
Similarity-Based Patent Selection using
Natural Language Processing
Master’s thesis in Computer Science: Algorithms Languages and Logic

Elmar Aliyev

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Similarity-Based Patent Selection using Natural
Language Processing

ELMAR ALIYEV

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Similarity-Based Patent Selection using Natural Language Processing
ELMAR ALIYEV

© ELMAR ALIYEV, 2021.

Supervisor: Carl-Johan Seger, Department of Computer Science and Engineering
Examiner: Magnus Myreen, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Growth Curves for Carburetor and Fuel Injection technologies (see Section
5.2.2.2).

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Similarity-Based Patent Selection using Natural Language Processing
ELMAR ALIYEV
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Many companies spend a lot of resources and put significant effort into R&D activ-
ities to keep themselves informed of the latest advances in technology. As patent
data is the world’s largest technology repository, it is frequently utilized by tech-
nology managers for this purpose. The patent analysis of this kind usually involves
much manual works, for example collecting patents to represent technology fields.
It has been observed that creating such patent sets is the most critical part since
poor patent selection would lead to biased results, no matter how well the analysis
is performed. Manual nature, on the other hand, makes the quality of the patent
selection process questionable.

This thesis studied the subject and proposed a novel method (called “SBPS”)
that assists users in building effective queries and, based on these queries, finds
representative patents for technology fields.

The proposed method is divided into three main stages, namely query build-
ing, similarity calculation, and threshold finding. The essence of the first stage is
offering synonyms to the user’s query through the use of trained word embeddings.
The second stage involves employing a keyword extraction algorithm for calculating
document vectors and the cosine similarity measure for ranking documents based
on similarity to the query. The third stage requires the adjustment of the similarity
threshold between the range of 0 and 1. This manual step lets the users to define
the degree of patent relatedness to the query.

To evaluate the method, four technology battles were studied from the devel-
opment history viewpoint and compared to the histogram and growth curve graphs
extracted for the corresponding technologies using the SBPS method. The results
from the comparative analysis showed significant agreement between the historical
events and the graphs and proved the potential of the proposed method.

Keywords: Patent, NLP, word2vec, similarity, technology, patent search, technology
watch.

v

Acknowledgements

Foremost, I would like to express my warmest thank to my supervisor, Carl-Johan
Seger, for his guidance, motivation, patience, immense knowledge, and invaluable
thoughts which made the completion of the thesis possible.

My sincere thanks go to Erik Hjerpe and Volvo Cars Corporation, for giving
access to the data and showing their support for the thesis project.

Finally, I would like to show my deepest gratitude to my family (especially my
girlfriend) and my friends who have been the source of motivation for me throughout
the thesis.

Elmar Aliyev, Gothenburg, June 2021

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context . 1
1.2 Problem Formulation . 2
1.3 Aim . 2
1.4 Research Question . 2
1.5 Related Work . 3

2 Theory 5
2.1 Keyword Extraction Techniques . 5

2.1.1 TF-IDF . 5
2.1.2 TextRank . 6

2.2 Text Vectorization Techniques . 6
2.2.1 TF-IDF Vectorizer . 6
2.2.2 Word2Vec . 7
2.2.3 Doc2Vec . 9

2.3 Dimensionality Reduction Techniques 10
2.3.1 Principal Component Analysis (PCA) 10
2.3.2 LargeVis . 10

2.4 Clustering Algorithms . 11
2.4.1 K-Means . 11
2.4.2 DBSCAN . 13

2.5 Evaluation Metrics . 14
2.5.1 Silhouette Score . 14
2.5.2 Calinski-Harabasz Index . 15

3 Patent 17
3.1 Patent History . 18
3.2 Use of Patent Information . 18

3.2.1 Limiting Factors . 19
3.3 Patent Data . 19

4 Methods 21
4.1 Preprocessing . 21

ix

Contents

4.1.1 Tokenization . 21
4.1.2 Stopword removal . 22
4.1.3 Lemmatization . 22
4.1.4 Frequency-based word removal 23

4.2 Clustering-Based Patent Selection . 23
4.3 Similarity-Based Patent Selection (SBPS) 24

4.3.1 Query Building . 24
4.3.2 Calculating Similarity Scores 24
4.3.3 Determining Similarity Threshold 25

5 Results 27
5.1 Verification via Single Technology Sector 27
5.2 Analysis on Multiple Technology Sectors 27

5.2.1 Failed Experiments . 28
5.2.1.1 Parameter Tuning through Sanity Checking 28
5.2.1.2 Parameter Tuning through Cluster Evaluation 29

5.2.2 Successful Method: SBPS . 29
5.2.2.1 SBPS as Command Line Application 29
5.2.2.2 Carburetor vs. Fuel Injection 30
5.2.2.3 Floppy Disk vs. Optical Disc vs. USB Flash Drive . 31
5.2.2.4 Fluorescent vs. LED 33
5.2.2.5 SONAR vs. RADAR vs. LIDAR 35

6 Discussion 41
6.1 Future Work . 42

A Appendix 1 I

x

List of Figures

2.1 CBOW architecture of Word2Vec . 8
2.2 PV-DM architecture of Doc2Vec . 9
2.3 A typical pipeline of data visualization by first constructing a K-NNG

and then projecting the graph into a low-dimensional space. [1] . . . 11
2.4 K-means at local optimum. The different shapes (circle, square, tri-

angle) indicate different clusters and the centroids are denoted by ’+’
[2] . 13

3.1 Front page of a sample patent document [3] 17
3.2 S-shaped Growth Curve for Technology Field 19

5.1 Example of Query Building Process 30
5.2 Growth Curve of Carburetor Technology 31
5.3 Growth Curve of Fuel Injection Technology 31
5.4 Growth Curve of Floppy Disk Technology 32
5.5 Growth Curve of Optical Disc Technology 33
5.6 Growth Curve of USB Flash Drive Technology 33
5.7 Growth Curve of Fluorescent Technology 34
5.8 Growth Curve of LED Technology . 35
5.9 Histogram for Fluorescent Technology 35
5.10 Histogram for LED Technology . 35
5.11 Cumulative number of patent applications [3] 37
5.12 Growth Curve of SONAR Technology 37
5.13 Growth Curve of RADAR Technology 37
5.14 Growth Curve of LIDAR Technology 38
5.15 Yearly number of patent applications [3] 38
5.16 Histogram for Sonar Technology . 38
5.17 Histogram for Radar Technology . 39
5.18 Histogram for Lidar Technology . 39

xi

List of Tables

3.1 Tables names in the PATSTAT database 20

4.1 Result of tokenization of raw abstract 21
4.2 Result of removing stopwords from tokenized abstract 22
4.3 Result of applying lemmatization on tokenized and stopword-free ab-

stract . 22
4.4 Result of the removal of frequent words from tokenized, stopword-free,

and lemmatized abstract . 23

xiii

1
Introduction

Fast technological changes bring increasingly difficult questions to incumbent com-
panies. Actors have to continuously adjust their technological offerings to stay rele-
vant. However, choosing the right technology to invest in or to scrap is a serious and
difficult task on its own. For instance, will there be a standard for electric vehicle
charging, and if so, will it be cordless? Which sensing technologies are likely to be
most used in autonomous cars in ten years?

Companies usually use patent analytics to predict which technologies will suc-
ceed. Given the fast growth rate of some technologies in the patent landscapes,
they can deduce that those technologies are developing swiftly and might eventually
emerge as an industry standard. Even though this kind of analysis is performed
frequently, companies lack a thorough understanding of what conclusions it actually
supports.

The rate of advancements in the digital world has been increasing continuously
over the decades and it opens countless doors to new opportunities in many areas.
Patinformatics, “the science of analyzing patent information to discover relationships
and trends” [4], is no exception. In fact, David et al. [3], through their careful
examination of the related area, observed a noticeable increase in the use of patent
information over the recent years as a way of assisting organizations in the business-
critical technology positioning task. However, they concluded that patent data is not
yet utilized effectively due to the research made in the field is fragmented. Therefore,
a need for an overarching framework is prominent.

1.1 Context
This master thesis work is inspired by a research project [3] started in 2018 with
the collaboration between Volvo Cars Corporation, Chalmers University of Tech-
nology, and Sahlgrenska School of Innovation and Entrepreneurship. The main aim
of that research project was to provide technology managers with a framework to
help them make more fail-safe decisions regarding positioning the companies in the
technologically fast-changing environment. The main question of the research was
whether the patent data is a relevant data source to be employed for extracting
such insightful information to be used in decision-making. Therefore, they thor-
oughly studied three frameworks and incorporated them in an appropriate manner
to construct a new, comprehensive patinformatics framework. They conducted a
case study on three sensor technologies, namely lidar, radar, and sonar, in order to

1

1. Introduction

test and evaluate the proposed framework. The reason for the choice of these sensor
technologies was that the competition between them was exceptionally interesting
from the aspect of enabling fully autonomous vehicles. It is still unknown which
technology will lead the industry in deploying such vehicles. Despite the difficulties
in explaining some metrics results without the use of expert knowledge, the authors
were able to extract numerous valuable insights and reveal some hidden dynamics
of the technology battle by applying the proposed framework on the cases.

The patent data sets are extremely large and contain well-structured informa-
tion about technologies. These data sets are frequently involved in the R&D-related
activities (usually called “technology watch”) of the most companies to get their
technology offerings up-to-date.

European Patent Office provides a database containing information of about
100 million patent documents. The database is called PATSTAT and contains both
technical and legal information. This well-structured, and tremendous amount of
information about technology fields creates opportunities where many sophisticated
Data Science methods can be used to extract patterns hidden to the naked eye.

1.2 Problem Formulation
The promising results obtained by David et al. [3] showed the potential of their
framework; however, the effectiveness of the framework is highly dependent on how
well the selected patent set represents the technology field. In their study, the
authors retrieved the representative patent sets through a manual process. For this
purpose, they utilized the sophisticated online tool known as Cipher. This tool
can be considered as a search engine for patents. The manual fashion of this kind
makes the analysis tedious and prone to mistakes. Therefore, decreasing human
interaction in the patent selection process is necessary for achieving reliable and
unbiased results.

1.3 Aim
The main aim of this thesis is to investigate the problem discussed above (see Section
1.2) and develop a method to automate the representative data selection process for
patent analysis by making use of a patent database such as PATSTAT.

1.4 Research Question
This thesis will answer the following main research question: “How can unstructured
textual information found in a patent database like PATSTAT be used to construct
a patent selection system?”. Since the scope of the main question is large, we have
broken it down into two sub-questions:

1. What unstructured textual information can be found in the PATSTAT database
and which ones can be used for our purpose?

2. Which algorithms can be utilized to build a patent selection system? What
value do they add?

2

1. Introduction

1.5 Related Work
In this section, we reviewed previous studies to find out what algorithms are em-
ployed by other researchers on patent data for similar purposes.

