
Approximate stochastic control based
on deep learning and forward backward
stochastic differential equations
Master’s thesis in engineering mathematics and computational science

KRISTOFFER ANDERSSON

Department of mathematical sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018





Master’s thesis 2018:NN

Approximate stochastic control based on deep
learning and forward backward stochastic

differential equation

KRISTOFFER ANDERSSON

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2018



Approximate stochastic control based on deep learning and forward backward stochas-
tic differential equation

KRISTOFFER ANDERSSON

© KRISTOFFER ANDERSSON, 2018.

Supervisors: Dr. Adam Andersson, Syntronic and Assoc. prof. Mihály Kovács,
Chalmers University of Technology and University of Gothenburg, Department of
Mathematical Sciences
Examiner: Assoc. prof. Annika Lang, Chalmers University of Technology, Depart-
ment of Mathematical Sciences

Master’s Thesis 2018:NN
Department of Mathematical Sciences

Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A double inverted pendulum on a cart.

Typeset in LATEX
Gothenburg, Sweden 2018

iv



Approximate stochastic control based on deep learning and forward backward stochas-
tic differential equation

KRISTOFFER ANDERSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Abstract: In this thesis numerical methods for stochastic optimal control are in-
vestigated. More precisely a nonlinear Gaussian diffusion type state equation with
control in the drift and a quadratic cost functional with finite time horizon is consid-
ered. The proposed algorithm relies on recent work on deep learning based solvers
for backward stochastic differential equations. The stochastic optimal control prob-
lem is reformulated as a forward backward stochastic differential equation and the
algorithm is modified to apply to the problem of this thesis. The algorithm is tested
on the benchmark problems of controlling single and double inverted pendulums on
a cart. It is shown by numerical experiments that the algorithm performs well on
both examples.

Keywords: Stochastic optimal control, neural networks, HJB, BSDE, FBSDE, in-
verted pendulum.

v





Acknowledgements
I would like to thank my two supervisors Adam Andersson and Mihàly Kovács.
Thank you Adam for being extremely encouraging and helpful. Thank you for al-
ways pointing me in the right direction and never getting frustrated. Thank you for
being available also in the evenings and weekends. Thank you Mihàly for making
me interested in PDEs through your enthusiastic way of teaching the project course
in PDEs. Thank you for introducing me to this project and for constantly following
up my work and answering my questions. You have both been better supervisors
than any student can expect. I would also like to thank Annika Lang and Arnulf
Jentzen for helpful comments on the report.

Finally, I would like to thank Syntronic for making this project possible. I would also
like to thank everyone at the office for your encouragement and especially Gustaf
for your support in my progress.

Kristoffer Andersson, Gothenburg, October 2018

vii





Contents

List of Figures xi

List of Tables xv

1 Introduction 1

2 Forward backward stochastic differential equations 5
2.1 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Forward stochastic differential equations . . . . . . . . . . . . . . . . 6
2.3 Backward stochastic differential equations . . . . . . . . . . . . . . . 7

2.3.1 BSDEs with zero generator . . . . . . . . . . . . . . . . . . . 8
2.3.2 BSDEs with non zero generator . . . . . . . . . . . . . . . . . 9

2.4 Forward backward stochastic differential
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Decoupled FBSDEs . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Stochastic optimal control 19
3.1 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Conceptual overview of the strategies for finding the optimal Markov

control policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 A sketch of derivation of the Hamilton–Jacobi–Bellman equation . . . 22
3.4 Existence and uniqueness theorem for the HJB equation and a veri-

fication theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Reformulation of a stochastic optimal control problem to a FBSDE . 26
3.6 Change of drift coefficients . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Affine state equation . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.2 The linear quadratic regulator . . . . . . . . . . . . . . . . . . 30

3.6.2.1 Reformulation of the control problem to the FBSDE 30
3.6.2.2 Analytic solution via a system of ODEs . . . . . . . 31

4 The neural network based algorithms 33
4.1 Deep neural networks - function approximators . . . . . . . . . . . . 33

4.1.1 The structure of an artificial neural network . . . . . . . . . . 33
4.1.2 Example of a low dimensional neural network . . . . . . . . . 34
4.1.3 The loss function . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4 Training of a neural network . . . . . . . . . . . . . . . . . . . 38

4.1.4.1 Optimization algorithms used in the training procedure 39

ix



Contents

4.2 Neural network based algorithms for solving stochastic optimal con-
trol problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 The naive controller . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 The DPE controller . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 The FBSDE controller . . . . . . . . . . . . . . . . . . . . . . 44
4.2.4 The Deep BSDE Solver . . . . . . . . . . . . . . . . . . . . . . 45

5 Inverted pendulum on a cart 47
5.1 Single inverted pendulum on a cart . . . . . . . . . . . . . . . . . . . 47
5.2 Double inverted pendulum on a cart . . . . . . . . . . . . . . . . . . 49
5.3 Numerical methods for simulations of inverted pendulum on a cart . . 51
5.4 Numerical experiments for simulations of inverted pendulums on a cart 53

5.4.1 Single inverted pendulum . . . . . . . . . . . . . . . . . . . . 53
5.4.2 Double inverted pendulum . . . . . . . . . . . . . . . . . . . . 54

6 Numerical experiments 57
6.1 Examples in one dimension . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Linear quadratic regulator . . . . . . . . . . . . . . . . . . . . 58
6.1.2 Non-linear control . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Control of a single inverted pendulum on a cart . . . . . . . . . . . . 61
6.2.1 Two different control strategies . . . . . . . . . . . . . . . . . 63
6.2.2 Some strategies to improve the robustness of the control . . . 69

6.3 Control of a double inverted pendulum on a cart . . . . . . . . . . . . 69
6.3.1 Different initial values . . . . . . . . . . . . . . . . . . . . . . 71
6.3.2 Some strategies to improve the robustness of the control . . . 76

7 Discussion 79
7.1 Evaluation of the results . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 81

x



List of Figures

4.1 A neural network mapping, NNθ : R2 → R. The upper plots show
the structure of the network and the lower plots show the graphs of
NNθ for randomly sampled θ. Left: L = 2 with k1 = 4. Right: L = 4
with k1 = k2 = k3 = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 A neural network mapping, NNθ : R2 → R. The upper plots show the
structure of the network and the lower plots show the graphs of NNθ

for randomly sampled θ. Left: L = 2 with k1 = 15. Right: L = 4
with k1 = k2 = k3 = 15. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 A schematic picture of the naive controller. . . . . . . . . . . . . . . . 43
4.4 A schematic picture of the DPE controller. . . . . . . . . . . . . . . . 44
4.5 A schematic picture of the FBSDE controller. . . . . . . . . . . . . . 45
4.6 A schematic picture of the Deep BSDE solver. . . . . . . . . . . . . . 46

5.1 Inverted pendulum on a cart. . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Double inverted pendulum on a cart. . . . . . . . . . . . . . . . . . . 49
5.3 Convergence plots withMsamples = 10 for the uncontrolled state equa-

tion approximated with the Euler–Maruyama method for single pen-
dulum. Left: Initial data x1

0. Right: Initial data x2
0. . . . . . . . . . . 53

5.4 Convergence plots withMsamples = 10 for the uncontrolled state equa-
tion approximated with the Euler–Maruyama method for double pen-
dulum. Left: Initial data x1

0. Right: Initial data x2
0. . . . . . . . . . . 54

5.5 The error as a function of the length of the time interval T for noise
level s = 0.05 with initial data x1

0 to the left and x2
0 to the right. . . . 55

6.1 Upper: The BSDE control and the analytic control applied to two
sample paths of an Ornstein-Uhlenbeck process. Lower: The BSDE
controller and the analytic optimal control for two different sample
paths of an Ornstein-Uhlenbeck process. . . . . . . . . . . . . . . . . 59

6.2 Left: The average of 500 test samples of controlled and uncontrolled
Ornstein-Uhlenbeck processes with an empirical 95% confidence in-
terval. Right: The average of 500 sample paths of the control signals
that corresponds to the controlled processes in the plot to the right. . 59

6.3 Average of 500 controlled and uncontrolled processes with a 95% em-
pirical confidence intervals. Upper left: The naive controller. Upper
right: The FBSDE controller. Lower: The FBSDE2 controller. . . . . 60

xi



List of Figures

6.4 One sample of a controlled process and one sample of an uncontrolled
process. Upper left: The naive controller. Upper right: The FBSDE
controller. Lower: The FBSDE2 controller. . . . . . . . . . . . . . . . 61

6.5 The average control signal with an empirical 95% confidence interval.
Upper left: The naive controller. Upper right: The FBSDE controller.
Lower: The FBSDE2 controller. . . . . . . . . . . . . . . . . . . . . . 62

6.6 Cost plotted against the number of training iterations for different
algorithms. Left: Case I. Right: Case II. . . . . . . . . . . . . . . . . 64

6.7 The average of 500 test samples of the uncontrolled and controlled
processes with an empirical 95% confidence interval with settings as
in Case I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.8 The average of 500 test samples of the uncontrolled and controlled
processes with an empirical 95% confidence interval with settings as
in Case II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.9 One typical, randomly chosen sample of a controlled and uncontrolled
process with settings as in Case I. . . . . . . . . . . . . . . . . . . . . 67

6.10 One typical, randomly chosen sample of a controlled and uncontrolled
process with settings as in Case II. . . . . . . . . . . . . . . . . . . . 68

6.11 The average control signal with an empirical 95% confidence interval.
Left: Case I. Right: Case II. . . . . . . . . . . . . . . . . . . . . . . . 68

6.12 The average of 500 test samples of the angles and the angular veloc-
ities with an empirical 95% confidence interval. Left: Case I. Right:
Case II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.13 Settings as in Case I but with the larger domain of initial values. Left:
The average of 500 test samples of angles and angular velocities with
an empirical 95% confidence interval. Right: The average of 500 test
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.14 Settings as in Case I but with the larger domain of initial values and
with s = 0.3. Left: The average of 500 test samples of angles and
angular velocities with an empirical 95% confidence interval. Right:
The average of 500 test samples. . . . . . . . . . . . . . . . . . . . . . 70

6.15 Settings as in Case I but with the larger domain of initial values. The
algorithm is trained with s = 0.3 and tested with s = 0. Left: The
average of 500 test samples of angles and angular velocities with an
empirical 95% confidence interval. Right: The average of 500 test
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.16 Cost plotted against the number of training iterations for different
algorithms. Upper left: Case I. Upper right: Case II. Mid left: Case
III. Mid right: Case IV. Lower: Case V . . . . . . . . . . . . . . . . . 73

6.17 The average of 500 test samples of Angle 1 and angle 2 to the left and
angular velocity 1 and angular velocity 2 to the right with empirical
95% confidence intervals. Upper: Case I. Mid: Case II. Lower: Case
III. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.18 One typical, randomly chosen sample of a controlled and uncontrolled
process with settings as in Case I. . . . . . . . . . . . . . . . . . . . . 75

xii



List of Figures

6.19 The average control signal with an empirical 95% confidence interval
with settings as in Case I. . . . . . . . . . . . . . . . . . . . . . . . . 76

6.20 The average of 500 test samples of Angle 1 and angle 2 to the left and
angular velocity 1 and angular velocity 2 to the right with empirical
95% confidence intervals. Upper: Case IV. Lower: Case V. . . . . . . 77

6.21 The average of 500 control signals with an empirical 95% confidence
interval. Left: Case IV. Right: Case V. . . . . . . . . . . . . . . . . . 77

xiii



List of Figures

xiv



List of Tables

5.1 Notation for the single inverted pendulum on a cart. . . . . . . . . . . 48

6.1 Parameters and constants for the single inverted pendulum on a cart
used in the numerical experiments. . . . . . . . . . . . . . . . . . . . 63

6.2 Parameters and constants for the double inverted pendulum on a cart
used in the numerical experiments. . . . . . . . . . . . . . . . . . . . 72

xv



List of Tables

xvi



1
Introduction

Partial differential equations (PDEs) are among the most important mathematical
tools for modelling the world around us. PDEs can be used to describe physical
phenomena such as heat transfer, propagation of electromagnetic waves and the
dynamics of fluids to name a few subjects. While some PDEs have known solution
formulas, the vast majority has to be approximated numerically. Since the entry
of computers the field of numerical methods for PDEs has been revolutionized.
The most widely used methods are the finite element method (FEM), the finite
difference method (FDM), the finite volume method (FVM) and spectral methods.
Major progress have been made in adapting these methods to specific problems.
Although the above methods are successful, they cannot be used to approximate
PDEs in high dimensions. The difficulties lies in the ”curse of dimensionality” [1],
which in this context means that the computational cost grows exponentially with
the dimensionality of the problem. In [2] the authors propose a deep learning-
based algorithm for approximating a large class of high-dimensional second order
semilinear parabolic PDEs and demonstrate the performance of the algorithm on
various PDEs with 100 space dimensions. The algorithm uses the reformulation of
parabolic PDEs as backward stochastic differential equations (BSDEs), which are
then approximated by a deep neural network. The algorithm is called the deep
BSDE solver and the main features are, roughly, the following:

(1) Choose one fixed spatial point x0.
(2) Train the neural network to output an Euler–Maruyama type approximation

to a certain BSDE, related to the PDE problem, being parametrized by x0.
(3) After training of the neural network the initial value of the BSDE is an ap-

proximation of the solution f to the PDE at space point x0 at time 0, i.e., one
training of the network approximates f(0, x0).

Experiments are performed on equations with known solutions, which are then com-
pared to the approximate solutions. In this cases the algorithm performs well, both
regarding to accuracy and computational cost. In [4], which is a follow-up work
on [2] and [3], the authors propose an extended algorithm to solve fully nonlinear
parabolic PDEs by solving the corresponding second order BSDE (2BSDE). In [2],
[3] and [4] a temporal discretization in N + 1 time points is performed. The algo-
rithms then rely on N subnetworks, which means that the number of parameters
to optimize increases with N . This may be prohibitive when the temporal domain
is large or when a fine time grid is required for the Euler–Maruyama scheme to
be sufficiently accurate. In [5] a neural network based algorithm, similar to the
BSDE solver, for solving high dimensional semilinear PDEs is proposed. The algo-

1



1. Introduction

rithm uses a reformulation of the PDE as a forward backward stochastic differential
equation (FBSDE), but contrary to the BSDE solver, the number of parameters is
independent of, N , the number of discrete time points. The authors also point out
a straight forward extension to the algorithm, so that also fully nonlinear parabolic
PDEs can be solved. To demonstrate the strength of deep learning algorithms, we
include a reference to an article where an algorithm for solving stationary PDEs on
complex domains is proposed. While different versions of the FEM, FDM and FVM
are limited by the difficulties in meshing a complex spatial domain, which can be
as difficult as the numerical solution of the PDE itself, the authors show that the
algorithm proposed in [6] is able to solve low dimensional PDEs on complex spatial
domains with high accuracy.

In stochastic optimal control theory, the optimal (feedback) control is given by the
gradient of the solution to a so-called Hamilton–Jacobi–Bellman (HJB) equation,
which is a semi-linear parabolic PDE. By construction, the BSDE solver not only
computes the solution, but also the gradient of the solution to the HJB equation,
which makes it tractable for applications in stochastic optimal control. One problem
is that the BSDE solver only provides the optimal control at one point in space-
time, while in applications, we are typically interested in a control strategy over a
time interval and a spatial domain. To generalize the BSDE solver to be able to
approximate a PDE over a spatial domain is feasible, which the authors point out
in [3]. The procedure for doing this is to replacing (1)–(3) by:
(1’) Choose a D ⊂ Rn.
(2’) Train the network as in (2) but with the initial value to the BSDE not fixed

but being a function (neural network) of x0 ∈ D.
(3’) Obtain as in (3), an approximation f(0, x0) but now for any x0 ∈ D.

This is demonstrated in Chapter 6 for a 1 dimensional problem. The generalization
to obtain the solution of the PDE at later time points is challenging for different
reasons. Since the solution to the PDE is not of central interest in stochastic control
but rather the gradient of the solution we leave this discussion out. The interested
reader is referred to [5], where this is discussed.

In this thesis we propose an algorithm that approximates FBSDEs. As the name
suggests a FBSDE is a coupled system of one forward and one backward stochastic
differential equation (SDE). The BSDE part, again consists of a stochastic process
with two components that correspond to the solution and the gradient of the solu-
tion to a PDE. The forward SDE plays the role of the state equation in the system
that we want to control. The forward SDE and BSDE interact in the way that the
BSDE provides the instantaneous optimal control signal at a space-time point given
by the forward SDE, which is then instantaneously affected by the control. The algo-
rithm is an obvious generalization of (1’)–(3’) with the BSDE replaced by a FBSDE.

In this thesis we apply the algorithm to a number of test problems, including control
of single and double inverted pendulums on a moving cart. The control of pendu-
lums on a cart to an upright position are classical benchmark problems in optimal
control due to the nonlinear dynamics, see, e.g., [22].

2



1. Introduction

The algorithms rely on neural networks, which in the context of this thesis is a
method for approximating functions. It should be pointed out that, although neural
networks have been proven to be successful in many applications the theoretical
foundation is in many respects underdeveloped.

