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Parameter Estimation in FRAP using Deep Learning
VICTOR WÅHLSTRAND SKÄRSTRÖM
Department of Physics
Chalmers University of Technology

Abstract
Fluorescence recovery after photobleaching (FRAP) is a method used in optical microscopy
for determining properties of diffusion in organic and inorganic solutions, including cells,
membranes and gels. FRAP may be used to determine parameters such as the diffusion
coefficient and binding rates of particles in a sample, and is used in wide-ranging disciplines
such as the medicine, soft materials and food science. In FRAP, fluorescently labelled
particles in a sample are bleached in a region of interest using a high-intensity laser.
The recovery of the mean fluorescence intensity in the region of interest is known as the
recovery curve. Conventional methods for inference rely on least squares and models for
the recovery curve, but recent work has come to use the entire spatio-temporal image data
for estimation.
In this work, we have implemented a set of deep neural network architectures for es-

timating parameters such as the diffusion coefficient in FRAP. This is to our knowledge
a novel approach with some potential advantages over conventional methods. We have
implemented a set of both spatio-temporal and purely temporal neural network models,
where operating on the full image data gives the best performance in terms of error on
simulated data. The downsampler neural network model is easy to implement and paral-
lels the extraction of the recovery curve, and can be trained from numerically simulated
data. We show that the downsampling neural network can be trained on limited compu-
tational resources, using the combined power of continuously generating training data and
batch-mode optimization. The neural networks demonstrate a robustness against noise
and computational speed unlike the conventional least squares methods.
The performance of the neural networks versus the conventional methods is tested on

simulated FRAP data and finally validated on experimental data, yielding good agreement
with the expected values of the parameters and those obtained from the conventional
methods.

Keywords: confocal microscopy, diffusion, fluorescence recovery after photobleaching,
deep learning, machine learning, neural networks,.
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1 Introduction

In many areas of industry and science, understanding the microscopic properties of prod-
ucts and materials is highly important. Mass transport processes such as diffusion govern
particles’ movement and dissolution in solvents, and studying these processes is useful in
wide-ranging subjects such as medicine, food science and soft material studies. Fluores-
cence recovery after photobleaching (FRAP) is an experimental method used in microscopy
to estimate the mobility properties of particles in a solvent. One such property is the dif-
fusion coefficient, which characterizes the rate at which particles disperse in the solution.
In FRAP, fluorescent particles are bleached in a region with a laser. The time evolution of
the fluorescence concentration in the bleach region and the moving particles in it is then
used to estimate the diffusion coefficient.

Another common use for FRAP is diffusion and binding, where a dissolved species may
bind and create a fluorescent complex molecule. The binding and unbinding rates, as well
as diffusion coefficient are then reflected by the recovery of fluorescence, which makes an
important tool for the study of proteins and enzymes in cells. FRAP has been applied as a
non-destructive method to study particles in pharmacology, life science and food science,
to name a few [1]. For example, the method is used in medicine to study controlled
drug delivery in cells where mucus and biofilms may form barriers to this delivery [2, 3].
FRAP has also shown promise in food science, Svanberg et al. [4] studied the fat bloom
of chocolate, the gray surface which may arise when stored for example in a refrigerator.
The group used FRAP to characterize the diffusion of oils from the filling of the chocolates
to the outer shell at a micro-level, which is known to cause the fat bloom.

1.1 Purpose

It is in the interest of FRAP users to make quick and accurate estimations of the diffusion
coefficient and related parameters. The acquired data from FRAP is a sequence of images,
i.e. spatio-temporal. This data is often reduced to a purely temporal sequence of the
recovery of the mean intensity over time in the bleach region, known as the recovery curve
[1]. Conventional methods fit a model to either the recovery curve or the full spatio-
temporal sequence, for example using least squares. Fitting to the recovery curve is quick
and easy to implement, but effectively discards a lot of information in the microscopy
image. Other methods try to model the image sequence from the statistical distribution
of fluorescence before bleaching, to the dynamics during and after bleaching, and finally
image acquisition. A pixel-based analysis, where each image pixel is fit to a model used for
inference, is more accurate, but also computationally more demanding than the recovery
curve [5, 6, 7].
The computational drawbacks of pixel-based analysis with least squares bears the ques-

tion if other methods could make use of the full spatio-temporal data more efficiently.
The aim of this thesis is to use modern machine learning methods and specifically neural
networks to estimate the diffusion coefficient, and compare this approach to conventional
methods.
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Chapter 1. Introduction

1.2 Scope and Outline
In this thesis we restrict ourselves to simple motion from diffusion, and will not consider
diffusion with binding. However, any neural network method is easily extendible to more
parameters. Likewise, only the neural networks and least squares methods of machine
learning will be considered.
In Chapter 2, the background required to understand this thesis is presented. It covers

diffusion, the principles behind FRAP and finally the theory on the methods of estimation
and machine learning. Chapter 3 describes the tool used to numerically simulate FRAP
experiments as training and test data for the results, as well as the implementation details
of the neural netowrk architectures used for estimating the diffusion coefficient and related
parameters. Lastly, this chapter covers the training environment used to train the neural
networks in terms of hardware and optimization. Finally the results and discussion thereof
is given in Chapter 4. The results are divided into three parts: The training and validation
results of the chosen neural network architectures, a comparison between the best neural
networks and least squares, and lastly a validation on experimental FRAP data. Finally,
the conclusion of this work is presented in Chapter 5, together with discussions of the
result and recommendations for future work.
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2 Background

In this chapter, some background on diffusion will be presented, as well as a description
of the fluorescence recovery after photobleaching method used to estimate the diffusion
coefficient. Finally, the foundations of supervised learning, regression and deep learning
will be covered.

2.1 Diffusion

Diffusion is a term for a set of similar transport mechanisms of particles and concentra-
tions driven by thermal energy. We will consider two perspectives on diffusion: In the
macroscopic view, diffusion causes a net equilibration of the particle concentration in flu-
ids, while in the microscopic view, single particles are subject to random motion. Diffusion
has attracted interest in a variety of fields, and its first documentation can be traced back
to Scottish botanist Robert Brown [8], who observed seemingly random motion when ex-
amining plant pollen in an optical microscope. This inspired what would be known as
random walks and Brownian motion.
The first mathematical descriptions of diffusion are often attributed to German physician

Adolf Eugen Fick, who studied the flux of particle concentrations in liquids and gases
due to a chemical potential gradient, e.g. a concentration gradient. This constitutes a
macroscopic view of diffusion, which was originally viewed separately from the particle
movements seen by Brown.
This flux diffusion was described by Fick in terms of the heat equation [9]. He pos-

tulated Fick’s laws of diffusion; Firstly, that the flux J is proportional to the negative
concentration gradient −∇c(x, t),

J(x, t) = −D∇c(x, t), (2.1)

where x, t are coordinates in space and time, and D is the diffusion coefficient. In Fick’s
view, the driving force behind diffusion was the concentration gradient. However, a more
general notion is that the chemical potential φ drives diffusion on a macroscopic scale.
Define the drift velocity v of the particles under a force F from the chemical potential as

v(x, t) = µF (x, t) = −µ∇φ(x, t) (2.2)

where µ is the constant of proportionality known as mobility [10, 11]. Since flux is the
number of particles flowing through a surface per unit of time, we may write

J(x, t) = c(x, t)v(x, t) = −µc(x, t)∇φ(x, t), (2.3)

This means for example that
D = µc(x, t)∂φ

∂c
(2.4)

and that if ∂φ/∂c < 0,D > 0 and hence the flux will be in the same direction as the con-
centration gradient. However, in some mixtures, the reverse may be true, which indicates

3



Chapter 2. Background

that the chemical potential is a more fundamental driving force.
In Fick’s Second Law, he posited that the concentration changes in time according to

the heat equation, such that

∂c(x, t)
∂t

= −∇ · J(x, t) = D∆c(x, t). (2.5)

The result is an example of the diffusion equation, or in broader terms a continuity equa-
tion, conserving the flux of mass.

In chemical terms, diffusion may be seen as the random motion of individual particles
driven by internal kinetic energy. At the particle level, the random walk described by
Brown was shown by Albert Einstein to be completely analogous to the flux diffusion
described by Fick half a century prior, but derived from a statistical rather than chemical
perspective. [12]
We illustrate this derivation with a 1D random walk. Consider the probability p(x, t) =

Pr (Xt = x) of finding a particle at position x at a time t as a Markov chain. Let δx denote
a spatial increment in positive or negative direction, and δt be the time step. Then p(x, t)
is the weighted sum of the probabilites to go in either direction in the previous timestep:

p(x, t) = w−p(x− δx, t− δt) + w+p(x+ δx, t− δt) (2.6)

where w+ + w− = 1 are transition probabilities defined as

w+ =Pr (Xt+δt = x+ δx) (2.7)
w− =Pr (Xt+δt = x− δx) (2.8)

Further, assume that increments Xt+δt −Xt from a position are independent of previous
positions on the line Xs, s < t. In undirected diffusion a displacement is equally probable
in either direction, hence w+ = w−. In directed, or biased, diffusion, there is a discrepancy
ε = w+ − w− 6= 0. In this case, one direction will be favoured, and the system is said to
have drift or advection.

Now expand p(x− δx, t− δt) and p(x+ δx, t− δt) to get

p(x− δx, t− δt) = p(x, t)− δx∂p
∂x
− δt∂p

∂t
+

+ 1
2δx

2 ∂
2p

∂x2 + 1
2δt

2∂
2p

∂t2
− δxδt ∂

2p

∂x∂t
+ ... (2.9)

p(x+ δx, t− δt) = p(x, t) + δx
∂p

∂x
+ δt

∂p

∂t
+

+ 1
2δx

2 ∂
2p

∂x2 + 1
2δt

2∂
2p

∂t2
+ δxδt

∂2p

∂x∂t
+ ... (2.10)

Inserting eqs. (2.9)-(2.10) into eq. (2.6) yields

δt
∂p

∂t
= −εδx∂p

∂t
+ 1

2δx
2 ∂

2p

∂x2 + 1
2δt

2∂
2p

∂t2
+ εδxδt

∂2p

∂x∂t
+ ... (2.11)

since w+ +w− = 1 and ε = w+−w−. This can be rewritten (by dividing with differential
elements δt) into

∂p

∂t
= −εp∂x

∂t
+ 1

2
δx2

δt

∂2p

∂x2 + 1
2δt

∂2p

∂t2
+ εδx

∂2p

∂x∂t
+ ... (2.12)
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Chapter 2. Background

By choosing ε, δx, δt such that they approach the limits

1
2
δx2

δt
→D (2.13)

ε
∂x

∂t
→v (2.14)

we arrive at a one dimensional diffusion-advection equation:

∂p

∂t
= D

∂2p

∂x2 − v
∂p

∂x
(2.15)

In the case of no advection, w+ = w−, we get v = 0 and the ordinary diffusion equation,

