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ABSTRACT

When a flying target is detected by airborne radar it is common that specu-
lar reflections occurs from smooth surfaces of the Earth, such as oceans and
lakes. In the radar input signal, these reflective echoes are considered as pulses
containing information about the detected targets altitude above the ground.
In this project a curve fit to this input signal is applied, aligned with a Least-
Squares Estimation, LSE. As a number of curve fits have been carried out,
it is desired to find the minimum LSE-loss function value, i.e. the signal fit
that gave the least-squares error. When this minimum is found, it is possible
to determine the targets altitude. Because of a heavy computational burden
some simplifications are made, meanwhile optimization methods, such as Gauss
Newton with line search, GN, Steepest Descent with line search, SD, and Nu-
merical Neighborhood search, NN, are applied to find local minima in a discrete
search space composed by the LSE-loss function values. The results have shown
that the method can fit curves for severe cases when pulses begin to interact,
while a high noise level characterizes the input signal. With some simplifica-
tions and using a combination of GN and NN has resulted in a reduction of
the computational time by 470,9 times, while 95,9% of the global minima in the
LSE-loss functions discrete estimation space are found in a special case scenario.

Index Terms: Curve/Data Fitting, Gauss Newton, Least-Squares Estimate,
Non-Linear Optimization, Radar Altitude Measurement, Steepest Descent.
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SAMMANFATTNING

Då ett flygande mål upptäcks av en flygburen radar kan speglingsreflektioner
från släta jordytor uppstå. I radarns insignal kan dessa reflekterande ekon be-
traktas som pulser som innehåller information om det upptäckta målets höjd
över marken. I detta projekt har en kurvanpassning till denna insignal anpas-
sats med en minsta kvadrat estimering, LSE. Då flertalet kurvanpassningar har
gjorts vill man hitta det lägsta funktionsvärdet, det vill säga den signal som givit
det minsta kvadrat-felet. När detta minimum hittas kan man bestämma målhöj-
den. På grund av tung beräkningskraft har vissa förenklingar gjorts samtidigt
som optimeringsmetoder, så som Gauss Newton med linjesökning, GN, steepest
descent med linjesökning, SD, och numerisk grannsökning, NN, använts för att
hitta lokala minima i en diskret sökrymd uppbyggd av LSE’s funktionsvärden.
Resultatet har visat att man med LSE kan anpassa kurvor för svåra fall då
pulserna börjar flyta ihop, samtidigt som insignalen präglas av en hög brusnivå.
Med hjälp av en kombination av GN och NN har även beräkningstiden kunnat
reduceras 470,9 gånger samtidigt som 95,9 % av de lägsta funktionsvärderna
har hittats i den diskreta sökrymden för ett speciellt test-scenario.

Index Termer: Gauss Newton, Ickelinjär optimering, Kurvanpassning, Minsta
kvadrat estimering, Radarhöjdmätning, Steepest descent.
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NOMENCLATURE

Superscripts

A (θ) Transfer matrix with radar geometrical properties and pulse-shape

Ak Antenna diagram, where k ∈ {Transmitted lobe, Received up −
lobe, Received down − lobe}

Aj,T Normalized antenna gain amplitude factor at transmission

Aj,R Normalized antenna gain amplitude factor at receiving

D Approximation of the divergence factor

gj(n) Signal characteristic for the direct echo

g
′

j(n) Signal characteristic for the first multipath echo

g
′′

j (n) Signal characteristic for the second multipath echo

G Gradient of the LSE-loss function

Gd Ground range

Gdi Divided ground range, where i = {1, 2}

Gj Normalized antenna gain amplitude factor for the direct echo

G
′

j Normalized antenna gain amplitude factor for the first multipath
echo

G
′′

j Normalized antenna gain amplitude factor for the second multipath
echo

HR Radar altitude

HT Target altitude

I0 Modified Bessel function

J Jacobian of the non-linear least-square problem

J̃ Complex valued Jacobian

L(θi) Concentrated LSE-loss function

Llim Limit of LSE-loss function for convergence criteria
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P⊥ Orthogonal projection to the complement to A’s column space

RT Range between radar and target

R1 Range from radar to reflection point

R2 Range from reflection point to target

Re Effective Earth radius

Ts Sampling time interval

a Amplitude

c Microwaves propagation speed (Speed of light)

hpc(r) Pulse shape

j ∈ {u, d} Represent up- and down beam

mmax Maximum iterations for the Gauss-Newton algorithm

n Gaussian colored noise

n0 Number of range bins collected before detected bin

nr Number of measurements

r3 Pulses 3 dB bandwidth

rs Sampling range interval

rf Range between sampled and true amplitude

s Target amplitude

ŝ Estimate of target amplitude

ss Sea state

x Input signal

α Step size in the Gauss-Newton line search

α1 Angle between radar and reflection point

α2 Angle between reflection point and target

θd Angle between target and radar

θ Estimation parameter vector

θb Elevation angle, where b = {r, d}

θlim Limit of estimation parameter for convergence criteria
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θgmin Estimation parameter for the lowest found minimum

θlmin Estimation parameter for the second lowest found minimum

θopt Estimation parameter for a found local minimum

θr Angle between radar and Earth

δR Range between direct- and second multipath echo

δθ Gauss-Newton search direction

τs Time between transmitting and receiving a pulse

σe Conductivity

σh Standard deviation of the amplitude distribution for sea waves

ρ Reflection factor of sea surface

εr Ordinary dielectric constant

λr Radar wavelength

ε(θ) Least-squares residual

ψ Grazing angle

∂
∂θ Derivative with respect to the parameter, θ

(·)H Hermitian transpose, i.e. transpose and complex conjugation

(·)T Transpose

‖·‖ Norm

Abbreviations

DB Down Beam

GN Gauss Newton with line search

LSE Least-Squares Estimation

NN Numerical Neighborhood search

PRF Pulse repetition frequency

RCS Radar Cross Section

SD Steepest Descent with line search

SNR Signal to Noise Ratio

STD Standard Deviation
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TGS-ns Total Grid search without saved data

TGS-s Total Grid search with saved data

UB Up Beam

QI Quality Index

mhos Electrical conductance, 1 A/V
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1 INTRODUCTION

When using airborne radar to detect air targets over sea, a common problem
that appears is that the transmitted pulses contribute to multipath received
signals. Due to this radar effect of reflections over sea, or other smooth surfaces
of the Earth, problems to identify targets have been a common phenomena that
can occur. But if the multipath signals are known and emphasized instead of
suppressed, it is possible to give a more accurate altitude measurement for the
target, which is the focus of this project. After the received signal for the radar
has been processed it may be considered as a pulse train with information of
the multipath characteristic. When a signal is transmitted, this is done with
different beam angles and a received beam is regarded as a pair of one up- and
one down beam. This means that the input signal consist of two pulse trains,
and with knowledge about the pulses mutual positions, a target altitude can be
estimated.

This master thesis work will focus on the question if there is an algorithm that
is fast enough and still give a good estimation of a targets altitude with respect
to the multipath propagation. Previously the Least-Squares estimate (LSE)
have been tested as a curve fitting method, and in this project the method will
be evaluated and extended with the search methods Total Grid Search (TGS),
Gauss Newton with line search (GN), Steepest Descent with line search (SD)
and Numerical Neighborhood search (NN). The LSE-loss function is derived sev-
eral times with different characteristic, where each value contributes to a curve
fit error to the input signal. If these values are calculated over a total speci-
fied estimation space, a TGS is performed. The other search methods are then
applied so that each value in the estimation space not needs to be derived. Im-
portant to notice is that the optimization problem is not continuos, but discrete.

1.1 Radar Background

A radar uses a sensor that transmits and receives electromagnetic energy in
the form of microwaves. The pulses are transmitted by a powerful directional
antenna. Between the pulses the antenna receives the reflected energy. By
concentrating the radiated energy into a narrow beam and sweep through the
expected region, it is possible to detect targets. The reflected energy can be
from either targets, sea or land. The range to target can be calculated by the
time it takes for the microwaves to travel from the radar to target and back
again, and is derived by

RT =
c

2τs
, (1)

where c is the microwaves propagation speed, i.e. speed of light, and τ the time
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between the transmitted and received pulse [11].

Targets may be of different kinds but will hereafter be regarded as air targets.