The thesis is structured as follows: Chapter 2 deals with some basic theory from
stochastic analysis. We start by introducing SDEs and BSDEs separately. The
two concepts are then linked together to construct a FBSDE. We further give some
existence and uniqueness results for SDEs, BSDEs and FBSDEs but it should be
stressed that these results do not apply to the particular examples used to test the
algorithms. In Chapter 3 we introduce the stochastic optimal control problem and
give a sketch of a derivation of the HJB equation. Existence and uniqueness results
for the HJB equation as well as a verification theorem that guarantees that the HJB
equation actually provides the optimal control, are given. In the end of the chap-
ter the connection between the stochastic optimal control problem and FBSDEs is
explained. Chapter 4 contains a brief introduction to deep neural networks and in
the final section all algorithms used in this thesis are introduced. Chapter 5 first
deals with the dynamics of the single and double inverted pendulum on a cart. We
then discuss numerical methods for approximating the dynamics and provide error
plots of these approximations. In Chapter 6 the numerical results are presented. We
start with two one-dimensional toy problems where one of them is a problem where
an analytic optimal control can be found. The analytic control is compared to the
approximate counterpart. We then move on to numerical experiments of control
of the single and double inverted pendulum. We further suggest some strategies
to improve the robustness of the control and show numerical examples of such ex-
periments. Finally, in Chapter 7 we discuss our results and suggest possible future
work.

3



1. Introduction

4



2
Forward backward stochastic

differential equations

As described in the introduction, FBSDEs play a central role in this thesis. The
field of BSDEs and FBSDEs (which, again, is a coupled system of one SDE and one
BSDE) is quite new. The concept of BSDEs was first introduced 1978 as a dual
problem to a stochastic optimal control problem in [7] but it was not until 1990 that
a proof of the existence of an adapted solution to a class of nonlinear BSDEs was
presented in [8]. In 1992 the same authors discovered that the adapted solution of
a BSDE could be viewed as a probabilistic interpretation of the solutions to some
parabolic PDEs. Another important article [10] about applications of BSDEs and
FBSDEs in mathematical finance was published in 1999. Since then a number of
books [11], [12] and [13], to name a few, on the subject have been published.

Although the field of BSDE and FBSDE has been extensively explored since 1990
there are still important gaps in the theory, in particular when it concerns solutions
to fully coupled FBSDE. In the upcoming sections we refer to theoretical results
regarding existence and uniqueness of solutions when there are such results known
but we also note that the equations used in later sections do not always satisfy the
rather strict assumptions of the established theory. In Section 2.2 we give a brief in-
troduction to SDEs and in Section 2.3 we introduce BSDEs with some more detailed
exposition including results regarding existence and uniqueness of solutions to these
equations. Proofs are included since they reveal, for the interested reader, what
BSDEs actually are and how to understand them. Forward and backward SDEs
are then linked together and a general form of FBSDEs are presented in Section
2.4. Finally, the two kinds of FBSDEs used in this thesis, uncoupled and coupled
FBDSEs, are introduced. A solution to a FBSDE is considered to be uncoupled
if the solution of the BSDE does not enter the dynamics of the SDE and coupled
otherwise.

2.1 General setting

From now on we assume thatW = {Wt}t∈[0, T ] is a d-dimensional standard Brownian
motion on a filtered probability space (Ω, F , F, P), where F = {Ft}t∈[0, T ] is the
filtration generated by W and completed by the P-null sets of Ω. Throughout this
thesis we assume that [0, T ] refers to a finite time interval, i.e., T <∞. We further
assume that all stochastic processes in this thesis are adapted to F unless something

5



2. Forward backward stochastic differential equations

else is specified.

The norm denoted by | · | should, from now on be interpreted as the Frobenius
norm defined by |A| =

√
Trace(ATA) for A ∈ Rm×n for positive integers m and

n. The trace of a matrix B ∈ Rn×n is defined to be the sum of the elements on
the diagonal, i.e., Trace(B) = ∑n

i=1 bii. Note that the Frobenius norm reduces to
the Euclidean norm for vectors and to the absolute value for scalars. When re-
ferring to a mean-square process we mean a process X = {Xt}t∈[0, T ] such that
supt∈[0, T ]E [ |Xt|2] < ∞ and for t ∈ [0, T ] it holds that lims→tE [ |Xs −Xt|2] = 0.
In this thesis we use the following spaces:

• Lp(Rn) denotes the space of measurable functions f : [0, T ] → R
n satisfying∫ T

0 |f(t)|pdt <∞,
• L

2
T (R) denotes the space of all FT -measurable random variables ξ : Ω → R

satisfying ‖ξ‖2
L2

T (R) = E [ |ξ|2] <∞,
• H

1
T (Rd) denotes the space of all mean-square continuous, predictable processes

S : [0, T ]× Ω→ R
d satisfying ‖S‖H1

T (Rd) = E
[√∫ T

0 |St|2 dt
]
<∞,

• H
2
T (Rd) denotes the space of all mean-square continuous, predictable processes

Z : [0, T ]× Ω→ R
d satisfying ‖Z‖2

H2
T (Rd) = E

[∫ T
0 |Zt|2 dt

]
<∞,

• S
2
T (R) denotes the space of all mean-square continuous, predictable processes

Y : [0, T ]× Ω→ R satisfying ‖Y ‖2
S2

T (R) = supt∈[0, T ]E [ Y 2
t ] <∞,

• V
2
T (R×Rd) denotes the product normed vector space S2

T (R)⊕H2
T (Rd) of all

pairs (Y, Z) ∈ S2
T (R)⊕H2

T (Rd) with norm
‖(Y, Z)‖2

V2
T (R×Rd) = supt∈[0, T ]E [ Y 2

t ] +E
[∫ T

0 |Zt|2
]
dt.

We remark that the bold face spaces all consist of equivalence classes of random
variables or processes.

2.2 Forward stochastic differential equations
A forward stochastic differential equations (forward SDE or simply SDE) is an equa-
tion formally written

dXt = µ(t, Xt) dt+ σ(t, Xt) dWt, t ∈ (0, T ]; X0 = x0, (2.1)

where µ : [0, T ] × Rn → R
n and σ : [0, T ] × Rn → R

n×d are measurable functions
referred to as the drift coefficient and the diffusion coefficient, respectively. Equa-
tion (2.1) is interpreted as the stochastic integral equation

Xt = x0 +
∫ t

0
µ(s, Xs) ds+

∫ t

0
σ(s, Xs) dWs. (2.2)

A natural question to ask is whether a solution to (2.1) exists and if the solution is
unique. It should be mentioned that there exist different kinds of solution concepts
to SDEs but for the purpose of this thesis we are only interested in so-called strong
solutions. For a further discussion we refer to e.g. [15]. To give the most basic
existence and uniqueness result for SDEs we need to impose some conditions on the

6



2. Forward backward stochastic differential equations

drift and diffusion coefficients. The coefficients are said to be uniformly Lipschitz
continuous in the second variable if there exists a constant Lµ, σ > 0 such that for
t ∈ [0, T ] and x, y ∈ Rn it holds

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ Lµ, σ|x− y|.

The coefficients are said to satisfy a linear growth condition in the second vari-
able if there exists a constant Cµ, σ > 0 such that for t ∈ [0, T ] and x,∈ Rn it
holds

|µ(t, x)|+ |σ(t, x)| ≤ Cµ, σ(1 + |x|).
If the coefficients of (2.1) are uniformly Lipschitz continuous, satisfy a linear growth
condition and the initial condition x0 has bounded second order moment, i.e.

E

[
|x0|2

]
<∞,

then there exists a unique stochastic process X, with continuous sample paths,
satisfying (2.1) for all t ∈ [0, T ] almost surely. Furthermore,

E

[∫ T

0
|Xt|2 dt

]
<∞.

Such a process is called a strong solution of (2.1). The assumptions on the coef-
ficients above are rather restrictive and there are several results for existence and
uniqueness in more general settings, for example in [16] and [17] the authors present
results were the assumption on uniform Lipschitz continuity is relaxed.

2.3 Backward stochastic differential equations
For an ordinary differential equation (ODE) one can define both an initial value
problem and a terminal value problem and under certain regularity assumptions
they are both well-posed. In fact the terminal value problem is equivalent to the
initial value problem for ODEs under the transformation t 7→ T − t, where t is the
time variable and T is the terminal time. However the task is much more delicate
when it comes to SDEs since the time transformation would break the adaptivity
of the solution of the SDE. In this section we strive for an intuitive motivation of
how to formulate a BSDE with an adapted solution. The BSDEs considered in this
thesis are of the form

− dYt = F (t, Yt, Zt) dt− Zt dWt, t ∈ [0, T ); YT = ξ, (2.3)

where F : Ω× [0, T ]×R×Rd → R is measurable. The integral form of (2.3) reads

Yt = ξ +
∫ T

t
F (s, Ys, Zs) ds−

∫ T

t
Zs dWs, t ∈ [0, T ]. (2.4)

The BSDE (2.3) is characterized by the generator F and the terminal condition
ξ. Therefore, the pair (F, ξ) is referred to as the parameters of the BSDE. The
parameters are said to be standard parameters if:

7



2. Forward backward stochastic differential equations

• The terminal value ξ ∈ L2
T (R),

• The stochastic process F ( · , 0, 0) ∈ H2
T (R),

• The function F is uniformly Lipschitz continuous in the second and third
variables i.e., there exists a constant LF > 0 such that for t ∈ [0, T ] and for
y1, y2 ∈ R and z1, z2 ∈ Rd, it holds almost surely that

|F (t, y1, z1)− F (t, y2, z2)| < LF (|y1 − y2|+ |z1 − z2|) . (2.5)

2.3.1 BSDEs with zero generator
As an illustrative example consider the equation

dYt = 0, t ∈ [0, T ); YT = ξ, (2.6)

where ξ ∈ L2
T (R). It is clear that the only solution to (2.6) is Y = {Yt}t∈[0, T ] defined

by Yt = ξ for all t ∈ [0, T ] which is not measurable with respect to the σ-algebra
F for t ≥ 0 unless ξ is F0-measurable, i.e., in the case of an ODE with random
initial value. We see that Y satisfies (2.6) but is not adapted to the filtration Ft, for
t ∈ [0, T ], in general. To fix this we instead consider Y defined by Yt = E [ξ | Ft],
for t ∈ [0, T ]. This process is F-adapted and YT = ξ but does not satisfy dYt = 0.
To find an Itô equation for Y with zero drift we first need to recall the martingale
representation theorem.

Theorem 1 (The martingale representation theorem) Suppose that
{Mt}t∈[0, T ] is a square integrable martingale with respect to the filtration F. Then
there exists a unique, predictable, square integrable, d-dimensional stochastic process
Z = {Zt}t∈[0, T ] ∈ H2

T (Rd) such that for all t ∈ [0, T ] it holds almost surely that

Mt = M0 +
∫ t

0
Zs dWs.

We note that Yt = E[ξ | Ft], for t ∈ [0, T ] is a square integrable martingale with
respect to the filtration F and can therefore conclude that there exists a unique
process Z with the properties specified in Theorem 1 and this implies that Y satisfies

Yt = Y0 +
∫ t

0
Zs dWs, t ∈ [0, T ]. (2.7)

From the definition of Y we have that YT = ξ and therefore

Y0 = ξ −
∫ T

0
Zs dWs. (2.8)

Combining (2.7) and (2.8) gives

Yt = ξ −
∫ T

t
Zs dWs. (2.9)

Equation (2.9) in differential form then reads

dYt = Zt dWt, t ∈ [0, T ); YT = ξ. (2.10)

8



2. Forward backward stochastic differential equations

This equation is a BSDE (with zero drift), while (2.6) is not. Equation (2.10) is
a more important and appropriate equation than (2.6). The solution to (2.10) is
the pair (Y, Z) of F-adapted processes satisfying Yt = E[ξ | Ft] and (2.7). The only
difference between (2.6) and (2.10) is the term Zt dWt. This extra term makes the
solution to (2.10) adapted to the filtration F while the solution to (2.6) is not.

2.3.2 BSDEs with non zero generator
To obtain a BSDE of a more general form we consider the martingaleM = {Mt}t∈[0, T ]
defined by

Mt = E
[
ξ +

∫ T

0
F (s, ys, zs) ds

∣∣∣Ft
]
, (2.11)

for t ∈ [0, T ] where F : Ω×[0, T ]×R×Rd → R and y = {yt}t∈[0, T ] and z = {zt}t∈[0, T ]
form a pair (y, z) ∈ V2

T (R × Rd). We further assume that (F, ξ) are standard
parameters. The reason for introducing the processes y, and z will become clear
later in this section. To be able to use Theorem 1 we need to show that M is square
integrable, which is equivalent to showing that ξ+

∫ T
0 F (s, ys, zs) ds ∈ L2

T (R). Since
L

2
T (R) is a vector space which is closed under addition and ξ ∈ L2

T (R) by definition
it is enough to show that

∫ T
0 F (s, ys, zs) ds ∈ L2

T (R). To show this we use Hölder’s
inequality in the first step and in the second step we add and subtract F (·, 0, 0)
and use the inequality (a+ b)2 ≤ 2(a2 + b2) to obtain

E

(∫ T

0
F (s, ys, zs) ds

)2
 ≤T E [∫ T

0
F (s, ys, zs)2 ds

]

≤ 2T E
[ ∫ T

0
(F (s, ys, zs)− F (s, 0, 0))2 ds

]
+ 2T E

[∫ T

0
F (s, 0, 0)2 ds

]
.

(2.12)

The first term is bounded since we have assumed Lipschitz continuity of F in the
second and third variable and since y ∈ H2

T (Rd) and z ∈ S2
T (R). The second term

is bounded since F ( · , 0, 0) ∈ H2
T (Rd). This implies that the process M is a square

integrable martingale with respect to the filtration F. We can then use Theorem
1 to guarantee the existence of a unique, predictable, square integrable stochastic
process Z = {Zt}t∈[0, T ] such that Mt can be written as

Mt = M0 +
∫ t

0
Zs dWs, t ∈ [0, T ]. (2.13)

Since Z is predictable it is also F-adapted and we can conclude that Z ∈ H2
T (Rd).

To obtain the BSDE define Y = {Yt}t∈[0, T ] as the stochastic process

Yt = E
[
ξ +

∫ T

t
F (s, ys, zs) ds

∣∣∣Ft
]

= Mt −
∫ t

0
F (s, ys, zs) ds, t ∈ [0, T ]. (2.14)

By inserting (2.13) in the right hand side of (2.14) and noticing that Y0 = M0 and
YT = ξ we obtain

Yt = Y0 −
∫ t

0
F (s, ys, zs) ds+

∫ t

0
Zs dWs, t ∈ [0, T ], (2.15)

9



2. Forward backward stochastic differential equations

or, equivalently,

Yt = ξ +
∫ T

t
F (s, ys, zs) ds−

∫ T

t
Zs dWs, t ∈ [0, T ]. (2.16)

We denote the mapping G : (y, z)→ (Y, Z), defined implicitly by (2.13) and (2.16).
The following theorem guarantees that, under some conditions there exists a fixed
point of the mapping G, i.e., a unique pair (Y ∗, Z∗) ∈ V 2

T (R × Rd) satisfying
G(Y ∗, Z∗) = (Y ∗, Z∗). The pair (Y ∗, Z∗) is then the unique solution to (2.3).
As mentioned in the beginning of this chapter, the existence of unique adapted
solutions to a class of nonlinear BSDEs was first proven in [8]. In the proof the
authors use a Picard iteration to define an approximating sequence of the solution.

Theorem 2 Given standard parameters, there exists a unique pair
(Y, Z) ∈ V2

T (R×Rd) satisfying (2.3).

The proof of Theorem 2 uses a fixed point argument that is based on Banach’s
fixed point theorem. In addition we use Itô’s lemma, the Burkholder–Davis–Gundy
inequality, the Lebesgue theorem of differentiation and a Grönwall type inequality.
The first four theorems are well known standard theorems and we state them without
proofs. For proofs we refer to e.g. [34] for Banach’s fixed point theorem, [15] for Itô’s
lemma, [29] for the Lebesgue theorem of differentiation and [28] for the Burkholder–
Davis–Gundy inequality. The Grönwall type inequality is a modification of a special
case of an inequality from [30], which is a collection of a wide range of different
Grönwall type inequalities. We further use the Cauchy–Schwarz inequality, Hölder’s
inequality and the inequality (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R. These theorems are
considered sufficiently well-known to refer to without stating them explicitly.

Theorem 3 (Banach’s fixed point theorem) Let (X, ‖ · ‖X) be a Banach space
and let the mapping G : X → X be a contraction, i.e. there exists a constant K ∈
(0, 1) such that for all x1, x2 ∈ X it holds that

‖Gx1 − Gx2‖X ≤ K‖x1 − x2‖X. (2.17)

Then, there exists a unique fixed point x ∈ X of the mapping G, i.e. a unique x ∈ X
such that Gx = x.

