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On Data-Driven Predctive Maintenance of Heavy Vehicles
A case study on Swedish trucks
ANDREAS FALKOVÉN
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This thesis studies whether data collected from Volvo trucks in Sweden can be used
for the purpose of predictive maintenance. The goal has been to see whether this
data can be used to predict when service is required in a truck, rather than at set
intervals or after a fault has occurred. To determine if the provided data can be
used to predict and diagnose fault, three different approaches to analysing the data
are tested. Association rule mining and classification trees are used to investigate
if maintenance requirements can be detected based on relations between different
maintenance types. Autoregressive modelling of parameters that are monitored by
a truck is also attempted, in order to see whether these data series can be reliably
predicted and forecasted. The results found using association rule learning and clas-
sification trees show that it is to some degree possible to detect fault requirements,
although not to a reliable extent, using the provided data. Autoregressive modelling
suffers from a lack of usable information in the data, and highlight some issues
with using the provided data for predictive maintenance. The main conclusion from
this thesis is that there is information relevant for implementing a predictive main-
tenance framework contained in the provided data. However, the overall quality
and relevance of the provided data was not sufficient for a reliable implementation
of such a framework as things stand. Before a predictive maintenance framework
can be implemented, this thesis shows that a reevaluation of the underlying data is
required.

Keywords: predictive maintenance, data mining, association rule learning, classifi-
cation trees, autoregressive modelling, diagnostics

v





Acknowledgements
First and foremost I would like to express my greatest gratitude to my supervisor
at Combitech, Ulf Lindgren, for his support during the thesis work. His inputs
and discussions during the course of the work and thesis writing have been both
insightful and inspiring, opening my eyes to new ways of viewing what I have learned
at Chalmers. Secondly I would like to thank associate professor Lennart Svensson
for helping to steer me in the right directions with his feedback during the project.
Thirdly, I would like to extend a collective acknowledgement to those at AB Volvo
whom I have been in contact with during the thesis work. Whether for enabling me
to perform this thesis work, discussing outcomes during the work, or allowing me to
pretend to be a truck mechanic for a day, a great thanks to you all. Last but not
least I would like to extend an informal thank you to my friends at Chalmers for
providing a necessary distraction from my work from time to time.

Andreas Falkovén, Gothenburg, May 2017

vii





Contents

1 Introduction and Background 1
1.1 Maintenance Schemes for Industrial Systems . . . . . . . . . . . . . . 1

1.1.1 The Predictive Maintenance Paradigm . . . . . . . . . . . . . 2
1.1.2 Feature Selection and Data Fusion . . . . . . . . . . . . . . . 4
1.1.3 Prognostic and Diagnostic Approaches . . . . . . . . . . . . . 5
1.1.4 Decision Support and Maintenance Action . . . . . . . . . . . 7

1.2 Objective of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theoretical Concepts 11
2.1 Frequent Itemset Mining and Association Rule Learning . . . . . . . 11

2.1.1 The Apriori Algorithm . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Association Rule Generation . . . . . . . . . . . . . . . . . . . 14

2.2 Classification and Regression Tree Learning . . . . . . . . . . . . . . 15
2.2.1 C5.0 Decision Tree Generation . . . . . . . . . . . . . . . . . . 16
2.2.2 Boosted Classification Trees . . . . . . . . . . . . . . . . . . . 17

2.3 Autoregressive Time Series Modelling . . . . . . . . . . . . . . . . . . 18
2.3.1 Parameter Estimation Using the Normal Equations . . . . . . 21
2.3.2 Stability of Autoregressive Models . . . . . . . . . . . . . . . . 23

3 Data Exploration 25
3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Truck Service Data . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Truck Log Data . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Methods 31
4.1 Mining the Service Data . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Frequent Itemset Mining . . . . . . . . . . . . . . . . . . . . . 32
4.2 Classification and Prediction of Vehicle Service . . . . . . . . . . . . . 33

4.2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Service Predictions . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Time Series Modelling of Truck Log Data . . . . . . . . . . . . . . . . 38

5 Results 43
5.1 Itemset Mining in Service Data . . . . . . . . . . . . . . . . . . . . . 43

ix



Nomenclature

5.2 Service Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.1 Baseline Model Performance for Different Targets . . . . . . . 46
5.2.2 Model Tuning Performance . . . . . . . . . . . . . . . . . . . 47

5.3 Time Series Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Discussion 53
6.1 Data Quantity and Quality . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Log Data Continuity and Sparsity . . . . . . . . . . . . . . . . 54
6.2 Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Service Predictions using C5.0 Classification Trees . . . . . . . . . . . 57

6.3.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.2 Baseline Performance for Different Targets . . . . . . . . . . . 58
6.3.3 Model Tuning and Performance Improvements . . . . . . . . . 59

6.4 Autoregressive Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Conclusions and Outlook 65
7.1 Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 67

A Evaluation of Classifier Performance I

x



1
Introduction and Background

This introductory chapter provides a presentation of the background and goals of
this thesis project. To start with, an introduction to different approaches to main-
tenance of technical systems, such as the trucks investigated later in the thesis, is
presented. In particular, a more thorough review of predictive maintenance and
different approaches to this paradigm is given. This also includes a review of pre-
vious works in the fields of predictive maintenance in particular. Finally, the main
objectives and limitations of this project are stated, along with an outline of the
rest of the thesis.

1.1 Maintenance Schemes for Industrial Systems

In many industrial systems, such as production lines and machinery, it is vital
that the personnel operating or using these systems can do so safely and reliably.
Moreover, from an economical and sustainability standpoint it is also essential that
a system remains in operable condition for as long as possible. A reliable system
prevents loss of productivity due to malfunctions, wear and tear or other forms
of degradation that leaves the system being unable to fulfil its intended purpose.
For example, an industrial bearing is subject to constant strain due to vibrations,
friction and fatigue in the materials, which may eventually cause the bearing to fail.
A failing bearing could in turn lead to an emergency stop of the operating machinery,
resulting in a halt in production and significant costs in lost income. To address
these issues, a variety of maintenance schemes are deployed once a system is in
service. This allows suitable actions to be taken to ensure that it can remain usable
for as long as possible. Such schemes can roughly be divided into three paradigms,
based on why, when and how the maintenance is carried out; corrective- , planned-
and predictive maintenance [1].

In corrective maintenance, service and repairs are carried out once a fault or mal-
function has already occurred in a system, or when it is otherwise unable to fulfil
its intended purpose. For example, an axle in a machine that is replaced only once
it breaks, or a drill which is replaced once it has gone dull, would be subjected to
corrective maintenance. When a fault has occurred, the malfunctioning part is iden-
tified and either restored to operable condition or replaced. Corrective maintenance
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1. Introduction and Background

naturally minimises the number of unnecessary part replacements or repairs, since
maintenance is only carried out as needed. However, this approach can also lead to
unexpected and lengthy losses of production, safety risks as a system nears failure,
or expensive repairs and replacements.

In contrast to corrective maintenance, planned maintenance schemes maximise sys-
tem reliability by scheduling maintenance at specific intervals, before any malfunc-
tions take place. Such intervals could be determined by, for example, a fixed number
of operating hours, operating cycles or a certain mileage. For systems where reli-
able performance is critical, or when there are severe consequences of a failure,
a preventive approach is generally preferred over a corrective one. However, the
implementation of a good preventive maintenance scheme often requires a deep un-
derstanding of the system at hand, in order to be able to specify the maintenance
intervals. Such knowledge could be based on lifetime estimations, historical perfor-
mance measures or comparisons with similar systems. Due to the dynamic nature
of an industrial system and the influence of many different environmental effects in
its surroundings, finding suitable service intervals is often difficult. This can lead to
very conservative measures being used, causing parts and components to be replaced
despite being in functional condition. This in turn increases maintenance costs and
requires large supplies of service materials to be readily available [2].

An additional aspect to when maintenance is carried out is when equipment failures
are expected in a system. Figure 1.1 illustrates a number of different equipment
failure models. Such models estimate the instantaneous probability of equipment
failure over time. While a system may experience a fault at any time, there is
typically periods during its lifetime where failures are more common. A successful
maintenance scheme will thus take these periods into consideration when scheduling
maintenance of a system. Referring to figure 1.1, line A represents a system where
failure is equally probable during the entire lifetime of the system. In such a system,
faults occur randomly. Lines B and C are instead the failure rate of a system where
early life faults are probable (B), or where faults are increasingly probable with age
(C) due to wear. Line D shows a system which behaves like a combination of the pre-
vious three, having a higher failure rate at the beginning and end of its lifetime, but
having a constant, lower failure rate in between [3]. A planned maintenance scheme
would typically aim at performing maintenance before the increasing failure proba-
bility at the end of system life becomes too high. However, determining this time is
not trivial, and requires experience and empirical evidence of when faults occur.

1.1.1 The Predictive Maintenance Paradigm

As described in the previous section, both corrective and preventive maintenance
approaches come with different pros and cons. By combining aspects from both these
maintenance paradigms the predictive, also known as condition based, maintenance
paradigm is obtained. This paradigm seeks to capture the positive aspects of both
previously mentioned maintenance approaches, while at the same time eliminating

2
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Figure 1.1: Different schematic models of the fault probability in some type of
system during its lifetime, based on hazard models. Line A represents a system
where faults occur randomly with constant probability during the entire life cycle of
the system. Line B represents a system with a high initial failure rate, which then
reduces over time as the system is “burned in”. On the contrary, line C represents
the opposite type of behaviour, where the product has a low risk of faults when new
but where the probability of faults occurring increases up over time. Lastly, line
D represent a combination of the previous three, where a system has an increased
fault probability at the start and end of its life cycle, but a lower, constant failure
rate in between.

the drawbacks. As the name implies the idea behind predictive maintenance is
to predict when maintenance is required based on the actual condition of a system.
Replacements, service or repairs are then carried out only when the system condition
indicates that failure or malfunction is imminent. By doing this, the goal is to
maximise both system availability and functionality. At the same time, unexpected
failures associated with corrective maintenance and the redundant replacements
associated with preventive maintenance are kept to a minimum [4]. The success of
such predictive maintenance relies on a few premises. First, it must be possible to
monitor a system in a way which allows predicting when a failure will occur. Second,
it must also be possible to accurately diagnose such a failure once predicted. At last,
one would also like to obtain decision support regarding what action to take, based
on predictions and diagnosis made in the previous two steps.

Information about the system can be obtained in a variety of ways. It can consist
of historical data such as repair logs and previous failure conditions. It can also be
obtained directly from the system in the form of sensor signals, such as vibration
data or electrical currents, and measurements such as acoustic noise, heat levels or
optical observations. This data can in turn be read either in real time, i.e. on-line
tracking, or come from data files collected over time, i.e. off-line tracking. An on-line
implementation gives more up-to-date data, which is crucial in fast paced or time
restrained operations, whereas an off-line implementation uses data which may be
collected at any time during the equipment’s life cycle. However, processing large
amounts of data in real time requires larger amounts of computing power, a resource
which may be scarce in for example smaller, embedded systems. In such cases it may
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Figure 1.2: Flowchart of a typical predictive maintenance environment. Data
is acquired from a system and fed into a program for feature selection for pre-
processing. The processed data is then forwarded to a program which calculates
and classifies the current health condition of the system. This information is in
turn sent to two modules for prognostics and decision support. The process of
prognostics is in turn meant to estimate the time remaining until maintenance is
required, i.e.determining the system’s remaining useful life (RUL). In the decision
support module this estimation is used together with the diagnostics data to give a
basis for deciding if maintenance is currently necessary, which in turn may result in
some form of reactive action.

be preferable to use an off-line implementation which can process the data supplied
in an outside environment.

Figure 1.2 shows an outline of how a typical predictive maintenance framework is
organised. Such an environment can divided into of a number of stages, each of
which is helping to model and interpret the current health condition of an asset [5].
The function of these stages is explained in detail in the subsequent sections.

1.1.2 Feature Selection and Data Fusion

In the feature selection step, various methods are used to identify which of the
incoming signals from the equipment carry information about the system condition.
This process is much akin to how significant variables are identified in statistical
analysis. Typically, this step will involve filtering noise from data, performing sensor-
and/or data fusion and then selecting suitable health condition indicators. The
type of pre-processing that is required is data dependent, as different data sources
carry with them varying levels of noise and precision. For example, in vibration
data one might want to filter out high frequency modes from small vibrations, and
in thermal imaging data one might want to compensate for ambient temperature.
Data- and sensor fusion aims to combine information from different sources in order
to aggregate the data, reduce the dimensionality of the data and/or to allow different
sources to complement each other [6]. If raw data is collected directly from the
system one might for example want to combine data from different subsystems to
obtain a single aggregated signal describing the entire system.
4



1. Introduction and Background

1.1.3 Prognostic and Diagnostic Approaches

Diagnostics and prognostics are the workhorses of a predictive maintenance frame-
work. Diagnostics in this context relates to identifying and classifying faults that
occur in a system. The process of prognostics is in turn meant to estimate the time
remaining until such faults actually occur, i.e. determining the system’s remaining
useful life (RUL) [7]. Depending on what methods are used for these purposes, diag-
nostics and prognostics can be divided into a number of sub-categories; they can be
experience based, knowledge based, model based or data-driven, as outlined in [2]
amongst others.

Experience based approaches are in general the simplest and, as the name implies,
are based on experience in the form of performance and fault history of a piece
of equipment [5]. These experience based models use such historical data to fit a
statistical model of the failure-rate of the equipment. This model can then be used
to estimate the probability of failure within a given time frame. Since these models
use historical equipment data to fit a statistic model it is crucial that the data
is representative of system behaviour if the model is to be reliable for prediction
and diagnostics.

Model based approaches use mathematical models to describe the physical behaviour
of a system. By modelling the expected behaviour of the system, one relies on the
ability to detect faults and malfunctions by observing deviations from the expected
behaviour of the system. If these deviations are large, as determined by statistical
testing, one would expect the system to be behaving abnormally. Observing how
deviations change over time makes it possible to estimate future changes in the
system [8]. One large benefit of using a model based prediction approach is the
ability to update and change the model. This allows incorporating new features of
the system, or known changes in its behaviour and operating conditions, directly into
the model. However, this also means that creating an accurate model of a system
requires knowledge of the failure mechanics and how the specific system works. The
accuracy of these models are therefore strongly dependent on the understanding of
the monitored system [5].

Due to the difficulty in creating good models of many complex physical real life
systems, knowledge based approaches forego this limitation by instead attempting
to mimic human expertise about the system. Expert systems (ES) and fuzzy logic
(FL) units are examples of methods belonging to this kind of prediction approach
[5]. These methods use simple decision rules to determine the state of a system
much like a human expert would. While ES methods such as classification and
regression trees (CART) have historically been a popular method for performing
predictions and diagnostics [2], they do have their drawbacks. An ES cannot make
proper decisions in situations that have not been included in the knowledge base
on which it has been trained, and obtaining such a knowledge base is a problem in
itself. Moreover, increasing the number of decision rules used by the ES eventually
leads to a large increase in computational power required due to the combinatorial
explosion of possible decision paths [2]. Fuzzy logic can be seen as a generalisation
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1. Introduction and Background

of ordinary Boolean logic, which uses several “levels” of certainty in addition to
the conventional “true” and “false”. Thus, in fuzzy logic one can model several
diffuse states of a system, such as “low”, “normal”, and “high”, rather than just two
distinct states. The concept of fuzzy logic is often used in conjunction with some
other method such as an expert system or Kalman filter in order to enable modelling
states of degradation of a system [7].

Data driven methods revolve around processing data collected from a system, using
either statistical or artificial intelligence techniques [2]. Commonly used statistical
techniques include regression models, principal component analysis (PCA), vector
quantisation (VQ), and hazard rate analysis. State space models such as hidden- and
hidden semi-Markov models (HMM and HSMM, respectively) or dynamic Bayesian
Networks are other commonly used statistical techniques. Artificial intelligence
techniques generally involve variants of artificial neural networks (ANN), such as
recurrent neural networks, dynamic wavelet networks or self organising maps [5].
Statistical models aim to capture trends in the supplied data and use these trends to
estimate the current state of the system. Statistical models also seek to determine
a remaining life distribution of the system. In HMMs and HSMMs the hidden
states are used to model some underlying state of degradation in a system, and the
current state is estimated using the observed data. By estimating state transition
times these models are also able to give a measure of the RUL of the system [2].
While being considered powerful methods for modelling system degradation [8], the
major drawback of HMMs is that the underlying mathematical models are based on
assumptions which are rarely applicable in real-life situations. These assumptions
include the observations being independent, as well as the Markov assumption that
the probability of the system being in a state at some time T depends only on the
state at time T−1 [9]. Hazard rate models are methods from survival analysis. These
models use supplied data to fit two probability distributions, a lifetime distribution
and a reliability distribution. In [2], environmental variables are also incorporated
into a hazard rate model which is then used to obtain a probability distribution over
the system’s current state and RUL.