Ideally when detecting targets the pulses should be as short as possible and at
the same time send out as much energy as possible. This will give the highest
probability to detect targets. Due to practical limitations of the peak power
that the transmitting unit can deliver those requirements are contradictory. A
solution to this dilemma is pulse compression. This is done by transmitting
internally modulated pulses with a wider bandwidth to provide the necessary
average power at a reasonable level of peak power. Then the received echo is
compressed by decoding their modulation by a filter that fits the transmitted
signal [11].

Transmitting and receiving is done coherently. These phase-coherence is of
particular importance when movable targets should be determined near strong
ground reflections and is of crucial importance to separate the received signal
into two signals. One that occurs in phase with the transmitted signal and one
90 degrees phase-shifted. The separation is common called I/Q demodulation.
When a pulse wave is reflected by a moving target the received pulse will con-
tribute to a change in phase velocity, a so called doppler shift in frequency. By
sensing the doppler frequencies the radar can separate target echoes from clutter
and land, where objects with high radial velocity can be suppressed [11].

The number of pulses transmitted per second is called the pulse repetition fre-
quency, PRF. The PRFs of airborne radars range is anywhere from a few hun-
dred hertz to several kilohertz. The choice of PRF is crucial because it deter-
mines whether, and to what extent, the ranges and doppler frequencies observed
by the radar will be ambiguous. Range ambiguities occur due to that the radar
has no direct way of telling to which pulse a particular echo belongs. When PRF
is low enough for all echoes from one pulse to be received before next pulse is
transmitted, echoes will belong to the pulse that immediately precedes them.
But if the PRF is high enough this wont be the case. Doppler ambiguities arises
because of the discontinues nature of a pulsed signal. When a target is moving
towards or away from the radar carrier a shift in I- and Q-channel will occur
[11].

2
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Figure 1: Target doppler frequency shows up as a pulse-to-pulse shift in phase.

A targets doppler frequency shows up as a progressive shift in the frequency
phase, φ, of the received echoes from the target relative the transmitted pulses
from the radar. This echo-to-echo phase shift is illustrated by a phase diagram
in Fig. 1. By sensing the phase shift progressively it is possible to produce a
signal whose amplitude fluctuates at the targets doppler frequency. Depending
if the doppler frequency shift is positive or negative, Q will either lag or lead I
by 90◦ respectively.
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Figure 2: Doppler frequency with positive shift where both I and Q signal is
provided. Notice that this is just an illustration.

One way of representing the received signal is by a range doppler matrix where
the signal is mapped into two dimensions. In range dimension the matrix is sep-
arated in range bins where the range between the bins is equal to the sampling
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range according to

rs =
c

2Ts
(2)

where Ts is the time between two samples. In doppler dimension the signal is
separated into as many doppler channels as the doppler filter-bank allows [4].

From the received signal the following target properties can be extracted

• Range

• Radial velocity

• Elevation- and azimuth-direction

• Size

The radar will give exceptionally good values of range and velocity. The mea-
surement for the direction to the target gives acceptable values, but it is difficult
to obtain accurate values of the targets size [4].

1.2 Multipath Background

The multipath phenomena that occurs due to the multipath effect that arises
when the Earth surface is smooth, especially when using airborne radar over
oceans and lakes. This effect is normally seen as a problem when targets are
detected, but if the multipath signals are known and emphasized instead of
suppressed, it is possible to use this for target altitude measurements.

!"#$%

&"'"#

("#)*$

Figure 3: The four different cases of propagation for the radar signal during
multipath effects.

The multipath signals can propagate in four different ways. This is illustrated
in Fig. 3 where the first case is called the direct echo. Case 2 and 3 occurs at
the same time, due to the same range for the radar pulses propagation, and can
be seen as one case. This is called the first multipath echo. Case 4 is called the
second multipath echo and contributes to the longest path.
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Figure 4: Two different beam signals received with multipath effect. Pulse 1,2
and 3 are the direct, first multipath and second multipath echo, respectively.
δR can be seen as the range between the first- and third pulse for each beam.

Depending on how far away and at what altitude the target is positioned, dif-
ferent separations of the pulses in the input signal is obtained. Two possible
characteristics from the radar when the multipath effect occurs is illustrated in
Fig. 4. The first multipath echo is always located in between the direct echo
and the second multipath echo. In the left graph (a) in Fig. 4, a signal where
the echoes are completely resolved is illustrated and this can be seen as a simple
case. When the target is far away and close to the Earth, the signal becomes
less resolved and can be seen as a more difficult case. This is illustrated in the
right graph (b) in Fig. 4.

When detecting the location of the pulses it is possible to determine the alti-
tude. The estimated range between peak of direct echo and second multipath
echo for a flat Earth model is approximately given by

δR ≈
2HRHT

RT
(3)

where RT is the range to the target, HR the radar carrier altitude and HT

the target altitude. Depending on the positions of the target and the airborne
radar, δR get its characteristic. If RT becomes longer then the width of the
received signal from the different echoes, or to small so the pulses overlaps, it
can be impossible to determine it. Relationships for a spherical Earth is more
complicated and explained in subsection 2.1.1.2 Geometrical Model.

1.3 Background for Pre-Saved Data

Because of the high computational burden for a TGS, simplifications and opti-
mization methods are applied. Since the problem is not continuos but discrete
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it is possible to predefine matrices used to derive the LSE-loss function values.
Because of the discrete problem one can reduce the computational burden by
mainly saving as much data as possible before each calculation. This means it
is possible to extract matrices instead of derive complex equations. More about
how this is used and how it effects the outcome is explained in subsection 2.1.3
and section 3.4, respectively.

1.4 Background for Search Methods on a Non-Linear Least-
Squares Problem

One of the most common uses for the method of Least-Squares problems is in
data fitting, or curve fitting. By finding a customized curve which matches the
input data vector as well as possible one is able to find the input pulses mutual
positions. More specifically, it is desired to find a vector of parameters that
gives the “best fit” to the data by a model function [5]. The LSE-loss function is
derived several times with different characteristic, where each value contributes
to a curve fit error to the input signal. If these values are calculated over a
total specified gridded estimation space, a TGS is performed. If all those values
are assigned to a matrix, this can be seen as an estimation grid with two spec-
ified unknown parameters that should be estimated. The lowest value of the
loss function over the discretized parameter space, the grid, will be the global
optimum on the grid. The global optimum on the continuos parameter space
will hence be located somewhere between the gridpoints. The difference in the
parameter values between the global optimum and the grid optimum is thus
upper bounded by the length between the gridpoints.

The next problem faced is to find the lowest grid value, i.e. the global grid mini-
mum, without deriving each LSE-loss function values. The TGS will contribute
to a high computational burden and instead a faster optimization algorithm
needs to be implemented. An optimization problem can be expressed mathe-
matically as the problem of determining an argument for which a given function
has an extreme value, minimum or maximum, on a given domain. If not a TGS
is used, finding a global minimum is difficult unless the problem has special prop-
erties. In most search methods local information, such as derivatives, are used
and consequently are designated to find only a local minimum [5]. The concepts
with global and local minimum for a one-dimensional problem are illustrated in
Fig. 5.
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When only local information is used there is usually no way to guarantee that
a global minimum will be found using conventional numerical methods. Often
the best is to start with an initial guess that is as close to the global minimum
as possible and hope that the iterative solution process will converge to it. To
increase the chance that a global minimum is found one might also try several
different starting points, widely scattered throughout the feasible set. If they
all produce the same result, then there is a good chance that a global minimum
is found, and otherwise the best one can do is to take the lowest of the local
minima found [5].

An important part that needs to be regarded is how the magnitude of the
step should be defined for the optimized search methods. One alternative is to
use a fixed step length and another approach is to alter the magnitude of the
step using a line-search. Furthermore, it is reasonable to choose the step length
such that the minimization function is approximately minimized. Most modern
line-search implementations begin with a full Newton step, i.e. the step length
gain is chosen to 1. Then estimates are computed until a step length is found
that satisfies a sufficient decrease on the criterion function [1]. After each step,
it is then inspected if any type of convergence criterion has been met, and if so,
a local minimum seems to have been found.

