internal quality factors Qi of the SAW resonator at
each frequency when using different input powers.

4.2.1.1 Noise power spectral density

The power spectral density (PSD) of the resonance frequency shift ∆fr is shown in
Figure 4.5. The recorded trace has 2.6 × 105 data points. Welch’s method divides
the data trace into eight segments with 50% overlap. Thus, there are approximately
2.9×104 points per segment. Given that the sampling rate of the data, fs, is 10 Hz,
the frequency resolution is fs/number of points ≈ 3 × 10−4 Hz, which defines the
lowest frequency that can be observed. The highest frequency component observable
in the PSD is limited by the Nyquist frequency fN = fs/2 = 5 Hz.
Fitting the PSD to the 1/f model, h−1/f

ν , gives ν = 0.74, h−1 = 1.49× 10−16. The
poorly fitted blue curve with the data is evidence that it is not a pure 1/f noise
characteristics. Instead, adding the Lorentzian noise spectrum, i.e. Aγ/(f 2 + γ2),
gives a better result, shown as the black line in Figure 4.5. Fitting the PSD with
the function Aγ/(f 2 + γ2) + h−1/f yields A = 4.28 × 10−16, γ = 0.14, and h−1 =
1.92× 10−17.

4.2.1.2 Allan deviation

In addition to the PSD, we calculate the Allan deviation (ADEV). The ADEV also
confirms that there is a Lorentzian noise process dominated in the time scale from
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Figure 4.3: The time traces of the measured phases. The bottom trace represents
the control tone measured at 2.39 GHz, which is off-resonance with the SAW modes.

1 - 10 seconds, shown as the local maximum in Figure 4.6. This Lorentzian noise
has been observed in the previous experiments reported by Burnett et al. [35] and
Müller et al. [40]. This effect is attributed to a single dominant low-frequency TLS.

4.2.2 Correlations of the resonance frequency fluctuations
4.2.2.1 Correlation coefficients

The correlation coefficients between any two time traces are calculated and displayed
in the matrices as illustrated in Figure 4.7. The matrix element aij represents the
correlation between the trace ith and jth.
The frequency shift of each mode of the SAW resonator shows correlation as they
are caused by the coupling with the same ensemble of surrounding TLSs. The
variation of the correlation coefficients between each pair of modes can be explained
by the Jaynes-Cummings hamiltonian shown in Equation 2.3. As the interaction
between TLSs and the resonator depends on the inverse of the detuning ∆f , the TLSs
located further away in frequency interact more weakly. Hence, the magnitude of
the correlations reduces as the detuning ∆f between the modes increases. Notably,
at a particular distance, the correlation diminishes and becomes negative as the
pair is located further apart. The negative correlations cannot be described using
Equation 2.3. However, the derived correlation coefficients are reasonable as we can
observe some events occurring in the opposite direction shown in the time trace
plots in Figure 4.3 - 4.4. Therefore, a further theoretical consideration is required
to explain this experimental result.
Figure 4.8 plots the correlation coefficients as a function of detuning. Note that the
graph is symmetric and contains redundant data points as the correlation coefficient
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Figure 4.4: The time trace of the calculated resonance frequency shifts calculated
using Equation 3.10. The time trace of the calculated resonance frequency shifts.
Note that there is no converted frequency from the control tone because it does not
correspond to any resonance mode.

of mode ith and jth is identical to the correlation of mode jth and ith.

4.2.2.2 Magnitude-squared coherence

The magnitude-squared coherence, Cxy, plots suggest that the frequency noises are
correlated at low frequencies, up to 1 Hz. Figure 4.9 shows an example of the
magnitude-squared coherence of mode #1 vs mode #2,#11, and #14 . In the top
panel, the values between mode #1 and #2 are close to 1 from 10−4 to 0.5 Hz.
After that, they drop significantly. Considering the magnitude-squared coherence
between mode #1 with mode #11, the coherence substantially decreases. This is
clearly seen for frequencies lower than 10−3 Hz. These results conform to the corre-
lation matrix in Figure 4.7 that the correlation decreases with increasing detuning.
For the last mode in the bottom panel, the coherence increases again, indicating
that there is a high similarity between mode #1 and #14. This result also agrees
with the previous analysis but we know that it is an anti-correlation as shown by
the correlation matrix. Another key observation is that there is also relatively high
coherence in the frequency of 0.1 - 1 Hz, which is the range that Lorentzian noise
dominates.

