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Abstract

In today’s modern wheat mills, the roller mill is the central machine used to create
flour. A mill consists of many roller mills and they are operated manually by skilled
head millers. By adjusting the distance between the rollers, the wanted outgoing
particle size of the wheat from the roller mill can be achieved. In the milling industry,
there is a strong will to automate the process of tuning the roller mills. This would
in theory give wheat mills with increased throughput of flour and also decrease the
cost of producing flour.

In this master thesis which has been done in cooperation with Bühler Group AG,
the possibility to apply automatic control to a roller mill has been investigated.
Controller algorithms where found in literature, and where implemented both in
simulations and in experiments on a real roller mill.

To be able to make computer simulations of the controller algorithms, a model of the
behavior of the roller mill was derived. The model aimed at being relatively simple,
but to still capture the main characteristics of the roller mill. Using MATLAB, a
simulation environment was created. The simulation environment made it possible
to test and verify the controller algorithms, before implementing them on the real
roller mill machine.

Among the controller algorithms that where tested, the incremental I-controller
performed well. The I-controller contains few tuning parameters and its simpleness
makes it an attractive choice. However, since the condition of the wheat might
change during operation (e.g. wheat type or moisture content), the I-controller
might require re-tuning of the controller parameters.

The adaptive feed-forward plus feedback controller can adapt itself to these changing
conditions. The parameter adaptation is done by sending the inputs and outputs
from the process, to a least mean squares estimation algorithm. This controller re-
quires no re-tuning during operation and is therefore better suited for an automated
milling process.

In the future it is desired to, using various new sensors, measure other qualities of
the wheat and to use the outputs for automatic control. Multiple-Input Multiple-
output controllers have therefore been tested on a simulation model. Here the MIMO
optimal controller was found to be the best choice. This controller estimates a model
of the system, and performs an optimization on this model to find the best control
signals in each simulation step.
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Chapter 1

Introduction

This chapter contains a background to introduce the reader to the field of milling, and
also gives an introduction and motivation for this project. After that the purpose and
delimitations of the report are presented. Finally an outline of the different chapters
of the report are shown.

1.1 Background

The process of grinding wheat to make flour is something that we have been doing
for many hundreds of years. This process has over the years become more and more
advanced and nowadays flour is produced in very big mills, capable of producing
thousands of tons of flour per day.

The process of creating flour starts by cleaning and filtering the wheat to sort out
unwanted particles such as stones, corn and other objects. The next step is to add
water to the wheat to give it the correct moisture level, which is crucial to get the
best possible milling properties. After that the wheat is ready to be grinded. The
grinding usually takes place in roller mills, such as in Figure 1.1. These are machines
with two or more spinning rollers through which the wheat is let through. The roller
mill is the focus of this project, and a more detailed description of the roller mill
can be found in Section 2.1.

Figure 1.1: A typical roller mill that is used in today’s mills.

1



2 Chapter 1 Introduction

After the grinding process, the product is sieved in big sieving machines which make
it possible to separate the wheat into different fractions. The different fractions are
then brought to different places in the mill. Some of it is already flour but some is
brought to another roller mill, which further grinds the product. The goal is to get
as much flour as possible from the wheat kernels that go into the system.

Although the process today is very refined and advanced with high degree of automa-
tion, the tuning of the roller mill machines is still done manually. This is normally
done by the head miller, who is a very skilled and experienced person in the field of
milling. The head miller can by feeling the product in the hands, make a decision
on how to adjust the gap between the rollers, from here on roller gap, to get the
desired average particle size of the product. Another parameter that can be tuned
to change the particle size of the wheat, is the differential speed. The differential
speed is defined as the ratio between the faster and the slower roller. This parameter
is however not used by the head millers at the moment.

In order to more exactly determine the particle size distribution of the wheat, sam-
ples of the grinded product can be taken and analyzed using a laboratory sieve unit.
This is explained more in detail in Section 2.2.

The manual control of the roller mill has several disadvantages. The head miller
needs to be very skilled and experienced, which means that the wheat mills produc-
tivity is limited to how good the head miller is. Also, the tuning of the roller mills is
very time consuming since there are many machines that needs to be tuned. Finally
it requires 24 h/day supervision of the mill.

Automatic control of the roller mill aims at overcoming the problems stated above
and means that the particle size distribution of the wheat is continuously measured
by a sensor. The parameters of the roller mill are then adjusted by an automatic
controller, in order to reach a set-point specified by the head miller. A simplified
diagram of the process is shown in Figure 1.2.

Figure 1.2: An illustration showing how the roller mill and the particle size sensor are
connected. The particle size distribution of the grinded wheat is measured by
the sensor. The controller calculates how the roller gap and differential speed
should be adjusted, in order to achieve wanted particle size distribution.These
steps are then repeated to form a closed loop controller.

Automatic control of all the roller mills in a wheat mill, would ideally increase the
productivity of the entire mill. At the same time, it would reduce the amount of
time that the head miller has to spend on tuning the roller mills.
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More about milling can be found in (NAM 2008), from where the facts used in this
introduction where taken.

1.2 Project Objectives

This project concerns a first attempt towards achieving automatic control of a roller
mill. The focus is to find suitable controller algorithms for implementation on a real
roller mill experiment machine.

The objectives are summarized into the points shown below:

• Make a model of the roller mill and a computer simulation interface.

• Investigate different control algorithms found in control literature and test
them on the computer simulation interface.

• Review the simulated controller algorithms and implement suitable candidates
on a real roller mill.

• Give suggestion on which one of the investigated algorithms that is suitable
for use in future roller mills.

1.3 Delimitations

For this project, the following delimitations are made:

• The influence the controller algorithms has on the quality of the flour, e.g. ash
content, moisture content, starch content etc., is not taken into account. This
is because no sensor is available to measure these parameters.

• The experiments on the real roller mill machine are limited to a so called break
passage. A break passage means that whole wheat kernels enter the roller mill
and that the rollers are corrugated.

• The project is a feasibility study, meaning that it is only going to result in an
overview of what controller algorithms that are suitable to use.

• The MIMO controller (Multiple-Input Multiple-Output) is limited to not be
bigger than two inputs and two outputs and is only investigated in simulations.

1.4 Report Outline

The outline of the report is as follows:

Chapter 2 gives a more detailed problem analysis of the roller mill and the particle
size sensor. The inputs and outputs of the process are defined and the controller
goals are stated.
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Chapter 3 introduces the subject of control theory and the different controller
algorithms used. Section 3.1 can be skipped if the reader is familiar enough with
the subject of control theory.

Chapter 4 gives a description of the roller mill model used for the computer
simulations. Important contribution are the experiments done on the roller mill.
These experiments shows that the differential speed does not influence the measured
particle size distribution, significantly enough to be used as control parameter. They
also show that the relation between the roller gap and the outgoing particle size
distribution can be approximated as linear.

Chapter 5 presents the controller algorithms used in the SISO simulations. Plots
which demonstrates the different algorithms are shown and a comparison of the
different controller algorithms is made.

Chapter 6 presents the controller algorithms used in the MIMO simulations.

Chapter 7 shows some of the controllers from chapter 5, implemented on a real
roller mill experiment machine. Here it is shown, that it is indeed possible to apply
automatic control to the roller mill.

Chapter 8 contains a discussion of the results achieved and the conclusions drawn
from this project. Also a proposal for future work is made.



Chapter 2

Problem Analysis

In this chapter, a problem analysis is done in order to scale down the problem and
to be able to find suitable controller algorithms. The roller mill and the particle size
sensor are presented in more detail. Finally the controller goals are presented.

2.1 The Roller Mill Experiment Machine

The roller mill used for the experiments in this project is shown in Figure 2.1. The
machine consists of two parallel rollers, rotating with opposite rotating direction.
Usually one roller is rotating with higher speed in order to create shearing forces
which cause the wheat kernels to break. The rollers are driven by electric motors
and their speeds can by adjusted by a variable frequency converter. The roller gap
is adjusted with a separate PID controller, which maintains the gap specified by the
controller script.

Figure 2.1: The roller mill experimental machine.

Located above the roller pair, is a feeding mechanism and a bin with wheat. By
sending a control signal, the feeding mechanism will start to feed product with an

5
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Figure 2.2: Typical particle size distribution of wheat grinded with corrugated rollers. Note
that the scale on the x-axis is logarithmic, e.g. 1 = 10 µm, 2 = 100 µm etc.

even flow to the roller pair. The grinded product is then, with the help of an air
stream, led through a pipe where a sensor is located. This sensor measures the
particle size distribution of the wheat and gives an output signal to the controller
mechanism.

The roller mill experiment machine is a prototype machine, with smaller dimensions
than the existing roller mills that are used in today’s mills. The roller-length is 25
cm, instead of the normal of between 0.8 and 1.5 m . This means that less wheat is
needed to maintain the mass flow through the rollers. The difference is very clear if
the roller mill from Figure 1.1 and Figure 2.1 are compared.

2.2 Measuring the Particle Size of the Wheat

In order to be able to apply automatic control to the roller grinder process, the
particle size distribution of the outgoing wheat particles has to be measured. How
this is done is explained in this section.

2.2.1 Definition of Particle Size Distribution

After the wheat particles have been grinded by the roller mill, the particles vary
in size spreading from very small to very big particles. This is described with a
particle size distribution. Nowadays in the milling industry, the most used technique
for manually measuring the particle size distribution of the wheat, is to sieve the
product. The goal of the process is to divide the wheat into different bins, depending
on how big the wheat particles are. To be able to know how many percentages of
the flour that are in respective bin, the grinded product is put in a sieving machine.
This machine contains several compartments with sieves with varying mesh sizes.
The machine is shaking the product for approx. 10 min. This process divides the
wheat into the different compartments depending on the size of the wheat. The last
step is to weigh the content of each compartment and calculate how many % of the
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Figure 2.3: A cumulative particle size distribution curve of wheat grinded with corrugated
rollers. Note that the scale on the x-axis is logarithmic, e.g. 1 = 10 µm, 2 =
100 µm etc.

product which are in the different compartments. The result from such a particle
size distribution analysis is shown in Figure 2.2.

The cumulative distribution curve is shown in Figure 2.3. This curve is the key to
how the process outputs are defined, which is shown in Section 2.3.1.

2.2.2 Sensor Description

An online sensor has been used to measure insitu particle size distributions of wheat
products after the roller mill, as shown in Figure 1.2, in Chapter 1. Basic sensor
principles are explained in this section, and the sensor outputs are summarized in
Section 2.3.1.

The sensor uses Spatial Filter Velocimetry and a fiber-optic measurement principle
to measure the diameter of each particle that passes through the sensor. The particle
size distribution is then obtained by assuming spherical particles of constant density.