1.5 Motivations and Objectives

The objective in this project is to evaluate and test different methods, ap-
proaches and algorithms that finds the altitude of a detected target. This is
accomplished with help of the multipath effects that appears from the surface
of the Earth. Since it is a complex problem the computational burden can be
high, and a fast algorithm is needed. Therefore it is not only required to find a
working algorithm, but also a fast one. The altitude measurement is assumed

7



to have succeeded when the pulses individual position, δR, in Fig. 4 is found.
With this information it is possible to derive the estimated altitude. The pulses
positions are found by using LSE as a curve fitting method which is evaluated
using a TGS for the following matters:

• The ability to separate the pulses depending of how much they interact

• The ability to separate the pulses depending of how much noise the input
data contains

• How much computational power that is required

In addition to that the LSE performance is evaluated, various methods are used
to reduce the computational burden. The algorithm must be fast so it can be
implemented in a real radar system. To decrease the computational burden
simplifications and predefinitions can be made. Subsequently, it is investigated
if the number of LSE-loss functions derived can further be reduced with other
search methods

• GN

• SD

• NN

The result for the optimization search methods can then be compared to the
TGS with respect to computational burden and performance.

If the target is close to the radar this will contribute to that the pulses are
more separated. The focus in this project is especially to find a method that
can detect the pulses when they are closely spaced. If the algorithm should han-
dle well separated pulses this would require a greater search space, and therefore
mainly targets at long ranges are analysed.

1.6 Allocated Limits

The allocated limits are separated in two areas; Hardware- and Input Signal
Limits.

1.6.1 Hardware Limits

Because of high computational burden, consideration needs to be taken for the
radars hardware limits, in terms of computation power and storage space. How
effective the algorithm needs to be depends mostly of the Pulse Ratio Frequency,
PRF. The altitude measurement needs to be finished at the same rate as the
PRF. Notice that this is not entirely true when the frequency for each altitude
measurement is reduced compared to the PRF.
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1.6.2 Input Signal Limits

When the direct echo and multipath echoes are to close to each other there is
a limit of how much they can interact before it is impossible to separate them.
It is also impossible to separate the pulses from the echoes if the input signal
contains too much noise.

Depending on how the search space is defined this limits how close and at
what altitude the target can be. If the target is to close and to high, the pulses
separation will exceed the input signals vector dimensions.

When an altitude measurement is performed it is assumed that the range to
the target is known, i.e. the position of the first pulse is assumed to be known.

9



2 METHOD & THEORY

This chapter describes all the background methods and theories for four different
areas; Model, LSE, Search Methods and General Extensions.

2.1 Model

The model is divided into three main areas; Environmental, Matrix definitions
and Simplifications.

2.1.1 Environmental Model

When the altitude should be estimated, it is important to develop a model that
matches the true environmental impact, such as the radars soft- and hardware,
geographic conditions and reflection properties. How this is defined are disclosed
in the following subsection.

2.1.1.1 Target Model

The target can be modeled as a quantity of scatters over the extent of the
targets geometrics. Each of these reflectors will contribute to incoming waves
and consist of a large amount of signals. The sum of waves will of course
occur with respect to relative phase. The reflectors will then interfere booth
constructively and destructively. If the surface of the target has a complicated
geometrical shape, the target’s scattering properties can not be described as
deterministic.

Figure 6: Target reflectors must be expressed in the model in terms of proba-
bilities.
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In the case when the target consist of a quantity of random scattered reflectors,
illustrated in Fig. 6, the distribution function for the complex target ampli-
tude is normal N(0,σs) in real- and imaginary part. This gives that the Radar
Cross Section ,RCS, is the square of target amplitudes and becomes exponen-
tial distributed. It also follows that the target amplitude with different radar
wavelength is independent [4].

Angle Correlation

Due to that the total RCS is dependent on the individual reflectors relative
position, the target area will fluctuate sharply with the angle to target with
respect to the radar carrier.

When the multipath effect appears the radar will see the target from differ-
ent incoming- and outgoing angles. This is illustrated in Fig. 7.

!"#$%

&"'"#

("#)*$

!"##$#"%&'()#&*(

Figure 7: Four different possibilities for the radar wave path. The RCS in case
2 and 3 is considered to be identical while the target amplitudes for the other
cases must not necessary be correlated.
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Figure 8: Targets main reflectors separated in altitude with range d.

The angle correlation can roughly be estimated from the model illustrated in
Fig. 8. As described earlier the model will give a RCS pattern as in Fig. 6.
When the target has two main reflection points separated in altitude with range
d, difference in length is kλ and the angle between the points is θc, as shown in
Fig. 8. If the angle difference between the incoming waves from the two different
reflection points is large, the correlation for the target area is considered to be
zero. Since the target is big compared to the wavelength, the points are always
considered as un-correlated. This means that every new pulse echo gets a new
random value.
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2.1.1.2 Geometrical Model
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Figure 9: Geometry of spherical Earth reflection without restriction on altitude
and range of target relative the radar.
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The geometry model follows the one described in [2] and is used to derive the
estimated altitude. To do this a model with spherical Earth is used, instead
of the simplified with flat Earth explained in (3). How the model is defined is
illustrated in Fig. 9. The basic problem is to define the correct reflection point
given the ground range Gd, and this requires knowledge about how Gd1 and Gd2

are partitioned [2]. Assuming that target and radar altitude is much smaller
then the effective Earth radius, Re, the equation that must be solved is

2G3
d1 − 3GdG

2
d1 +

[
G2

d − 2Re(HR +HT )
]
Gd1 + 2ReHTGd = 0 (4)

where Re = 4
3 · 6370 km. The constant 4

3 is used as a correction for the atmo-
spheric refraction1 [10].

When the range RT is known instead of ground range Gd the following approx-
imated equation needs to be solved

Gd
∼=

√√√√√
R2

T − (HT −HR)2

1 +
(HR +HT )

Re

. (5)

The range Gd1 in (4) is given by

Gd1 =
Gd

2
− p sin

(
ξ

3

)
(6)

where

p =
2√
3

√

Re(HR +HT ) +

(
Gd

2

)2

(7)

and

ξ = sin−1

(
2ReGd(HT −HR)

p3

)
. (8)

With Gd1 given and if Gd2 = Gd −Gd1, the angles α1 and α2 in Fig. 9 can be
derived as

α1 =
Gd1

Re
, (9)

1To further improve the accuracy of altitude computation refraction of the radar beam
along the ray path to the target must be taken into account. Compared to free space where
radar waves travels in straight lines, radar waves in the Earth’s atmosphere generally are bent
downward. The classical approach for atmospheric refraction in radar altitude computation
applications is to replace the actual Earth radius by an effective Earth radius Re. The use of
the value 4

3
has been widely adopted within the radar field [10].
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α2 =
Gd2

Re
(10)

and

R1 =

√
H2

R + 4Re(Re +HR) sin
2
(α1

2

)
, (11)

R2 =

√
H2

T + 4Re(Re +HT ) sin
2
(α2

2

)
. (12)

The elevation angle, θd, from the direct ray is exact calculated by applying the
law of cosine to the triangle ABC [2]

θd = sin−1

(
2Re(HT −HR) +H2

T −H2
R − RT

2(Re +HR)RT

)
. (13)

An approximation of θd can be used if, HT ' Re and HR ' Re as

θd ∼= sin−1

(
HT −HR

RT
−

RT

2Re

)
. (14)

The depression angle of the reflected ray, θr, is found by similar analysis of
triangle ABD and can be approximated to

θr ∼= sin−1

(
HR

R1
−

R1

2Re

)
. (15)

θr is given by the angle with correct sign according to the geometrical model
shown in Fig. 9, but must be negated to be used in the calculation of the an-
tenna diagram.

δR can then be derived by [2]

δR = R1 +R2 −RT (16)

but to avoid numerical calculation problems that may occur when large numbers
are subtracted, the law of cosine is used and the final form of δR is

δR =

4

(
HR +

H2
R −R2

1

2Re

)(
HT +

H2
T −R2

2

2Re

)

R1 +R2 +RT
. (17)
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At a first sight it looks like a simple problem to derive HT from (17), but note
that both R1 and R2 contains highly nested expressions of HT . How the final
target altitude can be derived from δR, is described in section 3.2 Calculation
of Target Altitude from δR.