4.2.3 Power dependence of the resonance frequency shifts
The noise caused by TLSs has been found to exhibit 1/P 0.5 dependence [19, 25, 41,
42]. The frequency noise PSD derived from varying input power, P , is illustrated
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Figure 4.5: Welch power spectral density (Sy) of the resonance frequency fluctua-
tion ∆fr. Note that only mode #1,#8 and #14 are displayed. The fitted functions
are fitted to mode #8.

in Figure 4.10. The plot shows that the noise level decreases as the applied power
increases, except when using input power -47 dBm. At this power, the PSD of the
frequency noise is remarkably high in the frequency range of 10−4 − 1 Hz, which
corresponds to the range that the Lorentzian noise process dominates. Since the
input power has an impact on the quality factor of the resonator, we take this
factor into account when analyzing the noise level. Therefore, we investigate the
relationship between the noise level and the normalized number of phonons, instead
of considering only the pumping power. The frequency noise, Sy(0.1 Hz), cannot be
fitted to the theoretical prediction that Sy ∼ 1/P 0.5 because of the high noise levels
at 〈N〉 ∼ 103, which corresponds to -47 dBm input power. The results infer that
the single dominant TLS, observed at -47 dBm input drive, causes more pronounced
frequency noise and affects the noise at all modes.
Although Burnett et al.[21] and Müller et al.[40] have reported the presence of
Lorentzian noise process caused by a single dominant TLS, the relationship for
the power dependence of the data has not been demonstrated. The source of the
variation of the exponent, therefore, remains unknown. Hence, more measurements
and analysis are required to identify the power dependence of frequency noise in the
SAW resonator.
Considering the frequency noise correlations between different modes derived from
the measurement at 10 mK, the correlation coefficients vary the most when using
-47 dBm input drive, which corresponds to approximately 〈N〉 ∼ 103. Figure 4.11 is
an example of the power-dependent correlations obtained from mode #1,#5,#10,
and #14.
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Figure 4.6: Allan deviation of the resonance frequency fr. The peaks indicate the
presence of a single dominant TLS, which dominates in time period of 1 - 10 s.

4.2.4 Temperature dependence of the resonance frequency
shifts

As mentioned in Chapter 2.1, the TLS-induced noise is expected to increases as
the temperature decreases. We perform the measurement at 10, 100, 150, 200, 250,
300, 400, and 500 mK to observe the temperature-dependent behavior of the TLS
noise. Figure 4.12 shows that the frequency noise PSD decreases with increasing
temperature. At 500 mK, we can also see the white noise floor after 0.1 Hz.
According to the prediction of the tunneling model, Sy ∼ T−(1−µ). The phenomeno-
logical parameter µ derived from most of the SAWmodes are µ ≈ 0.2−0.4, which are
in the same range as the other experiments [5, 21, 22]. Figure 4.13 shows examples
of the frequency noise Sy(0.1 Hz) of mode #7 to #9, which give µ ≈ 0.2− 0.3.
Furthermore, we investigate the correlation of the frequency noises at different de-
tuning as a function of the temperature. The examples of the temperature depen-
dence of the correlation coefficients are illustrated in Figure 4.14. The correlations
decrease as the temperature increases. Remarkably, the correlation coefficients are
high for all detunings at the temperature of 250 mK, which is unexpected.

4.3 Exploring the local effects of the TLSs
To study the local effects of the TLSs at the nearby frequency, we pump the SAW
resonator using different configurations and compare the correlation between the
modes. All measurements are performed using input power -47 dBm. The record

27



4. Results and discussion

Figure 4.7: (Left) The matrix showing the correlation coefficients of phase and
(right) the resonance frequency shifts.

length is 7 hours 15 minutes, with a sampling rate of 10 Hz. The driven mode
numbers in each measurement are summarized in Table 4.1.

Configuration Driven resonance mode #
1 1,2,3, ..., 14
2 1,4,7,10,13
3 1,5,9,13
4 1,14

Table 4.1: A summary of the mode number driven in each configuration.

Figure 4.15 shows the correlation coefficient as a function of detuning. As observed
in the previous analysis, the correlation coefficient of the resonance frequency shifts
decreases as the detuning increases. In this experiment, we find that the magnitude
of the correlation coefficients between mode #1 and the other modes reduces as
the number of driven mode decreases. One of the possible reasons is that the total
number of phonons in the resonator is less when we drive a fewer number of modes.
This agrees with the result in the previous section, showing that the correlations
between modes reduce as the number of phonons decreases. Therefore, there is less
number of saturated TLSs. As a result, the resonator is less affected by the TLS
coupling.
An important remark from this analysis is that the correlation between mode #1
and mode #14 show negative values in both configuration 1 and 2. However, since
the number of phonons in each case are not comparable, the correlations between
the noise cannot be directly compared.
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Figure 4.9: Magnitude-squared coherence of the resonance frequency shift ∆fr
between mode #1 and (top) mode #2, (middle) mode #11, and (bottom) mode
#14.
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Figure 4.11: The correlation coefficients of the resonance frequency shifts derived
from (top left) mode #1, (top right) mode 5, (bottom left) mode #10 and (bottom
right) mode #14 with the other modes as a function of estimated number of phonons
〈N〉 and detuning.
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Figure 4.14: The correlation coefficients of the resonance frequency shifts derived
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right) mode #14 with the other modes as a function of temperature and detuning.
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5
Conclusion