Theorem 4 (Itô’s lemma) Let the process X = {Xt}t∈[0, T ] defined by

dXt = µ(t, Xt)dt+ σ(t, Xt)dWt

be an n-dimensional Itô process. Let the mapping g : [0, T ] ×Rn → R be one time
continuously differentiable in the first variable and two times continuously differen-
tiable in the second variable. Then the process Y = {Yt}t∈[0,∞) defined by

Yt = g(t, Xt)

is again an itô process. Further, for t ∈ [0, ∞), it holds that

dYt =
[
∂g

∂t
(t, Xt) + 1

2
{
σσT (t, Xt)Hessxg(t, Xt)

}
+∇xg(t, Xt)µ(t, Xt)

]
dt

+∇xg(t, Xt)σ(t, Xt)dWt.

10



2. Forward backward stochastic differential equations

Theorem 5 (The Burkholder–Davis–Gundy inequality) For m ∈
{

1
2 , 1

}
let

φ ∈ H2m
T (Rd). Then there exist universal constants km, Km < ∞, such that for

T ≥ 0 it holds that

kmE

[∫ T

0
|φt|2dt

]m
≤ E

∣∣∣∣∣ sup
t∈[0, T ]

∫ t

0
φs dWs

∣∣∣∣∣
2m

≤ KmE

[∫ T

0
|φt|2dt

]m
.

Further, if φ ∈ H1
T (Rd), then E

[∫ T
0 φtdWt

]
= 0.

Theorem 6 (The Lebesgue theorem of differentiation) Let f : [a, b]→ R be
measurable such that f satisfies

∫ b
a |f(x)|dx < ∞ and let F (x) =

∫ x
a f(s)ds for

x ∈ (a, b]. Then for almost all x ∈ (a, b) it holds that

d
dxF (x) = lim

ε→0

1
2ε

∫ t+ε

t−ε
f(y)dy = f(x). (2.18)

Lemma 1 Let u, α, β : [0, T ] → R
+ where u, α ∈ L1(R) and β ∈ L2(R). Further

assume that for t ∈ [0, T ] the inequality

ut + αt ≤ 2C
∫ T

t

√
usβs ds (2.19)

holds. Then for t ∈ [0, T ] it holds that

ut ≤ C2
(∫ T

t
βsds

)2

. (2.20)

Proof of Lemma 1:
If
∫ T

0
√
utβtdt = 0 we must have that ut = 0 for all t ∈ [0, T ] and (2.20) holds.

Assume that
∫ T

0
√
utβtdt 6= 0. Note that since αt ≥ 0 for all t ∈ [0, T ], it holds that

√
ut ≤

√
2C

∫ T
t

√
usβs ds. Then it follows from the Lebesgue theorem of differentia-

tion that βt = limε→0
1
2ε
∫ t+ε
t−ε βy dy for almost every t ∈ (0, T ). As a consequence we

have for almost every t ∈ (0, T ) that

d
dt

(∫ T

t

√
usβs ds

)
= −√utβt ≥ −βt

√
2C

∫ T

t

√
usβs ds.

One can use the mean value theorem to show that the Lebesgue differentiation
theorem implies that the chain rule holds. Therefore, by using the chain rule we
obtain

d
dt

√∫ T

t

√
usβs ds

 =
d
dt

(∫ T
t

√
usβs ds

)
2
√∫ T

t

√
usβs ds

≥ −
√
C

2 βt.

Integrating over [t, T ] and squaring both sides implies that

∫ T

t

√
usβs ds ≤

C

2

(∫ T

t
βs ds

)2

11



2. Forward backward stochastic differential equations

which is then inserted to (2.19) to obtain

ut + αt ≤ C2
(∫ T

t
βs ds

)2

.

�

We are now ready to prove Theorem 2.

Proof of Theorem 2:
Consider Y, Z, y, z as defined in the beginning of this section. We note that Y ∈
S

2
T (R) which can be shown by similar arguments as in (2.12) and that Z ∈ H2

T (Rd).
Therefore G(y, z) = (Y, Z) is a mapping from the Banach space V2

T (R × Rd)
to itself, i.e. G : V2

T (R×Rd)→ V
2
T (R×Rd). Let (y, z), (ȳ, z̄) ∈ V2

T (R × Rd)
and let Ȳ and Z̄ be defined by (Ȳ , Z̄) = G(ȳ, z̄). If we can show that G is a
contraction, then Banach’s fixed point theorem guarantees a unique fixed point
for the mapping G : V2

T (R × Rd) → V
2
T (R × Rd) which would be the solution

to the BSDE (2.3). We start by showing that there exists a unique solution to
(2.3) on the time interval [t, T ], for some t ∈ [0, T ). To do this we introduce
the Banach space

(
V

2
t, T (R×Rd), ‖ · ‖V2

t, T (R×Rd)

)
where the norm is defined by

‖(Y, Z)‖2
V2

t, T (R×Rd) = ‖Y ‖2
S2

t, T (R) + ‖Z‖2
H2

t, T (Rd) = supτ∈[t, T ]E [ Y 2
τ ] +E

[∫ T
t |Zs|2 ds

]
.

Note that G maps V2
t, T (R×Rd) to itself. The next step is to show that the mapping

G : V2
t, T (R×Rd)→ V

2
t, T (R×Rd) is a contraction for some appropriate t. By Itô’s

lemma we have that

d(Yt − Ȳt)2 =2(Yt − Ȳt)(F (t, yt, zt)− F (t, ȳt, z̄t))dt
− 2(Yt − Ȳt)(Zt − Z̄t)dWt + |Zt − Z̄t|2dt.

Integrating over [t, T ] and using the fact that YT = ȲT we obtain

(Yt − Ȳt)2 =− 2
∫ T

t
(Ys − Ȳs)(F (s, ys, zs)− F (s, ȳs, z̄s))ds

+ 2
∫ T

t
(Ys − Ȳs)(Zs − Z̄s)dWs −

∫ T

t
|Zs − Z̄s|2ds.

Taking the expectation of both sides and moving the last term to the right hand
side gives

E

[
(Yt − Ȳt)2

]
+E

[∫ T

t
|Zs − Z̄s|2ds

]
=− 2E

[∫ T

t
(Ys − Ȳs)(F (s, ys, zs)− F (s, ȳs, z̄s))ds

]

+ 2E
[∫ T

t
(Ys − Ȳs)(Zs − Z̄s) dWs

]
.

(2.21)

We now want to show that the expectation of the stochastic integral is zero. To
do this we use the last statement in the Burkholder–Davis–Gundy inequality guar-
anteeing that E

[∫ T
t (Ys − Ȳs)(Zs − Z̄s) dWs

]
= 0 if (Y − Ȳ )(Z − Z̄) ∈ H1

T (Rd), or

12



2. Forward backward stochastic differential equations

equivalently if E
[√∫ T

0 |(Y − Ȳ )(Z − Z̄)|2 dt
]
<∞. By Hölder’s inequality we have

that ∫ T

t
(Ys − Ȳs)2|Zs − Z̄s|2 ds ≤ sup

τ∈[t, T ]
(Yτ − Ȳτ )2

∫ T

t
|Zs − Z̄s|2 ds.

Raising both sides to 1/2 and taking the expectation yields

E

(∫ T

t
(Ys − Ȳs)2|Zs − Z̄s|2 ds

)1/2
 ≤ E

( sup
τ∈[t, T ]

(Yτ − Ȳτ )2
∫ T

t
|Zs − Z̄s|2 ds

)1/2


≤
(
E

[
sup
τ∈[t, T ]

(Yτ − Ȳτ )2
])1/2 (

E

[∫ T

t
|Zs − Z̄s|2 ds

])1/2

,

where the last inequality is obtained by using the Cauchy–Schwarz Inequality. Since
Z−Z̄ ∈ H2

T (Rd) it holds that E
[∫ T
t |Zs − Z̄s|2 ds

]
≤ ‖Z−Z̄‖2

H2
T (Rd) <∞. Recall the

representation of Y from (2.16), which in combination with the inequality (a+b)2 ≤
2(a2 + b2) yields

E

[
sup
τ∈[t, T ]

(Yτ − Ȳτ )2
]
≤2E

(∫ T

t
|F (s, ys, zs)− F (s, ȳs, z̄s)| ds

)2


+ 2E
 sup
τ∈[t, T ]

∣∣∣∣∣
∫ T

τ
(Zs − Z̄s) dWs

∣∣∣∣∣
2
 .

The first term on the right is finite by the Lipschitz continuity (2.5) of F . For the
second term the inequality (a+ b)2 ≤ 2(a2 + b2) is used again to obtain

E

[
sup
τ∈[t, T ]

∣∣∣∣∣
∫ T

τ
(Zs − Z̄s) dWs

∣∣∣∣∣
2]

≤2E
∣∣∣∣∣
∫ T

t
(Zs − Z̄s) dWs

∣∣∣∣∣
2
+ 2E

[
sup
τ∈[t, T ]

∣∣∣∣∫ τ

t
(Zs − Z̄s) dWs

∣∣∣∣2
]

≤4E
[

sup
τ∈[t, T ]

∣∣∣∣∫ τ

t
(Zs − Z̄s) dWs

∣∣∣∣2
]
.

Since Z − Z̄ ∈ H2
T (Rd) we can again use the Burkholder–Davis–Gundy inequality

with m = 1 to conclude that there exists a constant K1 <∞ such that

E

 sup
τ∈[t, T ]

∣∣∣∣∣
∫ T

τ
(Zs − Z̄s) dWs

∣∣∣∣∣
2
 ≤ K1E

[∫ T

t
|Zs − Z̄s|2 ds

]
≤ ∞.

We therefore conclude that (Y − Ȳ )(Z − Z̄) ∈ H1
T (Rd) which implies that (2.21)

becomes

E

[
(Yt − Ȳt)2

]
+E

[ ∫ T

t
|Zs − Z̄s|2ds

]
= −2E

[∫ T

t
(Ys − Ȳs)(F (s, ys, zs)− F (s, ȳs, z̄s))ds

]
.

13



2. Forward backward stochastic differential equations

To be able to move the expectation inside the integral, we take the absolute value
of the integrand on the right hand side and use Tonelli’s theorem and obtain

E

[
(Yt − Ȳt)2

]
+E

[ ∫ T

t
|Zs − Z̄s|2ds

]
≤ 2

∫ T

t
E

[∣∣∣(Ys − Ȳs)(F (s, ys, zs)− F (s, ȳs, z̄s))
∣∣∣ ds] .

By Hölder’s inequality and the Lipschitz continuity (2.5) of F it holds that

E

[
(Yt − Ȳt)2

]
+E

[∫ T

t
|Zs − Z̄s|2ds

]

≤ 2LF
∫ T

t

(
E

[
(Ys − Ȳs)2

])1/2
{(
E

[
(ys − ȳs)2

])1/2
+
(
E

[
|zs − z̄s|2

])1/2
}
ds.
(2.22)

Our aim is to apply Lemma 1 and in this way obtain a bound where the right
hand side does not depend on Y and Ȳ . To do this we need to take some care
with the function s 7→ (E [|zs − z̄s|2])1/2. Since z, z̄ ∈ H2

T (Rd) it holds that z, z̄
are not pointwise defined (changing z and z̄ on a P × [0, T ] nullset gives the same
vectors z, z̄ ∈ H2

T (Rd), i.e., they belong to the same equivalence class). For this
reason s 7→ (E [|zs − z̄s|2])1/2 is not pointwise defined. On the other hand we can
pick a version (an element from the equivalence class) ζ of s 7→ (E [|zs − z̄s|2])1/2

which is pointwise defined. Let ut = E

[
(Yt − Ȳt)2

]
, αt = E

[∫ T
t |Zs − Z̄s| ds

]
and

βt = (E [(yt − ȳt)2])1/2 + ζ. By Lemma 1 it now holds that

E

[
(Yt − Ȳt)2

]
+E

[∫ T

t
|Zs − Z̄s|2 ds

]

≤ L2
F

(∫ T

t

{(
E

[
(ys − ȳs)2

])1/2
+
(
E

[
|zs − z̄s|2

])1/2
}
ds
)2

.

(2.23)

By again using the inequality (a+ b)2 ≤ 2(a2 + b2) on the right hand side of (2.23)
we obtain

E

[
(Yt−Ȳt)2

]
+E

[∫ T

t
|Zs − Z̄s|2 ds

]

≤ 2L2
F

(∫ T

t

(
E

[
(ys − ȳs)2

])1/2
ds
)2

+
(∫ T

t

(
E

[
|zs − z̄s|2

])1/2
ds
)2
 .

By the Cauchy–Schwartz inequality the above can be written as

E

[
(Yt − Ȳt)2

]
+E

[∫ T

t
|Zs − Z̄s|2 ds

]

≤ 2L2
F

(∫ T

t
E

[
(ys − ȳs)2

]
ds+

∫ T

t
E

[
|zs − z̄s|2

]
ds
)
.

14



2. Forward backward stochastic differential equations

To obtain the appropriate norm on the right hand side note that∫ T

t
E

[
(ys − ȳs)2

]
ds ≤ (T − t) sup

τ∈[t, T ]
E

[
(yτ − ȳτ )2

]
,

and ∫ T

t
E

[
|zs − z̄s|2

]
ds = E

[∫ T

t
|zs − z̄s|2 ds

]
,

which gives

E

[
(Yt − Ȳt)2

]
+E

[ ∫ T

t
|Zs − Z̄s|2 ds

]
≤ 2L2

F max
{
T − t, (T − t)2

}
‖(y, z)− (ȳ, z̄)‖2

V2
t, T (R×Rd).

For the left hand side note that

sup
τ∈[t, T ]

(
E

[
(Yτ − Ȳτ )2

]
+E

[∫ T

τ
|Zs − Z̄s|2 ds

])

≥ 1
2

(
sup
τ∈[t, T ]

E

[
(Yτ − Ȳτ )2

]
+E

[∫ T

t
|Zs − Z̄s|2, ds

])
.

We therefore conclude that
‖(Y, Z)− (Ȳ , Z̄)‖V2

t, T (R×Rd) ≤ K‖(y, z)− (ȳ, z̄)‖V2
t, T (R×Rd), (2.24)

where K = 4LF
√

max {T − t, (T − t)2}. Reading from the expression of K, choos-
ing h∗ = T − t∗ small enough we can make K < 1 to obtain a contraction. Without
loss of generality we can choose h∗ = 1√

2LF +ε , for any fixed ε > 0. In terms of t∗ this
can be expressed as t∗ = T − 1√

2LF +ε . By this choice of t∗ we let Kh∗ = 2LF (h∗)2

which satisfy Kh∗ ∈ (0, 1) and in turn that (2.24) is a contraction. By Banach’s
fixed point theorem the existence of a unique solution to (2.3) on the time interval
[t∗, T ] is guaranteed. To extend the result to the interval [0, T ] we note that by the
same arguments that led to (2.16) it holds

Yt = YT−h∗ +
∫ T−h∗

t
F (s, ys, zs)ds+

∫ T−h∗

t
ZsdWs, t ∈ [0, T − h∗]. (2.25)

We can then do the same calculations as above to conclude that there exists a
unique solution to (2.3) on the interval [t∗− 2h∗, t∗− h∗]. Repeating this procedure
concludes the proof. �

By Theorem 2 we have concluded that the BSDE (2.3) is well-posed. With this in
mind we recall that Y0 = E

[
ξ +

∫ T
0 F (s, Ys, Zs) ds

]
which makes it possible to write

Y as the forward SDE

Yt = E
[
ξ +

∫ T

0
F (s, Ys, Zs) ds

]
−
∫ t

0
F (s, Ys, Zs) ds+

∫ t

0
Zs dWs, t ∈ [0, T ], (2.26)

or in differential form

dYt = −F (t, Yt, Zt) dt+ Zt dWt, t ∈ (0, T ]; Y0 = E
[
ξ +

∫ T

0
F (s, Ys, Zs) ds

]
.

Note that Y actually has a deterministic initial value. For this reason the BSDE
(2.3) can be viewed as a two point boundary value problem.

15



2. Forward backward stochastic differential equations

2.4 Forward backward stochastic differential
equations

Later in this thesis a forward SDE is used to describe the dynamics of a physical
system, e.g., an inverted pendulum on a cart. The drift term of the SDE comes
from the Newtonian laws of motion and a control process u = {ut}t∈[0, T ]. The
control process will be a deterministic function of time and the solution of a BSDE.
A coupled system of one forward SDE and one BSDE is then obtained. This system
is called a FBSDE and in this section we formulate a general form of FBSDEs and
define what we mean by a ”solution” to a FBSDE. The FBSDEs considered in this
thesis are of the form

dXt = µ
(
t, Xt, Yt, Zt

)
dt+ σ(t, Xt, Yt, Zt) dWt, t ∈ (0, T ]; X0 = x0

−dYt = F
(
t, Xt, Yt, Zt

)
dt− Zt dWt, ∈ [0, T ); YT = g(XT ),

(2.27)

where µ : [0, T ] × Rn × R × Rd → R
n, σ : [0, T ] × Rn × R × Rd → R

n×d and
F : [0, T ]×Rn ×R×Rd → R are measurable functions. The processesX = {Xt}t∈[0, T ],
Y = {Yt}t∈[0, T ] and Z = {Zt}t∈[0, T ] together form the triple (X, Y, Z) ∈ S2

T (Rn)×
S

2
T (R) × H2

T (Rd) which is called an adapted solution of the FBSDE (2.27) if it
satisfies (2.27) almost surely. The FBSDE (2.27) in integral form reads as

Xt =x0 +
∫ t

0
µ(s, Xs, Ys, Zs) ds+

∫ t

0
σ(s, Xs, Ys, Zs) dWs, t ∈ [0, T ]

Yt =g(XT ) +
∫ T

t
F (s, Xs, Ys, Zs) ds−

∫ T

t
Zs dWs, t ∈ [0, T ].