∂p

∂t
= D

∂2p

∂x2 . (2.16)

analogous to eq. (2.5). This result unites the two views on diffusion, the macroscopical
flux diffusion and the particle-wise random walk diffusion.
The diffusion coefficient offers more perspectives on the nature of diffusion. The dif-

fusion eq. (2.5) relates the change of concentration over time to the divergence of the
concentration gradient, and D is then interpreted as a rate of diffusion. D is in general
dependent on the geometry and potentially the position, but for isotropic systems it is
often assumed to be constant. For the initial condition p(x, t = 0) = δ(x) the solution to
eq. (2.16) becomes

p(x, t) = 1√
4πDt

exp
(
− x2

4Dt

)
. (2.17)

The probability of finding a particle at a certain time and position is then related to the
quotient −x2/4Dt, where we for a fixed distance x = x0 may define τ = x2

0/4D as a
characteristic time of diffusion.
In the case of spherical particles with radius r, Einstein derived an important relation

of the diffusion coefficient, commonly known as Einstein-Stokes’ relation [12]:

D = kBT

6πηr (2.18)

Given a temperature T and Boltzmann’s coefficient kB, eq. (2.18) relates the rate of
diffusion of a solute to the fluid viscosity η of a solvent, to be interpreted that more
viscous solvents have lower rates of diffusion. This is a special case of

D = µkBT ∝
V

F
(2.19)

where µ is the mobility of a particle in the solution [13]. The mobility relates to the
average drift speed V of the particle under an external force F like in eq. (2.2), which
reinforces the notion of the diffusion coefficient as a measure of how fast particles spread
in a solvent.
On a microscopic scale, if all particles could be tracked, it is possible to calculate the

diffusion coefficient from the mean square displacement (MSD) from their origin. For a
single particle it holds that the MSD, or second moment, is

MSD(x) = Ep(x,t)[X2] =
∫ ∞
−∞

dxx2p(x, t) = 2Dt, (2.20)
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which may be fitted to estimate D. This is known as the Law of Diffusion or the Einstein-
Smoluchowski relation, and indicates that the diffusion coefficient is essentially a spatial
variance normalized by time [13].

6



Chapter 2. Background

2.2 Fluorescence Recovery after Photobleaching
Fluorescence recovery after photobleaching, or FRAP, is a method for determining the
diffusion coefficient of particles dissolved in for example liquid suspensions, gels, cells or
membranes. The FRAP experimental procedure involves a sample of fluorescently labelled
particles suspended in the aforementioned solution or membrane. The experiment starts
by bleaching the fluorescent particles in a region of interest (ROI), or bleach region, by
means of a high-intensity laser. This is called photobleaching, and causes the concentration
of fluorescent particles, and subsequently their combined intensity, to decrease in the ROI.
In the following post-bleach time, unbleached fluorophores will diffuse into the region
and bleached fluorophores will diffuse out. This causes a gradual fading of the region of
interest and recovery of the mean intensity inside it [1]. See Figure 2.1 for an example of
this recovery.

pre-bleach first post-bleach frame post-bleach

Figure 2.1: Image data from a FRAP experiment, pre-bleach, a small time after bleaching
and post-bleach interval times. The fluorophores in the sample first diffuse,
and are then bleached by a high intensity laser in the dashed circle. In the
ensuing moments, there is a diffusing flow of bleached and unbleached particles
in the circular ROI.

2.2.1 Experimental Procedure
The FRAP method is most often implemented using a confocal scanning laser microscope
(CLSM). Modern confocal laser scanning microscopy was invented in 1969 [14, 15] with
various evolutions through the 1970s and 1980s. The light of a high intensity laser is
collimated and split by a dichroic beam splitter. The mirrored light passes through the
objective lens onto a small portion of the sample in the focal plane. This laser causes
excitation of the fluorophore energy states, yielding emission of photons. The emission
signal from the sample then passes through the dichroic mirror and into the conjugate
pinhole. The conjugate, or confocal, pinhole is placed such that out-of-focus signals cannot
pass, greatly reducing the noise and improving the resolution of the microscopy. Finally,
the emitted light signal is frequently detected and amplified in a photomultiplier tube,
before being projected onto the image plane. The acquired spatio-temporal signal is
collected as integer counts, and is often normalized to a range [0, 1]. When modelling the
photomultiplier it is assumed that its output is approximately linear, and thus proportional
to its input intensity and thereby the particle concentration.
The noise reduction of the CLSM is vital for the fast processes observed in fluorescence

recovery after photobleaching and CLSM enables imaging in different diffusion time do-
mains. The light ray eponymously scans the sample at the desired speed, from side to

7
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side, top to bottom. The scanning speed may thus be used to adapt the time scale of the
experiment to that of the diffusion.

2.2.2 FRAP Models

The FRAP image is composed of a multitude of factors which influence the resulting image
the viewer sees in the microscope. It is common to assume that the bleaching is perfectly
cylindrical, which results in no net diffusion in the depth-plane and an effectively two-
dimensional sample. However, more advanced models take the depth into account [1, 5,
16].
The difficulty and numerical complexity of modelling the resulting image means that the

image series is in practice often reduced to a so-called recovery curve. However, models for
the full pixel-wise data do exist, and attempt to take into account the diffusion, bleaching
and the imaging processes.

2.2.2.1 The Recovery Curve

The recovery curve of fluorescence intensity, see Figure 2.2, captures the mean intensity
F in the ROI. Given an initial mean intensity F0, the sample is bleached with a bleach
parameter α ending at t = tbleach, whereupon the mean intensity in the ROI starts to
increase. If the intensity of fluorescence does not recover to pre-bleach levels, this is
indicative of an immobile fraction of fluorophores which does not diffuse.

t b
lea

ch t 1/
2

F0

F1/2

αF0

pre-
bleach bleach post-bleach/recovery

immobile fraction

mobile fraction

time, t

m
ea
n
in
te
ns
ity

in
RO

I,
F

Figure 2.2: A typical recovery curve for a FRAP experiment. Imaging starts during a
pre-bleach period, after which the fluorophores in the ROI are photobleached
for a certain duration. Post-bleaching, the particles diffuse in and out of the
ROI, leading to a recovery of the fluorescence intensity F .
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The FRAP experiment is used to quantify the diffusive properties of the sample, such as
the diffusion coefficient and mobile fraction of bleached particles. Analysing the recovery
curve of the mean intensity is the dominating approach to estimate these system parame-
ters. Kapitza et al. [17] modelled the recovery by means of an empirical exponential curve
with similarities to eq. (2.17):

F (t) = F0

(
1− exp

(
− w2

4Dt

))
+ b, (2.21)

where F0 is the initial concentration of fluorophores before bleaching, b is a constant
amount of non-diffusing particles, w the radius of the ROI and D the diffusion coefficient.
The parameters may then estimated by fitting the experimental fluorescence recovery curve
to eq. (2.21) using least squares or maximum likelihood. A rough estimate of the diffusion
coefficient can also be made by relating it to a characteristic half-time of recovery,

t1/2 = τ ln 2 = w2 ln 2
4Dt (2.22)

calculated from where F (t1/2) = F1/2 = b/2. Another, entirely empirical model is

F (t) = F0

(
1− b exp

(
− t
τ

))
(2.23)

where F0 is the initial concentration of fluorophores before bleaching, b is the fraction of
bleached particles, and τ = t1/2/ log(b/2) is a characteristic halft time of recovery.
Relying on empirical recovery curve models has received criticism for failing to include

other parameters, such as binding rates. More advanced models exist that include for
example the shape of the laser profile, but even these fail at taking into account excitation
effects from the laser and are restrictive concerning the ROI shape. For an overview of
models, see [1].

2.2.2.2 Models for the Full FRAP Image

Modern models for FRAP data try to include most aspects of the experiment: The shape
of the initial concentration distribution, c(x, y, t = 0), the temporal evolution of the con-
centration, the ROI bleaching, the image acquisition stage and finally noise models [1].
Assuming a homogeneous concentration of fluorophores c(r, t) with a rotationally sym-

metric bleach region Ω, c is function of the radius r from the centre of the sample. The
region of interest is then bleached with a laser with illumination intensity Ibleach(r) for a
time T , and the temporal evolution of c(r) is then

dc
dt = −αIbleach(r)c(r, t), (2.24)

where α is the photobleach parameter, the rate of bleaching of the fluorophores [1]. The
concentration distribution in the sample after bleaching for a time T is then

c(r) = c0 exp (−αIbleach(r)T ) (2.25)

The laser bleach beam intensity Ibleach(r) is often described as Fraunhofer-Airy or Gaus-
sian. More accurate models also take into account the distribution of excitation states
of the fluorophores due to the power of the laser. These are especially important when
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modelling the sample with depth [1].
Jonasson et al. [5] also assumes a rotation symmetric bleach region and homogeneous

initial concentration of fluorophores c0 = c(r, t = 0), with a time evolution according to
the diffusion equation in polar coordinates,

∂c

∂t
= D

(
1
r

∂c

∂r
+ ∂2c

∂r2

)
. (2.26)

They further assume that the particles between the last bleach frame and first post-bleach
frame have diffused enough such that the bleach profile of the sample after bleaching is
approximately Gaussian. The initial concentration after bleaching is then modelled as

c(r, t = tbleach) = a0 −
a1
r2

0
exp

(
−r

2

r2
0

)
, (2.27)

where a0 is the initial concentration of fluorophores and a1, r0 are constants. Once photo-
bleached, the fluorescent particles movement in and out of the bleach region is governed
by the diffusion equation, gradually fading the ROI. The solution to eq. (2.26) is then
readibly obtained as

c(r, t) = a0 −
a1

4Dt+ r2
0

exp
(
− r2

4Dt+ r2
0

)
. (2.28)

This solution is analogous eq. (2.17), but in a two dimensional setting and for a wider
initial distribution.
In the detection stage one adds to the model the effects of optical imaging on the

resulting image. The fluorescence F as captured by the microscope may be modelled
as the sum of all points on the sample, effectively the convolution of the fluorophore
concentration with a detection point-spread function Idetection[1]:

F (r, t) =Idetection(r) ? C(r, t) (2.29)

=
∫ ∞
−∞

dr′I(r)C(r − r′) (2.30)

where (?) denotes the convolution operation. Johansson et al. use a 3D point spread
function

Idetection(x, y, z) = I0 exp
(
−2x

2 + y2

r2
xy

)
exp

(
−2z

2

r2
z

)
, (2.31)

where I0, rxy, rz are constants. The parameters {a0, a1,D, r0, I0, rxy, rz} of eq. (2.28) and
eq. (2.29) may then be estimated numerically, for example by the method of least squares
with maximum likelihood.
Finally, the image is subjected to noise. External noise is introduced due to thermal

noise in the electronics and the photomultiplier tube amplification itself has a variance.
An important assumption is also that the photomultiplier itself is in a linear domain, and
that its output is proportional to the intensity [7, 5]. Moreover, light sources can create
gradients in the sample illumination and increase thermal noise. The bleaching strength is
given by the laser power output and number of bleach frames, and too strong bleaching can
introduce non-linearities in the fluorescence as well as noise. Furthermore, noise models
may take into account that the photon particle count in the image acquisition is Poisson
distributed.
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2.3 Machine Learning for Regression

Regression analysis is a set of techniques used to establish relationships between some
continuous predictive variables x and a dependent outcome y. There are many classical,
parametric methods for regression, such as least squares estimation and in general maxi-
mum likelihood estimation. Machine learning is a type of statistical learning which may be
used for regression where classical methods fail or are too computationally expensive. In
this section we will cover regression and neural networks as a machine learning approach
to the topic.