We measure phase noise caused by TLSs at many resonance frequencies of a SAW
resonator simultaneously. The phase noise data are converted to resonance fre-
quency shifts. The power spectral density of the frequency noise reveals that there
is a Lorentzian noise from a single dominant TLS, in addition to the well-known
1/f spectrum. The magnitude-squared coherence suggests that the noise from dif-
ferent modes are correlated in the frequency range that shows the 1/f characteristic.
Therefore, we can argue that the noise caused by TLSs are correlated. The correla-
tion of the noise can be explained by the fact that each SAW mode coupling to the
same TLS ensemble. The correlation coefficients of the TLS noise diminish with in-
creasing detuning, which is in agreement with the prediction of the TLS model. The
striking result is that, as the detuning increases, the correlation coefficient decreases
until zero and becomes negative, suggesting that the noise of two different modes
correlate in the opposite manner. The negative correlations cannot be explained by
the current model.
Additionally, the frequency noise correlations are power and temperature-dependent.
We found that the correlations of the frequency noise are high when there is an ef-
fect of a single dominant TLS presented. Although many previous experiments have
reported the power and temperature-dependence of the noise spectra, the relation-
ship of the noise between different modes has not been studied. Therefore, further
investigations beyond this work are required, both experiment and theory.
As discussed, the physics governing the relationships of the frequency noise has not
been completely understood. It would be interesting to investigate how the correla-
tion changes with larger detuning. The result could suggest the distribution of the
TLSs and give a better insight into their coupling mechanism.

35



5. Conclusion

36



Bibliography

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas,
S. Boixo, F.G.S.L. Brandao, D.A. Buell, B. Burkett, Y. Chen, Z. Chen, B.
Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, ..., J.M.
Martinis. Quantum supremacy using a programmable superconducting proces-
sor. Nature 574.7779 (2019), 505-511.

[2] J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D.
Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, and C.C. Yu. Deco-
herence in Josephson qubits from dielectric loss. Physical Review Letters 95.21
(2015), 210503.

[3] L. Faoro, and L.B. Ioffe. Internal Loss of Superconducting Resoantors Induced
by Interacting Two-Level Systems. Physical Review Letters 109.15 (2012),
157005.

[4] C. Müller, J.H. Cole, and J. Lisenfeld, Towards understanding two-levels-
systems in amorphous solids: insights from quantum circuits. Reports in
Progress in Physics 82 (2019), 124501.

[5] J. Burnett, L. Faoro, I. Wisby, V.L. Gurtovio, A.V. Chernykh, G.M. Mikhailov,
V.A. Tulin, R. Shaikhaidarov, V. Antonov, P.J. Meeson, A.Y. Tzalenchuk, and
T. Linström. Evidence for interacting two-level systems from the 1/f noise of a
superconducting resonator. Nature Communication 5 (2014), 4119.

[6] C.H.W. Barnes, J.M. Shilton, and A.M. Robinson. Quantum computation using
electrons trapped by a surface acoustic waves. Physical Review B 62 (2000),
12.

[7] M.V. Gustafsson, T. Aref, A.F. Kockum, M.K. Ekström, G. Johansson, and
P. Delsing. Propagating phonons coupled to an artificial atom. Science 346
(2014), 207.

[8] R. Manenti, A.F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi,
F. Nori, and P.J. Leek. Circuit quantum acoustodynamics with surface acoustic
waves. Nature Communications 8 (2017), 975.

[9] R. Manenti, M.J. Peterer, E.B. Magnusson, A. Patterson, and P.J. Leek. Surface
acoustic wave resonators in the quantum regime. Physical Review B 93 (2016),
041411.

[10] G. Andersson, A.L.O. Bilobran, M. Scigliuzzo, M.M. de Lima, J.H. Cole, and P.
Delsing. Acoustic spectral hole-burning in a two-level system ensemble. Arxiv:
2002.093089v1 (2020).

[11] P. W. Anderson , B. I. Halperin, and C. M. Varma. Anomalous low-temperature
thermal properties of glasses and spin glasses. Philosophical Magazine 25.1
(1972), 1-9.

37



Bibliography

[12] W.A. Phillips, Tunneling states in amorphous solids. Journal of Low Tempera-
ture Physics 7 (1972), 351–360.

[13] J. Gao, M. Daal, A. Vayonakis., S. Kumar, J. Zmuidzinas, B. Sadoulet, B.A.
Mazin, P.K. Day, and H.G. Leduc. Experimental evidence for a surface distribu-
tion of two-level systems in superconducting lithographed microwave resonators.
Applied Physics Letter 92 (2008), 152505.

[14] D. P. Pappas, M. R. Vissers, D. S. Wisbey, J. S. Kline, and J. Gao, Two Level
System Loss in Superconducting Microwave Resonators. IEEE Transactions on
Applied Superconductivity 21 (2011), 871.

[15] D. V. Anghel, T. Kühn, Y. M. Galperin, and M. Manninen. Interaction of two-
level systems in amorphous materials with arbitrary phonon fields. Physical
Review B 75 (2007), 064202.

[16] J. Lisenfeld, G. Grabovskij, C. Müller, J.H. Cole, G. Weiss, and A.V. Ustinov.
Observation of directly interacting coherent two-level systems in an amorphous
material. Nature Communication 6 (2015), 6182.