The sensor continuously measures the length of the particles, and repeats the pro-
cedure above until a certain amount of particles, N , which is set by the user, is
reached. N is usually set in the region of 40000 < N < 130000 particles. The
sensor then calculates the mean value of the N latest measured particles and sends
an output signal which can be used for automatic control of the roller mill.

It should be noted that increasing N , reduces the measurement noise of the sensor,
but also decreases the time constant (speed) of the sensor, i.e. it will take longer
time for the sensor to show the correct output. There is clearly a trade of between
accuracy and measurement time.

What complicates things is that the particle-rate can vary depending on the type of
wheat. For example, when the wheat is dry, the sensor can measure approx. 1500
particles per second. But with a wheat with higher moisture content, this number
may decrease to approx. 1200 particles per second.
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Also worth noticing is that the sensor will not give exactly the same result as a
manual sieving (explained in Section 2.2.1) of the product would give. This is a
result of the fact that they are two completely different measurement techniques.
In this project however, sieving is ignored as this is not an online measurement
technique.

2.2.3 Sampling Time

The sampling time, Ts has been specified to not be lower than 10 s. The high
sampling time is in reality not a problem, because of the slow time constant of the
system.

2.3 Definition of the Inputs and Outputs

In this section, the inputs and outputs of the process are defined.

2.3.1 The Sensor Outputs

The process outputs are values on the cumulative distribution curve at a certain
particle size. The outputs can also be interpreted as how many percentages of the
total wheat, that falls through a certain sieve size. The outputs will therefore from
here on be referred to as fall through. An example of process outputs is illustrated
in Figure 2.4. In this figure two different process outputs are shown, y1 = 32% (<
1120 µm ) and y2 = 14% (< 630 µm ). 1 A summary of the process outputs can be
seen in Table 2.1
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Figure 2.4: A cumulative particle size distribution curve of wheat grinded with corrugated
rollers. In the figure, two possible outputs are shown. Note that the scale on
the x-axis is logarithmic, e.g. 1 = 10 µm, 2 = 100 µm etc.

1In theory, the sieve size can be chosen arbitrarily, e.g. 431 µm or 598 µm,
but because of practical reasons the number of different sieves have been limited to
{125, 250, 355, 450, 530, 630, 710, 840, 900, 1120} µm.
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Process output Symbol Unit Range Description
Fall through y1,2 % 0 -

100
Amount of particles in % that fall
through a certain sieve size.

Table 2.1: The defined process outputs with short descriptions, symbols, units and ranges.

2.3.2 The Control Signals - the Process Inputs

In section the control signals or process inputs are defined.

Roller Gap The parameter which has the biggest influence of the grinding process,
is without a doubt the distance between the roller. This is intuitively easy to realize,
as a smaller roller gap would give more finely grinded particles than what a bigger
roller gap would give. The roller gap is measured in µm where the smallest gap is
350µm and the biggest gap is 850µm.

The control signal however is not measured in µm, but in an artificial unit ranging
from 533 [-] to 600 [-]. In this unit, the smallest roller gap (350 µm) corresponds to
533 [-] and the biggest roller gap (850 µm) corresponds to 600 [-].2

Differential Speed The second parameter to control the roller mill with is the
differential speed between the rollers. The range is between 2 and 4, where 2 means
that the faster roller spins two times as fast as the slower roller. Increasing the
differential speed between the rollers, means that the breaking forces become bigger
and that the particles on average become smaller.

Summary of control signals The inputs to the process are summarized in the
Table 2.2.

Process input Symbol Unit Range Description
Roller gap u1 - 533 -

600
Distance between the rollers

Differential
speed

u2 - 2 - 4 Ratio between the speed of the
faster roller and the slower roller

Table 2.2: The defined process inputs, also called the control signals. Shown in the table
are the symbols, units, ranges and a short description.

2.4 Key Properties of the Roller Mill

When changing the input parameters to the roller mill e.g. the gap between the
rollers or the differential speed between the rollers, the particle size distribution of
the outgoing product is changing in a dynamic behavior. However the dynamics are

2The reason for this artificial unit has to do with the traditional way of adjusting the roller gap,
used by the head millers. For more details and a unit conversion table, see Appendix A.
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so fast and in the order of milliseconds. This makes it impossible and of no use to
model this behavior, at least not for the purpose of automatic control. The behavior
of the system to a change in input parameters is therefore considered to be static,
i.e. when a parameter is changed, the system immediately reaches a new steady
state.

Even though the process itself can be considered to be static, the sensor measuring
the particle size of the outgoing product introduces dynamics into the system. The
sensor will show a transient behavior of which length depends on the number of
particles measured.

With the problem analysis done in this chapter, the following key properties of the
process are identified:

• The dynamics of the grinding process are very fast. After change in gap size,
the particle size of the exiting product is affected within milliseconds.

• The system is stable, i.e. bounded input gives bounded output. However, a
bad controller can cause the output signal to oscillate.

• The sensor measuring the particle size distribution has a slow time constant
and shows a transient behavior for approx. 2 min before showing steady state
behavior. This time is however dependant on N , how many particles the sensor
measures.

• Although many studies and experiments have been carried out, there exists
no quantitative model of the roller mill 3. Since so many parameters affect
the grinding properties, i.e. wheat type, moisture levels, temperatures etc, the
studies can only be interpreted in a qualitative manner.

2.5 Controller Goals

With the above description of the roller mill and the particle size sensor the following
controller goals are defined. With these goals, different controller algorithms are
developed, which are explained in the remaining part of the report.

2.5.1 Controller Goals - SISO Control

The SISO controller (Single-Input Single-Output) should in both simulation and
implementation, do the following:

1. The controller should make the output signal, the fall through of wheat parti-
cles, follow a set-point. This should be done by changing the gap between the
roller pair.

2. The controller should be able to bring the output signal from one set-point
to another within the time it takes for the sensor to show two steady state
outputs. This means that e.g. if it takes 2 minutes for the sensor to show a
steady state value, the controller should be able to reach the new set-point in
4 minutes.

3These studies have been carried out by Bühler Group AG and are therefore confidential.
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3. The controller should be able to handle the changing conditions of the wheat,
e.g. different types of wheat and different moisture levels of the wheat. No
re-tuning of the controller should be required if these events occur.

4. The changing conditions explained above should not result in bad controller
behavior, i.e. that the output signal becomes unstable.

5. The output should not oscillate around the set-point.

6. The controller should be able to handle measurement noise from the sensor and
also the fact that the measurement noise can very depending on the amount
of particles, N , that are measured, as explained in Section 2.4.

7. The controller should be able to handle the transient behavior of the sensor
which occurs when the grinding parameters are changed. The length of the
transient behavior can vary depending on N , the amount of particles that are
measured.

2.5.2 Controller Goals - MIMO Control

The MIMO controller (Multiple-Input Multiple-Output) should in both simulation
and implementation, do the following in simulations:

1. The controller should be able to control two process outputs by adjusting the
roller gap and the differential speed.

2. The controller should be able to handle simulation models where the variables
have large cross couplings between each other. With cross couplings it is meant
that one input has large effect on both outputs.

3. The controller should be able to handle changing conditions of the input/output
relations of the process models, i.e. adapt itself to changing process models.
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Chapter 3

Control and Modeling Theory

In this chapter, the concept of control theory is introduced followed by a description
of the different controller algorithms used in this project. Lastly an introduction to
modeling is presented.

3.1 Introduction to Automatic Control

Automatic control can be divided into two segments; feedback control and feed-
forward control, which are briefly explained below.

3.1.1 Feedback Control

The concept of feedback control is the foundation of which automatic control is
based on. The basic structure/block scheme of how a feedback controller looks
can be found in all books concerning control theory, e.g. (Lennartson 2000). The
principle behind feedback control is shown in Figure 3.1.

ProcessController
+



u yer

v

Figure 3.1: A block scheme of a feedback controller. The loop is closed by feeding back the
output signal from the process to create an error signal. This error signal is
used to calculate an output from the controller.

The two basic blocks are the process and the controller, where the process is what
we desire to control e.g. a model of a system. The controller block is what decides

13
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what control signal, u, to send to the process. The reference signal, r, is the desired
output signal, from here on called the set-point. This is with other words what we
wish the output, y, from the process to be.

The feedback loop is closed by subtracting the set-point signal from the current
output of the process. The signal received is called the error, e and this is the signal
which the controller receives. What the controller sends out is called the control
output and is in this report called u.

Present can also be a disturbance, v, which affects the process in an often unknown
way. The disturbance could for example be a steep hill the case of a cruise control
mechanism in a car. It can be shown that feedback control will compensate for
disturbances, non-linearities in the process and modeling errors, (Lennartson 2000).

3.1.2 Feed-forward Control

Sometimes it can be desirable to add a feed-forward controller to the control loop.
Feed-forward is another word for open-loop controller, which means that there is no
feedback between the output from the process and the set-point. A block scheme
with the added feed-forward is shown in Figure 3.2.

ProcessController
+



u yer

vFeed-forward

Figure 3.2: The same block scheme as in Figure 3.1, but with the added feed-forward con-
troller. The feed-forward controller is outside of the control loop and reacts
immediately when the set-point, r, changes.

The goal of the feed-forward block is to react immediately, i.e. when the set-point is
changed, the feed-forward block calculates a new control output which should ideally
make the output and the set-point equal. Feed-forward cannot handle disturbances
or model errors, since there is no feedback present. On the other hand, a feed-
forward controller can react immediately upon a external change, whereas a feedback
controller can only react after an error has been discovered.

3.2 PID Control

The PID controller is the most used control strategy in the world, some say that up
95 % of all controllers implemented are PID controllers. The reason to why it is so
popular is probably because of its simplicity and relatively understandable tuning
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parameters. It also does not require an exact model of the system to control, i.e.
it can be seen as a model free controller algorithm, which makes it an interesting
candidate for implementation in a roller mill. The PID controller algorithm in
continuous time in parallel form is described as

u(t) = Kp e(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

, (3.1)

where Kp is the proportional gain, which amplifies the current error and thus in-
creasing Kp, will give a faster response of the system.

Ki is the integral gain, which sums up all the errors previously and can therefore
remove a steady state error.

Kd is the derivative gain which looks at the rate of change of the error and multiplies
with a gain. It can be seen as a prediction of how big the error will be in the next
time step.

3.2.1 Digital PID Normal Form

Since this project concerns computer implemented control algorithms, the digital
form of the PID controller is better used. The advantage is that it is easily imple-
mented in a computer programming language, in this case MATLAB.
The digital form of the PID controller can be found in e.g. (D.A.Pierre 1999), and
is written as

u(k) = Kp e(k) +Ki

k∑
m=0

e(k) +Kd[e(k)− e(k − 1)]} , (3.2)

where k is the current sample. This expression is basically the same as Equation
3.1, but with the integral operator replaced by a summation, and the differential
operator replaced by the first backward difference.

