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Abstract
Modelling of dynamical systems is an important problem in many fields of science.
In this thesis we explore a data-driven approach to learn dynamical systems from
data governed by ordinary differential equations using Neural Ordinary Differential
Equations (ODENet). ODENet is a recently introduced family of artificial neu-
ral network architectures that parameterize the derivative of the input data with
a neural network block. The output of the full architecture is computed using any
numerical differential equation solver. We evaluate the modelling capabilities of
ODENet on four datasets synthesized from dynamical systems governed by ordi-
nary differential equations. We extract a closed-form expression for the derivative
parameterized by ODENet with two different methods: a least squares regression
approach and linear genetic programming. To evaluate ODENet the derivatives
learned by the network were compared to the true ordinary differential equations
used to synthesize the data. We found that ODENet learns a parameterization of
the underlying ordinary differential equation governing the data that is valid in a
region surrounding the training data. From this region a closed-form expression
that was close to the true system could be extracted for both linear and non-linear
ODEs.

Keywords: Artificial neural networks, ordinary differential equations, time-series
prediction, dynamical systems, deep learning, linear genetic programming.
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1
Introduction

1.1 Background

The world is ever-changing due to the passage of time and different phenomena
interacting with and affecting each other. A part of these changes in systems are
predictable and can be modelled. Due to their repeated change over time such
systems are referred to as dynamical systems. Dynamical systems occur in a wide
array of scientific subjects in fields such as physics, chemistry, biology, and engi-
neering making modelling of dynamical systems a task of scientific importance. For
continuous dynamical systems the time-evolution can in many cases be described
by differential equations. In this thesis we will only focus on systems described by
ordinary differential equations (ODEs).

Learning dynamical systems from data is generally a difficult task. Tradition-
ally, modelling dynamical systems from data has been performed as a parameter
estimation problem. This requires construction of a prior model and then fitting
its parameters to the available data. A bad initial model means that the learned
model will not perfectly capture the dynamics of the system. Therefore, domain-
specific knowledge and insights into the available data is necessary to produce an
appropriate model.

To reduce the need for domain knowledge and to automate modelling of dynamical
systems from data, there has been work into creating model-free methods that only
rely on the available data. One approach that have started to be explored in recent
years is the utilization of artificial neural networks and deep learning for data-driven
modelling of dynamical systems.

Artificial neural networks (ANNs), and more specifically deep learning, have
gained much popularity in recent years. Deep learning is today used in a wide
range of fields: in entertainment to recommend shows that we would like to watch
[1], in medicine for drug discovery and medical imaging [2], in engineering for com-
puter vision in self-driving cars [3], and in fundamental physics [4], just to name
a few fields and applications. This widespread usage is in large due to major im-
provements to computational power and the quantities of data being collected, as
deep learning algorithms require large amounts of data to be trained on. There is
a variety of network structures suitable for different applications. Some of the most
common variants include Recurrent Neural Networks (RNNs) for time-series predic-
tion and natural language processing, and Convolutional Neural Networks (CNNs)
for image recognition [5].

A Residual neural network (ResNet) is a relatively new type of network archi-
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1. Introduction

tecture constructed to reduce problems inherent with very deep networks [6, 7, 8].
ResNet utilizes skip connections to learn residuals, small iterative changes to the
input from an identity mapping, rather than a full mapping from the input to the
output. This is illustrated in figure 1.1.
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Figure 1.1: The skip connection in a residual neural network block. The network
learns the change to the input F (xi), the residual, needed to acquire the desired
output xi+1 = xi + F (xi) rather than learning the entire mapping xi+1 = F̃ (xi)
directly.

1.1.1 Neural Ordinary Differential Equations
Recently, Chen et al. introduced a new family of ANNs called Neural Ordinary
Differential Equations (ODENet) [9], based on the notion that the skip connections
in ResNet can be seen as a realization of Euler’s method for numerically solving
ODEs. Instead of letting the network learn the residuals between fixed points as in
ResNet, ODENet parameterizes the local derivative of the input data with a neural
network block. They then let an ODE solver be responsible for the steps taken from
an input xi at time ti to an output xi+1 at time ti+1, with the derivative at each point
fed to the ODE solver to take each step. This is illustrated in figure 1.2. A strength
of ODENet compared to ResNet lies in the choice of the ODE solver. By building
ODENet with an ODE solver with an adaptive step length it can step between any
two time points. This makes it possible for ODENet to handle time-series with
irregular measurements and also trade off accuracy for speed by taking larger steps.

Chen et al. introduced three different applications for ODENet. They proposed
that it can be used as a drop-in replacement for a ResNet block, has some advantages
when computing normalizing flows [10], and to model and make predictions of time-
series. The latter is the focus of this thesis, in which we explore how ODENet and
its time-series capabilities can be used to model and learn dynamical systems from
data without prior knowledge of the underlying dynamics.

What allows ODENet to be used for dynamical systems modelling is the fact
that the ANN block of ODENet learns the local derivative dx

dt (ti) at input point
x(ti) necessary for the ODE solver to step to the output x(ti+1), as pictured in
figure 1.2. This means that the underlying ODE of the data is directly encoded in
the ANN block during training. After training, ODENet can take any point x(t) as
input to predict the next point x(t+ ∆t) after time ∆t by taking steps in the ODE
solver, based on the information about the derivative encoded in the ANN block.
This means that ODENet is predicting the dynamics of the unknown system. Since

2
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Figure 1.2: The structure of ODENet with an ANN block composed of two layers
connected to an ODE solver. In comparison to ResNet instead of learning the resid-
ual from the input xi to the output xi+1, the ANN block learns the time derivative
for the input at time ti. The derivative is then used by an ODE solver to step to
the output xi+1 at time ti+1.

the dynamical system is described by a corresponding ODE, finding the analytical
dynamics amounts to extracting the information about the local derivative encoded
in the network.

1.2 Aim and scope
The aim of this thesis is to examine ODENet as a tool for modelling dynamical
systems from data and evaluate how well the network approximates the true under-
lying dynamics of the system. We also explore two methods for extracting analytical
closed-form expressions of the ODE from the learned network: least squares regres-
sion which require making some prior guesses about the system, and linear genetic
programming [11] which is almost completely model-free but with some inherent
randomness.

In addition to evaluating the network performance the aim of this thesis is to
evaluate how to optimally train ODENet as well as construct the network structure,
finding suitable parameters for training and the network architecture. We will not
be focusing on optimizing the absolute training time or optimizing the algorithms
for hardware, i.e. training the model on the GPU or the CPU. We will evaluate
our findings in terms of the resulting network performance as a modelling tool for
learning ODEs from data.

1.3 Related Work
Even though the ODENet architecture by Chen et al. is novel, the connection
between neural network layers and differential equations have been observed previ-
ously. Among others Lu et al. [12], and Haber and Ruthotto [13] have previously
worked on constructing new classes of neural networks inspired by stepping methods
from ODE solvers and their connection to ResNet layers. Ruthotto and Haber [14]
similarly published an interpretation of deep residual CNNs as nonlinear systems
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1. Introduction

of partial differential equations (PDEs) and constructed a class of neural networks
from this motivation. These works have primarily focused on improving the ResNet
architecture by taking inspiration from ODEs and PDEs, and not on the learning
of the actual dynamical systems.

There has also been other recent work on extending traditional modelling of dy-
namical systems with tools from machine learning to learn behaviour from data.
Some previous papers have exploited statistical machine learning methods, as op-
posed to deep learning. Raissi et al. [15, 16] explored different methods for learning
from data for predicting dynamics governed by PDEs. They developed a method
of learning PDEs by means of Gaussian processes and putting a Gaussian prior on
the dynamics that was to be learned, taking steps between states according to well-
known numerical ODE solvers. Raissi et al. [17, 18] instead used a neural network
based approach, with the dynamics discretized by a multistep ODE solver scheme.
The networks in these works have been physics-informed, meaning that they have
knowledge of the dynamical system that is to be learned except for a few scalar
parameters. The focus of their method is on fitting the unknown scalar parameters
of their already constructed model to data.

The task of learning unknown dynamics have been explored by Long et al. [19]
with PDE-Net. PDE-Net intends to learn PDE dynamics with a network architec-
ture inspired by the Euler ODE solver stepping scheme, the only assumption being
the maximum order of the PDE. A similar idea is proposed by Raissi et al. [20],
using a stepping scheme inspired by ODE solvers from the linear multistep family.
In comparison to ODENet both networks rely on data sampled at regular short time
intervals.

There has also been similar work done following the release of ODENet, as dy-
namical systems modelling using deep learning is an ongoing topic. During the
work on this thesis Ayed et al. [21] published a paper regarding the same prob-
lem of forecasting dynamical systems from data following an unknown ODE. They
followed the same approach used in ODENet by approximating the unknown ODE
with a neural network, in their case a ResNet module. Ayed et al. utilized Euler’s
forward method as a set ODE solver while ODENet allows any ODE solver to be
used. The fixed ODE solver allowed Ayed et al. to make use of the fact that all
steps in the solver are known, which simplifies training at the cost of flexibility in
the ODE solver. Furthermore, by using a fixed time-step solver they are bound to
a single time-step during training and therefore lack the capability of dealing with
training data sampled at irregular time intervals compared to ODENet.
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2
Theory

The chapter presents theory underlying the methods explored in the thesis. We start
by giving a brief overview of ordinary differential equations and their occurrences
in science. We then present the differential equations that are used as training
data in the thesis, followed by a section on standard numerical methods for solving
ordinary differential equations. We treat ANNs starting with a short summary of
general concepts for feedforward networks leading to a description of ODENet and
its applications for modelling dynamical systems. The last section describes least
squares regression and linear genetic programming, the two methods used to extract
an analytical ODE from a trained ODENet.