[17] G. Andersson.Quantum acoustics with superconducting circuits. PhD thesis.
Chalmers University of Technology, 2020.

[18] L. Faoro and L.B. Ioffe. Interacting tunneling model for two-level systems in
amorphous materials and its predictions for their dephasing and noise in super-
conducting microresonators. Physical Review B 91 (2015), 014201.

[19] J. Gao, J. Zmuidzinas, B.A. Mazin, H.G. LeDuc, and P.K. Day. Noise properties
of superconducting coplanar waveguide microwave resonator. Applied Physics
Letter 90 (2007), 102597.

[20] J.L. Black and B.I. Halperin. Spectral diffusion, phonon echoes, and saturation
recovery in glasses at low temperatures. Physical Review B 69 (1977), 2879-95.

[21] J. Burnett, L. Faoro, and T. Linström. Analysis of high quality superconducting
resonators: consequence for TLS properties in amorphous oxides. Superconduc-
tor Science and Technology 29 (2016), 044008.

[22] A.L. Burin, A. Matityahu, and M. Schechter. Low-temperature 1/f noise in
microwave dielectric constant of amorphous dielectrics in Josephson qubits.
Physical Review B 92 (2015), 174201.

[23] J. Burnett, A. Bengsston, D. Niepce, and J. Bylander. Noise and loss of super-
conducting aluminium resonators at single photon energies. IOP Conference
Series of Journal of Physics: Conference Series 969 (2018), 012131.

[24] S. Takei, V.M. Galitski, and K.D. Osborn. Squeezed noise due to two-level
system defects in superconducting resonator circuits. Physical Review B 85
(2012), 104507.

[25] J. Gao, M.Daal, J.M. Martinis, A. Vayonakis, J. Zmuidzinas, B. Sadoulet, B.A.
Mazin, P.K. Day, and H.G. Leduc. A semiempirical model for two-level system
noise in superconducting microresonators. Applied Physics Letter 92 (2008),
212504.

[26] D.P. Morgan. Surface Acoustic Wave Filters: With Applications to Electronic
Communications and Signal Processing. Academic Press, 2010.

[27] Standford Research Systems (2020, 2 July). About lock-in amplifier - Applica-
tion Note 3. Retrieved from https://www.thinksrs.com/downloads/pdfs/ appli-
cationnotes/AboutLIAs.pdf.

38



Bibliography

[28] M. Ankel. Building a Microwave Multifrequency Modulation Setup. Master’s
thesis. Chalmers University of Technology, 2019.

[29] Intermodulation (2020, June 25). User Manual - Intermodulation AFM
Software Suite. Retrieved from https://www.intermodulation-products.com/
manuals/IMP-MLA_user_manual/mla.html.

[30] S.E. de Graff, L. Faoro, J. Burnett, A.A. Adamyam, A. Ya. Tzalenchuk, S.E.
Kubatkin, T. Linström, and A.V. Danilov. Suppression of low-frequency charge
noise in superconducting resonators by surface spin desorption. Nature Com-
munications 9 (2018), 1143.

[31] S. Probst, S.B. Song, P.A. Bushev, A.V. Ustinov, and M. Weides. Efficient and
robust analysis of complex scattering data under noise in microwave resonators.
Review of Scientific Instrument 86 (2015), 024706.

[32] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The
Computer Journal 7.4, (1965), 308–313.

[33] N. Kirch, E. Svetitsky, A.L. Burin, M. Schechter and N. Katz. Supplementary
materials to "Revealing the nonlinear response of tunneling two-level systems
ensemble using coupled modes". Physical Review Materials 1 (2017), 012601.

[34] M. Aspelmeyer, T.J. Kippenberg, and F. Marquardt, Cavity optomechanics.
Reviews of Modern Physics 86 (2014), 1391.

[35] J. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing,
and J. Bylander. Decoherence benchmarking of superconducting qubits. npj
Quantum Information 5.54 (2019).

[36] E. Rubiola. Phase Noise and Frequency Stability in Oscillators. Cambridge Uni-
versity Press, 2008.

[37] W.D. Penny. Signal Processing Course. University College London, 2000.
[38] W.A. Gardner. A unifying view of coherence in signal processing. Signal Pro-

cessing 29 (1992), 113-140.
[39] J. Burnett, T. Linström, M. Oxborrow, Y. Harada, Y. Sekine, P. Meeson, and

A. Y. Tzalenchuk. Slow noise processes in superconducting resonators. Physical
Review B 87 (2013), 140501.

[40] C. Müller, J. Lisenfeld, A. Schirman, and S. Poletto. Interacting two-level de-
fects as sources of fluctuating high-frequency noise in superconducting circuits.
Physical Review B 92 (2015), 035442.

[41] R. Barends, N. Vercruyssen, A. Endo, P.J. de Visser, T. Zijlstra, T.M. Klapwijk,
and J.J.A. Baselmans. Reduced frequency noise in superconducting resonators.
Applied Physics Letters 97 (2010), 033507.