2.1.1.3 Doppler Model

The doppler effect occurs due to that booth the target and radar is moving
and the radio waves may be compressed or stretched in different ways. If the
radar is closing on a target the wavelength is compressed and stretched if vice
versa [11]. Because of the differences in elevation angle between the target and
multipath targets, the radial velocity will not be consistent. For sufficiently large
differences the target and the multipath targets will be separated into different
doppler channels. If the angle θr in Fig. 9 is large, this will sometimes result
in that the multipath target will be placed in another doppler channel than the
direct target. In the model it is thus assumed that locations of the target occurs
so that no separation is needed in the doppler dimension [4]. Since this project
focus on targets far away, which contributes to a small θr, the problem rarely
occurs, but it can still be regarded as a simplification.

2.1.1.4 Reflection Model

In the model it is assumed that the reflection arises from sea surfaces and is
purely specular. The actual reflection-coefficients magnitude ρ, is regarded as
the product of the three separate factors designated ρ0, ρs and D. Their total
contribution is a number in the range from 0 to 1. This implies that the total
specular reflection coefficient has a magnitude

ρ = ρ0 ρs D (18)

where

0 ≤ ρ ≤ 1. (19)

ρ0 is defined as the electromagnetic reflection coefficient of the material content
that appears at the reflected surface. ρs is a spreading factor that indicates
how the specular component of the reflected wave is reduced as a result of the
roughness of the surface. D is the divergence factor caused by the fact that the
reflecting surface always is convex.

The grazing angle, ψ, appears at the point of reflection between the beam and
the tangent to the surface, see Fig. 9. This angle is used when calculating the
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reflection factor and found by analysis of the relations in Fig. 9 as

ψ ∼= sin−1

(
HT

R1
−

R1

2Re

)
. (20)

Further, it is possible to calculate ρ0 as

ρ0 =
sin (ψ)−

√
εc − cos2(ψ)

sin (ψ) +
√
εc − cos2(ψ)

(21)

where

εc = εr − jεi = εr − j 60λr σe (22)

and εr is the ordinary dielectric constant, λr is wavelength in meters and σe is
the conductivity in mhos/m. ρs is then derived from

ρs = e−zI0(z) (23)

where I0 denotes the modified Bessel function of zero order and

z = 2

(
2πσh sin(ψ)

λ

)
. (24)

Here, σh is the standard deviation, STD, of the amplitude distribution of the

sea waves and ρs is valid on the interval 0 ≤
ρs sin(ψ)

λ
≤ 0.3.

The sea state, ss, is an index for STD of the sea wave altitudes, σh, and calcu-
lated from [8].

Table 1
STD OF SEA WAVE ALTITUDES FOR DIFFERENT SEA STATES

Sea state, ss σh [m]
1 0.05
2 0.15
3 0.30
4 0.50
5 0.75
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In Table 1 different ss indicates what STD that is used in meters.

Due to that the point where the reflection occur always is curved (convex) rather
then flat, this means that the curvature of the reflected wave front will be dif-
ferent from the incident wave, which affects the field intensity at this specific
point. Therefore an divergence factor is derived as

D ≈
(
1 +

2Gd1Gd2

ReGd sin(ψ)

)−1/2

. (25)

This is just an adequate approximation but can according to [2] be used in all
cases of interest.

2.1.1.5 Radar Model

The radar is assumed equipped with a beam changing system with fixed beam
positions. When the signal is transmitted the beam always is directed hori-
zontally, But the beam of the receiving antenna can be adjusted in elevation.
Transmission and receiving is always done in pairs and the received signals angle
is either up or down, the so-called up- and down beam.

The antenna diagram can be derived with [4]

Ak = 1− 2(
θb
4λr

)2 cos(0.81
θb
λr

+ k
π

6
). (26)

Here Ak is the normalized amplitude gain factor. The index k ∈ {0, 1,−1}
represent the transmitted beam, received up- and down beam. θb is the eleva-
tion angle, where b = {r, d} which is described in Fig. 9, and λr is the radar
wavelength.

In order to increase the resolution in range without reducing the pulse duration,
pulse compression is used. An approximated Gaussian function is used to derive
an impulse response function as [4]

hpc(r) = 10−0.6( r

r3
)2 (27)

where r is a vector with each sample value and r3 the pulses 3 dB bandwidth.

The pulse compression in radar systems is implemented in the digital domain in
which only a discrete-time version of the compressed pulse is obtained. There-
fore the sampling points will be uncorrelated with the compressed pulses posi-
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tion. Thus, the positions for maximum amplitude, continuous-time and discrete-
time pulse, typically are separated by a range, rf [4]. How rf is defined is illus-
trated in Fig. 10.

2.1.2 Model on Matrix Form

The model can be formulated as

x = A(θ)s + n (28)

where x is the observation vector from the received signal, A(θ) a transfer
matrix that particularly contains the radar geometry and properties in the re-
flection surface, s the normalized target amplitudes, n Gaussian colored noise
and θ the two parameters that should be estimated. When a multipath effect
occurs the resolution in angle is usually not good enough to separate the tar-
get from the multipath target. This means that the multipath target interacts
with the true target and impairs the altitude measurement result [4]. Except
for the angle difference of the target and multipath target they also differs in
range. Compared to the angle resolution the range resolution for the radar is
much better and only limited by its bandwidth. Since the range δR between the
targets direct echo and second multipath echo contains information about the
targets altitude, this is a good parameter to observe when the altitude should be
estimated. Another possibility is to observe the targets altitude directly itself.
θ’s search space can therefore be chosen to span over either δR or HT . The
other estimation parameter is chosen to be rf , which is the deviation between
sampled signal and true signal, as illustrated in Fig. 10.

If xu(n) and xd(n) are sampled values in range direction of the received signals
up- and down beam. The total signal x with N complex values from both beam
positions can be described by

x[n] = [xu(0) . . . xu(N − 1) xd(0) . . . xd(N − 1)]T (29)

Note that this can not be regarded as one continuos signal, rather a composition
of two independent signals.

Due to company confidential reasons the input signal x must be created, and
therefore not obtained from a true radar system. In the created model the tar-
get reflectors are described of probabilities and every new pulse echo gets a new
random value as mentioned in subsection 2.1.1.1.

The transfer matrix A is describing the transfer from the normalized target
amplitude s to the received signal, x [4]. This is derived as
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A =





gu(0) g
′

u(0) g
′′

u(0) 0 0 0
...

...
...

...
...

...
gu(N − 1) g

′

u(N − 1) g
′′

u(N − 1) 0 0 0
0 0 0 gd(0) g

′

d(0) g
′′

d (0)
...

...
...

...
...

...
0 0 0 gd(N − 1) g

′

d(N − 1) g
′′

d (N − 1)





(30)

where

gj(n) = Gjhpc((n− n0)rs + rf ), (31)

g
′

j(n) = G
′

jhpc((n− n0)rs −
δR
2

+ rf )ρ, (32)

g
′′

j (n) = G
′′

j hpc((n− n0)rs − δR + rf )ρ
2. (33)

gj(n), g
′

j(n) and g
′′

j (n) is the signal characteristic for the direct, first multipath
and second multipath echo, respectively. rs is used to convert samples to meter
and j ε {u, d}, representing up- and down-beam. Further,

Gj = Aj,T (θd)Aj,R(θd), (34)

G
′

j = Aj,T (θd)Aj,R(θr) +Aj,T (θr)Aj,R(θd), (35)

G
′′

j = Aj,T (θr)Aj,R(θr) (36)

where Aj,T and Aj,R are the normalized antenna gain amplitude factor at trans-
mission and receiving, respectively.
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Figure 10: Input-signal x for one beam with rf , rs and n0 described.

Fig. 10 describes a received signal x for one beam and shows how rf , rs and n0

is defined. n0 is the number of samples to the first detected peak.

The transfer matrix A(θ) can be seen as a similarity of the input signal x with
six pulses, three for the up- and three for the down beam.

21



Nr of pulses

S
a
m

p
le

 l
e
n
g
th

 N

 

 

1 2 3 4 5 6

10

20

30

40

50

60
!60

!50

!40

!30

!20

!10

0

Figure 11: Example of A-matrix (logarithmic, N=31) where the six highest
values represent the six pulses peaks. Notice that the colorbar has the highest
value at zero.

Fig. 11 shows an example of a logarithmic A matrix with a sample length of 31
for each beam, i.e. a total of 62 samples.

2.1.3 Model Simplifications

Since the altitude measurement algorithm involves heavy calculations, some
model simplifications can make a big difference. It is therefore studied if some
functions can be linearized or if other knowledge about the input-signal can be
taken into consideration. This is with respect to a balance between performance
and computational burden.

