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1 Introduction

In the stock market, the portfolio management is one of the most heated and significant

problem. It is not difficult to image that the model selection will play a decisive role in the

portfolio and the corresponding risk, and the risk of the portfolio is strongly associated

to the dependence of the stocks.

It is well-known that the correlation coeffcient ρ =
cov(X,Y )√
varX·

√
varY

is an effective approch to

describe the corelation between random variable X and Y . However, the correlation coef-

ficient has several drawbacks, to begin with, it can only measure the linear dependence. In

addition, the correlation coefficient can only depict the dependence of random variables X

and Y if their joint distribution is elliptical. If we are not sure the denpendence structure

of X and Y or they are not satisfied the condition above, we should choose another way

to describe the dependence.

In the thesis, we will introduce the definitions and theories of copula, which is a mul-

tivariate probability distribution with the uniformly distributed margins. And we will

establish the preliminary copula model of four stocks in Swedish market.
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2 Theory

In statistics, copula is a multvariate probability distribution with the uniformly dis-

tributed margins, it is usually used to describe the dependence between random variables.

In this section, we will introduce the basic definitions and theories of copula. We should

begin from the two dimensional case.

2.1 Bivariate Copula

To begin with, we need to know the definitions of groundness and 2-incresing.

Definition 2.1.1 Let us consider two non-empty subsets A1 and A2 of R and a function

G: A1 × A2 → R. Denote with ai the least element of Ai, i = 1, 2. The function G is

grounded if for every (u, v) of A1 × A2,

G(a1, v) = G(u, a2) = 0

Definition 2.1.2 G: A1 × A2 → R is called 2-incresing if for every retangle [u1, u2] ×
[v1, v2] whose vertices lie in A1 × A2, such that u1 ≤ u2, v1 ≤ v2,

G(u2, v2)−G(u2, v1)−G(u1, v2) +G(u1, v1) ≥ 0

The above notions allow us to define copula in two dimensions.

Definition 2.1.3 A two-dimensional copula C is a real function of defined on A × B,

where A and B are non-empty subsets of I = [0, 1],

C : A×B → R

(i) grounded. i.e. C(u, 0) = C(0, v) = 0.

(ii) 2-incresing.

(iii) such that

C(u, 1) = u, C(1, v) = v

for every (u, v) of A×B.
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2.2 Copula Bounds

From the definition of copula, we can observe that the copula function lies in the unit

cube I3. The Frechet-Hoeffding Theorem states the upper and lower bounds of the copula.

Theoren 2.2.1 (Frechet-Hoeffding Theorem) For ∀(u, v) ∈ I2, the copula func-

tion C satisfied,

W (u, v) = max{u+ v − 1, 0} ≤ C(u, v) ≤ min{u, v} = M(u, v)

This inequality is know as the Frechet-Hoeffding bounds inequality, and the function W

and M are known as the Frechet-Hoeffding lower and upper bounds respectively.

By using mathematical software, we can graphically observe the two dimensional Frechet-

Hoeffding bounds:
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Figure 1: Lower Frechet-Hoeffding bound W (u1, u2)
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Figure 2: Upper Frechet-Hoeffding bound M(u1, u2)

2.3 Product Copula

The other important conception in copula is the product copula, which can be defined as,∏
(u, v) = uv, ∀(u, v) ∈ I

The two dimensional product copula can be displayed as following:
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Figure 3: Product Copula
∏

(u1, u2)

2.4 Two dimensional Gaussian Copula

For two dimensional Gaussian copula, it can be defined as following:

CGa(u, v) = Φρ(Φ
−1(u),Φ−1(v))

where Φρ is the joint distribution function of a two-dimensional standard normal variable,

with linear correlation coefficient ρ. Therefore, the culmulative distribution function of

two dimensional Gaussian copula is[1]

CGa(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp
(−(r2 + s2 − 2ρrs)

2(1− ρ2)

)
drds

and the density can be and its corresponding contour can be displayed in Figure 4
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Figure 4: Two dimensional Gaussian copula

2.5 Multivariate Copula

In this part, we will give the definitions of the multivariate copula. For the n-dimensional

copula, n > 2, the notions of groundedness and n-increasing are the extensions of the

2-dimensional case.

Definition 2.5.1 Let the function G : Rn → R has a domain Dom G = A1×A2×· · ·×An,

where the non-empty sets Ai have a least element ai. The function G is called grounded

if and only if for every v ∈ DomG, with at least on index k such that vk = ak:

G(v) = G(v1, v2, ..., vk−1, ak, vk+1, ..., vn) = 0

As the two-dimensional case, we need also to know the definition of n-increasing. Before

to define that, it is essential to know the following notions:
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Definition 2.5.2 The n-box A is defined as:

A = [u11, u12]× [u21, u22]× · · · × [un1, un2]

with ui1 ≤ ui2, i = 1, 2, ..., n. We can observe that an n-box is the Carestian product of

n closed intervals

Let us denote with w any vertex of A and with ver(A) the set of all vertices of A.

w ∈ ver(A) if and only if its i-th component wi, i = 1, 2, ..., n, is either equal to ui1 or to

ui2. Consider the product

n∏
i=1

sgn(2wi − ui1 − ui2)

Since each factor in the product is −1 if wi = ui1 < ui2, is equal to zero if wi = ui1 = ui2,

and is 1 if wi = ui2 > ui1,

n∏
i=1

sgn(2wi − ui1 − ui2) =


−1 if ui1 6= ui2, ∀i, #{i : wi = ui2} = 2m+ 1

0 if ∃i : ui1 = ui2 m ∈ N
1 if ui1 6= ui2, ∀i, #{i : wi = ui1} = 2m

If ver(A) ⊂ DomG, define the G-volume of A as the sum

∑
w∈ver(A)

G(w)

n∏
i=1

sgn(2wi − ui1 − ui2)

Now we can define the n-increasing function:

Definition 2.5.3 The function G : A1 × A1 × · · · × An → R is said to be n-increasing

if the G-volume of A is non-negative for every n-box A for which ver(A) ⊂ DomG:

∑
w∈ver(A)

G(w)

n∏
i=1

sgn(2wi − ui1 − ui2) ≥ 0

Now we are ready for defining the copula in n dimensional space.