Artificial intelligence techniques are data driven methods which utilise computa-
tional structures based on different neural network architectures. The power behind
these methods is twofold. With the right choice of architecture, ANNs are able to
act as both non-linear classifiers as well as models of the dynamical time evolution
of a system. Thus these models are able to both recognise and classify patterns
in signals from a system, and at the same time predict future system behaviour
[2]. The biggest strength of both statistical and AI techniques are that, with the
correct training schemes, they are able to tune their own parameters. Thus they do
not require any specific knowledge of the system at hand and are able to adapt to
changes in system conditions. However, this ability comes with the drawback that
these methods require large amounts of representative data which they can train
on before being able to provide usable outputs. In addition, neural network models
are prone to overfitting the training data without proper measures being taken, as
described in [10].

6



1. Introduction and Background

The above approaches are not necessarily used on their own. Using combinations
of different methods can lead to improved models, which are able to better capture
the behaviour of a complex system. It is also possible to use one method for optimal
diagnostic ability and another method for optimal predictive ability [11]. Further,
a suitable choice of method is largely dependent on what data is available. With a
lack of sensor data, a statistical approach based on historical records is a suitable
approach. An ANN approach could instead be a better choice if large amounts of
system data can be collected.

1.1.4 Decision Support and Maintenance Action

The last step in a predictive maintenance framework involves turning the results
from the previous steps into a recommendation for what maintenance action to
take. When a fault is predicted, a suitable response based on the time remaining
until it occurs should be given. This enables a professional to perform the required
maintenance on the system at an optimal time. If the problem is estimated to be far
off into the future, an indication of when service will be required could be a good way
of allowing spare parts to be ordered in time, or for other maintenance requirements
to be prepared. Furthermore, having the same faults consistently identified could
be an indicator that some form of system redesign is suitable.

1.2 Objective of This Thesis

The main objective of this thesis was to investigate whether diagnostic data collected
by AB Volvo can be used to predict and diagnose failing components in trucks. This
meant being able to either provide a reliable proof-of-concept that the collected data
can indeed be used for predictive maintenance, or coming to the conclusion that
the provided data cannot be used for this purpose. In the former case, a model
or method with the possibility of being generalised to trucks in service was to be
provided, while in the latter case arguments as to why the data is insufficient and
suggestions for additional data requirements were sought.

To fit within the scope of a master’s thesis, a few limitations have been made during
the project. One such limitation is that the data was limited to only that collected
from trucks operating in Sweden during 2016. This limit was made by the data
supplier AB Volvo who believed that this would still give a large diversity of trucks
with different operational conditions, while limiting the amount of data sources
to a representable subset of the entire truck fleet. Additionally, the number of
parameters used during analysis and modelling of the provided data was limited to
a few manually selected ones. This was done to keep work focused, allowing more
time to be used for analysing the results.

7



1. Introduction and Background

1.3 Previous Works

There is a large amount of literature available regarding implementations of pre-
dictive maintenance using different approaches and systems. This section describes
some articles on the subject that were used as a basis for suitable modelling and
methodology options in this thesis.

HMMs have been used by many researchers for trying to associate system signal
patterns with underlying states of degradation. In [12] an ensemble of HMMs are
used in conjunction with PCA and VQ to both diagnose and predict the future
health state of an experimental setup. In [13] a technique involving competitively
trained HMMs to characterise each state of degradation in drill-bits was used. A
similar methodology was used in the dissertation [14], where various types of HMMs
were also used to diagnose and predict drill-bit conditions. This dissertation also
makes use of support vector machines to classify sequential data. In [15] HSMMs are
used to create a similar framework, using several HSMMs in sequence to diagnose
and predict the state of degradation of hydraulic pumps.

Many studies done on predictive maintenance using ANNs emphasise the ability of
these networks to accurately diagnose and predict future states. In [16], a simple
neural network using signal values sampled at discrete times was used to estimate
RUL, taking the age of the monitored equipment into consideration. In [17] and
[18], neural networks were used to compute and continuously update distributions
of RUL predictions based on vibration data from bearings. An attempt at a real-
time implementation of condition-based monitoring of airport vehicles was done in
[19], where several kinds of network architectures were implemented and compared.
In [20] a special kind of recurrent neural networks, known as Elman-networks, were
used to predict the behaviour of metal cutting tools.

Articles where methods that are very different from those above are also plentiful.
The authors of [21] introduce a criticality (CRIT) index, which they use to determine
the current status of a system and to estimate the remaining life of a system based
on how the system is used. In [22], logistic regression is combined with an auto
regressive moving average (ARMA) model to analyse the behaviour of elevator doors,
both with and without access to historical data. An additional approach is given in
[23], where a model of system reliability is used, together with collected condition
data, to estimate the RUL of a steel mill.

In many of the articles exploring predictive maintenance cited above, very good
predictive and diagnostic results are reported. However, these results are often
obtained on rather small systems, and experiments are able to be executed under
controlled conditions. Exceptions to this are for example [19] and [24], where case
studies are carried out on airport vehicle doors and train bogies respectively. These
studies highlight some of the problems which occur when moving from small and
controlled systems to large, real world systems. These problems include lacking
system data, system modelling issues, and environmental impacts. Finally, [25]

8



1. Introduction and Background

gives a good introduction to various areas where predictive maintenance have been
used, as well as a short review of open research questions in the field.

1.4 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 outlines the theoret-
ical ideas behind the methods used in this thesis. This includes a brief introduction
to subjects in data mining such as itemset mining and association rule learning, data
classification using boosted classification trees and the C5.0 algorithm, and finally
autoregressive models for time series data. In Chapter 3 an overview of the data
and the data exploration that was performed is given. Due to the reliance on data
quality and quantity in later stages of the thesis, the results from the data explo-
ration are also presented. These results motivate the method choices, which are then
described in Chapter 4. Chapter 5 presents the results obtained by the diagnostic
and prognostic attempts that were made, followed by discussion around these in
Chapter 6. Lastly, Chapter 7 summarises the thesis, and also includes some future
outlooks and suggestions for further work based on the results found in this thesis.

9





2
Theoretical Concepts

As the present chapter title implies, this chapter serves to give an overview of some
of the theoretical concepts that underlie the methods used in this project. Some
central concepts in the fields association rule learning, classification trees and au-
toregressive modelling are presented in sections 2.1, 2.2 and 2.3 respectively. While
not a thorough review, this introduction is intended to give an overview of the theory
that is relevant for this thesis work.

2.1 Frequent Itemset Mining and Association
Rule Learning

In the field of data mining one of the key objectives is to find interesting and signif-
icant patterns between variables or objects in a dataset. One type of such patterns,
known as associations, are of the form IF A THEN B. In such relations, the pres-
ence of some object, or objects, A, also implies the presence of some other object
B. To formalise this notion, given a dataset D an item and transaction are defined
as follows.

Definition 2.1: An item I is a binary attribute indicating the presence of an object
in D. I = {I1, I2, ..., IN} denotes the set of N unique items which are present in D.
A transaction T is a binary vector, where the k:th element Tk = 1 if a corresponding
item Ik is included in the transaction. The set T = {T1, T2, ..., TM} is the set of all
M transactions present in D.

The dataset D consists of a number of unique transactions, each containing a subset
of items, and we say that a collection of items X satisfies a transaction T if Tk = 1
for all items Ik in X [26]. Given these definitions we can in turn define an association
rule, according to definition 2.2.

Definition 2.2: An association rule is an association of the form X =⇒ Y , where
X is a subset of items in D and Y is another subset of items which are not present
in X.

11



2. Theoretical Concepts

Borrowing terms from logic, X is said to be the antecedent of the rule, and Y
is said to be the consequent of the rule. The goal in association rule learning is
to find significant rules given a dataset of transactions. To determine which rules
are significant a number of additional measures are used. Given two subsets of
items X, Y , a dataset of transactions T and an association rule X =⇒ Y , the
support, confidence and lift of X and X =⇒ Y are defined as in the following
three definitions.

Definition 2.3: The support, Supp(X), of the itemset X is the proportion of trans-
actions T in T which contain X,

Supp(X) = |T ∈ T ;X ⊆ T |
|T |

,

where |T | denotes the size of the transaction dataset, i.e. the number of binary
vectors in T .

Definition 2.4: The confidence c of the rule X =⇒ Y is the fraction of times
which the rule is found to be true, i.e. the number of times that a transaction that
includes X also includes Y ,

c(X =⇒ Y ) = Supp(X ∪ Y )
Supp(X) .

Definition 2.5: The lift is a measure of how the observed support of the rule
X =⇒ Y compares to that expected if X and Y had been independent of each
other;

lift(X =⇒ Y ) = Supp(X ∪ Y )
Supp(X)× Supp(Y ) .

Based on these definitions, significant rules are those which have a high confidence,
indicating that they often hold true. The itemsets associated with these rules should
also have a support exceeding some chosen support threshold. Itemsets satisfying
this minimum support constraint are said to be frequent itemsets. However, given
that there are n items in a dataset, there are 2n − 1 possible combinations of items
that are candidate itemsets, as illustrated in figure 2.1. Given this exponential
increase in the number of possible itemsets as the number of items in I increases, it
soon becomes infeasible to generate all combinations of items. Instead, one can use
algorithms exploiting the fact that most rules generated in an exhaustive manner
will describe redundant relations. By ignoring such redundant itemsets, frequently
occurring itemsets in the dataset can be found efficiently. One algorithm for this
purpose is the Apriori-algorithm, which is described below.

2.1.1 The Apriori Algorithm

As introduced in [27], the Apriori algorithm uses a breadth-first-search approach
to efficiently identify frequent itemsets in a dataset, given threshold levels for the
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IA IB IC

{IA, IB} {IA, IC} {IB, IC}

{IA, IB, IC}

Figure 2.1: An illustration of the itemset tree that can be generated from an
itemset of 3 items, I = {IA, IB, IC}. From this set there are 23 − 1 = 7 possible
itemsets which are part of the tree.

support and confidence levels of the resulting association rules. The key to the
efficiency of the algorithm lies in its exploitation of the Apriori principle, which
reduces the number of itemsets that needs to be generated. As presented in [28],
the Apriori principle is given by the following proposition.

Proposition 2.1. (The Apriori Principle) If an itemset is frequent, then all of
its subsets are also frequent. Likewise, if an itemset is infrequent, then all of its
supersets are also infrequent.

For a proof of proposition 2.1, please refer to [29]. The Apriori algorithm utilises
the implication of proposition 2.1 to prune the tree of item combinations whenever
an itemset is found to be infrequent. It does this by iteratively creating itemsets of
increasing size and then removing those found infrequent with regards to the mini-
mum support threshold. This efficiently finds all significant itemsets in the dataset.
In practice, a maximum itemset size can be specified to generate only itemsets
below some maximum size, further limiting the number of itemsets evaluated. A
pseudo-code outline of the Apriori algorithm, as implemented by [30], is given in
algorithm 1.

Although efficient in reducing the search space of candidate itemsets, the Apriori
algorithm does suffer from the fact that several passes need to be made over the
data, one for each level of itemset size. For a large dataset, counting the frequencies
of each itemset can also take a considerable amount of time. There exist algorithms
based on Apriori which bypass these limitations. For example, the Eclat-algorithm
uses depth-first-search and equivalence classes, and the FP-Growth algorithm uses
a recursive divide and conquer methodology, These algorithms will not be covered
in this thesis, and the reader is referred to [31, 32, 33] instead.

13



2. Theoretical Concepts

Algorithm 1: The Apriori Algorithm
Data: T , a dataset of transactions t; smin, minimum support; lmax,

maximum itemset size.
Result: A list L of all frequent itemsets contained in T , subject to the

minimum support constraint smin and size constraint lmax .
L1 = All frequent itemsets of length 1;
while Lk ! = ∅ and k ≤ lmax do

Ck+1 = Candidate itemsets of length k + 1;
foreach transaction t in T ∩ Ck+1 do

Increment the corresponding elements in Ck+1;
end
Lk+1 = Itemsets in Ck+1 with support ≥ smin;
k + +;

end
return All frequent itemsets Li, i = 1, 2, ...lmax

2.1.2 Association Rule Generation

Once the frequent itemsets in a transaction database have been found, the associa-
tion rules relating these to each other need to be determined. To do this, one uses
the support and confidence measure of the frequent itemsets found. Significant rules
are identified as those which exceed a minimum confidence threshold cmin. A single
pass over the entire set of frequent itemsets would find all rules fulfilling this con-
straint. However, one can use a method analogous to the pruning done when finding
frequent itemsets in order to reduce the amount of rules considered. While pruning
of infrequent itemsets is based on the fact that supersets of an infrequent itemset
are also infrequent, the confidence measure of an association rule is not monotonous
in this way. In general, this means that a the confidence c({IA, IB, IC} =⇒ ID) of
a rule can be both higher or lower than c({IA, IB, } =⇒ ID). However, as shown
in [29], for rules generated from the same dataset it holds that

c({IA, IB, IC} =⇒ ID) ≥ c({IA, IB} =⇒ {IC , ID}) ≥ c(IA =⇒ {IB, IC , ID}).
(2.1)

Rooting the tree of possible association rules by the rule with the maximum number
of items on the left hand side of the implication thus has a practical result. When
doing this, all consequents of an association rule not satisfying the minimum con-
fidence constraint can be pruned directly. This significantly reduces the number of
rules needed to be investigated, as is illustrated in figure 2.2. The tree of itemsets
can be traversed, storing high-confidence transitions along the way. By removing
all branches starting in a node with confidence below the threshold cmin, all sig-
nificant rules at this confidence level will be found[34]. Introducing pruning of low
confidence branches, along with other optimisations of the algorithm implementa-
tion which are discussed in [27], can give speedups of orders of magnitude in finding
significant association rules in the data. This enables much larger datasets to be
efficiently processed.
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{IA, IB, IC} =⇒ {}

{IA, IC} =⇒ IB{IA, IB} =⇒ IC

c < cMin

{IB, IC} =⇒ IA

IA =⇒ {IB, IC} IB =⇒ {IA, IC} IC =⇒ {IA, IB}

Figure 2.2: An illustration of the concept of association rule generation from an
itemset of three items IA, IB, IC . The shaded rule {IA, IB} =⇒ IC does not satisfy
the confidence constraint, and hence it can be pruned from the tree, along with all
its subrules.

2.2 Classification and Regression Tree Learning

Classification and regression trees, or CART, is a group of machine learning models
with the common attribute that they are based on classifying data through sophis-
ticated series of if-else statements. The basic structure of a CART model is that
of a binary decision tree, which is anchored in a root node. Successive nodes are
then added to the tree by performing binary splits based on the values of different
input variables. This process results in a number of branches in the model. Given
a target variable, a CART model attempts to either classify it or predict its value
based on the other input variables. This is done by conditionally moving the input
data along the branches of the model until a terminal node, holding the predicted
value, is reached.

Consider a set of categorical training data with p input variables (x1, x2, . . . , xp) and
n observations, where each observation i belongs to one of k classes. The process
of fitting a classification tree model consists of finding which of the input variables
(x1, x2, . . . , xp) to use for dividing the data into subsets, and also the threshold values
where the splits should take place. The end goal is to maximise the homogenity,
also called purity, of each class in the terminal nodes of the tree, as presented in
[35]. In a perfect fit each terminal node of the classification tree would contain only
observations from one of the k classes.