One option for this matter is mainly to pre-calculate and store results as much
as possible. A good start can be to save every possible combinations for A(θ)
on the selected grid in the parameter space. Like mentioned before, θ’s search
space is chosen to span over either HT and rf or δR and rf . If A(θ)’s each
element equations are analysed, (31), (32) and (33), it can be seen that HT is
nested upstream in the equations, unlike δR. If data should be saved it would
therefore be easier to use δR as an estimation parameter. This means that A(θ)
can be saved with different θ’s if Gj , G

′

j , G
′′

j and ρ can be seen as scalars and
the sampling range, rs, as a constant value.

The expressions given by (34), (35), (36) and ρ are therefore saved as con-
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stant scalars and rs, is selected to always be a constant value. In subsection
3.4.1.1 the results with a Total Grid Search with saved data, TGS-s, and Total
Grid Search without saved data ,TGS-ns, is shown.

A further aspect, when the estimation is made over δR is that HT needs to
be derived afterwards. This can either be done if HT is solved from the approx-
imated flat Earth model (3) or the spherical Earth model (17). But to explicitly
solve HT as a function of δR from (17) is basically impossible. Instead, a simple
function is developed where δR is calculated with an arbitrary number of target
altitudes that are compared with the estimations of δR. In a mathematical way
the equation to solve can be expressed by

δ̂R − f(HT , HR, RT ) = 0 (37)

where HT is iteratively tested in the range between 0:0.1:30 km. ĤT is then
chosen where (37) is closest to zero. To estimate HT from δR is still costly
in computational power and due to this fact an interpolation is implemented.
By interpolating HT in the interval from 0 to 30 km and calculate every 2 km
instead of 0.1 km means a cost save. How this effect the outcome is described
in subsection 3.4.2.5.

2.2 Least-Squares Estimate (LSE)

Generally LSE does not require any statistical knowledge about the observed
data vector x, which distinguish it from many other methods. The only require-
ment is that there exist a model for how the observed data x depends on θ.

The LSE-loss function that should be minimized can be formulated as [6]

L(θ, s) = ‖x−A(θ)s‖2 . (38)

If s is seen as a linear parameter in the model it can analytically be substituted
by a least-squares estimate of s. From [6] it is shown that

ŝ = (ATA)−1ATx (39)

which give the concentrated LSE-loss function [7].

L(θ) =
∥∥x−A(ATA)−1ATx

∥∥2
= εT (θ)ε(θ) (40)

where the least-squares residual
ε(θ) = (I−A(ATA)−1AT )x = P⊥x (41)

and the matrix A depend on a parameter vector θ [7]. The projection matrix
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P⊥ is the orthogonal projection of the complement to A’s colon space. As
described in subsection 2.1.3, it is possible to pre-save every possible combina-
tions for A(θ), but as can be seen in (41) it is then also possible to pre-save P⊥.
When s is substituted with its estimate it is possible to neglect the impact of
the reflection parameter ρ, and it can be applied to a constant value of one [4].
The only unknown parameters are then the nonlinear parameters in θ, which
means that the final solution is to find a θ that minimizes (40).

In this specific case, x is a complex vector and ε is complex valued. The norm
in the loss function is therefore needed to be given by [7]

L(θ) =
∥∥x−A(ATA)−1ATx

∥∥2 = ‖ε(θ)‖2 = εH(θ)ε(θ) (42)

where (·)H is the hermitian transpose, i.e. transpose and complex conjugation.
According to [7], the loss function can be reformulated to

L(θ) = ‖ε(θ)‖2 = εH(θ)ε(θ) = (Re ε(θ))2 + (Im ε(θ))2 =

∥∥∥∥

[
Re ε(θ)
Im ε(θ)

]∥∥∥∥
2

. (43)
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Figure 12: Loss functions plot (LSE-loss matrix) with minimum at δR = 185
and rf = 0.
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Fig. 12 illustrates an example of the LSE error when the estimation parameters
in θ are δR and rf . The characteristic is achieved when the algorithm itera-
tively updates (43) with different θ. Here, δR = 185 and rf = 0 have obtained
the least-squares error. The estimation space is chosen from 0:7:700 in δR and
-16:4:16 in rf . Notice that this will give an estimation space with 101 times 9
values.
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Figure 13: Plot of |x[n]| and |x̂[n]|.

In Fig. 13 it is shown how the LSE algorithm has found the best fit to the input
signal x. Here, x̂ = AŜ, and note how it does take both the pulses amplitude
and their mutual position into consideration. The first three pulses are the up-
beam and the last three pulses the down-beam, i.e. two different concatenated
signals.

2.3 Numerical Search Methods

Since the estimation method LSE has been tested before, the focus of this
project is to find a search method that can find its global grid minimum, which
is described in this section. The objective is to find a method so that the
number of iterations for the derived LSE-loss functions can be reduced. To
improve understanding, the search methods are illustrated with a search in the
total grid. Note that the search methods only have the knowledge of their
calculated values.

25



2.3.1 Total Grid Search (TGS)

When the LSE-loss function is derived with different θ’s, these values are as-
signed to a matrix which generates a result like in Fig. 12. This means that
each value for the specified estimation space is derived, i.e. each coordinate in
the figure. This is called a Total Grid Search ,TGS, and can always guarantee
that the global grid minimum is found, but contributes to a high computational
cost. Since TGS can guarantee a global grid minimum this is used as a method
to evaluate LSE’s performance.

2.3.2 Numerical Neighborhood Search (NN)

To reduce the number of iterations, and thereby also the computational burden,
any algorithm needs to be applied where all LSE-loss values not needs to be
derived. With a defined number of starting points the algorithm should search
for local grid minima and converge as fast as possible to reduce the computa-
tional burden. The easiest and most simple algorithm applied in this project is
the Numerical Neighborhood search, NN, This method derives the loss function
value for all 8 neighbors and if one neighboring value is less than the present
value, the algorithm moves there and starts over. Otherwise a local minimum
on the predefined parameter grid has been found.
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Figure 14: Description of NN iterations to a local minimum.

Fig. 14 illustrates how the NN algorithm iterates from a starting position (2,2)
to its local minimum at (4,4). The different colors describes how the algorithm
is optimized not to calculate a coordinates value more than ones, e.g. when
(3,2) is reached only (4,1), (4,2) and (4,3) needs to be derived since the other
neighbors are known.
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Figure 15: Typical path for NN with 7 starting points.

A typical path with seven starting points can be seen in Fig. 15.

2.3.3 Gauss Newton with Line Search (GN)

The Gauss Newton with line search, GN, algorithm is an iterative method reg-
ularly used for solving nonlinear Least-Squares problems. In comparison with
Newton’s methods and its variants, the GN method does not require any second-
order derivatives in the Jacobian of the objective function, and therefore it has
become an attractive method [3].

If the GN minimization algorithm is applied where the input signal x is complex
valued and

L(θ) = εH(θ)ε(θ) (44)

should be minimized, the steps can be summarized by [7]:

Step 0: Choose an initial θm|m=0 ∈ Rn, where n is the search space dimension
and m the number of iterations.

Step 1: Derive ε(θm) and the real-valued Jacobian J̃ to get the gradient, G, of
the loss function L.

Step 2: If A is real-valued and x is complex-valued the GN search direction is
derived as
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δθ = −(J̃T J̃)−1J̃T

[
P⊥ Re x

P⊥ Imx

]
= −(J̃T J̃)−1J̃T

[
Re ε(θ)
Im ε(θ)

]
. (45)

Step 3: Make a line search controlled by the magnitude of the gradient

min
α

L(θm + αδθ). (46)

Step 4: Check for convergence

‖αδθ‖2

‖θm‖2
< θlim or

L(θm)− L(θm + αδθ)

L(θm)
< Llim or m>mmax. (47)

Step 5: If no convergence criteria is satisfied

θm+1 = θm + αδθ, m = m+ 1 (48)

and go to step 1. Otherwise,

θopt = θm + αδθ. (49)

The gradient of the loss function L is given by [7]

G =
∂L(θ)

∂θ
= J̃T

[
Re ε(θ)
Im ε(θ)

]
(50)

where

J̃ =

[
Re J
Im J

]
(51)

and

Re J = [(
∂

∂θ1
P⊥)Re x, (

∂

∂θ2
P⊥)Re x, . . . (

∂

∂θn
P⊥)Re x], (52)

Im J = [(
∂

∂θ1
P⊥) Im x, (

∂

∂θ2
P⊥) Imx, . . . (

∂

∂θn
P⊥) Imx]. (53)

Further, ∂
∂θP

⊥, needs to be calculated. If

P⊥ = (I − (ATA)−1AT ) (54)

and
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Ȧ =
∂A

∂θ
(55)

is defined, the following formula can be derived with the product and inverse
rule as [7]

∂

∂θ
P⊥ = −Ȧ(ATA)−1AT − A(ATA)−1ȦT + A(ATA)−1(AT Ȧ+ȦTA)(ATA)−1AT .