2.1 Ordinary differential equations

Ordinary differential equations are used to describe the dynamics of a changing
system. Dynamical systems can be found in chemistry (e.g. rate of change of the
components in chemical reactions [22]), biology (e.g. population dynamics [23], dis-
ease spreading [24]), and physics (e.g. laws of motion, harmonic oscillators). In
general, ODEs describe the change of a variable y(x) with respect to some indepen-
dent variable x. In our case, we will only deal with systems describing the rate of
change of y(t) with respect to time t.

An explicit ODE of the nth order describing the rate of change of a variable y
with respect to time t as an independent variable is on the form

y(n) = F (t, y, y′, y′′, ..., y(n−1)). (2.1)

Here F is a function of the independent variable t, the dependent variable y(t) and
its derivatives with respect to t, y(i) = diy

dti for i = 1...n. A higher order ODE,
with derivatives of order greater than one, can always be rewritten as a system of
first-order ODEs by redefining the higher order differentials as new variables [25,
Chapter I.1].

The special case of a system of D linear first order ODEs can be written on matrix
form as

y′ = Ay + b, (2.2)

with the D ×D coefficient matrix A and the D × 1 constant vector b.
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2. Theory

2.1.1 Initial value problems (IVPs)
A solution y(t) = G(t) to a first-order ODE is only uniquely defined up to an
unknown integration constant. Similarly, an nth order ODE gives rise to n arbitrary
integration constants. Therefore, a full solution requires knowledge of an initial
condition (t0, y0) that can be used to determine the constants. An ODE together
with a given initial condition is known as an initial value problem (IVP). A solution
y(t) to the IVP is a function satisfying both the ODE and the initial condition
y(t0) = y0.

2.2 Examined ODEs

The datasets used in the thesis were synthesized from four different systems governed
by ODE equations: parabolic motion, harmonic oscillators, Lotka-Volterra predator-
prey equations, and a model for seismic activity on a building with multiple floors.
The following sections briefly describes the mathematics behind these problems.

2.2.1 Parabolic motion
For the movement of a projectile in two-dimensional space with coordinates (x(t), y(t)),
Newtons second law of motion gives rise to a simple system of decoupled second-
order ODEs

x′ = vx

y′ = vy

x′′ = 0
y′′ = −g

(2.3)

along with a set of initial conditions {x(0), y(0), vx(0), vy(0)}. Here, vx and vy are
the horizontal and vertical velocity measured in m s−1, respectively. If the initial
horizontal velocity vx(0) = 0 m s−1 the system is described by the vertical motion
from y′ and y′′.

In the above case the projectile is moving in a vacuum. To account for air
resistance a dampening term proportional to the square of the velocity, but opposite
in direction, is added. This leads to a non-linear second-order ODE system

x′ = vx

y′ = vy

x′′ = − k
m
x′|x′|

y′′ = − k
m
y′|y′| − g

(2.4)

Here k [kg m−1] is the drag proportionality constant andm the mass of the projectile
in kg. An example of the three cases described are illustrated in figure 2.1.
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Figure 2.1: Examples of three types of parabolic trajectories all starting from
the same initial position in Euclidean space. The acceleration due to gravity is
g = 9.82 m s−2. The blue dashed trajectory is an object with zero initial velocity both
vertically and horizontally. The other trajectories share the same initial velocity. For
the orange solid line there is no acceleration in the horizontal direction, and only
gravity acting vertically. For the green dash-dotted line a drag term proportional to
the square of the velocity is added. This slows the object down both vertically and
horizontally, making the parabola shorter and lowering its maximum.

2.2.2 Harmonic oscillator
Harmonic oscillator equations occur as analogous systems in different subjects, for
example mass-spring systems and pendulums in classical mechanics and RLC elec-
tronic circuits. These are equivalent in the sense that the ODEs describing the
dynamics are on the same form and can be treated by the same mathematical
framework.

The simplest case of a harmonic oscillator consists of a weight attached to a
spring. When disturbed from its equilibrium position the spring exerts a restoring
force Fs [N] proportional to the displacement x measured in m given by Hooke’s law
Fs = −kx, with k [N/m] being the spring constant. For a weight of mass m in kg
Newton’s second law gives rise to the ODE

x′ = vx

x′′ = − k
m
x,

(2.5)

with vx being the velocity measured in m s−1.
Adding friction dampens movements in the system, giving rise to a force in the di-

rection opposite to the velocity Fc = −cdx
dt [N], with dampening coefficient c [kg s−1].
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Figure 2.2: Example of two types of harmonic oscillators in phase space. The
solid blue line is a harmonic oscillator. The dashed orange line is the trajectory of
a damped oscillator starting with the same initial value as the simple. Due to the
dampening the phase portrait is an asymptotically stable spiral eventually reaching
the fixed point in the origin.

The ODE for a damped oscillator is then

x′ = vx

x′′ = − k
m
x− c

m
x′.

(2.6)

2.2.3 Lotka-Volterra predator-prey equations

The Lotka–Volterra equations are commonly used to describe the continuous in-
teractions between a predator population P (t) and a prey population N(t) with
undefined units. The predators feed on the prey, growing in numbers while reduc-
ing the amount of prey. When there is too little prey the predators compete for
food making their population size decrease. Few predators means that the prey can
thrive. This interaction is described by the coupled ODE system

N ′ = N(α− βP )
P ′ = P (γN − ε),

(2.7)

where α, β, γ, and ε are positive constants [26]. An example is shown in figure 2.3.
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Figure 2.3: The dynamics over time between two population following the Lotka-
Volterra equations, with the population size and time t measured in arbitrary units.
The populations periodically grow and decrease with the peak of orange dashed line
representing predators always following a peak in the blue line depicting the prey
population. The values of the parameters in this example were a = 2

3 , b = 4
3 , c = 1,

d = 1.

2.2.4 Earthquake Effects on Buildings
A model for an earthquake’s effects on buildings is described in [27]. The model
describes each floor i of a multistory building as a point mass mi measured in kg
located at the floor’s center of mass. The position of the floor xi is the distance in
metres from the equilibrium position xi = 0 m. Each floor is acted upon by a restor-
ing force according to Hooke’s law with Hooke’s constants ki [N m−1]. Dampening
effect are ignored in the system. The earthquake is modelled as a driving oscillation
F (t) = F0 cos(ωt) affecting each floor.

We assume that all floors are equal with mass m and Hooke’s constant k. For a
two-story building this leads to the system of ODEs

x′1 =vx1

x′2 =vx2

x′′1 = k

m
(−2x1 + x2)− F0ω

2 cos(ωt)

x′′2 = k

m
(x1 − x2)− F0ω

2 cos(ωt),

(2.8)

where vx1 and vx2 are the velocities measured in ms−1 for the first and second floor,
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respectively. An example of the movements of a two-floor building is shown in figure
2.4
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Figure 2.4: Example of movement over time for a two-floor building affected by
an earthquake. The solid blue line describes the position of the first floor x1, while
the dashed orange line is the position of the second floor x2.

2.3 Numerical solutions to IVPs
Since ODEs and IVPs are such common occurrences in industry and science there is
a natural need for computational methods to solve them. One of the most simple and
well known is Euler’s method which, starting from an initial condition y(t0) = y0,
takes linear steps along the ODE y′(t) = F (t, y(t)) with a fixed time-step h. This
means an update is

yi+1 = yi + hF (ti, yi), (2.9)
with time updates as ti+1 = ti + h. One can prove that the global error estimate
is proportional to the size of the chosen time step h. Therefore, Euler’s method is
referred to as a method of order one [25, Chapter I.7].

Euler’s method is an explicit method, meaning that a later state is calculated from
the current state yi+1 = G(yi). There are also implicit methods, where a subsequent
state yi+1 is calculated by solving an equation dependent on both the subsequent
and the current, and sometimes also previous, states H(yi+1, yi, yi−1) = 0. Most
methods for numerically solving IVPs are made for systems of first-order ODEs,
since all higher-order ODEs can be rewritten as such. Besides the notion of explicit
or implicit methods, the first-order solvers can generally be divided into two main
groups: the Runge-Kutta family, and linear multistep methods [25].
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Runge-Kutta solvers are based on the idea that instead of going from yi to yi+1
directly, a set of intermediate steps are taken at fractions of the step size h and
added in a weighted average. As the name implies multistep methods also use
many steps, but in contrast to Runge-Kutta they use a number of previous whole
steps. For example, calculating yi+3 from the 3 previous steps yi+2, yi+1,, and yi [25,
Chapter II, Chapter III].

Figure 2.5 shows the difference in stepping for Euler’s method compared to Runge-
Kutta solvers and multistep methods, all with the same time step size from tn to
tn+1. Euler’s method takes a single step in the direction of the local derivative.
Runge-Kutta takes several intermediate shorter steps in the time interval, and from
these constructs a final long step. The multistep method takes a single step on
the interval tn and tn+1, but this step is dependent on previous steps taken by the
algorithm.

2.3.1 ODE solvers
In this thesis, two algorithms are used to numerically solve IVPs: the Dormand-
Prince method (or Runge-Kutta (4,5)), and an adaptive Adams-Moulton-Bashforth
method that belongs to the linear multistep class. The described methods are im-
plemented by Chen et al, the authors of the original ODENet [9], and can be found
in their GitHub repository [28].

