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Computational Study of Spinodal Decomposition in Thin Layers
ALEXANDER RODIN
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Phase separation through spinodal decomposition is the process where a mixture
becomes unstable and spontaneously separates into two phases. The decomposition
yields tortuous microstructures which are versatile in materials for transporting of
liquids and molecules. In pharmaceutical industries, these types of materials are
used in order to control drug releases from tablets and thus receive effective treat-
ments against various diseases. A computational study is performed to improve the
understanding of this decomposition in thin layers, by simulations of the conservative
Allen-Cahn (AC) and Cahn-Hilliard (CH) equations. In an ongoing PhD project,
at the department of Physics in collaboration with RISE Agrifood and Bioscience,
the evolution in time of the decomposition is studied for mixtures of ethylcellulose
(EC) and hydroxypropylcellulose (HPC) with ethanol as solvent, and generally, the
phase separation occurs as the solvent evaporates.

For both AC and CH, a pure diffusive model, and a model coupled with the Navier-
Stokes equations (NS) for fluid flow are studied, where time-resolved results of length
scales, curvatures, accuracy, etc., are compared with theory and the conducted ex-
periments. The simulations could to some extent be compared to the experiments,
and the AC models showed better agreement than the CH models. However, lim-
itations in the models such as parameter settings is discussed. Further, insights
for future work are proposed in order to compare the results properly. Comprising
other models which appear to be accurate, and models that consider the effect of
the evaporation.

Keywords: Spinodal decompostion, phase separation, Allen-Cahn, Cahn-Hilliard,
modelling, simulation, drug release
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1 | Introduction

1.1 Background

The drug formulation of tablets is the most commonly used and established proce-
dure to maintain effective treatments against various diseases [2]. Given predeter-
mined rates, the drugs can be delivered such that they can yield efficient treatments
while the side effects are reduced [1]. In some tablets, the drug is contained in
pellets, where its core is enclosed by the specific drug of interest and coated by a
porous film. In pharmaceutical industries, the coating is applied in layers with vari-
ous thickness. For the coating mentioned in the paragraph below, each layer is said
to be around 1.5 µm [1]. Usually, the coating consists by a mixture of two polymers
along with a solvent. Due to phase separation, microstructures are formed as a re-
sult when the solvent evaporates, where heterogeneous structures are created from
the homogeneous coating mixture. Thus the polymers are distinguishable as the
solvent is completely evaporated [1]. Consequently, one can determine the delivery
rates of the drug for the given microstructure as it controls the mass transport.

Figure 1.1 illustrates, generally, the procedure of a possible drug release, where
the porous film is initially coated by a mixture of ethylcellulose (EC) and hydrox-
ypropylcellulose (HPC) with ethanol as solvent. These mixtures are established in
pharmaceutical industries and commonly used as coating material to control drug
deliveries [3]. Followed by the phase separation that occurs as the solvent starts
to evaporate, hence creating microstructures. The drug delivery is initiated as the
drugs are intaken, and will be leached out due to the hydrophilic properties of HPC.
Unlike HPC, EC will not be dissolved, resulting in patterns in the coating only
consisting of the structures by EC. Hence, the drug is released in the body through
diffusion, or by other circumstances, as the drug transports through the coating [1].
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CORE

COATING
EC+HPC IN 
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Evaporation Phase separation Drug release

Drug

HPC

EC

Figure 1.1: The resulting microstructure intended for drug deliveries, with com-
ponents of EC/HPC with ethanol (EtOH). Including the different steps, starting
from left: evaporation of solvent, phase separation and the drug release when HPC
is leached out [1].

The appearances of each microstructure depend on the composition of polymers in
the mixture. This can be described by studying the phase diagram for the ternary
system of EC/HPC with ethanol in Figure 1.2. From the phase diagram, one can for
each composition, find out the possible microstructures and the underlying kinetic
mechanism that causes the phase separation [1].

The filled line in Figure 1.2, represents the binodal curve and outlines the interface
as the system undergoes phase separation from the homogeneous one-phase region
(1ϕ), to the two-phase region (2ϕ). Regions a and e constitutes metastable phases
that are caused by the mechanism of Nucleation and Growth (NG) [4]. As can be
seen in Figure 1.2, irregular droplet-like structures characterizes NG, as the phase
separation occurs when nuclei begin to form heterogeneous structures in the mixture
and grow gradually over time [1]. The sizes of the structures depends on the nuclei,
as they are formed by a specific concentration for a specie in the mixture, influenced
by the free energy [5]. Eventually, the nuclei will start to grow until they reach an
equilibrium in concentration [4].

Further, the dotted line in the phase diagram, that includes regions b − d is called
the spinodal curve. The mixture becomes unstable within these regions, and the
phase separation is governed by the spinodal decomposition(SD) [1]. Unlike NG;
that forms discontinuous droplet-like structures, the phase separation through SD is
characterized by tortuous bicontinuous structures [1, 6]. These types of structures
are versatile when it comes to producing materials whose purpose lies in transporting
liquid, as within controlling drug releases. However, discontinuous structures can be
formed for some compositions within the spinodal curve and these are represented
in Figure 1.2 by region b and d [1].

2
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Figure 1.2: Phase diagram of ternary system for EC and HPC with ethanol as
solvent, and possible structures for the different regions. [1]

A computational approach in order to study and understand the phase separation
through SD is feasible, as there are established mathematical models that capture
the mechanism well. The Cahn-Hilliard equation (CH) is the most commonly used
equation in this context [7], while the conservative Allen-Cahn equation (AC) is
another model [7]. See section 2.1 for a throughout explanation of these equations.

This thesis work is a collaboration with an ongoing PhD project at the depart-
ment of Physics and RISE Agrifood and Bioscience. At this PhD project by Pierre
Carmona, microscopy experiments have been performed to study the phase sepa-
ration for different compositions of EC and HPC with ethanol in thin layers. The
spin-coating technique was utilized in order to mimic the fluidized bed-technique,
commonly used in industry, to ensure that the drug reservoir is well-covered by the
coating. From these experiments, time-resolved results are obtained such as time
evolution of length scales and curvatures in the microstructures. These results will
be then used as input and output for validation and complement in this thesis. [1]

1.2 Scope
The scope of this thesis is to improve the understanding of spinodal decomposition
by a computational study. Two variants of AC and CH will be simulated on high
performance computing-facilities, where a pure diffusive model and a hydrodynamic
model governed by the Navier-Stokes equations, will be studied and compared with
theory and the experimental results. The different objectives in this thesis are sum-
marized as following:

• Study the essentials of the Cahn-Hilliard and Allen-Cahn models and its vari-
ants, and comparing the different models and their properties.

3
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• Investigate numerically the effect of varying simulation parameters.

• Implement methods to quantify the evolving patterns, such as length scale and
curvature.

• Study the effect of flow on the evolving patterns, compared to the pure diffu-
sive variant.

• Study the effect of boundary conditions at the glass surface and thickness of
the mixture on the decomposition.

• Attempt to yield a more accurate model for the experiments, including the
effect from the evaporation of the solvent.

The main limitations in this project is that it only considers the two models of AC
and CH along the two variants mentioned above, and will only consider simulations
with constant mobility.

1.3 Thesis outline
This thesis is constituted by the following structure. A background with stated
scope is presented in Chapter 1, followed by Chapter 2, where introduction of the
models and applied theory are described. Further, the methodology is presented
in Chapter 3, containing the set up and analysis of the simulations. The results
and following discussion along with future work is presented in Chapter 4 and 5
respectively, and the final conclusions of the thesis is then summarized in Chapter
6.

4



2 | Theory

2.1 Mathematical models of Spinodal decomposi-
tion

As mentioned above, there are mathematical models that broadly resolve the char-
acteristics of SD. In general, the phase separation through SD can be described
by Fick´s second law of diffusion (2.1), which predicts the change of concentration
due to diffusion for a specie over time. Mathematical modelling of SD is possible
since the influence of thermodynamic fluctuations is neglected for phase separations
through decomposition [8]. As opposed to phase separation through NG, nucleation
occurs due to thermodynamic fluctuations and thus it cannot be neglected. Conse-
quently, NG is not well-modeled by the models intended for SD, as the modelling is
considerably more demanding [7].

The phase separation through SD may be expressed in various variants. For the
phase φ in the phase fields equations based on Fick´s law of diffusions in (2.1), the
diffusion equation and the advection-diffusion equation are represented.