The number of splits made before a terminal node is reached is known as the depth
of the tree. By increasing the depth of a decision tree, more precise classification
criteria are defined. At the same time, however, increasing the depth leads to an
increased risk of overfitting the model to the training data. Perfect purity could
be obtained trivially by fitting a deep tree which simply places each observation in
its own terminal node. However, a model fitted in such a way would be hopelessly
dependent on the training data used in the fit, performing poorly when presented
to previously unseen observations.
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In order to reduce the risk of overfitting a classification tree model, various methods
can be employed to increase prediction accuracy on new data. This process is
known as pruning a tree, and works by either limiting the depth of the tree, or by
removing branches from the model with little impact on predictive performance [36].
The former approach involves using a limit on model depth, preventing any more
complex model from ever being created. In the latter approach the model is allowed
to grow to maximum depth, after which branches are removed based on an error
rate estimation criterion. An excellent review of the exact workings on these types
of pruning can be found in [36].

2.2.1 C5.0 Decision Tree Generation

A popular algorithm for generating classification trees is the C5.0 algorithm, as
introduced in [37], originally developed by Ross Quinlan. When generating a model,
C5.0 uses an information gain criterion to select the variable which will split samples
into maximum purity subsets. The information gain is based on the concept of
entropy from information theory. Given a set S of N observations, each belonging
to one of c classes with probability pi, i = 1, 2, . . . , c. The entropy, or information
content, of the class distribution is given by

H(S) = −
c∑
i=0

pi log2 pi. (2.2)

When the base two logarithm is used in equation (2.2), the entropy H is measured
in terms of bits. As shown in [38], entropy will be at its maximum (H = log2(c)) in
cases where each class occurs with equal probability, i.e. p1 = p2 = · · · = pc = 1/c.
On the contrary, the entropy minimal and equal to zero when one class occurs
with certainty.

Consider now the situation where the set S has been split into k subsets Si, i =
1, 2, . . . , k by some criterion. The information content in the data before the split,
HBefore, is given by the entropy of the class distribution as described by equation
(2.2). The information content in the collection of subsets after the split is in turn
given by

HAfter =
k∑
i=1

ni
N
H (Si) , (2.3)

where ni is the number of observations placed in subset Si after the split. The
information gain (IG) from this split of the data is the difference in information
content before and after the split;

IGSplit = HBefore −HAfter. (2.4)

A split resulting in a high information gain implies that either one or both of subsets
obtained after the split contain a larger proportion of classes from one class than in
the original data partition [39]. Thus, by seeking to maximise the information gain
at each data division a splitting criterion is obtained.
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One drawback of using the information gain criterion of equation (2.4) for partition-
ing a set of observations is that the criterion is biased towards splitting on variables
taking many different values, as stated by [39]. To circumvent this bias the C5.0
algorithm does not use the information gain of equation (2.4) directly. Instead it
uses a normalised information gain measure known as the gain ratio. Taking the
information content after a split of the data into subsets to be

HSplit = −
k∑
i=1

ni
N

log2
ni
N
, (2.5)

the gain ratio is then defined in [40] as

GRSplit = IGSplit

HSplit
. (2.6)

In addition to just maximising the gain ratio criterion of equation (2.6), the C5.0
algorithm further constrains which splits to make by the restriction that the in-
formation gain must be larger than the average gain over all splits considered, as
described in [39].

When building a classification tree the C5.0 initially builds a full depth tree using
the information gain criterion to decide whether to split the samples at each node or
to leave the node as a terminal node [37]. Once the full, deep tree model has been
fit it is pruned by either removing branches of the tree or by replacing an earlier
node with a later branch. The decision of whether to prune a branch of the model is
based on an estimation of the prediction error on new data both with and without
the pruning. In [35], a confidence bound is used to determine if the pruning of a
branch will significantly improve model accuracy. The branch is pruned from the
model if this is the case.

2.2.2 Boosted Classification Trees

When training a single classifier using some training algorithm, such as the C5.0
algorithm described in section 2.2.1, it is often difficult to properly capture the
behaviour of the underlying variable distributions when these follow a complex dis-
tribution. In such cases, using a large and complex classifier model can give good
performance on training data, at the cost of overfitting. On the other hand, a sim-
ple model with good generalisation will fail to capture the behaviour in the data
presented to the model. Either approach has shortcomings in terms of model accu-
racy and performance. An alternative approach to model fitting in this situation is
the usage of so called ensemble learning. As presented in [41], the principle behind
ensemble learning is to generate a number of simple classifiers, rather than a single
complex one. Each classifier is then used to classify the data individually, after
which the resulting classifications are combined to form a final prediction.

Several classes of ensemble learning are possible. In this thesis the focus is on so
called boosting, which is a method implemented by, amongst others, the C5.0 algo-
rithm. Due to the complexity of the theory behind boosting only a brief overview
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focusing on the implementation of boosting in C5.0 will be given here. For a thor-
ough review of boosting as a whole, refer to [42], which gives a comprehensive
overview of the field.

In C5.0, boosting is implemented using a method similar to the AdaBoost, or Adap-
tive Boosting algorithm, which is presented in [42, 43]. This algorithm works by iter-
atively generating simple classifiers, each with a classification ability only marginally
better than random guessing. After fitting an initial classifier to the data, successive
classifiers are fitted by sampling the training data in such a way that they are ex-
posed to more data which the previous models have failed to classify. In this manner,
each iteration of classifier learns to classify data on which the previous iterations
have failed. This ensures both that the newer classifiers are trained on different
data than previous ones, and also that more attention is placed on data which is
difficult to classify. Once a predetermined number of boosting iterations have been
performed, or when boosting no longer improves model performance, the trained
simple classifiers are combined to form the final predictive model. When presented
to a new sample, each simple classifier computes a confidence value for each class.
The class confidence is then averaged over all classifiers, and the predicted class is
the one with the highest confidence value, as described in [35].

While boosting often is beneficial for a predictive model, there are a few caveats
when using it for model fitting. Firstly, if the simple classifiers are not trained on
sufficiently different samples, the boosted model will not perform any better than
a single classifier [41]. Secondly, although each individual classifier fitted during
boosting is simple, the fact that many classifiers are trained tends to increase the
total computational power required to train the classifier. Performing excessive
iterations of boosting may also lead to overfitting, much like the unboosted model.
This phenomenon is further discussed in [42]. Finally, using a boosted model to
train a classifier on noisy data can be very inefficient, and may sometimes lead to
a decrease in performance compared to an unboosted model on the same data, as
argued in [43].

2.3 Autoregressive Time Series Modelling

Data generated by a system is commonly received in the form of a time series. Given
such a series of data, it is of interest in many areas to analyse the statistical proper-
ties of the system. However, many statistical methods are based on the assumption
of observations in the data set being statistically independent of each other. The
consecutive sampling of time series data, however, means that successive observa-
tions often are highly correlated. This invalidates the underlying assumptions of
many conventional statistical methods, as stated in [44]. This in turn creates a need
for models which can handle correlated data. Models for this purpose fall into the
field of time series analysis. Such analyses include using historical data to forecast
future values in the time series, or modelling the data to determine underlying trends
in observations.
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One way of quantifying the dependence between successive observations in a time
series is to look at the autocovariance of the data. The autocovariance gives a
measure of the covariance of the data with itself, considering observations occurring
at different times. It is defined through definition 2.6 below.

Definition 2.6: The autocovariance between data sampled at times t1 and t2 of a
time series is given by

r(t1, t2) = Cov(yt1 , yt2) = E [(yt1 − µt1)(yt2 − µt2)] = E [yt1yt2 ]− µt1µt2 ,

where E[·] is the expected value operator and µt1 , µt2 are the expected values µt1 =
E[yt1 ] and µt2 = E[yt2 ] at times t1 and t2 respectively.

From definition 2.6 it follows that r(t, t) = E [(yt − µt)2] = Var(yt). Moreover, for
uncorrelated data, such as white noise, it holds that r (yt1 , yt2) = 0 ∀ t1 6= t2.

When discussing time series data, one should distinguish between data generated
by a stationary process and data generated by a non-stationary process. Station-
ary processes can be further divided into strict sense stationary and wide sense
stationary processes.

Definition 2.7: A strict sense stationary process of a random variable Xt = (x(t1),
x(t2), · · · , x(tN)) has a joint distribution function FX(Xt) which is invariant over
any arbitrary timeshift τ , i.e.FX(Xt) = FX(Xt+τ )∀ t, τ .

For a process that is wide sense stationary, time invariant properties are required
only for the mean and variance of the process. More precisely, wide sense stationarity
of a random process Xt is determined through the following definition, found in [45].

Definition 2.8: A wide sense stationary stochastic process Xt = {xt; t ∈ N} fulfils
that: 1) the variance of the process is finite, E [X2

t ] < ∞ and constant; 2) the
mean of the process is constant over time, µt = µt+τ = µ and 3) the covariance
between two values in the process depend only on the time τ between them. This
last condition implies that E [xt1xt2 ] = E [xt1+τxt2+τ ].

In general, wide sense stationarity is not a sufficient condition for strict sense sta-
tionarity. However, for some common processes, such as Gaussian processes, the
resulting distributions are uniquely determined by their mean and covariance. For
such processes wide sense stationarity does indeed imply strictly stationary [44].
For the remainder of this thesis, stationarity of a process will refer to wide sense
stationarity, unless otherwise stated.

From definition 2.8 it follows that if a time series is stationary the autocovariance
of two observations separated by a timelag k, r(t, t−k) is independent of the initial
time t. Moreover, this definition also means that the expected value is constant for
a stationary process, so that µt = µs = µ. These two properties imply that the
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autocovariance can be redefined as a function dependent on the timelag k as

rk = Cov (yt, yt−k) = E [ytyt−k]− µ2. (2.7)

The autocovariance function of a time series has some useful properties. Firstly, r0 =
Var(yt) ≥ 0; with equality only for constant, noise free data. Secondly, |rk| < r0;
i.e. higher order covariances can never be larger than the variance in data. Finally,
the autocovariance is symmetric, so that r−k = rk [44]. This last property has
the practical result that either positive or negative timelags can be considered for
analysis. Related to the autocovariance is the autocorrelation ρ(k) of a stationary
process, given by

ρk = Corr(yt, k) = Cov(yt, yt−k)
Var(yt)

= rk
r0
. (2.8)

The autocorrelation is useful for evaluating the relative importance of lagged values
due to the fact that |ρk| ≤ 1, with ρ0 = 1. Thus, small values of the autocorre-
lation function for certain timelags k implies little influence on current values. An
illustration of this can be seen in figure 2.3. This figure shows the autocorrelation
at different timelags k of two data series, generated with either a positive- (2.3(a))
or a negative correlation (2.3(b)) with the previous value in the data series. Note
how the autocorrelation is non-zero even over long timelags, despite no explicit de-
pendence across lags greater than one. However, the influence decays rapidly over
time. Also note how the negative dependence in figure 2.3b induces changes in the
sign of the autocorrelation between successive timelags.

(a) Autocorrelation for timelags up to
k = 10 for an AR(1) process generated
by yt = 0.7yt−1 + εt.

(b) Autocorrelation for timelags up to
k = 10 for an AR(1) generated by yt =
−0.7yt−1 + εt.

Figure 2.3: A comparison of estimated autocorrelation at increasing time lags
for positive (a) and negative (b) coefficient in an AR(1) process. In each case the
autocorrelation is estimated from a sample of 2000 points generated by the process,
and in both cases the noise term is given by εt ∼ N(0, σ2), σ2 = 0.2.
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A specific type of models for stationary time series data are autoregressive, or AR-,
models. These models seek to capture data behaviour where new values are linearly
dependent on previous values. As such, an autoregressive model is essentially a re-
gression of new values in the time series onto previous ones. The number of previous
values included in the model is called the order of the model, and is denoted by p.
Naturally, a higher degree p results in a more complex model, as older values are
given influence in the model. Formally, an autoregressive model is defined as follows.

Definition 2.9: Consider a stationary time series of data {y1, y2, ..., yT} with sam-
ples at times t = (1, 2, ..., T ). An autoregressive process of order p, denoted by
AR(p), is then defined through

yt =
p∑

k=1
φkyt−k + εt,

where φk are the model parameters and εt is a random noise term, representing the
irreducible error in the data. This random noise is assumed to be Gaussian white
noise, εt ∼ N(0, σ2).

An autoregressive process can also be defined in terms of a shift operator B, as

Byt = yt−1, B
2yt = yt−2, · · · , Bkyt = yt−k. (2.9)

Using the shift operator an AR(p)-process is defined [44] through

ψ(B)yt ≡ (1− φ1B − φ2B
2 − · · · − φpBp)yt = εt. (2.10)

The formulation in terms of the shift operator as in equation(2.10) gives a rather
unintuitive interpretation of an AR process. By rearranging equation (2.10) as

yt = 1
ψ(B)εt = ψ−1(B)εt (2.11)

an autoregressive process can be seen as the result of a linear filter having the transfer
function Ψ(B) = ψ−1(B) being applied to a signal εt of white noise, as described in
[46]. This interpretation is helpful for understanding the notion of process stability,
which is the topic of section 2.3.2.

2.3.1 Parameter Estimation Using the Normal Equations

Consider a stationary autoregressive process of order p, i.e. where

yt = φ1yt−1 + φ2yt−2 + ... + φpyt−p + εt. (2.12)

Assuming that the data yt, t = 1, 2, ..., T has been observed, the model coefficients
φi, i = 1, 2, ..., p are to be determined. One way of estimating these parameters is
by using the normal-, or Yule-Walker equations. These equations are derived as

21



2. Theoretical Concepts

follows. Firstly, equation (2.12) is multiplied by yt−k on both sides, resulting in the
new equation

yt−kyt = φ1yt−kyt−1 + φ2yt−kyt−2 + ... + φpyt−kyt−p + yt−kεt. (2.13)

Next, taking the expected value of each side of (2.13) results in

E [yt−kyt] = E [φ1yt−kyt−1 + φ2yt−kyt−2 + ... + φpyt−kyt−p + yt−kεt]
E [yt−kyt] = φ1E[yt−kyt−1] + φ2E[yt−kyt−2] + ... + φpE[yt−kyt−p], (2.14)

where the second equality results from the assumption that the noise εt and yt−k are
uncorrelated, meaning that E[yt−kεt] = 0. Observing that E [yt−kyt] is the covariance
between yt and yt−k, equation (2.14) can be rewritten as

rk = φ1rk−1 + φ2rk−2 + · · · + φprk−p. (2.15)

Note that equation (2.14) is similar to the original equation (2.12), but given in terms
of the autocovariance rk−i rather than the observed values yt−i. Now, substituting
k = 1, 2, ..., p and utilising that ro = 1 in (2.15) results [46] in the equation system

r1 = φ1 + φ2r1 + · · · + φprp−1

r2 = φ1r1 + φ2 + · · · + φprp−2
... ... ... · · · ...
rp = φ1rp−1 + φ2rp−2 + · · · + φp (2.16)

which constitutes the aforementioned Yule-Walker equations. These equations can
in turn be rewritten in vector from as rp = Rpφ, where

rp =


r1
r2
...
rp

 , Rp =


1 r1 r2 · · · rp−1
r1 1 r1 · · · rp−2
... ... ... . . . ...

rp−1 rp−2 rp−3 · · · 1

 , φ =


φ1
φ2
...
φp

 . (2.17)

Using this vector notation the coefficients of an AR(p)-model can be obtained through

φ = [φ1, φ2, . . . , φp]T = R−1
p rp. (2.18)

The autocovariance matrix Rp of equation (2.17) is in the form of a symmetric
Toeplitz matrix, where all diagonals take constant values and Rp = RT

p . This is simi-
lar [47] with the covariance matrix of a general stochastic vector x = [x0, x1, · · · , xN ],
which is of the form

Cov (x) = E
[
xTx

]
= E


x0x0 x0x1 · · · x0xN
x1x0 x1x1 · · · x1xN
... ... . . . ...

xNx0 xNx1 · · · xNxN

 =


r0 r1 · · · rN
r1 r0 · · · rN−1
... ... . . . ...
rN rN−1 · · · r0

 .

In general, only a finite series of samples from a stochastic process are available for
analysis. As such, the exact value of the covariances in equations (2.17) and (2.18)
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are unavailable and have to be estimated from data. According to [48], for a series
of data with N samples, {y1, y2, · · · , yN}, estimates of the mean and autocovariance
of the data are given

µ̂ = 1
N

N∑
t=1

yt

r̂k = 1
N

N∑
t=k

(yt − µ̂) (yt−k − µ̂) .
(2.19)

Typically, as stated in [46], given a sample size N it is reasonable to estimate the
covariance for timelags up to k ≈ N/4.