Definition 2.5.4 An n-dimensional copula is a function C : A1 × A2 × · · · × An → R,

where, for each i, Ai ⊂ I and contains at least 0 and 1, such that

(i) C is grounded

(ii) C is n-increasing

(iii) its one-dimensional margins are the identity function on I: Ci(u) = u, i = 1, 2, ..., n.
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Now, we will introduce the Sklar’s theorem, which is significant in the copula application.

Sklar’s theorem provides the theoretical foundation when we use copula, it states the

role that copula play in the relation between multivariate distribution function and their

univariate margins.

Theorem 2.5.5 Let F1(x1), F2(x2),..., Fn(xn) be (given) marginal distribution func-

tions. Then, for every x = (x1, x2, ..., xn) ∈ Rn:

(i) If C is any copula whose domain contains RanF1 ×RanF2 × · · · ×RanFn,

C(F1(x1), F2(x2), ..., Fn(xn))

is a joint distribution function with margins F1(x1), F2(x2), ..., Fn(xn).

(ii) Conversely, if F is a joint distribution function with margins

F1(x1), F2(x2), ..., Fn(xn)

there exists a unique copula C, with domain RanF1 × RanF2 × · · · × RanFn, such

that

F (x) = C(F1(x1), F2(x2), ..., Fn(xn))

As it is in two dimensional copula case, the Multivariate copula also has its Frechet-

Hoeffding upper and lower bounds: for any copula C : [0, 1]d → [0, 1] and any (u1, ..., ud) ∈
[0, 1]d the following bounds hold:

W (u1, ..., ud) ≤ C(u1, ..., ud) ≤M(u1, ..., ud)

The function W is called lower Frechet-Hoeffding bound and it is defined as:

W (u1, ..., ud) = max
{

1− d+

d∑
i=1

ui, 0
}

The function M is called upper Frechet-Hoeffding bound and it is defined as:

M(u1, ..., ud) = min
{
u1, ..., ud

}
The multivariate product copula can be defined as

∏
(u1, ..., ud) =

∏d
i=1 ui if and only if

ui are independent.
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2.6 Multivariate Gaussian copula

Definition 2.6.1 Let R be a symmetric, positive definite matrix with diagonal elements

one and the ΦR the standized multivariate normal distribution with correlation matrix

R. The multivariate Gaussian copula is defined as follows:

CGaR (u) = ΦR(Φ−1(u1),Φ−1(u2), ...,Φ−1(un))

where Φ−1, as usual, is the inverse of the standard univariate normal distribution function

Φ and ΦR is the joint cumulative distribuiton function of a multivariate normal distribu-

tion with mean vector zero and the covariance matrix equal to the correlation matrix R.

The density of the multivariate Gaussian copula can be approxiamted by the numerical

integration as following:[3]

cGaR (u) =
1√
detR

exp

−1

2

 Φ−1(u1)
...

Φ−1(ud)


T

·
(
R−1 − I

)
·

 Φ−1(u1)
...

Φ−1(ud)




where I is the indentity matrix.

And it is vital to know the following proposition about the Gaussian copula.

Proposition 2.6.2 The Gaussian copula generates the standard joint normal distribution

function-via Sklar’s Theorem-if and only if the margins are standard normal.[2]
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3 Modelling

In this part, we will introduce how to establish copula model of four stocks. We will give

the mathematical notions first and then build the model.

Step 1 Find the Gaussian Copula

Let us assume that there are d stocks data Si(t), i = 1, 2, ..., d, and t = 1, 2, ..., n. And

Xi, i = 1, 2, ..., d be the log increments ( i.e. Xi(t) = log(Si(t)) − log(Si(t − 1))) of the

d stocks, and they are d continuous random variables. Each of the Xi has its empirical

cumulative distribution function, which can be denoted as Fi(Xi), i = 1, ..., d, i.e.

Fi(Xi) =
1

n

n∑
j=1

1(Xj ≤ Xi)

To simplify, we use Ui to be the empirical cumulative distribution function of Xi, i.e.

Ui(t) = Fi(Xi(t)), i = 1, 2, ..., d. Since Ui are the empirical CDF of four log returns and

in generally we assume Xis are independently identically distributed, so the Uis are uni-

formly [0, 1] distributed, and we will prove it graphically in the next section. In the next

step, what we need to do is to find the standard normal inverse of Ui, which we denote

as Yi, i = 1, 2, ..., d, and

Yi(t) = Φ−1(Ui(t))

We can prove that Yi are standard normally distributed, since U ∼ Uniform[0, 1], so we

have

P (U ≤ u) = u

Futher, we can get,

P (Y ≤ y) = P (Φ−1
i (U) ≤ y)

= P (U ≤ Φ(y)) = Φ(y)

According to the Proposition 2.6.2, there exists the Gaussian copula CGaR that connect

the Yi, since the margin are standard normlly distributed. We assume that CGaR is the

multivariate normally distributed with mean 0 and variance R. i.e. CGaR ∼ N(0,R),

where the mean have d dimenstions and R is the covariance matrix of Yi. i.e.
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R =


V ar(Y1) Cov(Y1, Y2) . . . Cov(Y1, Yd)

Cov(Y2, Y1) V ar(Y2) . . . Cov(Y2, Yd)
...

...
. . .

...

Cov(Yd, Y1) Cov(Yd, Y2) . . . V ar(Yd)



Step 2 Simulation and Comparison

From Step 1, we will get the Gaussian copula CGaR ∼ N(0,R), so by applying mathe-

matical software, we can randomly choose {y(t)}nt=1, so y(t) will be d dimensional vector.