Query building in Information Retrieval systems is not a trivial task. Users
are usually required to come up with an accurate query and it can be difficult de-
pending on the user’s knowledge of the domain. To assist users, there have been
several studies conducted and several methods developed. Pseudo-relevance feed-
back method is one of them in which a query submitted by a user is expanded with
the terms extracted from the top k documents that are assumed to be relevant to
the initial query [5; 6]. While the authors concluded that the method improves the
overall retrieval effectiveness, Magdy et al. [7] found the PRF method ineffective in
patent search tasks. Another popular approach is to utilize dictionaries to expand
the words in query with their synonyms. Using standard dictionaries like WordNet
is found to be not helpful [7; 8]. On the other hand, Tannebaum et al. [8; 9] reported
that building a domain-specific term dictionary out of the query logs generated by
the patent examiner improves the results considerably. However, Zhang et al. [10]
pointed out that such query logs still need to be updated manually; instead, they, as
Verma et al. [11], proposed methods that make a patent search based on a generated
query from the given patent document. Singh et al. [12] stated that by combin-
ing the Pseudo-relevance feedback method with the Word2Vec method the retrieval
efficiency increases significantly.

Helmers et al. [13] proposed a method that finds the relevant patent set by
calculating the similarity between documents. Their approach for building query
requires a small set of manually selected patents which is later expanded with related
patents found based on citation links. Thereafter, the query patents are transformed
into feature vectors on which the cosine similarity measure gets calculated. For the
feature vector transformation task, they tried several techniques, namely tf-idf based
bag-of-words (BOW), Word2Vec, and Doc2Vec. They found out that Word2Vec and
Doc2Vec generally perform better when a portion of text data, such as abstract,
claims, etc. is considered; however, for the case of taking all text into account,
BOW with tf-idf outperforms the other alternatives.

3

2
Theory

2.1 Keyword Extraction Techniques
Keywords are words in a text document that best describe the content in the briefest,
yet concise manner. Keywords are widely used by information retrieval systems to
index documents or to build search queries. Keywords play a vital role in large sys-
tems as a way to improve the performance of typical operations over the text docu-
ments. Since most documents do not get tagged with keywords, automatic keyword
extraction techniques become the inevitable part of the studies that involve dealing
with texts. In this study, we considered the following two methods for automatically
extracting keywords out of the text documents: TF-IDF and TextRank.

2.1.1 TF-IDF
TF-IDF is the combination of two statistical measures, Term Frequency (TF) and
Inverse Document Frequency (IDF). It elegantly incorporates these two measures to
complement one another.

TF is a document-wide statistic that measures the usage frequency of terms
in a given document. It is calculated by the following equation:

tf(t, d) = ft,d∑
t′∈d ft′ ,d

where ft,d is the number of occurrences of a term t in document d.
However, IDF is a corpus-wide statistic that measures the rareness of a term

across all documents. It gets higher values for the rare words and lower values for the
common words. It is calculated by the following equation given a set of documents
D:

idf(t,D) = log N

df(t,D)

where N is the number of documents in D and df(t,D) is the number of
documents in D that contain a term t.

Having tf and idf functions defined, TF-IDF score is computed by the following
equation:

5

2. Theory

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D)

The tfidf function gets a high value when a term appears frequently in a doc-
ument but rather rare in the entire corpus. It combines the advantages of tf and idf
statistics by penalizing the score for very common terms in the corpus (e.g. articles,
pronouns, prepositions) and very unique terms (e.g. typos).

With the right choice of threshold on scores, TF-IDF can be used as a keyword
extraction technique.

2.1.2 TextRank
The TextRank algorithm [14] has emerged as an extension of a so-called PageRank
algorithm in the Natural Language Processing domain. PageRank [15] was invented
by researchers at Google and it is currently the algorithm running in the Google
Search to evaluate the importance of websites. The main reasoning behind this
algorithm is that the more important websites should get many references from
other websites that are important too. The algorithm makes use of a directed
graph, where the vertices are the websites and the edges represent links between
them. The algorithm first starts with assigning arbitrary scores to the vertices.
Then it updates the scores iteratively until no-change state is observed. The scores
represent the importance of the vertices in the graph, translating to the importance
of the websites (the higher the score, the higher the importance).

The TextRank algorithm is a special instance of the PageRank algorithm which
considers words in a text as vertices and the neighborhood relationship between those
words as edges. Running the algorithm on such a graph results assigning importance
score for each word by taking into account the context that the word appears in.
Then, these scores are used to rank the words and pick the top n words as keywords.
The claim is that a word with the highest score should best describe the text given.

2.2 Text Vectorization Techniques
In natural language processing (NLP), text vectorization is an unavoidable step
applied during the pre-processing phase. This is mainly because there yet exists
no NLP and machine learning technique that can directly operate on the raw form
of the NLP data. That is why a text must be transformed into its corresponding
numerical representation for enabling the application of the available techniques. In
this thesis, we reviewed three well-known techniques for text vectorization: TF-IDF
vectorizer, Word2Vec, and Doc2Vec.

2.2.1 TF-IDF Vectorizer
The TF-IDF vectorizer is based on the tf-idf score described in section 2.1. It is
essentially a data representation technique incorporating tf-idf method. The output
from applying this technique is a two-dimensional matrix. Its rows and columns

6

2. Theory

represent document and term vectors respectively. The values in the matrix cells
are the tf-idf scores of the terms and the documents at the intersection. Here is the
illustration of such a matrix given {d1, ..., dn} documents, {t1, ..., tm} unique terms
and tf-idf score (weight) of ith document and jth term as wi,j:

t1t1t1 t2t2t2 ... tm−1tm−1tm−1 tmtmtm
d1d1d1 w1,1 w1,2 ... w1,m−1 w1,m

d2d2d2 w2,1 w2,2 ... w2,m−1 w2,m

...
dn−1dn−1dn−1 wn−1,1 wn−1,2 ... wn−1,m−1 wn−1,m

dndndn wn,1 wn,2 ... wn,m−1 wn,m

As it can be seen from the table above, the output matrix is a sparse ma-
trix since every document comprises of only a small subset of all the terms in the
vocabulary and, therefore, matrix should contain lots of zeros.

2.2.2 Word2Vec
The Word2Vec model was proposed by researchers at Google to produce high-quality
word representations [16]. It is based on an artificial neural network. It has a
simple architecture with only one hidden layer which makes it lightweight enough
to be applied on very large data sets. According to Tomas et al. [16], it does
not only provide efficiency from the time perspective, but produces word vectors
that capture the semantic meaning and keep the subtle relationships between the
corresponding words. They used the basic algebraic properties of the vectors to
justify the argument and show the usefulness of the word embeddings acquired from
Word2Vec through the following simple but yet interesting example [17]:

vector(”King”)− vector(”Man”) + vector(”Woman”) ' vector(”Queen”)

The pairwise similarity between the query vector and word vectors is calculated with
the cosine similarity measure. The score range for this measure is between -1 and 1;
the higher the similarity score, the more related the word is. In the example given
above, the word “Queen” had the highest similarity score compared to the other
words in the vocabulary.

Word2Vec was proposed in two different architectures: Continuous Bag-of-
Words (CBOW) and skip-gram.

In the CBOW architecture, the model is trained in a way to predict the target
words given their contexts [16]. The context is the surrounding words of the target
word in a pre-defined window.

As shown in the above illustration, the Word2Vec algorithm aligns a window in
a way to centralize the target word (wt) and pick the surrounding words from both

7

2. Theory

sides according to the window size. Then it feeds the neural network model (NNM)
with the context words as one-hot vectors1 and gets a vector in the output layer
containing the scores for each word in the vocabulary and then, applies softmax
function to convert them to probabilities. By comparing this resulting vector with
the one-hot vector for the target word, it calculates the error and updates the weights
accordingly using back-propagation method like a normal feed-forward NNM [2].
This process is repeated for every word in the corpus as the window shifts over them
one by one. The following figure shows the CBOW architecture on the high level
when the window radius is 2:

Figure 2.1: CBOW architecture of Word2Vec

The skip-gram architecture is the exact opposite of CBOW. It takes one-hot
vector of a single word and tries to predict the context words.

Thomas et al. [16] showed in their studies that a model trained with skip-gram
outperforms the one trained with CBOW in capturing the semantic meanings of the
words. They also found that increasing the vector size (number of neurons in the
hidden layer) usually improves the quality of the word embeddings, but training
high dimensional word vectors requires a large amount of data [16]. One of their
arguments was also that it should be possible to find the semantically correct answers
by applying simple vector algebra if the word embeddings are trained well [16].

1A boolean vector with a size of vocabulary having 0s in all elements except for the element
representing the word in question

8

2. Theory

2.2.3 Doc2Vec
The Doc2Vec algorithm is based on “Paragraph Vector” which is an unsupervised
algorithm proposed by researchers at Google [18]. It is seen as a natural extension
of Word2Vec as it is also a neural network model based and their architectures are
similar. Unlike Word2Vec, this model is capable of producing fine-trained document
embeddings. Le and Thomas [18] inspired by the working principle of the Word2Vec
algorithm when developing Doc2Vec. They observed that the Word2Vec model
learns word vectors as a result of predicting the target word given the context words.
This observation made them to realize that including document vectors in the same
prediction process results in training these vectors to a degree which the semantic
meaning of the documents is captured.

The following figure shows the architecture of Doc2Vec at the highest level.

Figure 2.2: PV-DM architecture of Doc2Vec

Similar to the Word2Vec model, Doc2Vec has two types: distributed memory
model of paragraph vectors (PV-DM) and distributed bag-of-words (DBOW).

PV-DM architecture is shown in the figure above. The additional paragraph
id plays a role of an extra context word in the model which, as authors stated ,“acts
as a memory to remember the missing information from the current context” [18].
This exact behavioural property gave rise to the name of this architecture. On the
contrary, in DBOW architecture the context words do not get passed as inputs. The
only input is the paragraph id while context words are treated as the output words to
be predicted. This architecture is equivalent to skip-gram architecture in Word2Vec.
The main difference of DBOW compared to the PV-DM is that the word ordering
is not taken into consideration since the words are sampled from the text window.
Ignoring the order of words generally improves the performance of the algorithm,

9

2. Theory

but it also means losing information which leads to poor results for the tasks where
word orders matters. Le and Tomas [18] observed in their experiments that PV-
PM model produces sufficiently good paragraph embeddings, but the combination
of the document/paragraph vectors acquired from both variants is more consistent
and improves the results for most tasks.

2.3 Dimensionality Reduction Techniques
A vast amount of data is produced every minute, most of which is very complex in
structure. While this volume of data creates opportunities, it also challenges the
users to get hold of the data efficiently and effectively. Much work is being carried
out by researchers, organizations, etc. to develop new techniques to transform the
complexity and vastness in the data to a form that is comprehensible by a normal
human brain. The dimensionality reduction techniques are from this family. They
are developed to reduce the complexity in terms of dimensions while preserving
structural integrity.