∂φ

∂t
=
{
−∇ · Jφ Diffusion equation
−∇ · (Jφ + uφ) Advection-Diffusion equation

(2.1)

φ constitutes the relative concentration in a binary fluid, where φ := φ2 defines the
second phase which together with the other phase φ1, satisfy φ1 + φ2 = 1. Where
φ = 1 implies that the second phase is considered only, while φ = 0 indicates that
only the other phase is considered.

Further, Jφ and uφ represents the diffusion and advection flux respectively. A study
of these mass transfer equations will yield a representation of the phase separation
with or without any effect from advection. Hence, considering the mass transport
and the influence of a coupled flow (u 6= 0). Furthermore, u represents the fluid
velocity in the mixture, which satisfies the Navier-Stokes equations (2.2). Governed
by the momentum equation and the continuity equation, the applications of (2.2)
in multiphase flows are versatile.

5



2. Theory


ρ(φ)

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ ·

[
η(φ)(∇u + (∇u)T )

]
+ F s + F b

∂ρ(φ)
∂t

+∇ · (ρ(φ)u) = 0
(2.2)

Here the local density ρ(φ) and local dynamic viscosity η(φ) of the fluid are rep-
resented in (2.2) and defines accordingly; ρ(φ) = (1 − φ)ρH + φρL, and η(φ) =
(1 − φ)ηH + φηL, and the subscripts H and L composes the heavy and light phase
in the binary mixture, related to the mass of each component [9].

Moreover, p is the macroscopic pressure followed by the surface tension force F s.
Using the same formulation as in [10], F s = µ(φ)∇φ, where µ is the chemical poten-
tial for specie φ in the mixture. µ constitutes the rate of free energy and measures
the potential that phase separations occurs spontaneously. While F b composes a
body force, for example a gravitational force [9].

By coupling (2.2) and the advection-diffusion equation (2.1), and solving simulta-
neously for the pressure, velocity and phase field, the effect of advection can also be
included in the model.

2.1.1 The Cahn-Hilliard equation
The Cahn-Hilliard equation (CH) is well-established and commonly used in mathe-
matical modelling within SD [7]. In CH, the diffusion flux is defined as Jφ = −M∇µ
and CH is defined accordingly in (2.3) [7, 11].

∂φ

∂t
= ∇ ·M(φ)∇µ(φ), (x, t) ∈ ΩT (2.3)

The mobilityM determines the speed of the particles in the mixture for a domain Ω
where CH holds for ΩT = (0, T )×Ω and T corresponds to the bounded time interval.
Further µ represents the chemical potential, and is obtained from the derivation of
CH, which descends from the definition of the total free energy E , over a domain Ω
[12].

E(φ) =
∫

Ω

[
F (φ) + κ

2 |∇φ|
2
]
dx (2.4)

F (φ) represents the free energy of the homogeneous system in Ω and second term is
the surface energy [11]. κ is a parameter, which is on occasions called the ’coefficient
of gradient energy’ [7], such that 0 < κ� 1 to ensure a proper solution [13].

Moreover, the chemical potential is defined as µ = ∂E
∂φ

yielding

µ(φ) = F ′(φ)− κ∆φ (2.5)

6



2. Theory

Hence, CH establishes a fourth order partial differential equation (PDE) as it con-
tains a fourth order spatial derivative in (2.3). CH can be expressed in various
formulations regarding µ. In [11], a CH model is established for constant mobility
M = M0 > 0 and F ′(φ) := µ0 = ∂E0

∂φ
, with E0 = βφ2(φ− 1)2, where β is a constant.

While in [7], a degenerate mobility is defined by M(φ) = φ(1 − φ) along with a
logarithmic potential, where F ′(φ) = Θ

2 ln
[

φ
1−φ

]
+α(1− 2φ), for Θ > 0, α > 0. This

formulation is thus known as the degenerate Cahn–Hilliard equation. [7]

The solution of concentration φ is bounded for 0 ≤ φ ≤ 1, where 0 and 1 distinguish
the two phases. However, there are known drawbacks for the constant mobility
model as its solution may not be remained bounded within the interval [7]. Yet
this model is a simplification since it avoids the possibility that the mobility is zero,
which may occur with a degenerate mobility. Nevertheless, the degenerate Cahn-
Hilliard equation is the original formulation and physically motivated one, as it is
found to occur naturally for phase separations in biofilms [7]. Also, it is known that
the drawbacks with the constant mobility model do not appear in the degenerated
one [7].

2.1.2 The Allen-Cahn equation
Another model that is applied for phase separation through SD is the Allen-Cahn
equation (AC). Although, AC is not as commonly used in this context as CH, there
exists established formulations [7, 8]. Originally AC is a non-conservative model.
However, a conservative model has been composed through modifications into a
phase field model [14], and the diffusion flux is defined as Jφ = −M∇φ, where a
constant mobility M is used.

In order to yield a conservative phase field model, a separation flux J s is introduced
as a phase indicator for the diffusive interface [9, 14]. Further, J s will be considered
in (2.1), where J s = −4

ξ
φ(1−φ) ∇φ|∇φ| [9, 14], ξ represents the thickness of the diffusive

interface in the phase field. Thus, the phase field model of the conservative AC model
(2.6) is composed, including the advection flux.

∂φ

∂t
+∇ · (φu) = ∇ ·

(
M

(
∇φ− 4

ξ
φ(1− φ) ∇φ

|∇φ|

))
(2.6)

As can be seen in (2.6), AC constitutes a second order PDE. By the formulation of
AC, the chemical potential is defined as in [10], µ(φ) = 4βφ(φ− 1)

(
φ− 1

2

)
− κ∆φ,

and thus one is able to satisfy NS (2.2), and due to the modifications in (2.6), the
concentration φ will also be remained within the bounded interval 0 ≤ φ ≤ 1.

7



2. Theory

2.2 Coarsening and curvature during phase sepa-
ration

When it comes to investigating the phase separation, the coarsening is an important
aspect to consider since it provides a greater understanding on how the two phases in
the system will separate and grow until equilibrium of the phases is reached. Thus,
one will be able to study the evolving pattern of the microstructures and determine
their growth mechanism in time. [15]

The coarsening patterns for phase separation through SD forms ’bicontinuous’ struc-
tures, where both of the phases form tortuous structures in the domain. But as Fig-
ure 1.2 shows, one phase may be dominated while the other forms isolated droplet-
like structures. This is principally due to the composition of the two phases [1]. As
it is declared in [8, 15], one should in addition, consider the regimes of the coarsening
during phase separations, since the coarsening may be anticipated by the underlying
mechanism.

The diffusion equation and the advection-diffusion equation will be considered for
both AC and CH. For the pure diffusive variant of the models, it is expected that
the phase separation will encounter a diffusive regime with discontinuous structures
[1, 15]. While for the advection-diffusion equation, the coupled flow may influence
the phase separation such that it for some circumstances will be treated in a hydro-
dynamic regime.

To get a complete understanding of the phase separation, one should also consider
the curvature of the interface to determine the prominent mechanism for the dif-
ferent models (2.1). In [1], two main coarsening mechanisms were identified. For
hydrodynamic regimes with ’bicontinuous structures’, the coarsening is driven by in-
terfacial tension driven hydrodynamic growth [1]. This is determined by the Laplace
pressures plaplace such that it depends on the surface tension σ and the curvature 1

R
,

where R is the radius of the curvature [16]. Thus, one can illustrate the boundary
that are formed between two phases by the pressure differences between the inside
and outside of a curved phase [16]. During coarsening of hydrodynamic regimes,
the curvature is initially high (due to small radius of curvature) but as the phase
separtions occurs, the curvature tends to decrease (large radius of curvature) [1].

For diffusive regimes, the coarsening is driven by coalescence. Where discontinuous
structures of droplets will be merged into a larger droplet. Since the structures for
diffusive regimes tends to be droplet-like, the curvature is thus larger due to the
spherical interface of the phase compared to hydrodynamic growth [1]. Figure 2.1
illustrates the two coarsening mechanisms.

8



2. Theory

a b

P

Figure 2.1: Illustration of the coarsening mechanism, (a) Hydrodynamics growth
and (b) Coalescence [1]

2.2.1 Characteristic length scale
The coarsening are time dependent regardless of the growth mechanism during phase
separation. The characteristic length scale L(t) may be used to study the coarsen-
ing over time since L(t) ∼ tn, where the exponent n designates the corresponding
growth mechanism. In [8, 15], these exponents are studied for both the diffusive and
hydrodynamic regime with the following conclusionn = 1

3 Diffusive regime

n = 1 Hydrodynamic regime

Thus, the coarsening for a diffusion model grows slower than models with coupled
hydrodynamic flows, whose coarsening grows linearly according to [8, 15].