2.3.1 Supervised Learning and Regression

Supervised learning is a branch of statistical learning and machine learning that given an
input x ∈ X and target y ∈ Y aims to learn a map f(x) : X → Y . The performance of
the mapping is defined by the loss function, L : Y ×Y → R+. The goal is thus to find the
most accurate representation of the function f in terms of the loss function.

This is often phrased as an optimization problem, with the objective of minimizing the
risk R, defined as the expected loss over the joint probability distribution p(x, y) of (x, y)

R(f) = Ep(x,y)
[
L(f(x), y)

]
, (2.32)

where f ∈ F is in the set of all possible representations F in some space. In conclusion,
the mapping f∗ is given by

f∗ = arg min
f

Ep(x,y)
[
L(f(x), y)

]
(2.33)

In practice, the true probability distribution p(x, y) is not known, and only a subset of
the input and target data is available. In that case one has a dataset D = {xi, yi}Ni=1,
with N ∈ Z independent and identically distributed samples with an empirical distribution
p̂(x, y). The subsequent empirical risk must be minimized from the dataset, resulting in
an estimated function representation f̂ :

f̂ = arg min
f

Ep̂(x,y)
[
L(f(x), y)

]
= arg min

f

1
N

N∑
i=1
L(f(xi), yi). (2.34)

The defining problem of supervised learning is thus to optimize the choixe of the repre-
sentation function f . Supervised learning is typically split in two subdivisions, regression
and classification. In regression, the target y is continuous and real-valued, whilst in
classification the target is a set of discrete categories. The theoretical foundations remain
the same, but in practice they are handled slightly differently. For FRAP, the targets
are the real-valued system parameters of diffusion and this work will therefore only cover
regression.
The most classical approach to regression is to model targets y ∈ RM×N of N observa-

tions with M dimensions such that

y = f(x; w) + ε, (2.35)

where x ∈ Rp×N are observations of some p features (e.g. pixels in an image or time series
points), w ∈ RM×p the parameters, and ε ∼ N (0,σ2

ε) is Gaussian noise. The objective
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function R is then the mean squared error, MSE,

MSE(x, y; w) = E
[
(yi − f(xi; w))2

]
= 1
N

N∑
i=1

(yi − f(xi; w))2 . (2.36)

or the sum of squares SS = N ×MSE. The problem is now two-fold: Finding a suitable
function representation f , and its corresponding parameters w. A simple example is a
linear model

y = f(x; w) = wTx + ε, (2.37)

where E(y) = wTx and the solution is known as

w∗ = arg min
w

MSE(x, y; w)

= arg min
w

N∑
i=1

(
yi −wTxi

)2

= (xTx)−1xTy. (2.38)

For problems where f is non-linear, there are in general no closed form solutions. One
alternative to least squares minimization is maximum likelihood estimation, where we as-
sume a general probabilistic model, X ∼ p(x; θ), where p(x; θ) is a probability distribution
of x with parameters θ. In this case, the likelihood L for N independent and identically
distributed samples x1, ..., xN is defined

L(θ) =
N∏
i=1

p(xi|θ). (2.39)

Maximizing this likelihood is equivalent to minimizing its negative log-likelihood, such that

arg max
θ

L(θ) = arg min
θ
− logL(θ) = arg min

θ
−

N∑
i=1

log p(xi|θ). (2.40)

Observe that for a Gaussian model X ∼ N (µ,σ2), this is the same as a linear least squares
minimization up to a constant, since

− logL(θ) =
N∏
i=1

log
(( 1

2πσ2

)N/2
exp

(
−
∑N
i=1 (xi − µ)2

2σ2

))

=N

2 log 2πσ2 + 1
2σ2

N∑
i=1

(xi − µ)2 (2.41)

where eq. (2.37) has µ = E(y) = wTx.
A common modification to least squares is a penalized or regularized loss function. The

penalization is implemented to impose constraints on the parameters, for example with a
p-norm,

Lpen(x, y; w) = L(x, y; w) + λ||w||p, (2.42)

where λ is a constant. Using the 1-norm this is known as L1-regularization, or weight decay
in the context of neural networks, and imposes a restriction on the size of the parameters.
Weight decay has been shown to reduce overfitting and improving generalization, meaning
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the model makes more accurate predictions from previously unseen data.

2.3.2 Artificial Neural Networks

A relatively modern approach to supervised learning is to use artificial neural networks
(ANNs). An artificial neural network is an algorithm for approximating a potentially
non-linear function f = f(x; w), mapping an output x to y by means of optimizing a set
of weights w. The inception of neural networks happened in the 1940s and 1950s when
McCulloch and Pitts developed a logical model for the human brain, called neural nets [18].
Other milestones include a similar structure that was invented by Hebb who showed that
the neural networks had the capacity of associative memory, and the perceptron created by
Rosenblatt, with which he was able to solve simple logical problems [19]. The perceptron is
a simple neural network and important building block, defined as an affine transformation
with a non-linearity, where an input x ∈ Rn is mapped to an output y ∈ Rm via matrix
multiplication with a weight matrix w ∈ Rm×n

y = σ(h) = σ(wTx + b) (2.43)

where σ is a non-linear activation function, and b is a bias or threshold. The perceptron was
invented by Rosenblatt as a model of human neural functions, where a chemical signal
enters a neuron, which is then activated and sends a response if the signal is stronger
than a threshold. In applications, the intention is that the perceptron should learn which
input features are important from this activation. The state σ(h) is thus often called the
activation, and the components wij i = 1, ...,m; j = 1, ...,n are called neurons.

x1

x2

x3

h1
1

h1
2

h1
3

h1
4

h1
5

h2
1

h2
2

h2
3

h3
1 y

Figure 2.3: A multilayer perceptron with input variables x = [x1,x2,x3]T , scalar output
y = y and hidden states h`, where the superscript ` indicates the layer. The
weights wij from node i to node j in the affine transformation are illustrated
with the edges of the graph.

If σ were linear, this would be exactly equivalent to linear regression. Instead, common
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choices are the sigmoid, hyperbolic tangent and rectified linear unit (ReLU) functions

σ(x) = 1
1 + e−x

∈ [0, 1] (2.44)

tanh x =ex + e−x

ex − e−x
∈ [−1, 1] (2.45)

ReLU(x) = max(0,x) ∈ [0,∞) (2.46)

The choice of activation is affected by its saturation for high inputs, and how it handles
input below the threshold. In modern applications, ReLU is the most common choice [20].
The foundation of artificial neural networks is extending the perceptron with hidden

layers. The multilayer perceptron (MLP) is a nested function where the output is fed
sucessively as the hidden state h`−1 of the `th layer:

y` = σ(wT
` σ(wT

`−1σ(...) + b`−1) + b`) (2.47)

or equivalently

h` = wT
` σ(h`−1) + b` (2.48)

h1 = wT
1 x + b1. (2.49)

This may be visualized as a graph with variables as nodes and the weights wij , i =
1, ...,m; j = 1, ...,n as the connecting edges, see Figure 2.3. The number of layers expands
the capacity for learning of a neural network, and allows it to solve more complex tasks.
A neural network with more than two layers is known as deep [20, 21, 22]. Layers of MLPs
are frequently called fully connected, dense or linear layers.

2.3.2.1 Learning by Backpropagation

The supervised optimization problem posed in eq. (2.34) is now a matter of optimizing the
weights in the ANN. The data x is forward propagated through the network f , yielding
an estimate ŷ = f(x; w), with a resulting loss L(ŷ, y).
The most common optimization method for neural networks is backpropagation, which

is a variation of the gradient descent algorithm. After propagating the input through
the network, the weights of a given layer are updated simultaneously with a correction
w ← w +δw, from the last layer to the first one. The correction is defined as the negative
gradient of the expected empirical risk

w ← w − η∇wEp̂(x,y) [L(ŷ, y)] , (2.50)

where 0 < η < 1 is a step size parameter known as the learning rate. This requires
explicitly calculating the gradient of the expected loss with respect to the weights of each
layer [21].
This learning scheme is often improved by introducing momentum, a memory of the

previous iteration t− 1:

δwt = −η∇wtEp̂(x,y) [L(ŷ, y)] +mδwt−1, (2.51)

where m is the momentum rate. A further improvement is the Nesterov accelerated mo-
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mentum, which evaluates the gradient at the point after adding momentum [23]:

δwt = −η∇wtEp̂(x,y) [L(ŷ, y)]
∣∣
wt+mδwt−1

+mδwt−1, (2.52)

Both of these methods accelerate convergence to a minimum, without sacrificing accuracy.
However, m must be chosen in conjunction with η.

2.3.2.2 Modern Frameworks for ANNs

In modern practice, little resembles the original ideas from the 1940s. Recent frameworks
for artificial neural network implementation include PyTorch [24] and Tensorflow [25]
which have support for parallelization and computation on GPUs at a high-level in several
programming languages. The formulation of neural networks used by especially these two
frameworks differs from the purely mathematical description above.
The neural network variables, trainable parameters and operations are expressed as a

computational graph, essentially a directed acyclic graph, see Figure 2.4, illustrating the
simple linear neural network y = h(x) = wTx. Here, the right representation is a graph
connecting inputs x = {x1,x2,x3} with hidden states hi = w

(1)
ij xj , i = 1, ..., 5 and later

the output y = w(2),Th. The variables and hidden states are nodes, connected by weights
in the matrix multiplication operation. This representation grows unwieldy for multiple
layers and many hidden states, and often obscures the layer operations.
The left form is more compact, and feeds a node variable x to a matrix multiplication

operation (dot) with trainable parameters w, which is in turn fed as an output variable
y.

x dot

w

y

x1

x2

x3

h1

h2

h3

h4

h5

y

w
(1)
11

w
(2)
1

w
(2)
5

Figure 2.4: Two equivalent representations of a perceptron neural network. The left is
a graph with variables x, y and operations wTx as nodes, with edges indi-
cating forward passes and outside labels indicating trainable parameters. The
representation to the right uses variables x = {x1,x2,x3}, y = y = w(2),Th

and intermediate hidden states hi = w
(1)
ij xj as nodes, with edges indicating

multiplication by the respective weight.

The benefit of the compact graph representation is that it enables faster and more
general calculation of derivatives than the approach covered in Section 2.3.2.1. Consider
the MLP in Figure 2.3. The gradient of y with respect to the first layer weights w(1) may
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be expanded using the chain rule, as a product of the derivatives of the hidden states with
respect to their input:

dy

dw(1) = dy

dh(3)
dh(3)

dw(1) = ... = dy

dh(3)
dh(3)

dh(2)
dh(2)

dh(1)
dh(1)

dw(1) (2.53)

If the derivative of the operation from one state to another is known, the calculation
becomes easy [20].
The gradient in eq. (2.52) can most often not be estimated from the entire dataset D

(or batch) due to either computational limitations or an insufficient dataset. A common
alternative is to estimate the gradient on mini-batches B, such that D = ∪NBi=1Bi, where
NB is a given number of mini-batches of size N/NB. One iteration over all mini-batches
is then called an epoch.
For testing purposes, batch or mini-batch gradient descent is often split into a training

set, validation set and test set, where only the training portion of the data is directly
available during learning. The validation set is used indirectly to monitor the learning,
and the test set is used after training for evaluation of the model’s performance.