Considering the size of the patent database and expected high-dimensional
feature vectors from the text vectorization techniques, reducing dimensionality is
the inescapable step to take before both the clustering and data visualization steps.
Therefore, we considered two methods: PCA and LargeVis.

2.3.1 Principal Component Analysis (PCA)
PCA is one of the most popular statistical techniques that is used to explore high-
dimensional data for extracting important information (i.e. principal components).
PCA is a linear approach to the problem that performs projection of the data with
high dimensions into a linear lower-dimensional subspace where the variance in the
data is maximal [19]. Maaten et al. [19] described it as an optimization problem
of finding a linear mapping M formed by d principal eigenvectors of the covariance
matrix of the data X that maximizes the following cost function:

λ = M
′
cov(X)M

The popularity of PCA comes mainly from its versatility. While it has suc-
cessful applications in many different domains, PCA has several major drawbacks.
Maaten et al. [19] argue that the application of PCA might be a costly operation
since the size of the covariance matrix is proportional to the dimensionality of the
data. They also claim that keeping the small pairwise distance between the data
points is more important, but PCA mainly focuses on the opposite. On the other
hand, Tang et al. [1] describe the performance of linear techniques such as PCA as
insufficient by arguing that the most high-dimensional data usually does not lie on
a low-dimensional linear manifold.

2.3.2 LargeVis
Unlike PCA, LargeVis is a non-linear technique for reducing dimensions. It is in-
spired by the t-SNE algorithm [1; 20]. In this study, we did not focus on t-SNE

10

2. Theory

due to the know issues such as high computational cost and parameter sensitivity
on different datasets [1]. LargeVis is developed to address these issues. Its working
principle can be broken down into two main stages: computation of a similarity
structure and projection into a subspace. That being said, LargeVis first constructs
an approximate K-nearest neighbor graph (K-NNG) and then uses a probabilistic
model for projecting the similarity graph on a low-dimensional space by preserving
the intrinsic structure [1]. The following figure illustrates the process at a high level.

Figure 2.3: A typical pipeline of data visualization by first con-
structing a K-NNG and then projecting the graph into a low-
dimensional space. [1]

Tang et al. [1] claim that the construction of the similarity graph with the
approximate K-nearest neighbor method outperforms the state-of-art methods and
the efficiency of the algorithm increases proportionally to the size of the data. They
observed that parameters of LargeVis are stable across the different datasets. In
spite of the advantages, LargeVis produces non-deterministic results and this can be
thought of as a weakness compared to PCA.

2.4 Clustering Algorithms
Data categorization is often required in problems where data is grouped based on
similarities between the observations to help revealing hidden, yet valuable informa-
tion such as patterns, trends and so on. There are two sets of algorithms serving
similar purposes: classification and clustering algorithms. While classification algo-
rithms belong to the supervised learning techniques where the category labels are
known a priori, the clustering algorithms are unsupervised which means no infor-
mation is known about the categories.

In this thesis, we considered clustering algorithms since the technology groups
that patents belong to are unknown and the aim is to discover the new technologies.
Clustering algorithm can be divided into two main categories: distance-based and
density-based [21]. We employed two well-known algorithms, one from each category,
K-means and DBSCAN respectively.

2.4.1 K-Means
K-Means is a popular and widely used algorithm because of its simplicity and com-
putational efficiency [22]. It requires only one parameter to be passed prior to the

11

2. Theory

execution which is the number of clusters. So, given the number of clusters, the
algorithm assigns each data point to a single cluster based on the proximity to the
cluster centroids1 in the euclidean space.

The K-Means algorithm starts with initializing the centroids randomly. Then
it iteratively performs two main actions, namely assignment and update in order
until convergence. Assignment is the step where the data points are assigned to
their nearest centroids. Once all the data points are visited, the algorithm updates
the centroids to the new center points of the clusters. This process is repeated until
no change is detected in the update step, which is called convergence.

Given the data set {x1, x2, ..., xn} and the centroids {µ1, µ2, ..., µk}, the k-
means algorithm produces clusters {c1, c2, ..., ck} by minimizing the objective func-
tion known as sum of squared errors (SSE):

SSE =
n∑

i=1

k∑
j=1

wik||xi − µj||2

where

wik =

1 xi ∈ ci

0 otherwise

Celebi et al. [22] argue in their study that the quality of the clusters is highly
sensitive to the initial placement of the centroids because of the gradient descent
nature of the algorithm. They have evaluated many initialization methods having
linear complexity such as forgy, macqueen, maximim, k-means++ and so on. They
found out that k-means++ performs better in most cases compared to the others.
The Figure 2.4 shows the difference of the outputs of k-means with both poor and
good initializations of the center points. Dash et al. [21] and Ester et al. [23]
pointed out that besides the advantages, the k-means algorithm fails in finding
arbitrary shaped clusters and identifying outliers.

1Central point of a cluster

12

2. Theory

(a) K-means at wrong local optimum

(b) K-means at correct local optimum

Figure 2.4: K-means at local optimum. The different shapes
(circle, square, triangle) indicate different clusters and the centroids
are denoted by ’+’ [2]

2.4.2 DBSCAN
DBSCAN is a density-based algorithm that relies on the idea that clusters have dense
structure compared to their surroundings [23]. Unlike K-Means, it does not require
a prior knowledge about the number of clusters which means it automatically finds
all the clusters that fulfil density requirements. It also addresses the shortcoming of
K-Means to find the clusters with arbitrary shapes and detect noise [21].

The DBSCAN algorithm requires two parameters before it can be applied on
the data set such as neighbourhood radius (ε) and the minimum number of points
in the neighborhood (MinPts). Having these parameters initialized, the algorithm
iterates over the points in the dataset and for each point, it finds the number of
neighbours within its ε-radius. If the number of neighbour points is less than the
minimum threshold MinPts and it is not a member of any cluster, then the point
is classified as noise and the algorithm continues with the next point. Otherwise,
the point is marked as a cluster point and the search is expanded to its neighbours.

13

2. Theory

The algorithm repeats the same process until all points are visited. The pseudocode
of the algorithm [21] is as follows:

Algorithm 1 Density-based Clustering
Input: Data {X1, ..., XN}, ε,MinPts
Output: Dense Clusters

1: ClusterId = 1
2: for i = 1 to N do
3: if Xi is UNVISITED then
4: if Xi is not NOISE then
5: ExpandCluster(Xi) /*finds all cluster points connected via Xi*/
6: ClusterId = ClusterId+ 1
7: end if
8: end if
9: end for

Dash et al. [21] stated in their study that DBSCAN algorithm has a couple of
drawbacks such as facing difficulty in setting the right density threshold and being
slow compared to K-Means.

2.5 Evaluation Metrics
The metrics we considered are for evaluating the quality of the clusters. The cluster
evaluation metrics are divided into two categories, extrinsic and intrinsic, depending
on the availability of the labeled data. Since there exists no information about the
true labels of the patents and it is impossible to create such a dataset without the
help from the experts in the domain, we are constrained to focus on only the intrinsic
evaluation metrics. Therefore, we have reviewed two of the most popular metrics
such as Silhouette score and Calinski-Harabasz index.

2.5.1 Silhouette Score
Silhouette score was proposed by Rousseeuw in 1987 [24] as a tool to assess the
quality of the clusters from both the compactness and separation points of view. In
other words, silhouette score is at its maximum if the data points in the clusters
are close to each other while they positioned far from the neighboring clusters. In
the mathematical terms, given k clusters (k>1), let A be the cluster to which the
data point i is assigned and B be the closest cluster to A, the silhouette score of i
is calculated as

s(i) = di(A)− di(B)
max{di(A), di(B)}

where

di(X) = 1
|X|

∑
x∈X

||x− i||

14

2. Theory

It can be seen from its equation, silhouette score is defined between the range
[−1, 1]. Rousseeuw [24] gave clear definitions of these values: the score of 1 means
the data point is well-clustered; −1 means it is assigned to a wrong cluster; and 0
means that it is unclear whether the data point should have been assigned to A and
B since it is positioned in between.

As s(i) communicates for one data point, the average score of all data points
indicates the overall quality of the clusters. In fact, Lovmar et al. [25] found
silhouette score very useful for assessing the quality of clusters and Shahapure et
al. [26] observed through several experiments that the silhouette score is a powerful
method in finding the near-optimal number of clusters for the algorithms such as
k-means.

2.5.2 Calinski-Harabasz Index
Calinski-Harabasz index [27] is another intrinsic method for evaluating the assign-
ments from the clustering algorithms. It is similar to the silhouette score in the
sense that it is also based on within-cluster and between-clusters relationship but
from the variance point of view. The higher values in this index correspond to
better clustering results which translate to lower within-cluster variance and higher
between-clusters variance [28]. However, since there is no upper bound on its value
range, this method does not give the same assurance as the silhouette score does.

15

3
Patent

The patent is a type of intellectual property that grants the ownership of an invention
or a technology to a patent holder. It enables the owners to have a monopoly of the
inventions in countries or regions by restraining the competitors from making use of
the invention or technology. In case of infringement, patent holders have the right to
sue the other parties to enforce them for complying with the claims of the patents.
Besides the protection, it is also an effective way of officially disclosing the invention
to the public which contributes to the development of future technologies. As an
example, the following figure shows the front page of a sample patent document:

Figure 3.1: Front page of a sample patent document [3]

It is undeniable that patent adds extra value to an invention. However, not
all inventions qualify for being patented. There is a term called “patentability”

17

3. Patent

referring to a set of criteria that an invention must satisfy for being accepted as
eligible. That is to say, an invention must fulfill the following requirements: novelty,
inventive step, and industrial applicability [3; 29]. Novelty demands the invention
must be new i.e. not been known before. The “inventive step” criterion requires
the invention not to be obvious to anyone knowledgeable in the field. Industrial
applicability demands the invention can be used or reproduced in some industries.

3.1 Patent History
The earliest version of patents emerged in 1474 in the Venetian Republic, where
people were granted exclusive rights for inventing or just bringing in the already
existing technologies from outside. As it was created to encourage economic growth,
it gradually became popular among other European rulers [30]. However, according
to Khan et al. [31], its power was frequently abused by the monarchs by allowing
monopolies on even common goods (e.g. salt) to increase revenue. Therefore, more
restrictions had to be brought in to prevent those practices (e.g. limiting the scope
of patent usage on only new inventions). In fact, the Statue of Monopolies Act was
introduced in Britain in 1623 in which patent granting rights were taken away from
the crown and given to the Parliament [30; 31].

The first article of the constitution of the United States involves a clause
(Article I, Section 8, Clause 81) about patent rights. Khan et al. [31] argued that
this clause set up the grounds for the very first modern patent system in which the
main aim is “to promote learning, technology and commercial development as well
as create a repository of information on prior art”.