And we can denote the i − th column in y(t) as yi(t), i = 1, 2, ..., d, so what we need to

do is to return them to the original values as following:

u(t) = (Φ(y1(t)),Φ(y2(t)), ...,Φ(yd(t)))

x(t) = (F−1
1 (Φ(y1(t))), F−1

2 (Φ(y2(t))), ..., F−1
d (Φ(yd(t))))

= (F−1
1 (u1(t)), F−1

2 (u2(t))), ..., F−1
d (ud(t))))

From the content above, we know that it is impossible to calculate the inverse by the

regular method since the funciton is piecewise constant, so it is not invertible. Under this

circumstance, let us introduce the definition of the right inverse:

Definition 3.2.1 Given a function F : R→ [0, 1] we write

F−1(u(t)) = inf{x : F (x) ≥ u(t)} for u(t) ∈ (0, 1)

by using this method to get the inverse F−1(u(t)) and since,

xi(t) = log(si(t))− log(si(t− 1))

so,

t∑
j=1

xi(j) = log(si(t))− log(si(1))

si(t)

si(1)
= exp(

t∑
j=1

xi(j))

and finally we will get,

si(t) = si(1) · exp(
t∑

j=1

xi(j))

12



At the end of this step, we can compare the raw data and the simulated data by observ-

ing the contour plot of the empirical copula density respectively. We know that there is

no specific formula of the empirical copula density, so we can utilize some methods to

estimate. Here I choose to use the Gaussian Kernel density, so we need to introduce some

relative definitions below.

Definition 3.2.2 Let x1, x2,..., xn be a sample of d-variate random vectors drawn from

a common distribution described by the density function f . The kernel density is defined

to be[5]

f̂H(x) =
1

n

n∑
i=1

KH(x− xi)

where,

(i) x = (x1, x2, ..., xd)
T , xi = (xi1, xi2, ..., xid)

T , i = 1, 2, ..., n are d-vectors.

(ii) H is the bandwidth d× d matrix which is symmetric and positive definite.

(iii) K is the kernel function which is a symetric multivariate density.

Since we choose to utilize the Gaussian Kernel, so

KH(x) = (2π)−
d
2 |H|−

1
2 e−

1
2
xTH−1x

For two dimensional case, for ∀(u, v) ∈ [0, 1]2

f̂(x,H) =
1

n

n∑
i=1

KH(x− xi)

where, x = (x1, x2)T and xi = (xi1, xi2)T , i = 1, 2, ..., n, KH(x) = |H|− 1
2K(H−

1
2 x) and

the choice of K(x) here is the Gaussian, i.e.

K(x) =
1

2π
exp(−1

2
xTx) ∀x ∈ [0, 1]2

H is the bandwidth matrix with H =

(
h2

1 0

0 h2
2

)
and (h1, h2) is the bandwidth which

minimize

argmin(h1,h2)E
[∫ 1

0

∫ 1

0

[f̂(u, v)− f(u, v)]dudv
]
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After the calculation above, finally we can get the two dimensional Guassian Kernel den-

sity can be estimated as

f̂(x,H) =
1

n

n∑
i=1

1

h1 · h2
K(

x1 − xi1
h1

,
x2 − xi2
h2

)

K(x) =
1

2π
exp(−1

2
(x2

1 + x2
2))

After these steps, we will get the two dimensional contour plot and three dimensional

surface between the two-stock combinations. In order to observe the accuracy of the

simulation result by using copula model, we can simulate the data by some tranditional

models and compare the result with the copula model. Here we choose to use the Gaus-

sian model to simulate the data again and then compare the result with the copula model.

Definition 3.2.3 The multivariate Gaussian model of a d-dimensional random vector

X = [X1, X2, ..., Xd] can be written in the following notation:[4]

X ∼ N(µ,Σ)

where µ is the mean vector,

µ =


mean(X1)

mean(X2)
...

mean(Xd)


T

and Σ is the covariance matrix of X,

Σ =


V ar(X1) Cov(X1, X2) . . . Cov(X1, Xd)

Cov(X2, X1) V ar(X2) . . . Cov(X2, Xd)
...

...
. . .

...

Cov(Xd, X1) Cov(Xd, X2) . . . V ar(Xd)


After these steps, we can find the distributions of those Xis which simulated by the Gaus-

sian model, and then compare the kernel density between the two-stocks combinations by

showing the three dimensional surf and two dimensional contour plot.
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Step 3 Portfolio

In this section, we will establish a portfolio of the d stocks by using coupula model.

1. Establish a portfolio of the d stocks: P =
∑d

i=1 Si(t).

2. In Step 2, we got si(t) = si(1) · exp(
∑t

j=1 xi(j)). Now we set si(1) = M , i = 1, 2, ..., d,

and then we do the simulation T times, after this process we will got si(t).

3. Calculate the result S =
∑d

i=1 si(t) and observe the trends of the portfolio.
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4 Data Analysis and Results

In this section, we will study four stocks in the Swedish market, they are very famours

Swedish companies: AstraZeneca, Ericsson, Volvo and SEB. By using the mathematical

software, we will finish the data fetching, processing and simulating by different models,

and then do the portfolio for these four stocks.

4.1 Data Processing

To begin with, we should download the raw data. In this report, we firstly fetch the close

price from 1/1/2011 to 1/1/2017 of these four stocks, 1559 in total, from yahoo finance,

so we can easliy plot the close price curve of them.

Figure 5: Stock curve of close price
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From the Figure 5, we can observe that there is a obvious jump of the stock’s price in

AstraZeneca between the trading year 2015 to 2016, we call this phenomenon as Stock

Split:

Definition 4.1.1 A Stock Split is a decision by the company’s board of directors to

increase the number of shares that are outstanding by issuing more shares to current

shareholders. For example, in a 2-for-1 stock split, every shareholder with one stock is

given an additional share. So if a company had 10 million shares outstanding before the

split, it will have 20 million shares outstanding after a 2-for-1 split.

The price of the stock will be affected by the stock split. After the split, the stock

price will reduce since the number of shares has increased, so the close cannot reflect the

stocks’ price accurately. To avoid the the split, we should choose to use the Adjusted

Close Price as our raw data.

Definition 4.1.2 An Adjusted Close Price is a stock’s closing price on any given

day of trading that has been amended to include any distributions and corporate actions

that occurred at any time prior to the next day’s open. The adjusted closing price uses

the closing price as a starting point, but it takes into account factors such as dividends,

stock splits and new stock offerings. The adjusted closing price represents a more accurate

reflection of a stock’s value, since distributions and new offerings can alter the closing price.