(56)

When this is implemented for step 1 in the summarized steps, an entire GN
sequence can be performed to find a local minimum θopt. As described in sub-
section 2.1.3, it is allowed to save data to reduce the computational burden.
When a GN search is performed, ∂

∂θP
⊥ needs to be derived for each iteration.

Instead of doing this it is possible to pre-save all these values in a matrix, which
is advantageous if the computational burden should be reduced with GN. A
typical path with 7 starting points for the algorithm can be illustrated as
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Figure 16: Typical path for GN with 7 starting points.

2.3.4 Steepest Descent with Line Search (SD)

Since the computational burden would be extremely heavy when calculating
∂
∂θP

⊥ for every iteration in a GN sequence it is required that both P⊥ and
∂
∂θP

⊥ is pre-saved. A solution to avoid that ∂
∂θP

⊥ needs to be used is if the
derivative of the loss function L is approximated to
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∂L(θ)

∂θ
≈

L(θ + δθ)− L(θ)

δθ
. (57)

The difference between this method and GN is that the gradient for a new search
direction is approximated instead of derived analytical, and is called a Steepest
Descent with line search, SD. This will only require that P⊥is pre-saved.
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Figure 17: Typical path for SD with 7 starting points.

Fig. 17 illustrates a typical path for SD with 7 starting points.

2.3.5 GN with NN

When a GN step is derived this gives a new grid coordinate in parameter space.
However, since the search is performed on a fixed parameter grid the new coor-
dinate needs to be truncated to a grid point. This process leads to that the GN
method is not guaranteed to converge to the local optimum on the defined grid.
This means that a finer grid will obtain better estimates. But a finer grid search
will increase the required pre-saved data significantly. Instead a final NN search
is applied at the end of every GN convergence point, so that a local minimum
can be guaranteed.

2.3.6 Number of Starting Points

Yet, it is not discussed how the starting points are selected, which is a crucial
step for each search method. The more starting points that are generated the
higher is the probability that the global minimum is found. If only one starting
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point is generated it is likely that only a local minimum is found. Like in gen-
eral optimization problems there have to be a balance between computational
burden and performance.

By only analyse different LSE-loss matrices a recurrent behavior is that most
minima are located in the middle of the rf -axis. The starting points are there-
fore chosen to start at rf = 0. The number of starting points, their mutual
position and the LSE-loss matrices are then varied to find a point of conver-
gence. One contradictory aspect with this test is that the result depends on how
the minima are placed in the matrices. If the targets altitude for a test case
is fixed, all global minima might be placed at the same place, and therefore, it
does not always give better results with more starting points.

2.4 General Extensions

In addition to the different search methods, some general extensions and theories
are considered.

2.4.1 Median of Several Estimations

Earlier in the report, every input signal is seen as a shared setting of one up-
and one down beam, but for an entire search mode there are not only one signal
to analyse. Actually this is done several times which means that much more
information about one target can be collected. Therefore a final median value
for an altitude measurement of the estimations is collected.

2.4.2 Quality Index

To get an idea of how good every single estimation is, a quality index, QI, is
calculated for each measurement. One way of evaluate a QI is with knowledge
about the LSE-loss matrix and the found global grid minimum, as in a TGS. If
the global solution has a big deviation from the mean of every derived LSE-loss
value, the estimation is assumed to be good and a high QI is assigned. Vice
versa, when the deviation is small a low QI is assigned. The QI is derived by

QI = |L(θ) − L(θgmin)| (58)

where L represent the mean of every derived LSE-loss value and L(θgmin) the
lowest LSE-loss value found.

For the optimization methods and algorithms, knowledge about the total LSE-
loss matrix, L, is missed. Instead the two lowest local minima found can be
taken into account. A QI is instead derived by

QI = | ‖x‖2 − L(θgmin)| ·
L(θgmin)− L(θlmin)

L(θgmin)
, (59)
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where L is replaced with ‖x‖2 and the second lowest minimum found L(θlmin)
are considered. ‖x‖2 can be seen as the energy in the input signal, x, and is an
estimation of the total loss-function ‖x− ŝ‖2.

2.4.3 Performance of Pulse Separation and Signal to Noise Ratio

To identify a performance with respect to noise and resolution of δR, one input
signal with fixed amplitudes are created.
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Figure 18: Illustrates a case where δR and SNR is changed to identify perfor-
mance.

With the first amplitude, Amp1, as index, the six pulses individual amplitudes
can be seen as; 0, 0.9, -2.3, -0.9, -0.6 and -4.3 illustrated in Fig. 18. Instead
of compare different noise levels the Signal to Noise Ratio, SNR is used and
derived by

SNR =
a2

var(n)
, (60)

Where a is the pulses amplitude and n Gaussian colored noise. (60) describes
how SNR can be derived, which is explained as the level between noise and
the pulses amplitude. The SNR is calculated for Amp1 and Amp4 in Fig. 18
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and then the mean of these is used. By reducing the range δR towards zero
it is possible to detect when the algorithm not is able to resolve the multipath
echoes for different SNR. When changing the range δR and SNR repeatedly a
normed bias error and variance can be derived. This is done 100 times for 43
different δR and 4 different SNR. To imitate reality as good as possible every
phase contribution between amplitude 1 and 4, 2 and 5, and 3 and 6 respectively
is changed randomly for each signal realization.

2.4.4 Computational Burden

It is of highest interest to see how the computational burden is affected when
applying the optimization search methods. To show that, in a more scientific
way than time, floating-point operations (or flops2) are used. This gives an
accurate and correct measure of the computational performance and is easy to
use in MATLAB. Time will also be presented because it can be of interest to
get a hint about the performance of the compared algorithms. The simulations
are performed by a standard laptop from 2009, and all results are collected for
runs with a computer of that performance.

2The function FLOPS() in MATLAB is removed in version 6 onwards. When producing
the result in flops version 5 of MATLAB is used.
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3 RESULTS

Results are produced with the LSE method and subsequently search algorithms
are applied. The outcome of this is that a comparison between the computa-
tional burden and performance can be accomplished.

3.1 Creation of Input Signal

To present the performance and improvements a created input signal, x, is used.
This is because of company confidential information, and only a few results are
derived with true recorded radar signals.

Table 2
PARAMETERS FOR THE RADAR SCENARIOS STUDIED

RT [km] HT [km] SNR [dB] ss N HR [km]
251:4:450 10.2,7.2,5.2,3.2 27,22,17,12 3 31 6

When the created scenario is implemented the parameters are chosen as in Table
2.
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Figure 19: Targets altitude path for the created input signal.

The scenario can be explained as in Fig. 19 by a target moving away while it
drops in altitude, i.e. RT is increasing and HT decreasing. The altitude of the
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radar, HR, is fixed to 6 km. A result of this is that the range between the
pulses, δR will decrease. To increase the variance and to put additional stress
on the algorithms further, sea state, ss, is chosen to 3 and the scenario is tested
with different SNR from 27 to 12 dB. All the created data has Gaussian noise
colored by the receiving filter.

3.2 Calculation of Target Altitude from δR

As mentioned a approximated equation of calculating δR is

δR =
2HRHT

RT
(61)

where assumptions of a flat Earth is considered instead of the more advanced

δR =

4

(
HR +

H2
R −R2

1

2Re

)(
HT +

H2
T −R2

2

2Re

)

R1 +R2 +RT
(62)

where the geometric parameters arising when a spherical Earth is used. Note
that both R1 and R2 contains highly nested expressions of HT that makes is
hard to explicitly solve HT . When the latter is considered (37) is used itera-
tively to derive the estimation of HT , with or without interpolation as described
in subsection 2.1.3. This is of course more time consuming than apply the ap-
proximation of HT , which trivial can be rewritten from (61) as

HT =
δRRT

2HR
(63)

When the geometrical parameters are not taken into account a drift occurs in
the sequence. By multiply equation (63) with a factor means that either the
close range values will be correct or the ones with a target far away.
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Figure 20: Differences between geometrical and non geometrical calculation of
target altitude.