3.2 Use of Patent Information
The patent data sets are extremely large and contain well-structured information
about technologies. Information contained in patents in a technological domain is
strongly correlated with the rate of technological progress in that domain [32; 33].
The rate of progress may indicate whether the technology will be successful or not
in the future. Thus, analysis of patent information usually plays a major role in the
R&D-related activities of most companies [34; 33]. Jürgens et al. [33] called this
activity “technology watch” or “technology monitoring”. It is a branch of so-called
“competitive intelligence” which refers to a set of research activities carried out by
companies to keep themselves informed about the changes in their industries for
adjusting their offerings and making knowledgeable decisions [33].

According to Daim et al. [34], the total number of patents over time is useful
statistic since patent increase rate usually drops down when technology enters a
maturity phase. They divided the patent growth life-cycle into three stages: early,
fast-growing, and maturity. An early stage is where the number of patents is limited.
This stage is followed by a fast-growing stage where the rate of patent increase is

1To promote the Progress of Science and useful Arts, by securing for limited Times to Authors
and Inventors the exclusive Right to their respective Writings and Discoveries

18

3. Patent

at its highest. The last stage is where the number of incoming patents levels out.
These stages are illustrated on the following graph:

Figure 3.2: S-shaped Growth Curve for Technology Field

3.2.1 Limiting Factors
David et al. [3] mentioned that the protection granted by the patent organization is
limited, usually 20 years. They have also written about a well-known phenomenon
which is the existence of at least 18-month execution time required by the most
patent offices to examine and publish the patent document. Petra Moser emphasized
in her study [30] that some companies may decide not to apply for a patent for their
valuable innovations due to several internal factors including a secrecy policy. This
factor especially contributes to a risk of missing important inventions during the
“technology watch” activities.

Jürgens et al. [33] mentioned that patenting activity significantly differs from
one industry to another.

3.3 Patent Data
The Patent data used in this study was purchased from European Patent Office in
late March 2018. Data came in the form of a relational database, namely PATSTAT,
consisting of 29 tables. The following list shows all the tables available in the
database [35]:

19

3. Patent

Table Name Description
tls201_appln Patent applications
tls202_appln_title Application titles
tls203_appln_abstr Application abstracts
tls204_appln_prior Paris Convention Priority
tls205_tech_rel Technical Relation: ’priority-like’ relation
tls206_person Information about applicants and inventors
tls207_pers_appln Mapping between person and application
tls209_appln_ipc International Patent Classification
tls210_appl_n_cls National classification
tls211_pat_publn Patent publication
tls212_citation Citations to publications and applications
tls214_npl_publn Non patent literature publication
tls215_citn_categ Citation category
tls216_appln_contn Application continuation
tls222_appln_jp_class Japanese classification
tls223_appln_docus US classification
tls224_appln_cpc Cooperative Patent Classification
tls226_person_orig Unmodified person data
tls227_pers_publn Mapping between person and publication
tls228_docdb_fam_citn Citation between DOCDB families
tls229_appln_nace2 NACE2 industry classification
tls230_appln_techn_field Classification by technical field
tls231_inpadoc_legal_event Legal events related to application
tls801_country Reference table of country codes
tls803_legal_event_code Reference table of legal event codes
tls901_techn_field_ipc Mapping between technology fields and IPC codes
tls902_ipc_nace2 Mapping between IPC codes and industry sectors
tls904_nuts NUTS regional codes

Table 3.1: Tables names in the PATSTAT database

The PATSTAT database is a combination of two databases maintained by
European Patent Office: DOCDB worldwide bibliographic database and INPADOC
worldwide legal event database. It contains data for approximately 92 million patent
documents some dating back to 1782 which covers over 90 countries [35].

Despite the massive amount of information the PATSTAT database offers, we
mainly focused on using textual information such as titles and abstracts. However,
we discovered that around 42 million patent documents were missing abstract in-
formation, approximately 5 million abstracts are non-English, and a small subset
of English abstracts are incomplete (e.g. “The invention relates to a display device
comprising a flat display screen and to a guiding devi”). Thus, we applied a mini-
mum threshold on abstract length of 150 characters (mean length is 884 characters)
to eliminate as many incomplete and short abstracts as possible. This further cut
about 250,000 abstracts. As a result, approximately about 45 million patents are
found to be usable in this study.

20

4
Methods

At the beginning of this thesis, the intention was to use clustering algorithms in
order to get representative data sets. However, as we were making progress with the
practical work and not getting desired results, the method was shaped into a form
which we named Similarity-Based Patent Selection (SBPS).

This chapter consists of three sections. The first section will describe the
preprocessing techniques applied to the patent data. In the second section, the
initially intended method will be briefly described. Finally, the last section will
explain the proposed method, SBPS, in detail.

4.1 Preprocessing

4.1.1 Tokenization
Tokenization is the very first step to take when dealing with text data. It splits
longer text into smaller pieces (e.g. sentences into words). It usually comprises
a set of basic actions such as lowercasing, removing accents, punctuation marks,
parentheses, etc. In this thesis, we employed the “simple_preprocess” function of
the “Gensim” library to tokenize the data. This specific implementation allows
defining minimum and maximum length for the tokens, which we set 2 and 50
respectively. It also gets rid of digits which is favorable in our case. The following
example shows the result of applying the “simple_preprocess” function to a small
part of a sample patent abstract:

Abstract (Raw) After Tokenization

A rectangular-parallelepiped hinged
lid type package for filter cigarettes
comprising an inner pack (36) for
cigarette pack, and a casing formed
from a sheet of blank (50) and hous-
ing the inner pack (36).

rectangular parallelepiped hinged lid
type package for filter cigarettes com-
prising an inner pack for cigarette
pack and casing formed from sheet of
blank and housing the inner pack

Table 4.1: Result of tokenization of raw abstract

21

4. Methods

4.1.2 Stopword removal
Stopwords are words that do not add much value to the general meaning of a text
(e.g. a, an, the, for, etc.). Removing those words helps to reduce the dimensionality
of documents, hence improves the efficiency of algorithms.

In this study, we used a vocabulary of stopwords in English language down-
loaded from a python library called “nltk”. Additionally, we implemented a logic to
remove roman letters as well. The following demonstrates the result of the applica-
tion of this technique:

Abstract (Tokenized) After Stopword Removal

rectangular parallelepiped hinged lid
type package for filter cigarettes com-
prising an inner pack for cigarette
pack and casing formed from sheet of
blank and housing the inner pack

rectangular parallelepiped hinged lid
type package filter cigarettes compris-
ing inner pack cigarette pack casing
formed sheet blank housing inner pack

Table 4.2: Result of removing stopwords from tokenized abstract

4.1.3 Lemmatization
Lemmatization is the process of reducing inflected words back to their original form.
For instance, the words “comprising” and “comprised” are the inflected forms of the
word “comprise”.

Lemmatization is a useful technique to decrease the number of unique words
in a vocabulary which is directly proportional to the efficiency and effectiveness of
almost all of the algorithms in NLP.

In this thesis project, we utilized the “en_core_web_sm” model from a python
library called “spacy” for lemmatization purposes. The result of applying this tech-
nique can be seen in the following table:

Abstract (Tokenized and Stopwords
removed)

After Lemmatization

rectangular parallelepiped hinged lid
type package filter cigarettes compris-
ing inner pack cigarette pack casing
formed sheet blank housing inner pack

rectangular parallelepiped hinge lid
type package filter cigarette comprise
inner pack cigarette pack case form
sheet blank house inner pack

Table 4.3: Result of applying lemmatization on tokenized and stopword-
free abstract

22

4. Methods

4.1.4 Frequency-based word removal
Similar to stopwords, frequent words in the corpora usually do not add value to
the meaning of individual documents. Besides increasing the dimensionality of doc-
uments, they usually hinder algorithms to catch the individual characteristics of
documents by adding unnecessary complexity. Therefore, we implemented logic to
get rid of the frequent words used in the entire corpora. Based on experimental
observations, we found that a word used in at least 5% of all the documents should
be regarded as a frequent word.

We also observed that the patent data set contains unignorable number of
typographical errors which do not help the algorithms to work efficiently and effec-
tively. To remove such words, we set a limiting requirement on words, to be present
in at least 5 documents. We stick to the same example used in the above-mentioned
preprocessing techniques in order to better illustrate the effect of removing words
based on frequency. The result can be observed in the following table:

Abstract (Tokenized, Stop-words re-
moved, Lemmatized)

After Frequent Word Removal

rectangular parallelepiped hinge lid
type package filter cigarette comprise
inner pack cigarette pack case form
sheet blank house inner pack

rectangular parallelepiped hinge lid
package filter cigarette pack cigarette
pack sheet blank house pack

Table 4.4: Result of the removal of frequent words from tokenized,
stopword-free, and lemmatized abstract

4.2 Clustering-Based Patent Selection
As mentioned above, the initial aim was to get the patent documents clustered into
technology fields and then, look for the representative data sets among the clusters.
To achieve it, the plan was divided into three major steps:

• The first step was to convert documents into vectors. We used the Doc2Vec
model for this purpose since document embeddings obtained with TF-IDF
vectorizer required more memory resources in the computer than there were
available.

• The second step was to get the document embeddings clustered. According
to the plan, K-Means was the first algorithm to try due to its simplicity and
efficiency. Depending on acquiring promising results assessed with Silhouette
and Calinski-Harabasz evaluation metrics, DBSCAN was yet another cluster-
ing algorithm to try.

• The final step was to run TF-IDF or TextRank keyword extracting algorithms
on each cluster to find a technology field it represents. However, the execution
of this step was highly dependent on the success in the second step.

23

4. Methods

As discussed in Section 5.2.1, the clusters obtained in the second step were insep-
arable from one another. This conclusion was suggested by the “Silhouette Score”
metric (see Section 2.5.1) as the calculated average value was negative, close to 0.
The potential cause leading to the overlapping clusters was the underperformance
of the Doc2Vec model employed in the first step of this method.

4.3 Similarity-Based Patent Selection (SBPS)
SBPS is a method proposed in this study that incorporates several Natural Language
Processing techniques in order to automate the selection of representative patent
set based on an input query from a user. It is inspired by the way Word2Vec and
Doc2Vec models from the “Gensim” library finds similar words and documents. The
working principle of SBPS can be broken down into three main stage: interactive
query building, calculating similarity scores in the patent database, and determining
similarity threshold.

4.3.1 Query Building
Query to SBPS is a single vector representing the description of a technology field.
It is provided by a user and the process of building this query relies on the algebraic
properties of the word vectors described in Section 2.2.2. Thus, the essential part of
this stage is to train the Word2Vec model in order to obtain vectors for the words
used in the corpora.

There exist two word lists, namely positive and negative. Users are required
to provide keywords in these list: words that they want the results being closely
related to in the positive list; words that they want the results being unrelated to in
the negative list. The query is a resulting vector obtained by adding word vectors
in the positive list and subtracting the ones in the negative list.