(2.28)

In the following theorem from [11] the author proves existence and uniqueness of a
solution to (2.27) under some rather strict assumptions.

Theorem 7 Let the following assumptions hold:
(a) Uniform Lipschitz continuity in (x, y, z) for µ, σ, F and g, i.e. for ρ =

µ, σ, F there exists a constant Lρ > 0 such that for t ∈ [0, T ] and for
x1, x2 ∈ Rn, y1, y2 ∈ R and z1, z2 ∈ Rd it holds that

|ρ(t, x1, y1, z1)− ρ(t, x2, y2, z2)| ≤ Lρ (|x1 − x2|+ |y1 − y2|+ |z1 − z2|) ,
|g(x1)− g(x2)| ≤ Lg|x1 − x2|,

(b) The functions g(0) ∈ L2
T (R), F ( · , 0, 0, 0) ∈ H2

T (R), µ( · , 0, 0, 0) ∈ H2
T (Rn)

and σ( · , 0, 0, 0) ∈ L2
T (Rn×d),

(c) The Lipschitz constants for σ and g satisfies LσLg < 1.
Then there exists δ0 > 0, only denpending on the Lipschitz constants such that for
T ≤ δ0 there exists a unique solution (X, Y, Z) to the FBSDE (2.27).

2.4.1 Decoupled FBSDEs
In this section we are concerned with FBSDEs that are decoupled (or uncoupled) in
the sense that the solution of the BSDE does not enter the dynamics of the SDE.

16



2. Forward backward stochastic differential equations

The backward equation in a FBSDE of this type can be viewed as a BSDE where
the randomness of the parameters (F, ξ) comes from a forward SDE of the form
(2.1). The FBSDEs with uncoupled forward SDEs considered in this thesis are of
the formdXt = µ

(
t, Xt

)
dt+ σ(t, Xt) dWt, t ∈ (0, T ]; X0 = x0,

−dYt = F
(
t, Xt, Zt

)
dt− Zt dWt, t ∈ [0, T ); YT = g(XT ),

(2.29)

where µ : [0, T ]×Rn → R
n, σ : [0, T ]×Rn → R

n×d and F : [0, T ]×Rn ×Rd → R

are measurable functions. The integral form of (2.29) reads as

Xt =x0 +
∫ t

0
µ(s, Xs) ds+

∫ t

0
σ(s, Xs) dWs, t ∈ [0, T ], (2.30)

Yt =g(XT ) +
∫ T

t
F (s, Xs, Zs) ds+

∫ T

t
Zs dWs, t ∈ [0, T ]. (2.31)

The forward SDE is an equation of the form treated in Section 2.1. Existence and
uniqueness of a process X satisfying (2.30) is therefore guaranteed if µ, σ and x
fullfills the conditions stated in Section 2.1. The BSDE is more complicated since
it depends on the solution of the SDE. Given initial condition of the SDE X0 = x0
(2.31) can be viewed as a parametrized BSDE, where (0, x0) is data. With this
in mind it is not surprising that the conditions for existence and uniqueness of a
solution to (2.31) are similar to the conditions for existence of a unique solution to
a BSDE stated in Theorem 2. The only thing we need to have in mind is that the
generator also depends on X and that the terminal condition of the BSDE depends
on XT . The following theorem is stated and proved in for example [14].

Theorem 8 Suppose that F and g have polynomial growth in x, i.e., for p ≥ 1/2,
there exists a constant C > 0 such that for t ∈ [0, T ] and (y, z) ∈ R ×Rd it holds
that

|F (t, x, y, z)|+ |g(x)| ≤ C(1 + |x|p).

In addition we assume that X = {Xt}t∈[0, T ] satisfies (2.1), µ and σ satisfies the
conditions for existence of a unique solution of (2.1) stated in Section 2.1 and F is
uniformly Lipschitz continuous in the second and third variables. Then there exists
a unique solution (X, Y, Z) to (2.29).

17



2. Forward backward stochastic differential equations

18



3
Stochastic optimal control

Optimal control theory deals with the problem of optimizing actions to attain
some predetermined goal. An easy real life example is the mixing of hot and cold
water (under constant stirring) for achieving the desired temperature for a bath. A
natural way to describe the state of the system is by the temperature as a function
of time. Often in literature, this function is referred to as the state equation of the
system. If we, for simplicity, assume a constant inflow of water, the feedback control
could be the proportion of hot (or cold) water added to the system as a function of
the current sensed temperature. Note that the state equation depends both on the
physical laws of heat transfer and the change in temperature obtained by the control
signal. In reality, many systems are disturbed by random noise. If noise is taken
account for in the state equation we enter the field of stochastic optimal control.

In Section 3.1 we introduce necessary notation and state some general assumptions.
Section 3.2 aims to explain the two main strategies for finding the feedback control
used in this thesis. Section 3.3 and 3.4 deals with the so-called Hamilton–Jacobi–
Bellman equation. In Section 3.5 and 3.6 the stochastic optimal control problem is
reformulated as a FBSDE and the chapter ends with an illustrative example were
the abstract methodology becomes concrete.

This chapter relies heavily on [19], to which we constantly refer. Another good
reference for stochastic control is [20].

3.1 General setting
In this thesis we want to control stochastic processes described by a forward SDE
introduced in Chapter 2. To be able to do this we add dependency of a control
process u in the drift coefficient of the SDE describing the process that we want
to control. It is also possible to consider dependency of the control process in the
diffusion coefficient but we consider a diffusion coefficient without dependency of
the control:

dXt = µ(t, Xt, ut) dt+ σ(t, Xt) dWt, t ∈ (0, T ]; X0 = x0. (3.1)

For now, we only assume that the drift and diffusion coefficients µ : [0, T ] × Rn ×
U → R

n and σ : [0, T ] × Rn → R
n×d are continuous. The space U is a closed

subspace of Rd and is called the control space. In the context of this thesis (3.1)
describes the physical states of a dynamical system and is therefore referred to as

19



3. Stochastic optimal control

the state equation. The process u : [0, T ] × Ω → U is referred to as the control
process. Throughout this thesis we assume that ut is a deterministic function π
depending only on t and Xt, i.e., ut = π(t, Xt) for all t ∈ [0, T ]. If this is the case
π : [0, T ]×Rn → U is said to be a Markov control policy. In many applications,
including those considered in this thesis a Markov control policy can be expressed
as an explicit mapping. If X = {Xt}t∈[0, T ] is a solution to (3.1) and satisfies the
Markov property, i.e., for A ∈ Rn and 0 ≤ s < t ≤ T

P (Xt ∈ A | Fs) = P (Xt ∈ A |Xs) , (3.2)

we then say that X is a controlled Markov diffusion process. Throughout
this thesis we assume that the forward SDE in the stochastic control problem is
a controlled Markov diffusion process. To be able to give a meaning to ’optimal
control’ we first need to introduce a way to measure the performance of the control.
We therefore define the so called cost functional

J(t, x ; u) = E
[∫ T

t
L(s, Xs, us) ds+ g(XT )

∣∣∣ Xt = x

]
, (3.3)

where L : [0, T ] × Rn × U → R
+ is called the running cost and g : Rn → R

+

is called the terminal cost. As the name suggests the cost functional should be
viewed as the cost for a control process u at time t starting in state x and the lower
the value of (3.3), the better the control. Note that the cost functional always takes
on non-negative values. Throughout this thesis we make the following assumptions
regarding (3.1) and (3.3).

Assumption 1 (State equation)

• The coefficients µ( · , · , v) and σ( · , · ) are continuously differentiable in t and
x for all v ∈ U.

• There exists a constant Lµ, σ <∞ such that

|µ(s, y, v)− µ(t, x, v)|+ |σ(s, y)− σ(t, x)| ≤ Lµ, σ
(
|s− t|+ |y − x|

)
,

for all v ∈ U and (s, y), (t, x) ∈ [0, T ]×Rn.
• The diffusion coefficient σ(t, x, v) has full rank for all (t, x, v) ∈ [0, T ]×Rn×
U.

Assumption 2 (Cost functional)

• The terminal cost g is convex and continuously differentiable in x.
• There exists a constant CL, g < ∞ such that for all u ∈ U and (t, x) ∈

[0, T ]×Rn it holds that

|L(t, x, u)|+ |g(x)| ≤ CL, g(1 + |u|+ |x|2).

Note that µ and σ are vector and matrix valued functions, respectively, and recall
that | · | is the Frobenius norm defined in Section 2.1. We say that a control process

20



3. Stochastic optimal control

u is progressively measurable if, for every s ∈ [t, T ] the mapping Ω× [t, T ]→ U

defined by (ω, s) → us(ω) is B([t, s]) ⊗ Ft-measurable, where B([t, s]) is the Borel
σ-algebra on [t, s]. If a progressively measurable control in addition satisfies

E

[∫ T

t
|us|m ds

]
<∞,

for all m ∈ N+ we call it an admissible control. Note that an admissible con-
trol is F-adapted, which makes intuitive sense. We denote the class of admissible
controls by At. For simplicity we assume from now on that U is a compact set.
This guarantees that a progressively measurable control is admissible. Under the
assumptions above there exists a unique strong solution X = {Xt}t∈[0, T ] of (3.1)
(see e.g. [19]) which is progressively measurable and has continuous sample paths.
In addition, for m ∈ R+, t ∈ [0, T ] and u ∈ A0 it holds that

E [|Xt|m] <∞.

Our stochastic optimal control problem is then: Find an admissible control
u such that the cost functional (3.3) is minimized. We finally define the so-called
value function by

V (t, x) = inf
u∈At

J(t, x ;u), (t, x) ∈ [0, T ]×Rn. (3.4)

The value function is the cost when the process is optimally controlled from the
state (t, x). It has a central importance in optimal control.

3.2 Conceptual overview of the strategies for find-
ing the optimal Markov control policy

Before presenting details we give a brief overview of the methodology to solve the
control problem. The purpose of this section is to give a hint of the aim of the
(often long) derivations in the sections below and to show why they are important.
In Section 3.3 we show that the value function is the solution to a semi-linear
parabolic PDE. This surprising connection between a stochastic optimal control
problem and a PDE is fundamental in this thesis. The PDE is referred to as the
Hamilton–Jacobi–Bellman (HJB) equation. We further show that the optimal
Markov control policy, denoted π∗, is a mapping of the form

π∗(t, x) = ν(t, x, ∇xV (t, x)),

where ∇xV (t, x) is the vector valued gradient of the value function V with respect
to x. This means that, given the state (t, x), it is enough to find the gradient of
the solution to the HJB equation, evaluated at (t, x), to obtain the optimal Markov
control policy. The first strategy to find a Markov control policy used in this thesis
is given by:
Control with dynamic programming equation (DPE):

21



3. Stochastic optimal control

(i) Find the expression for ν algebraically,
(ii) Compute ∇xV analytically or numerically,
(iii) Immediate consequence: π∗ is obtained.
The second strategy for finding a Markov control policy used in this thesis is based
on the connection between parabolic PDEs and stochastic diffusion processes [26].
In Section 3.5 we derive a FBSDE of the type introduced in Section 2.4 with solution
given by the triple (X, Y, Z) satisfying the following:

X is the state equation, given by equation (3.1),
Y = {Yt}t∈[0, T ] is given by Yt = V (t, Xt),
Z = {Zt}t∈[0, T ) is given by Zt = ∇xV (t, Xt)σ(t, Xt).

We further show that the optimal Markov control policy π∗ is given by a mapping
of the form

π∗(t, Xt) = κ(t, Xt, Zt).

The mapping κ is determined by the structure of the specific problem and becomes
clear in Section (3.5).
Control with FBSDE:
(i) Find the expression for κ algebraically,
(ii) Compute Z analytically or numerically (function of X),
(iii) Immediate consequence: π∗ is obtained.

3.3 A sketch of derivation of the Hamilton–Jacobi–
Bellman equation

In this section a sketch of a derivation of the HJB equation is presented. The inten-
tion of the section is to give an intuitive explanation of the connection between the
stochastic optimal control problem and HJB equation. The reader is encouraged to
look at this section in the same way as one looks at a deduction of a physicist where
an equation is derived from some physical principles. For a rigorous derivation we
refer to [21]. This section, on the other hand, relies heavily on the formal derivation
of the HJB equation in [19].

The value function is central in the part of optimal control known as dynamic
programming. Recall the value function (3.4), which by using the definition of the
cost functional in (3.3), reads as

V (t, x) = inf
u∈At

E

[∫ T

t
L(s, Xs, us) ds+ g(XT )

∣∣∣ Xt = x

]
, (t, x) ∈ [0, T ]×Rn.

(3.5)
SinceX is a Markov diffusion process and u is determined by a Markov control policy
it is reasonable to believe that each subinterval of an optimally controlled process
is itself optimally controlled on each subinterval. That is to say that it is equivalent
to minimize the cost function over the interval [t, T ] as it is to first minimize it over

22



3. Stochastic optimal control

the interval [t, t+ h] and then over [t+ h, T ]. This is called Bellman’s dynamic
programming principle, which reads as

V (t, x) = inf
u∈At

E

[∫ t+h

t
L(s, Xs, us) ds+ V (t+ h, Xt+h)

∣∣∣∣Xt = x

]
. (3.6)

We sketch a derivation of the HJB equation under the assumption that Bellman’s
dynamic programming principle holds. Let u∗ be the optimal control and u be the
control given by us = v for s ∈ [t, t + h] and us = u∗s for s ∈ (t + h, T ]. Since the
control u is sub-optimal it holds that

V (t, x) ≤ E
[∫ t+h

t
L(s, Xs, v) ds

∣∣∣∣Xt = x

]
+E

[
V (t+ h, Xt+h)

∣∣∣Xt = x
]
. (3.7)

By subtracting V (t, x) from both sides, dividing by h and letting h→ 0+ we obtain

0 ≤ lim
h→0+

1
h
E

[∫ t+h

t
L(s, Xs, v) ds

∣∣∣∣Xt = x

]

+ lim
h→0+

E [V (t+ h, Xt+h) |Xt = x]− V (t, x)
h

.

(3.8)

Boldly assuming that we can use Tonelli’s theorem and Lebesgue’s theorem of dif-
ferentiation, we have

lim
h→0+

1
h
E

[∫ t+h

t
L(s, Xs, v) ds

∣∣∣∣Xt = x

]
= lim

h→0+

1
h

∫ t+h

t
E [L(s, Xs, v) |Xt = x] ds

= L(t, Xt, v).
(3.9)

To rewrite the second term on the right we use Itô’s lemma to obtain

V (t+ h, Xt+h)− V (t, x)

=
∫ t+h

t

[
∂V

∂t
(s, x) + 1

2Trace
{
σσT (s, x)HessxV (s, x)

}
+∇xV (s, x)Tµ(s, x, us)

]
ds

+
∫ t+h

t
∇xV (s, Xs)σ(s, Xs) dWs.

(3.10)

As before, Trace denotes the trace of a matrix and Hessx and ∇x denote the Hessian
and the vector valued gradient with respect to x. By introducing the backward
operator denoted Av defined by

AvΦ(t, x) =∂Φ
∂t

(t, x) + 1
2Trace

{
σσT (t, x)HessxΦ(t, x)

}
+∇xΦ(t, x)Tµ(t, x, v),

(3.11)

we can write (3.10) as

V (t+ h, Xt+h)− V (t, x) =
∫ t+h

t
AvV (s, Xs) ds+

∫ t+h

t
∇xV (s, Xs)σ(s, Xs) dWs.

(3.12)

23



3. Stochastic optimal control

The notation Av aims to emphasize the dependency on v of the backward operator.
By taking the conditional expectation of both sides of equation (3.12) we obtain

E [V (t+ h, Xt+h) |Xt = x]− V (t, x) = E
[∫ t+h

t
AvV (s, Xs, v) ds

∣∣∣∣Xt = x

]

+E
[∫ t+h

t
∇xV (s, Xs)σ(s, Xs) dWs

∣∣∣Xt = x

]
.

(3.13)

We assume that the conditional expectation of the stochastic integral above is zero
and that the AvV is continuous for all v ∈ U. Dividing equation (3.13) by h,
letting h → 0+ and again using Tonelli’s theorem to move the expectation inside
the integral and Lebesgue’s theorem of differentiation yields

lim
h→0+

E [V (t+ h, Xt+h) |Xt = x]− V (t, x)
h

= lim
h→0+

1
h

∫ t+h

t
E [AvV (s, Xs) |Xt = x] ds = AvV (t, x).