2.3.2 Stability of Autoregressive Models

At the start of section 2.3 the notion of a stationary stochastic process was intro-
duced. When fitting an AR(p) model to data, many useful properties arise if the
values generated by the process are stationary for all times. Considering that an
AR model can be seen as a linear system, as in equation (2.11), such stationarity
can be expressed as a bounded input, bounded output stability criterion, as shown
in [49]. If such a condition is fulfilled, a finite input to the system results in a
corresponding finite output. For an AR(p) process the current value is recursively
dependent on previous values. Taking an AR(1) process as an example, the output
yt for arbitrarily long timelags k is given by

yt =
∞∑
k=0

φk1yt−k, (2.20)

implying that |φ1| < 1 if yt is to be bounded [48]. However, for a general AR(p)
processes of arbitrary order p, this recursion quickly becomes very complex. Stability
of such a process can instead be determined by looking at it through the linear
system form of equation (2.11). Such a system has an all pole system function H(z)
on the form

H(z) = 1

1 +
p∑
i=0

φiz−i
, (2.21)

where z is a complex valued variable. Assuming for simplicity that the corresponding
poles of (2.21) are distinct, this function can in turn be factored as

H(z) = zM

(z − z1)(z − z2) · · · (z − zp)
, (2.22)

where zi is the i:th pole of the system. Equation (2.22) can in turn be expressed in
terms of a partial fraction decomposition,

H(z) =
p∑
i=1

ai
1

z − zi
, (2.23)
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where ai are constant coefficients. If the system is to be stable, it is clearly required
that all (complex) poles zi of (2.23) have a magnitude less than one, i.e. |zi| < 1 [46].
In addition to just determining the stability of the model, the placement of the
poles in the complex plane also gives an insight into the behaviour of the system, as
described in [50].
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Data Exploration

This chapter presents the initial data exploration of the provided data. This process
was performed to familiarise with the data, and to determine which methods would
be good choices for handling the data during later parts of the project.

3.1 Data Collection

All the data used in this thesis was supplied by AB Volvo. It consisted of three
separate datasets, containing data collected from trucks operating in Sweden dur-
ing 2016. Most of the provided data was contained in a file consisting of logs of
status data uploaded from trucks. Data entries were uploaded either via a telematic
uplink or through Volvo’s TechTool2 system. Data uploaded via TechTool2 is col-
lected when trucks are taken in for service, while telematics data can be uploaded
remotely while a truck is in service. Each entry in this data consisted of a dated
reading of some parameter in a truck. There is a large variety of parameters being
logged for different purposes. Some of these are used by Volvo for monitoring the
condition of their trucks, whereas others are used for performance tracking, or are
legally regulated by ISO standards to be logged. With each upload from a truck,
a bunch of entries of different variables are made in the database. These uploads
forms a time series of data entries from each truck, which shows how parameter
values change, allowing for truck condition can be monitored over time.

The two remaining datasets contained details of service and replacements carried
out on all trucks, and specifications of all trucks included in the data. Entries in
this data consisted of different types of service and repairs, along with information
related to the service. Each type of repair made on a truck was given a separate
entry, resulting in groups of data entries from the same service occasion. Each
entry was also dated and had several identifiers, allowing separate service visits of
a specific truck to be identified. Since this service data contained information on
repairs and replacements made on trucks, it was intended to be used for relating
truck condition, as monitored by the parameter logs in the log data, with repairs
made to trucks.
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For the remainder of this thesis these three datasets will be referred to as the “log
data”, “service data” and the “truck data” respectively. The truck data data was
used only as a look-up table to identify the different trucks and not used for any
direct analysis, while the log and service files were used as data sources for analysis.
Therefore only the latter two datasets will be further presented in this chapter.

3.2 Data Exploration

Before any closer analysis of the data could be made it was necessary to familiarise
with it in order to determine its structure and contents. Due to the data dependency
of this thesis project, a good understanding of the available data was required in
order to know which methods would be best suited for the end purpose of predictive
analysis. Owing to the vastly different size and contents of the service- and log data
these were explored separately.

3.2.1 Truck Service Data

Due to the relatively small filesize, only 200MB, of the service data no special struc-
ture for data storage was required and the data was handled directly in memory.
The raw data consisted of approximately 1.3 million observations in 20 variables. A
complete list of the variables present in the raw data can be found in table 3.1.

Variable selection was carried out by removing data columns associated with vari-
ables with little relevance for the purpose of predictive maintenance. Variables
deemed to be irrelevant were those not directly related to the condition of the ve-
hicles, or those which carried little information relating to what service had been
carried out. Based on these conditions a total of 6 out of the original 20 variables
were kept. Retained variables were the repair dates, to predict when repairs were
carried out, and the part names to know which parts were repaired. Vehicle age
and mileage were kept to have a measure of how much each vehicle was used. Both
vehicle- and repair identification numbers were kept for organising the data. Com-
mon amongst the removed variables were that they either contained mostly missing
or otherwise nonsense values (e.g. “serial number”), that they had no clear usage
(e.g. “payment code”), that they contained duplicated information (e.g. “techla”),
or some combination of these (e.g. “description”).

Despite removing variable columns, a problem remained that many of the retained
variables contained missing values, especially the “part name” field. Since this field
was of high interest in the forthcoming analysis it was deemed best to remove entries
containing missing values. However, doing so removed around 700,000 observations
from the data, leaving just over 600,000 observations in the data.
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Table 3.1: List of variables present in the provided service data.

Variable name Data type Notes
Vehicle ID Integer Vehicle identifier
Repair ID Double Identifier for repair occasion
Repair date Timestamp Time and date of repair
Part name String Name of part subject to repair
Part fgrp code Integer Related to part name
Techla String Related to part name
Quantity parts Double Quantity of parts used
Language code String Many values are missing or are unknown
Description String Swedish translation of variable ’Part name’
Mileage Integer Mileage at time of service, unknown unit
Vehicle age Integer Age at time of service, unknown unit
Repair order number Integer Unknown usage
Inv credit flag Integer Unknown usage
Visit reason code String Unusable due to missing values
Payment code Integer Unknown usage
Sequence number Integer Unknown usage
Serial number Integer Unknown usage, mostly NULL or NA
Job number Integer Unknown usage
Part prefix String Short string, unknown usage

3.2.2 Truck Log Data

The raw truck log data was provided in the form of a .csv-file with a size of just
under 28 GB. The data consisted of roughly 185 million log entries, with each entry
containing 16 recorded variables. The structure of the raw log data was inspected,
allowing the rough structure of the data to be determined. This also enabled some
basic inference of what information each variable contained. A summary of all
variables in the data can be found in table 3.2.

The size of the raw log data file being too large to keep in computer memory at
once made working with data slow in its original .csv format. Therefore, a more
efficient way of accessing the data was required before closer analysis of the data
could be made. In addition to its size, the way in which the data was presented in
the log data file created a need to selectively access the data. The values reported
in each data entry depended not only on the parameter code, but also on the three
index levels. Only some of the combinations of index levels for each parameter code
actually represented a logged value, whereas other combinations were only reported
as constant bits. Since the latter type of data were of no interest in the intended
predictive analysis a way was needed to extract only the data entries containing
relevant numerical values.
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Table 3.2: List of variables in the truck log data.

Variable name Data type Notes
Vehicle ID Integer Vehicle identifier
ECU parameter ID Integer Parameter code ID number
Parameter Code String Identifier for logged parameters
Reading ID Integer Identifier for data reading
Readout datetime Timestamp Time and date of readout
Readout date Timestamp Date of readout
Index level 0 Integer Index bit
Index level 1 Integer Index bit
Index level 2 Integer Index bit
Value Double Value of parameter, given indices
Value string String Mostly missing (NA) values
Data type String Type of data, either ’Scalar’ or ’Bit’
Bucket ID Integer Unknown usage
Sender String Data source
Type of dump String Automatic or manual readout
Send datetime Timestamp Time and date of data transfer

The choice of framework for data handling fell on using an infrastructure based on
the Elastic Stack1 open source software package. This framework consists of three
modules used to search and visualise the data; Logstash which enables continuous
parsing of an input data source; Elasticsearch which is an engine for searching and
analysing data; and Kibana, which is used for visualisation and analytics of data
processed by Elasticsearch. Using this framework enabled the data to be parsed
from the original .csv-file and indexed into a searchable database. A more detailed
description of the entire data indexing process is given below.

1. The raw .csv-file was parsed using Logstash into a local database. This parsing
enabled a selection of specific rows columns of the data to be excluded in the
output database, based on the inspection in the previous step. In this way
only nine variables were included in the final database. Referring to table 3.2,
the vehicle and reading identification numbers, readout date, type of sender,
parameter code, the three index variables and the reading value were kept in
the database.

2. The new database was processed using Elasticsearch, creating an index which
allowed database queries to be made to access selected parts of the data.

3. The now indexed data was imported either into Python for numerical analy-
sis, or into Kibana for visualisation purposes. In the former case, using the
elasticsearch library in Python made it possible to import selected parts of the
data for various types of analysis.

1https://www.elastic.co/
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With an indexed database in place selected contents of the log data could be readily
extracted and analysed. At this point the intent was to identify which parameters
that were potentially useful for predictive analysis. The usefulness of a parameter
was based on whether it was a potential indicator of the condition of some subsystem
on a truck, or that a parameter corresponded to an actual fault of some sort. To
do this, each parameter code and index combination had to be manually checked
against a list containing parameter descriptions provided by Volvo. A total of 83
different parameters were logged in the data, each containing a varying number of
sublevels, indexed by the three index variables. During the parameter identification
process it was discovered that a vast majority of the provided data, almost 180
million out of the 185 million observations, were logs of a number of parameters
corresponding to measurements of a “ranking index”. After consultation with Volvo
regarding what kind of measure this was it was dismissed as a usable predictor for the
purposes of predictive maintenance. This resulted in 180 million observations being
excluded from future data analysis, leaving approximately 5.5 million observations
in the data.

Having had to remove a large portion of the provided data, a number of the re-
maining parameters were still identified as potentially good indicators of faults.
These parameters included those related to coolant temperature, engine overload
and clutch wear. Other parameters were found to be candidates as truck condition
monitors, including engine run time, oil pressure and oil degradation. However, it
was discovered that almost all the parameters identified as fault indicators only had
observations for one truck. Having only one effective observation of the parameters
related to faults, predicting when any of these had been triggered was not feasible
using the data at hand.

Due to the lack of data which could be attributed to faults in the trucks, further
usage of the log data was reevaluated. Having no diagnostic parameters available in
the data, the objective of the predictive analysis was changed to be an investigation
whether parameters related to truck usage could be accurately modelled and fore-
casted. The intention with this kind of modelling was to see if abnormal behaviour
in these parameters could be detected and predicted.

With the new modelling objective in mind, parameters related to measurements
made over time were considered to be of interest. However, a problem of data
continuity emerged, as is shown in figure 3.1. When the total number of readouts
each week is shown over the year there are two distinct periods where there are no
observations recorded in the data. Especially the second of these, spanning from
late August to late November, leaves almost a quarter of the year completely void of
any data points. Related to this issue was also the length of the series of data points
for each truck. Even the parameters having the largest number of observations in
the data only had a handful of observations per truck. This gives rise to issues with
the estimation of data statistics, as very few data points are available for estimating
statistics and model parameters.
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Figure 3.1: Histogram of weekly readouts of all parameters in the data after having
removed observations which were logs of any of the “ranking index” parameters.

Another problem that was discovered was that of duplicate entries in the data,
meaning that the number of unique observations was less than the total number of
observations, and that not all parameters had been logged for every vehicle. The
number of usable observations of each parameter was thus much less than in the raw
data, and only a few of the parameters present in the data contained a reasonable
number of observations per vehicle. Further discussion on this topic is given in
section 6.1
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Given the results of the data exploration performed in Chapter 3, a few different
approaches were considered for analysing the data. As mentioned ealier, analysis
was carried out separately on the service and the log data. The intention was to
see if diagnostics of repairs and services could be made from the service data, and
if prognostics of truck status could be made from the log data.

Diagnostics was carried out using two different approaches. First, data mining tech-
niques were used to investigate whether there was any structure in the data which
could potentially be exploited. This approach is described in section 4.1. Secondly,
classification trees were implemented in an attempt to diagnose the presence of re-
pairs based on other repairs carried out at the same time, and how this was done
is presented in section 4.2. The approach taken when performing prognostics is
introduced in section 4.3, which describes how autoregressive models were used to
capture the behaviour of the time series log data from the trucks.

4.1 Mining the Service Data

The data mining techniques first used to analyse service data were frequent itemset
mining and association rule learning. As described in sections 2.1 and 2.1.2 these
are unsupervised methods, seeking to discover frequently occurring combinations of
items in a database. From this, it can be inferred if a combination of some items
can be associated with the presence of another item. There were two main goals
when applying these methods to the data. The first was to see if there was any
underlying structure in the service data which could be an indication of relations
between different types of repairs. The second goal was to investigate if there were
clusters of repairs which were typically carried out at the same time. The purpose
of doing this was to see if there are tendencies in the data that different types of
service either stand out from each other, or if they are somehow related. Finding
such tendencies would be an indication that the structure of the data could perhaps
be exploited for detecting the presence of different service types.
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4.1.1 Frequent Itemset Mining

The service data was first analysed using techniques for association rule learning.
The purpose was to look for patterns such as if parts A and B have been repaired,
then part C has likely been too. This was done using tools available in the pro-
gramming language R. The rule mining in itself was done using the R package
arules1[51], which contains an implementation of the Apriori algorithm originally
made by Christian Borgelt [27]. However, the raw data was not suitable for directly
applying the data mining algorithms, and had to be cleaned and prepared before
further processing. This pre-processing was done using R and is outlined next.

As mentioned in section 3.2.1, one issue encountered in the service data was that
there were a large number of missing entries. The raw data also contained several
columns with, for this purpose, irrelevant information, as shown in table 3.1. Since
the missing values occurred in the data column containing the service type, such en-
tries were removed from the data. Likewise, all columns except for those containing
the vehicle identification number, repair identification number and the service types
were removed. This reduced the data from 20 variables to just three, making data
handling significantly easier. The choice to keep these three variables were that the
imminent association mining was intended to find associations between repairs car-
ried out at the same time. Thus, it was considered unnecessary to retain variables
not directly related to either the part replaced or the repair occasion. Next, observ-
ing that several replacement parts were present only a handful of time in the data,
the data was filtered once more. This filtering was done by removing observations
of service types occurring less than nMin =10 times in the entire dataset. This limit
was arbitrarily chosen to remove extremely rare repairs, so that these would not be
cluttering the analysis. This filtering also removed some data entries with corrupted
data. At the same time, the data was also filtered for duplicated entries, which were
taken to be entries where the same part was reported as replaced multiple times at
the same service occasion. Finally, the data was aggregated into a number of generic
categories in order to reduce the number of different parts, and to consolidate similar
parts with only a few observations each. Groups of items considered “small parts”,
such as nuts, bolts, rivets etc. were then removed from the data, along with items
considered “peripherals”, such as decals, handsets, seats etc.

The data remaining after cleaning was prepared for itemset mining by grouping
the data based on service occasion. This transformed the data into a transaction
database, with each row being a transaction consisting of all repairs and replace-
ments made at the same time. The change made to the data by this transformation
can be seen in table 4.1. Note how the entries in the transaction list contains all
parts sharing the same vehicle- and repair ID. A summary of the most commonly
occurring types of service in the final data can be seen in figure 4.1. In this figure
the 10 most common service types in terms of the fraction of transactions containing
each item is shown. Once prepared, the Apriori algorithm was applied to the trans-
action list in order to mine for frequent itemsets and association rules. To prune

1https://CRAN.R-project.org/package=arules
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Table 4.1: Repair data before (a) and after (b) having been transformed into a
transaction database. Note that all ID entries are figurative, and the part names
reflect part categories rather than specific parts. The TID in table (b) is the trans-
action ID, enumerating transactions.