The query building process is assisted with the utilization of “most_similar”
function of “Gensim” Word2Vec. As soon as a word is added to either of the lists,
SBPS prepares the current query and presents top n most similar words in the
corpora. This feedback feature of the system hints about the possible results and
informs the users of the associations that the query makes. Then, the users either
remove the unwanted associations by adding those words to the negative list or keep
extending positive list until they confirm the query.

4.3.2 Calculating Similarity Scores
Once the query is confirmed, SBPS, similar to “Gensim” Doc2Vec, iterates over all
the documents in the data set to calculate cosine similarity scores. Unlike Doc2Vec,
document vectors are calculated the same way the query vector gets calculated,
that is, a document vector is a total sum of the word vectors for n keywords in the
corresponding document.

In this study, the TextRank algorithm is utilized for extracting keywords out of
the documents. The choice of keyword extraction algorithm is based on experimental

24

4. Methods

observations as the TextRank algorithm is found to be better in summarizing patent
documents than the TF-IDF algorithm.

4.3.3 Determining Similarity Threshold
Determining the similarity threshold is a manual stage that requires user’s interac-
tion since all documents are assigned with a similarity score in the second stage. The
manual fashion is mainly because the query building stage is open-ended, that is,
the user defines the scope of the query or the desired technology field; the narrower
the scope it gets, the lower the threshold is required.

25

5
Results

5.1 Verification via Single Technology Sector
In order to quickly check if Doc2Vec algorithm produces good results, we limited
the number of patents by focusing on a single technology sector. We selected all
patent abstracts categorized under the chemistry technology sector since it was the
largest sector in the database. This accounted for about 10.5 million abstracts after
the application of the initial filters for excluding short, incomplete, and non-English
patent abstracts. We divided the data set into training and test subsets comprising
of 80% and 20% of the whole data respectively. Both datasets were subjected to the
tokinazation and stop-word removal processes before feeding the training dataset in
to the Doc2Vec model with the default settings. Since there was not any labeled test
data, we carried out a manual evaluation test on the acquired document embeddings
based on our intuition. For this task, we randomly picked a small subset of patent
abstracts out of the test data set and asked the trained Doc2Vec model to bring back
the most similar 20 abstracts for each selected abstract. We analyzed the results
and found the traces of similarities between the queried and returned abstracts.
However, we could not draw a concrete conclusion about the quality of document
embeddings since this test required a substantial knowledge in chemistry.

Besides the document embeddings, the Doc2Vec model produced word embed-
dings on which a similar test is applied. We randomly selected 10 words from the
vocabulary and asked the model to return 10 most similar words for each of them.
The result showed that the model trained the word vectors well as it was able to
capture the semantic meaning of words (e.g. for the word ’aluminium’ the returned
results are mostly related to metals such as ’metallurgy’, ’aurum’, ’argentum’, ’fer-
rum’, ’natrium’ etc.). This result yielded that the Doc2Vec algorithm is capable
of producing quality document embeddings out of the patent abstracts. Thus, we
expanded the scope of the experiment by considering patents from all technology
sectors available.

5.2 Analysis on Multiple Technology Sectors
The data set considered in this section contains information for all the relevant
patents (about 44.75 million) in the database. Unlike the data used in Section 5.1,
we used both patent titles and abstracts merged together.

27

5. Results

We stuck to the same rule (80% training and 20% test) for dividing the data
set. Therefore, we were left with 36 million data points to train the model on. Due
to the limitations on the resources of the used computer, a single run of the Doc2Vec
model was taking about 8 to 9 hours. Spending this amount of time on a single run
was not feasible by taking into account the number of parameters to tune. This is
why, we decreased the amount of training dataset by randomly sampling about 5
million data points.

As mentioned in Section 5.1, the main obstacle was having no labeled data set
to be used for performance evaluation of the trained models and it was not feasible
to manually create one from both time and domain knowledge perspectives. The
reason for it is that patents are usually prepared by owners in a way to touch as many
different fields as possible, which makes the manual categorization task significantly
complicated.

5.2.1 Failed Experiments
In this subsection, we will present the results of the experiments that did not work.

5.2.1.1 Parameter Tuning through Sanity Checking

We decided to use “sanity check” described in Section 4.2 as a method to do a
sort of model evaluation and tune hyper-parameters of Doc2Vec. For this purpose,
we randomly selected 10,000 data points from the training data set. We trained
numerous models with different parameter settings. The following table shows the
considered values for each parameter (all possible combinations):

Vector size Min. Count Traning Algorithm Window Epochs
100 10 "dm" 10 30
_ 20 "dbow" 20 45
_ _ _ _ 60
_ _ _ _ 100

We carried out “sanity check” on all trained models several times and averaged
the results. Here are our findings:

• The ’DBOW’ algorithm outperforms the ’PV-DM’ algorithm as the accuracy
was around 99% and 82% respectively.

• The accuracies for the models trained with 30 epochs were under the 95%
threshold, averaged around 92%.

• Inconsistent accuracy results for the rest of the parameter values.

Overall the evaluation attempt through “sanity check” did not contribute to
any information gain as the results were unclear and inconsistent with the parameter
values. This confirmed that “sanity check” should not be used as a technique to
measure the accuracy of models.

28

5. Results

5.2.1.2 Parameter Tuning through Cluster Evaluation

Since “sanity check” did not help to assess the quality of the document embed-
dings, we came up with an idea of evaluating document embeddings and clusters
altogether using intrinsic cluster evaluation techniques. The assumption was that
quality clusters can only be produced if document embeddings are well-trained. We
chose K-Means as a clustering algorithm since it is powerful enough and requires
only one parameter which is the number of clusters. Since that parameter is un-
known, we ran K-Means several times on the same set of document embeddings
with different choices of K value, ranging from 75 to 175 with 25 difference between
the runs. As an evaluation method, we decided to employ “Silhouette Score” since
its value range is well defined and it will enable us to easily compare models to
each other. The aim to find near-optimal parameter settings for both Doc2Vec and
KMeans through maximizing the silhouette score. The observed silhouette scores
were all negative close to 0 and it did not improve with any choice of K value. Ac-
cording to the Section 2.5.1, a negative silhouette score suggests that clusters are
not separable and they have significant overlaps. In our case, these results translate
to the document vectors being closely positioned to each other in the subspace. It
may be due to having many common words in patent title and abstracts which in
return, contributing to the document vectors being more alike. In order to decrease
similarities and put more emphasis on individual differences of the documents, we
applied an extra preprocessing technique to get rid of the frequent words across the
patent titles and abstracts. We trained the models with the same parameter settings
and clustered the acquired document vectors with the same choices of K. However,
we did not observe any significant improvement in the silhouette scores compared
to those in the previous experiment.

5.2.2 Successful Method: SBPS
This section will first give brief information about how the SBPS method has been
implemented and utilized in this study. Then, it will continue to present the graphs
(e.g. growth curve described in the Section 3.2) extracted for several competing
technologies using the SBPS tool. Each technology battle will be discussed in a
separate subsection where the results will be analyzed in comparison to the history
of the corresponding technologies.

5.2.2.1 SBPS as Command Line Application

In this study, the SBPS method was implemented in the Python programming
language as a command-line application.

All the preprocessing techniques mentioned in Section 4.1 were applied to the
data set (comprising of about 45 million patent abstracts and titles) and a Word2Vec
model with 500 vector size was trained. The model was then used in the query
building stage to assist users with the 10 most similar words as they update the
“positive” and “negative” lists. The following figure shows an example of building
a query for radar technology:

29

5. Results

Figure 5.1: Example of Query Building Process

As can be seen in the figure, the tool found the words “radar”, “sonar” and
“lidar” related. It is indeed factually accurate since they all are sensor technologies.
It has also been shown in the example that the introduction of “radiowave” in the
positive list and “ultrasound” in the negative list respectively made the words “lidar”
and “sonar” less related. These results are expected since LIDAR and SONAR are
the technologies based on light and sound respectively while the RADAR technology
makes use of radio waves.

As described in Section 4.3, the TextRank algorithm was employed to extract
at most 15 keywords from the documents and save them in a csv1 formatted file.
The tool was developed in a way to take the keywords file as an input and, then
obtain word vectors for the keywords by utilizing the trained Word2Vec model and
finally, add them together to form the document vectors.

Once the query is passed by the user, the tool utilizes the “cosine_similarity”
function from the well-known python library called “Sklearn” to calculate the simi-
larity scores between the query vector and the document vectors and saves the result
in a file.

In sum, the SBPS tool used in this thesis produces a file containing similarity
scores mapped to patent applications, the histogram or growth curve graphs for
technologies.

5.2.2.2 Carburetor vs. Fuel Injection

Carburetor and Fuel Injection are two competing technologies used in vehicles that
serve the same purpose, delivering fuel to engines. These technologies are responsible
for mixing air with fuel in an appropriate ratio before the delivery. The way they
achieve this aim is what makes them different. The carburetor is simpler in design
compared to fuel injection systems. It has two mechanical valves that control air
and fuel flow into the combustion engine while most of the fuel injection systems
are electronically controlled which means the computer decides the amount of fuel
delivery based on external factors.

1Comma Separated Values

30

5. Results

Both the carburetor and fuel injection have been around since the 19th century,
but the carburetor is the older technology. Fuel injection was being mostly used in
diesel engines until the early 1950s. Its usage gradually increased after the first in-
troduction for petrol engines for passenger cars and, finally, it became the preferred
technology over carburetors to be used in the automotive industry due to its effi-
ciency and effectiveness. The shift from carburetors to fuel injection systems took
place in the late 1980s. This event can be clearly observed in the figures produced
by the SBPS tool. The Figures 5.2 and 5.3 show that the growth of the carburetor
technology started to plateau in the mid-1980s while the fuel injection was on the
rise. Figure 5.3 also shows that there was a slight increase in the number of filed
patent applications in the fuel injection technology around the 1950s, which is in
correspondence with the historical events.

Figure 5.2: Growth Curve of Carburetor Technology

Figure 5.3: Growth Curve of Fuel Injection Technology

5.2.2.3 Floppy Disk vs. Optical Disc vs. USB Flash Drive

Floppy disk and USB flash drive belong to the family of data storage technologies.
The first floppy disk was introduced in the early 1970s by IBM. Due to its well-
known issues including large dimensions (8-inch) and little capacity (about 80KB),
its new versions were introduced in 1976 (5,25-inch) and 1982 (3,5-inch) and became

31

5. Results

more popular. Floppy disk remained the most popular storage technology until it
was slowly replaced by optical disc technology (e.g. CD/DVD). The optical disc
was invented in the 1960s however the earliest version, namely “LaserDisc ”, was
introduced around the early 1970s and become commercially available by the end
of the decade. However, it did not gain popularity as it was not fully digital and its
retail price was high. This technology attracted more attention with the introduction
of CD and DVD in 1985 and 1995 respectively and became mainstream technology
to be used in computers. Between 2000 and 2005, this technology became even
more popular with the introduction of Blu-ray discs. However, it was made obsolete
by the advancements in flash memory technology (e.g. USB Flash Drive). The
foundation of flash memory technology was laid down around 1980 by Toshiba. The
increase in reliability and decrease in the cost per capacity ratio of this technology
over time led to the rise in its popularity. In 1999, the first patent was filed for the
USB Flash Drive technology. Towards the end of the 2000s, it became the preferred
technology over its competitors.