(3.14)

By inserting (3.9) and (3.14) to (3.8) it holds, for any v ∈ U that

0 ≤ AvV (t, x) + L(t, x, v). (3.15)

On the other hand, assume that π∗ is an optimal Markov control policy and X∗ =
{X∗t }t∈[0, T ] is the optimal dynamics controlled by π∗. Then from Bellman’s dynamic
programming principle we have

0 = E
[∫ t+h

t
L(s, X∗s , π∗(s, X∗s )) ds

∣∣∣∣X∗t = x

]
+E

[
V (t+ h, X∗t+h)

∣∣∣X∗t = x
]
.

(3.16)
By similar calculations as before and assuming that π∗ is regular enough we obtain

0 = Aπ∗
V (t, X∗t ) + L(t, X∗t , π∗(t, X∗t )). (3.17)

By combining (3.15) and (3.17) we obtain the dynamic programming equation
which reads

0 = inf
u∈U

[AuV (t, x) + L(t, x, u)] , (3.18)

with the terminal condition V (T, x) = g(x). A reasonable choice for the optimal
control is then given by

π∗(t, x) = arg min
u∈U

[AuV (t, x) + L(t, x, u)] , (3.19)

(t, x) ∈ [0, T )×Rn. Here we assume that the argmin is nonempty and unique but
the uniqueness is not necessary. In the next section we provide a theorem that, under
some conditions on V guarantees that (3.19) holds. The theorem is therefore called
a verification theorem. In this section, and for the sake of this formal derivation

24



3. Stochastic optimal control

we assume that (3.19) holds. By combining (3.18) and (3.19) we obtain the HJB
equation, which in our setting is a second order PDE given by

∂Ψ
∂t

(t, x) + 1
2Trace

{
σσT (t, x)HessxΨ(t, x)

}
+∇xΨ(t, x)Tµ(t, x, π∗(t, x)) + L(t, x, π∗(t, x)) = 0, (t, x) ∈ [0, T )×Rn.

(3.20)

Equation (3.20) should also satisfy a terminal condition extracted from the cost
function given by

Ψ(T, x) = g(x), x ∈ Rn. (3.21)

For a = σσT , we say that the HJB equation is uniformly parabolic if there exists
a constant C <∞ such that it holds that

n∑
i, j=1

aijξiξj ≥ C|ξ|2 for all (t, x, u) ∈ [0, T ]×Rn ×U, and ξ ∈ Rn. (3.22)

When (3.22) holds we can use standard PDE theory to state a theorem for a classical
solution to (3.20)-(3.21). Otherwise the HJB equation is said to be degenerate and
it is often necessary to consider so called viscosity solutions. In this thesis we restrict
ourselves to the uniformly parabolic case. From the perspective of the state equation
(3.22) holds when the state equation is perturbed in each spatial dimension for all
states x and time t. This is fulfilled when σ ∈ Rn×d has full rank and d ≥ n.

3.4 Existence and uniqueness theorem for the HJB
equation and a verification theorem

In Section 3.3 a formal derivation of the HJB equation was outlined under the as-
sumption that the dynamic programming principle holds. In this section we state an
existence and uniqueness theorem for the HJB equation. We also state a corollary
to a so-called verification theorem that guarantees that the dynamic programming
principle holds if the HJB equation has a classical solution. Both the existence and
uniqueness theorem and the verification theorem are proved in, e.g. [19]. The corol-
lary follows almost immediately from the verification theorem.

We start by introducing notation for continuous functions. We let C`,k([0, T ] ×
R
n ; V) be the space of all functions [0, T ] × Rn → V, where V is a finite di-

mensional vector space, that are ` times continuously differentiable functions in t
and ∂kφ

∂k1∂k2 ···∂kn
exist and are continuous for all k1, . . . , kn ∈ {0, 1, . . . , k} satisfying

k1 +k2 + · · ·+kn ∈ {0, 1, . . . , k}. We further let C`,k
b ([0, T ]×Rn ; V) be the space of

all functions φ ∈ C l,k([0, T ] ×Rn ; V) such that all the partial derivatives of φ are
bounded. Similarly, we denote by Ck(Rn ; V) and Ck

b (Rn ; V), the corresponding
spaces that do not depend on t.

Theorem 9 Assume that the following assumptions holds:

25



3. Stochastic optimal control

(a) The matrix a = σσT satisfies (3.22).
(b) The set U is compact.
(c) It holds that µ ∈ C1,2

b ([0, T ] × Rn ; Rn), σ ∈ C1,2
b ([0, T ] × Rn ; Rn×d) and

a ∈ C1,2
b ([0, T ]×Rn ; Rn×n).

(d) The function g ∈ C3
b (Rn ; R).

Then there exists a classical solution to (3.20)–(3.21), i.e., there exists a unique
Ψ ∈ C1,2

b ([0, T ]×Rn) satisfying (3.20)–(3.21).

Theorem 10 (Verification theorem) Let Assumption 1 and Assumption 2 hold
and let Ψ ∈ C1,2([0, T ]×Rn) be a solution to (3.20)-(3.21) and π∗ : [0, T ]×Rn → U

be a Markov control policy satisfying:
(a) The optimal Markov control policy π∗(t, x) ∈ arg min [AvΨ(t, x) + L(t, x, v)].
(b) The SDE (3.1) controlled with π∗ has a unique strong solution.
(c) Dynkin’s formula holds, i.e.

E [Ψ(T, XT )]−Ψ(t, x) = E
[∫ T

t
AusΨ(s, Xs)ds

]
.

Then the following holds:
(i) Ψ(t, x) ≤ J(t, x ; π), for every Markov control policy,
(ii) Ψ(t, x) = J(t, x ; π∗),
(iii) Ψ(t, x) = V (t, x),
(iv) The dynamic programming principle holds.

Proof:
The proof of (i)–(iii) follows from Theorem 8.1 in [19] by fixing the probability space
to (Ω, F , F, P) and observing that π∗(t, x) ∈ arg min [AvΨ(t, x) + L(t, x, v)]. State-
ment (iii) holds by Theorem 7.1 in [19]. �

Note that in Section 3.3 we derived the HJB equation under the assumption that
the dynamic programming principle holds. In Theorem 10 we see that the dynamic
programming principle holds under the assumption that the HJB equation has a
classical solution. One could therefore argue that the derivation in Section 3.3 is
made in the ”wrong” direction. The reason for the chosen order is to make it more
pedagogical and easier to follow for the reader.

3.5 Reformulation of a stochastic optimal control
problem to a FBSDE

In this section we assume a stochastic optimal control problem defined by the state
equation (3.1) and the cost functional (3.3). We further assume that the state-
ments in Theorems 9 and 10 hold. With these assumptions we have established
a connection between the stochastic optimal control problem and the HJB equa-
tion (3.20)–(3.21). We further know that if we can find a Markov control policy π∗
satisfying

π∗(t, x) = arg min
u∈U

[AuV (t, x) + L(t, x, u)] , (3.23)

26



3. Stochastic optimal control

for (t, x) ∈ [0, T ]×Rn then it holds that V (t, x) = J(t, x, π∗(t, x)), where V is the
value function defined in (3.4). For simplicity we assume existence and uniqueness
of such π∗ in this section. The HJB equation in compact form reads as

Aπ∗
V (t, x) + L(t, x, π∗(t, x)) = 0, t ∈ [0, T ); V (T, x) = g(x). (3.24)

The aim of this section is to, given (3.23) and (3.24), derive an associated FBSDE.

By inspection of (3.23) and the definition of the backward operator (3.11) we con-
clude that π∗ is a function of t, x and ∇xV (t, x), i.e. π∗ can be written as

π∗(t, x) = ν(t, x, ∇Vx(t, x)). (3.25)

Recall that this mapping was the basis for the idea of controlling with DPE, which
was introduced in the beginning of this chapter. To derive the optimal control from
the solution component Z of a FBSDE, we note that by the full rank property of σ,
it is possible to perform a change of variable from ∇xV (t, x) to ∇xV (t, x)σ(t, x).
Therefore we can define L̃ equivalent to L by

L̃
(
t, x, ∇xV (t, x)σ(t, x)

)
= L(t, x, π∗(t, x)) (3.26)

for all (t, x) ∈ [0, T ]×Rn. By Theorem 9 it holds that V ∈ C1,2
b ([0, T ]×Rn) and

therefore we can use Itô’s lemma and (3.20) to obtain for t ∈ [0, T ] that

dV (t, Xt) = Au∗
V (t, Xt)dt+∇xV (t, Xt)σ(t, Xt)dWt

= −L̃ (t, Xt, ∇xV (t, Xt)σ(t, Xt)) dt+∇xV (t, Xt)σ(t, Xt)dWt. (3.27)

The terminal condition V (T, XT ) = g(XT ) is a direct consequence of (3.21). To
make it easier to see that (3.27) actually is a BSDE we define the stochastic processes
Y = {Yt}t∈[0, T ] and Z = {Zt}t∈[0, T ] given by

Yt = V (t, Xt), Zt = ∇xV (t, Xt)σ(t, Xt).

Equation (3.27) written in terms of Y and Z then becomes

dYt = −L̃ (t, Xt, Zt) dt+ Zt dWt, t ∈ [0, T ); YT = g(XT ). (3.28)

Equation (3.28) is the BSDE part of the FBSDE (which is the final form in the
reformulation of the stochastic optimal control problem). The forward equation in
the FBSDE is the state equation (3.1) expressed in terms of Z instead of u∗. This
is done by introducing µ̃, equivalent to the drift coefficient in the state equation, µ
and for t ∈ [0, T ] defined by

µ̃(t, Xt, Zt) = µ(t, Xt, π
∗(t, Xt)).

The reformulation of µ is justified by the same arguments as the reformulation in
(3.26). The state equation then reads as

dXt = µ̃(t, Xt, Zt)dt+ σ(t, Xt)dWt, t ∈ (0, T ]; X0 = x0. (3.29)

27



3. Stochastic optimal control

Finally, by combining (3.28) and (3.29) we obtain the FBSDEdXt = µ̃(t, Xt, Zt)dt+ σ(t, Xt)dWt, t ∈ (0, T ]; X0 = x0,

dYt = −L̃ (t, Xt, Zt) dt+ ZtdWt, t ∈ [0, T ); YT = g(XT ).
(3.30)

The system above is a coupled FBSDE of the type introduced in Section 2.4.

To reconnect to Section 3.2 and the second strategy for finding the Markov con-
trol policy, we recall that

u∗t = π∗(t, Xt) = ν(t, Xt, ∇xV (t, Xt)). (3.31)

Again, by the full rank property of σ it is possible to perform a change of variable
from ∇xV to ∇xV σ. We can therefore introduce κ, equivalent to ν, defined by

κ(t, Xt, Zt) = ν(t, Xt, ∇xV (t, Xt)). (3.32)

By combining (3.31) and (3.32) we obtain an optimal Markov control policy given
by

π∗(t, Xt) = κ(t, Xt, Zt)
which is on the claimed form.

3.6 Change of drift coefficients
In Chapter 2 we introduced coupled and decoupled FBSDEs. By Theorems 7 and
8 one notices that the conditions for existence and uniqueness of a solution is much
more restrictive for coupled than for decoupled FBSDEs. Since the theoretical re-
sults may or may not be sharp no conclusions can be drawn from this but it can be
seen as an indication of the difficulties in solving a coupled FBSDE. In this section
we state a proposition that makes it possible to change the drift coefficient in the
forward SDE part of a FBSDE. As a consequence a ”correction” term is added to
the drift coefficient in the BSDE. In particular this allows us to reformulate a cou-
pled FBSDE as a decoupled FBSDE. It is worth pointing out that ”reformulate” in
this context refers to the possibility of solving the same stochastic optimal control
problem with a reformulated FBSDE, i.e., the optimal Markov control policy, π∗
does not change.

Proposition 1 Let π∗ be defined as in Theorem 10. Assume that V ∈ C1,2
b ([0, T ]×

R
n) is the unique solution to the HJB equation
∂V

∂t
(t, x) + Trace

{
σσT (t, x)HessxV (t, x)

}
+∇xV (t, x)µ (t, x, ∇xV (t, x)σ(t, x))

+L (t, x, ∇xV (t, x)σ(t, x)) = 0, (t, x) ∈ [0, T )×Rn; V (T, x) = g(x).
(3.33)

Assume further that ψ : [0, T ] × Rn × Rd → R
n is uniformly Lipschitz continuous

in the second and third variable, i.e., there exists a constant Lψ > 0 such that for
t ∈ [0, T ] and for x1, x2 ∈ Rn and z1, z2 ∈ Rd it holds that

|ψ(t, x1, z1)− ψ(t, x2, z2)| ≤ Lψ (|x1 − x2|+ |z1 − z2|) .

28



3. Stochastic optimal control

A family of associated FBSDEs is then given by
dXt = η (t, Xt, ∇xV (t, Xt)σ(t, Xt)) dt+ σ(t, Xt)dWt, t ∈ (0, T ]; X0 = x0,

dV (t, Xt) = −F (t, Xt, ∇xV (t, Xt)σ(t, Xt)) dt+∇xV (t, Xt)σ(t, Xt)dWt,

t ∈ [0, T ); V (T, XT ) = g(XT ),
(3.34)

where
η (t, Xt, ∇xV (t, Xt)σ(t, Xt)) =

µ(t, Xt, ∇xV (t, Xt)σ(t, Xt)) + ψ (t, Xt, ∇xV (t, Xt)σ(t, Xt)) ,
F (t, Xt, ∇xV (t, Xt)σ(t, Xt)) =

L(t, Xt, ∇xV (t, Xt)σ(t, Xt))− ψ (t, Xt, ∇xV (t, Xt)σ(t, Xt)) .

Proof:
Let

dXt =
[
µ(t, Xt, ∇xV (t, Xt)σ(t, Xt))− ψ (t, Xt, ∇xV (t, Xt)σ(t, Xt))

]
dt

+ σ(t, Xt)dWt, t ∈ (0, T ]; X0 = x0.

Then by Itô’s lemma, it holds for t ∈ [0, T ] that

dV (t,Xt) = −
[
L (t, Xt, ∇xV (t, Xt)σ(t, Xt))

−∇xV (t, Xt)ψ (t, Xt, ∇xV (t, Xt)σ(t, Xt))
]
dt+∇xV (t, Xt)σ(t, Xt)dWt.

The terminal condition V (T, Xt) = g(XT ) is a direct consequence of V being the
solution to (3.33). �

3.6.1 Affine state equation
Often in optimal control, so-called affine state equations arise. An affine state
equation is on the form

dXt = [µ1(t, Xt) + µ2(t, Xt)u∗t ] dt+ σ(t, Xt)dWt, t ∈ (0, T ]; X0 = x0. (3.35)
With a state equation as (3.35) we can obtain a decoupled FBSDE by letting
ψ(t, Xt, ∇xV (t, Xt)σ(t, Xt)) = µ2(t, Xt)u∗t in Proposition 1. The obtained BSDE
reads as

dV (t, Xt) = −
[
L̃ (t, Xt, ∇xV (t, Xt)σ(t, Xt))− µ2(t, Xt)u∗t

]
dt (3.36)

+∇xV (t,Xt)σ(t, Xt)dWt, t ∈ [0, T ); V (T, XT ) = g(XT ). (3.37)
Again, letting Yt and Zt be defined by

Yt = V (t, Xt), Zt = ∇xV (t, Xt)σ(t, Xt),
and letting f(t, Xt, Zt) = L̃ (t, Xt, Zt) − µ2(t, Xt)u∗t we obtain the decoupled FB-
SDE dXt = µ1

(
t, Xt

)
dt+ σ(t, Xt) dWt, t ∈ (0, T ]; X0 = x0,

−dYt = f
(
t, Xt, Zt

)
dt− Zt dWt, t ∈ [0, T ); YT = g(XT ).

(3.38)

The system above is a decoupled FBSDE of the type introduced in Section 2.4.1.

29



3. Stochastic optimal control

3.6.2 The linear quadratic regulator
As a simple example, we consider the scalar valued linear SDE with quadratic cost
function. This is called a linear quadratic regulator (LRQ). Later in this section we
present an analytic solution to the LQR problem which will be used as a benchmark
solution to test the performance of the numerical methods for this problem.

3.6.2.1 Reformulation of the control problem to the FBSDE

Consider the scalar valued linear SDE

dX̄t = a(c− X̄t) dt+ σ dWt, t ∈ (0, T ]; X̄0 = x0, (3.39)

for c ∈ R and a, σ ∈ R+. Our aim is to control the process around 0, which is
referred to as the optimal state for X, by adding a control function in the drift term
of (3.39). For b ∈ R and ut ∈ R for t ∈ [0, T ) the SDE in the LQR problem has
the form

dXt = (a(c−Xt) + but) dt+ σ dWt, t ∈ (0, T ]; X0 = x0. (3.40)

The quadratic cost function is set to

J(t, x ;u) = E
[∫ T

t

(
γ2X2

s + r2u2
s

)
ds+ λ2X2

T

∣∣∣∣Xt = x

]
, (3.41)

for γ, r, λ ∈ R+. With the notation from previous sections we have

µ(t, Xt, ut) = a(c−Xt) + but, (3.42)
σ(t, Xt) = σ, (3.43)

L (t, Xt, ut) = γ2X2
t + r2u2

t , (3.44)
g(XT ) = λ2X2

T . (3.45)

The intuitive explanation of the control problem is the following: The uncontrolled
Ornstein-Uhlenbeck process (3.39) has a drift that strives to push the process to-
wards c with mean reversion proportional to a and a diffusion term which disturbs
the process with Gaussian additive noise generated by a standard Wiener process.
In (3.40) a control process, which pushes the process with strength b, is added.
The running cost (3.44) penalizes the squared distance from the optimal state with
intensity γ2 and the cost of the control is r2. The terminal cost (3.45) penalizes
the squared distance from the optimal state by λ2. The optimal control at time
t ∈ [0, T ) is then chosen so that (3.41) is minimized.