2.3.3 Convolutional Neural Network

A convolutional neural network (CNN), or a convolutional layer as part of a deep neural
network, was developed to operate on data with an internal lattice structure, such as
images. The use of CNNs has boomed in recent years, and was ignited by Yann LeCun
using them for image recognition of US postal codes in 1998 [26].

Given an input image x with dimensions (Cin,W ,H), where W ,H are the width and
height of the image respectively and Cin denotes the number of channels, the convolutional
layer output y over this image is defined as

yc = bc +
Cin∑
c′=1

xc′ ?wcc′ , c = 1, ...,Cout. (2.54)

Here w is a learnable weight lattice known as the kernel, with dimensions (Cin,Cout, k, k)
and a kernel size k. The kernel is equivalent to a filter in traditional image analysis, and
can function as for example a blurring filter or contour-detecting filter. Here (?) denotes
the discrete convolution operation, defined

yijcc′ = (xc′ ?wcc′)ij =
k∑

m=1

k∑
n=1

x(i−1)s+m, (j−1)s+n, c′ wmncc′ (2.55)

for a row pixel i, column pixel j and out channel c. The s variable denotes the stride
hyperparameter, which allows for sampling only every s pixel, in practice downsampling
the input image to a smaller size. [20]
The convolution operation in practice amounts to element-wise multiplication between

input and weights, as illustrated in Figure 2.5, and is thus equivalent to a fully connected
perceptron on a small subset of the image. This rectangular subset in the input image
is known as the k × k receptive field of the output. However, the fundamental difference
to a fully connected neural network is weight sharing, where weights are shared between
input pixels, leading to a significant reduction in the number of operations and weights
necessary compared to the former, from an order of O(NM) to O(kM), given N inputs
and M outputs. [20]
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Figure 2.5: Illustration of the convolution operation on a 10×10 image with one channel,
using two filters with 3× 3 kernels and no stride. The discrete convolution is
equivalent to an element-wise matrix product, and the result is an image with
two channels. The size of the image also depends on hyperparameters such as
stride and dilation.

The convolution operation of eq. (2.55) is also applicable to the 1D and 3D cases, which
is especially relevant to this work, where a recovery curve has dimensions (C,T ) and
the full FRAP data has dimensions (C,T ,H,W ), where C = 1 and T is the temporal
dimension.

input

1 @ 10× 10

convolution

2 @ 3× 3

normalization activation output

2 @ 10× 10

convolutional layer/block

Figure 2.6: Some authors prefer to define the convolutional layer as the sequence of a
convolution, normalization and a non-linear activation function layer, but in
this thesis, it is called a standard convolutional block.

A variation of the convolution operation is the pooling operation, most notably max
pooling and average pooling, the former of which is an efficient operation for non-linearity
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and downsampling. If s is a stride like before, and k is the kernel size of the max filter,
then

yijc = MaxPool(x)ijc = max
m=1,...,kH

max
n=1,...,kW

x(i−1)s+m, (j−1)s+n, c (2.56)

where H,W are the height and width of the input image, respectively. Similarly, one may
define an average pooling layer, such that

yijc = AvgPool(x)ijc = 1
k2HW

kH∑
m=1

kW∑
n=1

x(i−1)s+m, (j−1)s+n, c (2.57)

Pooling layers provide a way for the network to emphasize certain regions in their input,
and provides local invariance to activations. This local invariance means the network
becomes less sensitive to small perturbations in the receptive fields [20].
In practice, a convolution is most often followed by a normalization and an activation, in

a convolutional layer or block, see Figure 2.6. Normalization is a regularization technique
used to improve generalization on the validation set of the network. A common choice is
batch normalization, introduced in 2015, which is a feature-wise standardization to zero
mean and unit variance over a mini-batch:

xij ←
xij − E [xij ]
Var [xij ] + ε

, (2.58)

where ε > 0 is a small tolerance to avoid division by zero and E [xij ] , Var [xij ] Var [xij ]
are a running mean and variance over time [27]. The method has been shown to stabilize
training, but the reason is not yet fully understood. During test and validation, the mean
and variance is fixed to their training values.
The most common activation in modern CNNs is the ReLU function, and this is the

activation used throughout this thesis unless stated otherwise.
Another regularization technique is the dropout layer [28], which is often applied to fully

connected linear layers, defined as

Dropout(w; p) =
{

0, with prob. p
w, with prob. 1− p

(2.59)

This method is meant to force the neural network to more efficiently encode information
in its weights. As described by Goodfellow et al. [20], dropout may also be seen as an
average of many smaller perceptrons.

2.3.4 Recurrent Neural Networks and LSTM

A common option when modelling sequences is using recurrent neural networks, which are
characterized by some neurons connecting not only to other neurons, but also themselves.
This recurrence, or feedback, allows the network to share weights during the length of a
sequence.
Given a sequence xt in time t = 1, ..., τ , a recurrent layer has a time dependent hidden

state ht which is the sum of the last hidden state in the sequence and the current input,
see Figure 2.7.
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ht−1

xt

ht

yt

dot wxh

dot

whh, bh

dot why, by

recurrent unit

Figure 2.7: A recurrent unit, taking the preceding hidden state ht−1 and features xt of a
sequence as input.

The recurrent layer operations are

ht =σ(wT
xhxt + whhht−1 + bh) (2.60)

yt =σ(wT
hyht + by) (2.61)

where wxh„ hhy, hhh respectively connect input to hidden state, hidden state to output
and from the last hidden state to the new one. The hidden state h0 as well as the weights
and biases bh, by must be initialized.

x

h

y

whh, bh

wxh

why, by

x0

recurrent

y0

x1

recurrent

y1

. . .

xτ

recurrent

yτ

Figure 2.8: A recurrent neural network as a recurrence in perceptron-style (left) and un-
folded in time t = 1, ..., τ with recurrent units from Figure 2.7 (right).

A recurrent neural network is often trained with backpropagation through time, which
minimizes the empirical risk over the entire sequence:

w ← w − η
τ∑
t=1
∇wEp̂(x) [L(f(xt; w), yt)] . (2.62)
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In practice, this may be seen as unfolding the recurrence as connected layers in time, see
Figure 2.8. This unfolding sheds light on the fact that neural networks can be described as
dynamical systems, not just RNNs. However, it exposes a problem with backpropagation
as a method of learning for RNNs. Approximating the sequence as continuous in a single
variable, we have that

h(t) ≈ ew(t)th0 (2.63)

which for ew(t) > 1 will grow exponentially in time, and for ew(t) < 1 will shrink exponen-
tially, causing the network to stop learning catastrophically. This is called the unstable
gradient problem [29, 22]. This is not a problem unique to RNNs, but for deep neural
networks in general. However, since the depth of an RNN is related to the length of the
input sequence, they are especially sensitive.

ct−1

ht−1

xt

cat

f

∗

i c’

∗

+

o

ct

tanh

∗ ht

yt
long short-term memory unit

Figure 2.9: A long short-term memory unit (LSTM) is an improved recurrent unit with a
hidden state ht and cell state ct. These are updated in time by means of the
input (i), forget (i) and output (o) gates. The learnable weights and biases
from eq. (2.64)-(2.69) have been excluded to avoid cluttering.
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Long short-term memory (LSTM) was introduced in 1997 as a remedy for the unstable
gradient problem, and introduced a new hidden “cell state” as well as gating operations
to only preserve important information from the input [30].
The LSTM is governed by the following set of operations

f(xt, ht) = σ(wT
xfxt + wT

hfht−1 + bf ) (2.64)
i(xt, ht) = σ(wT

xixt + wT
hiht−1 + bi) (2.65)

o(xt, ht) = σ(wT
xoxt + wT

hoht−1 + bo) (2.66)

c′(xt, ht) = tanh
(
wT
xcxt + wT

hcht−1 + bc
)

(2.67)

ct = f ∗ ct−1 + i ∗ c′ (2.68)
ht = o ∗ σ(ct) (2.69)

where the cell state ct is responsible for carrying long-term information, see Figure 2.9,
and cat is a concatenation operation, e.g. cat(x, h) = [x, h], and (∗) element-wise matrix
multiplication. This unit requires that both c0 and h0 are appropriately initialized.
The information from the input sequence is passed through a series of gate operations.

The forget gate f is responsible for determining what information to preserve from the
previous cell state, and what to forget. The input gate i weights new information from a
candidate cell state c′, and the output gate o is a weight determining what fraction of the
cell state should be forwarded as the next hidden state ht.

2.3.5 Convolutional LSTM Neural Network
A relatively recent development is the extension of RNNs to image data. Normal RNNs
are unsuitable for images due to the large number of neurons required. The convolutional
LSTM (ConvLSTM) was invented for predicting weather radar data from an image time
series, but has since also been used for other spatiotemporal tasks, such as video action
recognition [31, 32]. The ConvLSTM is a generalization of eq. (2.64)-(2.69) where the
affine transforms are replaced by 2D convolutions like in eq. (2.55).

f(xt, ht) = σ(wxf ? xt + whf ? ht−1 + bf ) (2.70)
i(xt, ht) = σ(wxi ? xt + whi ? ht−1 + bi) (2.71)
o(xt, ht) = σ(wxo ? xt + who ? ht−1 + bo) (2.72)
c′(xt, ht) = tanh(wxc ? xt + whc ? ht−1 + bc) (2.73)

ct = f ∗ ct−1 + i ∗ c′ (2.74)
ht = o ∗ σ(ct) (2.75)

These modifications allow the LSTM to take structured data like images in a sequence as
input.
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3 Methods

We are interested in learning how to estimate the diffusion coefficient and other param-
eters from FRAP experiments using neural networks. These experiments are simulated
numerically with given parameter values, which are then estimated by least squares and
by a set of deep neural networks. This chapter covers the simulation procedure and the
methods of estimation.