[42] S. Kumar, J. Gao, J. Zmuidzinas, B.A. Mazin, H.G. LeDuc , and P.K. Day.
Temperature dependence of the frequency and noise of superconducting copla-
nar waveguide resonators. Applied Physics Letter 92 (2008), 123503.

39



Bibliography

40



A
MLA setup

A.1 Intermodulation software
Intermodulation is a graphic user interface for operating the multi-frequency lock-in
amplifier (MLA). The software requires python3. It is recommended to use Ana-
conda or miniconda platform. To execute the program, the following packages are
mandatory:

• numpy
• scipy
• paramiko
• configobj

• ipython
• wxpython
• matplotlib

• h5py
• scikit-learn
• cython

A.2 MLA setup
The default IP address of the MLA box is 192.168.42.50. To connect the box with
the lab network, one may have to re-assign a new IP address to the box. This
can be done by connecting MLA to a local computer via an ethernet port and
executing the command below from the python shell window in Intermodulation
software.

1 setup. set_ip_address ( NEW_IP , 192 .168.42.50 )

After changing the IP address of the box, one has to edit the IP address setting
under ’communication’ in a configuration file mla_config.ini. Reboot MLA and
relaunch the software.
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B
Scripts for measurements

This section includes python scripts for operating the MLA. These scripts are exe-
cuted on the Intermodulation software.

B.1 Frequency sweeping
A script to frequency sweep for SAW resonator characterization.

1 import numpy as np
2 import csv as csv
3 from datetime import datetime
4 from scipy.optimize import minimize
5

6 def FrequencySweep_Lockin_Norm (drive_amp, scaling_amp_array, fcenter, amp_sweep)
↪→ :

7 import numpy as np
8 amp_array = []
9 phase_array = []

10 inputamp_array = []
11

12 # User parameters
13 f_Mhz = np.linspace(50, 80, 30000) #30001
14 dummy = 50
15 dummy_array = np.append(dummy, fcenter)
16 df = np.ones_like(dummy_array) * 1000.0 # Hz
17 avg = 1
18 phases = np.ones_like(dummy_array) * 0.0
19 out_1_mask = np.ones_like(dummy_array)
20 out_2_mask = np.ones_like(dummy_array) * 0.0
21 scaling_amp_array = np.array(scaling_amp_array)
22 scaled_drive_amp_array =drive_amp * scaling_amp_array
23 amp_lockin = np.multiply(np.ones_like(fcenter) ,scaled_drive_amp_array)
24 ampls = np.append(amp_sweep,amp_lockin)
25

26 # Save data
27 freq_array = f_Mhz*1e6
28 mag = np.log10(drive_amp)
29 path = r"C:\Users\qtlab\Desktop\Pias\2020_07_03\20

↪→ _07_03_LockIn_FrequencySweep_Norm_Amp_"
30 name = path + str(mag) + r’.txt’
31

32 # Setup MLA
33 #mla.lockin.set_df(df)
34 mla.lockin.set_output_mask(out_1_mask, port=1)
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B. Scripts for measurements

35 mla.lockin.set_output_mask(out_2_mask, port=2)
36 mla.lockin.set_phases(phases, ’degree’)
37 mla.lockin.set_amplitudes(ampls)
38

39 # Allocate memory for result
40 amps = np.zeros_like(f_Mhz)
41 amps[:] = np.NAN
42 phases = np.zeros_like(f_Mhz)
43 phases[:] = np.NAN
44 inputamp = np.zeros_like(f_Mhz)
45 inputamp[:] = np.NAN
46

47 # Setup GUI
48 main.gui.show_panel(main.scriptplot)
49

50 # Initialize plots
51 scriptplot.fig.clear() # remove if you want multiple sweeps in one plot
52 ax = scriptplot.fig.add_subplot(2, 1, 1)
53 ax.set_xlabel(’Frequency [MHz]’)
54 ax.set_ylabel(’Amplitude [V]’)
55 ax.set_title(’Frequency sweep’)
56 ax.set_xlim([f_Mhz.min(), f_Mhz.max()])
57 line = ax.plot(f_Mhz, amps)[0]
58

59 axp = scriptplot.fig.add_subplot(2, 1, 2)
60 axp.set_xlabel(’Frequency [MHz]’)
61 axp.set_ylabel(’Phase [rad]’)
62 axp.set_xlim([f_Mhz.min(), f_Mhz.max()])
63 linep = axp.plot(f_Mhz, phases)[0]
64

65 # Start lockin should have cluster_size=1
66 # since we do not want many packages buffered
67 # on MLA before they are transmitted
68 mla.lockin.start_lockin(cluster_size=1)
69 t0 = time.time()
70 for ii, f in enumerate(f_Mhz):
71 # Set parameters in loop
72 f = f*1e6
73 f_lockin = np.append(f,fcenter)
74 f_tuned, df_tuned = mla.lockin.tune1(f_lockin, df)
75 f_Mhz[ii] = f_tuned[0] * 1e-6
76 mla.lockin.set_df(df_tuned, wait_for_effect=False)
77 mla.lockin.set_frequencies(f_tuned, idx=’all’, wait_for_effect=True) #