(a) The three columns of the service
data after cleaning.
Vehicle ID Repair ID Part name

1 391 Filters
1 391 Engine
1 391 Kit
2 57 Fenders
2 57 Doors

(b) Transaction database of truck re-
pairs.
TID Part names
1 Filters, Engine, Kit
2 Fenders, Doors, Covers
3 Filters, Oil system, Kit
4 Oil system, Pipes, Air system
5 Engine

the resulting rule list the minimum support was set to SuppMin = 10−4, and the
minimum confidence was set to cMin = 0.7. A number of different maximum itemset
sizes involved in the association rules to be generated were tried, using sizes in the
range 2-5. The upper limit on itemset size was set to prevent occasional transac-
tions, consisting of many items, from having an disproportionately large impact on
end results as the itemset size increased. This also helped to find more general rules
rather than long, specific ones. The low confidence threshold was set due to the large
number of items in the database. Due to this, even quite commonly occurring items
were only being included in a small fraction of the total number of transactions.

The output from the Apriori program was mainly in the form of a R-object, con-
taining the results of applying the Apriori algorithm to the data. This enabled the
results to be accessed both as text output and as different plots of the generated
rules. A good overview of visualisation methods for association rules can be found in
[52, 53]. To provide an intuitive overview of the structure of the rules, a graph based
visualisation approach was also used. This was done using the software Gephi, which
allowed the generated association rules to be represented as a graph. In this graph
associations were represented as nodes, with edges connecting parts included in each
rule. Using force directed graph drawing algorithms [54] available in Gephi, such as
Force Atlas 2 and OpenOrd [55], enabled the rule graph to be partitioned based on
the number of connections between two rules. Thus, clusters were formed in groups
of closely related repairs based on the number of mutual rules between them.

4.2 Classification and Prediction of Vehicle Ser-
vice

One of the main purposes of predictive maintenance is to be able to predict service
and repair requirements based on current system health conditions. For this purpose,
it was investigated whether the data supplied for this project contained sufficient
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Figure 4.1: Frequency of the 10 most common items occurring in transactions in
the data used for association rule mining.

information to be able to accurately predict when a certain type of service had been
carried out on a truck. The intention was to see if a model for decision support
could be made, which could serve as help to answer the question ”If a truck is in
condition A and we have repaired part B, is it a good idea to also check if part C is
in need of service?”

The data used for this type of classification and prediction was also the service data.
However, in order to be fit for the intended usage the raw service data was first
subjected to significant preparation and augmentation before any further predictive
analysis was performed. The following section will outline the pre-processing done
on the data, after which the classification itself will be described.

4.2.1 Data Preparation

The service data was initially prepared much in the same way as when using it
for frequent itemset mining as described in section 4.1.1. This meant that the raw
data was parsed and filtered for corrupted entries and for repairs occurring less than
nMin = 10 times in the entire dataset, as well as removing duplicated or repeated
entries. However, this time the mileage and vehicle age at the time of service were
kept in the data, after having made a guess that these variables could potentially
have a natural relation to the kind of service done to a truck. In addition, the data
was augmented by also including the chassis type of each truck as a variable. This
variable inclusion was also made based on a hypothesis that the type of chassis,
indicating the type of usage of a truck, could influence the type and frequency of
truck service.
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Due to the large amount of service types present in the data, roughly 700 even after
filtering away non frequent types, the raw data was also prepared by consolidating
service types into a few, more general, groups. This process resulted in the 700 ser-
vice types being reduced to only 43. The intention with this merging was to prevent
problems with model selection and redundant variables during later classification.
Another variable introduced to the data at this point was the time since the truck
was last subjected to service. For those entries which constituted the first visit of the
year for a truck this value was set to the average time between visits for all trucks.

With the raw data prepared, the next step of pre-processing regarded the structure
of the data. This involved dummy coding the service events, based on the occasion
at which service was carried out. This meant that the service types were introduced
as dummy variables in the form of a co-occurrence matrix. This coding turned the
dense 43 level variable of service types into 43 sparse, binary variables. The final
dataframe resulting from the data preparation process consisted of roughly 78000
observations and a total of 47 variables. The variables retained, in addition to the
43 service indicator variables, were the age and mileage of each truck at the time
of service, the truck chassis types and the time in days since the last service. A
schematic view of this final data structure is seen in table 4.2.

Table 4.2: Structure of the data used for service prediction, consisting of a total
of 47 variables of which 43 are the dummy coded service types.

Air system Axles · · · Windows Mileage Age Chassis Last service
1 0 · · · 0 32859 230 FH 62
1 1 · · · 0 49020 293 FH 61
... ... . . . ... ... ... ... ...
0 0 · · · 1 208 48 FM 117

4.2.2 Service Predictions

Without any obvious structure in the data to exploit for classifications the first
step consisted of finding a suitable classification algorithm to use. The process of
algorithm selection was performed as follows.

1. One type of service was selected as the target, i.e. the service which is to be
classified as either present or not at a service visit. For the sake of algorithm
selection the target was arbitrarily chosen as the first service variable, the
trucks’ air system. Also, only data entries where more than one part had
been replaced at the same time were used, in an attempt to find primarily
dependencies between service types.

2. The data was split into a training set, for fitting the predictive models, and a
testing set for evaluating performance of the resulting model. 80% of the data
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remaining after step 1 was used for training, leaving 20% for testing. The split
into training and test data was done using the caret software package in R.
This allowed for splitting the data into partitions based on class frequency of
the target variable, where the class of an observation is either service or no
service. Thus the proportion of service to non service observations in both the
training and test data were the same as in the original data.

3. A selection of methods were used to fit a predictive model to the training data
and to evaluate the predictive performance of the fitted models. Once again
the caret package was used, allowing different classifiers to be trained using
a similar model interface. The models tested were

• Classification and regression trees (CART)

• Random forest classification

• Gradient boosted decision trees (GB Trees)

• C5.0 decision trees

• Support vector machine (SVM) using a radial basis function

Each model was fit without any specific model tuning and using caret’s
default settings for each algorithm. Once fitted, the predictive performance
of each model was evaluated on the test set. The only performance metrics
considered at this point were the accuracy and Cohen’s kappa statistic of each
model, and is summarised in table 4.3. Although the accuracy is a quite
crude performance metric, as described in appendix A, it was taken to be
an indication of overall performance of each model. The kappa statistic was
included to give a sense of how well the models classified each class, i.e. either
service or no service.

Based on the performance of each model in step 3 it was decided to continue using
C5.0 decision trees for further predictive analysis. This decision was based primarily
on the pure predictive performance. The C5.0 model outperformed all other models
in both metrics considered, as can be seen in table 4.3. Continuing to use the
C5.0 algorithm to fit decision tree models, the next step was to test predictive
performance for different types of service as targets. Additional tuning of the model
was performed, to see if model performance could be further improved.

Table 4.3: Predictive accuracy and kappa statistic of the different models fitted to
the prepared service data using “air system” as target variable.

Model type Accuracy (%) Kappa
CART 70.60 0.1654
Random forest 77.48 0.3902
GB Trees 73.03 0.266
C5.0 79.79 0.4608
SVM 72.63 0.1937
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Due to time and resource constraints not all 43 types of service included in the data
were used as targets. Instead, a few types were selected as being representative of
“severe” and “standard” service procedures. Severe service procedures were those
which were believed to be related to parts with critical functions or where a fault
could lead to a loss of vehicle functionality. Standard service procedures were taken
to be those which would either be expected to be routinely maintained, or where
a failure would not cause any major malfunctions in a truck. Three service types
were selected for each category; service related to the brakes, fuel system and the
transmission were taken as severe faults, while service related to the electrics-, air-
and oil systems were considered to be standard maintenance.

For the six selected fault types a baseline performance measure was established by
fitting a classification tree using C5.0 with standard settings, without any boosting or
misclassification penalisation. This process was intended to give an overview of how
well the model performed over a range of target parameters. After this, one target
was selected from each of the two fault categories and a new model was fine tuned
to see if the predictive performance could be improved and, if so, to which degree
improvements could be made. The fault types used for model optimisation were
faults related to the oil system and faults related to the transmission of the trucks.

Optimisation of the classification model was carried out with regards to two model
parameters. These parameters were the cost of misclassification and the number
of boosting iterations used in the model. This was done using a tuning procedure,
where a training grid of parameter values for evaluating model performance for
different weight and boosting combinations was used. A total of 9 different values
of false negative prediction cost were used, together with 13 different values for the
number of boosting iterations. The values used can be seen in table 4.4.

Table 4.4: Parameter values used when evaluating the performance of the classifi-
cation tree model fitted to the prepared service data. The leftmost values correspond
to a baseline model with no misclassification cost or model boosting.

Boosting iterations 1 5 10 15 · · · 55 60
False negative cost 1.0 1.25 1.5 1.75 · · · 2.75 3.0

Given a target variable, in the form of one type of service, the data was split up into
10 folds. The data in each fold was sampled using stratified sampling to preserve
the distribution of service/no service cases of the target variable in each fold. Cross
validation was then performed for each combination of parameter settings in the
training grid. This meant that a model was trained on nine of the data folds, using
the current training grid parameters. Model performance was then evaluated on
the last data fold, resulting in a number of model performance metrics; accuracy,
kappa, sensitivity, specificity and balanced accuracy. An overview of these metrics
can be found in appendix A. Model fitting was then repeated ten times, allowing
each data fold to act as testing data. The training parameters were then updated
along the training grid, repeating the cross validation of model performance for each
combination of model parameters.
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Once all points on the training grid had been tested, the model performance was
averaged across all folds. This gave an estimation of overall model performance,
based on the five performance metrics evaluated for each setting. For evaluating
optimal performance, the model settings which maximised the kappa metric were
used. The data was split a final time, fitting the best tuned model using 80% of
the data. The last 20% of data was left for evaluating predictive performance. The
entire process was repeated for the two target variables chosen, with performance
then being compared between each of them.

4.3 Time Series Modelling of Truck Log Data

As presented in section 3.2.2, following the initial phase of data exploration the truck
log data was analysed to see whether it would be possible to predict future trends
in the different parameter logs, and to associate any such with different repairs
being made to the vehicles. Due to the issues also outlined in 3.2.2 this analysis
was severely limited in its scope. Given these conditions in data, the intent of the
time series modelling of logged parameters were primarily to see whether a stable
autoregressive model could be fitted to the data under these circumstances.

The autoregressive modelling was done in Python, using the indexed database cre-
ated using Elasticsearch to selectively access the data. Due to the convoluted data
structure of the log data, using parameter codes and index levels to specify what in-
formation was stored in each data entry, only a single parameter value at a time was
modelled. Two parameter code/index level combinations, believed to be of interest
for monitoring vehicle performance and condition, were selected for modelling. The
ones tested are summarised in table 4.5. A sample display of some data series for
each of the two parameters can also be seen in figure 4.2 and 4.3. The choice of pa-
rameters used in the autoregressive modelling was limited primarily by the number
of observations available of each parameter. A thorough discussion on the limited
modelling choices in the data is given in section 6.1.1. The air dryer predictive
mileage parameter was chosen as it was not a cumulative variable and reflected the
intention of predicting future condition of a truck. The total engine runtime pa-
rameter was selected due to that it gave an indication of truck usage and should
thus reflect the rate of wear on many other components. Both these parameters
also had a reasonable amount of observations. Given the parameter codes and the

Table 4.5: Description of parameters used in for autoregressive modelling of truck
log data. Note that the parameter codes are anonymised.

Parameter Description
Air dryer predictive mileage Predicted mileage of truck air dryer, based

on unknown measurements
Total engine runtime Accumulated engine runtime since un-

known starting time
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Figure 4.2: A sample of the first 10 data series of log values for the total engine
runtime parameter. The left shows the original data series, while the right shows
the same data after detrending using a linear regression fit to the data. Data points
are marked with dots, and only data series with at least 4 datapoints are shown.
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Figure 4.3: Sample plot of the first 10 data series of the air dryer predictive mileage
parameter. As in figure 4.2, only data series with more than 4 entries are shown,
with sample points marked as dots.

three index levels required to specify which parameter values that were sought, the
autoregressive modelling was carried out as outlined in algorithm 2.

A closer description of the major steps in algorithm 2 is as follows. Lines 2-8 involve
searching the database of truck logs for entries which match the specified parameter
values. In this step the data handling framework based on Elasticsearch was used
in order to efficiently search for the matching entries in the database. If there were
any entries found matching the search query these were loaded into a dataframe
in Python, in the process removing duplicated entries and sorting entries in order
of vehicle identification number and readout date of the data entry. Since the time
series data for each truck was to be modelled individually a list of all unique vehicles
present in the data, as determined by the vehicle identification number, was also
extracted from the search results.
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Algorithm 2: Method for autoregressive modelling of truck log data
input: Database of truck log data

Parameter code of interest
Index levels I0, I1 and I2
Autoregressive model order m

1 begin
2 Search database for entries matching the specified parameter code and

index levels
3 if Number of hits in database = 0 then
4 Stop execution and report no entries in data
5 else

// There is data present, attempt modelling
6 Load search results into Python
7 Remove duplicate entries in search results
8 V = List of all unique vehicles in data
9 foreach Vehicle v in V do

10 Lv = List of all data entries containing v
11 nv = |Lv| // The number of entries in Lv

12 if nv > 2p then
// Only attempt to model time series with enough data

13 (Detrend and scale Lv)
14 rp = Autocovariance(Lv,m)

// Estimate model parameters using Yule Walker equations
15 Rp = Autocovariance matrix // As per eq.(2.17)
16 φ = [φ1, . . . φp] = R−1

p rp
// Calculate system poles of equation (2.23)

17 z0 = [z0,1, z0,2, ..., z0,p] = Roots (H(z) = 0)
18 end
19 end
20 end
21 end
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Lines 9-19 constitutes the main script loop for performing the autoregressive model
fitting, looping over the list of unique vehicles in the data. For each vehicle in the
list, all entries from this vehicle were isolated to form a time series of readings over
the year. The number of entries, compared to the autoregressive model size p to be
fitted, was then checked to see if modelling of the current data series was feasible. In
order to have at least minimal support of the model fitted it was required that the
underlying data series have at least 2p observations. The low margin in terms of the
number of samples used for modelling meant that models were fitted without much
support for the underlying statistics such as the covariance estimate. Referring to
the recommendation of estimating no more than N/4 parameters using N samples
in a series it can already here be flagged for potential modelling issues of data series
with few observations.

If enough data was available in a series, i.e. the number of datapoints are at least
twice the model size, two models were made. In the first model the data was used
in its raw condition during the autoregressive modelling. For the second model the
time series data was detrended, and normalised to unit variance. Detrending was
done by fitting a linear regression model to the time series and then subtracting
this fit from the values. This resulted in the detrended autoregressive modelling
capturing expected deviations from a “normal” increase of parameter values over
time, rather than the absolute values of the data. Detrending by taking delta values
between datapoints was also considered, but due to the uneven sampling times this
method was discarded.

An autoregressive model of order p was fitted to each data series by solving the
Yule-Walker equations as described in section 2.3.1. In practice, due to the low
number of datapoints in each vehicle time series, a model size of p = 2 was used.
The poles to the linear system model description of (2.11) were also calculated to
determine if the fitted model was stable or not. This process was then repeated for
the remaining vehicles present in the data. The model parameters and characteristic
roots were stored for each vehicle. These were then compared to see whether the
fitted models were consistent between vehicles.

Evaluation of the autoregressive model fitting was carried out in two ways. The
coefficient values of the fitted AR models were plotted as a histogram to give a view
of the coefficient distribution. The characteristic root locations were also plotted as
a heatmap in order to see if they were placed closely together. Both these evaluation
methods were meant to see if the fitted model coefficients were consistent between
trucks, and to investigate the model behaviour across the ensemble of trucks. In-
sample predictions were also made to see how well the models captured the time
series they were fitted from. This was done by taking the fitted model coefficients
for each data series and then performing one step forward predictions, using the first
data points in each data series to start the autoregressive recursion. The resulting
data series were plotted together with the original data to see how well the original
data and the predicted values followed each other.
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5
Results

This chapter presents the results found during the different parts of this project.
Section 5.1 regards the association rules discovered when mining the service data
using the Apriori algorithm. The results are presented both as tables exemplifying
some rules found, as well as graphs of the connections between service types and
association rules. Section 5.2 then presents the results of predicting the occurrence
of service types. Baseline results from fitting a classification model using several
different target parameters are given, as well as the results when tuning the model
to improve performance on two targets. Finally section 5.3 presents results obtained
when modelling truck log data using an autoregressive model.