The simplified estimated HT is therefore rejected and instead the function with
impact of geometric parameters and spherical Earth is used. In Fig. 20 the
differences of calculating target altitude for the two cases is illustrated.

3.3 Number of Starting Points Analysis

It is of interest to see how the optimization numerical search methods perfor-
mance is depending of how many starting points that is generated. An analysis
is therefore made where the results for GN with different starting points are
compared with the global grid minimum for a TGS. The starting points are
selected as
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Table 3
POSITIONS FOR DIFFERENT NUMBER OF STARTING POINTS

Nr Starting Points Positions
1 50
2 25, 75
3 25, 50, 75
4 20, 40, 60, 80
5 10, 30, 50, 70, 90
6 5, 20, 35, 55, 70, 90
7 2, 15, 30, 45, 60, 75, 90
8 2, 15, 30, 40, 50, 75, 80, 99
9 2, 10, 20, 30, 45, 55, 75, 80, 99

When increasing the number of starting points the deviation between GN with
NN and TGS-s will converge towards zero.
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Figure 21: Illustrates the change in deviation between GN with NN and TGS-s
with different number of starting points.

After 7 starting points the deviation will converge very slow which can be seen
in Fig. 21, where 9 starting points is tested. 7 starting points are hereafter used
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for all results where optimization algorithms are implemented.

3.4 Numerical Search Methods

This section shows the result for the different search methods. First the results
for a TGS are shown and then all methods are compared to each other. The
TGS is treated differently since this is the only method that can guarantee a
global grid minimum and can be seen as an evaluation method for LSE.

3.4.1 Total Grid Search (TGS)

This subsection shows the performance of TGS in a case with 1280 sampled
data signals.

3.4.1.1 Comparation of Simplified- and Non-Simplified TGS with
True Recorded Radar Signals

First and foremost, a comparison between the simplified Total Grid Search,
TGS-s, described in subsection 2.1.3 Model Simplifications, and the non-simplified
Total Grid Search, TGS-ns, is shown.
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(a) TGS-ns.
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(b) TGS-s.

Figure 22: Altitude estimate for TGS-ns and TGS-s compared to true altitude
derived with true recorded radar input signals.

Fig. 22 illustrates a non simplified- and simplified TGS altitude measurement.
The scenario is derived with true recorded radar input signals and because of
company confidential reasons the actual target altitude is not shown. It can
still be seen that the deviation is small and the average computational time is
reduced 108 times with saved data compared to non simplified case as can be
seen in Table 5. Hereafter the results will therefore be represented with the
simplified model.

38



3.4.1.2 Interaction Between SNR and δR

To measure the interaction between SNR and δR a test scenario as described in
subsection 2.4.3 is done, i.e. when δR is decreasing for different SNR.
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Figure 23: Bias error and variance for δR

To get a measure of this the bias error and variance are derived for an entire
scenario which is described in Fig. 23. These results are rough estimates, and
gives only an idea of the LSE performance.

Bias error =

100∑
i=1

(δRest
(i)− δRtrue

)

n
· r−1

3 (64)

V ar =

√√√√√
100∑
i=1

(δRest
(i)− δRtrue

)2

n− 1
· r−1

3 (65)

The expressions given by (64) and (65) are describing how the bias error and
variance are derived when they are normed with r3.
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3.4.1.3 Performance with Different SNR

In this subsection it is illustrated how the performance for TGS-s depends on
the SNR level. The (a) figures are a comparation in δR and (b) a comparation
in H_T after it is derived with (37).
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(a) Estimated δR compared to true δR.
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Figure 24: TGS-s compared to true altitude and δR with SNR = 27 dB.
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(a) Estimated δR compared to true δR.
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(b) Estimated HT compared to true target alti-
tude.

Figure 25: TGS-s compared to true altitude and δR with SNR = 22 dB.
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(a) Estimated δR compared to true δR.
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(b) Estimated HT compared to true target alti-
tude.

Figure 26: TGS-s compared to true altitude and δR with SNR = 17 dB.
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(a) Estimated δR compared to true δR.
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tude.

Figure 27: TGS-s compared to true altitude and δR with SNR = 12 dB.

In Fig. 24 to 27, results are shown where always the global grid minimum in the
LSE-loss matrix are collected and compared to the true altitude. One can also
see how different SNR effect the outcome.
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3.4.1.4 Performance with 32 Median Measurements

When each altitude from Fig. 25, with 22 dB SNR, is divided in groups of 32 and
the median of these values are calculated, a more reliable altitude measurement
can be obtained.
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Figure 28: TGS-s compared to true altitude with median and 97,5 % confidence
interval, assuming normal distribution.

The new performance with grouped values can be seen in Fig. 28. The STD
with some arbitrary confidence interval for the altitude measurements is derived
with [9]

mHT
±

tp · sHT√
nr

(66)

where sHT
is the observed standard deviation for the altitude, nr is number of

measurements, tp is obtained from the t-distributed table with 30 degrees of free-
dom and mHT

is the median of the altitude measurements. sHT
is derived by [9]

sHT
=

√
1

nr − 1

∑
(HTi

−mHT
)2. (67)

The confidence interval is chosen to 97.5 % and a normal distribution is assumed.

42



3.4.1.5 Overview of Results for TGS-s

Table 4
OVERVIEW OF RESULTS FOR TGS-s

Method Time [ms] Flops STD [km] Space [MB]
Individual/Median

TGS-s 34.5 2.2804·107 1.46/0.23 30.7

The computational power required and STD for TGS-s compared to true alti-
tude are collected in Table 4. The STD individual is derived from Fig. 25 and
STD median from Fig. 28. The space column illustrates the allocated space
needed to store the pre-calculated P⊥. Time is the mean time required for 1280
measurements.

3.4.2 Comparison of Different Search Methods

In this subsection all methods are summarized and compared to each other.
For these cases SNR is chosen to 22 dB. The first scenario is a comparation
between true δR and estimated δR with 1280 measurements, the second and
third scenario is a comparation between true HT and estimated HT derived
from (37), with 1280 and and a group of 32 median measurements, respectively.
At last the deviation between the optimization search methods and TGS-s is
illustrated. For the optimization methods which require starting points, seven
equally distributed points are used.
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3.4.2.1 Estimated δR Compared with True δR
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(a) TGS-s.
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(b) NN.
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(c) SD.
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(d) GN.
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Figure 29: Estimated δR for all search methods compared with true δR using
SNR = 22 dB.
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3.4.2.2 Estimated HT Compared with True HT
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(a) TGS-s.
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(b) NN.
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(c) SD.
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(d) GN.
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Figure 30: Estimated HT for all search methods compared with true HT using
SNR = 22 dB.
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3.4.2.3 Estimated HT Compared with True HT using Median of 32
Measurements
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(a) TGS-s.
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(b) NN.
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(c) SD.

0 5 10 15 20 25 30 35 40 45
2

4

6

8

10

12

14

Median measurements number

M
e
d
ia

n
 o

f 
ta

rg
e
t 

a
lt
it
u
d
e
 [

k
m

]

 

 

Median of true target altitude

Median of estimated target altitude

(d) GN.
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(e) GN with NN.

Figure 31: All search methods compared to true altitude with median of 32
altitude measurements. For each method a confidence interval of 97.5 % is
used.

46



3.4.2.4 Difference Between TGS-s and the Optimization Search Meth-
ods
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(a) TGS-s compared to NN.
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(b) TGS-s compared to SD.
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(c) TGS-s compared to GN.
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(d) TGS-s compared to GN with NN.