↪→ wait for effect on last MLA setting
78

79 # Recieve new lockin data
80 mla.lockin.wait_for_new_pixels(avg)
81 pix, meta = mla.lockin.get_pixels(avg)
82 pix = np.mean(pix, axis = 1)
83 amps[ii] = np.abs(pix[0])
84 phases[ii] = np.angle(pix[0])
85 inputamp[ii] = drive_amp
86

87 # Plot graph
88 if not scriptplot.is_drawing:
89 scriptplot.is_drawing = True
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90 line.set_data(f_Mhz[:ii + 1], amps[:ii + 1])
91 linep.set_data(f_Mhz[:ii + 1], phases[:ii + 1])
92 scriptplot.autoscale_y(ax)
93 scriptplot.autoscale_y(axp)
94 wx.CallAfter(scriptplot.draw)
95 if not scriptpanel.is_running:
96 break
97

98 # Collect data: amps[ii] and phase[ii]
99

100 a = np.append(f, amps[ii])
101 a = np.append(a,phases[ii])
102 a = np.append(a, inputamp[ii])
103 a = np.reshape(a,(1,4))
104 with open(name,"a") as Output:
105 np.savetxt(Output,a,delimiter=",", fmt=’%s’)
106 t1 = time.time() - t0
107 print(’Run time: ’ + str(t1))
108 mla.lockin.stop_lockin()
109

110 # Final update of plots
111 line.set_data(f_Mhz, amps)
112 linep.set_data(f_Mhz, phases)
113 scriptplot.autoscale_y(ax)
114 scriptplot.autoscale_y(axp)
115 wx.CallAfter(scriptplot.draw)
116 filename = scriptutils.generate_filename() + ’.png’
117 wx.CallAfter(scriptplot.fig.savefig, filename)
118

119

120 # Execution
121

122 amp_scaling_array =
↪→ [0.973514702,1.01151613,1.017694345,0.999641672,1,0.974050566,0.973985249,

123 0.960021593,0.95457614,0.95349909,0.957527383,0.943180891,0.941541893,
124 0.982418008]
125 fcenter = [53224107.4702490,55135171.1723724,57079235.9745325,59033301.1100370,
126 60994366.4788826,62956431.8810627,64923497.4499150,66890563.0187673,
127 68859628.6542885,70828694.2898097,72799759.9919997,74769825.6608554,
128 76741891.3963799,78711957.0652355]
129 FrequencySweep_Lockin_Norm (10**(-1.0),amp_scaling_array, fcenter, 10**(-1.5))
130

131 print(’Finished all measurements’)

B.2 Amplitude optimization

An optimization code for determining fprobe, where the amplitude is minimum.

1 import numpy as np
2 import csv as csv
3 from datetime import datetime
4 from scipy.optimize import minimize
5
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6 def mean_output_amp_MultiModes(offset_array, fmode_array, drive_amp,
↪→ scaling_amp_array, wanted_df, Navg ,lockin):

7

8 fcenter_array = fmode_array + offset_array
9 out_1_mask = np.ones_like(fcenter_array)

10 out_2_mask = np.zeros_like(fcenter_array)
11 lockin.set_output_mask(out_1_mask, port=1)
12 lockin.set_output_mask( out_2_mask, port=2)
13 phases = np.zeros_like(fcenter_array)
14 df = np.ones_like(fcenter_array)*wanted_df
15 pump_amp_array = np.ones_like(fcenter_array) *drive_amp
16

17 pump_amp = np.multiply(pump_amp_array,scaling_amp_array)
18 lockin.set_phases(phases, ’degree’)
19 lockin.set_amplitudes(pump_amp)
20

21 f_tuned, df_tuned = lockin.tune1(fcenter_array, df, priority=’f’)
22 lockin.set_df(df_tuned, wait_for_effect=False)
23 lockin.set_frequencies(f_tuned, idx=’all’, wait_for_effect=True) # wait for

↪→ effect on the last MLA setting
24 lockin.start_lockin(cluster_size=1)
25 lockin.wait_for_new_pixels(Navg)
26 pixels, meta = lockin.get_pixels(Navg)
27 pix = np.mean(pixels, axis = 1)
28 sum_amp_out = 0
29

30 for i in range (0,len(fcenter_array)):
31 Amp = np.abs(pix[i])*np.abs(pix[i])
32 sum_amp_out = sum_amp_out+ Amp
33

34 return sum_amp_out
35

36

37 def optimizer(fcenter,scaling_amp_array,A):
38 # Setup GUI
39 main.gui.show_panel(main.scriptplot)
40 print(’Running Optimization’)
41 Navg = 10
42 wanted_df = 100
43 offset = 5e3
44 offset_array = np.ones((len(fcenter)-1))*offset # When perform optimization