The backward operator (3.11), in this case is given by

AuΦ(t, x) = ∂Φ
∂t

(t, x) + σ2

2
∂2Φ
∂t2

(t, x) + (a(c− x) + but)
∂Φ
∂t

(t, x).

30



3. Stochastic optimal control

By equation (3.23) the optimal control u∗ for this problem is given by

u∗t = π∗(t, Xt) = arg min
u∈R

[AuV (t, x) + L(t, x, u)]
∣∣∣∣
x=Xt

= arg min
u∈R

[
∂V

∂t
(t, x) + σ2

2
∂2V

∂x2 (t, x) + (a(c− x) + bu)∂V
∂x

(t, x)

+ γ2x2 + r2u2
]∣∣∣∣∣∣
x=Xt

= − b

2r2
∂V

∂x
(t, Xt).

(3.46)

By reconnecting to the DPE control strategy from Section 3.2 we obtain a mapping
ν of the desired form

ν

(
t, Xt,

∂V

∂x
(t, Xt)

)
= − b

2r2
∂V

∂x
(t, Xt).

The HJB equation is then the nonlinear PDE
∂V

∂t
(t, x)+σ

2

2
∂2V

∂x2 (t, x) + a(c− x)∂V
∂x

(t, x) + γ2x2

− b2

4r2

(
∂V

∂x
(t, x)

)2

= 0, (x, t) ∈ (0, T )×R,
(3.47)

V (T, x) = λ2x2, x ∈ R. (3.48)

By defining Yt = V (t, Xt) and Zt = σ ∂V
∂x

(t, Xt) we obtain the FBSDEdXt =
[
a(c−Xt)− b2

2σ2r2Z
2
t

]
dt+ σdWt, t ∈ (0, T ]; X0 = x0,

dYt = −
[
γ2X2

t + b2

4σ2r2Z
2
t

]
dt+ ZtdWt, t ∈ [0, T ); YT = λ2X2

T .
(3.49)

Note that (3.49) is a FBSDE with a coupled forward SDE since it depends on Z. To
obtain a decoupled FBSDE we use Proposition 1 and let ψ(t, Xt, Zt) = − b2

2σ2r2Z
2
t

which givesdX̄t = a(c− X̄t)dt+ σdWt, t ∈ (0, T ]; X̄0 = x0,

dȲt = −
[
γ2X̄2

t − b2

4σ2r2 Z̄
2
t

]
dt+ Z̄tdWt, t ∈ [0, T ); ȲT = λ2X̄2

T .
(3.50)

The mapping κ from the FBSDE control strategy in Section 3.2 is given by

κ(t, Xt, Zt) = − b

2σ2r2Zt.

3.6.2.2 Analytic solution via a system of ODEs

In this special case it is possible to find an analytical solution to both the HJB
equation (3.47)-(3.48) and the FBSDEs (3.49) and (3.50). To this aim we make the
ansatz V (t, x) = P (t)x2 +Q(t)x+R(t). When inserting this into (3.47) we obtain

x2
(
Ṗ (t)− 2aP (t) + b2P (t)2 + γ2

)
+ x

(
Q̇(t)− acP (t)− bQ(t)− b2P (t)Q(t)

)
+ Ṙ(t) + σ2P (t) + acQ(t)− b2

4 Q(t)2 = 0, (t, x) ∈ [0, T )×R,

V (T, x) = λ2x2, x ∈ R.

31



3. Stochastic optimal control

Since this holds for all x ∈ R we obtain the system of ODEs
Ṗ (t)− 2bP (t) + a2P (t)2 + γ2 = 0, t ∈ [0, T ); P (T ) = λ2,

Q̇(t)− bµP (t)− bQ(t)− a2P (t)Q(t) = 0, t ∈ [0, T ); Q(T ) = 0,
Ṙ(t) + σ2P (t) + bµQ(t)− a2

4 Q(t)2 = 0, t ∈ [0, T ); R(T ) = 0.
(3.51)

Assume that there exists a unique solution (P, Q, R), where P = {P (t)}t∈[0, T ],
Q = {Q(t)}t∈[0, T ] and R = {R(t)}t∈[0, T ] to (3.51). We then obtain an analytical
solution (x, y, z) = (X, Y, Z) to (3.49) or (x, y, z) = (X̄, Ȳ , Z̄) to (3.50) by

yt = P (t)x2
t +Q(t)xt +R(t), (3.52)

zt = σ(2P (t)xt +Q(t)). (3.53)

32



4
The neural network based

algorithms

Artificial neural networks or simply neural networks are one of the hottest topics
today and are widely used in different arenas. Neural networks are inspired by the
architecture and interaction between neurons in a human brain. Although the ar-
tificial neurons are highly simplified the fundamental principles are similar. It is
common to separate between supervised and unsupervised learning. In supervised
learning the network learns to recognize structures in a set of training data with
associated labels and generalize to unseen data. One example, which is explained in
Section 4.1.3, is the classification problem e.g., to classify handwritten digits. An-
other example where supervised learning is useful is regression. In unsupervised
learning, on the other hand, the training data is not labeled and the goal is instead
to learn some natural structure within the set of training data. One example of unsu-
pervised learning, further described in Section 4.1.3 is approximate equation solving.

This chapter aims to define all the techniques used in this thesis but for detailed
motivations we refer to e.g., [36]. In Section 4.1 the main building blocks for a neu-
ral network are presented and in Section 4.2 we present the neural network based
algorithms used to solve stochastic optimal control problems.

4.1 Deep neural networks - function approxima-
tors

This section aims to describe the main building blocks of a neural network. In
Section 4.1.1 the network is described as a mapping and in Section 4.1.2 a low
dimensional mapping is visualized. The goal of Sections 4.1.3 and 4.1.4 is to describe
how the network can be trained in order to approximate some function.

4.1.1 The structure of an artificial neural network
Let D ∈ N+ be the number of trainable parameters in a neural network and
Θ ⊆ RD be the set of all feasible parameters. The neural network is a composition
of L ≥ 1 so called layers with k0, k1, . . . , kL ∈ N+ so called nodes (or neurons)
in each layer. More precisely, it is a family of functions

NNθ : Rk0 → R
kL , θ ∈ Θ,

33



4. The neural network based algorithms

of the form
NNθ = LθL

L ◦ · · · ◦ Lθ2
2 ◦ Lθ1

1 ,

parametrized by θ = (θ1, θ2, . . . , θL) ∈ Θ. Each layer Lθn
n : Rkn−1 → R

kn for n =
1, 2, . . . , L, is a function of the form

Lθn
n (x) = Hn(Wnx+ bn), θn = (vec(Wn), bn), with

Hn(x) =


h(x1)
h(x2)

...
h(xkn+1)

 , for n < L and HL(x) =


x1
x2
...
xkL

 ,
with so called weight matrices Wn ∈ Rkn×kn−1 and bias vectors bn ∈ Rkn . The func-
tion h : R → R is called the activation function. Note that by using the identity
activation function, i.e., letting h(y) = y, for y ∈ R, the neural network becomes an
affine mapping. The purpose of the activation function is to add non-linearity to the
network, which in turn admits approximation of non-affine mappings. Commonly
used activation functions are the hyperbolic tangent function tanh(y) = e2y−1

e2y+1 , the
sigmoid function σ(y) = 1

1+e−y and the ReLU function ReLU(y) = max{0, y}, for
y ∈ R. In this thesis we use the ReLU function, which was suggested in [37] with a
biological motivation. In [38], the authors argued that using the ReLU function dur-
ing the training procedure, the output of many neurons in the hidden layers equal
to zero. This makes the network of active neurons (with nonzero output) sparsely
connected, which is thought of as a desirable property [38].

If L > 2 the neural network is said to be deep and the layers Lθn
n for n < L

are referred to as the hidden layers. A neural network is often visualized by a graph
consisting of nodes and edges, see, e.g., the two upper plots in Figure 4.1. The nodes
to the very left has the values of the input y0 = x = (x1, . . . , xk0) of the network.
The value of the n:th nodes from the left have the values

yn = Lθn
n (yn−1) =


h(W 1

nyn−1 + b1
n)

h(W 2
nyn−1 + b2

n)
...

h(W kn
n yn−1 + bkn

n )

 ,

propagating information from the left to the right in the graph until the output layer
to the far right. HereWm

n and bmn denote the m:th rows of the weight matrixWn and
bias vector bn of the n:th layer, respectively. Even more explicit, a node performs
the action ymn = h(Wm,1

n y1
n−1 + · · ·+Wm,kn−1

n y
kn−1
n−1 +bmn ), whereWm,k

n is the (m, k):th
element of Wn. From this it is clear that each edge in the graph corresponds to the
multiplication of a weight. This is the full interpretation of a neural network as a
network or graph.

4.1.2 Example of a low dimensional neural network
The purpose of this example is to visualize a neural network and to show how the
flexibility of the output depends on the number of layers and the number of nodes

34



4. The neural network based algorithms

in each layer. This is done by constructing neural networks with randomly selected
parameters θ. Samples from these neural networks are then generated with different
number of layers and nodes in each layer. Although the results are random, we will
be able to see structural differences in the output for the different neural networks.
We note that to be able to approximate a specific function, the parameter θ cannot
be selected at random but must be optimized for this specific function. This opti-
mization is the so-called training of a neural network and is described later in this
chapter.

Consider the neural network NNθ : R2 → R on the square D = [−1, 1] × [−1, 1].
We let all elements in the weight matrices W1, W2, . . . , WL and the bias vectors
b1, b2, . . . , bL be independent, identically distributed random variables with a uni-
form distribution on [−0.5, 0.5]. in Figures 4.1 and 4.2 we have the following setting:
in the plots to the left L = 2 and to the right L = 4. The upper plots show the
structure of the neural network and the lower plots show outcome of one experiment.
The number of nodes in each hidden layer is 4 in Figure 4.1, and it is 15 in Figure
4.2.

Figure 4.1: A neural network mapping, NNθ : R2 → R. The upper plots show the
structure of the network and the lower plots show the graphs of NNθ for randomly
sampled θ. Left: L = 2 with k1 = 4. Right: L = 4 with k1 = k2 = k3 = 4.

4.1.3 The loss function

In Section 4.1.1 we described a neural network as a mapping from R
k0 to RkL .

To simplify the presentation we suppress the dimensions and consider the neural

35



4. The neural network based algorithms

Figure 4.2: A neural network mapping, NNθ : R2 → R. The upper plots show the
structure of the network and the lower plots show the graphs of NNθ for randomly
sampled θ. Left: L = 2 with k1 = 15. Right: L = 4 with k1 = k2 = k3 = 15.

36



4. The neural network based algorithms

network as a mapping
NNθ : X → Z,

parameterized by θ ∈ Θ for some sets X ,Z. In every application of neural networks
the parameters are tuned or trained to satisfy a desired input/output relation of the
network. The function that quantifies the goodness of fit is called the loss func-
tion and it is used as objective function in the minimization problem of training
the network. The loss function and the training procedure vary depending on the
function that is to be approximated, i.e., on the application of the neural network.
In this section we give examples of three different types of neural networks and in-
troduce their corresponding loss functions. In all three examples we assume that the
neural networks are trained with training data in X ×Y sampled from a probability
distribution Q on X × Y . The space Y , referred to as the label space contains
additional information about the data and is essential in supervised learning. The
distribution Q can be a mathematical distribution or it can be a real world distri-
bution. An example of the former is the multivariate normal distribution and an
example of the latter is the joint probability distribution between body mass index
x ≥ 0 and diabetes y ∈ {0, 1} within the global population at a given time. No one
knows the distribution exactly but one can make random samples from it and this
is the important feature here.

Example 1. (Regression) In this case we let Y = Z be a normed vector space
with norm ‖ · ‖Y . The network is trained to estimate the conditional expectation
E[Y |X] for (X, Y ) ∼ Q. The goal of the loss function is to evaluate how well the
network has captured the relationship and is often chosen as

Loss(θ ; Q) = E(X,Y )∼Q
[
‖NNθ(X)− Y ‖2

Y

]
.

In practice only finite number of data pairs (xk, yk)Kk=1 ⊂ X × Y are available.
Let Qempirical = 1

K

∑K
n=1 δ(xk, yk) be the corresponding empirical distribution. The

empirical loss function is given by

Loss(θ ; Qempirical) = 1
K

K∑
k=1
‖NNθ(xk)− yk‖2

Y .

The training procedure, described further in the next section, is to find θ∗ ∈ Θ such
that the empirical loss function is minimized for θ = θ∗.

Example 2. (Classification) In the classification problem we let
Y = {1, 2, . . . , C} and Z = [0, 1]C . For (X, Y ) ∼ Q the interpretation of Y = c ∈
Y , is that X belongs to class c. For classification a so-called softmax output layers is
used. If the output of the second last layer of the network is o then the output of the
softmax layer is (eo1 , . . . , eon)/∑n

i=1 e
oi . Clearly the output sums to one. The neural

network is trained to generate the conditional probability distribution P(Y = c |X)
for c ∈ Y . The loss function for the classification problem is often the so-called cross
entropy loss, given by

Loss(θ ; Q) = −E(X,Y )∼Q

[
C∑
c=1

1{Y=c} ln (NNθ(X)c)
]
,

37



4. The neural network based algorithms

where NNθ(X)c is the c:th element in the output of the network. As in Example 1,
an empirical distribution is used in practice.

Example 3. (Approximate equation solving) Consider the problem of finding
a function f : X → Z, in some class D(Φ) satisfying

Φ(f)(x) = 0, x ∈ X , (4.1)

for some operator Φ. The network is trained to approximate f using data x ∈ X ,
sampled from some distribution Q over X . In this example Y = ∅. This exam-
ple include problems in many different areas, e.g., discrete numerical schemes of
ordinary and partial differential equations, both deterministic and stochastic. In
the stochastic case the space X contains both time and space variables as well as
discretizations of the noise. The loss function is abstractly given by

Loss(θ ; Q) = EX∼Q
[
Ψ(NNθ(X))

]
,

for some Ψ: Z → R
+. One natural choice is to let Ψ(z) = ‖Φ(z)‖D for some

appropriate norm ‖·‖D. This is done in e.g., [41], where (4.1) is a parabolic PDE and
the norm is designed to take into account also the boundary and initial conditions.
In the FBSDE controller described below, parts of the equation is built into the
architecture of the network and Ψ handles the terminal condition of the backward
equation. As in the previous examples, an empirical distribution is used in practice.

Example 4. (Approximate optimization) This class of problems is similar to
the previous but instead of solving equations, optimization problems are considered.
Let D(Φ) be a class of functions X → Z and Φ: D(Φ)→ R, be a functional that is
bounded from below. Consider the problem to find a function f ∈ D(Φ) that solves
the problem

minimize Φ(f), subject to f ∈ D(Φ). (4.2)

If {NN θ; θ ∈ Θ} ⊆ Φ(f) then instead of solving (4.2) we can solve the problem

minimize Φ(NNθ), subject to θ ∈ Θ, (4.3)

and if {NN θ; θ ∈ Θ} is rich enough, maybe the optimimum of (4.3) is a good
approximation of that for (4.2). The loss function for this problem is naturally Φ
itself. In Sections 4.2.1–4.2.2 below, the so called naive and DPE controllers are
introduced and they rely on this principle.

4.1.4 Training of a neural network
As mentioned in the previous section, the training of a neural network is the process
of finding θ∗ such that the loss function is minimized for θ = θ∗, i.e.,

θ∗ ∈ arg min
θ∈Θ

Loss(θ ; Q). (4.4)

38



4. The neural network based algorithms

In practice an empirical distribution Qempirical is used, and from now on we only
consider empirical loss functions. The specific loss functions used in this thesis are
explained and motivated in Section 4.2. The training goes as follows: Assign values,
possibly at random, to θ. An appropriate optimization algorithm is then used to
find θ∗ such that Loss(θ∗ ; Qempirical) < Loss(θ ; Qempirical) and let θ = θ∗. Ideally as
in (4.4) but it is often hard to find a global minimum since θ is a high dimensional
vector (often in at least 106 dimensions) and the loss function is often non convex.

After the training has terminated then hopefully the neural network has learned
the relationship between the input and the output sufficiently well to generalize to
data it has not yet seen during training. To test how well the network is able to
generalize to new data, a test procedure is done. It is based on using another set of
samples (x̃k, ỹk)Kk=1, not used for training, and evaluate the prediction performance
on that.