3.2.2 Digital PID Incremental Form

The recursive PID controller updates the control signal recursively, i.e. each iteration
the old control signal is updated with a control change. This has several advantages,
e.g. bumpless transfer between manual and automatic mode, (Wittenmark and
åström 1997) and its’ easiness to implement in a computer controller. The recursive
PID controller can be derived by first considering the digital PID controller one
sample back in time which is written as

u(k − 1) = Kp e(k − 1) +Ki

k−1∑
m=0

e(k − 1) +Kd[e(k − 1)− e(k − 2)] . (3.3)

Subtracting 3.3 from 3.2 gives

u(k)− u(k − 1) = Kp [e(k)− e(k − 1)]

+Ki[
k∑

m=0

e(k)−
k−1∑
m=0

e(k − 1)]

+Kd[e(k)− 2e(k − 1) + e(k − 2)] . (3.4)
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The summation sign can now be removed and the expression rearranged

u(k) = u(k − 1)
+Kp [e(k)− e(k − 1)]
+Ki e(k)
+Kd[e(k)− 2e(k − 1) + e(k − 2)] . (3.5)

Finally the equation is sorted after the time displacement

u(k) = u(k − 1)
+ (Kp +Ki +Kd) e(k)
− (Kp + 2Kd) e(k − 1)
+Kd e(k − 2) . (3.6)

From this it can be seen that when controlling a static system, the only parameter
that is important is the Ki parameter. If the system is in steady state it would be
wrong to take into account the error in the previous time step. When not using the
Kp and Kd parameters, the control law is simplified into what from here on will be
known as incremental I-control, and is described as

u(k) = u(k − 1) +Ki e(k) . (3.7)

3.3 Parameter Estimation using LMS

To be able to use some of the adaptive control algorithms that are presented in this
report, some kind of parameter estimation technique has to be used. In this section,
the least means squares estimation, (from now on LMS estimation), is presented. It
is assumed that the system to estimate can be written as

y(i) = Φ(i)Θ , (3.8)

where Θ, and Φ are

Φ(i) = [φ1(i) φ2(i) · · · φn(i)] (3.9)

Θ = [θ1 θ2 · · · θn]T .

φ is a vector containing the different inputs to the system, y are the outputs to the
system and i is the number of data points used for the estimation. The goal is to
decide the parameters, Θ, in such a way that the system that is going to be identified
is approximated as good as possible.

By expressing the goal function as the error between the measured output and the
estimated output, it can be shown that the parameter selection of θ that minimizes
this error is given by the least squares estimator (Wittenmark and åström 1995)

Θ̂ = (ΦT Φ)−1ΦTY . (3.10)

As seen, this equation contains a matrix inversion, which can cause numerical diffi-
culties if the matrix is close to singular. Therefore a small distorted identity matrix
can be added to prevent this, (T.Larsson et al. 2000) The new expression becomes

Θ̂ = (ΦT Φ + ρI)−1ΦTY , (3.11)
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where I is the identity matrix and ρ is a small number which can be seen as a tuning
parameter. Worth noticing is that Equation 3.11 solves a slightly different problem
than Equation 3.11. ρ should therefore not be chosen bigger than what is necessary
to reduce the risk of numerical difficulties during the matrix inversion.

3.4 Adaptive I-Control

The adaptive control algorithm aims to control systems that are slowly time-varying.
The algorithm presented below comes from (T.Larsson et al. 2000) and (Roover et
al. 1998) where it is referred to as run-to-run control. The algorithm uses the
jacobian J, which is an estimated model of the system, in order to make a control
signal change that will bring the output signal towards the set-point. The control
law is described as

u(k) = u(k − 1) + αJ−1e(k) , (3.12)

where

J =


∆y1

∆u1
· · · ∆y1

∆un
...

. . .
...

∆yn

∆u1
· · · ∆yn

∆un

 , u =

 u1
...
un

 , e =

 e1
...
en

 , (3.13)

and y1 . . . yn are the output from the system, and u1 . . . un are the inputs to the
system.

J is the jacobian containing the gradients, which states how much the different inputs
affect the outputs. The control signal is calculated by inverting the jacobian matrix,
which with this control law requires J to be a square-matrix. α is a parameter
between 0 and 1. This parameter tells how aggressive the controller should be,
where a small α means that the control signal change, du, will be smaller than if α
is chosen closer to 1.

To estimate the jacobian, J , the LMS estimation algorithm from equation 3.10 is
used.

Worth noticing is that in the SISO case, the adaptive control law is the same as the
incremental digital PID controller from Section 3.2.2, but where Ki is replaced by
αJ−1, hence the name adaptive I-control.

Also worth noticing, is that the system must be relatively linear for this controller
to work. This is because the jacobian is a linear approximation of the system.
However if the system is linear, α is set to 1, and the jacobian is estimated correctly,
the control law from Equation 3.12 will reduce the error with just one control signal
change. The explanation for this, is that the jacobian is an approximation of the
static gain of the system, i.e. J = ∆y

∆u . Figure 3.3 shows an illustration.

If the current output is assumed to be y1, and the desired output is y2, a change of
∆y is required. As seen in the figure, this means that the input must make a change
∆u to go from u1, to u2, which means that

∆y = J∆u
=⇒

∆u =
1
J

∆y . (3.14)
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Figure 3.3: A linear function with the output signal, y, on the y-axis and the control signal
u on the x-axis. The figure illustrates why the adaptive I-controller can reduce
the error between the output signal and set-point in one step.

Since ∆y is known to the controller, the output signal will therefore be reached in
one step, if J is estimated correctly.

By multiplying J with α, a number smaller than 1, it is also possible to make the
control less aggressive. This means that the output signal will not be reached with
one control signal change, but also that there is less risk of overshoot of the output
signal, if J is incorrectly estimated.

The last thing to say is that although the control law can be used for MIMO systems,
in this project only the SISO case has been evaluated.

3.5 MIMO Optimal Control

This control algorithm can be seen as a more general form of the adaptive I-control
algorithm, where an optimization problem is solved. The algorithm can be found in
e.g. (T.Larsson et al. 2000) and is written as

u(k) = min
u(k)∈U

(||r(k)− ŷ(k)||2 , (3.15)

with ŷ described as

ŷ(k) = Ĵ(u(k)− u(k − 1)) + y(k − 1) , (3.16)

where u and y are vectors containing the inputs and the outputs from the controller.

This algorithm uses a model of the system, namely the jacobian, J, which is estimated
with the LMS-algorithm from Equation 3.10. As seen in Equation 3.15, it then tests
all possible control signal combinations. The control signal combination that gives
the least error between the set-point, r(k) and the estimated output ŷ(k) is then
used as control signal. This approach is very good at handling constrains, since it
is possible to decide a subset of the control signals, U , which should be optimized.
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To put more emphasis on minimizing a certain error, the following criteria can be
used

V =
1
2
ETWE , (3.17)

where E = [r(k)− ŷ(k)]T .

In the 2x2 case, the weight matrix, W, is expressed as[
γ 0
0 1− γ

]
, (3.18)

where 0 < γ < 1.

The new control law can now be written as

u(k) = min
u(k)∈U

V . (3.19)

This is the control law which is used by the MIMO controller which is presented in
Section 6.3.2.

3.6 Signal Filtering and Buffer Algorithm

When controlling systems where the process output signal is very noisy, it is often
wanted to filter the signal before sending the signal to the controller algorithm. With
less noise in the output signal, it is possible to apply more precise control. When the
Kd-parameter of a PID controller is used, it is usually necessary to apply filtering to
the output signal. Otherwise the noise will be amplified when the differentiation is
carried out, which can cause an unstable controller (Wittenmark and åström 1997).

3.6.1 Signal Filtering

One filter algorithm is the well known first order low-pass filter, which is written as

yk(k) = α · ys(k) + (1− α) · yk(k − 1) , (3.20)

where yk is the filtered signal,ys is the unfiltered signal and α is the filter constant.
The first order low-pass filter can also be called a moving average filter, since it
calculates the next signal by averaging the two latest signal samples.

A first order low-pass filter is many times enough to reduce the noise level of the
signal, but in some cases it can be useful to use a filter that averages more samples,
written as

ykb(k) =
ys(k) + ys(k − 1) + · · ·+ ys(k −M)

M
, (3.21)

where M is the number of samples that are averaged. The higher M is, the lower
the noise lever of ykb will be. However for each sample more that is averaged, the
delay becomes longer. If the signal is filtered with moving average filter of length 5,
the delay would be 5 samples etc. When filtering in real-time, which is usually the
case for a controller algorithm, M therefore cannot be chosen too high.
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3.6.2 Buffer Algorithm

To combine the advantages of the low delay with the moving average signal, and the
fast response given by the low-pass filter, the following algorithm is proposed,

if |r(k)− y(k)| < 0.5 (3.22)
use ykb for control
if r(k) 6= r(k − 1) or |y(k)− y(k − 1)| > 4
use yk for control ,

where ykb is the moving average signal, and yk is the low-pass filtered signal. The
idea is to use yk when the a fast signal is needed, i.e. when the set-point has changed
and the output signal should move to the new set-point. When the output signal
is close to the set-point, ykb can be used to get a signal with less noise, so that the
controller can fine-tune the output signal.

3.7 Steady-State Detection

Sometimes it is desired to only apply automatic control when the output signal is in
steady-state, i.e. when the transient behavior of the signal is gone. To be sure that
the sensor is in steady-state, one can use a very high sampling time for worst-case
scenario. This will make the control algorithm slow, since it always waits a fixes
time, even if it is not necessary, and the signal already is in steady-state.

A better option would be to detect when the sensor is in steady-state, and the
algorithm proposed can be written as

yb1(k) =
ys(k) + ys(k − 1) + · · ·+ ys(k −M)

M
(3.23)

yb2(k) =
ys(k − 1) + ys(k − 2) + · · ·+ ys(k −M − 1)

M
When yb1(k)− yb2(k) < ethreshold

Steady state = 1 ,

where ethreshold is a tuning parameter which sets how tough the algorithm should
be, and M tells how many samples that should be averaged. The algorithm consists
of two moving average signals, yb1 and yb2, who each takes M of the latest output
signals and creates a mean value. The only difference is that one of signals is time
delayed one time sample. At each iteration, the difference between yb1 and yb2 is
calculated, and when the difference is within ethreshold, the system is said to be in
steady state.

3.8 Introduction to Modeling

The purpose of making a model of a system is to be able to answer questions con-
cerning the system without having to make experiments. A model of a system can
be expressed in different ways, for example mental models, verbal models, physical
models and mathematical models, (Ljung and Glad 2004).
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The mathematical model is the most common form of modeling in technical systems
and is what has been investigated in this project and in the following sections the
methods are described.