↪→ using several modes
45 f_offset = [0]
46 for i in range(1,len(fcenter)):
47 f_offset1 = minimize(mean_output_amp_MultiModes,offset_array[i-1], args =

↪→ (fcenter[i],A,scaling_amp_array[i-1],wanted_df, Navg,mla.lockin), method
↪→ = ’Nelder-Mead’, options = {’maxfev’: 1000})

48 print(’fcenter =’,fcenter[i])
49 print(’scaling =’,scaling_amp_array[i-1])
50 print(f_offset1)
51 f_offset = np.append(f_offset,f_offset1.x )
52 print(f_offset)
53

54 fcenter = np.array(fcenter)
55 f_offset = np.array(f_offset)
56 finalf = fcenter + f_offset

VI



B. Scripts for measurements

57 finalf = finalf.tolist()
58 print(’final offset = ’, f_offset.tolist())
59 print(’final freq = ’, finalf)
60

61 return finalf

B.3 Phase noise measurement
A script for performing lock-in frequencies and measure S11 time trace.

1 def TimeTraceMeasurement_Norm_WithOptimizer(fcenter,scaling_amp_array,A,nop):
2 amp_array = []
3 phase_array = []
4 time_array = []
5

6 print("Measuring =", len(fcenter), "modes simultaneously")
7

8 # Configure lockin
9 df = np.ones_like(fcenter) * 100.0 # Hz

10

11 phases = np.ones_like(fcenter) * 0.0
12 drive_amp = np.ones((1, len(fcenter)-1)) * A
13 out_1_mask = np.ones_like(fcenter)
14 out_2_mask = np.ones_like(fcenter) * 0.0
15 avg = 10
16 amp_lockin = np.multiply(drive_amp, scaling_amp_array)
17 ampls = np.append(A,amp_lockin)
18

19 # Program MLA
20 mla.lockin.set_output_mask(out_1_mask, port=1)
21 mla.lockin.set_output_mask(out_2_mask, port=2)
22 mla.lockin.set_phases(phases, ’degree’)
23 mla.lockin.set_amplitudes(ampls)
24

25 # Setup GUI
26 main.gui.show_panel(main.scriptplot)
27

28 # Save data
29 mag = np.log10(ampls[0])
30 path = r"C:\Users\qtlab\Desktop\Pias\2020_07_11\2020

↪→ _07_11_TimeTrace_MultiModes_Norm_Optimized_Amp"+str(mag)
31 name = path + ’_’+str(len(scaling_amp_array))+ r’Modes.csv’
32

33 # Allocate memory for result
34 times = np.zeros((1,1))
35 times[:] = np.NAN
36 amps = np.zeros((1, len(fcenter)))
37 amps[:] = np.NAN
38 phases = np.zeros((1, len(fcenter)))
39 phases[:] = np.NAN
40

41 # Make lockin measurement
42 f_tuned, df_tuned = mla.lockin.tune2(fcenter, df, priority=’f’)
43 print(’f_tuned: ’ + str(f_tuned/1e6))
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44

45 mla.lockin.set_df(df_tuned, wait_for_effect=True)
46 mla.lockin.set_frequencies(f_tuned, idx=’all’, wait_for_effect=True) # wait

↪→ for effect on last MLA setting
47 mla.lockin.start_lockin(cluster_size=1)
48

49 # Record lockin frequency
50 path1 = r"C:\Users\qtlab\Desktop\Pias\2020_07_11\2020

↪→ _07_11_MeasurementParameters_Norm_Optimized_Amp"+str(mag)
51 name1 = path + ’_’+str(len(scaling_amp_array))+ r’Modes.csv’
52

53 f_tuned_save = np.reshape(f_tuned,(1,len(f_tuned)))
54 ampls = np.reshape(ampls, (1,len(ampls)))
55 final_params = np.concatenate((f_tuned_save, ampls), axis=1)
56 with open(name1,"a") as Output1:
57 np.savetxt(Output1,final_params,delimiter=",", fmt=’%s’)
58

59 t0 = time.time()
60 i = 0
61 while i < nop+1:
62 # Recieve new lockin data
63 mla.lockin.wait_for_new_pixels(avg)
64 pixels, meta = mla.lockin.get_pixels(avg)
65 pix = np.mean(pixels, axis = 1)
66 for j in range (0,len(fcenter)):
67 amps[0, j] = np.abs(pix[j])
68 phases[0, j] = np.angle(pix[j])
69 t2 = time.time() - t0
70 times[0] = t2
71 if np.mod(i,1e2)==0:
72 print(’Data collected: ’ + str(i))
73

74 # Collect data: amps[i] and phase[i]
75 times_save = times[0]
76 amps_save = amps[0,:]
77 phases_save = phases[0,:]
78 times_save = np.reshape(times_save,(1,1))
79 amps_save = np.reshape(amps_save,(1,len(fcenter)))
80 phases_save = np.reshape(phases_save,(1,len(fcenter)))
81