3.1 Simulating the FRAP Experiment

The simulation tool for fluorescence recovery after photobleaching experiments was imple-
mented in MATLAB by Röding et al.[7], and the code is available at https://github.
com/roding/frap_matlab. The numerical simulation solves the 2D diffusion equation

∂c(x, y, t)
∂t

= D∆c(x, y, t) (3.1)

where c denotes the concentration of fluorophores, and D is the diffusion coefficient like
before. Diffusion coefficients are temperature dependent, but in room temperature a
common, natural upper bound of the diffusion coefficient is that of water in an ambient
environment, D = 2 × 10−9 m2/s, in which most particles are suspended. Lower bounds
vary with application, but large molecules like ribosomes may have as low as D = 2 ×
10−14 m2/s [33, 34].
The diffusion equation is solved with periodic boundary conditions in a box with dimen-

sions (H+2M)× (W +2M), H = W , where H and W denote the height and width of the
box respectively, and M is a padding used to reduce periodicity artefacts of the diffusion.
The standard settings are H = W = 256,M = 128 pixels. The diffusion equation is then
solved in the Fourier domain, where it becomes a set of independent ordinary differential
equations

∂ĉ(ξ, η, t)
∂t

= −(ξ2 + η2)D ĉ(ξ, η, t) (3.2)

where ĉ(ξ, η, t) is the 2D Fourier transform of c(x, y, t) in the spatial coordinates (x, y). The
concentration is initialized in the spatial domain such that c(x, y, t = 0) = c0. Bleaching
is done with a mask that bleaches the box in the ROI Ω with a factor α, such that

c(x, y) =
{
c0α, (x, y) ∈ Ω
c0, (x, y) 6∈ Ω

(3.3)

where α is known as the bleaching depth parameter. In experiments a high degree of
bleaching, α ≈ 0, is desirable for a strong signal with good recovery, but may in practice
lead to non-linearities as mentioned in Section 2.2.2.2. A reasonable interval is thus α ∈
[0.5, 0.95]. In a similar fashion, the initial concentration c0 must be sufficiently high to get
a good signal-to-noise ratio, but not so high that it saturates the signal acquisition. An
appropriate choice is thus 0.5 < c0 < 1.
In order to account for the limited imaging and bleaching resolution of CLSMs, the mask
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experimental simulated

Figure 3.1: Comparison between the first post-bleach frame in experimental FRAP (right)
and numerically simulated FRAP (right), given parameters estimated using
pixel-wise least squares from the experimental sequence.

is supersampled and then downsampled again through an averaging filter, smoothing the
edges of the ROI.

ĉ(ξ, η, t+ ∆t) = e−(ξ2+η2)D∆tĉ(ξ, η, t) (3.4)

The solution is computed in the Fourier domain using MATLAB’s Fast Fourier Transform
fft2 for a time tprebleach without bleaching, a time tbleach of bleaching and finally tpostbleach
frames after bleaching. The sampling time between frames is set as ∆t. The concentration
c(x, y, t) is then given by the inverse Fourier transform (ifft2) of eq. (3.4). Figure 3.1
shows a comparison between the first FRAP frame after bleaching of an experimental
sample, compared with the respective frame of a numerically simulated FRAP sequence
without noise with parameters estimated from the experiment.
Define θ = {D, c0,α} as the set of parameters we wish to estimate from a simulation

or experiment. The parameters are then estimated using least squares via maximum
likelihood, like in Section 2.3.1.
Two methods of least-squares fitting are used: Firstly, the pixel-based method assumes

that every pixel value p(x, y, t),x = 1, ...,W , y = 1, ...,H, t = 1, ...,T in the FRAP image
is independent and identically normal distributed with mean c(x, y, t) and variance of the
form

σ2(p(x, y, t)) = a+ bp(x, y, t) (3.5)

where a is a constant noise offset, and b is a factor of noise proportional to the intensity
accounting for experimental noise from imaging and the photomultiplier. The negative
likelihood is then

`(θ) = −1
2
∑
x,y,t

log
(
2πσ2(p(x, y, t)

)
− 1

2
∑
x,y,t

(p(x, y, t)− c(x, y, t|θ))2

2πσ2(p(x, y, t)) , (3.6)

where x, y, t run from 1 to W ,H,T respectively. Here c(x, y, t|θ) denotes the values gen-
erated by the model given the set of parameters, and p(x, y, t) the acquired image pixels
from a simulation or experiment.
Secondly, the recovery curve method calculates a curve F as the mean intensity in the

ROI before and after bleaching (t > tbleach)

F (t) =
∑
x,y

w(x, y, t)p(x, y, t) (3.7)
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where w is an indicator matrix

w(x, y, t) =


1
|Ω| , (x, y) ∈ Ω,∀t

0, (x, y) 6∈ Ω,∀t
(3.8)

and |Ω| are the number of pixels in the ROI. The recovery curve noise variance is also
i.i.d. normal with zero mean and variance

σ2(F (t)) =
∑
x,y

w(x, y, t)2 (a+ bp(x, y, t)) . (3.9)

as a consequence of the distribution of the pixels. Analogously to the concentration, F
has a log-likelihood

`(θ) = −1
2
∑
t

log
(
2πσ2(F (t)

)
− 1

2
∑
t

(F (t)− Φ(t|θ))2

2πσ2(F (t)) , (3.10)

where Φ(t|θ) denotes the recovery curve generated by the model given the set of parame-
ters, and F (t) is the acquired signal from the simulation.
The negative log-likelihoods of both methods are then minimized by the fmincon routine

in MATLAB, yielding estimates for θ.

3.2 Deep Neural Network Architectures

A broad set of neural network architectures were implemented during the course of this
work, for both the temporal recovery curve data and the full spatio-temporal data. The
computational limitations of the latter resulted in a pure 2D CNN approach, and a Con-
vLSTM. The code is available at https://github.com/waahlstrand/frappe.

Methods like least squares rely on statistical models of the recovery curve or individual
pixels for fitting. In that sense, neural networks are model-agnostic and do not make
assumptions about the mechanisms behind the data.

3.2.1 Previous Work

Deep learning applied to FRAP is unprecedented to our knowledge. The majority of
research into deep learning applications for image data is concentrated on 2D CNNs and
image recognition [inception, 35]. Lately however, there has been substantial work on
ANNs for video data, especially in the area of video classification and action/gesture
recognition. It seems natural to extend 2D CNNs to 3D, but as noted by several authors,
the success of 2D CNNs has yet to be replicated for video data [36]. There have been
multiple efforts to use 3D CNNs, such as C3D, Resnet-3D, and 3D Inception modules,
but no method has gained traction similar to their 2D counterparts [36, 37, 38]. An
uncompromisable problem with 3D CNNs is their computational complexity and number
of neurons, and thus their tendency to overfit.
Many approaches thus use spatial convolutions and attempt various methods of extract-

ing the temporal information, such as the frame-wise methods developed by Karpathy et
al. [39], where the temporal information is fused either in groups of frames or separately.
The results however, were known to be “disappointing” by other authors, which applied
LSTMs as the temporal fusion layer instead [40]. A complement to the neural network
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architecture is data augmentation and feature engineering, both of which have limited ap-
plication to the FRAP data. Optical flow is used by many authors as a means of extracting
pixel movement between frames, and often improves accuracy in gesture recognition by
several percentage units [36, 40, 41]. Unfortunately, due to the diffusive and noisy nature
of FRAP data, optical flow is an ill-suited feature and fails to extract any meaningful
movement.
Using simulated data for training is also fairly uncommon, but has precedence in text

recognition and 2D/3D image recognition [42, 43], but then primarily as augmentation for
a natural dataset.

3.2.2 Neural Network for the Recovery Curve

The recovery curve has dimensions (T ), essentially becoming a curve-fitting problem.
Initial tests feeding the entire recovery curve to a deep fully connected neural network
did not perform well, likely due to the discontinuity after bleaching, see Figure 2.2. We
know that the information about the initial concentration c0 is mostly contained in the
pre-bleach frames, and that the ratio of the concentration in the ROI before and after
bleaching is the definition of α. For this reason, the pre-bleach and post-bleach frames are
fed separately to a respective fully connected neural network with 5 layers. The outputs
of these networks are then fused and fed to a series of three final fully connected layers.
The number of neurons were chosen by manual search. The resulting network is given by
Figure 3.3.

3.2.3 2D Downsampling CNN

The recovery curve is an example of early feature engineering, which condenses the spatio-
temporal pixel data into a single feature of time, which may be used to estimate the
diffusion coefficient with impressive result.
We transfer this thinking to a 2D downsampling CNN. The goal of the 2D downsam-

pling approach was inspired by the recovery curve method; to reduce the 3D data with
dimensions (T ,W ,H) to a single-valued time series with (T ) points, but the intent is
for the network to learn an efficient downsampling strategy, see Figure 3.4. The method
differs from for example the C3D and other 3D CNNs in that the time component is left
intact, treating the time dimension as the channel dimension and applying 2D convolu-
tions frame-wise on the sequence. This means that the spatio-temporal data must have a
fixed number of frames. The FRAP data is then fed sequentially through convolutional
blocks with ReLU activation and max pooling layers to produce a vector of size (T ). To
reduce noise, a 1D CNN is applied to the vector. The output of the 1D CNN is lastly fed
to three fully connected layers with 1024 and 512 neurons and ReLU activation.
The architectural search for the downsampling neural network was aimed at finding

a compromise between the design goal and the size of forward and backward passes.
The details of the architecture, such as kernel sizes and stride settings, are available in
Figure 3.3. Results from the architecture search emphasizes that the kernel sizes of the
first CNN are not larger than 4, and that larger kernel sizes for the remaining CNNs is also
detrimental to performance. The neural network also performs well without regularization
layers such as dropout, which only seem to introduce randomness.
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2D Conv110 @ 2× 2, s = 1

maxpool110 @ 2× 2

2D Conv110 @ 3× 3, s = 1

maxpool110 @ 2× 2

2D Conv110 @ 3× 3, s = 1

2D Conv110 @ 3× 3, s = 1

maxpool110 @ 2× 2

2D Conv110 @ 3× 3, s = 1

2D Conv110 @ 3× 3, s = 1

maxpool110 @ 2× 2

2D Conv110 @ 3× 3, s = 1
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maxpool110 @ 2× 2
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input
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downsampler

ConvLSTM32 @ 3× 3

ConvLSTM32 @ 3× 3
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output

3

Convolutional LSTM

Figure 3.2: Detailed architecture of the Convolutional LSTM and its downsampling block
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2D Downsampling CNN Neural Network for the Recovery Curve

Figure 3.3: Detailed architecture of the 2D Downsampling CNN (left) and the neural net-
work for the recovery curve (right).
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512 3

Figure 3.4: Visualization of the 2D downsampling CNN. The neural network takes a se-
quence of 110 frames, downsampling the frame size in steps using 2D convo-
lutional blocks followed by maxpooling. The data is reduced to a sequence of
110 values which is fed to a series of fully connected layers.

3.2.4 Convolutional LSTM

A ConvLSTM neural network was constructed due to its apparent success on similar tasks
in image recognition and video prediction. However, the ConvLSTM is computationally
expensive for large images, in effect calculating 8×T 2D convolutions per sequence. Since
H = W = 256 and T = 110 in general, the forward and backward passes occupy a lot of
memory in the network.
For that reason, the sequence is first fed to a 2D downsampling block, see Figure 3.2, and

the subsequent smaller features are fed to a convolutional LSTM network. The architecture
of the downsampling block is an alternating series of 2D convolutions and maxpoolings, in
order to extract as much information from the images as possible, while reducing the image
size. The spatio-temporal data is passed from the downsampling block to two-layers of
the ConvLSTM unit as pictured in Figure 2.9, in order to extract the temporal features of
the sequence. Finally, the ConvLSTM is followed by two linear layers with 7040 and 4096
neurons each, each followed by a dropout layer with p = 0.5. The dropout was introduced
to combat overfitting. Inserting dropout layers at any other position in the ConvLSTM
makes learning noisy in this architecture.
The main compromise of the size of the input after downsampling was to accomodate

32 filters in the ConvLSTM. The number of filters in the ConvLSTM units were found
to be very important for the performance of the neural network, but also a source of
computational demand.