3.8.1 Modeling based on Physical Principles

Models of this type are based on known physical relations, i.e Kirchhoffs laws, laws
of nature etc. To be able to use this kind of model, the system has to be of such kind
that it is possible to set up balance equations of how the system behaves. Usually,
most systems can to a certain extent be described with this modeling method.

3.8.2 Modeling based on Identification

Identification, also known as system identification, is the method of by making
observation or experiment on the system, deciding a mathematical model. The
system can be seen as a black box, where only the inputs and the outputs of the
system are known. With the help of the inputs and outputs from the black box, a
model can be estimated using various techniques found in modeling literature. This
approach means that no consideration is taken to the underlying physical relations
and can be good for very complex systems that would take to much time and effort
to model using the first principle of modeling.

3.8.3 Static Models vs Dynamic Models

Normally a system consists of dynamic and static parts. A static part can be for
example the well known Ohms-law, U = R · I, where R and I have a direct effect
on how U is changed if the temperature is kept constant. Dynamic systems have
parameters that not only depends on current time, but also on previous time. Nor-
mally differential equations are used to describe dynamics in a system, for example
how the current in a capacitor varies over time.
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Chapter 4

Modeling the Roller Mill

In this chapter, the models of the roller mill, used for both the SISO and MIMO
case are presented. The experiments carried out on the real roller mill machine are
shown, and the model parameter selection is explained.

4.1 Purpose of the Roller Mill Model

It is generally seen as very difficult or almost impossible to make an accurate model
of how all parameters, such as moisture, wheat type, temperature, roller gap etc,
affect the grinding properties of the roller mill. To make a model this detailed would
take too much time and effort considering the limited time of the project.

The purpose of the model in this project was therefore limited to only capturing
the main characteristics of the roller mill. The model inputs where limited to the
roller gap and differential speed between the rollers. The output of the model was
limited to be the fall through, i.e. measurements on the the cumulative particle size
distribution curve, as explained in Section 2.3.1. The main goal with the model was
to test the different controller algorithms in order to verify the functionality before
implementing them on the real roller mill experiment machine.

4.2 Experiments for the SISO Model

To get more information about the process and to be able to make a model of it,
two different experiments where conducted. With the result of these experiments, a
model for use in simulations has been proposed in Section 4.3.

4.2.1 Step Response Experiment

A step response is a relatively easy experiment to carry out on a real process. Despite
its simpleness, it gives a lot of valuable information of the system, e.g. the time
constant, delay, amplification, etc. The purpose of this step response experiment
was to see how a change in gap between the rollers affected the particle size of the
outgoing particles.

23
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The number of particles the sensor measures was set to 130 000 and the control
signal was set to change from 550 to 567. The result of the step response is shown i
Figure 4.1.
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Figure 4.1: A step change is carried out on the experiment machine and the resulting
output signal is registered.

As seen, the output changes from approx. 42 %, to approx. 48 % when the control
signal is changed. A small delay can also be seen in the step response, because it
takes approximately 15-20 seconds for the output to start to react to the control
change. What also can be seen is the large amounts of noise present in the output
signal.

4.2.2 Relation between Roller Gap and Particle Size

Previously there has been many attempts to make experiments on the roller mill to
see how the different variables affect the different outputs from the roller mill. These
reports however, only shows linear relations between the different parameters. This
is because not enough measurements where taken to be able to make more than
linear interpolations.

To get more information on how the relation between the gap size between the rollers
and the particle size output, a bigger experiment was carried out. The gap between
the rollers where changed in 7 steps, from a big gap and then in increments down
to a very small gap. The product grinded from the respective experiments where
then collected in separate bins, and then the particle size distribution was measured
offline with the help of the sensor. The result is shown in Figure 4.2.

As seen, there seems to be an almost completely linear relation between the gap size
between the rollers and the particle size output from the sensor. As a conclusion
to this, it was decided that the process could be approximated with a linear model.
Worth noticing is that only gaps within the operating range of the roller mill have
been tested. For gaps outside of the operating range, it might be that the relation
is not quite so linear.
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Figure 4.2: The roller gap was adjusted in seven steps and the resulting fall through is
plotted.

4.3 Derivation of the Roller Mill Model

With the experiments that where conducted in Section 4.2 a model of the roller mill
was built. This is described next.

4.3.1 Proposed Model Structure

By looking at the step response in Figure 4.1, it can be seen that the sensor seems to
behave similar to the step response of a first order transfer function. Also considering
that the system seems to be quite linear, as seen in Figure 4.2, it was decided to use
this structure to model the roller mill. The standard form of the first order transfer
function is written as

G(s) =
Y (s)
U(s)

=
K

Ts+ 1
, (4.1)

where K is the static gain of the system, which is defined as the value of the transfer
function when s = 0 (Lennartson 2000). T is the time constant of the system, i.e.
the time it takes for the output signal to reach 63 % of its final value when a step
response is applied.

To estimate K and T , the two experiments from Section 4.2 where used. By fitting
a linear curve to the points in Figure 4.2, the static gain is estimated to K = ∆y

∆u ≈
0.55.

The time constant of the system is found in Figure 4.1. In this figure the final value
is approximated to 48.5 % and the start value to 43 %. This means that the output
signal reaches 63 % of its final value at y ≈ 46.5 %, which means that the time
constant can be estimated to T = 30 s.
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4.3.2 Model on state-space form

To be able to implement the model in controller simulations in Chapter 5, the
transfer function model from 4.1 is transformed into a state-space model. The
model on state-space form is described as

x(k + 1) = Ax(k) +Bu(k) + c (4.2)
y(k + 1) = Cx(k) + +dw(k) ,

where A, B and C are the standard parameters of a state-space model. These
parameters are given when the transfer function from 4.1 are transferred into state-
space, using the MATLAB command ss.

The c-parameter gives the offset of the model, which tells what the output should
when the input (the control signal) is 560 [-]. This parameter depends on which
sieve size that is chosen.

The d-parameter is a noise parameter which determines how much noise should be
present in the simulations. This parameter can be varied to emulate the amount of
particles the particle-size sensor measures. The type of noise, w(s), was chosen to
be normally distribute zero mean with standard deviation 1. The amplitude of the
noise is then decided by the d-parameter.

4.3.3 Model Parameter Selection

What is important to remember is the characteristics are very much dependent on
the type of wheat, the moisture level, temperature, etc. To account for that in the
simulations, the model parameters where chosen in intervals, with starting point in
the parameters found in 4.3.1. The value of the parameters and the intervals within
they can vary, are shown in Table 4.1. The intervals have not been chosen based on

Parameter Interval
K 0.45 - 0.55
T 20 - 30
c (-245) - (-275)
d 0.5 - 1.5

Table 4.1: The intervals in which the model parameters can change. The parameters where
estimated in 4.3.1 and then extended in intervals in order to create a more
flexible simulation model.

experiments, since this would take too long time. Instead the intervals are chosen to
give a big enough difference between the minimum and maximum parameter values.
The response for the maximum and minimum value for each parameter can be seen
in Section 4.4.

Since these parameters can be hard to interpret, they have been translated to param-
eter which all have a physical meaning on the real roller mill experiment machine.
The new parameters can be set by the users in the simulation interface developed
and are explained in Table 4.2.
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User pa-
rameter

Description Effect on model
parameters

Interval

N The amount of particles that should
be measured, higher number means
less noise and slower model re-
sponse. Corresponds to value set in
the particle-size sensor.

↑ N
⇒
↓ T
↓ d

40000 -
130000

Sieve
size

The sieve size which should be used
in the simulation, sets the offset of
the model. Can be set in discrete
values.

↑ sieve size
⇒
↑ c

450, 570,
630, 710,
1000, 1120
[µm]

Wheat
type

The type of wheat changes the static
gain of the model.

Dry wheat ⇒ ↑ K
Moist wheat ⇒ ↓
K

normal,
very dry,
very wet

Table 4.2: Description of the parameters that can be chosen in the simulation program.

The third column is the most important one, and tells the relation between the
parameters in Table 4.1 and Table 4.2. For example, if N is set to its maximum
of 130000, both T , the time constant of the model, and d, the noise level of the
model, will be at their minimum level. This is also intuitively easy to understand,
as increasing N , means that the amount of measurement noise decreases and the
time constant increases. N was derived in order to emulate the way the particle size
sensor in the real experiment setup is tuned.

4.4 Model testing and verification

In this section the model is tested for different parameters to verify the behavior.

4.4.1 The speed of the model

How fast or slow the model reacts to a step response change is an important factor.
In Figure 4.3, the step response of the model is shown for both the highest and lowest
value of the T -parameter. In order to make the difference between the two curves
more clear, no noise has been used in this simulation. The slower curve reaches
its final value of 51 % at t = 260 s, whereas the faster one reaches its final value
at t = 200 s. The difference between the two curves corresponds well to what the
difference is the real system, when comparing measuring many particles with few
particles. The most important thing with the model is that it roughly estimates the
behavior of the real system.

4.4.2 The Gain of the Model

The moisture level of the wheat is modeled by varying the static gain, K of the
model. In Figure 4.4, a comparison between the biggest and smallest static gain of
the model is shown. As seen with K = 0.55, the output signal reaches y = 56 %,
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Figure 4.3: A comparison between the fastest and slowest model response. A step change
on the model and the resulting output is shown.

and with K = 0.45, it reaches 54 %, which makes a difference of two percentage
points between the two signals. This can be seen as a good approximation of how
it looks like in the real system when changing the moisture level of the wheat.
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Figure 4.4: Aa comparison between the highest and lowest static gain parameter of the
model. A step response is made and the resulting output is shown.

4.4.3 The Sensor Noise

The level of sensor noise in the model is determined by the d-parameter. Since it is
hard to determine the noise level of the sensor signal, as explained in Section 2.2.2,
it is important that the model has an adjustable noise-parameter. This makes the
controller simulations more realistic, as the control algorithm can be tested with
different sensor noise levels. In Figure 4.5 the step responses of the model with the
highest sensor noise, d = 1.5, and the lowest sensor noise d = 0.5, are shown.
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d =  = 1.5, the highest noise level
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Figure 4.5: Step response of the model, showing the maximum noise level and the minimum
noise level.

As seen, the noise level is representative for how the real system looks like, shown
in Figure 4.1. With the noise added to the model, it was possible to make more
realistic controller algorithm simulations, as shown in Chapter 5.

4.5 Experiment for the MIMO Model

For the MIMO system, a bigger experiment series was carried out. This was done
in order see how the two inputs affect the two outputs of the system, and to see if
it was possible to realize a controller for the MIMO system.

4.5.1 Experiment Result

The MIMO model has as explained in Section 2.3, two inputs and two outputs. The
inputs are the roller gap and the differential speed. The outputs are two points on
the particle size distribution curve, e.g. 50 % fall through at 1120 µm and 70 % fall
through at 630 µm.