2.3 Lattice-Boltzmann methods

The lattice-Boltzmann method(LBM) is a versatile tool to solve equation systems
numerically within fluid mechanics. It comprises a wide range of scales utilizied
in both micro/mesoscales and solves NS numerically [17]. LBM originated from
kinetic theory of gases and is a discretization of the Boltzmann equation [17]. How-
ever, LBM is commonly used in mesoscale simulations in fluid mechanics in order
to describe the dynamics of a continuum constituted in the length scales around
10−9 − 10−6m, but also at larger scales [17]. Since LBM is a deterministic model,
it features a description on the statistical behaviour of some molecular properties,
rather than a complete description of each molecular properties in the continuum
featured by molecular dynamics-methods [17].

9



2. Theory

The LBM equation in (2.7) revolves around the distribution function fi(c,x, t) which
represents the density of molecules for velocity c at position x and time t for a
discrete population set i. Ω(f) is the collision operator which constitutes a source
term of the local redistribution of fi due to collisions in the lattice [17].

fi(x + ci∆t, t+ ∆t)− fi(x, t) = Ω(f) (2.7)

Generally, Ω(f) comprises rather complicated expressions. However, one can use the
Bhatnagar–Gross–Krook (BGK)-operator (2.8) as a simplification since it recovers
the necessary properties of NS such as density and momentum [17]. The time step
is usually set according to lattice units (∆t = 1), and τ is often referred to the single
relaxation time that determines the speed of equilibration until the system reaches
its equilibrium distribution f eqi after collision [17].

Ω(f) := −∆t
τ

(fi(x, t)− f eqi (x, t)) (2.8)

The equilibrium state f eqi conserves mass (∑i Ωi(f) = 0), momentum
(∑i ciΩi(f) = 0) and the total energy (∑i |ci|2Ωi(f) = 0) [17].

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −∆t
τ

(fi(x, t)− f eqi (x, t)) (2.9)

Thus, comprises LBM with the BGK operator (2.9) on the right hand side, the
propagation/streaming step which denotes the distribution after collision.

The LBM models can be calculated for different lattice arrangements along certain
vectors. These vectors are linkages of possible paths for movements and collisions
between particles. One can describe the lattices by stating the dimension X and
number of linkages Y by DXQY. Figure 2.2 illustrates a lattice of D3Q19 which is
commonly used in LBM [17].

Figure 2.2: Illustration of a D3Q19 lattice that can be used in LBM.
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Further the density and momentum can be calculated, by resolving the properties
from incompressible NS through

ρ(x, t) =
∑

fi(x, t) Density
ρu(x, t) =

∑
cifi(x, t) Momentum

(2.10)

where u is the velocity of the fluid. By connecting the LBM with a macroscopic
behaviour one can relate the relaxation time with the kinematic viscosity ν as fol-
lowing.

ν = c2
s

(
τ − ∆t

2

)
(2.11)

The speed of sound in the system cs is constant in every direction, which springs
from the relation of isothermal LBM in order to determine cs by relating pressure
and density in the system accordingly, p = c2

sρ [9, 11]. Thus, one can show that
c2
s = 1

3 in terms of lattice units (∆t = 1). [17]

2.3.1 LBM for advection-diffusion equation with coupled
flow

Two distribution functions are introduced in order to solve the LBM for the advection-
diffusion equation (2.1) and coupled flow (2.2). The distribution function f consti-
tutes the advection-diffusion equation and is based on the theory presented in section
2.3. The other distribution function g is for the Navier-Stokes equations. Thus one
can use LBM to solve the coupled equations numerically. For AC, g is defined by a
velocity-based model for the phase field-equation (2.6) in [9, 18], while for CH, g is
defined according to [11].

2.3.2 Timescale in LBM simulations
In LBM simulations the time scale is used to solve the equations in terms of lattice
units. One can relate the time scale from LBM into real time by the following trans-
formation which is based on the simulation parameter for the kinematic viscosity
[17].

ν = c2
s

(
τ − 1

2

) ∆x2

∆t (2.12)

Thus one can express the time step ∆t in terms of the physical kinematic viscosity
ν, the kinematic viscosity from lattice Boltzmann νlb and the distance ∆x between
neighbouring nodes in the lattice which follows [17].

∆t = νlb

ν
∆x2 (2.13)
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Where νlb is defined as in (2.11).

2.4 Computation and determination of mechanisms
In order to analyse the phase separation, this section provides some theory regard-
ing methods that can be used to calculate length scales and determine the growth
exponent. Furthermore, one is able to understand mechanisms by introducing di-
mensionless numbers.

2.4.1 Fast Fourier transform to determine length scale
Fast Fourier Transform (FFT) is a versatile tool within image analysis among other
applications, and FFT can be used to determine the characteristic length scale
in order to study the coarsening of the microstructures. A two-dimensional FFT
method is employed and established to study the characteristic length [1], where
the procedure are as following for a greyscale image [19]. Initially, the algorithm
defines f(r1, r2) as the greyscale intensity at the position (r1, r2) for every pixel in
the image in the real 2D space. Since pixels are discrete, one will use the discrete
fourier transform (DFT) for resolutions of N ×N images, and DFT is computed as
following.

F (k1, k2) = 1
N

N−1∑
r1=0

N−1∑
r2=0

f(r1, r2)e− i2πN (k1r1+k2r2) (2.14)

Furthermore, the power spectrum is computed by P (k1, k2) = |F (k1, k2)|2 which
describes the radial distribution of the intensity in the frequency domain. (k1, k2)
corresponds to the wavenumber of the spatial frequency coordinate in the Fourier
space [20]. Thus the entire 2D images may be transformed into the spatial frequency
domain and the spatial frequency is defined as k =

√
k2

1 + k2
2. With the spatial fre-

quency, one can determine the characteristic length scale from the power spectrum,
by identifying the wavenumber that corresponds to the dominant frequency in the
specific image [1, 19, 20]. To estimate the characteristic length scale, L is computed
by

L = FOV

µ (2.15)

where FOV represents the field of view, with a similar approach as in [1], FOV
is determined by the micrograph performed to study the length scales in the ex-
periments [1]. Furthermore, µ corresponds to the wavenumber that represents the
average radial distribution for the dominant intensity in the power spectrum [1, 19].

2.4.2 Curve fitting - Regression analysis - Least square method
To determine the growth exponent n related to the length scales as L(t) ∼ tn.
Curve fitting is an effective tool to determine n by provided data over length scales
for corresponding times. Thus, one is able to fit the data according to a function,
for example L(t) = atn + b, where a, b and n are parameters that are obtained from
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the curve fitting tool.

The least square method is a commonly used procedure within curve fitting, where it
is used to predict the behavior of dependent variables by the given data. By the least
square method it will be able to generate a line that fits the data such that the sum
of offsets from the fitted curve is minimized. The corresponding R2-value (2.16) can
be computed in order to indicate how well the data was fitted in terms of variation
between the dependent data and the independent variables in the regression model
[21].

R2 = 1− SSRES
SSTOT

= 1−
∑
i(Li − L̂i)2∑
i(Li − L̄i)2 (2.16)

Where SSRES and SSTOT refers to the Residual sum of squares and Total sum of
squares respectively [21]. Thus is R2 computed by L which represents the actual
length scale and L̂ is the predicted length scale, while L̄ is the mean of the actual
length scales for a data set of size i. For the least square method, R2 varies between
0 and 1, where well-fitted data correspond to R2-values close to one. By the least
square method, one is able to retrieve the corresponding parameters from the curve
fit model, such as the growth exponent n.

2.4.3 Dimensionless numbers
In fluid mechanics, dimensionless numbers are versatile in order to describe the
fluids behaviour in various conditions. For hydrodynamic regimes the fluid plays
an important role since it may influence the microstructure and coarsening. Thus,
one can connect the prominent mechanism by dimensionless numbers. The Schmidt
number (Sc) (2.17), describes the ratio between momentum transport and mass
transport, where ν is the kinematic viscosity and D is the diffusion coefficient [17].
Thus, Sc can be used to determine the interface between the hydrodynamic-layer
with the mass transport-layer governed by diffusion [17].