The following graphs (see Figure 5.4, Figure 5.5, and Figure 5.6) have been ex-
tracted with the SBPS tool. The historical events discussed in the paragraph above
can be clearly observed in these graphs. What may come as a bit of a surprise in
Figure 5.6 is that the USB Flash Drive technology seems to be entering its maturity
stage. In this case, the relevant question might be if the recent progress in cloud
technology puts an end to the life of the USB Flash Drive technology.

Figure 5.4: Growth Curve of Floppy Disk Technology

32

5. Results

Figure 5.5: Growth Curve of Optical Disc Technology

Figure 5.6: Growth Curve of USB Flash Drive Technology

5.2.2.4 Fluorescent vs. LED

Fluorescent and LED are two well-known lighting technologies. Despite the former
has a much longer development history than the latter, the battle between these two
technologies is especially interesting since the advancements in the LED technology
have led to a decrease in the interest in fluorescent technology. Fluorescent tech-
nology dates back to 1857. It is when the French physicist Alexandre E. Becquerel
investigated the topic for the first time and formed a theory of the fluorescent tube
[36]. There were several experiments on building similar lamps and some patenting
activities took place between the end of the 19th century and 1930 but the invented
lamps were not practical enough from many technical aspects in order to gain popu-
larity [36]. According to Bellis [36], the first practical fluorescent lamp was invented
in 1934 and sold in 1938. In 1980, Philips brought the first compact screw-in fluo-
rescent lamp to the market which offered several benefits over its competitors [37].
According to Bell [37], this invention led to further advancements in the technology.
On the other hand, LED has a shorter history which dates only back to the 1960s.
The first light-emitting diode (red light) was invented in 1962 by Nick Holonyak
[38; 39]. Holonyak et al. [39] called this invention an industry revolutionizing in-
vention since it was the basis for the modern LED lamps. The first commercially

33

5. Results

LED was introduced in 1968 [40]. After that, there were several LEDs developed
producing monochromatic light between 1980 and early 1990s [41]. According to
Cho et al. [41], these inventions created the grounds for the invention of white LED.
In fact, the first white LED lamp was announced two years after the invention of
high-brightness blue LED in 1994 [42; 41]. Thereafter, this technology has seen
great attention by the companies in the lighting industry and made them shift from
investing in other lighting technologies to the LED technology. As a matter of fact,
Philips announced to cut off their investments in Fluorescent bulbs in favor of the
research of the LED technology in 2008 [43].

Figure 5.7 shows that there was a slight increase in the patenting activity for
fluorescent technology between 1930 and 1935. This increase is expected since the
first practical fluorescent lamp was built during that period. The growth curve for
the fluorescent technology also shows that the fast-growing stage began after 1975
which can be explained by the potential development period of the first compact
fluorescent bulb introduced by Philips in 1980. In the same figure, inclination after
2011 is observed which may indicate the beginning of the maturity stage (see also
the histogram graph in Figure 5.9). Entering the maturity stage is expected, given
the success of the LED technology during the period. As can be seen in Figure 5.8,
the SBPS tool managed to get the beginning of the technology somewhat right and
capture the rise in interest to the LED technology after 2000; however, we could
not find an answer to the decline in the patenting activity in the LED technology
observed after 2012 (see Figure 5.10). As we were having a hard time explaining all
the trends shown on the figures, an expert interpretation might be valuable in this
technology battle.

Figure 5.7: Growth Curve of Fluorescent Technology

34

5. Results

Figure 5.8: Growth Curve of LED Technology

Figure 5.9: Histogram for Fluorescent Technology

Figure 5.10: Histogram for LED Technology

5.2.2.5 SONAR vs. RADAR vs. LIDAR

Sonar, radar, and lidar are similar technologies that rely on the reflection of sound,
radio, and light waves respectively. These technologies are developed to locate dis-
tant objects. The oldest one of these technologies is sonar, invented in 1906 for

35

5. Results

detecting icebergs [3; 44]. According to Ainslie [45], the world’s first patent for an
echolocation system similar to sonar was filed in 1912. The sonar technology was
further developed during World War I in order to detect submarines [3; 44]. In fact,
the first functional sonar was built in 1918 [45]. The technology was even investi-
gated and developed further during World War II [45]. David et al. [3] stated that
sonar technology has been widely used in the automotive industry due to its accu-
racy in short distances and reliability in different conditions. According to Ainslie
[45], advancements in digital computers created new possibilities and stimulated
the development of sonar technology. However, David et al. [3] have stated that
sonar is reaching to the end of its development life cycle. Radar, on the other hand,
emerged just before the beginning of World War II and developed during the war
for being used in military applications [3; 46]. Besides the usage in the military, it
has been successfully utilized for numerous civilian applications such as air traffic
control, speed measurement, planetary observations, and so on. According to David
et al. [3], radar has grown to became one of the key technologies in the automotive
industry and it is predicted to grow even further due to its potential for enabling
autonomous driving. Finally, lidar is the youngest member of this group which was
developed shortly after the invention of laser in 1960 [47; 48]. However, the term,
lidar, was used for the first time in 1953 for a similar measurement technique ac-
cording to Wandinger [47]. The research in lidar technology continued to rise, but
the invention of GPS technology, happened in the 1970s [49], made the technology
less popular [47]. At the beginning of the 21st century, interest in lidar technology
has re-arisen due to its great potential for enabling fully autonomous driving [3].

By looking at the growth curves produced by the SBPS tool (see Figure 5.12,
Figure 5.13, and Figure 5.14), it can be clearly seen that the SBPS method could
able to capture most of the main events for all these three technologies (e.g. ap-
proximate invention time, fast-growing period). However, the graphs for Sonar and
Radar technologies do not feature much patenting activity during WWI and WWII
respectively. The reason probably is due to the fact that the PATSTAT database
misses abstract information for most patents filed during the first half of the 20th

century (more than 85 percent).

Interesting results came out when we compared the graphs from the SBPS tool
with the graphs that David et al. [3] acquired for their manually selected data sets.
The authors concluded that all these three technologies are in their fast-growing
stage (see Figure 5.11) which agrees with what our graphs (see Figure 5.12, Figure
5.13, and Figure 5.14) display. The relative rises and falls in Figure 5.11 reflect the
relative fluctuations in the figures acquired by the SBPS tool. These comparative
results confirm even further the strength of the employed method.

36

5. Results

Figure 5.11: Cumulative number of patent applications [3]

Figure 5.12: Growth Curve of SONAR Technology

Figure 5.13: Growth Curve of RADAR Technology

37

5. Results

Figure 5.14: Growth Curve of LIDAR Technology

Figure 5.15: Yearly number of patent applications [3]

Figure 5.16: Histogram for Sonar Technology

38

5. Results

Figure 5.17: Histogram for Radar Technology

Figure 5.18: Histogram for Lidar Technology

39

6
Discussion

The primary aim of this thesis project was to develop a method to automate the
most tedious but yet important task of the patent analysis process which is retrieving
representative data sets. Therefore, the following main research question was set:
“How can unstructured textual information found in a patent database like PATSTAT
be used to construct a patent selection system?”. To answer this question, two sub-
questions were asked:

1. What unstructured textual information can be found in the PATSTAT database
and which ones can be used for our purpose?

2. Which algorithms can be utilized to build a patent selection system? What
value do they add?

A patent document is similar in structure to an academic paper, consisting of
title, abstract, description, and inventors. Additionally, it contains claims, assignee,
and examiners information. Among these information pieces, only four were found to
be useful in directly revealing information about the technology sector that a patent
belongs to. We could access only the title and abstract since claims and descriptions
were not available in the database. It was also found that the PATSTAT database
provides abstracts for about 56% of all patents and 16% of the ones filed before 1980.
It means we may miss most of the historical patenting activities in the results.

The nature of the source data restricted us to choose from Natural Language
Processing algorithms. It included several sets of techniques to be considered: pre-
processing, text vectorization, and keyword extraction. From the first set, “lemma-
tization” is found to be the most important technique since words in abstracts are
often used in their different inflected forms. From the second set, we found word
embeddings to be more flexible and useful than document embeddings. It may be
affected by not having a sophisticated method to assess the quality of techniques
providing document embeddings. Overall, the use of keyword extraction techniques
and the cosine similarity measure in the SBPS method were the key factors in reach-
ing positive results, given in Section 5.2.2.

The SBPS method proposed in this study is not limited to be used only on
the patent data. It has the potential to be effective on any text data comprised of
the data points with at least a few descriptive sentences such as academic papers,
traffic accident descriptions [2], encyclopedia articles (e.g. Wikipedia), and so on.

41

6. Discussion

6.1 Future Work
Recommendations for future scholars who would like to conduct research on this
topic:

• Utilizing a database that offers more textual data for the patent documents
than PATSTAT.

• Having access to a powerful computer that has at least 160GB RAM, 12 phys-
ical CPUs, GPU enabled, and at least 2TB SSD storage.

• Preferably using C programming language since most of the Python libraries
suffer from an infamous limitation known as “Global Interpreter Lock”

• Keywords in the abstracts tend to be misspelled frequently and this affects
some word vectors being under-trained. Using a method (such as “TextBlob”
in Python) to fix typographical errors may increase the accuracy noticeably.

• The third stage of the SBPS method requires rather manual work and there is
room for automation. It has been observed that there is an edge in the similar-
ity range where the values above it account for only selecting relevant patents.
For the values below that edge, the patent count increases dramatically.

42

Bibliography

[1] J. Tang, J. Liu, M. Zhang, and Q. Mei, “Visualizing large-scale and high-
dimensional data,” in WWW ’16: Proceedings of the 25th International Con-
ference on World Wide Web, pp. 287—-297, April 2016.

[2] S. Abdullayev and A. Mekonnen, “Topic modeling and clustering for analysis
of road traffic accidents,” Chalmers University of Technology / Department of
Applied Mechanics, 2017.

[3] G. David and Y. Lili, “Using patent data to position firms in technology-
intensive environments,” Chalmers University of Technology / Departmentof
Technology Management and Economics, 2018.

[4] A. Trippe, “Patinformatics: Tasks to tools,” vol. 25, pp. 211–221, 2003.

[5] S. Bashir and A. Rauber, “Improving retrievability of patents in prior-art
search,” in Advances in Information Retrieval.

[6] P. Mahdabi and F. Crestani, “Learning-based pseudo-relevance feedback for
patent retrieval,” in Multidisciplinary Information Retrieval, pp. 1–11, Springer
Berlin Heidelberg, 2012.

[7] W. Magdy and G. J. F. Jones, “A study on query expansion methods for
patent retrieval,” in In Proceedings of the 4th workshop on Patent information
retrieval, pp. 19–24, 2011.