In this experiment the roller gap and speed differential was changed in 5 steps each.
First, the roller gap was kept constant and the differential speed was changed in 5
steps. After that the roller gap was changed to a new value, and then kept constant
once again, while the differential speed was changed in the same 5 steps. This was
repeated until all combinations of differential speeds and roller gaps where tested,
making it 25 experiments in total. For each input combination, the fall through was
measured. The result from one of the experiments is shown in Table 4.3.

In Figure 4.6 and Figure 4.7, the result of the experiment is shown for the sieves
1120 µm and 630 µm. The figures graphically show the result of experiments such as
in Table 4.3. As seen the figures looks like tilting planes, with quite linear behavior.
Also seen, is that the speed differential does not seem to affect the fall through very
much.
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Figure 4.6: Experiment result of how the roller gap and the differential speed affect the fall
through at the sieve size 1120 µm.
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Figure 4.7: Experiment result of how the roller gap and the differential speed affect the fall
through at the sieve size 630 µm.
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Differential speed [-]
Roller gap [µm] 2 2.47 3 3.5 4.2

437.5 56.3 56.5 57.7 58.6 59.5
525 47.6 48.7 49.2 51.7 51.2

612.5 39.6 41.8 41.3 43.2 43.9
700 32.7 34.2 34.8 35.8 36.5

787.5 28.2 31.2 31.2 32.4 33.6

Table 4.3: This table shows how the parameters where varied during the MIMO experiment.
The column furthest to the left, shows the roller gap settings. The row highest up
in the table shows the settings for the differential speed. The 25 remaining slots
shows the measured fall through in %, at the specific roller gap and differential
speed combination, for one of the experiment runs

4.5.2 Interpretation of MIMO experiment results

Figure 4.6 and Figure 4.7, show that the differential speed has very little influence on
the grinding result, i.e. the fall through of particles. This result shows that the idea
of having the differential speed as second control parameter had to be abandoned.
It might be pointed out that a higher speed differential of around 10-15 [-], could
have given a bigger influence on the particle size distribution. This would however
cause the electric motors driving the rollers, to consume more energy which was not
desired. 1

Because of the above result, it was decided to focus the MIMO system controller
algorithms, to simulations only. The controller algorithms in Chapter 5 where tested
on similar surfaces as in Figure 4.6 and Figure 4.7. The reason for making simula-
tions of MIMO controllers, is that they might be of use in the future, if other sensors,
measuring other qualities of the product are developed. For example, it might be
that the differential speed has a big influence on the ash content of the wheat. It
would then be possible to test the controller algorithms in Chapter 5 on the real
roller mill.

1When the differential speed between the rollers is too high, the rollers will work against each
other. I.e. the faster roller will try increase the speed of the slower roller, and the the slower roller
will try to decrease the speed of the faster roller. This phenomena will cause an unnecessary high
energy consumption.
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Chapter 5

Simulation of SISO Controllers

In this chapter, the SISO controller algorithms are tested and evaluated on a simu-
lation model of the roller mill. First the computer control interface is explained and
then the controller algorithms and the results are explained.

5.1 Preparative Steps

In order to implement the controller algorithms digitally, a couple of preparative
steps had to be taken, explained in this section.

5.1.1 The Computer Control Interface

A simulation program has been developed in MATLAB. The simulation program
consists of a MATLAB script which contains all the necessary initializations and also
the model of the roller mill. The MATLAB script then calls a MATLAB function
containing the controller algorithm. The controller algorithm receives the current
output from the model and the current set-point. The controller algorithm then
calculates the appropriate new control signal and sends it back to the MATLAB
script. The reason for keeping the model and initialization phase separate from the
controller algorithms, was to better emulate the way the controller algorithms are
implemented on the real roller mill experiment machine. Because of secrecy reasons,
no MATLAB code is shown in this report, but a more detailed explanation of how
the simulation program works can be found in Appendix B.

5.1.2 Signal Processing

In this chapter and the rest of the report has, unless anything else is stated, a first
order low-pass filter been used, explained in 3.6.1. This is done in order to reduce
the amount of noise of the output signal from the model, i.e. the fall through. The
low-pass filter is used with α = 0.5.

To reduce the control signal activity when the output signal is close to the set-point,

33
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the following algorithm has been used

If |r(k)− y(k)| < emin (5.1)
∆u(k) = 0 ,

where 0.5 ≤ emin ≤ 1. This algorithm sets the controller output to 0 when the error
is small enough and will reduce the likelihood of output signal oscillations upon
set-point convergence.

Because of physical limitations of the real roller mill machine, i.e. the roller gap
cannot be changed in too small steps. The minimum control signal change has
therefore been constrained. If the control signal from the controller algorithm is
smaller than a certain minimum, ∆umin, the control signal is set to ∆umin, which
is formulated as

If 0 < |∆u(k)| < umin (5.2)
∆u(k) = umin(k) ,

where umin = 1.1

5.2 Simulation Results of the Implemented Controllers

In this section, the different controller algorithms that have been used in simulations
are presented. It is important to point out, as explained in Section 2.4, that no real
reliable and accurate enough model of the roller mill exists. Because of this, more
advanced controller algorithms, such as i.e. output state feedback control or internal
model control to mention a few, where ruled out. This is because these algorithms
require an good model of the process to be controlled. The controller algorithms
presented below, requires no or little knowledge about the process and contain few
tuning parameters which make them suitable for the roller mill process.

To be able to compare the different algorithms, the sieve size of 1120 µm has been
kept constant throughout the SISO simulations. Also in all the simulations besides
from the adaptive controller, the parameter for choosing the type of wheat has been
set to normal.

5.2.1 Incremental I-control

As a first attempt of control, the incremental I-controller, explained in Section 3.2.2
was chosen. Because of the high noise level in the simulation model, it was concluded
not to use the Kd parameter in the controller. The parameters for the simulation
where: Ki = 0.5, Ts = 30 s, and N = 65000.

Choosing N that small, means that much measurement noise will be present in the
signal. But a small N also means a faster output signal response, which is needed
with this type of controller. Otherwise the controller goal of reaching a new set-point
within 4 minutes, from Section 2.5.1 would not be possible to reach. This is because
the control signal changes made in each iteration are too small with the I-controller.

The result of a simulation with the incremental I-controller is shown in Figure 5.1.
As seen, the controller manages to track a set-point change that goes from 50 to
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Figure 5.1: Simulation result using an incremental I-controller.

60 and then back to 50 again. Also seen is that the output signal shows oscillating
behavior around the set-point, which can be seen between t = 0 s and t = 300 s. The
controller tries to compensate for this by giving control signals, but this causes the
control signal alternate up and down. The oscillations where tried to be eliminated
with the controller showed in Section 5.2.2.

5.2.2 Incremental I-Control with Buffer

This controller deals with the problem of the oscillating control signal when the set-
point is reached, which is present with the pure I-controller from Section 5.2.1. The
oscillations in the control signal happens when the output signal, the fall through,
is close to the set-point. Because the output signal contains noise, it means that it
will never completely reach the set-point, i.e. it will move around in the region close
to the set-point. The controller will try to compensate for this by sending a control
signal, but since the noise level of the output signal is so high, it causes the control
signal to oscillate around the set-point.

One solution to this problem would be to increase emin, explained in Section 5.1.2.
This would increase the region in which the controller is inactive, but would also
cause less accurate control.

Instead, the buffer algorithm from Section 3.6.2 is used. The same controller pa-
rameters as 5.2.1 is used, but with the buffer algorithm added to choose between
the low-pass filtered signal, and the moving average signal.

The result of the new controller algorithm, is shown in Figure 5.2. The two different
filtered signals are shown in the first subplot. When the output signal is close to the
set-point, the moving average signal with less noise is used to calculate the control
signal. When the set-point changes at t = 500 s, the more noisy low-pass filtered
signal is used to calculate the control signal. When the new set-point is reached, the
moving average signal once again is started and used to calculate the control output.
As seen, the control signal shows no, or much less oscillating behavior, meaning that
the buffer algorithm seems to work quite well. Worth noticing is that the buffer



36 Chapter 5 Simulation of SISO Controllers

0 100 200 300 400 500 600 700 800 900
45

50

55

60

65

Time [s]
F

al
l t

hr
ou

gh
 [%

] Incremental I−control with buffer, sieve size = 1120 µm

 

 Output signal
Moving average signal
Set−point

0 100 200 300 400 500 600 700 800 900
−10

0

10

Time [s]

E
rr

or
 [%

]

 

 

Error between setpoint and output

0 100 200 300 400 500 600 700 800 900

540

560

580

600

Time [s]

C
on

tr
ol

 s
ig

na
l [

−
]

 

 

Control signal

Figure 5.2: Simulation result using an I-controller with added moving average algorithm
to reduce control oscillations.

algorithm probably needs to be analyzed more thoroughly that what has been done
in this report.

5.2.3 Static Feed-Forward plus Feedback Control

The following controllers have a different approach than the controllers above. In-
stead of controlling the dynamic behavior of the output signal, only the static be-
havior is controlled. This means that the controllers sampling time is longer than
the time it takes for the sensor to reach a new steady state when a control signal
change has been made. The reason for trying this approach is that the sensor may
give some strange behavior during the transient period. Also the risk of making the
system unstable is reduced significantly if a static controller is being used.

Maybe the most important motivation for using a static controller, is that the re-
lation between the roller gap and the particle size distribution is static, i.e. the
particle size distribution immediately changes when the roller gap changes. This
means that with the correct control signal, it should be possible to reach the a new
set-point with only one control signal.

Since the goal with this controller is to reduce the error between the set-point and
output in one step, first a feed-forward control signal is used which is activated when
the set-point changes. This feed-forward controller is an incremental I-controller
with a bigger gain than in the dynamic case. This feed-forward controller should
ideally be able make the output signal reach the set-point in one try. But since
always modeling errors and other unwanted effects exists, a feedback controller with
smaller gain is used in order to remove the steady state error.

The parameters chosen for the simulation are: KFF = 1.5, KFB = 0.5, N = 100000
and Ts = 100 s. The result from the simulation is shown in Figure 5.3.

As seen in Figure 5.3, the controller first makes a big control signal change to bring
the output close to the set-point. After that, smaller control signals changes are
made in order to reduce the remaining error as much as possible. In this simulation,
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Figure 5.3: Simulation result using a feed-forward controller with static gain plus a feedback
controller.

the controller is not capable of removing the steady state error before the set-point
is changed. The solution to this problem would be to use a higher value of KFF ,
which should be able to bring the output signal closer to the set-point on the first
try. A simulation with the same parameters as before, but with the difference that
KFF = 1.9 is shown in Figure 5.4.