3.2.5 Early Trials

For the image data, trials were made using neural networks and weights pretrained on
2D images as initialization, for example resnet-18. This proved less successful than neu-
ral networks for video data with random initialization. The reason is likely the area of
application: The weight kernels are learnt filters identifying corners, borders and colours
present in ordinary image data. The FRAP data do not admit any of these features,
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which can cause the filters to actually impede learning. Moreover, data augmentation is
often introduced to achieve invariance towards lighting, noise, skewness and location in
an image, but many of these augmentations are not naturally occurring in FRAP. Tests
indicate that there was no significant gain or loss from introducing random occlusion in
the frames, but it may have utility for real world FRAP data. In order for the neural
network to perform on experimental data, it must be able to ignore errors and image
artefacts from the microscope. One of these augmentation efforts is the constant noise a
and proportional noise b in the simulation.

We also tried feature engineering similar to the recovery curve, extracting for example
the variance of the intensity in the ROI, and calculating the mean intensity in disks with
increasing radii from the centre. The main motivation for this approach was to reduce the
dimensionality of the full image data while retaining more information than the recovery
curve. However, fusing the engineered features in the neural networks is not trivial, and
we saw no increase in loss performance.

3.3 Training Environment

The neural network models are trained on an NVIDIA Titan V and NVIDIA Titan Xp with
similar performance. A simulated FRAP sample has dimensions fixed at (C,T ,W ,H) =
(1, 110, 256, 256), using a sampling time of 0.2 s and a realistic pixel size ` = 7.5 ×
10−7 m/px. The resulting size and dimensionality of the data is a notable limitation of
the training, and a single sample occupies approximately 30MB, and any sizeable dataset
is impossible due to storage limitations. On the other hand, one (110, 256, 256) video
amounts to 256 × 256 = 65536 recovery curves with (T ) = (110), which is easily trained
in a mini-batch scheme given by Algorithm 2. However, the computation and storage
limitations of spatiotemporal data force us to reconsider the batch and mini-batch train-
ing procedures, given by Algorithm 1 and Algorithm 2. Training the network using the
entire dataset D as a batch is not possible due to the size of the forward and backward
pass. Moreover, for a smaller dataset, machine learning algorithms will find it difficult to
generalize to the entire population.

Since the data is generated from the MATLAB simulation tool, our access to the distri-
bution is unlimited. For that reason it is attractive to continuously generate more data. In
the online learning technique in Algorithm 3 a small batch of NB samples is generated and
become available to the network sequentially. The network is trained for Niter iterations,
and a new small batch is generated every iteration. This would hypothetically allow the
network to learn indefinitely.
However, a big problem with sequential learning for neural networks is catastrophic

forgetting, see for example [44]. Catastrophic forgetting is the tendency to overwrite
weights every iteration, and retaining too little information to generalize on the data. In
the case of FRAP data, this method significantly lowered performance of the networks,
likely due to this reason. In theory, regularization efforts such as dropout should alleviate
catastrophic forgetting,[44] but in our experience not enough to justify its use.
We introduce a compromise between these methods in Algorithm 5, where a finite

dataset D with approximately N ∼ 103 samples is generated at the start of training. The
network is then trained in mini-batch mode, with a fraction f of N new samples Dnew
generated at the end of each epoch. A random subset of fN samples in D are then updated
with the values of Dnew. This method combines the learning benefits of batch training,
with the regularizing effect of new data.

What is an appropriate value of the fraction f of new data? Setting f = 1 means
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generating N new samples every epoch, which is computationally very inefficient. A com-
promise is to generate the new data in intervals of e.g. 100 epochs. However, tests indicate
that this approach is very sensitive to overfitting on the first batch of data. This means
f must balance overfitting on the initial batch of data and still have a regularizing effect.
We find that updating f = 0.05 = 5% is a reasonable compromise between computational
time and regularization.
The neural networks are all trained to minimize the mean square error loss function, as

previously defined

MSE(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2 = 1
N

N∑
i=1
L(y, ŷ) (3.11)

for a predicted value ŷ and true value y.

3.4 Hyperparameter Optimization
The neural networks were optimized with respect to the hyperparameters batch size NB,
learning rate η and momentum m using a grid search with Nepochs = 500 epochs. The
remaining hyperparameters, such as the number of layers, kernel sizes and neurons in the
neural networks were chosen manually during the architecture search, taking computa-
tional complexity and loss in regard.
For the 2D downsampling net, the optimal values were found to be NB = 8, η = 1×10−4,

and m = 0.99, which was in agreement with early tests. Similarly, the optimal values for
the ConvLSTM were found to be NB = 8, η = 1 × 10−3, and m = 0.99. The best
hyperparameters for the recovery curve network were found to be NB = 32, η = 1× 10−5,
and m = 0.99.
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Data: Dataset D with N samples
of (x, y) data.

Result: An estimated loss value.
for epoch in Nepoch do

for (x, y) in D do
Calculate loss;

Update weights;

Algorithm 1: The batch algorithm

Data: Dataset D with N samples of (x, y) data.
Result: An estimated loss value.
Shuffle D into NB mini-batches B;
for epoch in Nepoch do

for B in D do
for (x, y) in B do

Calculate loss;
Update weights;

Algorithm 2: The mini-batch algorithm

Data: A simulation tool for the data.
Result: An estimated loss value.
for iteration in Niter do

Generate a batch B of NB samples;
for (x, y) in B do

Calculate loss;
Update weights;

Algorithm 3: The online algorithm

Data: A simulation tool for the data.
Result: An estimated loss value.
for iteration in Niter do

Generate a batch D of N samples;
Shuffle D into NB < N mini-batches B;
for epoch in Nepoch do

for B in D do
for (x, y) in B do

Calculate loss;
Update weights;

Algorithm 4: The mixed online-batch algo-
rithm

Data: A simulation tool for the data.
Result: An estimated loss value.
Generate a batch D of N samples;
Shuffle D into NB < N mini-batches B;
for epoch in Nepoch do

for B in D do
for (x, y) in B do

Calculate loss;
Update weights;

Generate a fraction f of the N samples as Dnew;
Update a random subset fN of D to the newly generated data Dnew;

Algorithm 5: Proposed training method
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4 Results

4.1 Model Training, Validation and Test Results

The downsampling CNN and ConvLSTM were trained using the proposed scheme in Al-
gorithm 5 using Ntrain = 4096 initial samples for Nepochs = 2× 103 epochs and a fraction
f = 0.05 of new samples each epoch, and a mini-batch size NB = 8. The learning
rate η = 1 × 10−3 and η = 1 × 10−4 for the downsampling CNN and ConvLSTM re-
spectively, and both used Nesterov momentum m = 0.99. A validation dataset with
Nval = 0.25Ntrain = 1024 was used to prevent overfitting during training. The neural
network for the recovery curve was trained with Ntrain = 65536,Nval = 0.25Ntrain = 16384
samples using Algorithm 2. As a performance test, a test set with Ntest = 2048 samples
was generated to compare the neural networks. The data was generated with target distri-
butions given by the discussion in Section 2.2.2.2 and Section 3.1: The diffusion coefficient
D ∼ LogUniform(10−12 m2/s, 10−9 m2/s) covers the most common cases in food science
with the exception of very slow diffusion, such as that of cells. Henceforth we will consider
the diffusion coefficient in units of px2/s, given the pixel size ` = 7.5× 10−7 m/px.
The diffusion coefficient is rescaled to log10(D) to ensure all target parameters are of the

same order of magnitude. The initial concentration c0 ∼ Uniform(0.5, 1) and the bleach
parameter α ∼ Uniform(0.5, 0.95) ensure a sufficiently strong signal. The combined vector
of target parameters is defined y = [log10(D), c0,α].

Table 4.1: Distribution of target parameter values in the training and validation data,
chosen to cover common values encountered in FRAP experiments.

parameter distribution

D LogUniform(10−12 m2/s, 10−9 m2/s)

c0 Uniform(0.5, 1)

α Uniform(0.5, 0.95)

The simulated data has fixed height and width H = W = 256, and a padding M = 128
which is cropped after data generation. The sampling speed was ∆t = 0.2 s, using
Tprebleach = 10 prebleach frames, Tbleach = 4 bleach frames, and Tpostbleach = 100 post-
bleach frames, hence T = 110 frames in total in the sequence, omitting the bleach frames.
The loss function for all methods was the mean squared error, MSE, and the performance

of an estimation ŷ is given as the MSE(y, ŷ) calculated on the test set. It can be shown
that the mean squared error is the sum of the variance and bias of an estimate ŷ:

MSE(y, ŷ) =E
[
(y − ŷ)2

]
=E

[
(E[ŷ]− ŷ)2

]
+
(
E[ŷ]− y

)2
=Var(ŷ) + Bias2(y, ŷ)
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Table 4.2: Values for the hyperparameters used in generating the data, training and opti-
mizing the neural networks.

hyperparameter Downsampling CNN ConvLSTM Recovery Curve Network

Ntrain 4096 4096 65536

Nval 1024 1024 16384

Ntest 2048 2048 2048

H 256 256 1

W 256 256 1

T 110 110 110

f 0.05 0.05 NA

NB 8 8 32

η 1× 10−3 1× 10−4 1× 10−4

m 0.99 0.99 0.99

Nepochs 2× 103 2× 103 2× 103

Hence, we define the standard deviation std(ŷ) =
√

Var(ŷ) as another measure of interest,
since it defines a precision of the estimates regardless of the true values y, and helps us
quantify the bias of the estimation.
Figure 4.1 shows the loss from training and validation of the neural networks after 2000

epochs, which translates to 9 and 10 days of training for the spatio-temporal networks
and approximately 6 hours for the recovery curve network, in our environment. The
downsampling network validation error follows the training error closely but with higher
variance, and indicates that the model is still underfit. The validation error is approx-
imately 7 × 10−4. The convolutional LSTM converges significantly slower, and reaches
a noisy validation error of approximately 3 × 10−3. Lastly, the recovery curve network
converges fairly quickly to 2 × 10−3, with little noise in the validation error. This is ex-
pected from the complexity difference of fitting the spatio-temporal versus the temporal
data with NNs.

Table 4.3: The test MSE on 2048 samples of the neural networks, given as parameter-wise
MSE and total MSE. The downsampling 2D CNN outperforms the ConvLSTM
and recovery curve network, but the ConvLSTM is notably just as good at
estimating the bleach parameter α.

method MSE(log10 D̂) MSE(ĉ0) MSE(α̂) MSE(ŷ)

Downsampling CNN 7× 10−4 9× 10−4 8× 10−4 8× 10−4

ConvLSTM 3.7× 10−3 2.8× 10−3 7× 10−4 2.4× 10−3

Recovery Curve Network 6.0× 10−3 1.0× 10−5 1× 10−3 2.3× 10−3
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Figure 4.1: The validation and training loss for the downsampling network (first from the
top), ConvLSTM (second) and neural network for the recovery curve (bot-
tom) after 2000 epochs. The downsampler loss is noisy, but mostly due to its
small magnitude. The training is also notably underfitted. The ConvLSTM
on the other hand converges notably slower, with noisy validation. The neural
network for the recovery curve converges quickly and with little noise.