As what we have discussed above, we can fetch the adjusted close price from the fi-

nance, and then we have the price curve as following:

17



Figure 6: Stock curve of adjusted close price
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In the stocks market, we often assume that the stocks are some normally distributed noise,

but in the most of the practical cases, they are not normal distribution, we can check our

data by the graphical method and measure the skewness and kurtosis, i.e. the third and

the fourth moment of the data, which can reflect their distributions.

We can firstly plot the distribution of Si as following:

Figure 7: the distribution of Si
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The skewness and kurtosis of the four stocks are:

S1 S2 S3 S4

skewness 0.2323 0.3974 -0.0449 -0.1553

kurtosis 1.3662 2.7765 3.0417 1.6344

From the Figure7 and the table above, we can observe that all of the stocks skews on a cer-

tain extent, especically for S1 and S2, which means they are not symetrically distributed.

And the kurtosis of them reflect that S1 and S4 have the light tails. On conclusion, the

four stocks are not strictly normal.

And next we can calculate and plot the log increments Xi(t) of all stocks,

Figure 8: Stock log increment
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Generally, we assume that the log increments, i.e. Xi(t), i = 1, 2, 3, 4, are independently

identically distributed, so the distributions of the log returns should be uniformly [0, 1]

distributed. By using of math software, we can find the distributions Ui(t) = Fi(Xi(t)),

we can check if Ui are uniformly [0, 1] distributed by observing the following plot,

Figure 9: Empirical CDF of Ui
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From Figure 9, it is obvious that Uis are approximately distributed in Uniform[0, 1], and

next we could calculate the values of the inverse of standard normal distribution of Ui(t),

we denote this value as Yi(t), that is Yi(t) = Φ−1(Ui(t)), i = 1, 2, 3, 4. From the Step

1 of last section, we know that Yi(t) will be (approximately) normal distribution, which

is proved on the Section 3.2. After this step, we should recall the Definition 2.6.1,

and then we follow the Step 1 of last section, by applying mathematical software, we can

finally establish the Multivariate Gaussian Copula Model CGaR :

CGaR ∼ N

(
[0, 0, 0, 0],


0.9655 0.3328 0.3363 0.3715

0.3328 0.9656 0.4776 0.4204

0.3363 0.4776 0.9662 0.6222

0.3715 0.4204 0.6222 0.9659


)

4.2 Simulation

Next we will use the results above to simulate by using Multivarite Copula Model and

Gaussian Model respectively. Let us begin from the copula model. To start with, we

randomly choose 5000 variables from CGaR , we denote them as y(t), and y(t) has four

dimensions, so it is 5000 × 4 matrix. Then we follow the Step 2 in the last section, we

will return y(t) to ui(t). And then we can calculate the kernel density by using Matlab.

As for the Gaussian model, first we can also simulate 5000 data by the Gaussian Model,

N

(
mean(X1)

mean(X2)
...

mean(Xd)


T

,


V ar(X1) Cov(X1, X2) . . . Cov(X1, Xd)

Cov(X2, X1) V ar(X2) . . . Cov(X2, Xd)
...

...
. . .

...

Cov(Xd, X1) Cov(Xd, X2) . . . V ar(Xd)


)

we will also get the simulated data, which can be denoted as xi G and use the method as

the Step 1 of last section to get the distribution of xi G, which can be denoted as ui G,

and finally we can make a comparison of the raw data and simulated data. In this thesis,

I choose to utilize the three dimensional surf and two dimensional contour plot to com-

pare the kernel density of the raw data and simulated data. Since we have four stocks,

so we have C2
4 = 6 combinations. We will observe and analysis all of them in the following.
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Figure 10: Empirical copula density between AstraZeneca and Ericsson

Figure 10 shows the comparison between AstraZeneca and Ericsson, the first row are the

kernel density surf and contour plot of raw data, the second raw are the kernel density

surf and contour plot of data simulated by Gaussian Model, and the third raw are the

kernel density surf and contour plot of data simulated by Copula Model. We can observe

that the Copula Model is better than the Gaussian, since the former one is not only shows

the positive relation of two stocks but shows the peak around [0.5, 0.5].
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Figure 11: Empirical copula density between AstraZeneca and Volvo

Figure 11 shows the comparison between AstraZeneca and Volvo, the first row are the

kernel density surf and contour plot of raw data, the second raw are the kernel density surf

and contour plot of data simulated by Gaussian Model, and the third raw are the kernel

density surf and contour plot of data simulated by Copula Model, and the plots depict

that the Copula Model is better than the Gaussian, since the obvious positive relation

and peak are in the contour plots.
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Figure 12: Empirical copula density between AstraZeneca and SEB

Figure 12 shows the comparison between AstraZeneca and SEB, the first row are the

kernel density surf and contour plot of raw data, the second raw are the kernel density

surf and contour plot of data simulated by Gaussian Model, and the third raw are the

kernel density surf and contour plot of data simulated by Copula Model, and it can be

observed that the Copula Model is still a little better than the Gaussian, since from the

contour plots, we can see the positive relation and peak in the approximate similar place.
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Figure 13: Empirical copula density between Ericsson and Volvo

Figure 13 shows the comparison between Ericsson and Volvo, the first row are the kernel

density surf and contour plot of raw data, the second raw are the kernel density surf

and contour plot of data simulated by Gaussian Model, and the third raw are the kernel

density surf and contour plot of data simulated by Copula Model. From this group, the

simulations of Gaussian and Copula are simular, so it is not very obvious that which one

is better.
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Figure 14: Empirical copula density between Ericsson and SEB

Figure 14 shows the comparison between Ericsson and SEB, the first row are the kernel

density surf and contour plot of raw data, the second raw are the kernel density surf

and contour plot of data simulated by Gaussian Model, and the third raw are the kernel

density surf and contour plot of data simulated by Copula Model, and it can be observed

that the Copula Model is still a little better than the Gaussian, since from the contour

plots, we can also see the positive relation and peak in the approximate similar place.
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Figure 15: Empirical copula density between Volvo and SEB

Figure 15 shows the comparison between Volvo and SEB, the first row are the kernel

density surf and contour plot of raw data, the second raw are the kernel density surf

and contour plot of data simulated by Gaussian Model, and the third raw are the kernel

density surf and contour plot of data simulated by Copula Model, and it is obvious that

the Copula Model is better than the Gaussian, since from the contour plots, we can

observe that the copula simulation is more similar to the raw data.
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4.3 Portfolio and Risk Analysing

In the last part, we will establish the portfolio of the four stocks by using the Gaussian

Model and Copula Model respectively. To begin with, Let us set M = si(1) = 1000,

i = 1, 2, 3, 4. And then, we can follow the steps of last section, we can simulate approxi-

mate two years data (500) of two models several times (in this thesis I will simulate each

model 10 times and 1000 times) and calculate the sample mean of the results. In the end,

we can calculate the portfolio value S =
∑4

i=1 si(t) and plot the results by using Matlab.