5.1 Itemset Mining in Service Data

Applying the Apriori program as described in section 4.1 to the service data, a
large number of association rules were generated. Table 5.1 shows how many rules
were generated for different maximum itemset sizes and support thresholds, given a
minimum rule confidence of cMin = 0.7.

Table 5.1: Table of the total number of rules generated using different maxi-
mum itemset sizes and support thresholds, with a constant confidence threshold of
cMin = 0.7.

Max itemset size Support threshold Number of rules
2 10−4 7
2 10−5 7
3 10−4 508
3 10−5 2495
4 10−4 2880
4 10−5 54319
5 10−4 4894
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To find the rules that stood out the most from what was expected, all rules were
sorted by their lift value. The ten highest lift rules can be seen in table 5.2. Looking
at the support of the discovered association rules, rather than the lift, the association
rules the 10 highest support rules are recited in table 5.3.

Table 5.2: Top 10 association rules ordered by rule lift, using a maximum itemset
size of 3, support threshold of 10−4 and minimum rule confidence 0.7.

Association rule support confidence lift
{GRILLE,RADIATOR} => {MEMBERS} 0.00012 0.75 1134.6
{LOCKS,MEMBERS} => {GRILLE} 0.00012 0.86 400.3
{LOCKS,RADIATOR} => {GRILLE} 0.00011 0.73 342.5
{ARM,GLASS} => {FRAMES} 0.00012 0.75 236.8
{PLATES,TURBO} => {SUPPORT} 0.00012 0.71 235.3
{ANCHORAGE,EXHAUST SYSTEM} => {UNDERRUN GUARD} 0.00015 0.83 235.3
{MISC PIPES,TRANSMISSION} => {HYDRAULICS} 0.00052 0.80 227.3
{HEAT SHIELD,WINDSHIELD} => {UNDERRUN GUARD} 0.00011 0.79 221.8
{BUMPERS,SERVICE KIT} => {UNDERRUN GUARD} 0.00013 0.76 215.9
{ANCHORAGE,BUMPERS} => {UNDERRUN GUARD} 0.00031 0.74 208.4

Table 5.3: Top 10 rules ordered by support, obtained using a maximum itemset
size of 3, support threshold of 10−4 and minimum rule confidence 0.7.

Association rule support confidence lift
{OIL SYSTEM} => {FUEL SYSTEM} 0.19974 0.8 2.8
{FUEL SYSTEM} => {OIL SYSTEM} 0.19974 0.7 2.8
{ENGINE} => {FUEL SYSTEM} 0.07077 0.7 2.7
{MISC FILTERS,OIL SYSTEM} => {FUEL SYSTEM} 0.06568 0.9 3.3
{FUEL SYSTEM,MISC FILTERS} => {OIL SYSTEM} 0.06568 0.8 3.2
{ENGINE,OIL SYSTEM} => {FUEL SYSTEM} 0.05558 0.9 3.2
{ENGINE,FUEL SYSTEM} => {OIL SYSTEM} 0.05558 0.8 3.0
{COOLING,OIL SYSTEM} => {FUEL SYSTEM} 0.04908 0.8 3.1
{COOLING,FUEL SYSTEM} => {OIL SYSTEM} 0.04908 0.8 2.9
{AIR SYSTEM,OIL SYSTEM} => {FUEL SYSTEM} 0.04595 0.9 3.3

Due to the large amount of rules generated from the data it was not possible to obtain
an overview of them by only looking at the text output from the Apriori program.
As described in section 4.1.1 the generated rules were therefore also presented using
a graph representation. This representation can be seen in figures 5.1-5.2. In these
graphs the items and rules are represented as nodes An “item node” has an edge to
a “rule node” if said item occurs on the left hand side of a rule. Likewise, a rule
node has an edge to an item node if said item occurs on the left hand side of a rule.
The nodes are placed in the graph based on the number of rules related to each
item node. Rule nodes are clustered based on their connections with item nodes, so
that mutual connections attract two nodes to each other while a lack of connection
repels two nodes.
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Figure 5.1: A graph representation, created using the ForceAtlas2 layout in Gephi,
of the association rules found by using the Apriori algorithm. The maximum itemset
size was set to 3, with support- and confidence thresholds of 10−4 and 0.7 respec-
tively. In the graph the nodes represent service types and association rules, with
two nodes being connected by an edge if they are part of the same rule.

Figure 5.2: Graph of all generated association rules obtained using the OpenOrd
force directed graph layout in Gephi, in order to emphasise clusters in the underlying
ruleset. The maximum itemset size was set to 3, with support- and confidence
thresholds set to 10−4 and 0.7 respectively. The numbers (1)-(3) indicate the three
major clusters of nodes present in the graph, and are further discussed in 5.1.
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5.2 Service Predictions

As described in section 4.2, predictive performance of the decision tree model fitted
to the service data was evaluated across a grid of model parameters to find the best
model fit. In 5.2.2 the metrics obtained over the training grid for the different target
parameters used are reported.

5.2.1 Baseline Model Performance for Different Targets

To obtain a quantitative measurement of the performance difference that boosting
and misclassification weights had on the predictive performance of the model, a
baseline was made by fitting a model using neither boosting or weighting. The
performance of this baseline model is summarised in tables 5.4 and 5.5. For a
review of some of the metrics used in these tables, refer to appendix A.

Table 5.4: Performance of a baseline model, fitted with the C5.0 algorithm, using
no boosting or misclassification weighting. A selection of different target variables
were used, and for each one the model was allowed to train on 90% of the data,
whereafter performance was evaluated on the remaining 10%. These splitting pro-
portion of data was used to mimic the subsequent cross-validation splits.

Target Accuracy Kappa Sensitivity Specificity
Air system 0.7568 0.3264 0.2994 0.9716
Brakes 0.9418 0.2640 0.2003 0.9875
Electrics 0.8524 0.3995 0.3324 0.9792
Fuel system 0.9584 0.0 0.0 1.0
Oil system 0.7867 0.3928 0.3773 0.9560
Transmission 0.9530 0.3987 0.2826 0.9906

Table 5.5: Additional metrics of the baseline model regarding class imbalance, i.e.
the ratio between ’service’ and ’no service’. The last two columns regard whether the
predictive performance of the model is significantly better than the no information
rate at the α = 0.05 level.

Target No service/
service NIR Balanced

accuracy
P-value

(Acc. > NIR) Significant

Air system 2361/1109 0.6804 0.6356 < 2.2·10−16 Yes
Brakes 3268/202 0.9418 0.5952 0.5187 No
Electrics 2789/680 0.8040 0.6558 6.236·10−14 Yes
Fuel system 3326/144 0.9585 0.5 0.5221 No
Oil system 2455/1015 0.7075 0.6667 < 2.2·10−16 Yes
Transmission 3286/184 0.9470 0.6369 0.0168 Yes
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5. Results

5.2.2 Model Tuning Performance

Based on the results of fitting the baseline models to a selection of target parame-
ters, the oil system and transmission were further investigated by performing model
optimisation as described in 4.2.2. The performance when fitting models using “oil
system” as target variable is displayed in figure 5.3 and table 5.6, and then using
“transmission” as target variable in figure 5.4 and table 5.7. Figures 5.3 and 5.4 gives
a graphical overview of model performance across the optimisation parameter grid,
showing average model performance as a surface plot. Tables 5.6 and 5.7 summarise
the best and median performance across the training grid. The median values were
used rather than average values due to the large variation in performance across the
training grid potentially skewing the latter.
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Figure 5.3: Model predictive performance over the training grid with regards
to accuracy, kappa value, sensitivity and specificity using “Oil system” as target
variable.

The final model fitting, using the model parameter combination which maximised
the kappa metric during optimisation, for the two target variables is summarised
in table 5.8. In addition to the five metrics used during model optimisation, the
difference from the baseline model is also given. In addition to raw performance
metrics, table 5.9 gives the 10 most important variables in the best model fits made.
The variable importance is given in terms of the percentage of the total number
of splits in the model that involves a predictor. A high percentage implies that a
variable is often used as a predictor in the model.
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Table 5.6: Performance metrics during model optimisation using “oil system” as
target variable. The number of boosting iterations and false negative penalisation
cost are given together with the corresponding performance metrics, along with the
median model performance over the training grid.

Metric Median value Maximum value Best boost Best weight
Accuracy 0.8044 0.8108 35 1.25
Kappa 0.4296 0.4544 25 1
Sensitivity 0.3717 0.7743 1 3
Specificity 0.9881 0.9976 60 2.75
Balanced Acc. 0.6789 0.7032 1 2.5
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Figure 5.4: Model predictive performance over the training grid with regards to
accuracy, kappa value, sensitivity and specificity using “Transmission” as target
variable.
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Table 5.7: Performance metrics during model optimisation using “transmission” as
target variable. The number of boosting iterations and false negative penalisation
cost are given together with the corresponding performance metrics, along with the
median model performance over the training grid.

Metric Median value Maximum value Best boost Best weight
Accuracy 0.9586 0.9609 1 1.5
Kappa 0.3847 0.4829 1 2
Sensitivity 0.2565 0.4583 1 3
Specificity 0.9954 0.9996 50 2.75
Balanced Acc. 0.6277 0.7188 1 3

Table 5.8: A summary of the performance of the models fitted by using the best
model tuning settings with regards to the kappa metric. The difference compared
to the performance of the baseline model fitted without any tuning is also stated.

Metric Oil system Difference Transmission Difference
Accuracy 0.8051 +0.018 0.9532 +0.002
Kappa 0.4508 +0.056 0.4217 +.023
Sensitivity 0.4241 +0.047 0.3533 +0.071
Specificity 0.9625 +0.007 0.9867 −0.004
Balanced acc. 0.6933 +0.027 0.6700 +0.033
NIR 0.7075 - 0.9470 -

Table 5.9: A summary of the most important predictors when using oil system
and transmission as target variables. The variable importance is measured in terms
of the percentage of times that a variable is used in the classification model.

Oil system Transmission
Variable % of splits Variable % of splits
Engine parts 5.39 Oil system 11.11
Electric system 5.32 Exteriors 5.56
Cooling 4.69 Sealings 5.26
Filters 4.53 Air system 2.78
Sealings 4.53 Battery 2.78
Exhaust system 4.46 Brakes 2.78
Air system 4.22 Combustion chamber 2.78
Exteriors 4.22 Control unit 2.78
Control unit 3.99 Conversion kit 2.78
Fuel system 3.91 Cooling 2.78
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5.3 Time Series Modelling

Time series modelling was attempted using two of the logged parameters, and the
results of this modelling are reported in this section.

Figures 5.5-5.6 and table 5.10 summarise the AR(2) models fitted to logs of the
cumulative engine run time of the trucks. In figure 5.5 and table 5.10 the distribution
of the fitted coefficients φ1 and φ2 is presented. Figure 5.6 instead shows a heatmap of
the pole placements of the linear system function corresponding to each fitted model.
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Figure 5.5: Parameter distribution of the parameters fitted to the truck-wise time
series data of total engine runtime, obtained by fitting an AR(2) model to the time
series of values logged by each truck.

Table 5.10: A summary of the coefficient distributions given in figure 5.5. The
metrics are based on a total of 1064 model fits to data series of values coming from
different trucks.

Original Detrended
Mean Variance Min/Max Mean Variance Min/Max

φ1 0.542 0.081 -0.055/1.062 -0.136 0.209 -1.371/1.071
φ2 -0.212 0.031 -0.649/0.161 -0.371 0.039 -0.808/0.170

Table 5.11: A summary of the coefficient distributions given in figure 5.7a. The
metrics are based on a total of 4112 model fits to different series of values.

Mean Variance Min/Max
φ1 0.679 0.107 -1.156/1.308
φ2 -0.121 0.025 -0.796/0.673
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(a) Heatmap of linear system pole lo-
cations for models fitted using the raw
data.
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Figure 5.6: Heatmaps of the pole placements of the linear system representation
of the autoregressive models fitted to the truck-wise time series data of total engine
runtime. The unit circle is marked to emphasise pole locations.
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Figure 5.7: AR model coefficient distribution, (a), and the corresponding pole
locations as a heatmap in (b), when using air dryer predictive mileage as underly-
ing data.
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When performing in-sample predictions using the fitted models some of the resulting
data series predictions can be seen in figure 5.8. In these plots the original data is
shown using solid, opaque lines while the predictions are shown using dashed lines.
Note that only the original data series of the engine runtime predictions were used
for predictions and not the detrended data.

Jan-01
Feb-01

Mar-01
Apr-01

May-01
Jun-01

Jul-01
Aug-01

Sep-01
Oct-01

Nov-01
Dec-01

Jan-01

0.0

0.5

1.0

1.5

2.0

To
ta

l e
ng

in
e 

ru
nt

im
e(

s)

1e7

(a) Data series together with in-sample
predictions for the engine runtime data.
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(b) Data series together with in-sample
predictions for the predictive mileage
data.

Figure 5.8: A comparison of the actual data series, plotted as opaque, solid lines,
and predictions made by the AR(2) model fitted to the data series for the two
parameters modelled.
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6
Discussion

In this chapter a number of results from this thesis will be discussed. First of all a
thorough discussion of the data exploration carried out will be given. This discussion
will touch the prerequisites on the data used for predictive maintenance, and how
the data used in this thesis relates to these requirements. This discussion focuses
on the results found during the data exploration described in chapter 3. Subsequent
sections regard the results obtained from data mining, in 6.2, and service predictions,
in 6.3, of the service data. Finally the results of autoregressive modelling of the truck
parameter logs is discussed in 6.4.

6.1 Data Quantity and Quality

The field of predictive maintenance is, like machine learning in general, an inherently
data-driven science. Because the implementation of a predictive maintenance scheme
is in a physical system, creating a model of system degradation and fault diagnostics
require that enough data about the system is available. Additionally, this data needs
to be relevant to the intended usage of it. As such, not only the quantity of the
underlying data is of importance, but also the quality of it. These requirements
were the reason why a thorough process of data exploration was needed, before any
more specific analysis of the data provided for this thesis could be made.

The raw data provided for this thesis consisted of just under 30 GB of data. As
mentioned in section 3.2 the majority of this data was contained in the truck log data
file, with a only a few hundred megabytes of data being in the service data. There
were a considerable number of observations available in both datasets, whether in
the form of a logged parameter value or in a logged service occasion. However,
during data exploration it was discovered that the number of usable observations
were much less that the number of observations in the raw data.

Perhaps one of the most troublesome discoveries made was that there was no reliable
link between data uploads in the log data and the service data. As such, it was not
possible to establish a causal relation between when a parameter value had been
logged and any parts that had been serviced. This lack of connection between the
datasets provided was the primary reason why they were treated separately.
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6. Discussion

6.1.1 Log Data Continuity and Sparsity

In the parameter log data the largest loss of usable data stemmed from having to
exclude roughly 95% of all data entries simply because they were logs of parameters
related to “ranking statistics” of the trucks. As for the remaining data after this
exclusion, there were significant differences between the logged parameters, in terms
of the number of observations each, which values were logged for each parameter and
how many of these logged values were usable. Regarding the number of observations
of each parameter there was a clear difference between the type of value logged by a
parameter and how many observations were available. The rarest parameters only
occurred a handful of times in the entire dataset and, as mentioned in 3.2.2, all
these observations were from the same truck and date. In addition to this, the
exact value logged by each parameter was obfuscated by the index levels of each
parameter. Owing to this, a parameter with for instance five different index levels
would in effect only have one fifth of the total number of parameters observations for
each parameter-index combination. This significantly reduced the number of usable
observations, as not all index level combinations were of interest for each parameter.
This was further emphasised by the fact that many parameter-index combinations
logged the same type of data for different parameters, or that they were logging
constant values with no relation to the condition of the trucks.

The overall consequence of having large amounts of redundant information in the
data was that a lot of time and effort had to be put into handling and accessing
the data, as explained in section 3.2.2. Moreover, a lot of time was also needed to
determine which parts of the log data that were actually of interest, and in turn
which parts of the interesting data that were usable for predictive maintenance
purposes. In this case, the large amount of data containing unusable information
served mostly to make analysis of it more difficult.