2.3.1.1 Dormand-Prince method

The Dormand-Prince (dopri5) method is a fourth order Runge-Kutta method, mean-
ing that the global error grows as h4, where h is the stepsize. The local error at each
step is proportional to h5. Since the error is dependent on the step size a smaller
step size leads to more accurate results, but at the cost of many more computations.
It would be time consuming to manually choose an appropriate step size to optimize
this trade-off at every point. Hence, the method uses an algorithm to automatically
adapt the step size at each step. The step size adjustment is controlled by two user-
supplied parameters, relative error tolerance Rtol and absolute error tolerance Atol,
that makes it possible to still influence the speed/accuracy trade-off. For details we
refer to a more comprehensive text on the subject, for example [25, Chapter II].

2.3.1.2 Adaptive order Adams-Moulton-Bashforth

The other algorithm belongs to the linear multistep family and and is an adaptive
order Adams-Moulton-Bashforth method. This method is implicit as opposed to the
explicit Dormand-Prince method. Implicit methods tend to perform better than
explicit methods on certain problems, such as stiff ODEs. A stiff ODE includes
terms that vary rapidly, forcing the solver to take extremely small time-steps even
though the exact solution might be relatively smooth. This leads to a very large
increase of the time required to solve the ODE. Solutions with certain solvers, such
as the explicit Dormand-Prince solver, can take a very long time while for example
the implicit Adaptive-order Adams might be better [29].
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Intermediate steps
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Intermediate steps

Figure 2.5: Illustration of stepping schemes for different ODE solvers taking a
step from time tn to tn+1. Case (1) is Euler’s method that takes a single step along
the local derivative. Case (2) is a Runge-Kutta method constructing its step from
a weighted average of several shorter intermediate steps. Case (3) is a multistep
method. The single step from tn to tn+1 is dependent on the previous steps.
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The method also makes use of an adaptive step size with the same Rtol and Atol
parameters as described in the previous paragraph. For details on the choice of
order and step size, see [25, Chapters III.7].

2.4 Feedforward artificial neural networks
Originally inspired by neurons and connections in biological brains, the fundamental
building blocks for ANNs are layers of interconnected computational units. We will
refer to these computational units as neurons throughout this work. An ANN is
composed of layers of neurons, with each layer connected to the next with a set
of weights W [n] between neurons in different layers. In a fully-connected layer, all
neurons in layer n are connected to all neurons in layer n + 1 with weight matrix
W[n]. This is illustrated in figure 2.6. The input to each layer n + 1 is the output
from the previous layer z[n]. The output is calculated by computing a weighted sum
of the inputs to each neuron and running the sum through an activation function
a(x), determining how much the neurons fire

z[n+1] = a(W[n]z[n]). (2.10)

Input layer Hidden layer Output layer

Figure 2.6: A visual representation of a simple fully connected feedforward artificial
neural network. Each layer n of the network is connected to the next layer n + 1
with a set of weights W [n].

2.4.1 Activation functions
Activation functions introduce non-linearity to the mapping learned by the network.
This is important since the network otherwise would only be able to learn an affine
transformation [30]. There are different kinds of activation functions, appropriate
for different kinds of networks and training data. One of the most used in the
Rectified Linear Unit (ReLU) activation function

a(x) = max(0, x), (2.11)

with a sharp cutoff for negative inputs [5, Chapter 6]. Sometimes, it is preferable to
not fully eliminate all negative values. In those situations, an alternative is Leaky
ReLU defined as

a(x) =

x if x > 0
hx otherwise,

(2.12)
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with h as a small positive constant. These activation functions are shown in figure
2.7.
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Figure 2.7: Two regularly used activation functions a(x) for neural networks. The
solid blue line is ReLU, and the orange dashed line is Leaky ReLU with h = 0.05.
Both functions produce a linear response for inputs above zero, but cuts inputs
below zero. Leaky ReLU permits ’leakage’ of small negative values.

2.4.2 Calculating the loss
The output of the final layer is the output of the whole neural network

ŷ = z[N ] = a(W[N ]z[N−1]) (2.13)

It can be the value of a single neuron, or many neurons. In supervised learning we
have both inputs to the network x and the appropriate output y. The error on the
approximation from the network is the loss L(y, ŷ) calculated between the target
output y and the output from the network ŷ. The loss is the objective function that
the network should minimize.

The choice of loss function is dependent on the objective that the neural network
should solve. In this paper we use the Mean Squared Error (MSE) over all training
outputs yi and corresponding outputs

L(y, ŷ) = 1
m

∑
i

(yi − ŷi)2, (2.14)

which is suitable for regression problems [31].
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2.4.3 Backpropagation
To minimize the loss the weights in the network need to be updated. This is done
using gradient descent, which says that the weights should be updated in the direc-
tion of the negative gradient of the loss function with respect to the weights. The
weights W[n] in layer n are updated as

W[n] = W[n] − α∂L(y, ŷ)
∂W[n] , (2.15)

with the learning rate α as a small positive parameter [5].
The update to the last layer W[N ] in a network is calculated with a single ap-

plication of the chain rule to equations 2.14 and 2.13. Since the network layers are
connected the gradient of the loss with respect to the previous layers W[N−1] de-
pend on the gradient with respect to W[N ]. Therefore, all updates can be calculated
with the repeated application of the chain rule. This propagates the loss backwards
through the network, and is referred to as backpropagation. Figure 2.8 pictures the
flow of backpropagation in a small network.

Figure 2.8: Motivation for backpropagation. Due to the layered network struc-
ture, the gradient of the loss with respect to the first layer is dependent on the
gradient with respect to the last layer. The loss can therefore be seen as propagat-
ing backwards through the network structure with the repeated application of the
chain rule.

2.5 ODENet
The feedforward process for a single ResNet block, described in section 1.1, is

xt+1 = xt + hf(xt, θt), h = 1 (2.16)

where xt is the input to the current block, f(xt, θt) is a function parametrized by θt
and xt+1 is the layer output [6], as seen in figure 1.1. This can be seen as a single
step of forward Euler discretization (see section 2.3)

yi+1 = yi + hF (ti, yi) (2.17)

of the ODE dyi(t)
dt = F (ti, yi) [32].

The notion of Neural Ordinary Differential Equations (ODENet) was introduced
by Chen et al [9] based on the observation that when the number of layers n in the
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network is increased and the step size h is decreased, in the limit n→∞, h→ 0 the
continuous derivative can be parametrized by a neural network

dy(t)
dt = f(y(t), t, θ). (2.18)

Given an initial condition y(0) the output from ODENet y(T ) can be specified as
the solution to the ODE at time T . The output can be computed with any desired
accuracy using any numerical ODE solver as

y(T ) = y(0) +
∫ T

0

dy(t)
dt dt = y(0) +

∫ T

0
f(y(t), t, θ) dt. (2.19)

An overview of ODENet is shown in figure 1.2. Each step taken by the ODE
solver can be seen as a layer output in ODENet, similar to how the step through
each block in ResNet can be seen as a step according to Euler’s method for solving
differential equations. Hence, ODENet can be seen as a continuous-depth network,
where at runtime the ODE solver decides how many layers, representing steps in
the ODE solver, are required to forward pass through in order to get the output
with the desired accuracy. Similar to numerically solving differential equation taking
many small steps in the approximation increases the accuracy compared to taking
one large step.

2.5.1 Backpropagation using the adjoint sensitivity method
The main difficulty of using a neural network parametrization of an ODE is the
backpropagation through the ODE solver. Even though backpropagating through
the ODE solver steps is straightforward, the memory cost is high and additional
numerical errors occur. In order to perform backpropagation the gradient of the
loss function with respect to all parameters must be computed. As different ODE
solver may take a varying number of steps when numerically integrating between
two time points, a general method for computing the gradient of the loss at each
intermediate step is required. Chen et al. introduce a solution to this problem using
the adjoint sensitivity method [33, 34] which can be used regardless the choice of
ODE solver and with constant memory consumption. This section gives an overview
of how the adjoint sensitivity method for backpropagation works. A proof of this
method is given by Chen et al. in appendix B of their paper [9].

The adjoint method works by constructing the so called adjoint state a(t) = dL
dy(t)

where L is the loss function and y(t) is the output after each step taken by the ODE
solver, which follows the differential equation

dy(t)
dt = f(y(t), t, θ). (2.20)

Here f(y(t), t, θ) is a parametrization of the time-derivative and θ are the parame-
ters. It can be shown that the adjoint state follows the differential equation

da(t)
dt = −a(t)∂f(y(t), t, θ)

∂y(t) . (2.21)

16



2. Theory

For a proof of this, see appendix B.1 in [9].
We can then solve the differential equation backwards in time, i.e. from the final

output time tN to the starting time t0, similar to regular backpropagation. Hence
we acquire the gradients with respect to the hidden state at any time as

dL
dy(tN) = a(tN) (2.22)

and
dL

dy(t0) = a(t0) = a(tN) +
∫ t0

tN

da(t)
dt dt = a(tN)−

∫ t0

tN
a(t)∂f(y(t), t, θ)

∂y(t) dt. (2.23)

When using multiple steps in an ODE solver we can simply integrate backwards in
time between each timestep taken in order to get the gradient at all the different
time steps, i.e. from tN to tN−1, then from tN−1 to tN−2 and so on, and summing
up the gradients after each solved step.