Sc = ν

D
(2.17)

Where Sc << 1 implies to a great mass diffusion while for Sc >> 1 the mass diffu-
sion is poor as the diffusivity is conditioned by the viscosity [22].

The Péclet number (Pe) (2.18) is also another dimensionless number useful to con-
sider in mass transports of specific quantity in fluids. It relates the advective trans-
port with the diffusive transport. Where L is the characteristic length of a certain
phase, u is the fluid velocity in the domain and D is the diffusion coefficient.

Pe = Lu

D
(2.18)
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For large Pe >> 1, the mass transport constitutes an advection-dominated regime
and where it will take a much longer time for the diffusion to generate in the mass
transport. Contrary, the mass transport will be dominated in a diffusive regime for
Pe << 1.

2.5 Modelling of evaporation in domain
As the solvent starts to evaporate the thickness of the coating will shrink [1]. Conse-
quently, the viscosity decreases during the phase separation [1]. Thus, it is relevant
to implement a model that mimics the evaporation. One way is to implement a
moving boundary in the z-direction for CH [23], where CH is transformed such that
it treats a moving boundary as a fixed boundary through transformation [23]. By
introducing z = z′

h(t) for z ∈ [0, N ] and z′ ∈ [0, h(t)] for domain length N , where
h(t) is an arbitrary function that describes the moving boundary and decreases over
time [23]. Using this transformation for the advection-diffusion equation in CH will
yield the following relations from the chain rule of differentiation with consideration
to h(t).

∂φ

∂z′
= ∂φ

∂z

∂z

∂z′
= ∂φ

∂z

1
h(t) (2.19)

∂φ

∂t
= ∂φ

∂z

∂z

∂t
+ ∂φ

∂t
= −z∂φ

∂z

h′(t)
h(t) + ∂φ

∂t
(2.20)

Implementing the transformation onto the CH yields the following.

∂φ

∂t
− z∂φ

∂z

h′(t)
h(t) +∇ · (Jφ + uφ) = 0 (2.21)

By the transformation, the diffusion flux in CH (2.1), Jφ = −M∇µ will be trans-
formed, where the coefficient matrix b is introduced to compensate for the transfor-
mation that occurs due to the moving boundary in the fixed domain Ω, b is defined
as following.

b =

1 0 0
0 1 0
0 0 1

h(t)


Thus, the transformation will be, J ′

φ = −M∇bµ = −Mb∇µ. Further, to trans-
form −∇Jφ another b will be added. Hence, the transformation yields, −∇Jφ =
−∇bJ ′

φ = Mb2∇2µ. Since the chemical potential is defined as
µ = F ′(φ)− κ∆φ, consequently it transforms to: µ(φ) = F ′(φ)− κb2∆φ.

Moving onto the advection term in (2.21), ∇(φu), transforms into ∇(bφu) =
∇(φv′), where u′ = bu. For the other term in (2.21), −z ∂φ

∂z
h′(t)
h(t) , where −z h

′(t)
h(t)

can be interpreted as a velocity. Therefore is −z ∂φ
∂z

h′(t)
h(t) rewritten to ∇(ũφ) for ũ
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defined as following.

ũ =


0
0

−z h
′(t)
h(t)


In summary, the transformed Cahn-Hilliard equation (2.21) is revised accordingly
into,

∂φ

∂t
+∇ (φ(u′ + ũ)) = M̃∇2µ (2.22)

For M̃ = Mb2 and µ(φ) = F ′(φ)− κ′∆φ, with κ′ = κb2.

To study the effect of coupled flow it requires the corresponding transformation for
the Navier-Stokes equations as well. However, due to time constraints the models
were not implemented and studied.
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3 | Methodology

This section will present a throughout explanation on the simulations, including
set up, parameters with corresponding boundary conditions between the models.
And a complete description is given regarding the analysis for each aspect that were
studied and carried out in this thesis.

3.1 Simulations
All simulations for AC and CH models according to (2.1) were utilized on HPC-
facilities but mostly on a desktop computer with four cores. Where already devel-
oped codes for AC and CH were provided and established for the advection-diffusion
equation with coupled flow of NS, and implemented with constant mobility M . The
codes were developed on theory which is most part presented in section 2.3, where
the complete LBM equations for both AC and CH were established according to
[9, 11].

In order to yield a diffusive variant of AC and CH, the codebase were modified such
that the fluid velocity was set to zero (u = 0) as it, according to (2.1), will consti-
tute the diffusion equation from the advection-diffusion equation. Additionally the
distribution function for the hydrodynamics g was not considered in the simulations
as it only is used for the Navier-Stokes equation.

3.1.1 Set up
The conducted simulations were performed in boxes of dimensions N×N×N where
N is the side length in length units. Two box sizes for N = 100 and N = 200, were
the only two examined setups to study potential effects. For simulations boxes with
N = 100 the simulations were performed for 20000 iterations to make sure that
the phase separated domains had reached a size comparable to the box size, while
for N = 200 the simulations were conducted for 100000 iterations. The time scale
was set, arbitrarily, such that every 500th iteration corresponded to a time step
∆t = 6.667s, which roughly matches the estimated time scales in the experiments
[1].

The initialization of each simulations was constituted by voxels, which represent

16
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volumetric pixels, with dimensions 1 × 1 × 1 in the computational domain. The
start configurations were conducted such that it generates random uniformly dis-
tributed concentrations between 0 and 1 for each voxel. The concentrations of 0 and
1 correspond to the light and heavy phase respectively in the system. Thus a 50:50
composition is obtained from this initialization which is displayed in Figure 3.1 by a
three dimensional box, and its corresponding two dimensional image. By changing
the random number distribution one is able to initialize different compositions X:Y,
where X and Y represent the proportion of the heavy and light phase. The com-
positions of 35:65, 50:50 and 65:35 were initialized to study the phase separation,
and the same start configuration was used in all simulations for the corresponding
composition in order to compare the models with different parameters.

Figure 3.1: Illustration of initialisation for simulations in both 3D and 2D with
50:50 proportions of the light and heavy phase. Brighter colors indicates the light
phase (φ < 0.5) while darker colors corresponds to the heavy phase (φ > 0.5).

3.1.2 Boundary conditions and conservation in models
In general, periodic boundary conditions was applied on each boundary of the simu-
lation box. The versatility of periodic boundary conditions implies that finite parts
of the field of study are approximated by recurrent boxes. Which allows microstruc-
tures to re-enter the opposite face to the one the phase was leaving from. Hence, the
periodic boundary conditions conserve mass and momentum during the simulations
[17]. However, it was declared that for CH models based on LBM with constant
mobility, that it globally conserves the mass, but for particular phases it may not be
conserved, as it was reported in [24] that droplets can disappear when their radius
may be too small, therefore is the mass not locally conserved. Unlike AC which is
observed to conserve the mass of the individual phases [25].

The conservation of the volume of each phase was studied, by counting the fraction
of voxels with φ > 0.5 in the computational domain during the simulations.
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3.1.3 Parameters and sensitivity of models
Simulations were performed on the computational domain with a set of parame-
ters for the different models. Universally, considering the density ratio ρH

ρL
of 1 and

viscous ratio νH
νL

of 3, all simulations were conducted in order to realize the phase
separation with fairly similar physical properties as in experiments [1, 26]. Hence,
hydroxypropylcellulose(HPC) and ethylcellulose(EC) correspond to the heavy and
light phase respectively regarding their properties such as viscosity.

For the compositions studied of 35:65, 50:50 and 65:35, the surface tension was set
to σ = 0.001 along with the interface thickness parameter of ξ = 5 in all simulations.

The codes of AC and CH differ in context of method and performance. Since the
CH models are comprised of fourth-order PDEs, the computations will be consider-
ably more costly compared to the AC models, whose computations are simplified.
It emerged that the CH codes were sensitive for some parameters which led to insta-
bilities and divergence during the simulations. This included the constant mobility
M by the formulation in [12].

These instabilities were not as impactful for the AC models. Hence it was, in com-
parison to the CH models, flexible for different parameter settings. The mobility
used for the AC models was the same as in the formulation in [9]. Furthermore the
mobility for the AC models was adjusted in order to match the CH models regard-
ing length scale and growth. This facilitates facilitates fair comparison between the
models and effect of other parameters. Thus the mobility for AC was determined
to MAC = 0.4 while for CH, MCH = 25

3 . Subsequently, they were applied in all
simulations for their corresponding model.