Another issue with the parameters logs was the consistency of sampling. When
looking at all entries in the data made by each individual truck there was a large
difference between each vehicle in terms of both the data readout frequency and total
number of entries made by each vehicle. Especially the large time spans with no
data samples seen in figure 3.1 indicated continuity problems in the data. For some
parameters only some trucks had logged any values, and each such vehicle had only
one or two readouts in total. Even the parameters having the most observations in
total had issues with the number of data entries per truck. Since one of the goals of
this thesis was to find a way of continuously monitoring truck condition, having only
at most a few hundred observations in total from a truck, sampled at a few times
during a year made any analysis of normal behaviour and detection of performance
anomalies infeasible. The practical implications of the infrequent sampling will be
further discussed in section 6.4.

As briefly mentioned in 6.1, the infrequent data sampling also raises issues of how
to relate the contents of the log data with the contents in the service data. While
there did exist a “visit reason” variable in the service data, this variable could not
be used during analysis. This was due to that usage of this field had not yet been
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implemented in practice during the entire period when data was collected. Thus, it
could not be reliably used as an indicator of why a truck was repaired. This fact,
combined with the sparse sampling of data in the log data, made it precarious to
infer the condition of a truck at the time of service. While it would seem reasonable
that only a handful of repairs or service visits are required during a year, having to
infer a connection between a service visit and a log data reading two months earlier
was dismissed as hopelessly unreliable. This conclusion was the main reason for
abandoning the hopes of diagnosing repairs and service of the trucks based on their
condition and instead focusing on each set of data separately.

The sparsity of usable data relates both to the quantity, and also to the quality, of
the provided data. While collecting large amounts of data is important when seeking
to use it for machine learning applications, it is also important to make sure that
the data collected is relevant to the intended usage so that data is not unnecessarily
collected. In a predictive maintenance framework, it is highly desirable to be able
to closely monitor the condition of a system. As such, the data sources need to be
carefully chosen so that they are related to areas of interest in the system. Signals
and data from these sources must also be possible to be sampled in such a way that
the development over time can be accurately followed and related to the condition
of the system as a whole.

6.2 Association Rule Mining

As presented in section 4.1, the goal when mining the service data was to investi-
gate whether there were any dependencies or latent structure in the data. Given
the rather high number of association rules generated when applying the apriori
algorithm to the transaction list made from the service data, as seen in table 5.1,
the rules were not evaluated exhaustively in textual form. However, an indication of
the kind of rules found was obtained by summarising them as in tables 5.2 and 5.3.

When ordering the mined association rules as in table 5.2 it is apparent that many
rules involving structural parts such as members, the grille and the underrun guard
stick out. Recall from definition 2.5 that the lift of a rule is a measure of how
large the support of an association is compared to when the items involved are
independent. A rule with a high lift indicates that the items involved in the rule
often occur together. While the support of these rules is quite low, meaning that
they appear few times in the transaction data, the high lift makes them stand out
in terms of rule importance.The high lift of the rules involving structural parts is
thus an indication that there is a tendency for these types of parts to be serviced at
the same time.

Looking at the generated rules sorted by their support rather than their lift in
table 5.3 one can infer that these rules seems to capture the item distribution of
figure 4.1. Comparing the rule table and the item frequency plot it is obvious that
the highest support rules all involve the most common items in the transaction data.
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The high support of these rules, coupled with the high item frequencies of the items
involved, imply that these rules correspond to many of the “routine” types of service
that a truck undergoes, such as oil changes, filter changes and the like.

To obtain a better overview of the generated rules one can look at the graphical
visualisation of them in figure 5.1. The force directed layout algorithm used to
create this graph has the property that it causes the layout of the graph to reflect
the structure of the underlying rules. As briefly mentioned in section 5.1 this is done
by causing nodes to either attract or repel each other, based on the connections
between them. This causes clusters of nodes to form whenever there are many rules
associated with an item, and the size of the cluster in turn reflects the number of
rules associated with the item. Edges between clusters in turn represent associations
between items.

Looking at the most prominent structures in figure 5.1 there seems to be a number
of larger clusters present. To further investigate this the OpenOrd force directed
layout algorithm was used to create figure 5.2. In this plot there are clearly some
distinct clusters present, marked with numbers (1)-(3). Cluster (1) is a collection
of the nodes in the upper left corner of figure 5.1. The types of item nodes placed
in this cluster are mainly structural ones, such as bumpers, housings, fenders, heat
shields and supports. Cluster (2) is a little less homogeneous, than the first cluster.
A large number of item nodes in this cluster are related to structural pars such as
deflectors, grilles and covers. However, the cluster also contains most of the item
nodes related to the electrics of the trucks, such as actuators and electric system
components. Relating the contents of cluster (2) to the sparser graph of figure 5.1 is
seems like many of the smaller clusters located in the bottom left has been collected
into one.

The last and largest cluster, number (3) consists of the nodes in the right part
of figure 5.1. The main cluster consists of item nodes such as the fuel- and oil
systems, which are the largest nodes in terms of node degree, as well as item nodes
such as filters, exhaust system, air system, compressors, pipes and pumps. The
smaller clusters surrounding the main cluster are also quite interesting. The bottom
one contains item nodes related to the combustion chamber and burner units, with
edge connections to rule nodes involving primarily the oil and engine systems. The
bottom left subclusters contain the cooling items and is interestingly enough placed
on its own. However, considering that it is located on along edges between clusters
(2) and (3) this could be an indication that the cooling tends to be serviced at
the same time as items in either (2) or (3), although primarily with those in (3).
The same goes for the subcluster just above, containing the structural part “stay”.
Having this node connecting the structural parts in cluster (1) with the components
in cluster (3) could also be an indication of a tendency for these types of parts to
be replaced simultaneously.

Overall the ability to cluster the association rules as in figures 5.1 and 5.2 does
indicate some form of structure in the service data. The constituents of the node
clusters found are reasonably similar to what one would expect. Intuitively it makes
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sense that large structural parts would be serviced at the same time, or that several
types of service to the oil and fuel system would be done at once. This intuition
also matches with the rules presented in tables 5.2 and 5.3. To an expert in the
field of truck maintenance, such as the mechanics who carry out the actual truck
service, these kind of relations are likely no news. It is, however, quite interesting
and reassuring to see them turn up during rule mining to serve as an indication that
the mining process is finding realistic association rules.

6.3 Service Predictions using C5.0 Classification
Trees

The decision to attempt service predictions was based on the structure in data
discovered when performing association rule mining. Since there seemed to be some
form of structure in the data which could be exploited by a classification algorithm,
it was considered feasible to try and distinguish service types from one another.

6.3.1 Model Selection

The process of model selection, in terms of which classification model to use, was
briefly touched upon in 4.2.2. The final choice of using the C5.0 classification tree
algorithm will be discussed and further motivated here.

Many of the models considered were different types of decision tree models, and this
was no coincidence. Given the type of classification problem at hand, with several
dummy variables and a few numerical values, using a linear or nonlinear model with
coefficients for each variable would be rather hard to interpret. Interpreting such a
model could mean considering statements such as service “A” being predicted by 0.5
times service “B” plus 0.33 times service “C” and the likes. Having a model dealing
with fractions of binary variables in this way might work well performance wise, but
is rather unintuitive in terms of the underlying data. In a practical situation one
would likely rather have an all-or-nothing inclusion of each service variable. This is
where decision tree models provide a very suitable model structure.

As mentioned in 2.2, classification tree models are essentially a sophisticated series
of if-else statements used to make a classification based on model inputs. This
decision making process is a form of rule based learning, which in turn is a form
of expert system learning. In a real life situation, an expert would be the one
determining which parts should be serviced, based on current truck condition. By
using a rather ’human-like’ decision model such as a classification tree, hopes were
that such a model would capture the same type of reasoning that such a human
expert would use.
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In addition to the model interpretation point of view, model selection was also based
on potential model performance. As described in section 4.2.2, a number of different
models were initially considered. Most of these models were tree based models, al-
though a support vector machine model was also included. The SVM was included
to see if a non-tree, linear classifier would perform substantially better than the tree
based classifier. Amongst the tree based models, the level of complexity in each
model reflected the performance quite well. The simplest of the four tree models,
the ordinary CART-model, fits only one classification tree to the data, pruning the
model to a suitable size in the process. Being the simplest model, the performance
was also the worst. Random forest, Gradient Boosted trees and C5.0 are all ensemble
methods, using either boosting or bagging to increase performance. The increased
complexity of using an ensemble of trees rather than just one is obvious, as can be
seen in table 4.3. Although increased complexity also brings with it larger computa-
tional load, the increase in performance outweighed the computational cost increase
in this case, as good predictive performance was an essential end goal. Since the C5.0
algorithm met both the model interpretation criterion, and also performed the best
out of all methods tested, it was ultimately selected for further service prediction.

6.3.2 Baseline Performance for Different Targets

Despite C5.0 being found to be the best performing algorithm for the service data,
tables 5.4 and 5.5 reveal that there were some potential modelling issues at hand.
Looking at the C5.0 model fits to the six parameters used for comparison, it is ap-
parent that the predictive performance on the test data varies depending on which
target parameter is used. In table 5.4, the model accuracy seemingly indicates that
the model is performing very well on some parameters. When using brakes, fuel
system or transmission as targets, around 95% accuracy is achieved, with 75%-85%
accuracy on the other targets. However, when looking at the sensitivity and speci-
ficity of the model in the same table it is obvious that there is a disparity between
the two classes of the target variable. For all target variables, the specificity is high
indicating that true negatives, i.e. instances of no service, are correctly classified in
more than 95% of all cases. At the same time the low sensitivity of at most just
under 38% indicates that the ability to predict true cases, i.e. service occasions, is
much lower. This is exemplified in particular when using “fuel system” as target.
In this case the sensitivity of 0.0 and specificity of 1.0 indicates that the model has
failed to capture the data, and has simply classified all data as “no service”.

For target parameters other than “fuel system”, the kappa values show that the
model is performing better than what a random classifier would do. This can also
be seen by comparing the accuracy in table 5.4 with the no information rate of
table 5.5. This shows that the model is performing better than what a classifier
assigning only the majority class to all data would do, indicating that the model
used is able to capture some relations in the underlying data. However, comparing
instead the no information rate to the balanced accuracy of the model shows that
model performance is worse compared to a majority class classifier when taking
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classwise performance into consideration. For all targets the balanced accuracy is
substantially worse than the raw accuracy of the model. Referring to [56], this
difference indicates that the raw accuracy is giving an overly optimistic measure of
model performance, as well as indicating a potentially biased classifier.

Table 5.5 sheds some light on one of the probable reasons for the target dependent
performance seen in table 5.4. Looking at columns 2-3 of table 5.5 it can be seen that
the ratio of the two outcome classes varies greatly between target parameters. The
no information rate, being the fraction of the data having the majority class label,
indicates that there is a severe case of class imbalance for all target parameters. The
most balanced cases, using “air system” and “oil system”, has a class ratio of roughly
2:1 between no service to service occasions, while using “brakes”, “fuel system” or
“transmission” has a class ratio of around 20:1. Since classification algorithms tend
to perform poorly on unbalanced data, as is the case here, it is obvious that the
classification of service occasions has been made more difficult by class imbalance.

6.3.3 Model Tuning and Performance Improvements

Model tuning was used to see if predictive performance of the baseline models dis-
cussed in section 6.3.2 could be improved. Only two of the targets used for baseline
model fitting were used during tuning, selected by considering model performance
on each target. “Oil system” was selected due to both the fact that it had shown the
best performance during baseline fitting, and that it was the most class balanced
of all targets tested. “Transmission” was selected because it had the best model
performance of all the “severe” service types tested. When selecting targets based
on a prior performance measure there could be a risk of introducing a bias to the
subsequent modelling. In this case, this bias would be an exaggerated relation be-
tween the target service and the predictor variables. However, the research question
in this thesis was to investigate whether or not the underlying data could be used
for diagnosing faults and services at all. Thus, during the modelling process it was
considered reasonable to use the most promising service types as targets, in order
to see if any data modelling was possible.

The process of model tuning for predicting the presence of service of the oil system
is summarised in figure 5.3 and table 5.6. Looking at the overview of model perfor-
mance over the tuning grid used some inference about model performance can be
made. In general, it seems that increasing the number of boosting iterations used
in the model increases both accuracy and specificity. However, while specificity is
continuously improving with the number of boosting iterations used, the accuracy
reaches a maximum when using 35 iterations as can be seen in table 5.6. Sensi-
tivity, on the other hand, shows a decrease with the number of boosting iterations
used and is instead greatly enhanced by the introduction of misclassification cost.
Unfortunately, the increase in sensitivity is coupled by a corresponding decrease in
model specificity, causing overall accuracy to decrease. Since the misclassification
penalisation is specifically aimed at increasing sensitivity of the model, it is not sur-
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prising that a high penalty increases the number of positively classified oil system
service occasions. It is interesting to note that while boosting increases the speci-
ficity, and weighting increases the sensitivity of the model, that increasing both at
the same times causes sensitivity to decrease to a minimum, while increasing only
specificity. Looking at the kappa-metric as a measure of overall model performance,
it can be seen in figure 5.3 that there is a ridge of high kappa values along the
boosting iteration axis. While increasing the number of boosting iterations is not
improving the kappa value further after the maximum at 25 iterations, it is reduced
when introducing weighting.

Comparing the results from using “transmission” rather than “oil system” as target
some notable differences are revealed. Referring to figure 5.4 and table 5.7, it can
be seen that the sensitivity and specificity of the transmission classification model
behaves similarly as for the earlier model for the oil system. Sensitivity is once
again boosted by the misclassification penalisation, but increasing both the penalty
and the number of boosting iterations causes the sensitivity to drop to a minimum
while specificity increases. Moreover, model accuracy is improved by increasing
both the amount of model boosting and misclassification penalisation, at least for
moderate penalties. The accuracy of the oil system model was quite even across
the tuning grid, barring when using hefty penalisation and no boosting. For the
transmission model, however, there is a distinct accuracy decrease as the penalisa-
tion is increased. Overall, as evident in table 5.7, the transmission model shows
no increased performance when using boosting, while a large penalisation improves
all measured performance metrics. Considering that the class imbalance was very
pronounced for the transmission variable, this result makes sense. When boosting,
each sub-model trained only sees a fraction of the data. Thus, in the unbalanced
dataset it is likely that many of the booster models only see a handful observations
of the minority class. These models are then likely to make the same mistake as the
fuel system baseline model, only assigning the majority class to all samples. Mis-
classification penalisation, on the other hand, should in theory help to make the few
observations have a larger impact during model fitting, up to a certain limit as dis-
cussed in the case of the oil system model. The performance of the two models fitted
using the tuning settings which maximised the kappa metric in are summarised in
table 5.8. From this table it seems that tuning has indeed had a result in terms
of increasing model performance. Comparing these values to those of the baseline
models in table 5.4 all metrics except for the the specificity when using transmission
as target are improved in the tuned models. The accuracy increase is only marginal,
and given the unbalanced data it is in this case not the best performance indicator as
discussed at the start of this section. However, the increase in the kappa, sensitivity
and balanced accuracy of the models are much more substantial. The increased
sensitivity indicates that around 5-7% more cases of a service taking place are cor-
rectly classified. Meanwhile, the increase in kappa places the agreement between
the fitted model and a perfect classifier as “moderate”, rather than “fair” for the
baseline model, using the limits specified in [57]. Although, as also stated in [57],
these kappa-limits are quite arbitrary, this increase still places the tuned models a
step above the baseline model in terms of general agreement between classifications
made by the model and the real cases.
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An interesting aspect of the final models fitted is to look at the variable importance
in the models, i.e.which variables that were considered to be the most important
predictors. Looking at table 5.9 there are clear differences between the model for
prediction oil system service compared to the model for predicting transmission ser-
vice. For the oil system model, none of the other service types or other variables
used stand out as an especially good predictor. Several service types are used in
around 4-5% of all splits made by the model. However, comparing these to the
association rules in table 5.3 one can see that many of the items occurring in the
highest support association rules reoccur in the list of important variables in the
classification model. Considering that the association rules could be represented as
a rather clustered graph, as in figure 5.1, there could very much be some predictive
value in the fact that the rules had such a structure. On the other hand, for the
transmission model there is one predictor which sticks out from the rest. Coinci-
dentally, this predictor happens to be the oil system. The exact extent of a service
is not clear from the underlying data, and that especially the “oil service” service
type was quite broad after the data pre-processing phase. Thus, it is hard to know
just from the model just why the presence of oil system service is such a prominent
predictor of transmission service. An expert in truck service and repair could per-
haps be able to give a hypothesis for why this is the case. Furthermore, both vehicle
age and mileage were included as parameters during modelling. However, especially
for the oil system service type, it is intriguing that neither of these variables were
used as predictors. Since the oil system is a typical part that is regularly checked
and serviced, it could perhaps be expected that age and mileage would be good
predictors of this kind of service. As for oil system being selected as a predictor of
transmission service, the reason for this is not clear from the model. It could be
that the classification tree model used does not use this information efficiently, or
that these two predictors are simply not as good indicators as one would expect.