The results from the test set are given by Table 4.3, divided into the parameter-wise
mean squared error for D, c0,α and the total MSE. The most interesting case is the dif-
fusion coefficient, where the downsampling CNN yields MSE(log10 D̂) = 7 × 10−4 versus
the Conv LSTM MSE(log10 D̂) = 3.7× 10−3. Figure 4.1 seems to indicate that the down-
sampling CNN will retain better performance than the other neural networks after further
training. The recovery curve network obtains MSE(log10 D̂) = 2×10−3 and thus performs
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slightly better than ConvLSTM overall. LSTMs are notoriously difficult to train [20],
which may be the cause of the poor convergence. It is also possibly due to poor feature
extraction: Ideally, the features passed through the ConvLSTM would be the full spatial
data, but memory constraints force us to downsample the image. The test set results
indicate that the ConvLSTM makes other prioritizations compared to the downsampling
CNN, namely a relatively good loss on α compared with the total loss. Since α is the
ratio between the mean concentration in the ROI before and after bleaching, it is possible
that the ConvLSTM captures this temporal relationship better. The ConvLSTM also
trains slower than its 2D CNN counterpart, likely due to backpropagation through time
loops over every frame as well as over each sample. The accumulation of gradient updates
puts strain on the GPU. The training time combined with the poor convergence makes it
ill-suited for our training environment. The ConvLSTM does have a few attractive proper-
ties, however: It could potentially be trained on variable length spatio-temporal sequences,
which is useful for experimental applications. It also makes fundamentally different esti-
mations compared with the downsampler, and seems to prioritize the bleach parameter
over the initial concentration and diffusion coefficient. The downsampling neural network
is limited to input sequences with the number of frames on which it is trained, but makes
better estimates as a whole. Henceforth we will only consider the downsampling 2D CNN
(NN-PX), or downsampler, and the neural network for the recovery curve (NN-RC ) for
comparison with least-squares on pixel-data (LS-PX) and recovery curve data (LS-RC ).

4.2 Comparison between Neural Networks and Least Squares
A dataset was generated to compare the neural network approaches to the least square
method in different domains of noise, bleaching and diffusion rate. The simulation settings
were also updated to mimic the Leica SP5 CLSM (Leica, Heidelberg, Germany), pixel
size and sampling frequency, set to ` = 7.598 × 10−7 m/px, ∆t = 0.265 s respectively.
The data was generated with the following values of the target parameter values, D ∈
{5×10−12, 1×10−11, 5×10−11, 1×10−10, 5×10−10} m2/s, which given a pixel size 7.598×
10−7 m is equivalent to log10(D) ≈ {0.9376, 1.2386, 1.9376, 2.2386, 2.9376} log10 px2/s. The
concentration takes the value c0 = 0.75, the bleaching depth α = {0.5, 0.6, 0.7, 0.8, 0.9},
and the level noise a = {0.001, 0.005, 0.01, 0.05, 0.1}.
The NN-PX model was trained on Ntrain = 16384,Nval = 4096,NB = 16, for Nepochs =

1000 and the remaining parameters like in Table 4.2. The NN-RC model was trained with
the same hyperparameters as before. The neural networks were trained as in Section 4.1
with test results given by Table 4.4. We observe that increasing the number of training
samples significantly improves estimation of c0 and α. The recovery curve and pixel-based
least square methods were minimized by means of fmincon in MATLAB. The best initial
guesses for the routine were chosen by a random search.

Table 4.4: The test MSE on 2048 samples of the NN-PX and NN-LS methods, given as
parameter-wise MSE and total MSE.

method MSE(log10 D̂) MSE(ĉ0) MSE(α̂) MSE(ŷ)

NN-PX 3× 10−4 6.74× 10−5 4× 10−4 2× 10−4

NN-RC 7× 10−3 8.9× 10−6 9× 10−3 2.6× 10−3

In the following sections we will present the best and worst case scenarios for the diffusion
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coefficient D and the bleach parameter α on simulated data, omitting the results for the
initial concentration c0 on which all methods are known to perform well. The MSE,
standard deviation and mean of the estimates for the entire test set and all parameters
is available as supplemental information online. Lastly we will validate the methods on
experimental FRAP data.

4.2.1 Results for the Diffusion Coefficient

The MSE for the diffusion coefficient D is given by Figure 4.2 and Figure 4.4, as a function
of the noise level a, for varying values ofD, at extreme values for α = 0.5, 0.9. The diffusion
coefficient results for the intermediary values for α behave monotonically in that range.
These indicate that the error for least square fits increases monotonically with higher
noise, as expected. The same applies for increasing values of the diffusion coefficient,
higher rates of diffusion are potentially hard to catch, and difficult to distinguish from
noise. The pixel-based method also outperforms the other methods with up to two orders
of magnitude. The MSE of the downsampler is in the range [10−5, 10−2] for α = 0.5 and
[10−4, 10−2] for α = 0.9, but does not show the same sensitivity to the diffusion rate or
the noise levels as the least squares fits. CNNs are noise reducing by design, since the
neural network learns to form filters such as averaging and smoothing filters. Similarly,
the recovery curve network makes estimates almost independently of the noise, albeit with
an MSE in the order of 10−2. The extraction of the recovery curve is noise reducing by
design, but this method is more robust nonetheless.
The standard deviation of the estimates of D on the test set is seen in Figure 4.3, as

a function of a and D, with α = 0.5. Whilst the results from Figure 4.2 indicate that
the MSE of the estimates does not increase with noise, the standard deviation shows that
all estimates become less precise with increasing noise. This should mean that the lower
MSE of the downsampler network is due to bias. It is noteworthy that the standard
deviation of the neural networks is more robust in the range of diffusion coefficients than
the conventional methods, and distinguishably lower than the NN-LS estimates. The
high standard deviation of the least square recovery curve estimates is not necessarily
surprising: Discarding a lot of information in favour of the bleach region should introduce
more uncertainty.
Comparing Figure 4.2-4.4 and Figure 4.3-4.5 we see that all estimates consistently get

worse with larger α. This pattern holds for α = 0.6, 0.7, 0.8 as well, see the supplementary
data for more information. Large α translates to a lower bleaching depth, which will have
a less steep recovery of fluorescence compared to more bleaching. Since the recovery is
essential for estimating D, it is expected that less bleaching yields worse errors.

4.2.2 Results for the Bleach Parameter

We also consider the MSE results for the bleach parameter as a function of noise for the
two extreme values D = 0.95 log10 px2/s, 2.95 log10 px2/s. Like in the case of the diffusion
coefficient, the results for α behave monotonically with D, and the extreme cases thus
serve as best and worst case scenarios for all methods. The results are shown in Figure 4.6
and Figure 4.7 respectively, which again indicate that a higher diffusion rate is associated
with higher MSE. Refer to the supplementary for the intermediary values of D. Like in
Section 4.2.1 the pixel-based least squares estimation has lower MSE in general compared
to the rest of the methods, but the recovery curve-based least squares method performs
almost equally well. The NN-PX model is worse at estimating α than D, which is also
verified by its test set results in Table 4.3, whilst NN-RC performs consistently across both
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parameters. However, the neural networks again demonstrate robustness against noise,
while the errors of the least square estimates increase consistently with the noise.
Contrary to when estimating D, the estimation of the bleaching parameter improves

monotonically with higher α. This is possibly due to that a great deal of information on α
is contained in the first post-bleach frame. For stronger bleaching, the difference between
the last bleach frame and first post-bleach frame due to diffusion is greater, which impedes
estimation of the true bleaching depth.
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Figure 4.2: The mean squared error of D (in log10 px2/s) versus the noise level a, for
α = 0.5. The MSE increases monotonically with noise and diffusion coefficient
for the least squares methods. The neural networks have slightly higher MSE
in general, but seem more robust to noise and value of D.
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Figure 4.3: The standard deviation of the estimations of D (in log10 px2/s) the noise level
a, for α = 0.5. The results indicate that the neural network makes more
consistent estimations of D compared to the recovery curve method, and that
the standard deviation increases with higher noise levels.
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Figure 4.4: The mean squared error of D (in log10 px2/s) versus the noise level a, for α =
0.9. The results indicate as expected that the MSE increases monotonically
with noise and diffusion coefficient for the least squares methods. The neural
networks have slightly higher MSE in general, but seem more robust to noise
and value of D.
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Figure 4.5: The standard deviation of the estimations of D (in log10 px2/s) versus the

noise level a, for α = 0.9. The results indicate that the downsampler neural
network makes more consistent estimations of D compared to the recovery
curve method, and that the standard deviation increases with higher noise
levels.
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Figure 4.6: The MSE of a few values of α as a function of noise a, for a diffusion rate
of 10−12 m2/s. The least square-based estimates obtain a lower error than the
neural networks in general, but the neural networks shows robustness to noise,
while the least square methods get worse estimates at higher noise levels.
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Figure 4.7: The MSE of a few values of α as a function of noise a, for a diffusion rate of
10−9 m2/s. In high diffusion rates, the recovery curve-based least squares gets
a higher error than both pixel-based one and the downsampler. The neural
network MSE values do not increase with the noise, indicating a robustness
against the noise level.
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4.2.3 Bias in the Parameter Estimation
Figure 4.8 shows a sample of estimates D̂NN-PX, D̂LS-PX and α̂NN-PX, α̂LS-PX for the
downsampler and pixel-based least squares respectively, where D = 1.2386 log10 px2/s and
α = 0.7 respectively, and a = 0.05 for both parameters. While the least squares method
consistently makes better estimates than the downsampler, the latter seems to have a bias
towards lower values of the diffusion coefficient, and higher values of the bleach parameter
α, which confirms the suspicions about bias raised in Section 4.2.
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Figure 4.8: The downsampler neural network estimates versus the pixel-based least squares
estimates of D (left) and α (right), where D = 1.2386 log10 px2/s,α = 0.7, a =
0.05. The downsampler consistently overestimates D compared to LS, and less
so underestimates α.

The exact cause of the bias is unknown. However, more bleaching and higher rates of
diffusion are reasonably more difficult to estimate: Higher rates of diffusion means more
loss of information between FRAP frames, and likewise does more bleaching lead to higher
loss of information between the last bleach frame and first post-bleach frame, one time
step apart.

4.2.4 Execution Time
A benefit of the neural networks over least squares is that the latter is an iterative method,
and must be initialized reasonably closed to a minimum to converge. Rpeatedly testing
random initial guesses is costly in time, and even then the final iterations to the minimum
are required. A pretrained neural network only requires a forward pass of the data.
The mean execution time of the neural networks were calculated by n = 500 repeated
predictions, with the results shown in Figure 4.9. The downsampler is a large CNN and
executes in 152 ± 3 ms, while the smaller recovery curve network runs in just 1.01 ±
0.137 ms. For the least squares estimations, n = 500 simulations with the same settings as
in Table 4.1 and Table 4.2 were performed, yielding 79631± 10819 ms for the pixel-based
method and 59070±6485 ms for the recovery curve-based estimation. The neural networks
are thus significantly faster, and potentially easier to use a priori, when very little is known
beforehand on the range of the parameters.
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Speed may be not be a priority in real world applications, however, where accuracy
is most important. Pixel-based least squares is more accurate in terms of all the target
parameters, but choosing an appropriate initial guess is still non-trivial: The accuracy and
speed of the downsampler solution makes it an appropriate initial guess for least-squares.