This time the controller manages to reach the new-set point before it is changed to
a new value. As seen the controller only needs to give one feedback control signal,
and at one time two in order to reach the set-point. It can also be seen that the
time it takes for the controller to reach the new set-point is on average smaller than
4 minutes which was the demand given in the controller goals in Section 2.5.1. The
problem remaining to be solved, is what value of KFF that should be chosen? A
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Figure 5.4: Simulation result using a feed-forward controller with static gain plus a feedback
controller. Here a higher feed-forward gain than in Figure 5.3 has been used.
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solution to this problem is presented in Section 5.2.4.

5.2.4 Adaptive Feed-Forward plus Feedback Control

Changing condition of the wheat, e.g. temperature, wheat type, and moisture level,
has a big effect on how the output reacts to a control signal. It can therefore be
difficult to have a static feed-forward gain, KFF , since that would mean that for some
types of conditions, the gain would be too big, i.e. there would be an overshoot. In
some cases the output change would be too small, i.e. an undershoot. Clearly some
kind of adaptation of KFF is needed. The adaptive I-control algorithm, which was
explained in Section 3.4, was chosen to solve this problem.

To get a good estimate of J in presence of measurement noise, several measure-
ments of of ∆y

∆u are needed, and the optimal choice of J is calculated using the
LMS algorithm as explained in Equation 3.10 in Section 3.3. In this simulation, the
LMS estimator was set to collect three pairs of ∆y

∆u before calculating the first esti-
mate of J. The simulation parameters are chosen to: KFF,initial = 1.4, KFB = 0.5,
N = 100000, and Ts = 100 s. The simulation result is shown in Figure 5.5.

0 200 400 600 800 1000 1200 1400 1600 1800

40

50

60

Time [s]

F
al

l t
hr

ou
gh

 [%
] Adaptive control, sieve size = 1120 µm

 

 

Output signal
Set−point

0 200 400 600 800 1000 1200 1400 1600 1800
−20

0

20

Time [s]

E
rr

or
 [%

]

 

 

Error between setpoint and output

0 200 400 600 800 1000 1200 1400 1600 1800

540

560

580

600

Time [s]

C
on

tr
ol

 s
ig

na
l [

−
]

 

 

Control signal

Figure 5.5: Simulation result using a feed-forward controller with an adaptive gain plus a
feedback controller.

As seen, during the first three control signal changes, the output signal does not
reach the set-point. When three input/output samples have been saved, the LMS
estimator calculates an estimate of the gain, J of the system, which is then used
as control parameter for the remaining part of the simulation. With the estimated
gain, the controller manages to track the set-point changes with only one control
signal and at one point two control signals. Table 5.1 shows how the estimate of
KFF changed during the simulation. The estimation seems to be quite stable in the
region of KFF = 2
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Ĵ KFF (= 1
J )

0.4935 2.0262
0.4884 2.0473
0.4993 2.0027
0.5042 1.9835

Table 5.1: The estimated gradients and the corresponding control parameter, KFF

5.2.5 Steady State Detection Algorithm

The speed of the sensor, i.e. how fast it can measure the particle size of the wheat,
can vary depending on various things, explained in Section 2.2.2. For example, moist
wheat is harder for the sensor to measure than dry wheat. Also when the roller gap
is smaller, the sensor can measure with a higher particle rate, since the time it takes
to measure a small particle is shorter than the time it takes to measure a big particle.

The above explained phenomena makes it difficult to choose the correct sampling
time. For the adaptive controller explained in Section 5.2.4, it is very important
that the sensor is in steady state at the correct time. Otherwise it can happen that
the LMS algorithm saves incorrect sensor outputs, which means that the gradient
estimation will be faulty.

One way of solving this would be to use a sampling time for the worst case scenario.
This means that for very moist wheat and big roller gap, the sampling time is still
sufficiently long for the sensor to reach steady state before a new control signal is
given. In this section however, an approach with a varying sampling time has been
tested. To determine wether or not the signal is in steady-state, the steady-state
detection algorithm, explained in Section 3.7, is used. The parameters are chosen
to: KFF = 1.5, KFB = 0.5, N = 60000, ethreshold = 0.2, M = 5, and Ts,FB = 100 s.

In Figure 5.6, the result of a simulation is shown. As seen in the fourth sub-figure,
peaks are shown when the signal is in steady state. When the set-point changes,
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Figure 5.6: Simulation result using a feed-forward controller with variable sampling time.
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a feed-forward signal is given and not until the output signal level is leveled out, a
new control signal is given. After that the feedback controller takes over, which uses
a constant sampling time.

5.3 Comparison of Simulated Controllers

The implemented controllers are here judged by looking at the controller goals from
Section 2.5.1.

I-control The incremental I-controller from Section 5.2.1 and 5.2.2 is a simple
controller, where Ki is more or less the only tunable parameter. Controller goal nr.
2 is fulfilled, since the controller reaches a new set-point within 4 min (the time to
show a steady-state value was approximated to 2 min).

Controller goal nr. 3, requiring no re-tuning of controller parameters can not said to
be fulfilled. This is because for some circumstances, e.g. a different wheat type or
a higher moisture level, Ki might need to be changed. Otherwise unstable behavior
can happen, as was later verified in experiments in Section 7.3.1, where the algorithm
was tested on the real roller mill. The risk of unstable behavior also concludes that
controller goal nr. 4 is not fulfilled.

Controller goals nr. 6 can be said to be fulfilled, since the I-controller can handle
quite a lot of measurement noise. Controller goal nr. 7 is also fulfilled, since the
I-controller also is gives control signals during the transient behavior of the sensor,
i.e. is not required for the signal to be in steady-state for the controller to work
properly.

Static feed-forward plus feedback control This controller fulfills the same
goals as the I-controller from above does. The only exception is controller goal nr.
7, since the feed-forward control signal only should be given when the signal is in
steady-state. In some circumstances, it could happen that the sensor has not had
time to reach a steady-state behavior, but a control signal is still given. This could
cause the controller to become unstable, also violating controller goal nr. 4. Also
controller goal nr. 3 is not fulfilled, since the controller might require re-tuning.

Adaptive feed-forward plus feedback control This controller fulfills all but
the last of the controller goals stated. Although the controller algorithm itself is
more advanced than the other algorithms, it does not have any tuning parameters.
If for example the the wheat type is changed, the controller can adapt its controller
parameter in order to adapt to the new situation.

There might be a risk of faulty gradient estimations if too much measurement noise
is present, violating controller goal nr. 6.

The biggest issue with the adaptive controller algorithm, is that the sensor signal has
to be in steady-state when the gradient estimation is made. Otherwise the estimation
will be faulty and the behavior of the controller algorithm might deteriorate. The
steady state algorithm shown in Section 5.2.5 seems promising and it manages to
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prevent the controller from giving a control signal until the output signal is in steady
state.

5.3.1 Controller Goals Achievement Summary

In Table 5.2, a summary of the controller goals and their fulfillment for each of the
experimental controller are shown. Here it is more clear that the adaptive controller
algorithm is the best choice, because it fulfills most of the controller goals. The only
one that is not sure is the 7th and last controller goal. Probably more research has
to be done before a steady-state algorithm can be reliable enough to use for this
purpose.

Controller goal I-control Feed-forward plus
feedback

Adaptive FF +
FB control

Nr. 1 x x x
Nr. 2 x x x
Nr. 3 - - x
Nr. 4 - x∗ x∗

Nr. 5 x x x
Nr. 6 x x x
Nr. 7 x x∗ x∗

Table 5.2: Table showing the the different controllers tried in the experiments and wether
or not the controller goals from Section 2.5.1, are fulfilled.

The ∗ means that they are fulfilled if the steady-state detection algorithm, explained
in Section 5.2.5 is used.
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Chapter 6

Simulation of MIMO
Controllers

In this chapter, MIMO controller algorithms are tested and evaluated on a simulation
model of the roller mil. The simulations are carried out with two different model
parameter selections, in order to see what influence it has on the controllers.

6.1 Preparative Steps

Before MIMO simulations of the controller algorithms are possible the following
steps need to be explained.

6.1.1 Normalization

The inputs to the MIMO controller have been normalized between 0 and 1. This is
done in order to keep the controller algorithm as general as possible, and to make
sure that parts of the controller algorithm do not have to be rewritten if the intervals
of the control inputs change. The normalized parameters are shown in Table 6.1.

Parameter Raw value Normalized value Description
Roller gap 533 - 600 0 - 1 The distance between

the rollers
Differential speed 2 - 4 0 - 1 The differential speed

between the rollers

Table 6.1: Decription of how the control variables have been normalized

6.1.2 Derivation of the MIMO Model

In Section 4.5, an experiment was carried out on the roller mill. This experiment
indicated the relationship between the input signals; roller gap, differential speed,
and the output signal; fall through. Although this experiment showed that the
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Figure 6.1: How the roller gap and the dif-
ferential speed affect the fall
through at the sieve size 1120
µm
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Figure 6.2: How the roller gap and the dif-
ferential speed affect the fall
through at the sieve size 630
µm

differential speed did not have much influence on the output signal, this experiment
result was used as starting point for the models used in the remaining of this chapter.

The inputs and outputs from the experiment was put into an LMS estimation al-
gorithm, as explained in Section 3.3, where the system to estimate is expressed
as

y1(k) = k1u1(k) + k2u2(k) +m1 (6.1)
y2(k) = k3u1(k) + k3u2(k) +m2 .

As seen, the equations show how both the outputs relate to the inputs and also that
the equations are linear. After letting the LMS algorithm estimate the parameters
k1, k2, k3 and k4, the model is written as

y1(k) = 38u1(k) + 4u2(k) + 21.9 (6.2)
y2(k) = 20.3u1(k) + 1.9u2(k) + 9.5 .

Looking at these equations, it is clear that the first input, the roller gap has much
more influence on both output 1 and output 2. This can also be confirmed by
plotting 3D-plots of the functions from Equation 6.1, as seen in Figure 6.1 and 6.2

6.2 The Test Models

The model derived in equation 6.2 is almost impossible to apply automatic control
to. This is because the second control parameter, the differential speed has so little
influence on the output signal. This means that one control parameter has to be
able to control two output signals, which in most case is impossible, unless one is
very lucky when choosing the set-points. Therefore the model was modified in two
different ways, and the the controller algorithms where simulated on the new models.
Below, the two different test models are presented.
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Figure 6.3: The fall through at sieve size
1120 µm is shown as a func-
tion of the differential speed
and roller gap. The differen-
tial speed has more influence on
the grinding result, but the vari-
ables are still very coupled.
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Figure 6.4: The fall through at sieve size
630 µm is shown as a func-
tion of the differential speed
and roller gap. The differen-
tial speed has more influence on
the grinding result, but the vari-
ables are still very coupled.