As for Copula Model, following the steps above, we will get,

Figure 16: Portfolio curve of Copula Model Simulaiton

From the left plot in Figure 16, we can observe that the portfolio curve is fluctuant and

it has a increasing trend, at the point t = 410, the portfolio value will attach to the max-

imum, it is about 2380, while the portfolio value will attach to the minimum value at the

point t = 90. In the curve, there is an obvious decrease, i.e. from t = 160 to t = 205, and

we can also observe that the curve ascent dramatically from t = 370 to t = 400. However,

if we simulate the model 1000 times, from the right plot in Figure 16, we can observe that
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the portfolio curve will approximate to a line, and it will attach to the maximum value

at the end point t = 500.

As for Gaussian Model, following the steps above and doing the same times simulations

as the Copula Model, we will get,

Figure 17: Portfolio curve of Copula Model Simulaiton

From the left plot in Figure 17, we can observe that the portfolio curve is similar to the

Copula Model, it is also fluctuant and it has a increasing trend, at the end point, the

portfolio value will attach to the maximum, while the portfolio value will attach to the

minimum value at the point t = 50. In the curve, there are two obvious decreases, i.e.

from t = 120 to t = 200 and from t = 390 to t = 450, and we can also observe that the

curve is increasing from t = 190 to t = 400. But if we simulate the model 1000 times,

from the right plot in Figure 17, we can observe that the portfolio curve will approximate

to a line, and it will attach to the maximum value at the end point t = 500.

From the Figure 16 and Figure 17, it seems not obvious that Copula Model is better

than Gaussian Model, so we will make the comparison more clear in the next step. In
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order to more accurate, let us simulate both model 10000 times and calculate the portfo-

lio. Then we save the 10000 end point values of each model, that is we have 10000 values

t = 500 of each model. We can estimate the probability density of the portfolio values at

the end point, and we will get the curves in the following:

Figure 18: Risk of Two Models

From the Figure 18, we can observe that Copula Model has the smaller risk.
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5 Conclusion

From the figures in the last section, we can observe that the most of raw data and the

simulated data by copula model are distributed similarly. What we can also see from the

figures is the price of AstraZeneca seems has strong positive dependence with Ericsson

and Volvo, and the price of SEB seems have strong dependence with Ericsson and Volvo.

If the data has strong dependence, it will be a good news to execute the portfolio next.

As the figures of the portfolio, we can observe that the portfolio increase both of the

two models, and from the plots of 1000 times simulation, we can observe that the copula

model simulation increase a little more than the Gaussian model. In the meantime, we

can also observe that the copula model has the smaller risk than Gaussian model.
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Appendix

Matlab Function Part:

%% collect the data from Yahoo Finance

function data = get_yahoo_data(tick_name, freq, fromdate, todate)

start_date = strsplit(fromdate, ’-’);

end_date = strsplit(todate, ’-’);

try

url = strcat(’https://ichart.finance.yahoo.com/table.csv?s=’,...

tick_name,’&a=’,start_date(2),’&b=’,start_date(3),’&c=’,start_date(1),

...’&d=’, end_date(2),’&e=’,end_date(3),’&f=’,end_date(1),’&g=’,freq,

...’&ignore=.csv’);

catch ERROR

disp(ERROR)

return

end

[temp, status] = urlread(cell2mat(url));

data = containers.Map

temp = strsplit(temp, {’\n’,’,’});

for i = 1:1:7

key = temp{i};

data(key) = temp(i+7:7:end);

end

end

%2D Kernel Density Estimation

function [bandwidth,density,X,Y]=kde2d(data,n,MIN_XY,MAX_XY)

global N A2 I
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if nargin<2

n=2^8;

end

n=2^ceil(log2(n)); % round up n to the next power of 2;

N=size(data,1);

if nargin<3

MAX=max(data,[],1); MIN=min(data,[],1); Range=MAX-MIN;

MAX_XY=MAX+Range/4; MIN_XY=MIN-Range/4;

end

scaling=MAX_XY-MIN_XY;

if N<=size(data,2)

error(’data has to be an N by 2 array where each row represents a two ...

dimensional observation’)

end

transformed_data=(data-repmat(MIN_XY,N,1))./repmat(scaling,N,1);

%bin the data uniformly using regular grid;

initial_data=ndhist(transformed_data,n);

% discrete cosine transform of initial data

a= dct2d(initial_data);

% now compute the optimal bandwidth^2

I=(0:n-1).^2; A2=a.^2;

t_star=fzero( @(t)(t-evolve(t)),[0,0.1]);

% options = optimset(’FunValCheck’,’off’);

% try

% t_star=fzero( @(t)(t-evolve(t)),[0,0.1],options);

% catch

% defaultError(’override error, be cautious!’);
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% t_star=0;

% end

p_02=func([0,2],t_star);p_20=func([2,0],t_star); p_11=func([1,1],t_star);

t_y=(p_02^(3/4)/(4*pi*N*p_20^(3/4)*(p_11+sqrt(p_20*p_02))))^(1/3);

t_x=(p_20^(3/4)/(4*pi*N*p_02^(3/4)*(p_11+sqrt(p_20*p_02))))^(1/3);

% smooth the discrete cosine transform of initial data using t_star

a_t=exp(-(0:n-1)’.^2*pi^2*t_x/2)*exp(-(0:n-1).^2*pi^2*t_y/2).*a;

% now apply the inverse discrete cosine transform

if nargout>1

density=idct2d(a_t)*(numel(a_t)/prod(scaling));