When backpropagating we also need the gradients with respect to t0, tN and θ.
In order to do this, we view t and θ as states with constant time derivatives and set

∂t(t)
∂t

= 1, ∂θ(t)
∂t

= 0. (2.24)

These can be combined with y(t) to form the augmented state

faug([y, θ, t]) = d
dt

y
θ
t

 :=

f(y(t), t, θ)
0
1

 (2.25)

and the augmented adjoint state

aaug(t) =

 a
aθ
at

 (t), aθ(t) = dL
dθ(t) , at(t) = dL

dt(t) . (2.26)

We then obtain the ODE
daaug(t)

dt = −
[

a(t) aθ(t) at(t)
] ∂faug(t)
∂[y, θ, t] (2.27)

where ∂faug(t)
∂[y,θ,t] is the Jacobian of the augmented state

∂faug(t)
∂[y, θ, t] =


∂f
∂y

∂f
∂θ

∂f
∂t

0 0 0
0 0 0

 (t). (2.28)

The first element of equation 2.27 is as expected what is shown in equation 2.21.
The gradient with respect to the model parameters dL

dθ can be acquired by setting
aθ(tN) = 0 and integrating the second element of equation 2.27 backwards in time.
We then acquire

dL
dθ = aθ(t0) = −

∫ t0

tN
a(t)∂f(y(t), t, θ)

∂θ
dt. (2.29)
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Finally we acquire the gradients with respect to t0 and tN as

dL
dtN

= at(tN) = dL
dy(tN)

dy(tN)
dtN

= a(tN)f(y(tN), tN , θ) (2.30)

and
dL
dt0

= at(t0) = at(tN)−
∫ t0

tN
a(t)∂f(y(t), t, θ)

∂t
dt. (2.31)

Hence we can acquire all the gradients needed to backpropagate through the ODE
solver by solving the ODE for the augmented state backwards in time. If several
steps are taken between the times t0 and tN , the gradients can simply be calculated
by solving the augmented ODE backwards between each time step in the same way
as for the adjoint state, i.e. from tN to tN−1, then from tN−1 to tN−2 and so on, and
summing up the gradients after each solved step.

2.5.2 Using ODENet to model dynamical systems

Since ODENet approximates the derivative of a system, it can be used as a tool
for modelling dynamical systems. Given a time series data set described by an
ODE, one can learn the underlying dynamics of the system by integrating the model
between any two data points in the data set and then backpropagating to update
the model parameters. As the model is continuously defined, it can be integrated
between any two time points, eliminating the common problem of modelling data
with irregular time steps. With a black box ODE solver, the approximated ODE can
be integrated both forward and backward for any arbitrarily long time step given
an initial condition y(0).

Chen et al. propose a model for latent-variable time series prediction using a
recognition RNN and training the model as a variational autoencoder. This is a
useful tool for time series prediction, but in this thesis we want to investigate using
ODENet to directly learn the dynamics of the data set. The main reason behind
this choice was to be able to investigate the actual learned dynamics of the neural
network. The methods used to achieve this are further explained in chapter 3.

2.6 Finding analytical solutions to ODEs

The ANN block of ODENet numerically encodes the local derivative of the system
on which it has been trained. This means that we get a numerical value for the local
derivative at any point. Since the dynamical system is described by a corresponding
ODE, finding an analytical expression for it is equivalent to extracting a closed-
form expression for the derivative dx

dt (t) = F (x(t), t) parameterized by the network.
Since we know the numerical inputs y with corresponding output y′ finding the
closed-form expression can be seen as a function fitting problem. We rely on two
different methods for finding these expressions: least squares approximation and
linear genetic programming.
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2.6.1 Least squares approximation
Least squares approximation is a method used to find the best approximate solution
to an over-determined system. An equation system Ax = b, where A ∈ Rm×n,
is over-determined if m > n. It is generally not possible to find a vector x which
exactly solve these equation systems. The least squares solution is the vector x
which minimizes the residual vector r = Ax − b. Hence the least squares solution
is defined as

arg min
x
||Ax− b||2. (2.32)

The most common ways of solving this problem are using QR decomposition or SVD
decomposition [35].

2.6.2 Linear genetic programming
Linear genetic programming (LGP) is a stochastic evolutionary algorithm used for
evolving programs consisting of multiple simple instructions. Figure 2.9 illustrates
how these programs work. The general idea behind LGP is to initialize a “popu-
lation” of programs and then letting this population “evolve” over time, evaluating
how well the programs perform on the specified task at each time step by decoding
the program and calculating its error. The process of decoding an individual is
shown in figure 2.10. The programs then evolve each iteration using techniques such
as crossover, the process of swapping parts of the program in two individuals, and
mutations, randomly changing one or several instructions in an individual. A more
in-depth description of LGP can be found in [11].
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Operand 1 register
Operand 2 register

Instruction

Figure 2.9: The main components of the LGP algorithm for trying to find the
function y = f(x0, x1, . . . ). Each individual contains a set of instructions, which
each are comprised of 4 integers. The first integer in each instruction contains the
ID of the operation to perform, the second integer contains the destination register
and the final two integers contain the registers on which to perform the operation.
There are a set number of variable registers in which the output of an operation can
be saved, and a set number of constant registers which may not be changed. When
initializing the decoding each variable x0, x1, . . . are put in the variable registers,
and the remaining variable registers are set to zero. The number of operations
which can be performed is decided before running the algorithm, and the operations
are not bound to the ones shown in this figure. The output can be selected to
be any variable register as long as the same register is used for all individuals and
throughout all generations.

1 1 0 1 4 0

1 1

Decode

{ Individual

Figure 2.10: An example of decoding the first instruction in an individual. The
first integer in the instruction contains the operation to be performed, the second
integer contains the destination register and the final two operations contain the
operand registers. The registers as well as operations for this example are shown in
figure 2.9. Note that the destination register always must be a variable register, as
the constant registers are not allowed to be changed. Each instruction is decoded
in order from left to right.
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Methods

The following chapter describes the architecture of ODENet along with how it was
trained, and how the the model was evaluated. The first section outlines how we
synthesized the datasets used in the thesis. Following that is a description of the
network architecture showing how training was performed and the corresponding
split of data into training and validation sets. We also talk about design choices
such as batch size and weight initialization. The last two sections treat the extraction
of a closed-form expression of the learned ODE from the trained network, and how
the performance of our model was evaluated.

All methods were implemented in the Python programming language using the
PyTorch machine learning library [36].

3.1 Data
The datasets used for training ODENet were composed of M different time series
with states y(t) at time t from initial time t0 to final time tT , on the form Ym =
{y(t[m]

0 ),y(t[m]
1 ), ...,y(t[m]

Tm
)}. Both initial and final times, and the time steps between

points varied between time series. The time series were represented as a set of M
trajectories

M = {v1(y(t), t), ..., vN(y(t), t)}, (3.1)

with the evolution of the trajectories described by the same shared global dynamics
that we were trying to learn. Therefore, each trajectory vm(y(t), t) was determined
by a local initial condition y(t[m]

0 ) at time t[m]
0 under the global dynamics. All

datasets were synthesized.

3.1.1 Dataset synthetization
Each dataset was synthesized by solving initial value problems using an ODE solver.
This is illustrated in figure 3.1. We set up the true ODE and chose a set of initial
values that determine the trajectories. Initial values were selected from a range for
each variable, and either sampled uniformly at random or spaced linearly. The solver
was then used to solve the ODE starting from the initial condition at predetermined
sample times forming a time series. The time series were configured by choosing a
time span forward, and the number of equally spaced time steps that the trajectory
was to be be sampled at. After a trajectory had been generated, we had the possi-
bility to add noise sampled from a Gaussian distribution with a chosen mean and
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Initial Value Problems

Analytical ODE

M time series 

Gaussian noise 

Figure 3.1: Flowchart depicting the method with which data was synthesized. An
initial value problem is constructed from a known ODE that the network should
try to model, along with M initial values (ti0, yi0). The initial value problem is then
solved by an ODE solver, in our case the Dormand-Prince method or Adaptive order
Adams, at points given by a time series for each initial value. The output from the
ODE solver is a set of M trajectories, to which we can add noise sampled from a
chosen Gaussian distribution.

variance. Lastly, we could remove randomly chosen points from the dataset to make
the time steps between points unequal.

For second-order ODEs, such as parabolic motion, we saved both the coordinates
(zeroth order derivative), and velocities (first order derivative) at each time step. In
principle, the velocity could be approximated from the positional coordinates and
the time, but in a experimental setup velocity would presumably be recorded along
with the position. Therefore, we chose to assume that the instantaneous velocity
would be available at each time step. An alternative would have been to let the
network try to learn the dynamics only from positional coordinates along with the
time step, but this is assumed to be a more difficult problem and lead to worse
approximations.

3.2 ODENet
The full ODENet architecture was composed of two parts. The first was a standard
fully connected feedforward neural network, followed by a numerical ODE solver.
Figure 3.2 outlines the architecture. These three design parameters: number of
hidden layers, number of neurons, and type of activation function were varied to test
how they affected performance. We tested different sizes for the network, between
one to five hidden layers, and with between 10 to 50 neurons in each layer. The
default architecture had three hidden layers with 50 neurons in each layer, with
Leaky ReLU activation functions. This network structure was chosen as it performed
well on each of the examined problems and as the change in computational time did
not increase significantly compared to the smaller network structures.