[8] W. Tannebaum and A. Rauber, “Using query logs of uspto patent examiners
for automatic query expansion in patent searching,” vol. 17, pp. 451–470, 2014.

[9] W. Tannebaum and A. Rauber, “Patnet: A lexical database for the patent
domain,” in Advances in Information Retrieval.

[10] L. Zhang, Z. Liu, L. Li, C. Shen, and T. Li, “Patsearch: an integrated framework
for patentability retrieval,” vol. 57, pp. 135–158, 2018.

[11] M. Verma and V. Varma, “Applying key phrase extraction to aid invalidity
search,” in Proceedings of the 13th International Conference on Artificial Intel-
ligence and Law, p. 249–255, Association for Computing Machinery, 2011.

[12] J. Singh and A. Sharan, “Relevance feedback-based query expansion model
using ranks combining and word2vec approach,” vol. 62, pp. 591–604, Taylor
Francis, 2016.

43

Bibliography

[13] L. Helmers, F. Horn, F. Biegler, T. Oppermann, and K.-R. Müller, “Automating
the search for a patent’s prior art with a full text similarity search,” vol. 14,
pp. 1–17, Public Library of Science, 2019.

[14] R. Mihalcea and P. Tarau, “Textrank: Bringing order into texts,” in Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP 2004), 2004.

[15] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search en-
gine,” in Proceedings of the Seventh International World Wide Web Conference,
vol. 30, pp. 107–117, 1998.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv:1301.3781, 2013.

[17] T. Mikolov, W. tau Yih, and G. Zweig, “Linguistic regularities in continuous
space word representations,” NAACL HLT, 2013.

[18] Q. Le and T. Mikolov, “Distributed representations of sentences and docu-
ments,” in Proceedings of the 31st International Conference on Machine Learn-
ing, vol. 32, pp. 1188–1196, PMLR, 22–24 Jun 2014.

[19] L. van der Maaten, E. Postma, and J. van den Herik, “Dimensionality reduction:
A comparative review,” Tilburg University, 2009. Online print.

[20] G. Linderman and S. Stefan, “Clustering with t-sne, provably,” vol. 1, pp. 313–
332, 2019.

[21] M. Dash, H. Liu, and X. Xu, “’1+1>2’: merging distance and density based
clustering,” in Proceedings Seventh International Conference on Database Sys-
tems for Advanced Applications. DASFAA 2001, pp. 32–39, 2001.

[22] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of efficient
initialization methods for the k-means clustering algorithm,” vol. 40, pp. 200–
210, 2013.

[23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in In Proceedings of
International Conference on Knowledge Discovery and Data Mining (KDD’96),
1996.

[24] P. J.Rousseeuw, “Silhouettes: A graphical aid to the interpretation and valida-
tion of cluster analysis,” vol. 20, pp. 53–65, 1987.

[25] L. Lovmar, A. Ahlford, M. Jonsson, and A.-C. Syvänen, “Silhouette scores for
assessment of snp genotype clusters,” in BMC Genomics, vol. 6, 2005.

[26] K. R. Shahapure and C. Nicholas, “Cluster quality analysis using silhouette
score,” in 2020 IEEE 7th International Conference on Data Science and Ad-
vanced Analytics (DSAA), pp. 747–748, 2020.

[27] T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,” vol. 3,
pp. 1–27, 1974.

44

Bibliography

[28] X. Wang and Y. Xu, “An improved index for clustering validation based on
silhouette index and calinski-harabasz index,” vol. 569, p. 052024, IOP Pub-
lishing, aug 2019.

[29] S. I. P. Office, “Conditions for a patent,” 2020. Available at: https://www.
prv.se/en/patents/applying-for-a-patent/before-the-application/
conditions-for-a-patent [Accessed April 3, 2021].

[30] P. Moser, “Patents and innovation: evidence from economic history,” vol. 27,
pp. 23–44, 2013.

[31] B. Z. Khan and K. L. Sokoloff, “History lessons: The early development of
intellectual property institutions in the united states,” vol. 15, pp. 233–246,
2001.

[32] C. L. Benson and C. L. Magee, “Quantitative determination of technological
improvement from patent data,” PLoS ONE 10(4), 2015. e0121635.

[33] B. Jürgens and V. Herrero-Solana, “Patent bibliometrics and its use for tech-
nology watch,” vol. 7, pp. 17–26, 2017.

[34] T. U. Daim, G. Rueda, H. Martin, and P. Gerdsri, “Forecasting emerging tech-
nologies: Use of bibliometrics and patent analysis,” vol. 73, pp. 981–1012, 2006.
Tech Mining: Exploiting Science and Technology Information Resources.

[35] E. P. Office, “Data catalog – patstat global – 2020 autumn edition,” 2020.
Available at: http://documents.epo.org/projects/babylon/eponot.nsf/
0/D3AECDEF45825DC7C1258614004FC6D9/$File/DataCatalog_Global_v5.
16.pdf [Accessed April 8, 2021].

[36] M. Bellis, “The history of fluorescent lights,” 2019. Available at: https://www.
thoughtco.com/history-of-fluorescent-lights-4072017 [Accessed May
27, 2021].

[37] J. Bell, “The art and craft of fluorescent lamps,” vol. 97, pp. 718–720, 1983.

[38] N. Holonyak and M. Feng, “Coherent (visible) light emission from ga(as1xpx)
junctions,” vol. 1, pp. 82–83, 1962.

[39] N. Holonyak and M. Feng, “The transistor laser,” vol. 43, pp. 50–55, 2006.

[40] D. L. Andrews, “Photonics, volume 3: Photonics technology and instrumenta-
tion,” John Wiley Sons, 2015.

[41] J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes:
History, progress, and future,” vol. 11, p. 1600147, 2017.

[42] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness in-
gan/algan double-heterostructure blue-light-emitting diodes,” vol. 64, pp. 1687–
1689, 1994.

[43] NYT, “Fans of l.e.d.’s say this bulb’s time has come,” 2008. Available at: https:
//www.nytimes.com/2008/07/28/technology/28led.html [Accessed May 27,
2021].

45

https://www.prv.se/en/patents/applying-for-a-patent/before-the-application/conditions-for-a-patent
https://www.prv.se/en/patents/applying-for-a-patent/before-the-application/conditions-for-a-patent
https://www.prv.se/en/patents/applying-for-a-patent/before-the-application/conditions-for-a-patent
http://documents.epo.org/projects/babylon/eponot.nsf/0/D3AECDEF45825DC7C1258614004FC6D9/$File/DataCatalog_Global_v5.16.pdf
http://documents.epo.org/projects/babylon/eponot.nsf/0/D3AECDEF45825DC7C1258614004FC6D9/$File/DataCatalog_Global_v5.16.pdf
http://documents.epo.org/projects/babylon/eponot.nsf/0/D3AECDEF45825DC7C1258614004FC6D9/$File/DataCatalog_Global_v5.16.pdf
https://www.thoughtco.com/history-of-fluorescent-lights-4072017
https://www.thoughtco.com/history-of-fluorescent-lights-4072017
https://www.nytimes.com/2008/07/28/technology/28led.html
https://www.nytimes.com/2008/07/28/technology/28led.html

Bibliography

[44] M. Bellis, “The history of sonar,” 2020. Available at: https://www.thoughtco.
com/the-history-of-sonar-1992436 [Accessed May 28, 2021].

[45] M. A. Ainslie, “A brief history of sonar,” in Principles of Sonar Performance
Modelling.

[46] M. I. Skolnik, “Radar,” Encyclopedia Britannica, 2020. Available at: https:
//www.britannica.com/technology/radar [Accessed May 28, 2021].

[47] U. Wandinger, “Introduction to lidar,” in Lidar: Range-Resolved Optical Re-
mote Sensing of the Atmosphere, pp. 1–18, Springer New York, 2005.

[48] P. F. McManamon, “History of lidar,” in LiDAR Technologies and Systems,
pp. 29–87, SPIE, 2019.

[49] T. Mai, “Global positioning system history,” National Aeronautics and Space
Administration, 2017.

46

https://www.thoughtco.com/the-history-of-sonar-1992436
https://www.thoughtco.com/the-history-of-sonar-1992436
https://www.britannica.com/technology/radar
https://www.britannica.com/technology/radar

A
Appendix 1

Assuming the input files are “Word2Vec model”, “document keywords” (csv file with
2 columns: patent application id and keywords), “application filing years” (csv file
with 2 columns: patent application id and patent filing year), and “normalization
factors” (csv file with 2 columns: patent filing year and normalization factor), the
source code for the command line application of the SPBS method used in this thesis
is as follows:
"""
Usage:

main.py
[(-n <output_file_name>|--name <output_file_name>)]
[(-s <min_similarity>|--similarity <min_similarity>)]
[--mean]
[--norm]
[--cumsum]
[-t <tech_title>|--title <tech_title>]
[--start <start_year>]
[--end <end_year>]

Options:
-n <output_file_name> --name <output_file_name> Name of the file to save the similarity scores

in [default: output]
-s <min_similarity> --similarity <min_similarity> Minimum similarity score as a basis to filter

out the patents [default: -1]
--mean Instead of summing word vectors for query, it

enables calculating mean vectors for the words
in both positive and negative list

--norm Normalize number of patents before plotting
--cumsum Calculate cumulative sum by years before plotting
-t <tech_title> --title <tech_title> Title of the technology. Appears as a legend title

on the figure
--start <start_year> Start year for plotting [default: 0]
--end <end_year> End year for plotting [default: 2015]

"""
import os, sys, logging, re, pickle
from docopt import docopt
from gensim.models.word2vec import Word2Vec
import pandas as pd, numpy as np
import dask, dask.dataframe as dask_DataFrame
from dask.diagnostics import ProgressBar, ResourceProfiler
from sklearn.metrics.pairwise import cosine_similarity
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt

logging.basicConfig(level=logging.WARNING,
format="[%(asctime)s] [%(threadName)s] [%(levelname)s] --- %(message)s",
datefmt="%H:%M:%S",
stream=sys.stdout)

logger = logging.getLogger("SBPS")
logger.setLevel(logging.INFO)

dask.config.set(scheduler='processes')

I

A. Appendix 1

CURRENT_DIR = os.path.dirname(__file__)
KEYWORDS_PATH = os.path.join(CURRENT_DIR, "<relative_path_keyword>")
MODEL_PATH = os.path.join(CURRENT_DIR, "<relative_path_word2vev_model>")
FILING_YEAR_PATH = os.path.join(CURRENT_DIR, "<relative_path_filing_year>")
NORM_FACTORS_PATH = os.path.join(CURRENT_DIR, "<relative_path_norm_factors>")

Column names used in the CSV files
COL_APPLN_ID = "appln_id"
COL_FILING_YEAR = "appln_filing_year"
COL_NORM_FACTOR = "norm_factor"
COL_KEYWORDS = "keywords"
COL_SIMILARITY = "similarity"