Despite the performance improvements obtained after model tuning, the best models
obtained still have rather mediocre performance. Nowadays complex models, such
as neural network models, have made almost perfect predictive performance the
norm in many classification tasks. Although one perhaps shouldn’t directly compare
different classification tasks, since they are after all very data dependent, close to
perfect classification performance should still be expected if the classifier is to be
deployed in a live system. Even the best model used in this project had quite poor
performance on detecting when service had been carried out on a truck. As such, it
would likely not be very suitable for trying to predict if a type of service should be
carried out or not in a live setting, such as a workshop.

6.4 Autoregressive Modelling

The point of trying to model the time series of data uploaded from trucks was to see
if these data series could be modelled and forecast. However, as already mentioned
in 6.1, the lacking quality of the underlying data provided a severe limitation to the
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viability of the modelling performed. Despite this, autoregressive modelling of the
data series was attempted simply to see if there was any useful information at all
to be obtained from the data. In this section focus will be on the actual modelling
results, as issues relating to the underling data have already been discussed in 6.1.

Firstly it is worth noting that the model order used for the autoregressive modelling
was quite arbitrarily chosen. Due to the low number of data points in each data
series, a low model order was required, as using higher order models were deemed
to be unsound from a statistical perspective. The uneven sampling of data also
meant that the time between two data points was in general be non constant. In an
attempt to compensate for this a second order lag term in the autoregressive model
was included to could take into consideration larger differences in data over large
gaps. No further attempts at verifying whether the model order selected was high
enough, or if it was actually too high, was performed. While there are methods of
verifying model size, evaluating such statistics from the underlying data was once
again considered to be unreliable.

For models fitted using the engine runtime parameter values, it is clear from fig-
ures 5.5 and 5.6 that detrending the data makes a large difference in terms of the
models fitted. Looking at the coefficients of the fitted models, figure 5.5 makes it
clear that very different models are fitted to the raw/detrended data. The models
fitted to the original data have a larger difference between the two model coeffi-
cients, with φ1 being positive and φ2 being negative. For the detrended data, there
is a large variance in the values of φ1, indicating a large variation in the under-
lying data series. Looking at where the autoregressive model roots are located in
figure 5.6, some inference about the type of models fitted can be made. When fitted
to the original data, it can be seen in figure 5.6(a) that most roots lie along the
real axis, with some complex conjugated root pairs located in the first and fourth
quadrants of the unit circle. As described in [50], this type of pole placements im-
plies that the autocorrelation of the data most often behaves as a mixture of two
exponentially decaying terms. For the models where the roots are complex the au-
tocorrelation behaves as a damped sinus function, as exemplified by figure 2.3(a).
Models having a monotonically decaying dependence on previous values as seems
natural when considering what the underlying data looks like in figure 4.2. In this
figure most data series follow a linearly increasing trend, with some deviation at
times. Thus, it makes sense that old values have little impact on newer ones. Look-
ing instead the pole placements of the models fitted to the detrended data, seen in
figure 5.6(b), there is a noticeable difference compared to the original data. For the
detrended data most poles are complex, and only a few lie along the real axis. Thus,
for a majority of the detrended data series the autocorrelation function behaves in
an oscillatory way. Looking at the underlying data series in figure 4.2(b) it can
be seen that the detrended values tend to oscillate between positive and negative.
In this way it makes sense that a larger number of models are capturing this kind
of oscillatory behaviour than those fitted to the original data. Despite the lack of
data, this implies the the autoregressive models are at least capturing some of the
information carried in the underlying data series.
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The data associated with the air dryer predictive mileage parameter had much less
of a trend than the engine runtime parameter, as seen in figure 4.3. As such, no
detrending was done and only the original data was modelled. Looking first at the
coefficient distribution for the fitted models in figure 5.7(a) it is clear that the two
model coefficients φ1 and φ2 are more distinct than for the engine runtime models.
Once again a positive φ1 and negative φ2 imply a slightly oscillating dependence on
previous values, although weaker than in the previous models as seen by comparing
tables 5.10 and 5.11. Looking at the pole placements in figure 5.7(b) one can see
that a majority of the model poles are real valued, indicating an exponentially
decaying autocorrelation function for the data. Once again this is not a big surprise,
considering the sample data in figure 4.3. As with the engine runtime data series the
lack of data points gives few quick variations in data between observations. As such
it makes sense that models fitted to the data have little dependence on older values.

Since there was no specific sampling rate for the data, forecasting using the fitted
models was not performed. While nothing stops generating new data using the
fitted model coefficients, there was no way of knowing at which points in time
these predicted values should be made. Thus, interpreting these predicted values as
future data values was not reasonable. Instead of forecasting, in-sample predictions
were used to evaluate how well the AR models captured the data series. Since
the underlying data varied a lot between different models no overall performance
measure was used. Instead, a few data series were plotted to visually evaluate the
model fit as in figure 5.8. As can be sen in this figure, the models are able to
quite accurately capture the data with even sampling and linear trend. However,
as can especially be seen in 5.8(b) problems arise when data points are located in
small groups separated by large gaps. In these cases, the models tend to fall behind
between groups of data points, failing to react to the change in parameter value
between different groups. Whether this issue could be solved by, for example, using
higher order models or not was not investigated during this thesis. However, trying
to fix these kind of prediction issues by tailoring the model would only be to address
a symptom of the underlying cause that is the lack of data.

Comparing the models fitted to the different parameters it is not surprising that
they differ quite a bit. Since the parameters are logging very different types of
information, the resulting data series should naturally have different structures. As
such it is only natural that different models, in terms of the fitted model coefficients,
are required to capture the two types of data series. Moreover, a large degree of
model variation between trucks should also be expected, as the trucks are used in
very different ways, are of different ages etc. Therefore one should not expect a
single “universal” model to be a viable way of modelling the type of data provided,
but that a individual model needs to be fitted using the data generated by each
truck. As mentioned several times already, it is in this case vital that the amount of
data provided from each truck is sufficient in terms of sampling rate and relevancy
for truck condition. The most important aspect when making a model to predict
these kinds of parameter logs is that there are enough samples, and that these are
made continuously. Frequently sampled data allows for both a more accurate model,
as well as a more up-to-date model. Compared to many of smaller, isolated systems

63



6. Discussion

where predictive maintenance has been tested, such as those in studies presented in
section 1.3, it is not reasonable to be able to continuously monitor all subsystems of
a large technical systems in the same way. However, having some systems on a truck
related to fault monitoring, and tracking these systems on a frequent basis would be
a good start for implementing a predictive maintenance framework in trucks as well.

Overall, owing to the small amount of data that each autoregressive model is fit
to the results obtained from the time series modelling should be interpreted with
caution. Given the low statistical support for the model fitting process, placing too
much weight on the results is ill advised. It is very well possible that more frequently
sampled data over longer times could, as discussed in the previous paragraph, could
have a large impact on modelling results. As such, the results and conclusions drawn
from this work are perhaps better considered to be a start of a data requirement
evaluation for future implementations of predictive maintenance in trucks.
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Following an initial literature study of the current state of the field of predictive
maintenance, a thorough exploration of the data provided by AB Volvo for this
project was carried out. During this data exploration phase it was discovered that
the structure of the provided data would not directly allow entries in one dataset to
be connected to entries in the other. This resulted in each dataset being subjected
to different analytic approaches.

The first part of the data, related to repair and service made to trucks, was analysed
using unsupervised data mining methods, as well as supervised classification models
for detecting faults. The results and implications of these, as discussed in sections 6.2
and 6.3 can be summarised as

• There is an underlying structure in what types of repairs are carried out at
the same time on a truck. Although not groundbreaking, the structure dis-
covered during this project correspond well with service relations that could
be intuitively expected.

• Using a classification tree model it is to some degree possible to determine if
a certain type of service has been carried out on a truck based on other types
of repairs. However, the accuracy of this classification is dependent on which
fault is being predicted, and is overall too low to be reliable in a practical
application. This is especially true for the more rare types of service, which
unfortunately were those that are also rather severe.

The latter part of this project involved modelling and predicting the time series of
logged truck parameters. It was discovered that the data supplied was insufficient for
the purpose of creating an accurate model of truck condition and usage. Based on the
discussion given in section 6.1, these reasons are summarised in the following points.

• Data sparsity and continuity, the number of data points per truck was inade-
quate and unevenly sampled, making modelling of the data series falter. Due
to this, care should also be taken when interpreting and drawing conclusion
from these models, as the underlying statistics are very rough. For the sake of
modelling it would have been better to have fewer but more frequently sampled
parameters available, rather than many sparsely sampled ones.
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• Data redundancy, although a large amount of raw data was provided, the
amount of usable data was much less having had to remove, for the intended
usage, unusable parts of the data. A large part of the data contained duplicate
or redundant information.

• Data relevancy, large parts of the data were irrelevant for the purpose of
predictive maintenance. However, given that the data was not collected with
the intention of using it for predictive maintenance, this should perhaps not
be expected.

An overall conclusion from this thesis is that a lot of work is needed with regards
to what data is collected before a reliable predictive maintenance framework can
be established. The project work has shed light on the importance of having high
quality and purposeful data available when burrowing into data driven analytics.

7.1 Future Outlook

This thesis has mainly been an exploratory endeavour, seeking to find new usage of
data already collected by AB Volvo. As such, the goal has been to provide insight
into the data provided and to investigate whether this data, which is already being
collected anyway, can be used in new applications of interest for Volvo. Although
the conclusions from using this particular data for the application of predictive
maintenance have been rather discouraging, it has still given rise to some possible
proposals for further work in the field of predictive maintenance on trucks.

A reasonable course of action based on the results of this thesis would be a project
to identify and acquire the kind of data required for an implementation of predictive
maintenance in the Volvo truck fleet. As discussed in section 6.1, the success of a
predictive maintenance framework is hinged on the quality of the underlying data.
Based on the findings in this thesis, it would likely be more productive to make sure
that the data used is suitable for use in a predictive maintenance framework. Thus,
a thorough data requirement analysis would be a natural first step in assuring data
quality and relevance before further work using such data is undertaken.

The issues related to the data quality, which were encountered during this project,
could also be taken as a sign that some form of data sanitation project is relevant.
Storing vast amounts of data which are never used once collected is wasteful, and
contributes no new information to a data driven analytics framework. The data pro-
vided for this project likely contain relevant and necessary information within the
original domain in which it is used. However, within an entirely different context,
such as predictive maintenance, it is apparent that there is a lot of redundant in-
formation that is no longer relevant. Thus, a relevant project would be to evaluate
what data is collected from trucks, why this data is collected and how it is used
later. Such an analysis should result in a better insight in both what data is already
available, but also what data is possible to use.
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A
Evaluation of Classifier

Performance

This appendix gives a brief review of metrics used to evaluate the performance of
a binary classifier. The metrics regarded here are the accuracy, kappa statistic,
sensitivity, specificity and balanced accuracy of the classifier. Only a brief review
of each of these will be given. For a more thorough review of these metrics, as well
as other metrics used for performance evaluation, the reader is referred to the more
comprehensive introduction given in for instance [58, 35, 59].

Table A.1: Confusion matrix, also known as a contingency table, for a two-class
classifier with assumed outcomes ’0’ (negative) and ’1’ (positive). TN, FN, FP and
TP each represent the number of observations present in each quarter of the matrix.

Reference value
0 1

Pr
ed
ic
tio

n

0 True negative (TN) False negative (FN)

1 False positive (FP) True positive (TP)

A practical way of presenting the results of applying a classification algorithm to
labelled data is in the form of a confusion matrix, as can be seen table A.1. In such
a representation the columns represent the actual class labels of the data, while the
rows represent the predicted classes. Assuming (arbitrarily) that the class labels are
’0’ and ’1’, and that these are considered ’negative’ and ’positive’, respectively. In
this setting, the diagonal elements of the confusion matrix, the true positive (TP)
and true negative(TN) rates, are the observations which are correctly classified by
the algorithm. The false negatives (FN) are positive observations which have been
wrongly labelled as negative by the algorithm. Contrary, the false positives (FP) are
the negative observations which have been incorrectly classified as positive. Using
this notion, a number of metrics regarding the predictive performance of the model
can derived [58].

The accuracy of the model is simply the fraction of correct classifications made

I



A. Evaluation of Classifier Performance

overall, that is

Accuracy = TN + TP

TN + FN + FP + TP
= Correct predictions

Total number of observations . (A.1)

Naturally, a high accuracy implies that the classifier is able to correctly predict a
large number of observations. However, it says nothing about the predictive perfor-
mance on the individual classes, nor if some type of misclassification is considered
more severe than another [35]. To evaluate the performance on each class the sen-
sitivity and specificity metrics can be used instead.

The sensitivity, also known as true positive rate or recall of the model, gives a
measure of how many of the positive observations that are correctly classified;

Sensitivity = TP

TP + FN
= Correctly predicted positive observations

Total number of positive observations . (A.2)

A high sensitivity thus implies that the model successfully classifies a large number
of ’positive’ observations.

Contrary to sensitivity the specificity, or true negative rate, of the model gives a
measure of the fraction of correctly classified ’negative’ observations;

TN

TN + FP
= Correctly predicted negative observations

Total number of negative observations . (A.3)

Similarly to sensitivity a high specificity of a model implies that many negative
observations are correctly classified as such.

The predictive accuracy of equation (A.1) gives a representative measure of model
performance when the classes are balanced, i.e.when there are about as many ob-
servations of each class in the data. However, when this is not the case then the
ordinary accuracy can give an overly optimistic measure of model performance. In
such situations an alternative accuracy measure known as the balanced accuracy can
be a better way of measuring predictive accuracy, and it is defined through

Balanced accuracy = 1
2 ·
(

TP

TP + FN
+ TN

TN + FP

)
= 1

2(sensitivity + specificity).
(A.4)

The balanced accuracy considers the average performance of the predictions on each
class. When performance is similar on each class the balanced accuracy is reduced to
the ordinary accuracy, while it will be lower whenever the classifier performs worse
on any of the classes [56].

Related to imbalanced classes is the no information rate (NIR), of the data. As
opposed to the balanced accuracy this metric is related to the data rather than the
model used for predictions. The no information is defined as the accuracy achieved
by randomly assigning classes when predicting. It is thus the accuracy which is
expected ’by chance’ [35]. For a two-class classification problem the no information
rate is taken to be the fraction of the data belonging to the majority class. Any
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predictive model fitted to the data should have an overall accuracy in excess of the
no information rate if the model is to be of any value [35].

Another way of evaluating model performance compared to that of random guess-
ing is by using the Cohen’s kappa statistic, denoted by κ. This statistic evaluates
the agreement between two independent classifications of observations, taking into
consideration the agreement expected by chance [35]. In the case of a binary classi-
fication the class labels and the predictions made by the classifier are taken as these
two parties. A κ value of 0 implies total disagreement between observations and
predictions, that is the model performs no better than random guessing. On the
other hand, a κ value of 1 implies that perfect agreement between observations and
predictions even after correcting for chance [59]. The kappa statistic is defined [60]
as

κ = po − pc
1− pc

, (A.5)

where po is the observed accuracy of the model and pc is the accuracy expected when
predicting random classes. For a description of how the expected accuracy pc can
be estimated the reader is referred to [61].
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