To study the effect of the viscosity, simulations for three different viscosities were
performed on the models and compared with the diffusive variants of AC and CH,
including length scale and curvature. By LBM theory it is known that the kinematic
viscosity is related to the relaxation time τ (2.11), and the following relaxation
times were simulated: τ = {0.55, 0.77, 1}. In terms of the Schmidt number (2.17)
for both the AC and CH models, the simulated relaxation times correspond to
Sc = {0.0417, 0.1833, 0.4167} and Sc = {0.0020, 0.0108, 0.0400} respectively. Hence,
it was possible to study the effect with a decreasing viscosity in the mixture by
reducing τ where the influence of coupled flow was enabled.

3.1.4 Accuracy of models - Droplets on flat surface
One way to validate the accuracy of the models are to study when spherical droplets
with radius r were placed on the flat surface at z = 2.5 with some contact angle
θ while other droplets were placed at the top (z = 100) with a contact angle of
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90. Symmetric boundary conditions was applied at the top, which implied that the
normal flux ∂φ

∂n , and the normal velocity un are zero out of the domain. While at
z = 2.5 the contact angle θ determines the boundary condition for the normal flux
accordingly.

∂φ

∂n
= 4
ξ
φ(1− φ)cosθ (3.1)

Where interface width was set to ξ = 5 and φ represents the concentration for one of
the phases. Further, no-slip conditions was applied along the bottom boundary with
periodic boundary conditions established in x and y direction. Figure 3.2 illustrates
the study where droplets with radius r is placed on the flat surface with contact
angle θ, and Figure 3.3 clarifies the boundary condition in the yz-plane.

θ
π-θ

π-θ

r

Figure 3.2: Droplet with radius r placed
on flat surface with contact angle θ

z

!"
!𝒏

= $
𝝃
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!𝒏

= 0𝑢! = 0

y

Periodic Boundary
condition

Periodic Boundary
condition

Symmetric Boundary condition

𝑢	 = 0

Figure 3.3: Boundary conditions in the
yz-plane

Simulations with AC and CH with coupled flow was performed for high (τ = 1)
and low (τ = 0.55) viscosity in the domain. This was done for contact angles
θ ∈ {50°, 70°, 90°} to study potential effects and accuracy in the domain during
the simulations, which comprised visualization of the computational domain and
calculations of the mean concentration in the z-direction.

3.1.5 Different start configurations

Since all simulations are initialized by randomly generated numbers as described in
section 3.1.1, it was also of interest to study the effect of performing simulations
from an established state of phase separation. Hence, the 4000th iterations from
AC models was used as start configuration, as can be seen in Figure 3.4.
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a b c

Figure 3.4: The 4000th iterations, that will be used as start configuration accord-
ingly: (a) Pure Diffusive, (b) High viscosity, (c) Low viscosity

For these configurations, simulations of the corresponding CH models was per-
formed, considering the diffusive and hydrodynamic variants with high (τ = 1)
and low (τ = 0.55) viscosity. Further, analysis and comparison was done in the
same manner as for the corresponding simulations with start configurations as in
Figure 3.1, which will be described in the following section.

3.2 Analysis
To perform the following analyzes, solutions from the simulation are obtained by
generating Visualization Toolkit(VTK)-files during the simulations to visualize the
computational domain, and study specific quantities that are stored. Paraview is a
established software that are used to visualize the generated VTK-files, where quan-
tities of concentration, chemical potential, pressure and fluid velocity are retrieved,
and the VTK-files are stored for every 500th iteration during the simulations.

In Paraview one is able to visualize the computational domain in both 2D and 3D,
where the 2D image represents a ”slice” in the domain. For each VTK-files, 2D
images of the concentration from the ”slices” were stored in greyscale in resolutions
of 1024 × 1024, where these images was treated to study and analyse the phase
separation over time. Illustration of the computational domain in both 2D and 3D
stored from Paraview, can be seen in Figure 3.1.

3.2.1 Length scale and growth exponent
An FFT-based code was provided from the PhD project [1], and implemented in
MATLAB to compute the length scales (see section 2.4.1), and this computation
was done for each 2D images that were stored for every time step in the simula-
tions respectively. Before the computation, background subtraction was used on the
images for smoothing by 2D Gaussian smoothing kernel with high standard devia-
tion (σ = 100 pixels) [1]. Hence, in order to compute the length scales accordingly,

20



3. Methodology

L = FOV
µ , the field of view (FOV) and µ had to be determined for every image.

Based on the scales in the conducted experiments, FOV was determined to 19.5 µm,
and it appeared that the phases was formed for length scales estimated around
0.2 µm [1]. Therefore, to compare the length scales from the simulations with the
experiments, FOV was scaled such that it matched the corresponding length scales
in µm. From the 2D images obtained by performing the simulations, it was deter-
mined that the interface of each phase covered around 5 and 10 pixels for N = 100
and N = 200 respectively. This was observed for 2D images at early stages in the
simulations where it was interpreted that phases had started to form. Thus the size
of each voxel, ∆x, was determined and related in µm, where ∆x = 0.2µm

5 = 0.04
µm for N = 100, and ∆x = 0.2µm

10 = 0.02 µm for N = 200. Hence, FOV in the
simulations are calculated by FOV = N∆x, for box size N and corresponding ∆x.
Consequently, FOV was set to 4 µm in the conducted simulations.

Furthermore, µ was determined from the corresponding wavenumber that repre-
sented the average radial distribution for the dominant intensity in the power spec-
trum, which was obtained from the FFT-based code for each images, and the length
scales was computed and stored for every images. This can be illustrated in Figure
3.5 which constitutes the power spectrum for a corresponding 2D image.

a

0 20 40 60 80 100
Wavenumber k (pixels)

0

1

2

3

4

5

6

7

In
te

ns
ity

 P
(k

) (
a.

u)

108

a ab

Figure 3.5: Determination of Length scale: (a) Image from simulation 1024×1024
(b) Radial distribution to determine the wavenumber at the peak which corresponds
to µ

3.2.2 Growth exponent
With the stored length scales, MATLAB was used to plot and compare the length
scales over time for the different models and simulation parameters. The coarsening
was then furthered investigated by determining the growth exponent n of the length
scales, which then was compared with theory and physical experiments examining
n, and the corresponding mechanism. In MATLAB, a curve fitting function was
implemented in order to determine n, from the given data of the length scales over
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time. Since L(t) ∼ tn by theory, the data was fitted for L(t) = atn + b. Where
the curve fitting function was based on the least square method, using the lsqcurve-
fit tool function in MATLAB to determine the parameters a, b and n. During the
curve fitting the parameters were restricted by 0 < a, b, n < ∞ to yield reasonable
parameters in this context.

The curve fitting was performed for the data where it was interpreted such that the
data was not influenced by fluctuations or stagnated results, and the R2-value was
calculated for each curve fit. This is illustrated in Figure 3.6. Since the initialization
is randomly generated, it may take some time until the simulations are adequate.
One should also observe that when structures become substantially large, the com-
putational domain will influence the structures such that the growth will be stalled.

Data
Curve fit, R2 = 0.9865

Data
Curve fit, R2 = 0.9965

Data
Curve fit, R2 = 0.9851

Figure 3.6: Examples of curve fits performed to fit specific parts of data with
calculated R2-value

3.2.3 Curvature
From the 2D images the curvature was obtained by an implemented code in MAT-
LAB, provided from the PhD project [1], which calculated the curvatures by a
formula called osculating radius developed in [27]. The code generated a contour
map with the curvature plotted along the interfaces of the phases. For the contour
map, all curvatures computed for each images are compiled into a distribution table
where the curvature mean and standard deviation were stored. Thus, the mean
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and standard deviation were plotted to study how the curvatures were changing in
time for each simulation. Figure 3.7 gives an illustration on the complete procedure
of from a given image and its calculated curvature followed by its distribution and
calculated mean and standard deviation.
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Figure 3.7: Procedure of calculation of curvature for a given image, followed by a
curvature distribution with computed mean and standard deviation σ

3.2.4 Dimensionless numbers
The Péclet number (2.18) was computed and plotted over time for all models with
non-zero velocities as a complement to study the phase separation. An average fluid
velocity was calculated over the computational domain where the velocities were
retrieved in the VTK-files, and the calculated length scales from each simulation
was used. Further, MAC and MCH were treated as the diffusion coefficient when
the dimensionless number was calculated. The Schmidt number was calculated
according to (2.17) where the kinematic viscosity was computed by (2.11), and Sc
was useful while comparing the simulations with various parameters, which gave
additional details of potential mechanisms and regimes that may control the phase
separation.
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This chapter will present the results from the simulations for the different models
and parameters as referred in the methodology. It occurs that parts of the results are
compared in terms of high and low viscosity. Unless otherwise stated, low viscosity
(LV) is in reference to models where τ = 0.55 while high viscosity (HV) is assigned
for τ = 1 in order to compute the kinematic viscosity (2.11). This is also applied
for results of solutions that are compared for pure diffusive models and models with
coupled flow, where τ = 1 is used for those simulations. Regarding the simulation
box, unless otherwise noted, the results are for simulations of N = 100.