All layers were connected with Leaky ReLU activation functions. The neural net-
work takes the state yi as input and outputs an approximation of the time derivative
y′i. This was then used in an ODE solver to approximate the next state ŷi+1. We
used the ODE solvers implemented for GPU support by the authors of the original
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Figure 3.2: Illustration of the ODENet architecture used in the thesis. The time
derivative is approximated by a regular feed-forward network with Leaky ReLU as
activation function between layers. The input to the neural network was a state yi,
with the corresponding network output being the approximated local time derivative
y′i. Both the input and the approximated derivative was then fed to an ODE solver
to get the approximated next state ŷi+1

paper, published in their Github repository [9, 28].
The default solver was the Dormand–Prince (dopri5) method with the alterna-

tive Adaptive-order implicit Adams (adams), both described in section 2.3. There
were also other fixed-step methods that could be used, but the fixed step size may
be a disadvantage for many problems. The choice of solver could be important,
depending on the problem. For example, so-called stiff ODEs tend to be a problem
for the Dormand-Prince method. Solutions with certain solvers, such as the explicit
Dormand-Prince solver, can take a very long time while for example the implicit
Adaptive-order Adams might be better, see section 2.3.1.

3.2.1 Training and validation
During training the data was split into two sets, a training set and a validation set.
The training set was used to update the weights in the network while the validation
set was used for monitoring overfitting and how well the training generalised.

Training was performed by randomly selecting a point in the training set and
predicting the next point forward its time series, corresponding to a step in the ODE
solver with the derivative approximated by the neural network. From the training
point yi at time ti we evaluated the trajectory forward to time ti+1 with the ODE
solver to get the prediction for the next point ŷ(t). This was then compared to the
true target point y(t). The loss was calculated as the mean squared error (MSE)
between the true point y(t) and the predicted point ŷ(t). We utilized batching,
with a default batch size of 10 samples per batch. The batch size was chosen due
to the relatively low amount of training data and the initial observation that large
batch sizes lead to the network loss oscillating during training. It is plausible that
different problems benefit from different batch sizes. The loss over a batch of size
B was calculated as

L(y(t), ŷ(t)) = 1
B

B∑
i=1

(
yi − ŷi

)2

. (3.2)

Since the prediction was the next point in a series we could see the edges between
points as the real members of the training and validation sets instead of the points
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1

2
3 4

5

6

Training set:  1  -  2 ,  2  -  3 ,  4  -  5

Validation set:  3  -  4 ,  5  -  6

Training edge
Validation edge

Figure 3.3: Illustrating the split of data into a training set and validation set.
In the figure the red points are training points and the blue are validation points.
Since the loss for a training point yi is calculated as the MSE between the true next
point yi+1 and the predicted ŷi+1 training can be seen as being performed on edges
between points, and not the actual points. This means that points can belong to
both the training set and validation set, but either as an end point or a starting
point. The actual step between points is only used once, either in training or in
validation.

themselves. This is shown in figure 3.3. Each point can belong to both the training
set and validation set at the same time, but only either as an end point or a starting
point for a step. The subset of data points not chosen for training was used for
validation. The validation loss was calculated in the same way as for training, but
for all points after each epoch instead of in batches.

3.2.1.1 Weight initialization

For normal neural networks proper initialization of weights can speed up training
performance and avoid exploding or vanishing gradients [8]. In the case of ODENet
a bad approximation of the time derivative from the feedforward network could lead
to instability in the ODE solver. If the approximation changes rapidly even though
the true derivative is smooth, the solver will be forced to take extremely small steps
emulating what happens in the case of a stiff ODE. This will lead to each training
step taking a very long time. Hence, proper initialization is important.

For initialization we used Glorot initialization [8]. This leads to the weights
being initialized sampled from a small Gaussian distribution centered around zero.
The motivation was that this could reduced the chance of dramatic variations in
the output until the network has had time to train and stabilize the approximated
derivative.
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Sample grid

Network approximation

Least squares solve linear eq. system

Combine points into matrices

,

Figure 3.4: Flowchart depicting the method used to solve for a linear coefficient
matrix A. Points are sampled in a uniformly spaced grid around the area containing
training data. These points yiNi=1 are fed through the network to approximate the
local value of the time derivative y′i. The pairs of points and derivatives are combined
as rows in a respective matrix and set up as an equation system with Y as input, Y′
as output and the linear coefficient matrix as unknown A. We then use the method
of least squares to solve for A.

3.3 Extraction of ODE coefficients
From a fully trained model we wanted to extract an analytical expression for the
ODE governing the training data. We explored two different methods for this:
a least squares approach and using linear genetic programming. Both methods
have certain strengths and weaknesses. The least squares approach is appropriate
for ODEs assumed to be linear, while the linear genetic programming method can
find non-linear expression but is not guaranteed to converge to an optimal fit in a
reasonable time frame.

3.3.1 Least squares approximation of ODE coefficients
When a model has finished training the network should have learned the dynamics
in the training region and approximates the first-order system of ODEs f mapping
the input y to its derivative

dy
dt = f(y(t), t, θ). (3.3)

This means that for any point in the input space we could get a pointwise approx-
imation of the ODE from the corresponding output for the feedforward network.
The learned ODE could then be visualized by plotting the vector value of f for
chosen inputs. This captured the dynamics, but only in terms of a numerical value
for each point. But, by utilizing the pointwise knowledge we were able to extract
an approximated close-form function assuming that the ODE was linear.

For a nth order order system of ODEs the vector y contains all variables and
their derivatives of order (n − 1) in the nth order ODE rewritten as a system of
couples first-order ODEs, see section 2.1, with their corresponding derivatives in
y′. If the ODE system is linear it can be written on matrix form as y′ = Ay + b.
Here, learning the dynamics amounts to extracting the square weight matrix A and
constant vector b from the local approximations.

To learn A and b we created a grid of initial points {y}Ni=1 in the region of interest,
around the area where we had training data. These points were fed as input to the
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network which outputted the approximation of the derivatives {y′}Ni=1. This lead to
an overdetermined system of equations, with many more equations than unknowns.
Such a system can be solved using least squares approximation. To account for the
constant terms we concatenated the vector of constants b as a last column in A and
added a corresponding row of ones in the input matrix

a11 a12 . . a1D b1
a21 a22 . . a2D b2
. . . . . .
. . . . . .
aD1 aD2 . . aDD bD


[
y1 y2 . . yN
1 1 . . 1

]
=
[
y′1 y′2 . . y′N

]

⇐⇒ ÃY = Y′.

(3.4)

This equation system was then solved using the least squares method and yielded
the coefficients in the Ã matrix. This method is pictured in figure 3.4. Since there
was no guarantee that the network generalized the dynamics globally we also tried
the above approach but only evaluated on points in the actual training data, instead
of points randomly sampled in space sometimes far away from the training region.
The reasoning was that training points would be where the network had learned the
most, which would make our method similar to a regular regression function fitting
problem. A potential risk was the increased effect of eventual overfitting.

A downside of the the above method was that it assumed that the underlying
ODE was linear and did not, for example, contain any terms raised to a power. We
tested a possible approach to extend the method to non-linear ODEs by assuming
that some non-linearities exists and appending y and y′ with dummy variables
calculated from the existing inputs. For instance, if y = (x, x′) and we assumed
that the ODE could contain inputs raised to up to the power of three the new input
would have been y = (x, x′, x2, (x′)2, x3, (x′)3). A major drawback of this approach
is that the dimensionality of the optimization problem problem quickly increases
and that there is no easy way to know when the correct system has been found.

3.3.2 Linear genetic programming approximation of coeffi-
cients

Linear genetic programming was implemented and used to approximate the coef-
ficients of the learned ODE. Initially the gradient dy

dt (t) is calculated on the entire
dataset that the ODENet model has been trained on. Once the gradient is calculated
the algorithm tries to find the mapping f(x(t), t) that approximates the gradient
acquired from ODENet. The LGP algorithm is described in section 2.6.2.

One of the motivations for using LGP rather than the least squares method is that
non-linearities and powers can be computed without introducing dummy variables.
As each program in LGP consists of a set of instructions non-linearities such as
x0×x1 can be performed applying multiplication on the two registers containing x0
and x1. Similarly, powers can be achieved by performing multiplication on the same
variable twice.

The major drawbacks of the LGP algorithm comes from its stochastic nature. Due
to the stochasticity there are no guarantees of convergence when function fitting with
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LGP. This also causes the drawback of having in some cases a very long runtime.
There are however many parameters that can be adjusted in order to achieve faster
convergence such as the mutation probability, which controls how often to mutate
an individual, and the crossover probability, which controls how often to perform
crossover on two individuals. Additionally, the target error can be changed, and
hence it is possible to trade off accuracy for run time.

3.4 Evaluation
There were a few different methods that could be used to evaluate how well a model
had learned the underlying ODE of the training data. Since we trained on artificial
data we had knowledge of the true ODE, which we could use to compare to the
output of ODENet. One way this could be done was to generate two trajectories
from the same initial value, one using the trained ODENet and the other from the
true ODE. The trajectories were then compared.