6.2.1 Model 1 - More Influence from Differential Speed

In this model, the differential speeds influence on the output signals have been
increased by assigning higher values to k2 and k4. The new model is written as

y1(k) = 38u1(k) + 15u2(k) + 21.9 (6.3)
y2(k) = 20.3u1(k) + 10u2(k) + 9.5 ,

where as seen, an output signal change, now is influenced both by the roller gap and
the differential speed. The result of the change can be seen in Figure 6.3 and Figure
6.4. Even though both functions seem to be affected by both the roller gap and
differential speed, it is still not trivial to apply automatic control. This is because
the parameters are very coupled, i.e. it is not possible to take the one parameter to
control one output, and the other parameter to control the other output.

6.2.2 Model 2 - Control Variables less Coupled

In this model, the parameters have been chosen in order to be more decoupled. In
order to achieve this, the functions have been changed as in Equation 6.4.

y1(k) = 38u1(k) + 6u2(k) + 21.9 (6.4)
y2(k) = 4u1(k) + 15u2(k) + 9.5

As seen, k2 and k3 are much lower and k1 and k4 higher. This means that the
roller gap has much influence on output 1 but not much influence on output 2.
The opposite goes for the differential speed, meaning that it has much influence on
output 2 but not much influence on output 1. This is illustrated more clearly in
Figure 6.5 and Figure 6.6. This model is less coupled meaning that is should be
easier for an automatic controller to control the system.
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Figure 6.5: The fall through at sieve size
1120 µm is shown as a func-
tion of the differential speed
and roller gap. The roller gap
has a big influence on the out-
put signal and the differential
speed has little influence on the
output signal.
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Figure 6.6: The fall through at sieve size
630 µm is shown as a func-
tion of the differential speed
and roller gap. The roller gap
has little influence on the out-
put signal and the differential
speed has a big influence on the
output signal.

6.3 Simulation Results of the MIMO Controllers

Two different controllers where tested in this section, first a simple PID controller
and then the more advanced controller which finds the optimal control signal changes
in each sample.

6.3.1 MIMO PID Controller

As a first attempt to control the process, the incremental I-controller was chosen, as
explained in Section 3.2.2. With this simple approach to the problem, the system is
assumed to be decoupled enough to let one controller control the roller gap and the
other controller control the differential speed. The control laws are

u1(k + 1) = u1(k) +Ki,1e(k) (6.5)
u2(k + 1) = u2(k) +Ki,2e(k) .

The first simulation is done with model 2 from Section 6.2.2. The fact that the
variables are quite decoupled from each other, should mean that it should be possible
to control with the simple PID controller structure shown in Equation 6.5. The
controller parameters, Ki,1 and Ki,2, where both chosen to 0.01. The result of the
simulation is shown in Figure 6.7 and Figure 6.8. As seen the controller manages to
track the set-point changes in both of the output signals. For the simple case, when
the control variables are enough decoupled, it seems that the MIMO PID controller
is a good choice.

Worth noticing is that with this controller structure, the two controllers work in-
dependently of each other. This means that there can be unwanted behavior if the
variables are not decoupled enough. This ”unwanted” behavior is shown in the next
simulation.
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Figure 6.7: Simulation with MIMO PID
controllerand model 2, showing
output 1, the error signal and
the two control signals.
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Figure 6.8: Simulation with MIMO PID
controller and model 2, showing
output 2, the error signal and
the two control signals.
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Figure 6.9: Simulation with MIMO PID
controller and model 1, showing
output 1, the error signal and
the two control signals.
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Figure 6.10: Simulation with MIMO PID
controller and model 1, show-
ing output 2, the error signal
and the two control signals.

The second test for the PID controller was to do a simulation using model 1, from
Section 6.2.1. Here the control inputs are more coupled, and can therefore seen as
a more difficult system to control. The controller parameters, Ki,1 and Ki,2, where
both chosen to 0.01 as previously. The simulation result is shown in Figure 6.9 and
Figure 6.10. As seen, this time the controller only manages to track the set-point
changes in output 1, but not output 2. The reason is that u1 has more influence
on y1, than what u2 has on y2. Since both the controller gains, Ki are set to equal,
the first output therefore ”wins”. The solution to this problem would be to increase
Ki,2. However, it is not trivial to know how much to increase the gain, hence the
need for the more advanced controller explained in Section 6.3.2.

6.3.2 MIMO Optimal Controller

In this section, the problems that occured with the MIMO PID controller from
Section 6.3.1. The controller that was chosen was the optimal controller, explained
in Section 3.5. Only model 1 from section 6.2.1 is being simulated here, since for
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Figure 6.11: Simulation with optimal
MIMO controller and model
1, showing output 1, the error
signal and the two control
signals.
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Figure 6.12: Simulation with optimal
MIMO controller and model
1, showing output 2, the error
signal and the two control
signals.

model 2, the MIMO PID controller would be enough.

In Figure 6.11 and Figure 6.12 the result of a simulation with the MIMO optimal
controller is shown. As seen, the optimal controller performs much better in the sense
that a compromise between the two output errors was reached. This is because
the controller takes into account the couplings between the control variables and
calculates the control signals that minimizes the combined least error of the two
outputs.

An interesting aspect with the optimal controller, is that it is possible to weight the
importance of the different outputs. For example, if output 1 is more important
than output 2, then it is possible to tell this to the controller using the γ parameter.
In the previous simulation, γ was set to 0.5, meaning that both outputs are equally
important. In the simulation below, γ was set to 0.1 to tell the controller to care
more about reducing error created by output signal 2 than the error created by
output signal 1. The result of this simulation is shown in Figure 6.13 and Figure
6.14. As seen, this time the controller reduces error two, but on with the downside
that error one becomes bigger.

6.4 Comparison of MIMO Controllers

From the simulation results presented above, it is clear that the MIMO optimal
controller performs better when the system is complex. The big advantage is that it
is possible to tell the controller which output signal it should emphasize to minimize.

If the system contains no or small cross couplings between the control variables, the
MIMO PID controller is probably the better choice. The PID controller is a much
simpler controller both when it comes to the number of tuning parameters and the
complexity of the computer implementation.

Before deciding which controller to implement on the real roller mill, it has to be
investigated how the cross couplings between the variables look. If it turns out that
the differential speed does have great influence of the ash content of the wheat (a
potential second process output), and at the same time the roller gap has small
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Figure 6.13: Simulation with optimal
MIMO controller and model
1, showing output 1, the error
signal and the two control
signals.
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Figure 6.14: Simulation with optimal
MIMO controller and model
1, showing output 2, the error
signal and the two control
signals.

influence of the ash content, the MIMO PID controller is probably the best choice.
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Chapter 7

Implementation of SISO
Controllers on a real Roller Mill

In this chapter, some of the SISO controller algorithms from Chapter 5, have been
tested on the real roller mill experiment machine. First the experimental setup is
explained and then the experiment results are showed. Finally the advantages and
disadvantages of the different controllers are compared.

7.1 The Experimental Setup

The different controller algorithms have been tested on a real experimental setup.
This setup consists of a roller mill machine, a particle size sensor and the soft-
ware/hardware interface needed to send control signals to the system and to read
the output from the particle size sensor. The controller algorithms are implemented
as MATLAB functions. The MATLAB function is called from a LabVIEW interface
where a graphical interface and all the necessary low-level connections are made.

7.2 Differences between Simulations and Experiments

Implementing the controllers in the real roller mill had a few complications. Probably
the most limiting factor was the experiment time. Since it takes approx. 2-3 minutes
for the sensor to show a new steady state value when the roller gap is changed, an
experiment where the reference signal changes a couple of times can easily take 10-15
minutes, This means that the experiments has to be planned very carefully before
being carried out.

Also a considerable amount of wheat is required which is both expensive and re-
quires that the wheat bin is continuously refilled during the experiments. The third
problem was the sensor, which from time to time can give some very noisy output
signals which causes difficulties for the controller algorithms.

All these things together limited the amount of controller algorithms that could be
tried on the real system. Instead of testing a very advanced controller, it was divided
into smaller controllers, where different parts were tested in each experiment.
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7.3 Experiment Results of the Implemented Controllers

In this section, the controller algorithms that have been implemented on the roller
mill machine are presented.

7.3.1 Incremental I-Control

The very simple structure and few tuning parameters, made the incremental I-
controller the best candidate for the first experiments on the real roller mill. The
goal was to see if the results from the simulations in Section 5.2.1, and the results
from the experiments would match. Therefore, the same parameters as the controller
simulation in Section 5.2.1 where chosen. The parameters where chosen to: Ki = 0.5,
N = 65000, and Ts = 30 s.

N was chosen quite low, because otherwise the sensor output would react too slowly,
i.e. the delay before the sensor starts to show a descending or ascending trend is too
big. The result from the experiment with the I-controller is shown in Figure 7.1.
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Figure 7.1: Experiment result using an I-controller.

As seen, the controller manages to track a set-point change from 57 % to 50 %. The
outputs signal is quite noisy but the low-pass filter helps in removing the higher
frequencies of the noise. However, low frequency noise is still present. What makes
this controller a little bit dangerous, is that if unlucky, the sensor can show unwanted
behavior. This can be seen Figure 7.2, which shows a second experiment with the
same parameter choice.

As seen when the reference changes from 60 % to 50 %, the output signal goes
down as would be expected but then it goes up again. This causes the controller
to make another big control change, with the result that the output signal makes
an overshoot. The controller then compensates for this overshoot by increasing the
control signal again. This experiment shows a potential danger with this controller
type. However choosing a small enough controller gain, Ki, should prevent this from
happening. This will of course also make the controller slower, which is not desired.
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Figure 7.2: Second experiment result using an I-controller.

7.3.2 Static Feed-Forward plus Feedback Control

The second controller that was implemented, was the static feed-forward combined
with a feedback controller. This controller was also tested in simulations in Section
5.2.3. The parameters for the experiment where chosen to: KFF = 1.7, KFB = 0.5,
N = 130000, and Ts = 130 s.

Figure 7.3 shows the result of the experiment. As seen, the controller manages to
reach a new set-point in approx. 200 seconds usually. However, when the set-point
changes from 60 to 50, it takes the controller approx. 300 seconds to reach the new
set-point. When the reference changes from 54 % 46 %, at t = 620 s, the controller
manages to reach the set-point in approx. 100 seconds, which is very fast compared
to the other set-point changes. The explanation could be that the set-point was
changed before the sensor showed a steady-state value, and therefore did not show
the ”true” value.

7.3.3 Adaptive feed-forward control

Changing wheat temperature and moisture have effect on how big the feed-forward
gain should be. The adaptive I-controller, explained in Section 3.4 was chosen to
solve this problem. The goal was to estimate the level of the feed-forward gain by
using the LMS parameter estimation technique.