Figure 32: Difference between TGS-s and the optimization search methods

When the TGS-s is compared to the other search methods it can be seen if the
methods have found the global minimum or not. Notice that TGS-s is the only
method that can guarantee a global minimum. As can be seen in Fig 32 the
deviation is often zero for all methods, except for SD. If the deviation is zero it
means that the global grid minimum is found.
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3.4.2.5 Summary of Results

Table 5
SUMMARY OF EACH METHOD

Method Time [ms] Flops Perf [%] STD [km] Space [MB]
Individual/Median

TGS-ns 3720.0 4.1193·109 - 1.51/0.23 0
TGS-s 34.5 2.2804·107 100 1.46/0.23 30.7
NN 20.3 1.1193·107 96.9 1.47/0.21 30.7
SD 11.8 5.8907·106 38.2 1.66/1.23 30.7
GN 8.6 3.1220·106 80 1.48/0.22 86.6

GN w NN 9.0 3.1229·106 94.6 1.47/0.22 86.6

In Table 5 all search methods results are summarized. The performance rep-
resents how many of the global minima that are found, the STD is derived
with respect to true altitude, HT , where the first value is for a entire search
with 1280 measurements and the second with 32 median measurements. Space
means the space needed to allocate the required matrices and Time is the mean
time derived from all 1280 measurements. The computational burden can also
be represented visually as
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Figure 33: Summarized computational burden for the different methods visually.
One can see how the computational complexity is directly related to mean time.
Notice the factor for the vertical axis in the left graph (a).

Interpolation of Altitude
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When calculating HT from estimated δR a large influence on the total compu-
tational burden arises when (37) is tested in the range between 0:0.1:30 km.
By using interpolation instead with an arbitrary number of target altitudes, a
further reduction of the computational burden can be accomplished. When in-
terpolation is used only a few values of HT needs to be calculated, as it revealed
to be similar to a linear function.

Table 6
SUMMARY OF RESULTS WHEN INTERPOLATION IS IMPLEMENTED

Method Time [ms] Flops Perf [%] STD [km] Space [MB]
Individual/Median

TGS-s 34.0 2.2780·107 100 1.48/0.22 30.7
NN 18.4 1.1169·107 94.9 1.49/0.19 30.7
SD 10.9 5.8668·106 40.2 1.72/1.30 30.7
GN 7.6 3.0981·106 89.2 1.50/0.20 86.6

GN w NN 7.9 3.0999·106 95.9 1.49/0.23 86.6

Table 6 shows the same result as in Table 5 but with interpolation implemented.
The estimated HT is interpolated in the interval from 0 to 30 km, and instead of
calculate every 0.1 km only each 2 km needs to be derived as described in 2.1.3
Model Simplifications. To get an idea of what the results mean the deviation of
resolution in angle can be measured. If the results for STD with median values
between 1.3 to 0.19 km at a target range of 450 km were considered, this would
mean a deviation from 0.16◦ to 0.02◦ in angel, which can be derived with simple
trigonometry.
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3.5 Quality Index (QI)

To give a hint about the quality of each measurement, a QI is calculated and
presented as described in subsection 2.4.2.
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(b) GN with NN.

Figure 34: QI for TGS-s and GN with NN. The x-axis describes QI and y-axis
the deviation from correct HT .

The QI for TGS-s can be defined as a deviation between the LSE-loss matrix
mean value and it’s global grid minimum. For the optimization search methods,
in addition, a deviation between the lowest and second lowest calculated LSE-
loss value are considered. The result is illustrated in Fig. 34.
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4 DISCUSSION

When an altitude measurement method would be used in a true radar sys-
tem there are two main areas that are considered; Performance compared to
computational burden and a reliability index in terms of a quality for each
measurement. Something very useful is the knowledge of how much the pulses
can interact compared to the SNR. Due to the infinite number of combinations
for the input signals characteristic, only one typical signal is analysed for this
matter. To get a perception on how reliable the measurements are, a quality
index is implemented. With the implemented index it is however nearly im-
possible to determine if the measurement quality is poor or not. When it is
possible to include the effects of multiple minima values, anyhow, it can be en-
sured that all the high-quality indexes have produced good estimation results.
The impacts of multiple minima values are however only possible to consider
when the optimization algorithms are used, which suggests these methods for
this matter. With this knowledge compared to the environmental conditions,
it is desired to give a better way of verify the altitude measurement performance.

When the estimated results are compared to the actual altitude, a pattern is
seen where the inaccurate estimates often are half of the true altitude. This
occurs when the noise level between the pulses of the input signal, x, contribut-
ing to high amplitudes. Noise level has since been seen as one of the multipath
pulses and the algorithm thinks the signal is more compressed than it truly is.
If this somehow could be improved has not been observed, but the 32 median
measurements will suppress these problems significantly.

As explained earlier in the report it is quite hard to decide an optimal number
of starting points for the optimization algorithms. This is because a conver-
gence quantity depends on how the local minima are placed. Off course the
quantity can be optimized for this test case but will not be if the local minima
are relocated. The starting points are therefore placed even distributed over the
possible estimated altitudes. The quantity has been chosen to 7 but is a subject
that must be determined after an implementation is done in a true radar system.

When an optimization algorithm is used where a gradient should be derived,
such as GN, a non-square coarse grid cannot guarantee that a local grid mini-
mum is found. If it were assumed that the simplifications with saved data are
required, the allocated space needed for a finer grid search would exceed the
radar systems space capacity. A square or finer grid search is therefore not
tested, and instead a final NN search is used as an extension of the GN search,
so that a local minimum can be guaranteed.

Another aspect needs to be considered is the comparison between each methods
STD against true altitude and performance compared to TGS-s. In some cases
the optimization algorithm shows less STD then the TGS-s. This will occur
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when TGS-s has found the wrong estimate and the optimization algorithm has
found the wrong global grid minimum in the LSE-loss matrix. Unfortunately
the optimization algorithms estimate is closer to the true altitude, and this is
why it gets a lower STD. Therefore this can be misleading when comparing the
optimization search methods to the TGS-s. For this matter a better benchmark
is to compare the performance column. The STD is however important when
TGS-s should be evaluated. The fact that even the TGS-s has less STD than
TGS-ns shows two things. Firstly that the measurements are not particularly
accurate, but also that the simplified model very well can be used. Meanwhile,
the accuracy is rather unimportant for such long range measurements.

In order to reduce the computational burden, a lot of estimates and simpli-
fications are used. Firstly the TGS-s is used as an estimation method, which
then is simplified with the pre-saved data, and finally the optimization algo-
rithms are applied. Simultaneous, HT is estimated from δR, after this is used
as an estimation parameter, and at last an interpolation between HT and δR is
implemented. How much of these estimate and simplifications that are required
depend on the computational time for when the algorithm is implemented in a
true physical radar system. The computational time depends both on the radars
computational power, but also on how the algorithms perform in another pro-
gramming language. If the result for the mean time is close to the truth, there
is a need to save data. It is also easy to conclude that the SD can be rejected
since the computational time required is not longer than GN, and still gives
worse estimates. Decisions to which of TGS-s, NN, GN or GN with NN that
are most appropriate need to be taken after an implementation in a true radar
system. For the simulation results the GN with NN though seems to be the one
to prefer, since it finds many of the global grid minima and still keeps down the
computational burden. Because of the 32 median measurements some errors
can be allowed and therefore mean time and flops are important to consider in
an evaluation. The space is far away from the actual limit in a radar system
and should have a lower impact than all other parameters. If the results for
STD with median values between 1.3 to 0.19 km at a target range of 450 km is
compared with methods where resolution in angles is analysed this would mean
a deviation from 0.16◦ to 0.02◦, which means that all methods have shown good
results, despite every estimates and simplifications that are made.
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5 CONCLUSION

5.1 Results from Present Work

Conclusions that can be made is that a TGS-ns and SD search can be rejected
immediately. Which of the other methods that are most suitable needs to be
decided after an implementation is done in a true radar system, but as it seems
GN with NN is probably the one to prefer. Trade-offs which should be taken into
consideration is primarily between mean time, flops and performance against
TGS-s. Because of the 32 median measurements it can be allowed that the
algorithms not have found some of the global minima, and the consumed time
should have a great impact when a decision should be taken. Having this said
one of GN or GN with NN is to prefer. That GN has less STD against true
altitude then GN with NN is just a coincidence and is not a good measure
of which optimization method to select. This should especially be used when
evaluating TGS-s. The allocated space is far from the radars limit and should
neither have a great impact in the decision. If an interpolation between HT and
δR is to prefer is hard to say, since both reduced time and decreased performance
is not changed very much. Despite all estimates and simplifications implemented
to reduce the computational time, all methods performance can be regarded as
satisfying.

5.2 Future Work

As mentioned, it is difficult to draw any final conclusion about which method
that is best. An obvious future work is therefore to make a final implementation
in a real radar system. Conclusions can then be taken when methods show their
actual performance when implemented in a different programming language.
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