4.1.4.1 Optimization algorithms used in the training procedure

This section deals with Step 3 in the training algorithm described in Section 4.1.4.
The problem is to find

θ∗ ∈ arg min
θ∈Θ

Loss(θ ; Qempirical). (4.5)

There are several different numerical methods for finding θ∗ and the vast majority of
them stems from the gradient descent. The gradient descent is a simple algorithm
that uses the (vector) gradient ∇θLoss(θ ; Qempirical) to decide in which direction θ
should be adjusted. Recall that the gradient of a function is a vector pointing in
the direction of the greatest rate of increase of that function. Since we want to
minimize Loss(θ ; Qempirical) the gradient descent updates θ in the opposite direction
of the gradient. Given a learning rate α > 0 the update rule for the gradient descent
reads as:

θt+1 = θt − α∇θLoss(θt ; Qempirical), t ∈ N+.

The iteration continues until convergence of θ. This method is very inefficient for
large training sets since all the data is used every time to compute the gradient. An-
other problem is that if the algorithm easily reaches a bad local minimum it cannot
escape. Due to these drawbacks classical gradient descent is rarely used in practice.

An updated version of the gradient descent is the stochastic gradient descent.
Instead of finding the gradient over the entire training data the stochastic gradient
descent updates θ for each sample from the training data individually. We denote
the empirical loss function, containing only one pair (x, y) from the empirical dis-
tribution Qempirical by

Loss(θ ; x, y).

Given a learning rate α > 0, the update rule for the most basic stochastic gradient
descent is given by:

θt ← θt − α∇θLoss(θt ; x, y),

39



4. The neural network based algorithms

which is repeated for all pairs (x, y) ∈ supp(Qempirical). Looping through the data set
once and updating the gradient for every data point is called an epoch. The training
often consists of many episodes and the subscript t indicates which epoch we are in.
When it is possible to sample directly from Q, for instance by some cheap computer
simulation, then it is better to continue with new data in one long episode instead of
using multiple episodes. Clearly this captures Q better than using the same samples
over and over again. In practice it is common to shuffle the training data after each
epoch to minimize the risk of providing the training data in a meaningful order,
which may bias the optimization algorithm [44]. This method converges almost
surly to a global minimum if the loss function is convex and to a local minimum
otherwise. The parameters obtained from using stochastic gradient descent are
often empirically better than the parameter computed by gradient descent [44].
By combing the gradient descent and the stochastic gradient descent the batch
gradient descent can be obtained. Instead of computing the gradient and perform
an update for every pair (x, y) individually, this is is done over n mini batches. The
update rule for the batch gradient descent is given by:

θt ← θt − α∇θLoss(θt ; xi:i+n, yi:i+n),

where Loss(θt ; xi:i+n, yi:i+n) is the empirical loss function containing n pairs from
Qempirical.

One problem with the algorithms above is that all the components of the parameter
vector θ are updated with the same learning rate α. This might cause problems, e.g.,
if the training data is sparse (containing a large proportion of zeros) or if the differ-
ent components in θ has a very varying magnitude. There are several methods that
uses different learning rates for each parameter such asAdagrad,Momentum op-
timizer , RMSProp and Adam optimizer . The arguably most used algorithm
within the neural network community [44] as well as the one used in this thesis is
the Adam optimizer. The algorithm uses adaptive moment estimation to compute
an individual learning rate for each parameter [45]. Let gt = ∇θLoss(θ ; x, y) for
some (x, y) ∼ Qempirical, the following estimates for the first and second moments
(the mean and the uncentered variance) of the gradient of the loss function are then
used

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g2
t , β1, β2 ∈ R+, t ∈ N+.

The initialization of m0 and v0 is set to be the zero vector. In [45] the authors claim
that m and v are biased towards zero, especially during the initial iterations and
when the decay rates are small, i.e. when β1 and β2 are close to 1. They therefore
introduced the bias corrected moment estimates

m̂t = mt

1− β1
, v̂t = vt

1− β2
.

Finally, the update rule for θ reads

θt+1 = θt + α
m̂t√
v̂t + ε

,

40



4. The neural network based algorithms

where ε is a small constant included for numerical stability. The update to the
version where the gradient is computed for each element from the training data
individually (similar to the stochastic gradient descent) is straight forward.

4.2 Neural network based algorithms for solving
stochastic optimal control problems

The notation below is general and applies to all algorithms in this section. Consider
a state equation given by

dXt = µ(t, Xt, ut) dt+ σ(t, Xt) dWt, t ∈ (0, T ]; X0 = x0, (4.6)

and a cost functional, as described in Chapter 3, given by

J(t, x ; u) = E
[∫ T

t
L(s, Xs, us) ds+ g(XT )

∣∣∣ Xt = x

]
. (4.7)

The time interval [0, T ] is discretized into the equidistant grid 0 = t0 < t1 < · · · <
tN = T with uniform step size ∆t = tk−tk−1 for k = 1, 2, . . . , N . We further denote
Xk = Xtk , uk = utk and Wk = Wtk for k = 0, 1, . . . , N and ∆Wk = Wk −Wk−1 for
k = 1, 2, . . . , N . In Figure 4.3–4.6 represents a deterministic function and
represents a neural network. The arrows are pointing from the input towards the
output of the function and the neural network respectively. When there are multiple
arrows pointing towards an output it should be interpreted as a function with mul-
tiple inputs. To approximate (4.6) we use the Euler–Maruyama scheme which
is a finite difference type method. The Euler–Maruyama scheme is the most basic
method for approximating SDEs. The algorithm is easy and straight forward to im-
plement but it can sometimes be unstable in the sense that the approximation can
blow up even though the solution does not. In Section 5.3 we therefore investigate
convergence properties for the Euler–Maruyama scheme for the case when the state
equation describes an inverted pendulum on a cart, which is the main state equation
considered in this thesis. In the following subsections the main algorithms of this
thesis are outlined. Note that the initial state X0 is an input to the first neural
network in each algorithm which in turn effects Xk for k > 0. By sampling many
different X0 during training from a spatial domain we train the networks to be able
to solve stochastic optimal control problems where the initial state varies.

In the following sections, the main algorithms used to solve the stochastic optimal
control problem are presented. All the algorithms below are of the type introduced
in Examples 3 and 4. The initial state are given by X0 ∼ U(DX0) for some spatial
domain of interest DX0 ⊂ Rn and the increments of the d-dimensional Wiener pro-
cess ∆Wk satisfies (∆Wk)j ∼ N (0, h) for j = 1, 2 . . . , d for all k = 1, 2, . . . , N .
This means that, with notation as in Section 4.1.3 we have X = DX0 ×Rd×N and
Y = ∅. By assuming that (∆Wk)j and (∆Wl)m are independent for all (k, l) 6= (j, m)
and using (·)∗ to denote the transpose of a matrix, we obtain the random vector
((∆W1)∗, (∆W2)∗, . . . , (∆WN)∗) taking on values in RN ·d. The random vector is

41



4. The neural network based algorithms

multivariate normal distributed with mean zero and a covariance matrix with ∆t
on the diagonal and zero elsewhere. For notational convenience we denote q =
((X0)∗, (∆W1)∗, (∆W2)∗, . . . , (∆WN)∗) and Q = U(DX0)⊗N (000, diag(∆t, . . . , ∆t))
to obtain the compact notation q ∼ Q. Note that in this specific case it is possible to
sample from the exact distribution Q and no empirical distribution is needed. The
loss function, on the other hand, must be approximated by a Monte-Carlo method.

4.2.1 The naive controller
The naive controller is called ”naive” since it uses only the formulation of the control
problem stated in (4.6), (4.7) and relies on no theoretical insights of the problem. In
each time step the current state is used as input to a neural network which outputs
the control signal. This method was introduced in [46], in which it was shown to
perform well in comparison to benchmark problems from finance and energy storage.

The naive controller:

For each n = 0, 1, . . . , N − 1 do:
(1) Generate the control signal un with a neural network Xn 7→ un with pa-

rameters θn.
(2) Update the state equation by the Euler–Maruyama update rule:

Xn+1 = Xn + µ(tn, Xn, un)∆t+ σ(tn, Xn)∆Wn.

In Figure 4.3 the structure of the naive control algorithm is visualized. The pa-
rameters in all the parallel neural networks are denoted by Θ and given by θθθ =
(θ0, θ1, . . . , θN−1). The notation for θθθ should not be confused with the notation for
the layers of a neural network introduced in Section 4.1. Note that θθθ represents the
parameters for N parallel neural network where each θn, for n = 0, 1, . . . , N − 1,
itself has the structure described in Section 4.1.

The loss function, which is a time discrete version of the cost functional (4.7) is
given by

Lossnaive(θθθ ;Q) = Eq∼Q
[
N−1∑
n=0

L(tn, Xn, un)h+ g(XN)
]
.

The loss function is the approximated as

Lossnaive(θθθ ;Q) ≈ 1
K

K∑
k=1

(
N−1∑
n=0

L(tn, Xk
n, u

k
n)h+ g(Xk

N)
)
,

where Xk
n, u

k
n for n = 1, 2 . . . , N are realizations from the neural network with Xk,

sampled from Q, as input for k = 1, 2 . . . K. In literature, K is often referred to as
the batch size. For the numerical experiments in this thesis we use a single batch,
i.g., K = 1 while training the network. To compare the performance of the trained
networks the loss function is approximated with K = 5 with new, unseen test data
as input.

42



4. The neural network based algorithms

Figure 4.3: A schematic picture of the naive controller.

4.2.2 The DPE controller

In the DPE controller we use the dynamic programming equation stated in Section
3.3 which establishes a connection between the optimal control signal and the gra-
dient of the value function. In many stochastic optimal control problems, including
those considered in this thesis the optimal control signal can be written as an ex-
plicit function π of t, Xt and ∇xV (t, Xt). This relationship is used in such a way
that we let the neural network approximate the gradient of the value function in
each discrete time step, from which we then obtain the control signal.

The DPE controller:

For each n = 0, 1, . . . , N − 1 do:
(1) Generate the gradient of the solution to the HJB equation
∇Vn = ∇V (tn, Xn) with a neural network Xn 7→ ∇Vn with parameters
θn.

(2) Compute the control signal un = π(tn, Xn, ∇Vn).
(3) Update the state equation by the Euler–Maruyama update rule:

Xn+1 = Xn + µ(tn, Xn, un)∆t+ σ(tn, Xn)∆Wn.

In Figure 4.4 the structure of the DPE control algorithm is visualized. Like the
previous algorithm the parameters in all the parallel neural networks are denoted
by θθθ and given by θθθ = (θ0, θ1, . . . , θN−1) and the loss function is, again, given by

LossDPE(θθθ ;Q) = Eq∼Q
[
N−1∑
n=0

L(tn, Xn, un)h+ g(XN)
]
.

Thus, the DPE controller minimizes the same loss function as the naive controller,
but it utilizes the structure of the problem better. As for the naive controller, the
loss function is approximated with the Monte-Carlo method with K realizations.

43



4. The neural network based algorithms

Figure 4.4: A schematic picture of the DPE controller.

4.2.3 The FBSDE controller

The FBSDE controller uses the reformulation of a stochastic optimal control prob-
lem to a FBSDE described in Section 3.5, thus being the controller we consider that
relies on most theoretical understanding of the problem. The FBSDE is of the form
given in (3.30) and we use a neural network to approximate Y0, i.e., the value of the
BSDE part at the initial time t = 0. In each time step tn, a neural network is used
to approximate Zn which in turn gives the control signal un = π(tn, Xn, Zn) by an
explicit mapping as described in Section 3.5.

The FBSDE controller:

(0) Generate Y0 with a neural network X0 7→ Y0 parametrized by θY0 .
For each n = 0, 1, . . . , N − 1 do:
(1) Approximate Zn = Ztn with a neural network Xn 7→ Zn with parameters

θZn .
(2) Update the FBSDE by the Euler–Maruyama update rule:

Xn+1 = Xn + µ(tn, Xn, Zn)∆t+ σ(tn, Xn)∆Wn,

Yn+1 = Yn − f(tn, Xn, Zn)∆t+ Zn∆Wn.

In Figure 4.5 the structure of the FBSDE control algorithm is visualized. The
parameters of all the parallel neural networks are denoted by
θθθ = (θY0 , θZ0 , θZ1 , . . . , θZN−1). We use the terminal condition of the BSDE, YN =
g(XN) to construct the loss function

LossFBSDE(θθθ ; Q) = Eq∼Q
[
(g(XN)− YN)2

]
.

Once again, the loss function is approximated with the Monte-Carlo method with
K samples.

44



4. The neural network based algorithms

Figure 4.5: A schematic picture of the FBSDE controller.

4.2.4 The Deep BSDE Solver
The Deep BSDE solver is basically the same algorithm as the Deep FBSDE Solver.
The difference lies in the reformulation of the stochastic optimal control problem.
The Deep FBSDE Solver explained in Section 4.2.3 solves a FBSDE. The Deep
BSDE Solver on the other hand consider a decoupled FBSDE which means that
the forward SDE can be approximated at all time points in advance and separately
from the BSDE. The Deep BSDE Solver then uses a neural network to solve the
remaining BSDE. The algorithm was introduced in [3] and the original purpose was
to overcome the curse of dimensionality when solving high dimensional PDEs. This
was done by solving a decoupled FBSDE of the form (3.38), i.e., finding (X, Y, Z).
By the definition of Y we have that Yt is the solution of the associated HJB equation
evaluated at (t, Xt). The solution to the HJB equation at the point (0, X0) is given
by Y0, i.e. V (0, X0) = Y0 and the sought solution V (0, x0) is obtained.

When the purpose instead is to solve a stochastic optimal control problem the ap-
proach is not as obvious as when we solve PDEs. We first need to reformulate the
stochastic optimal control problem to a decoupled FBSDE (3.38). Since the state
equation is not controlled its state will drift or diffuse away from the typical state of
a controlled dynamics. Training along such paths can lead to neural networks only
being able to generate Zn outside the region of interest for the controlled dynamics.
The reason for including the deep BSDE controller is that it is the most direct gen-
eralization of the method from [3] which was the starting point of this thesis.

As we can see in Figure 4.6 the algorithm is the same as the Deep FBSDE Solver
expect that there are no arrow from Z to X.

45



4. The neural network based algorithms

Figure 4.6: A schematic picture of the Deep BSDE solver.

46



5
Inverted pendulum on a cart

In this section the state equations for the single, and double inverted pendulum on
a cart are derived. This is done from the Newtonian equations of motion and leads
to a four and six dimensional ODE for the single and double inverted pendulums,
respectively. From now on we denote the dimension by n and keep in mind that
n = 4 for the single inverted pendulum and n = 6 for the double inverted pendulum.
The dynamics of the pendulums are described by equations of the form

Ẋt = f(Xt, ut), t ∈ (0, T ]; X0 = x, (5.1)

where Ẋt is the time derivative of X at time t, the function f : Rn ×R→ R
n. Let

W = {Wt}t∈[0, T ] be an n-dimensional Wiener process. Additive noise is then added
to (5.1) to obtain

dXt = f(Xt, ut)dt+ σdWt, t ∈ (0, T ]; X0 = x, (5.2)

where σ ∈ Rn×n is a constant, invertible matrix. Note that the equation above is a
forward SDE described in Chapter 2. In the final section of this chapter convergence
properties of finite difference methods for these equations are investigated.

5.1 Single inverted pendulum on a cart
Consider a single pendulum placed on a cart, see Figure 5.1. The cart is assumed

Figure 5.1: Inverted pendulum on a cart.

to move friction less in x-direction and the arm of the pendulum is assumed to be

47



5. Inverted pendulum on a cart

Notation
M Mass of the cart.
m Mass of the ball.
` Length of the pendulum.
θt Angle of the pendulum (θ = 0 when the pendulum is pointing up).
xt Position of the cart in x-direction.
ut Control of the system.

Table 5.1: Notation for the single inverted pendulum on a cart.

massless and rotate without friction. The parameters and constants are presented
in Table (5.1). Note that x, u and θ depends on time, t. This will often be omitted
from now on for convenience. The total energy in the system Etot is the sum of the
potential and the kinetic energy which are given by the equations

Ek = 1
2Mẋ2 + m

2

((
ẋ+ `θ̇ cos θ

)2
+
(
`θ̇ sin θ

)2
)
, (5.3)

Ep = mg` cos θ. (5.4)

To obtain the equation of motions for the system we introduce the Lagrange function

L = Ek − Ep. (5.5)

The Lagrange function for the pendulum on a cart has the properties

d
dt

(
∂L

∂ẋ

)
− ∂L

∂x
=u, (5.6)

d
dt

(
∂L

∂θ̇

)
− ∂L

∂θ
=0, (5.7)

where d
dt is the full derivative with respect to t and ∂

∂x
is the partial derivative with

respect to x. For a deeper explanation of Lagrangian dynamics we refer to [31].
From the above equations we obtain

(M +m)ẍ+m`θ̈ cos θ −m`θ̇2 sin θ = u, (5.8)
`θ̈ + ẍ cos θ − g sin θ = 0. (5.9)

We want to rewrite the system above as a system of first order differential equations.
Let X = (x, ẋ, θ, θ̇)T = (x1, x2, x3, x4)T . This yields

Ẋ = f(X, u) =


x2

−mg sinx3 cosx3+m`x2
4 sinx3+u

M+m sin2 x3
x4

(M+m)g sinx3−m`x2
4 sinx3 cosx3−u cosx3

`(M+m sin2 x3)

 , (5.10)

which is the so called state equation of the dynamical system.