Another approach utilized only the output from the feedforward part of ODENet,
corresponding to the pointwise time derivative. As in section 3.3.1 we evaluated the
feedforward network for a grid of points in input space to get the approximated
time derivative vector f(t,y, θ) at each point, equivelent to the method described
in figure 3.4. The same points were then fed through the ODE function used to
synthesize the data, which gave us the true time derivative dy

dt . By comparing the
network output to the true value of the ODE function we got an error value for each
point. This allowed us to construct a statistical error metric both on actual training
data points, points inside the region that training data resides in (but not the actual
points), as well as points outside of this region. In this way we evaluated how well
the model learned the general field far away from the training region, in comparison
to how well it performs close to the training data. The error was calculated as the
relative error

|vtrue − vapprox|
|vtrue|

=
|dy

dt − f(t,y, θ)|
|dy

dt |
(3.5)

We chose the relative error as opposed to the absolute error due to the magni-
tude of the derivatives varying greatly both in the input space of a single setting,
and between different settings. For example, in the case of an harmonic oscillator
centered around the origin in phase space the rotation is larger further from the
origin. This means deviations that occur at points far from the origin would have
an absolute error much larger than deviations close to the origin, even if the relative
error is the same. This approach also has the advantage of not relying on the ODE
solver, hence removing the error due to the numerical integration.
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4
Results and Discussion

In the following chapter we present our results and discuss our findings. The chapter
is divided into sections based on the physical problem that is being modelled. Fol-
lowing the problem specific results are a more general discussion about parameter
exploration and extending the model for time-dependent ODEs. In the chapter we
will report the closed-form ODEs extracted from the trained network as linear com-
binations of all variables in the system. The coefficients will be shown numerically
with implicit dimensions, but they are not dimensionless constants.

4.1 Parabolic motion
For the case of parabolic motion we evaluated ODENet on three different subprob-
lems: an object with no horizontal motion, projectile motion in two dimensions, and
projectile motion in two dimensions with a drag term added to model air resistance.
Training data consisted of a number of trajectories starting from different initial
conditions evaluated for a set time span, or until the trajectory reached the 0 m
ground level at which the trajectory was terminated. This means that trajectories
could contain different number of points, depending on how far above the ground
level the trajectory started. For all simulations the acceleration due to gravity was
set to g = 9.82 m s−2.

4.1.1 One-dimensional falling motion
In the one-dimensional case of free fall we trained ODENet on a dataset composed
of seven trajectories. The initial heights y were sampled at uniform from 0 m to
10 m, all with zero initial velocity y′ = 0 m. Each trajectory was sampled at 100
points over three seconds of free fall. The ODE governing the system was

y′ = y′

y′′ = −9.82.
(4.1)

The input to ODENet was the height y and velocity y′ for each training point. The
network was trained for 40 epochs using a batch size of 10 points per batch.

Figure 4.1 shows the trajectories in red along with the field produced by the
ODE. The green arrows represent the true ODE while the cyan arrows are the ODE
approximated by the network. The underlying heatmap measures the relative error
between the true and the approximated ODE, as given in 3.4. The network has
learned the dynamics well in a region surrounding the training data, but diverges
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Figure 4.1: The error is low close to the training data, and higher for positive
velocities than for negative.

from the true ODE further away. For positive velocities, corresponding to an object
being thrown upwards, the error is large. This means that the network has failed
to generalize the dynamics, presumably due to the fact that there was no training
data in the positive velocity region.

To verify this we trained a new network using training data with nonzero initial
velocities sampled in the interval 5 m s−1 to 15 m s−1, producing the corresponding
heatmap in figure 4.2. It is evident that the larger training region produced a larger
region in which the network approximates the gradient well. Although, the problem
with bad approximations in the positive velocity region was still apparent.

For the first network presented in figure 4.1 we used the least squares method
described in section 3.3.1 to extract the coefficients of the linear ODE equation to
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Figure 4.2: Heatmap of the relative error between the ODE describing an object
in free fall and the corresponding time derivative approximated by ODENet. The
red lines are the extended training data as phase space trajectories starting from
different heights and with positive velocities. The cyan and green arrows are field
lines for the time derivative learned by ODENet and the true ODE, respectively.
The larger dataset produces a larger low-error region, corresponding to a darker
background.

get the system of ODEs

y′ = 0.0009y + 0.9963y′ − 0.0097
y′′ = −0.0014y + 0.0033y′ − 9.8108,

(4.2)

rounded to four decimals, which was close to the analytical system.
This result used a computational region spanned by 0 m to 10 m in height and

−5 m s−1 to 0 m s−1 in velocity, with 100 point along each axis. This is inside the
black colored low-error region in figure 4.1. We repeated the same procedure, but
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Figure 4.3: Heatmap of the relative error between the ODE describing an object
in free fall and the least squares linear approximation extracted from ODENet. The
red lines are the extended training data as phase space trajectories starting from
different heights and with positive velocities. The cyan and green arrows are field
lines for the linear approximation from ODENet and the true ODE, respectively.
The magnitude of the error is low globally.

instead sampled in the region bounded by 0 m to 120 m in height and −50 m s−1 to
0 m s−1 in velocity. This included the training region, but extended much further in
both variables. The results were, rounded to four decimals,

y′ = 0.0109y + 0.8471y′ − 1.6536
y′′ = −0.3528y + 0.1661y′ − 8.0959.

(4.3)

This diverged from the true system. The least squares approach is sensitive to the
choice of region in which it is applied. This is apparent from figures 4.1 and 4.2
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where the network is able to generalize in a neighbourhood surrounding the training
region.

To try to minimize the impact of how the region for least squares was chosen we
decided to primarily make use of only the actual training points when trying to find
the linear ODE. The results were similar to when the method was performed in a
region surrounding the training data

y′ = 0.0010y + 0.9981y′ − 0.0155
y′′ = −0.0007y + 0.0009y′ − 9.8163.

(4.4)

A corresponding heatmap comparison of the linearized ODE in the above equation
and the true ODE is given in figure 4.3. There are 100 samples per dimension. In
comparison to the network approximation of the ODE in 4.1 the linearized ODE
is consistent globally. So, even though the network has not managed to correctly
learn the underlying dynamics of the ODE everywhere it could be used to compute
a better approximation. Histograms corresponding to the relative errors plotted in
the heatmaps are presented in figure 4.4. Both panels seem to contain the same
peak close to zero. Larger errors are removed by the linearized model, meaning
that it produces a more accurate global representation of the underlying system.
Although, the linearized model appears to not produce the small tail towards zero
as seen for the network approximation. This is probably explained by the points
with the best approximations from the network being averaged out by the points
with worse approximations in the least squares method.

The approach based on only training data eliminates the need to manually choose
a region and utilizes that the network should produce a better fit the closer to the
training data it gets. Potential downsides would include risks from overfitting and
cases where the amount of training data is very small, although in such cases one
could argue that the network would not be properly trained anyway.
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Figure 4.4: Histograms of the relative error of the true ODE for free fall compared
to: the derivative learned by the network (left panel), and the extracted linearized
ODE using the least squares method on the training data (right panel). Both panels
contain the same peak close to zero, but the linearized model removes larger errors.

Even though the underlying dynamics is a simple linear system we tested using
LGP to find the analytical solution to the problem. When using LGP we found the
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system

y′ = y′

y′′ = −9.8333
(4.5)

rounded to four decimals. The ODE is close to the true equation and the ODE from
the least squares method.

4.1.2 Two-dimensional parabola

In the case of two-dimensional parabolic motion training trajectories were still gener-
ated starting at different heights y from 0 m to 10 m and zero horizontal displacement
x = 0, but with the addition of non-zero horizontal and vertical velocities (x′, y′).
The initial velocities were randomly sampled in the range −3 m s−1 to 3 m s−1 hor-
izontally and 0 m s−1 to 10 m s−1 vertically. Data was generated according to the
system

x′ = x′

y′ = y′

x′′ = 0
y′′ = −9.82.

(4.6)

The inputs to ODENet were the position and velocity (x, y, x′, y′) and the network
was trained for 40 epochs with a batch size of 10.

As in the previous section we used the least squares approach to extract a linear
ODE expression from the derivative learned by the network. First, we used a com-
putational grid x ∈ [−5, 5] m, y ∈]0, 10] m, x′ ∈ (−3, 3) ms−1, and y′ ∈ [−10, 0] ms−1

with 100 samples along each axis. Although this was inside the training region the
resulting system did not match the original ODE

x′ = 0.2814x+ 0.0497y + 0.5709x′ − 0.0296y′ − 0.6304
y′ = −0.0419x+ 0.0728y − 0.1307x′ + 0.9577y′ − 0.6733
x′′ = −0.0091x+ 0.0055y − 0.0027x′ − 0.0013y′ − 0.0250
y′′ = 0.8962x− 8.444y + 1.1193x′ + 0.4077y′ − 4.2743.

(4.7)

This might be an effect of the sampling size not being large enough. Since the prob-
lem is four-dimensional the least squares methods quickly grows in complexity and
size a large increase in the number of sampling points would be impractical. Fur-
thermore, it might not even make a difference if the result is due to the training data
not being sufficient for the network to learn a generalization in the computational
grid used.