Results for AC and CH simulations of pure diffusion and with coupled flow models
are illustrated in Figure 4.1 and 4.2, which present the final structures from each
simulation of 20000 iterations, where the black phase corresponds to the heavy
phase while the white phase constitutes the light one. Comparisons can be made
between a− c and d− f which show the different compositions for the diffusive and
hydrodynamic model accordingly. One can also compare the pairs of a − d, b − e
and c− f to study the effect of coupled flow to the structures for the corresponding
composition.

Distinct differences appears in Figure 4.1 and 4.2 for the studied compositions as the
black phase is prominent when its proportions increases. The effects of the coupled
flow can also be seen when distinct phases in the diffusive model are merged such
that it creates quite longer and smoother structures. In other words, regardless of
the compositions, the coupled flow models seem to yield less separated phases which
becomes smoother compared to the diffusive model.
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a b c

d e f

Figure 4.1: Results AC models, a: 35:65 Diffusion, b: 50:50 Diffusion, c: 65:35
Diffusion, d: 35:65 Coupled Flow, e: 50:50 Coupled Flow, f: 65:35 Coupled Flow

a b c

d e f

Figure 4.2: Results CH models, a: 35:65 Diffusion, b: 50:50 Diffusion, c: 65:35
Diffusion, d: 35:65 Coupled Flow, e: 50:50 Coupled Flow, f: 65:35 Coupled Flow

Since the results in Figure 4.1 and 4.2 seem to show indications of potential effects
regarding compositions and viscosity, a particular analysis of these simulations will
presented in the following sections.

4.1 Characteristic length scales
The calculated length scales for the simulated models, and studied compositions are
illustrated in Figure 4.3. By the length scales for the AC models, it can be seen
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that there are no significantly differences between the compositions as they appear
to have similar growth in time. While for the CH models, a peculiar observation
are that the length scales for the compositions of 35:65 and 65:35, tend to increase
at a early stage until they for a moment decrease before they starts to grow again.
One can also observe that the length scales of 35:65 are shorter compared to both
50:50 and 65:35. Unlike 35:65 and 65:35, the lengths scales of 50:50 tend to grow
consistently in time.
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(b) Length Scale of Diffusive CH
for different compositions
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(c) Length Scale of AC with
coupled flow for different compositions

with high viscosity
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Figure 4.3: Comparison of length scales for AC and CH for different compositions
with or without coupled flow with high viscosity

It can also be observed in Figure 4.3 that the length scales tend to be longer for
models with coupled flows compared for the pure diffusive models. Such that the
length scales are typically (with exception of 35:65 for the CH models) around 1.1
µm at the end for the diffusive models, while for the coupled flow models the length
scales are around 1.2 µm. This is additionally studied in Figure 4.4 which illustrates
the effect of viscosity in terms of the Schmidt number for both AC and CH, where
the length scales for the diffusive models are included as reference.
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(a) Length Scale of AC with varying
viscosity, and diffusion as reference.
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Figure 4.4: Comparison of length scales for AC and CH for different viscosities

Thus, one can observe in 4.4 that the length scales for both models tend to increase
for a decreasing viscosity. It seems also that the length scales will eventually stagnate
which can be observed for the length scales that corresponds to the lowest viscosity
for both AC (Sc = 0.0417) and CH (Sc = 0.0020), where the length scales seem to
be around 1.4 µm before stagnation, which is about one third of the simulation box.

4.1.1 Growth exponent

In order to determine the growth exponent n, curve fitting of L(t) = atn + b was
performed on all length scales in Figure 4.3 and 4.4. Where n was retrieved and
stored from each curve fitting. Figure 4.5 illustrates a compilation of the growth
exponents for each model and composition as in Figure 4.3, and the dotted lines
represents the theoretical values for the growth exponent (n = 1

3 and n = 1), as
mentioned in section 2.2.1. By the compilation it appears that the growth exponents
for AC, regardless of the composition, are around 0.33 and 0.4 for the diffusive
and hydrodynamic model (τ = 1) respectively, which is expected due to the high
viscosity. It seems also that the growth exponent tends to slightly decrease when
the composition of the heavy phase is increased. And this is expected since the
overall viscosity is increased. Further, one can observe that n is higher for the CH
models compared to the AC models. Similar to AC, regardless of the compositions,
it can be seen that n is generally smaller for the diffusive models compared to the
hydrodynamic models, where n is around 0.8− 0.9. However, one can observe that
n is around 0.9 for diffusive model of 35:65 while for the other compositions, n is
around 0.7− 0.8.
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Figure 4.5: Growth exponents for AC and CH regarding different compositions
and with or without coupled flow

In order to see the effect of the viscosity, a compilation of n is illustrated in Figure
4.6, where the Schmidt number is used to evaluate the growth exponent and the
diffusive growth exponent are included as reference. It can be seen from Figure 4.6,
that for both AC and CH, that n increases when Sc decreases, where n is significantly
larger for CH compared to AC. A complete summary of the growth exponents and
corresponding R2, regarded these results can be found in Table 4.1, 4.2 and 4.3.
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Figure 4.6: Growth exponents for AC and CH regarding effect of viscosities

To see the effect of the larger computational domain, a compilation is illustrated in
Figure 4.7. In this figure it can be seen that the differences between the box sizes
are smaller for the AC models as opposed to the CH models. However, the tendency
of the larger box is similar to the smaller one regarding growth exponent for both
AC and CH.
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Figure 4.7: Growth exponents for AC and CH for different box dimensions

As can be seen in Table 4.1, 4.2 and 4.3, the computed R2-values are rather close
to one. However, for 65:35 in the diffusive AC model (Table 4.1), R2 is quite far
off which indicates that the data is not as well-fitted compared to the other curve
fittings.

Table 4.1: Growth exponent, n, for each AC model and computed R2-value

AC Diffusion n R2

35:65 0.3667 0.9648
50:50 0.3356 0.9512
65:35 0.3197 0.8918

AC Coupled flow n R2

35:65 0.4588 0.9840
50:50 0.3951 0.9474
65:35 0.3881 0.9626

Table 4.2: Growth exponent, n, for each CH model and computed R2-value

CH Diffusion n R2

35:65 0.8898 0.9944
50:50 0.7288 0.9965
65:35 0.7634 0.9740

CH Coupled flow n R2

35:65 0.8339 0.9828
50:50 0.8547 0.9931
65:35 0.8566 0.9787

Table 4.3: Growth exponent, n, for each model and computed R2-value, effect of
viscosity

AC Models n R2

Diffusion 0.3356 0.9512
Sc = 0.4167 0.3951 0.9474
Sc = 0.1833 0.6117 0.9751
Sc = 0.0417 0.7144 0.9863

CH Models n R2

Diffusion 0.7288 0.9965
Sc = 0.0400 0.8547 0.9931
Sc = 0.0108 0.9263 0.9743
Sc = 0.0020 0.9861 0.9798
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4.2 Curvature

The calculated mean curvatures for the different models and compositions are illus-
trated in Figure 4.8. From the figure it can be seen that the compositions have no
significant effect on the curvature for the models, except for the 65:35 compositions
in the CH models which seem to be smaller compared to the other compositions.
One can also see the curvatures are initially larger for the AC models than for the
CH models. For CH, the curvatures tend towards values about 0.4 1

µm . This is also
the case for some of the AC models, which otherwise tend towards 0.5 1

µm .
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with high viscosity
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Figure 4.8: Comparison of curvature mean for AC and CH for different volume
fractions