[X,Y]=meshgrid(MIN_XY(1):scaling(1)/(n-1):MAX_XY(1),MIN_XY(2):...

scaling(2)/(n-1):MAX_XY(2));

end

bandwidth=sqrt([t_x,t_y]).*scaling;

end

%#######################################

function [out,time]=evolve(t)

global N

Sum_func = func([0,2],t) + func([2,0],t) + 2*func([1,1],t);

time=(2*pi*N*Sum_func)^(-1/3);

out=(t-time)/time;

end

%#######################################

function out=func(s,t)

global N

if sum(s)<=4

Sum_func=func([s(1)+1,s(2)],t)+func([s(1),s(2)+1],t); const=...
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(1+1/2^(sum(s)+1))/3;

time=(-2*const*K(s(1))*K(s(2))/N/Sum_func)^(1/(2+sum(s)));

out=psi(s,time);

else

out=psi(s,t);

end

end

%#######################################

function out=psi(s,Time)

global I A2

% s is a vector

w=exp(-I*pi^2*Time).*[1,.5*ones(1,length(I)-1)];

wx=w.*(I.^s(1));

wy=w.*(I.^s(2));

out=(-1)^sum(s)*(wy*A2*wx’)*pi^(2*sum(s));

end

%#######################################

function out=K(s)

out=(-1)^s*prod((1:2:2*s-1))/sqrt(2*pi);

end

%#######################################

function data=dct2d(data)

% computes the 2 dimensional discrete cosine transform of data

% data is an nd cube

[nrows,ncols]= size(data);

if nrows~=ncols

error(’data is not a square array!’)
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end

% Compute weights to multiply DFT coefficients

w = [1;2*(exp(-i*(1:nrows-1)*pi/(2*nrows))).’];

weight=w(:,ones(1,ncols));

data=dct1d(dct1d(data)’)’;

function transform1d=dct1d(x)

% Re-order the elements of the columns of x

x = [ x(1:2:end,:); x(end:-2:2,:) ];

% Multiply FFT by weights:

transform1d = real(weight.* fft(x));

end

end

%#######################################

function data = idct2d(data)

% computes the 2 dimensional inverse discrete cosine transform

[nrows,ncols]=size(data);

% Compute wieghts

w = exp(i*(0:nrows-1)*pi/(2*nrows)).’;

weights=w(:,ones(1,ncols));

data=idct1d(idct1d(data)’);

function out=idct1d(x)

y = real(ifft(weights.*x));

out = zeros(nrows,ncols);

out(1:2:nrows,:) = y(1:nrows/2,:);

out(2:2:nrows,:) = y(nrows:-1:nrows/2+1,:);

end
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end

%#######################################

function binned_data=ndhist(data,M)

[nrows,ncols]=size(data);

bins=zeros(nrows,ncols);

for i=1:ncols

[dum,bins(:,i)] = histc(data(:,i),[0:1/M:1],1);

bins(:,i) = min(bins(:,i),M);

end

% Combine the vectors of 1D bin counts into a grid of nD bin

% counts.

binned_data = accumarray(bins(all(bins>0,2),:),1/nrows,M(ones(1,ncols)));

end
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Main Code:

%% collect the data from Yahoo Finance

clear all

S1=get_yahoo_data(’AZN.ST’,’d’,’2011-00-01’,’2017-00-01’);

S1=S1(’Adj Close’)’;

S1=str2num(char(S1));

S11=flipud(S1);

S2=get_yahoo_data(’ERIC-A.ST’,’d’,’2011-00-01’,’2017-00-01’);

S2=S2(’Adj Close’)’;

S2=str2num(char(S2));

S22=flipud(S2);

S3=get_yahoo_data(’VOLV-B.ST’,’d’,’2011-00-01’,’2017-00-01’);

S3=S3(’Adj Close’)’;

S3=str2num(char(S3));

S33=flipud(S3);

S4=get_yahoo_data(’SEB-A.ST’,’d’,’2011-00-01’,’2017-00-01’);

S4=S4(’Adj Close’)’;

S4=str2num(char(S4));

S44=flipud(S4);

%% skewness and kertosis

sk1=skewness(S1);

sk2=skewness(S2);

sk3=skewness(S3);

sk4=skewness(S4);
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ku1=kurtosis(S1);

ku2=kurtosis(S2);

ku3=kurtosis(S3);

ku4=kurtosis(S4);

%% log return calculation

X1=diff(log(S11));

X2=diff(log(S22));

X3=diff(log(S33));

X4=diff(log(S44));

n=length(X1);

%% cdf

%Find the covariance matrix

U1=ksdensity(X1,X1,’function’,’cdf’);

U2=ksdensity(X2,X2,’function’,’cdf’);

U3=ksdensity(X3,X3,’function’,’cdf’);

U4=ksdensity(X4,X4,’function’,’cdf’);

Y1=norminv(U1);

Y2=norminv(U2);

Y3=norminv(U3);

Y4=norminv(U4);

Y=[Y1,Y2,Y3,Y4];

mu=zeros(1,4);

sigma=cov(Y);
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%% copula model simulation

m=5000;

y=mvnrnd(mu,sigma,m);

u1=min(max(U1),normcdf(y(:,1)));

u2=min(max(U2),normcdf(y(:,2)));

u3=min(max(U3),normcdf(y(:,3)));

u4=min(max(U4),normcdf(y(:,4)));

%% Gaussian model simulation

mu_x=[mean(X1),mean(X2),mean(X3),mean(X4)];

X=[X1,X2,X3,X4];

sigma_x=cov(X);

l=5000;

Gaussian_x=mvnrnd(mu_x,sigma_x,l);

x1_G=Gaussian_x(:,1);

x2_G=Gaussian_x(:,2);

x3_G=Gaussian_x(:,3);

x4_G=Gaussian_x(:,4);

u1_G=ksdensity(x1_G,x1_G,’function’,’cdf’);

u2_G=ksdensity(x2_G,x2_G,’function’,’cdf’);

u3_G=ksdensity(x3_G,x3_G,’function’,’cdf’);

u4_G=ksdensity(x4_G,x4_G,’function’,’cdf’);