Instead, we used the approach to apply the least squares method only on points
in the training data where we assumed the network had learned the dynamics. This
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produced the following system

x′ = 0.0022x− 0.0007y + 0.9917x′ + 0.0007y′ − 0.0093
y′ = −0.0016x+ 0.0001y − 0.0008x′ + 0.9931y′ − 0.0041
x′′ = −0.0004x+ 0.0002y − 0.0002x′ − 0.0002y′ − 0.0009
y′′ = 0.0005x− 0.0013y + 0.0019x′ + 0.0009y′ − 9.8252,

(4.8)

matching the real ODE rather closely.
Figure 4.5 shows the relative error between the true underlying ODE and the ap-

proximation from the network, as well as the extracted least squares approximation.
The derivatives were compared in a grid bounded by [−30, 30]) in all dimensions
with 100 sample points per dimension. The ODE from the least squares approach
seems to generalize much better than the network approximation. The tail of the
histogram for the network approximation continues after the point pictured, but
with a very low frequency.
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Figure 4.5: Histograms of the relative error of the true ODE for parabolic motion
compared to: the derivative learned by the network (left panel), and the extracted
linearized ODE using the least squares method on the training data (right panel).
Both histograms have similar shape, but the linearized model is squeezed close
to zero and does not contain the tail of high magnitude errors that the network
approximation exhibits.

We also used LGP to extract a closed-form ODE from the network, resulting in

x′ = x′

y′ = y′

x′′ = 0.0033x
y′′ = −9.8100

(4.9)

rounded to four decimals. The method finds the relevant variables, with only slight
deviations for the accelerations x′′ and y′′. For the horizontal acceleration x′′ LGP
includes a term proportional to x. The magnitude of x in the data is smaller than
10, meaning that the error for the data is relatively small. While this could lead
to problems when generalizing for very large values of x, this could presumably be
removed by forcing a stricter error tolerance in the LGP algorithm.
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4.1.3 Two-dimensional parabola with air-resistance
To evaluate our method for non-linear ODEs we added a square drag term to the
parabolic motion system resulting in

x′ = x′

y′ = y′

x′′ = −0.3448x′|x′|
y′′ = −0.3448y′|y′| − 9.82.

(4.10)

This was used to generate training data with the same initial conditions as in the
previous section. The extra drag extra term also needs two parameters, the drag
constant k and the mass m. These were set to k = 0.05 kg m−1 and m = 0.145 kg,
resulting in the proportionality constant k

m
≈ 0.3448 m.

Since the drag term is non-linear, proportional to the square of velocity, the usual
method to extract the coefficients does not work, see section 3.3.1. By extending the
linear system, adding the square of each variable with the sign preserved as dummy
variables, the method can be used. The resulting system rounded to four decimals
was

x′ =0.0001x− 0.0051y + 0.9883x′ − 0.0018y′ + 0.0002x|x|
+0.0004y|y|+ 0.0075x′|x′|+ 0.0004y′|y′|+ 0.0094

y′ =0.0044x− 0.0024y + 0.0179x′ + 1.0027y′ − 0.0002x|x|
−0.0000y|x| − 0.0094x′|x′|+ 0.0007y′|y′|+ 0.0042

x′′ =− 0.0158x− 0.0086y − 0.0604x′ − 0.0092y′ + 0.0034x|x|
+0.0012y|x| − 0.2987x′|x′| − 0.0009y′|y′| − 0.0096

y′′ =0.0063x+ 0.0041y − 0.0615x′ − 0.0358y′ + 0.0002x|x|
−0.0015y|x|+ 0.027x′|x′| − 0.3359y′|y′| − 9.7886

(4.11)

This is similar to the true ODE, but with a lot of noise.
By adding dummy variables to the equation the solution becomes dependent on

the choice of the dummy variables. A comparison of the the method with variables
raised to the power of one, two and three is shown in figure 4.6. The figure shows
histograms of the corresponding relative error between the approximations and the
true ODE. We see that model with terms of order two, the correct order, produces
the error distribution closest to zero. The model with order one performs worse
than the model of order three. This is presumably due to the fact that the latter
also contains the correct terms of order two, while the former only contains the
linearized approximation. Including an order too much would probably result in a
better approximation than having the maximum order too low, but at the cost of
increased computational complexity of the least square problem.

LGP were better at eliminating the unused variables than the least squares fit in
equation 4.11. It found the correct nonlinearity in the expression for x′′, but could
not find it for y′′ meaning it never converged under the set error limit. The reason
for this is unknown. The difference between the two nonlinear expressions is only
a constant, which the LGP method should be able to find. Different approaches to
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(d) Linear approximation order 3

Figure 4.6: Histograms of the relative error of the true ODE for parabolic motion
with air resistance compared to: (a) the derivative learned by the network, and
the extracted linearized ODE using the least squares method on the training data
with dummy variables of powers up to order (b) one, (c) two, and (d) three. Order
two is the correct number, and also produces the histogram with the smallest errors.
Including more then the correct orders, three, produces smaller errors than including
fewer orders, one.

alleviate this includes further testing of different parameter setups or using other
more advanced LGP implementations. The final system was

x′ = x′

y′ = y′

x′′ = −1
3x
′|x′|

y′′ = NULL.

(4.12)

The best approximation for y′′ that was found was

y′′ = −3 ∗ (y′ − cos(y′ − |x′|+ 0.1)) ∗ cos(1)− 10.3348708389442. (4.13)

4.2 Harmonic oscillator
We evaluated on two different harmonic oscillator systems: a simple harmonic oscil-
lator and a damped harmonic oscillator. In both cases data was generated modelling
an object of mass m = 1 kg on a spring with spring constant k = 2 kg s−2.
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4.2.1 Simple harmonic oscillator
In the simple harmonic oscillator case only one trajectory of data was generated.
The choice of only generating one trajectory was made as this problem is highly
symmetric, to evaluate generalizing over a large area using few data points. The
initial values were set to x(0) = 5 m and x′(0) = 0 m s−1. The resulting ODE is then

x′ = x′

x′′ = −2x.
(4.14)

The inputs to the network were the position of the oscillator x(t) and its velocity
x′(t).

We used the least squares linearization method to find the coefficients of the
ODE. The resulting ODE was

x′ = −0.0005x+ 0.9998x′ + 0.0013
x′′ = −2.0002x+ 0.0003x′ − 0.0013

(4.15)

when rounded to four decimals.
A heatmap showing the relative error between the network approximation and

the true ODE is shown in figure 4.7. As seen in the figure, the network generalizes
well outside of the training area, with the exception of the origin. A possible reason
for this is that the input to the network at the origin is too small, causing the
gradient to disappear, hence giving a bad approximation of the true dynamics.
Another possibility is that the origin is the point in which the rotation of the vector
field changes. As the network has not been trained on any data in this area, this
transition may be poorly approximated by the network, hence causing the error.

This problem does not occur for the linearized approximation of the ODE, as it
is calculated on the training data, at which the network behaves well. Hence the
linearized approximation generalizes well over the entire extended area.

The two histograms in figure 4.8 show the relative error distributions of the net-
work approximation and the linearized ODE. As seen in the figures, the relative
error of the network approximation is rather small. However, the linearized ap-
proximation of the ODE still improves the approximation, and its relative error is
virtually nonexistent.

When using LGP we found the correct system

x′ = x′

x′′ = −2x.
(4.16)

This is exactly the true ODE describing the system.

4.2.2 Damped harmonic oscillator
Five trajectories were synthesized for damped harmonic oscillator. The initial values
in the first dimension, x(0), were set to 1, 2, . . . , 5 for each trajectory respectively.
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Figure 4.7: Heatmap of the relative error between the ODE describing a simple
harmonic oscillator and the ODENet approximation of the same system. The red
line is the training data as a phase space trajectory. The cyan and green arrows
are field lines for the approximation from ODENet and the true ODE, respectively.
The magnitude of the error is low globally, except from in the origin.

For the second dimension, x′(0), the initial values were set to −1,−1
2 , 0,

1
2 , 1. The

added dampening constant was set to c = 1
2 kg s−1. This results in the ODE

x′ = x′

x′′ = −2x− 1
2x
′.

(4.17)

The input to ODENet was x(t) and x′(t), as in the case of the simple harmonic
oscillator.

Figure 4.9 shows a heatmap of the relative error between the ODENet approxi-
mation of the system and the true ODE. As seen in the figure, the network error is
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Figure 4.8: Error histograms for the simple harmonic oscillator. The left panel
shows the error distribution of the network approximation of the ODE. The right
panel shows the error distribution of the linearized ODE approximated on the train-
ing data using the least squares method.

relatively low. The heatmap also shows that the error is larger along the minor axis
compared to the error along the major axis of the training data. This is likely due
to the data being more concentrated in the regions parallel to the minor axis due
to the slower rotation along these points. This means that the network has been
trained on more densely packed data, and subsequently more data in general, along
these axes which results in a better fit on this data.

When linearizing the network approximation using the least squares method at
the training data points, the ODE found was

x′ = −0.0064x+ 0.9955x′ − 0.0089
x′′ = −1.9941x− 0.5044x′ − 0.0068.

(4.18)

As seen, this is close to the true ODE describing the system.
Figure 4.10 shows two histograms of the error distributions of the ODENet ap-

proximation and linearized approximation respectively. As in the case of the simple
harmonic oscillator, the error distribution for the network approximation is rela-
tively small, and the error for the linearized system is close to zero, indicating a
good generalization over the entire extended area.

When using LGP we found the system

x′ = x′

x′′ = −2x− 0.5333x′
(4.19)

when rounding to four decimals. This is close to the true ODE which is shown in
equation 4.17. To get a better, or even exact, function fit the error threshold in the
LGP algorithm could be decreased.