The effect of the viscosity is also considered for the mean curvatures. Thus, Figure
4.9 illustrates the mean curvature in terms of the Schmidt number for both AC and
CH where its corresponding diffusive mean curvatures are used as reference. Where
it is shown that the differences for the different viscosities are quite small, except
for the lowest Schmidt number for the models, as the mean curvatures are lower.
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Figure 4.9: Comparison of curvature for AC and CH for different viscosities

4.3 Péclet number

The Péclet number is calculated by (2.18) for high and low viscosities regrading the
different compositions, where the average velocity over the computational domain
for each time step is used. This is illustrated in Figure 4.10 shows that for all
compositions used in AC and CH, that Pe is larger for a lower viscosity compared
to the corresponding higher viscosity. For the CH models there are no significant
effect on the composition since it appears that Pe is quite small for both the high and
low viscosity. However, one can observe by Pe overall for 50:50, that it tends to be
larger for the CH models regardless of the composition until around halfway through
the simulations. While for the AC models it can be seen that in the beginning of
each simulation that there are no considerable differences between the compositions.
Further it is apparent that Pe is larger for the 65:35 composition with low viscosity,
while the 35:65 composition yields a larger Pe for the higher viscosity.
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(c) Allen-Cahn high viscosity
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Figure 4.10: Peclet for AC and CH for different volume fractions

As can be seen in Figure 4.11, it is evident that a decreasing viscosity yields a larger
Pe in terms of Sc broadly for both models.
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Figure 4.11: Comparison of curvature for AC and CH for different viscosities
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4.4 Decomposition on top of a flat surface

To study the accuracy of AC and CH, the next part examines the behaviour that
the droplets display when placed on a flat surface at z = 2.5 which was governed by
the contact angle θ. This was done for both AC and CH with high and low viscosity
for three different θ. Figure 4.12 and 4.13 illustrates the final 3D structures for the
models and viscosity with contact angle θ = {50°, 70°, 90°}.

In Figure 4.12 the AC models display that a layer consisting of the black phase are
prominent at the bottom for contact angles of 50° and 70 ° for both high and low
viscosities. While for θ = 90°, the bottom is distributed by the phases similar to the
conditions at top (z = 100) where the contact angle is set to 90° with symmetric
boundary conditions as well. Hence, a prominent boundary layer can be seen for
θ = 50° and θ = 70° for the CH models in Figure 4.13. Unlike the AC models, the
prominent boundary layer consists of the light phase for the CH models. Beyond
that, the structures seem to have the similar effects of the contact angles for both
models regardless of the viscosity.

θ = 50° θ = 70° θ = 90°

HV:

LV:

z

yx

Figure 4.12: AC for both high and low viscosity for different θ at z = 2.5,
after 20000 iterations
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θ = 50° θ = 70° θ = 90°

HV:

LV:

z

yx

Figure 4.13: CH for both high and low viscosity for different θ at z = 2.5,
after 20000 iterations

In order to study the structures in Figure 4.12 and 4.13 even further, the mean
concentration along the z-direction is calculated for each structures, and the results
are compiled in Figure 4.14. From this it can be observed that the microstructures
have similar mean concentrations for θ = 50° and θ = 70° for the corresponding
model compared to θ = 90, and the black phases in the structures corresponds to
mean concentrations φ > 0.5, while for concentrations φ < 0.5 refers to the white
phases. The mean concentration at z = 100 are the same regardless of θ. By
evaluating the mean concentration for θ = 90 for the models in Figure 4.14, one can
observe that the mean concentration differs, comparing the bottom and the top.
This is also the case for θ = 50° and θ = 70° for the prominent boundaries at the
bottom.
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Figure 4.14: Mean concentration along z-direction for different θ with high and
low viscosity

Further the boundary was studied for θ = 50°, where the mean concentration at
three time steps are illustrated in Figure 4.15. for both AC and CH with high and
low viscosity. The boundary was defined such that it corresponds to the z−value
that intersects the mean concentration of 0.5 approaching from approaching from
the bottom. It can be seen for AC that the boundary is increasing, for both low
and high viscosity, during the simulations since intersection at the concentration 0.5
increases.
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However, it appears for the CH models, that a solid boundary of the black phase
is prominent during the early stages of the simulations, which after some time is
switched into a prominent boundary of the lighter phase that increases over time
according to Figure 4.15. This can be demonstrated in Figure 4.16 which illustrates
the structure at iteration step 1000 and 10000 for the CH model of θ = 50° with
high viscosity. Thus, one can observe a prominent boundary of the black phase at
iteration 1000 that has disappeared at iteration 10000 as a boundary of the lighter
phase is prominent instead. This is likely the same effect that causes droplets to
disappear for the constant mobility CH model, and shows the limitations of this
simplified model. Further, it is unlikely that the results would be the same for CH
models with variable mobility.
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Figure 4.15: Mean concentration along z-direction at three times for high and low
viscosity with θ = 50°
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Iteration: 1000 Iteration: 10000

Figure 4.16: Illustration of structures at two time steps for CH model where the
prominent black boundary has disappeared at the latter iteration

By studying each time step one is able to investigate the boundary, and Figure
4.17 illustrates the boundary evolution in time of the AC models for high and low
viscosity with θ = 50° and θ = 70°. As can be seen, the effect of the contact
angles are quite small as the boundaries seem to grow similarly where the boundary
for θ = 70° is slightly larger than for θ = 50°. However, it can be seen that the
boundary is larger for the lower viscosity for both contact angles which is reasonable
since domains grow faster with low viscosity.
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Figure 4.17: Boundary evolution in time for AC models with high and low viscosity
for θ = 50° and θ = 70°

4.5 Conservation in systems
The conservation for the volume of each phase in the different systems was studied,
where the fraction of voxels with φ > 0.5 is counted and then plotted over time.
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This is illustrated in Figure 4.18, and it can be seen that the AC models, regardless
on the composition, preserve the volume quite consistent during the simulations.
While for the CH models, it appears that the volume is not as preserved, for all
compositions, where the change of the volume fractions of each phase are significant
over time. However, one can observe that theses changes are prominent during the
early stages for compositions of 35:65 and 65:35 which eventually tend towards a
consistent fraction similar to the AC models. For the 50:50 compositions of the CH
models, the change is not as significant compared to the other compositions, yet
there are some fluctuations in time. Therefore, it shows as well, that it is likely that
this is the same effect that causes droplets to disappear for the constant mobility
CH model regarding all compositions.
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Figure 4.18: Volume conservation for AC and CHmodels with and without coupled
flow (high viscosity) over time
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4.6 Start configurations
The solution by the 4000th iteration (t ≈ 50s) from AC models with and without
coupled flow of high and low viscosity, was used as start configuration for the cor-
responding CH models. Thus, one is able to compare the length scales between the
models with the given start configuration. Figure 4.19 illustrates the length scales
between the different models for the given start configuration, and one can observe
that the length scales are quite similar. Where the length scales of the CH models
grow quicker than the corresponding AC models. However, both AC and CH seem
to tend towards the same length scale at the end.
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Figure 4.19: Length scales of models with a given start configuration at the 4000th
iteration for the corresponding AC model

The growth exponents are stored for each length scale accordingly. This is summa-
rized in Table 4.4, where one can compare the growth exponent between the models
for the given start configuration. And it appears that n is smaller for the CH models
with coupled flow while it is larger for the diffusive model, compared to the corre-
sponding AC models. However, one should notice that the R2-value for the diffusive
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CH model is quite far off from one, as opposed to the other models.

Table 4.4: Growth exponent, n, for each model and computed R2-value

Models n R2

AC DIFF 0.3356 0.9512
CH DIFF 0.3473 0.9031

Models n R2

AC HV 0.3951 0.9474
CH HV 0.3372 0.9445

Models n R2

AC LV 0.7144 0.9863
CH LV 0.6246 0.9851
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The scope of this thesis was to improve the understanding of the spinodal decom-
position by a computational study. Where the work comprised simulations of two
established models by the Cahn-Hilliard and the conservative Allen-Cahn equation,
and two variants were modelled for each equation in order to study potential effects,
with or without coupled flow for the originally diffusive model.