%% emprical copula pdf estimate

[b,f12,cx,cy]=kde2d([U1,U2],8,[0,0],[1,1]);

subplot(3,2,1)

surf(cx,cy,f12)

subplot(3,2,2)
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contour(cx,cy,f12)

[b,f12g,cx,cy]=kde2d([u1_G,u2_G],20,[0,0],[1,1]);

subplot(3,2,3)

surf(cx,cy,f12g)

subplot(3,2,4)

contour(cx,cy,f12g)

[b,f12c,cx,cy]=kde2d([u1,u2],20,[0,0],[1,1]);

subplot(3,2,5)

surf(cx,cy,f12c)

subplot(3,2,6)

contour(cx,cy,f12c)

figure

[b,f13,cx,cy]=kde2d([U1,U3],8,[0,0],[1,1]);

subplot(3,2,1)

surf(cx,cy,f13)

subplot(3,2,2)

contour(cx,cy,f13)

[b,f13g,cx,cy]=kde2d([u1_G,u3_G],20,[0,0],[1,1]);

subplot(3,2,3)

surf(cx,cy,f13g)

subplot(3,2,4)

contour(cx,cy,f13g)

[b,f13c,cx,cy]=kde2d([u1,u3],20,[0,0],[1,1]);

subplot(3,2,5)

surf(cx,cy,f13c)

subplot(3,2,6)

contour(cx,cy,f13c)
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figure

[b,f14,cx,cy]=kde2d([U1,U4],8,[0,0],[1,1]);

subplot(3,2,1)

surf(cx,cy,f14)

subplot(3,2,2)

contour(cx,cy,f14)

[b,f14g,cx,cy]=kde2d([u1_G,u4_G],20,[0,0],[1,1]);

subplot(3,2,3)

surf(cx,cy,f14g)

subplot(3,2,4)

contour(cx,cy,f14g)

[b,f14c,cx,cy]=kde2d([u1,u4],20,[0,0],[1,1]);

subplot(3,2,5)

surf(cx,cy,f14c)

subplot(3,2,6)

contour(cx,cy,f14c)

figure

[b,f23,cx,cy]=kde2d([U2,U3],8,[0,0],[1,1]);

subplot(3,2,1)

surf(cx,cy,f23)

subplot(3,2,2)

contour(cx,cy,f23)

[b,f23g,cx,cy]=kde2d([u2_G,u3_G],20,[0,0],[1,1]);

subplot(3,2,3)

surf(cx,cy,f23g)

subplot(3,2,4)
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contour(cx,cy,f23g)

[b,f23c,cx,cy]=kde2d([u2,u3],20,[0,0],[1,1]);

subplot(3,2,5)

surf(cx,cy,f23c)

subplot(3,2,6)

contour(cx,cy,f23c)

figure

[b,f24,cx,cy]=kde2d([U2,U4],8,[0,0],[1,1]);

subplot(3,2,1)

surf(cx,cy,f24)

subplot(3,2,2)

contour(cx,cy,f24)

[b,f24g,cx,cy]=kde2d([u2_G,u4_G],12,[0,0],[1,1]);

subplot(3,2,3)

surf(cx,cy,f24g)

subplot(3,2,4)

contour(cx,cy,f24g)

[b,f24c,cx,cy]=kde2d([u2,u4],12,[0,0],[1,1]);

subplot(3,2,5)

surf(cx,cy,f24c)

subplot(3,2,6)

contour(cx,cy,f24c)

figure

[b,f34,cx,cy]=kde2d([U3,U4],8,[0,0],[1,1]);

subplot(3,2,1)

surf(cx,cy,f34)
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subplot(3,2,2)

contour(cx,cy,f34)

[b,f34g,cx,cy]=kde2d([u3_G,u4_G],20,[0,0],[1,1]);

subplot(3,2,3)

surf(cx,cy,f34g)

subplot(3,2,4)

contour(cx,cy,f34g)

[b,f34c,cx,cy]=kde2d([u3,u4],20,[0,0],[1,1]);

subplot(3,2,5)

surf(cx,cy,f34c)

subplot(3,2,6)

contour(cx,cy,f34c)

%% portfolio Copula

% x1=ksdensity(X1,u1,’function’,’icdf’);

% x2=ksdensity(X2,u2,’function’,’icdf’);

% x3=ksdensity(X3,u3,’function’,’icdf’);

% x4=ksdensity(X4,u4,’function’,’icdf’);

l=499; %sample size

h=1000; %simulation times

s0=500; %initial value

s1=zeros((l+1),1);

s2=zeros((l+1),1);

s3=zeros((l+1),1);

s4=zeros((l+1),1);

s1_c=zeros((l+1),h);
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s2_c=zeros((l+1),h);

s3_c=zeros((l+1),h);

s4_c=zeros((l+1),h);

s1(1)=s0;

s2(1)=s0;

s3(1)=s0;

s4(1)=s0;

% s1(1)=S11(1);

% s2(1)=S22(1);

% s3(1)=S33(1);

% s4(1)=S44(1);

for j=1:h

y=mvnrnd(mu,sigma,l);

u1=min(max(U1),normcdf(y(:,1)));

u2=min(max(U2),normcdf(y(:,2)));

u3=min(max(U3),normcdf(y(:,3)));

u4=min(max(U4),normcdf(y(:,4)));

x1=zeros(l,1);

x2=zeros(l,1);

x3=zeros(l,1);

x4=zeros(l,1);

for i=1:l

ind1=find(U1>=u1(i));

x1(i)=min(X1(ind1));

ind2=find(U2>=u2(i));

x2(i)=min(X2(ind2));

ind3=find(U3>=u3(i));
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x3(i)=min(X3(ind3));

ind4=find(U4>=u4(i));

x4(i)=min(X4(ind4));

end

for i=2:(l+1)

s1(i)=s1(1)*exp(sum(x1(1:(i-1))));

s2(i)=s2(1)*exp(sum(x2(1:(i-1))));

s3(i)=s3(1)*exp(sum(x3(1:(i-1))));

s4(i)=s4(1)*exp(sum(x4(1:(i-1))));

end

s1_c(:,j)=s1;

s2_c(:,j)=s2;

s3_c(:,j)=s3;

s4_c(:,j)=s4;

end

m1_c=mean(s1_c,2);

m2_c=mean(s2_c,2);

m3_c=mean(s3_c,2);

m4_c=mean(s4_c,2);

p_c=m1_c+m2_c+m3_c+m4_c;

plot(p_c)

s1_cl=s1_c((l+1),:)’;

s2_cl=s2_c((l+1),:)’;

s3_cl=s3_c((l+1),:)’;

s4_cl=s4_c((l+1),:)’;

p_cl=s1_cl+s2_cl+s3_cl+s4_cl;
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%% portfolio Gaussian

l=499; %sample size

h=1000; %simulation times

s0=500; %initial value

mu_x=[mean(X1),mean(X2),mean(X3),mean(X4)];