82 now = datetime.now()
83 t_stamp = now.strftime(’%Y/%m/%d, %H:%M:%S’)
84 t_stamp = np.reshape(t_stamp, (1,1))
85

86 # print(np.shape(phases_save))
87 a = np.concatenate((t_stamp, times_save, amps_save, phases_save), axis=1)
88 with open(name,"a") as Output:
89 np.savetxt(Output,a,delimiter=",", fmt=’%s’)
90 i = i+1
91 print(’Finished one measurement.’)
92

93

94 # Execution for time trace measurement
95

96 scaling_amp_array = [0.973514702, 1.01151613, 1.017694345, 0.999641672, 1,
↪→ 0.974050566, 0.973985249, 0.960021593, 0.95457614, 0.95349909,
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↪→ 0.957527383, 0.943180891 ,0.941541893, 0.982418008]
97 fcenter = [70000000.0, 53205661.03515625, 55116887.50143051, 57061918.75119209,

↪→ 59015920.96977234, 60977275.01525879, 62939899.99809265, 64906753.90625,
↪→ 66874287.5, 68845819.20347214, 70813512.2549057, 72783831.25, 74754237.5,
↪→ 76726150.0, 78687000.0]

98

99 fcenter_opt = optimizer(fcenter, scaling_amp_array,10**(-1.0))
100 TimeTraceMeasurement_Norm_WithOptimizer(fcenter_opt, scaling_amp_array,10**(-1.0)

↪→ , 2.6e5)
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Supplementary data

C.1 Long measurement
Phase noise measurement is performed for 24 hours, using -47 dBm input drive.
The number of points is 4.32 × 105. The sampling rate is 10 Hz, similar to the
previous measurements. The time traces illustrated in Figure C.1 - C.3 shows explicit
correlations of the amplitude, phase, and resonance frequency fluctuations except
the last four modes.

Figure C.1: The time traces of the measured amplitudes. The bottom trace
represents the control tone measured at 2.39 GHz, which is off-resonance with the
SAW modes.

The power spectral density and the Allan deviation displayed in Figure C.7 sug-
gest the presence of a single dominant TLS, which results in the Lorentzian noise
characteristics. Due to the long measurement time, we can capture the longer time
processes than that in the measurement discussed in Chapter 4. The black line in
the PSD plot represents the fitted data using Sy(f) = Aγ

(f2+γ2) + h−1
f
. The result

shows A = 3.39 × 10−17, γ = 9.07, and h−1 = 7.11 × 10−17. The amplitude of the
Lorentzian noise term is smaller than the fitted parameter from the measurement
shown in Figure 4.5. The result implies a less significant effect of a single dominant
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Figure C.2: The time traces of the measured phases.The bottom trace represents
the control tone measured at 2.39 GHz, which is off-resonance with the SAW modes.

TLS, which is consistent with the PSD plot.
The correlation between the measured amplitudes and phases are illustrated in Fig-
ure C.5. The resonance frequency shifts are computed and the correlation coefficients
are determined. Figure C.6 shows that the correlation coefficients diminishes as a
function of the frequency detuning, which conforms to the results obtained from the
shorter measurement discussed in Chapter 4.
The magnitude-squared coherence plots between the resonance frequency fluctuation
between mode #1 and the other modes exhibit the different variations from the
lowest frequency up to 10−1 Hz, which corresponds to the correlation coefficients
shown in Figure C.6.

C.2 Single-mode measurement
This section describes a single resonance mode measurement, where 31 probing
frequencies are positioned within one particular resonance mode, at 2.381 GHz. The
positions of the probing frequencies are demonstrated in Figure C.8. The control
tone is placed outside the resonance line shape, at 2.39 GHz.
Subsequently, the correlation coefficients of the amplitudes and phases are com-
puted. The results are illustrated in Figure C.9. The resonance frequency shifts
are calculated. The correlation matrix is shown in Figure C.10. Suppose that the
optimal probing frequency for observing resonance frequency shift is at fr, the tones
that show high correlation with the tone at fr indicate that they are fairly sensitive
to the TLS noise. Hence, it is plausible to observe the resonance frequency fluctua-
tions if the probing tones slightly deviate from fr.
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Figure C.3: The time trace of the calculated resonance frequency shifts. Note that
there is no converted frequency from the control tone because it does not correspond
to any resonance mode.
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Figure C.4: (Left) Welch power spectral density and (right) Allan deviation of the
resonance frequency shifts.
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Figure C.5: The correlation matrices of (left) the amplitudes and (right) the phases
of the data.

Figure C.6: (Left) the correlation matrices of the resonance frequency shifts and
(right) the plot showing correlation coefficients as a function of detuning.
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Figure C.7: Magnitude-sqaured coherence of the resonance frequency shifts be-
tween mode #1 and the others.
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Figure C.8: The probing frequencies driven in a single mode measurement.

Figure C.9: The matrices showing correlation coefficients of (left) the amplitudes
and (right) the phases of the single mode measurement.
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Figure C.10: The matrices showing correlation coefficients of the resonance fre-
quency shifts calculated from the single mode measurement.
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