To make the experiment easier and shorter, no feedback control was used. When the
controller had made one control signal, the reference signal was changed, no matter
if there still was an error between the reference and the output. The parameters
where: KFF = 1.5, N = 130000, and Ts = 140 s.

The result of the experiment is shown in Figure 7.4. During the initial phase, the
output does not reach the set-point. During this time, the controller uses the initial
value of KFF = 1.5. After three control signal changes, the LMS algorithm has
gathered enough information to estimate Ĵ , the gain of the system. Ĵ is then used
in the remaining part of the experiment to update KFF , the controller parameter
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Figure 7.3: Experiment result using a static feed-forward combined with a feedback-
controller

(KFF = 1
J ). As seen in the figure, the output tracks the set-point change much

better in the end, when the updated KFF is used.
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Figure 7.4: Experiment result using an adaptive controller. The controller estimates Ĵ ,
the gain of the system, and then uses this estimation to achieve better control.

Table 7.1 shows the gradient estimated during the experiment run and the corre-
sponding control parameter, KFF that was chosen.

7.3.4 Steady State Detection Algorithm

The sampling time of the controller can be hard to determine, as explained in Section
2.2.2. The speed of the sensor is determined by how fast it can measure the particles
that flow through the sensor.

The following algorithm aims at solving the problem, by detecting when the system
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Ĵ KFF (= 1
J )

0.4092 2.4438
0.4133 2.4195
0.4382 2.2821

Table 7.1: The estimated gradients and KFF , the corresponding control parameter.

is in steady state before giving a control signal. How the steady state algorithm
works is explained more thorough in Section 3.7. The parameters chosen for the
experiment where: KFF = 1.5, KFB = 0.5, and N = 130000. The result from an
experiment with the steady state detection algorithm is shown in Figure 7.5.
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Figure 7.5: Experiment result using a feed-forward combined with feedback-controller with
steady state detection algorithm.

As seen, now the controller only gives a control signal, when the fourth subplot shows
a peak. No control signal is given when the output signal is changing. It is also seen
that the peaks are not appearing with even intervals, meaning that sometimes the
sensor reacts faster than other times.

The algorithms is however very sensitive in parameter selection, especially the
ethreshold-parameter (see Section 3.7). The parameter is difficult to choose, and
choosing it wrongly can result in a different behavior that desired. The fact that
the measurement noise of the sensor can vary, also means that the parameters of
the steady-state detection algorithm has to be re-tuned.

7.4 Discussion of the Implementation Results

In the experiments conducted on the real experiment machine, it was even more
obvious what could happen when using the incremental I-controller. Results from
Figure 7.2, shows that there indeed is a risk of oscillations in the output signal, and
that by choosing Ki too big, there is a risk of the system becoming unstable. Worth
noticing is that longer sampling time is not possible to use for the pure feedback
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controller, since it then would take too much time to reach a new set-point. The
I-controller might also require re-tuning which is not desired.

The feed-forward plus feedback controller from Figure 7.3, seems to be a better
algorithm compared to the pure feedback controller. This is mainly because of its
longer sampling time, which gives that the controller only send a control signal
when the sensor is in steady state, i.e. the output signal shows no more ascending
or descending behavior. Also this controller might require re-tuning of the controller
parameters.

As seen in 7.4, the adaptive algorithm also worked on the real roller mill, despite
the large amounts of measurement noise from the sensor. The adaptive feed-forward
could also in the future be combined with a feedback controller, similar to the
simulations in Section 5.2.4, in order to remove the steady state error that the
adaptive feed-forward could not remove. The adaptive controller is also the only
controller that does not require any manual re-tuning of controller parameters, which
was a required controller goal from Section 2.5.1.

There is a risk of bad gradient estimation with high sensor noise values. If the sensor
can be improved to give less noisy signals, this should not be a problem though.
One option would be to use some kind of monitoring algorithm which discards the
gradient estimate if too much noise or is present.

The steady state algorithm shown in Figure 7.5 seems promising and it manages to
prevent the controller from giving a control signal until the output signal is in steady
state. However, considering that the algorithm is rather difficult to tune and the fact
that it is rather slow, concludes that more research on the subject has to be done.
Possibly also other steady state algorithms should in the future be investigated.



Chapter 8

Conclusions and Future Work

In this chapter, the results are discussed and suggestions for future work are made.
The results are discussed from the view-point of the controller goals and thesis ob-
jectives.

8.1 Conclusions

In this report different controller algorithms used for automatic control of a roller
mill have been tested. Controllers have been implemented successfully, both in
simulations and experiments on a real roller mill.

Initial experiments carried out on the roller mill, showed that the differential speed
between the rollers, did not have enough influence of the grinding process. This
made it impossible to use the differential speed as second control parameter and
that the implementation of controller algorithms on roller mill, where limited to the
SISO case. The experiments also showed that the relation between the roller gap
and the outgoing particle size distribution could be approximated as linear.

The I-controller is a simple controller, but because of the nature of the controller
it is not 100 % that the controller will not cause unstable behavior of the machine.
The I-control algorithm also might require re-tuning when e.g. a new wheat type is
put into the machine, or the moisture level of the wheat is changed.

The most successful algorithm was the adaptive feed-forward plus feedback con-
troller, which showed to be promising in simulations and also to work well on the
real experiment machine. This controller fulfils the controller goals stated in Chap-
ter 2. The main advantage of the adaptive controller, is that it does not require any
manual tuning of the controller parameters.

The steady-state detection algorithm shows promising results, but because of the
fact that it is relatively difficult to tune the parameters, more research in the area
needs to be done. It might be that other steady-state algorithms are better suited,
than the algorithm used in this project.

No MIMO controller was implemented on the real system, since no second variable
was found that had enough influence on the particle size distribution. In simula-
tions although, some some algorithms have been tested. The proposed algorithm is
the optimal control algorithm, which calculates the optimal control change in each
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sample with the help of an estimated model of the system. The method is very flex-
ible and can, both weigh the importance of the different outputs, and also handle
constraints on the control signals. If the system turns out to be enough decoupled,
the MIMO PID controller probably is the better choice, considering its simplicity
and easiness to implement.

8.2 Proposal for Future Work

In this project, a first attempt to apply automatic control to a roller mill has been
taken. The next step would be to take the controller algorithm proposed and do
more refinements and more thorough testing on the roller mill.

The next step would also be to try the algorithm proposed for the MIMO system
on the experiment machine. This would of course require that new outputs can be
measured, such as e.g. the ash content of wheat.

To be able to make longer experiments on the roller mill, an automatic refilling of
the bin that contains the wheat, should replace the manual refilling process used
currently.

One could also imagine that the different feed-forward gains used by the adaptive
controller could be saved in a database. When changing the type of wheat or mois-
ture level of the wheat, the database could be used to give an initial feed-forward gain
to the controller. This initial gain could then be improved further by the adaptive
controller during the run.

Improving the particle size sensor would also improve the automatic control. A
faster sensor would make it possible for the controller algorithm to faster reach a
new set-point. A more accurate sensor giving a less noisy output signal, would also
improve the controller

Another task would also be to implement the controller algorithm the target hard-
ware, e.g. microcontroller, microprocessor, DSP etc. and aim to implement auto-
matic control on future commercial roller mills.
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Appendix A

Translation between Control
Units

Here a table for translating between the different control units are shown.

The traditional way of tuning the gap of a roller mill is by setting a gap in ”hours”.
This is a unit that has 60 as a base instead of 100 as normal and gives the head-miller
a intuitively understanding for how big or small the roller gap is. The range of this
unit from 05:20 o’clock to 06:00 o’clock. In a computer controller system the base
60 does not work so well, and therefore a control unit similar to the hours, but with
100 as base is available. This unit is completely artificial and ranges from 533 [-] to
600 [-]. With this unit, an increase in the control signal will mean an increase in the
sensor output, which is the way a control system usually works. With the roller gap
in µm as control signal, an increase in control signal would give a decrease in the
sensor output, which intuitively feels wrong.

Below is a table which contains a translation between the different units.

Hours [time] Control signal [-] Roller gap [µm]
520 533.3 850.0
521 535.0 837.5
522 536.7 825.0
523 538.3 812.5
524 540.0 800.0
525 541.7 787.5
526 543.3 775.0
527 545.0 762.5
528 546.7 750.0
529 548.3 737.5
530 550.0 725.0
531 551.7 712.5
532 553.3 700.0
533 555.0 687.5
534 556.7 675.0
535 558.3 662.5
536 560.0 650.0
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537 561.7 637.5
538 563.3 625.0
539 565.0 612.5
540 566.7 600.0
541 568.3 587.5
542 570.0 575.0
543 571.7 562.5
544 573.3 550.0
545 575.0 537.5
546 576.7 525.0
547 578.3 512.5
548 580.0 500.0
549 581.7 487.5
550 583.3 475.0
551 585.0 462.5
552 586.7 450.0
553 588.3 437.5
554 590.0 425.0
555 591.7 412.5
556 593.3 400.0
557 595.0 387.5
558 596.7 375.0
559 598.3 362.5
600 600.0 350.0



Appendix B

The Simulation Model

The simulation framework is built in entirely in the MATLAB programming lan-
guage and has been built such that it is easy to create new controller algorithms and
to test them on the roller mill model. The simulation framework therefore consists
of two parts. The model-script where the model and the necessary initializations are
made, and several different controller functions that are called by the model-script.
This approach also emulates the way the controller algorithms are implemented on
the real roller mill experiment machine.

The simulation can be started by in the MATLAB command window writing:
.. start simulation

The user is now presented with a series of choices, which all can affect the result of
the simulation.

1. .. Choose controller type
Here the user can choose between the available controller algorithms. The
correct input is a number between 1 and forward.

2. .. Enter a sieve size
The user is can here choose a number of different sieves, which emulates the
way the roller mill experiment setup works. The correct input is a number
between 1 and forward.

3. .. Enter a reference signal vector
Here the user defines a reference signal that the controller will try to follow.
The correct input is a vector within brackets, e.g. [50 40 60 55].

4. .. Enter the simulation length
A simulation time in seconds is to be given here. The correct input is a scalar.

5. .. Enter how many particles the sensor should measure
Here the user can choose the amount of measurement noise in the simulation,
which is represented by the number of particles the sensor should measure.
The lower the value is set, the more measurement noise will be present. It also
affects the time constant of the model, e.g. a low value means that the model
reacts faster to a control signal change than a big value. This is to emulate
the way the sensor is tuned in the real roller mill experiment machine. The
correct input is a scalar between 40 000 and 130 000.
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6. .. Enter the type of wheat
The last input is the type of wheat, which can be chosen to be normal, very
dry or very wet. This parameter affects the gain of the model, i.e. how much
a change in input affects the output. This parameter is mainly for testing the
adaptive controller. The correct input is a value between 1 and forward.
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