Global variables
TECH_TITLE = None
MEAN = False
NORM = False
CUMSUM = False

def main(output_file_name, min_sim, start_year, end_year):
output_file_name = f"{output_file_name}_mean" if MEAN else output_file_name
output_file_path = os.path.join(CURRENT_DIR, "data", "cos_sim", f"{output_file_name}.csv")

Check if similarity score file exists in the disk otherwise compute
if os.path.exists(output_file_path):

logger.info(f"Similarity score file for '{output_file_name}' is found. Reading...")
sim_df = pd.read_csv(output_file_path, usecols=[COL_APPLN_ID, COL_SIMILARITY])

else:
sim_df = compute_similarity_scores(output_file_path)

Filter out patents and plot histogram if min_sim is given
if min_sim > 0:

df = pd.read_csv(FILING_YEAR_PATH, usecols=[COL_APPLN_ID, COL_FILING_YEAR])
df = df[(df[COL_FILING_YEAR] >= start_year) & (df[COL_FILING_YEAR] <= end_year)]
df = df.join(sim_df.set_index(COL_APPLN_ID), on=COL_APPLN_ID)
df = df[df[COL_SIMILARITY] >= min_sim]
if df.empty:

logger.warning(f"There is no patent found that has similarity score above {min_sim}")
return

df = df.groupby([COL_FILING_YEAR]).agg(['count'])
df.columns = ["_".join(x) for x in df.columns.ravel()]
df = df.sort_values(by=COL_FILING_YEAR)

Column name to use in y-axis
y_column_name = f"norm_{COL_APPLN_ID}_count" if NORM else f"{COL_APPLN_ID}_count"

Normalize data: increase the magnitude of the yearly values proportional
to how much PATSTAT database miss abstract info in the corresponding year
if NORM:

norm_factors_df = pd.read_csv(NORM_FACTORS_PATH, usecols=[COL_FILING_YEAR, COL_NORM_FACTOR])
df = df.join(norm_factors_df.set_index(COL_FILING_YEAR), how="left")
df[y_column_name] = df.apply(lambda row: row[f"{COL_APPLN_ID}_count"]*row[COL_NORM_FACTOR],

axis=1)

if CUMSUM:
df[y_column_name] = df[y_column_name].cumsum()

df.reset_index(inplace=True)

logger.info("Plotting figure")
figure_file_name = _generate_figure_file_name(output_file_name, min_sim)

Fixing the font size of axis ticks and labels on the figure
plt.rcParams.update({"font.size": 19 if CUMSUM or df.shape[0] < 60 else 12})

plot_kind = "line" if CUMSUM else "bar"
df.plot(kind=plot_kind, x=COL_FILING_YEAR, y=y_column_name, color="Slateblue", figsize=(24, 8))

II

A. Appendix 1

if CUMSUM:
SPECIFIC PARAMETERS FOR LINE GRAPH
Filling area below the line on the figure
plt.fill_between(x=df[COL_FILING_YEAR], y1=df[y_column_name], color="skyblue", alpha=0.4)

min_year = start_year if start_year else df[COL_FILING_YEAR].min()
max_year = df[COL_FILING_YEAR].max()

Set value ranges on axes
plt.xlim(min_year, max_year)
plt.ylim(bottom=0)

Set major ticks: starts from the first value divisible by 5, frequency is 5 years
min_year_div_5 = min_year + (5 - min_year%5 if min_year%5 != 0 else 0)
plt.xticks(np.arange(min_year_div_5, max_year+1, 5))

Setting label for x-axis
plt.xlabel("Application Filing Year", labelpad=20)

Fixing the legend
plt.rcParams.update({"font.size": 19, "font.weight": "bold"})
plt.legend(title=TECH_TITLE, labels=[_generate_figure_legend("#{Patent Applications}")])

figure_file = os.path.join(CURRENT_DIR, "figure", figure_file_name)
_make_dirs(figure_file)
plt.savefig(figure_file, bbox_inches='tight')
logger.info(f"Figure is saved at: {figure_file}")

def compute_similarity_scores(output_file_path):
"""

A pipeline that triggers the stages of the SBPS method in order
"""
logger.debug(f"Processing: {KEYWORDS_PATH}")
logger.debug(f"Will be saved at: {output_file_path}")

Interactively build query vector
query_vector = build_query_vector()

Read all data into memory as pandas dataframe and convert to partitioned dask dataframe
to enable parallelism
df = pd.read_csv(KEYWORDS_PATH, usecols=[COL_APPLN_ID, COL_KEYWORDS])
ddf = dask_DataFrame.from_pandas(df, npartitions=24)
del df

with ProgressBar(), ResourceProfiler() as rprof:
ddf = ddf.map_partitions(run_partitions, query_vector).compute()

Save dataframe into disk
ddf = ddf[[COL_APPLN_ID, COL_SIMILARITY]]
_make_dirs(output_file_path)
ddf.to_csv(output_file_path, mode='w', index=False, header=True)
return ddf

def calculate_doc_vector(text, w2v_model):
"""

Helper function to build a document vector given document keywords and word2vec model
"""
vector = np.sum([w2v_model.wv[word] for word in str(text).split() if word in w2v_model.wv],

axis=0)
is_valid_vector = isinstance(vector, np.ndarray) and len(vector) == w2v_model.vector_size
return vector if is_valid_vector else np.array([0]*w2v_model.vector_size)

def run_partitions(df, query_vector):
"""

This function is expected to be called by dask dataframes to enable parallelism.
"""
Since this function will be run simultaneously in different processes, loading separate
word2vec model in each would make the models work in a safe and expected manner.
w2v_model = _load_w2v_model()
query_vector = np.array([list(query_vector)])

III

A. Appendix 1

df[COL_SIMILARITY] = df[COL_KEYWORDS].apply(calculate_doc_vector, args=(w2v_model,))
cos_sim_values = cosine_similarity(list(df[COL_SIMILARITY]), query_vector)
df[COL_SIMILARITY] = [val[0] for val in cos_sim_values]
return df

def build_query_vector():
"""

Facilitates the query building stage
of the SBPS method

"""
w2v_model = _load_w2v_model()
positive = []
negative = []

print("COMMANDS> p (+|-) <word>: {alter positive list}\t|\t" \
"n (+|-) <word>: {alter negative list}\t|\tf: {finish query}\n")

while True:
print("-"*100)
print(f"positive={positive}, negative={negative}\n")
if len(positive) or len(negative):

most_similar_words = w2v_model.wv.most_similar(positive=positive, negative=negative)
print("Most similar words: {}\n".format([(pair[0], round(pair[1], 2)) for pair in

most_similar_words]))
user_input = input("CMD> ").lower().strip()
matches = re.match(r"^(p|n)\s*(\+|-)\s*([a-zA-z]*)|(f)$", user_input)
if not matches:

print("Entered command is not correct. Please follow the guide below:")
print("COMMANDS> p (+|-) <word>: {alter positive list}\t|\t" \

"n (+|-) <word>: {alter negative list}\t|\tf: {finish query}\n")
continue

g_list = matches.group(1)
g_action = matches.group(2)
g_word = matches.group(3)
g_finish = matches.group(4)
if g_finish:

break
else:

if g_list == "p":
if g_action == "+":

if g_word not in w2v_model.wv:
print("The word doesn't exist in the vocabulary")

else:
if g_word not in positive:

positive.append(g_word)
else:

if g_word in positive:
positive.remove(g_word)

else:
if g_action == "+":

if g_word not in w2v_model.wv:
print("The word doesn't exist in the vocabulary")

else:
if g_word not in negative:

negative.append(g_word)
else:

if g_word in negative:
negative.remove(g_word)

Now that postive and negative lists are ready,
we can compute a vector out of the words given
p_vector = np.array(0)
for p_word in positive:

if p_word in w2v_model.wv:
p_vector = np.add(p_vector, w2v_model.wv[p_word])

n_vector = np.array(0)
for n_word in negative:

if n_word in w2v_model.wv:
n_vector = np.add(n_vector, w2v_model.wv[n_word])

IV

A. Appendix 1

if MEAN:
if positive: p_vector /= len(positive)
if negative: n_vector /= len(negative)

return np.add(p_vector, -n_vector)

def _load_w2v_model():
"""

Helper function for loading
Word2Vec model

"""
model = Word2Vec.load(MODEL_PATH)
model.wv.most_similar("network")
return model

def _generate_figure_file_name(output_file_name, min_sim):
"""

Helper function to generates figure file name based on global
variable values

"""
figure_name = f"{output_file_name}__{min_sim}"
figure_name = f"{figure_name}__norm" if NORM else figure_name
figure_name = f"{figure_name}__cumulative" if CUMSUM else figure_name
return f"{figure_name}.jpg"

def _generate_figure_legend(legend):
"""

Helper function to generates a legend for a figure
based on global variable values

"""
legend = f"{legend} (Normalized)" if NORM else legend
legend = f"Cumulative {legend}" if CUMSUM else legend
return legend

def _make_dirs(file_path):
"""

Helper function to create directories in the file
system given the file path

"""
dir_path = os.path.dirname(file_path)
if not os.path.exists(dir_path):

os.makedirs(dir_path)

if __name__ == "__main__":
args = docopt(__doc__)

Setting global variables
MEAN = args["--mean"]
NORM = args["--norm"]
CUMSUM = args["--cumsum"]
TECH_TITLE = args["--title"]

main(args["--name"], float(args["--similarity"]),
int(args["--start"]), int(args["--end"]))

V

	List of Figures
	List of Tables
	Introduction
	Context
	Problem Formulation
	Aim
	Research Question
	Related Work

	Theory
	Keyword Extraction Techniques
	TF-IDF
	TextRank

	Text Vectorization Techniques
	TF-IDF Vectorizer
	Word2Vec
	Doc2Vec

	Dimensionality Reduction Techniques
	Principal Component Analysis (PCA)
	LargeVis

	Clustering Algorithms
	K-Means
	DBSCAN

	Evaluation Metrics
	Silhouette Score
	Calinski-Harabasz Index

	Patent
	Patent History
	Use of Patent Information
	Limiting Factors

	Patent Data

	Methods
	Preprocessing
	Tokenization
	Stopword removal
	Lemmatization
	Frequency-based word removal

	Clustering-Based Patent Selection
	Similarity-Based Patent Selection (SBPS)
	Query Building
	Calculating Similarity Scores
	Determining Similarity Threshold

	Results
	Verification via Single Technology Sector
	Analysis on Multiple Technology Sectors
	Failed Experiments
	Parameter Tuning through Sanity Checking
	Parameter Tuning through Cluster Evaluation

	Successful Method: SBPS
	SBPS as Command Line Application
	Carburetor vs. Fuel Injection
	Floppy Disk vs. Optical Disc vs. USB Flash Drive
	Fluorescent vs. LED
	SONAR vs. RADAR vs. LIDAR

	Discussion
	Future Work

	Appendix 1