X=[X1,X2,X3,X4];

sigma_x=cov(X);

s11=zeros((l+1),1);

s22=zeros((l+1),1);

s33=zeros((l+1),1);

s44=zeros((l+1),1);

s1_g=zeros((l+1),h);

s2_g=zeros((l+1),h);

s3_g=zeros((l+1),h);

s4_g=zeros((l+1),h);

s11(1)=s0;

s22(1)=s0;

s33(1)=s0;

s44(1)=s0;

for j=1:h

Gaussian_x=mvnrnd(mu_x,sigma_x,l);

x1_G=Gaussian_x(:,1);

x2_G=Gaussian_x(:,2);

x3_G=Gaussian_x(:,3);

x4_G=Gaussian_x(:,4);

for i=2:(l+1)

s11(i)=s11(1)*exp(sum(x1_G(1:(i-1))));
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s22(i)=s22(1)*exp(sum(x2_G(1:(i-1))));

s33(i)=s33(1)*exp(sum(x3_G(1:(i-1))));

s44(i)=s44(1)*exp(sum(x4_G(1:(i-1))));

end

s1_g(:,j)=s11;

s2_g(:,j)=s22;

s3_g(:,j)=s33;

s4_g(:,j)=s44;

end

m1_g=mean(s1_g,2);

m2_g=mean(s2_g,2);

m3_g=mean(s3_g,2);

m4_g=mean(s4_g,2);

p_g=m1_g+m2_g+m3_g+m4_g;

plot(p_g)

s1_gl=s1_g((l+1),:)’;

s2_gl=s2_g((l+1),:)’;

s3_gl=s3_g((l+1),:)’;

s4_gl=s4_g((l+1),:)’;

p_gl=s1_gl+s2_gl+s3_gl+s4_gl;

%% risk

ksdensity(p_cl)

hold on

ksdensity(p_gl)

legend(’Copula Model’,’Gaussian Model’)

title(’Risk of Two Models’)
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%% 3 copulas

%Frecht-Hoeffing upper bound copula M(u,v)

s=50;

x=linspace(0,1,s);

[X1,X2] = meshgrid(x,x);

F=copulacdf(’Gaussian’,[X1(:) X2(:)],1-exp(-10));

subplot(1,2,1)

surf(X1,X2,reshape(F,s,s));

subplot(1,2,2)

contour(X1,X2,reshape(F,s,s));

figure

%Frecht-Hoeffing lower bound copula W(u,v)

[X1,X2] = meshgrid(x,x);

F=copulacdf(’Gaussian’,[X1(:) X2(:)],-(1-exp(-10)));

subplot(1,2,1)

surf(X1,X2,reshape(F,s,s));

subplot(1,2,2)

contour(X1,X2,reshape(F,s,s));

figure

%The product copula

[X1,X2] = meshgrid(x,x);

F=copulacdf(’Gaussian’,[X1(:) X2(:)],0);

subplot(1,2,1)

surf(X1,X2,reshape(F,s,s));

subplot(1,2,2)

contour(X1,X2,reshape(F,s,s));
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%% 2-dimensional Gaussian copula

clear all

[x,y]=meshgrid(linspace(0,1,50));

P=copulapdf(’Gaussian’,[x(:),y(:)],0.5);

subplot(1,2,1)

surf(x,y,reshape(P,[50,50]));

colormap jet;

subplot(1,2,2)

contour(x,y,reshape(P,[50,50]),20);

%% curve

subplot(4,1,1)

plot(S1)

title(’Adjusted Close price of AstraZeneca’)

subplot(4,1,2)

plot(S2,’color’,’g’)

title(’Adjusted Close price of Ericsson’)

subplot(4,1,3)

plot(S3,’color’,’r’)

title(’Adjusted Close of Volvo’)

subplot(4,1,4)

plot(S4,’color’,’k’)

title(’Adjusted Close price of SEB’)

%% S PDF

subplot(2,2,1)

histogram(S1,’Normalization’,’pdf’)
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title(’estimated pdf of AstraZeneca’)

subplot(2,2,2)

histogram(S2,’Normalization’,’pdf’)

title(’estimated pdf of Ericsson’)

subplot(2,2,3)

histogram(S3,’Normalization’,’pdf’)

title(’estimated pdf of Volvo’)

subplot(2,2,4)

histogram(S4,’Normalization’,’pdf’)

title(’estimated pdf of SEB’)

%% LOG curve

subplot(4,1,1)

plot(X1)

title(’Log return of AstraZeneca’)

subplot(4,1,2)

plot(X2,’color’,’g’)

title(’Log return of Ericsson’)

subplot(4,1,3)

plot(X3,’color’,’r’)

title(’Log return of Volvo’)

subplot(4,1,4)

plot(X4,’color’,’k’)

title(’Log return of Handelsbanken’)

%% empirical distribution of U

[f1,ux1]=ecdf(U1);

[f2,ux2]=ecdf(U2);
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[f3,ux3]=ecdf(U3);

[f4,ux4]=ecdf(U4);

subplot(2,2,1)

plot(ux1,f1)

title(’Empirical distribution of U1’)

subplot(2,2,2)

plot(ux2,f2)

title(’Empirical distribution of U2’)

subplot(2,2,3)

plot(ux3,f3)

title(’Empirical distribution of U3’)

subplot(2,2,4)

plot(ux4,f4)

title(’Empirical distribution of U4’)
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