LS-PX LS-RC NN-PX NN-RC

100

102

104

106

108

m
ea
n
ex
ec
ut
io
n
tim

e
(µ

s)

Figure 4.9: The mean execution time in milliseconds for 500 estimations for the least
squares-based estimations (LS-PX, LS-RC) and neural networks (NN-PX,
NN-RC). Since the method of least squares is an iterative method, it executes
up to 2 orders of magnitudes slower than the neural networks.

4.2.5 Experimental Validation

It is interesting to validate the performance of the least square methods with the neural
networks in a controlled setting.
The experiment is similar to that of Röding et al. [7]. The sample solution consisted

of water and 0.01 wt% sodium fluorescein salt (Sigma-Aldrich, St. Louis, MO) with a
diffusion coefficientDref = 4×10−10 m2/s [45, 46], where wt% denotes percentage by weight.
To validate the estimation methods in different diffusion rate scales, two sample solutions
were prepared: 32 wt% sucrose, and the second with 56 wt% sucrose, expected to lower the
fluorescein diffusion rate by a factor 4 and 40 respectively. The true diffusion coefficients
were then calculated to be approximately D32 wt% = 1 × 10−10 m2/s and D56 wt% = 1 ×
10−11 m2/s. A total of 20 and 21 replicate measurements were taken at different locations
in the 32 wt% and 56 wt% samples respectively.

The experiment was performed in ambient temperature and pressure on a Leica SP5
CLSM (Leica, Heidelberg, Germany), with a Leica HCX APO 20x/0.5 water immersion
lens with zoom 4 and pinhole 6 Airy units, giving a field of view of 193.75µm with pixel size
0.76µm. The laser used 10% power at 488 nm, and 16-bit 256×256 images were acquired
in the 500-650 nm range using an 1% acousto-optic tunable filter and photomultiplier tube
with 436 V gain. The bleach region radius r = 15µm, and the scanning rate was 1000 Hz,
with a sampling time lag of ∆t = 0.265 s. Like in the network training, Tprebleach = 10
prebleach frames, Tbleach = 4 bleach frames, and Tpostbleach = 100 postbleach frames were
used.
To eliminate shadows and gradients in the image, we apply a Gaussian filter (σ = 5) to

the mean of the pre-bleach frames, and subtract it from the pre- and post-bleach frames.
We test the least squares fit on both the recovery curve and pixel data, test the neural
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network for the recovery curve, and the downsampler network on the pixel data. The
results for 32 wt% and 56 wt% given by Table 4.5-4.6, given as mean and standard deviation
of the estimates. The LS-PX and LS-RC methods yield 1.001 ± 0.005 × 10−10 m2/s
and 0.884 ± 0.002 × 10−10 m2/s for the 32 wt% solution, wheareas we obtain 1.045 ±
0.005×10−10 m2/s and 1.264 ± 4.64×10−10 m2/s from NN-PX and NN-RC. The diffusion
coefficients and the remaining parameters are all close to the expected values, with similar
standard deviations.

Table 4.5: Mean and standard deviation for 32 wt% experimental samples, for the least
square fits to recovery curve (LS-RC) and pixel data (LS-PX), as well as re-
covery curve network (NN-RC) and downsampler CNN (NN-PX).

method D̂, (m2/s) std(D̂), (m2/s) ĉ0 std(ĉ0) α̂ std(α̂)

LS-PX 1.001× 10−10 5.14× 10−12 0.799 0.0183 0.747 0.0091

LS-RC 0.884× 10−10 2.12× 10−12 0.798 0.0189 0.779 0.0060

NN-PX 1.045× 10−10 5.19× 10−12 0.787 0.0143 0.785 0.0097

NN-RC 1.264× 10−10 4.64× 10−12 0.800 0.0167 0.775 0.0079

Table 4.6: Mean and standard deviation for the 56 wt% experimental samples, for the
least square fits to recovery curve (LS-RC) and pixel data (LS-PX), as well as
recovery curve network (NN-RC) and downsampler CNN (NN-PX).

method D̂, (m2/s) std(D̂), (m2/s) ĉ0 std(ĉ0) α̂ std(α̂)

LS-PX 1.105× 10−11 3.26× 10−13 0.817 0.0100 0.699 0.0064

LS-RC 0.936× 10−11 3.50× 10−13 0.816 0.0106 0.736 0.0021

NN-PX 1.126× 10−11 2.27× 10−13 0.794 0.0086 0.721 0.0052

NN-RC 1.287× 10−11 4.71× 10−13 0.818 0.0107 0.732 0.0015

For the 56 wt% solution, we acquire similar results, but with slightly more variation
between mean estimates. The least squares methods give 1.105 ± 0.03× 10−11 m2/s and
0.936 ± 0.04× 10−11 m2/s for the pixel-based and recovery curved-based methods respec-
tively. The neural networks yield 1.126± 0.002×10−11 m2/s and 1.287± 0.004×10−11 m2/s
for pixel data and recovery curves respectively. Since all estimates are close to the reference
parameters, it would seem the neural perform similar to the LS methods. Using LS-PX
as the gold standard, we can observe in Figure 4.10 a pattern of underestimating and
overestimating the diffusion coefficient for LS-RC and the neural networks respectively.
However, it is known from Section 4.2 that the downsampler makes worse estimates of

the bleach parameter α, and that the recovery curve network struggles with high MSE in
general. Figure 4.11 shows the residuals from the first post-bleach frame, T = 10, from
simulating the spatio-temporal data with the estimated parameters of an experimental
sample with 32 wt% for all methods but NN-RC. Both LS methods have very evenly dis-
tributed, small, residuals. The downsampler residuals in the ROI indicate that the bleach
depth prediction is not entirely correct. The experimental recovery curve in Figure 4.12
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Figure 4.10: Mean and standard deviations of the diffusion rate estimates of fluorescein
on experimental data with 32 wt% and 56 wt% sucrose, indicating good agree-
ment across methods.

again indicates the the downsampler underestimates bleach depth like in Figure 4.8, and
has a slightly different recovery compared to the LS methods. Since the recovery curve
does not contain the full information of D, it is hard to say which estimation is the best.
Considering Section 4.2.3, we do know that the downsampler tends to overestimate D
compared to pixel-based least squares.
Finally, a possibility of the simplicity and speed of the neural networks is to use its

estimate as the initial guess for least-squares. Using the downsampler parameter estimates
for the 20 replicate 32 wt% experiment as the guess for fmincon in MATLAB, we get
D̂ = 1.0029 ± 5.13 × 10−12 m2/s, ĉ0 = 0.7986 ± 0.0183, α̂ = 0.7467 ± 0.0091, which are
all very close or identical to the first estimates in Table 4.5. This means the downsampler
could potentially be used to simplify the workflow of the least squares estimations.
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Figure 4.11: First post-bleach frame (T = 10) from a sample experiment (first from the
left), and the residuals from predictions with pixel-based least squares (sec-
ond), recovery curve-based least squares (third), and the downsampler neural
network (fourth). Since the downsampler makes slightly worse estimations
of the bleach depth, this is also visible in the centre residuals.
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Figure 4.12: Recovery curve fit for the least squares methods and the downsampler neural
network, indicating overall good fits, but an especially low estimate for the
bleach parameter α from the downsampler.
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5 Conclusion
The purpose of this thesis was to investigate if deep learning as a method for estimating
the system parameters in FRAP was possible and how it compares to the conventional
least squares methods. A set of neural network architectures were considered, namely two
spatio-temporal models; a convolutional LSTM and downsampling 2D CNN, and a fully
connected model for the recovery curve. Numerically simulated FRAP data has served
as the training, validation and test data for the networks. However, the spatio-temporal
models struggle with the computational weight of the full image data, which becomes
a clear bottleneck for training, both when it comes to storage and working memory. A
number of training schemes were devised to combat this problem, each with their own
limitations - training neural networks online on continuously generated data can cause
catastrophic forgetting, a case of overwriting the network weights with each batch. This
shows that having access to in principle infinite data does not necessarily make training
easy. By generating a moderately large dataset which is updated by a fraction of new
samples each epoch, we counteract some of the limitations concerning data storage and
catastrophic forgetting.
After comparing the neural networks to the conventional methods on simulated data we

conclude that the downsampler performs best in terms of loss compared to the other neural
networks, but slightly worse compared to least squares, especially on the bleach parameter.
The training results show that the downsampler test results may be improved by using
more training data and more epochs. The neural networks do have a few advantages: They
do not require an initial guess for the parameters and are robust to noise and different
parameter magnitudes. The pixel-based least squares method produces estimates with
very low error, and the temporal recovery curve-based least squares method is easy to
implement and interpret. However, they both require initial guesses for the parameters in
order to minimize the error, a processes which is potentially time consuming, especially
if little is known about the system beforehand. We show that applying the downsampler
parameter estimate as the initial guess for least squares speeds up calculation and does
not require a hypothesis on the parameter values. This is a potential future application
of our findings.
The biggest disadvantages of the the neural network models is its limitation to the mi-

croscope parameters on which it is trained, for example the size and shape of the ROI,
number of frames and sampling time lag. Some of the drawbacks of the downsampler
could be remedied by the convolutional LSTM, namely extracting both temporal and spa-
tial information for estimating the bleach parameter, but also potential independence of
the number of frames. However, such work needs considerable computational resources or
to otherwise find a solution to the size of the data. The ConvLSTM has shown promise
on similar problems in weather forecasting, but the number and size of the frames force a
compromise on the batch size and the number of filters during training. This is computa-
tionally very heavy and puts a constraint on the loss convergence.
Future work on the topics of this thesis should aim to generalize the neural networks

for different microscope settings. Initial tests indicate that the neural network is able to
learn small variations in ROI size and position in the training data. In a similar fashion,
the network can be taught to be invariant to shadows and occlusions, which may occur in
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real world applications, by means of data augmentation. The sampling time lag defines
the fundamental time scale of the diffusion coefficient, and significantly affects the bleach
parameter estimate, since it is determined by the ratio of fluorescence in the ROI before and
after bleaching. However, a diffusion coefficient prediction from data with time lag ∆t by a
neural network trained on a time lag ∆t′ could theoretically be rescaled as D ← D∆t/∆t′.
Unfortunately, such a linear scaling would not be possible for α. This also translates to
a possible strategy for handling a variable number of frames; if the input sequences have
more frames than the network is trained to handle, the pre- and post-bleach frames may
be linearly sampled and the diffusion coefficient rescaled.
The downsampler and neural networks in general are designed to learn a method of

feature extractions. However, investigating the alternate feature extractions from the
images could circumvent the need for the pixel-based estimators, if they preserve enough
information. Possible approaches include calculating the mean intensity in rings or sections
with increasing size, or supplying higher order statistical moments of the image ROI than
the mean and variance. Albeit, these methods are most appropriately benchmarked in a
least squares and maximum likelihood and not by means of neural networks.
Lastly, this work is easily extendible to more FRAP parameters, such as the image

bleaching or more interestingly the on and off binding rates in diffusion and binding.
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