Comparison between the physical experiment along with the conducted simulations
can be done as the calculated length scales were adjusted into the microscale, match-
ing the size of the practical coating layers (around 1.5 µm). However, it turns out
that these comparisons are limited. As we saw in Figure 4.3, the length scales were
mostly the same for the simulated models regardless of the composition. These
results are not equivalent to the physical experiments, since it was shown that
’bicontinuous’ structures formed for compositions around 35% while discontinuous
structures were formed for compositions from 50% and above. Additionally, it was
shown that the power fit returned growths exponents of n ≈ 1 and n ≈ 0.6− 0.7 for
these compositions respectively [1]. This implies that the length scales is dependent
on the composition. However, despite that the length scales cannot completely be
compared, it is possible to compare the curveture, where it is shown in Figure 4.8
that the curvatures have, in general, the same behaviour when its decreasing over
time as in the experiments where the curvatures initially are around 1 1

µm and tend
towards 0.5 1

µm [1].

Complementary analysis was done for the length scales and growth exponent by
comparing them with theory. As for the diffusive regimes the growth exponent is
said to be n = 1

3 while n = 1 for hydrodynamic regimes. For the power fitted growth
exponents in Table 4.1 and 4.2, we can see that the diffusive variant of AC yields
growths exponents close to 1

3 , while for the diffusive CH model it yields growth ex-
ponents around 0.7− 0.8, which is far off to the theoretical value. However, we can
see that in Figure 4.6 and Table 4.3 that the growth exponent is increasing while
the viscosity is decreased for both AC and CH with coupled flow. These results are
reasonable according to theory, since the growth exponents are ∼ 0.7 and ∼ 1 for
the lowest viscosity, for AC and CH with coupled flow respectively. These results
indicate that the phase separation occurs towards a hydrodynamics regime as the
viscosity decreases and that the influence of the coupled flow is significant. For the
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calculated Pe as seen in Figure 4.11 it is reasonable as Pe is higher for smaller
viscosity since it yields higher velocities and length scales in the domain while the
diffusion coefficient is constant.

Furthermore, one should notice again that it is known that the CH model with con-
stant mobility tends to lose mass locally as droplets tend to disappear in the domain,
as their radius is below a critical value. The conservation for the volume of each
phase was studied for each model and composition, and in Figure 4.15 it is evident
that the volume fractions of each phase is quite consistent for all AC models and
compositions in time. Unlike the CH models where it is apparent that the systems,
to some extent, loses its mass as the volume is not preserved during the simulations,
which is anticipated for the CH models with constant mobility as it was declared in
section 3.1.2.

Although the results differs for the CH models compared to the AC models, it might
be enhanced by using a different start configuration, where the 4000th iteration of
the AC models are used as initialization for the CH models. As we see in Figure
4.19 and Table 4.4, the growth exponent does not differ much and yields results
that are similar to the AC models. How the curve fitting is performed is the key
difference between the length scales for the CH model with and the one without the
other start configuration. As we could see in Figure 4.3, the length scales grows ir-
regularly for the CH models where it suddenly decrease for moment until they start
to grow again. This affects the curve fitting which is utilized after the drop since
the irregularities will otherwise affect the growth exponent, as explained in Figure
3.6, as well as due to the fact that the length scales tend to grow linearly after the
drop. It is not unexpected that the exponent becomes higher. While for the CH
simulation with the other start configuration, early times are included in the power
fitting, hence the growth exponents are decreased, similar to the AC models.

By studying the case where droplets were placed on a flat surface it was observed
that a layer was prominent for contact angles below 90° as can be seen in Figure 4.12
and 4.13, where the black phase was prominent for the AC model while the white
phase is prominent for CH. By investigating the mean concentration along the z-
direction in Figure 4.15 one is able to see the boundary which was illustrated in 4.12
and 4.13. However, in the case of θ = 90° one can conclude that no boundary was
prominent at the bottom. With the top applied by symmetric boundary conditions
with contact angle 90° as well, one should expect that the mean concentration has
be the same at the bottom and top in z-direction. But as one can see in Figure 4.15
this is not the case since the mean concentration is higher at the bottom compared
to the top for θ = 90°. Due to the symmetric boundary conditions at z = 100 the
normal velocity and normal flux out of the domain are zero. While at the bottom,
the boundary condition implies that the normal flux is zero out of the domain as
the contact angle governs the boundary condition at z = 2.5. Due to the no-slip
conditions at the bottom, u = 0, it implies that both the normal and tangential
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velocity are zero. This means that there can be a certain difference, as the mixture
can go faster at z = 100.

The boundary is also studied for the contact angles below 90° and one can see that
the boundary increases over time, where it increases more for the lower viscosity,
which is reasonable since it yields larger phases in the structures. It was also shown
in Figure 4.17 that the boundary becomes larger as the contact angle approaches
90°. However, this was only studied for AC since it was apparent in the CH models
that the boundary, at early times in the simulations was prominent by the black
phase which eventually turns into a boundary of the white phase instead, which we
could see in Figure 4.16. This implies that the CH models are quite inaccurate as
it is reasonable that a prominent boundary of the black phase appears for θ below
90°, because droplets can overlap themselves and thus create a boundary [9].

A significant difficulty throughout this thesis was to obtain a proper time scale. An
arbitrary time scale was used for all simulation where every 500th iteration corre-
sponded to a time step ∆t = 6.667s, such that it partly matched the experiments.
By using an arbitrary time scale, the growth exponent will not be affected since
the growth itself is independent, while the coefficients a and b will be rectified by
the curve fitting in order to match the units. A proper time scale can be acquired
using (2.13). However, there was some difficulties finding an appropriate diffusion
coefficient and viscosity for the physical properties of EC/HPC that can be used.
Consequently, it will also be challenging to determine the simulation parameters of
diffusion coefficient and viscosity since the models are to some extent sensitive for pa-
rameters such that instabilities are created with parameters that deviate too much,
and therefore not yield proper solutions. Therefore the parameters that correspond
physical properties should be further studied.

5.1 Study limitations and future work
Apart for the time scale, it is apparent that the CH models tends to lack with their
performance. Both regarding the length scales, with initial fluctuations, but also for
the droplets on the surface where it was evident that the initial prominent phase
disappeared for the CH models, while the AC in this context obtained reasonable
results for θ below 90°. The drawbacks of the CH models with constant mobility,
were that the solutions may not be bounded within the interval 0 ≤ φ ≤ 1 which
was apparent in the simulations. Thus one should further consider another variant
of CH, with a degenerate mobility formulated in section 2.1.1 which also preserves
the mass and describes the physics well by using a logarithmic free energy [7].

Compared to the experimental setup in [1], the simulated models are rather simpli-
fied by not considering the effect of the evaporation. Since the viscosity will decrease
as the solvent evaporates [1], one should further implement the attempts that were
proposed in section 2.5 in order to see the effect as the domain in shrinking for a de-
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creasing function h(t). According to [1] the shrinkage rate tends to behave linearly,
therefore one could implement the moving boundary with a decreasing linearly func-
tion h(t) to be able to compare the experiments properly. Also the corresponding
transformation for the Navier-Stokes equation should be implemented to study the
effect of coupled flow when the evaporation is considered.
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A computational study was performed in this thesis for two established models of
AC and CH to study spinodal decomposition, where a pure diffusive model, and
a model with coupled flow of NS were used with constant mobility. In order to
improve the understanding of the phase separation through SD, one was able to
compare the different models and cases by analysing the effect of parameters related
to dimensionless numbers (Pe and Sc), and the effect of boundary conditions. It
can be concluded that the models to some extent are quite accurate. As it generally
was observed that the length scale is larger in comparison to the diffusive variant
and the effect of viscosity such that the growth exponents increase towards a hy-
drodynamic regime. However, it can be concluded that the results from the AC
models are more justified than the CH models, regarding the length scales for the
diffusive variant and accuracy overall. But, the theoretical motivation of the conser-
vative AC model to model these phenomena is weak and needs to be studied further.

The lack of performance in regards to the CH models may be related due to mass
losses during the simulations, as it was shown that the volume of each phase was
not completely preserved in the CH models, as opposed to the AC models. This
outcome was rather expected when using a CH model with constant mobility. Thus
it is suggested to implement and study a CH model with degenerate mobility, which
has shown to be conservative. Although an arbitrary time scale was used, the simu-
lations could to some extent be compared to the physical experiments. However, it
is necessary to further study the physical properties for EC/HPC system in order to
find reasonable parameters and thus be able to compare the experiments properly.
This also applies for the effect of solvent, as the phase separation occurs due to
evaporation generally. Therefore should the proposed model that mimic the evapo-
ration be implemented to obtain similar behaviour as the physical experiments while
studying the phase separation through spinodal decomposition.
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