4.3 Lotka-Volterra predator-prey equations
For the Lotka-Volterra equations two trajectories of training data were synthesized.
The initial states N(0), P (0) were sampled uniformly random in the range (0, 1).
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Figure 4.9: Heatmap of the relative error between the ODE describing a damped
harmonic oscillator and the ODENet approximation of the same system. The red
lines are the training data as a phase space trajectories. The cyan and green arrows
are field lines for the approximation from ODENet and the true ODE, respectively.
As seen in the figure, the relative error is lower in the direction of the major axis
of the data. This is likely due to the higher concentration of data points parallel to
the minor axis, as the rotation in this direction is slower than the rotation parallel
to the major axis.

The constants in equation 2.7 were chosen as α = 2
3 , β = 4

3 , γ = 1 and ε = −1. The
resulting ODE describing the dynamics of the system is then

N ′ = N
(2

3 −
4
3P

)
P ′ = P (N − 1).

(4.20)

We trained ODENet for 40 epochs on data composed of two different trajectories
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Figure 4.10: Two histograms showing the relative error distributions for the
damped harmonic oscillator. The left histogram shows the error distribution of the
neural network approximation. The right histogram shows the error distribution of
the least squares approximation.

from different initial conditions. Since the system is nonlinear with mixed terms the
least squares method can not be applied, at least not without first assuming such
nonlinearities. Therefore, we first used LGP, which found the system

N ′ = N(0.6667− 1.3333P )
P ′ = |P |(N − 1)

(4.21)

when rounding to four decimals. This is the correct system, except for the absolute
value operator which has no effect since all values are in the first quadrant and hence
already positive. The LGP implementation could be extended to look for equivalent
expressions for the data, e.g. by removing the absolute value operator if the data is
in the first quadrant.

4.4 Learning time dependencies
All ODEs examined previously has been time independent, with no explicit oc-
curence of time in the system. To learn time dependent behaviour, such as a driving
function F (t) for an harmonic oscillator, we had to extend the network. There are
different ways to accomplish this. We tried to extend the system of ODEs by adding
a time variable following a constant differential equation dt

dt = 1 and feeding the time
as an extra input to ODENet along with the variables in the system. We evaluated
the approach on a model for the effects of an earthquake on buildings.

4.4.1 Earthquake Effects on Buildings
Training data was composed of three different trajectories for a building with two
floors, sampled over 0 s to 5 s. Both floor started in the equilibrium position x1(0) =
x2(0) = 0 m. The initial velocities were sampled at random in the interval −1 m s−1

to 1 m s−1, which might not be physically sound. The parameters of equation 2.8
was set to k = 10 000 N m−1, m = 1000 kg, ω = 0.5 s−1 and F0 = 2 m resulting in
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Figure 4.11: The movement over time of a two-story building affected by an
earthquake. The upper panel is the position of the first floor x1, and the lower panel
the position of the second floor x2. Each colored solid line correspond to a single
training trajectory. The dashed black lines are trajectories predicted by the ODE
learned by the network. The predictions start from the same initial conditions and
are sampled at the same time steps as the training trajectories.
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Figure 4.12: The movement over time of a two-story building affected by an
earthquake. The upper panel is the position of the first floor x1, and the lower
panel the position of the second floor x2. Each colored solid line correspond to a
single training trajectory. The dashed black lines are trajectories predicted by the
ODE learned by the network. The predictions start from points along the training
trajectories after about 1.9 s, and are then sampled at the same time steps as the
original trajectories.
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the system

x′1 =vx1

x′2 =vx2

x′′1 =10(−2x1 + x2)− 1
2 cos( t2)

x′′2 =10(x1 − x2)− 1
2 cos( t2).

(4.22)

We trained the network for 50 epochs. Figure 4.11 shows the position of the
two floors over time for the three training trajectories along with the corresponding
predicted trajectories from an ODE solver using the derivative approximated by the
trained network. The previous approach using the error between the approximated
and true ODE could not be used, since we did not produce any closed-form expres-
sions. Since we know that the accuracy of the network approximation is dependent
on the measurement region, a single histogram of the error between the true ODE
and the network approximation does not give a quantitative measure.

The predicted trajectories are sampled at the same time steps as the training
trajectories. Both the training trajectories and the predicted trajectories have the
same initial conditions. The initial fit is close to the true trajectories. Over time the
deviation grows larger, which is due to the prediction at subsequent steps carrying
the error from previous steps. Despite this the prediction is similar to the true data
implying that the network has learned a valid approximation for the underlying ODE
of the data, at least close to the training data. Figure 4.12 shows plots of trajectories
calculated using the same ODENet model but starting from a later time point. This
plot shows that the time-offset which can be seen when calculating the trajectories
on the entire dataset has decreased, validating that the offset seen in figure 4.11 is
indeed due to error propagation when calculating the predicted trajectories. This
means that the network is capable to modelling systems directly dependent on time.

4.5 Discussion
When training the models on the datasets, the batching method used was to select
batches of subsequent point pairs and training the model on the edges between those
points, as described in section 3.2.1. There are however several different ways that
the batching can be done. One of these methods is to first select a random starting
point and then selecting m subsequent points and training on the edges connecting
these points. Another possible method is to view each trajectory as a batch and
training the model on each trajectory entirely at once. Both of these methods
were implemented in this thesis, but were not used when training the final models,
due to giving worse results than the single-pair batching, as well as increasing the
computational time of the training.

One of the major issues encountered while training the models comes from irreg-
ular occurrences when the gradient approximated by ODENet behaves like a stiff
ODE. One attempt to solve this issue was to normalize the training data in order to
cause a smoother training curve. This was implemented, but ultimately not used, as
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the underlying dynamics of the system is changed when the dataset is normalized.
The change to the ODEs describing the system is not trivial, and hence the trans-
formation from the learned dynamics to the true dynamics is not straight forward.
Instead, in order to minimize the issues caused by ODENet behaving like a stiff
ODE, LeakyReLU was chosen as the activation function for all network layers and
weight decay was used.

The choice of using LeakyReLU instead of ReLU as activation function was made
to avoid the gradient approximation being zero in a large area of the input space.
As ReLU(x) = 0 for all x ≤ 0, the risks of the gradient being zero is increased
compared to using LeakyReLU. When using adaptive step-size ODE solvers, we
observed that the step size could converge to zero, causing the number of iterations
needed between two time points to increase drastically. This in turn causes the ODE
solvers to iterate infinitely or results in underflow for the stepsize.

Weight decay was added as a means to avoid the gradient approximation becom-
ing too large. When the ODE solver takes a step with a too large gradient, it causes
a numerical overflow. Weight decay restricts the weights in ODENet from growing
uncontrollably, hence reducing the risk of exploding gradients.

A general problem when training was that datasets with a large number of tra-
jectories close to each other in some regions lead to the network not being able to
distinguish between different trajectories. The learned dynamics looked similar to
an average between the trajectories. The solution to this was to actually remove
data by eliminating some trajectories from the training set. This improved how the
network generalized the learned dynamics. This phenomenon of more data causing
a worse approximation is counter-intuitive, as the general case in deep learning is
that a larger dataset typically corresponds to a more accurate network output.

4.6 Future work
To be able to reliably use ODENet as a modelling tool for dynamical systems there
are areas left to explore. We did not focus on the computational performance of the
implementation of ODENet. Due to the way the ODE solver was implemented we
were only able to parallelize computations on the GPU if they were for time steps
of the same length. Further research should be conducted on the topic of extending
the ODE solvers to also be able to run different time steps in parallel to speed up
training. It is also necessary to perform measurements of the training time and how
it is affected by different problem settings and network parameters.

A strength of ODENet is that any ODE solver can be used to produce the output.
Modern ODE solvers with adaptive step sizes can make a trade-off between accuracy
and speed, and can be controlled by the user by changing two parameters governing
the error tolerances. Future work could treat the effect of varying these parameters
in different problem settings to find an optimal setting achieve fast training without
sacrificing accuracy.

Another topic is how to extract a closed-form ODE from the derivative approxi-
mated by the neural network. This includes both further work on the two methods
we used, as well as exploring other possibilities. The least squares approach could
for example be replaced by a more advanced regression algorithm. Linear genetic
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programming has several parameters that can be tuned and should be examined for
each different problem separately.

We started working on extending the network structure to allow for training on
time dependent ODEs by simply adding time as an extra dimension in the network
input. Due to the non-conclusive results there is need of further work. This could
include the use of other types of network structures trained in conjunction with
ODENet to account for the time dependence.

There is also the direction of using the ODENet on more advanced synthesized
problems or on data gathered from actual measurements of real systems. This might
give further insight into the feasibility of actually using ODENet in a production
setting.
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5
Conclusion

The aim of this thesis was to examine the use of ODENet as a modelling tool for
learning dynamical systems governed by ODEs directly from data. We found that
ODENet was able to parameterize the underlying ODE and produce an accurate
approximation of the local derivative in a region surrounding the training data.
Further away from the training data the parameterized derivative diverges from the
true equation. This means the network does not generalize globally in general. For
problems with symmetry the learned dynamics exhibit a greater degree of gener-
alization. Closed-form expressions for the derivative extracted from a region close
to the training data, where the network parameterization is accurate, are close to
the analytical ordinary differential equations and hence valid globally. Linear ge-
netic programming produces a more accurate closed-form expression than the least
squares approach for nonlinear ordinary differential equations, and similar results
for linear problems. Convergence is not guaranteed for linear genetic programming,
and is generally slower than least squares. In conclusion ODENet is a valid tool
for modelling dynamical systems and can accurately learn a parameterization for an
ordinary differential equation from data. Although the network parameterization
is generally not accurate globally, it can be used to extract a global closed-form
expression for the underlying dynamical system.
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