48



5. Inverted pendulum on a cart

Figure 5.2: Double inverted pendulum on a cart.

5.2 Double inverted pendulum on a cart

The double inverted pendulum is best understood by looking at Figure 5.2. The only
difference compared to the single inverted pendulum is that there are two pendulums
that both can rotate frictionless around its base. We use the same notation as in
the previous section with additional subscripts to distinguish the two pendulums.
The equation of motions are again derived from the kinetic and potential energy. To
make the derivation easier to follow the kinetic and potential energies are divided
into three components corresponding to the cart, the first pendulum and the second
pendulum. The total kinetic and potential energies can then be written as

Ek = E0
k + E1

k + E2
k ,

Ep = E0
p + E1

p + E2
p ,

where

E0
k = 1

2Mẋ2,

E1
k = 1

2m1
(
(ẋ+ `1θ̇1 cos θ1)2 + (`1θ̇1 sin θ1)2

)
,

E2
k = 1

2m2
(
(ẋ+ `1θ̇1 cos θ1 + `2θ̇2 cos θ2)2 + (`1θ̇1 sin θ1 + `2θ̇2 sin θ2)2

)
,

E0
p = 0,

E1
p = m1g`1 cos θ1,

E2
p = m2g(`1 cos θ1 + `2 cos θ2).

The Lagrange equation is again given by L = Ek − Ep which becomes

L =1
2(M +m1 +m2)ẋ2 + 1

2(m1 +m2)`2
1θ̇

2
1 + 1

2m2`
2
2θ̇

2
2 + (m1 +m2)`1ẋθ̇1 cos θ1

+m2`2ẋθ̇2 cos θ2 +m2`1`2θ̇1θ̇2 cos (θ1 − θ2)− (m1 +m2)g`1 cos θ1 −m2g`2 cos θ2.

49



5. Inverted pendulum on a cart

Again, with the properties

d
dt

(
∂L

∂ẋ

)
− ∂L

∂x
=u,

d
dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
=0,

d
dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
=0.

After writing the above explicitly we obtain

u =(M +m1 +m2)ẍ+ (m1 +m2)`1(θ̈1 cos θ1 − θ̇2
1 sin θ1)

+m2`2(θ̈2 cos θ2 − θ̇2
2 sin θ2),

(5.11)

0 =(m1 +m2)`1ẍ cos θ1 + (m1 +m2)`2
1θ̈1 +m2`1`2θ̈2 cos (θ1 − θ2)

+m2`1`2θ̇
2
2 sin (θ1 − θ2)− (m1 +m2)`1g sin θ1,

(5.12)

0 =m2`2ẍ cos θ2 +m2`1`2θ̈1 cos (θ1 − θ2) +m2`
2
2θ̈2

−m2`1`2θ̇
2
1 sin (θ1 − θ2)−m2g`2 sin θ2.

(5.13)

The Lagrangian equations can be written explicitly in the same way as (5.8) and
(5.9) but the expression is rather messy. The following compact notation is borrowed
from [27]. Let X = (x, θ1, θ2, ẋ, θ̇1, θ̇2)T = (x1, x2, x3, x4, x5, x6)T . Equations
(5.11)-(5.13) can then be written as

D(X)(ẋ3, ẋ4, ẋ5)T + C(X)(x4, x5, x6)T + G(X) = Hu, (5.14)

with

D(X) =

 d1 d2 cosx2 d3 cosx3
d2 cosx2 d4 d5 cos (x2 − x3)
d3 cosx3 d5 cos (x2 − x3) d6

 ,

C(X) =

0 −d2x5 sin x2 −d3x6 sin x3
0 0 d5x6 sin (x2 − x3)
0 −d5x5 sin (x2 − x3) 0

 ,

G(X) =

 0
−f1 sin x2
−f2 sin x3

 ,

H =

1
0
0

 ,

50



5. Inverted pendulum on a cart

where

d1 = M +m1 +m2,

d2 = (m1 +m2)`1,

d3 = m2`2,

d4 = (m1 +m2)`2
1,

d5 = m2`1`2,

d6 = m2`
2
2,

f1 = (m1 +m2)`1g,

f2 = m2`2g.

Note that D is a non-singular, symmetric matrix. Equation (5.14) can then be
written as the six dimensional ODE

Ẋ = f(X, u) =
(

0 I
0 −D−1C

)
X +

(
0

−D−1G

)
+
(

0
−D−1H

)
u, (5.15)

were 0 and I are the zero matrix and the identity matrix in appropriate dimensions
respectively.

5.3 Numerical methods for simulations of inverted
pendulum on a cart

In this thesis four different approaches are used to solve a stochastic optimal control
problem of the type described in Chapter 3; the naive controller, the DPE con-
troller, the FBSDE controller and the deep BSDE solver (the deep BSDE solver is
only used in the LQR problem introduced in Section 3.6.2). Despite the differences
all approaches use neural networks with the current state (solution to the state
equation at the current time) as input to approximate the optimal action at that
time. Therefore it is crucial to be able to approximate (5.2) accurately.

The dynamics of an inverted pendulum on a cart without control is very sensitive
to initial conditions, i.e. a small change in the initial value can cause a large change
in the future. When a sufficiently good control1 is added to the system it is less
chaotic since the control pushes the state equation towards some desired final state.
Therefore, we only consider performance of numerical methods for the uncontrolled
state equations, i.e. equation (5.2) for single and double inverted pendulum with
ut = 0 for all t ∈ [0, T ]. We now present the numerical method for solving SDEs
and define in what sense it converges to the exact solution. The goal is to approxi-
mate an SDE with the following settings. Given an initial condition X0 = x ∈ Rn,
a non singular matrix σ ∈ Rn×n, f : [0, T ] × Rn → R

n and the Wiener process
W = {Wt}t∈[0, T ] ∈ Rn the stochastic process X = {Xt}t∈[0, T ] is described by

dXt = f(Xt)dt+ σdWt, t ∈ (0, T ]; X0 = x. (5.16)
1In this context a sufficiently good control refers to a control that manage to stabilize the

pendulum in a possibly non optimal way.

51



5. Inverted pendulum on a cart

We then consider an equidistant discretization of the time interval [0, T ]

0 = t0 < t1 < · · · < tN = T, (5.17)

with step size ∆t = T
N
. With this settings and for k = 0, 1, . . . , N − 1 the Euler–

Maruyama method for approximating equations on the form (5.16) is given by the
iterative scheme

Xk+1 = Xk + f(Xk)∆t+ σ(Wk+1 −Wk); X0 = x0. (5.18)

where Xk is the approximation of Xtk and Wk = Wtk . Note that Wk+1 − Wk is
normally distributed with zero mean and variance h. A natural question to ask is
then when, and in what sense (5.18) converges to the solution of (5.16). One way
of measuring the error at time t is with the Euclidean norm |X(tn) − Xn|. If we
consider the last time step and if there exists a C <∞ independent of N satisfying

‖XT −XN‖L2
T (Rn) ≤ CN−q, (5.19)

we then say that XN converges strongly to XT with convergence order q. From
standard theory of numerical methods for SDEs, e.g., [32],it holds that if the initial
value x0 has finite second moment and the drift and diffusion coefficients satisfy a
global Lipschitz condition, then the Euler–Maruyama approximation (5.18) for SDEs
of the form (5.16) has strong convergence order q = 0.5. Recall from Section 2.2 that,
among other assumption we assumed Lipschitz continuity of the drift coefficient for
existence and uniqueness of a SDE. In the case with the inverted pendulums on a
cart the SDEs do not have Lipschitz continuous drift coefficients and the theoretical
results do not apply. This does not mean that a solution does not exists but only
that it is not verified theoretically whether it has or not.. If a solution in fact
exists then the Euler–Maruyama approximation may or may not converge. Since
the theoretical results do not apply to our specific problem the best we can do is to
try to establish an empirical convergence. This is done by replacing XT by another
Euler–Maruyama approximation on a much finer grid, i.e., for Ñ >> N the interval
[0, T ] is divided into the equidistant grid

0 = t0 < t1 < · · · < tÑ = T. (5.20)

We then use the Monte–Carlo approximation of ‖XT −XN‖L2
T (Rn) defined by

1
Msamples

Msamples∑
i=1

|X i
Ñ −X

i
N | ≈ ‖XT −XN‖L2

T (Rn), (5.21)

where superscript i separates different realizations of (5.18). The empirical conver-
gence rate is then the smallest constant q̃ such that there exists a constant C <∞
such that

1
Msamples

Msamples∑
i=1

|X i
Ñ −X

i
N | ≤ CN−q̃. (5.22)

52



5. Inverted pendulum on a cart

5.4 Numerical experiments for simulations of in-
verted pendulums on a cart

In this section we simulate the single and double inverted pendulum on a cart
(without control signal) with the Euler–Maruyama scheme (5.18). We evaluate
some critical aspects of the performance of the method and present the results in
plots. Empirical convergence rates for starting points close to stable and unstable
stationary points are established both for the single and double inverted pendulum.
For the double inverted pendulum, which is sensitive to the length of the time
interval T , we also investigate the dependence of T for the simulation error.

5.4.1 Single inverted pendulum
For the single inverted pendulum we consider the parameters T = 2, M = 2, m = 1
and ` = 1. We further let σ = diag(s, s, s, s) for s = 0.05 and s = 5, where
diag(s1, . . . , sn) is a n× n diagonal matrix with (s1, . . . , sn) on the diagonal. The
reason for testing different levels of noise is that one strategy for making the control
more robust is to increase the noise of the state equation. We use initial data in the
neighborhood to the two stationary points (stationary in the sense that uncontrolled,
deterministic dynamics are stationary). They are x1

0 = (x, ẋ, θ, θ̇)T = (0, 0, 0.1, 0)T
and x2

0 = (0, 0, π − 0.1, 0)T .

Figure 5.3: Convergence plots with Msamples = 10 for the uncontrolled state equa-
tion approximated with the Euler–Maruyama method for single pendulum. Left:
Initial data x1

0. Right: Initial data x2
0.

As we can see in Figure 5.3, for both initial values x1
0 and x2

0, we have an empirical
convergence order q̃ = 1 for s = 0.05 and q̃ = 0.5 for s = 5. Note that even
though f is not Lipschitz continuous we obtain the empirical convergence order 0.5
for the case of high noise. Regarding the case with lower noise we first note that for
an ODE of the type ẋ = f(t, x) we can, under similar conditions as for the SDE,
prove a theoretical convergence order 1 for the forward Euler scheme (which is the
Euler–Maruyama scheme for deterministic equations). With this in mind it is not
surprising that the empirical convergence order obtained in the case with s = 0.05
is the same as in the deterministic case since 0.05 is relatively close to zero.

53



5. Inverted pendulum on a cart

5.4.2 Double inverted pendulum
For the double inverted pendulum we consider the parameters T = 0.4, M =
1, m1 = 0.5, m2 = 0.75, `1 = 0.5 and `2 = 0.75.We further let σ = diag(s, s, s, s, s, s)
for s = 0.05 and s = 0.3. We use initial data close to two of the four equilibrium
points. They are given by x1

0 = (x, θ1, θ2, ẋ, θ̇1, θ̇2)T = (0, 0.1, 0.1, 0, 0, 0)T and
x2

0 = (0, π − 0.1, π − 0.1, 0, 0, 0)T . These are the equilibrium points where the
system is in rest with both pendulums standing in upright and downright position,
respectively. The reason for the relatively small T = 0.4 is that the simulation of
the dynamics (with the Euler–Maruyama scheme) of the double inverted pendulum
is very unstable and sensitive to initial conditions. This makes it almost impossible
to perform simulations of the state equation for large T with this scheme. Another
observation when the noise level increases the stability of the approximation scheme
decreases. For this reason we have not considered noise levels above s = 0.3 for the
double inverted pendulum.

Figure 5.4: Convergence plots with Msamples = 10 for the uncontrolled state equa-
tion approximated with the Euler–Maruyama method for double pendulum. Left:
Initial data x1

0. Right: Initial data x2
0.

From Figure 5.4 (to the right) we can conclude that for initial data x2
0, close to

the downright stationary point, we have empirical convergence order q̃ = 1 for the
both noise level s = 0.05 and s = 0.3. For the initial condition x1

0, i.e. when both
pendulums starts close to a upright position the situations is more complicated.
For the case with s = 0.05 we again obtain convergence order q̃ = 1, which is
shown in Figure 5.4 (to the left). By comparing the plots in Figure 5.4 one notices
that the error is a factor 10 larger (for the same step size and with noise level
s = 0.05) in the plot to the left. This makes intuitive sense since the values of the
state equation are higher when a double pendulum is released from a position close
to upright for both pendulums than from a position close to downright for both
pendulums. This problem can be resolved by decreasing the step step size with a
longer computational time as a result. Another problem that does not have a simple
solution is that the Euler–Maruyama is unstable for the double inverted pendulum
for long time intervals, meaning that the approximation grows big even though the
solution, or to be precise, the approximation computed on a finer grid, does not.
The convergence for the case with initial value x2

0 and noise level s = 0.3 cannot be

54



5. Inverted pendulum on a cart

found for T = 0.4 which is why that plot is missing Figure 5.4 (to the right). In
Figure 5.5 the error is plotted against the length of the time interval T , for the two
initial values x1

0 and x2
0, respectively. Note that since the range of different T in the

plots are rather small the step size is approximately the same. We see that for the
initial value close to the downright position (to the left) the error stays relatively
small when T increases but for the initial value close to the upright position (to the
right) the error explodes when T exceeds a certain threshold, close to T = 0.45.

Figure 5.5: The error as a function of the length of the time interval T for noise
level s = 0.05 with initial data x1

0 to the left and x2
0 to the right.

55



5. Inverted pendulum on a cart

56



6
Numerical experiments

All numerical experiments in this chapter have been carried out in Python. For the
training procedure of the neural networks we have used Google’s open source ma-
chine learning framework TensorFlow. If nothing else is stated, default parameters
are used.

Throughout this chapter we consider cost functions on the form

J(t, x ; u) = E
[∫ T

t

(
|RXs|2 + r2u2

s

)
ds+ |GXT |2

∣∣∣Xt = x

]
, (6.1)

where R, G ∈ Rn×n, r ∈ R, Xt ∈ Rn and ut ∈ R for t ∈ [0, T ]. The matrices R and
G are diagonal, and they are referred to as the running and terminal cost matrix
respectively and the scalar r is referred to as the control cost. We refer repeatedly
to the empirical confidence interval in this chapter. These are represented by
shaded areas in figures below. The interpretation of these is that at all time points,
95% of the trajectories lie within the shaded area with 2.5% lie above and below the
shaded area respectively. Throughout this Chapter batch size K = 1 is used.

6.1 Examples in one dimension
In this section we use the algorithms from Section 4 to control two different SDEs in
one space dimension. The first example is the LQR problem, described in Section
3.6.2 and the second example is the control of a SDE with nonlinear drift coefficient.
Recall from Section 3.6.2.2 that, given a state (t, x), the optimal Markov control
policy for the LQR problem is given by

π∗(t, x) = − b

2r2 (2P (t)x+Q(t)), (6.2)

where P and Q solve the corresponding ODEs in (3.51). It is reasonable to believe
that the network can learn this affine relationship. For the same reason the BSDE
controller is a good choice in this case since there is no need for training in the
right spatial domain where the approximation will be used. If the affine relationship
is learned somewhere in space it has a good chance to extend to the whole space,
depending only on the possible nonlinearity of the network. An affine function ap-
proximator (which is a neural network with no hidden layer and activation function
being the identity) would of course be best but here we want to pretend we do not

57



6. Numerical experiments

know this additional structure of the problem. We remark here that the LQR prob-
lem is easily solved and implemented using numerical approximations of P and Q
without using neural networks. This gives us a benchmark solution for this specific
problem.

In the second example we do not have the affine relationship between the current
state and the feedback control. Therefore we use a coupled algorithm to ensure
that the network is trained in the region in space where the optimally controlled
dynamics will be. In one space dimension the DPE controller is the same algorithm
as the naive controller.

6.1.1 Linear quadratic regulator
In this section we consider the Ornstein-Uhlenbeck process in one dimension, being
the solution X to (3.39). We use the BSDE controller described in Section 4.2.4 to
approximate the feedback control. The dynamics of the controlled process are given
by equation (3.40). As described in Section 3.6.2.2 LQR problems can be solved
analytically1. We can therefore compare the analytic and approximate solutions.
We let T = 1, N = 100, a = 1, b = 0.5, c = 0.2, σ = 0.05, R = 10, G = 1, r = 1
and x0 ∼ U([0.08, 0.32]), where U(I) denotes the uniform distribution on I ⊂ R.
We use N parallel neural networks to approximate Zk for k = 0, 1, . . . , N − 1 and
one subnetwork to approximate Y0, which gives a total of N + 1 subnetworks. Each
subnetwork has 2 hidden layers with 5 nodes (neurons) and both the input and the
output are 1-dimensional. This means that each subnetwork consists of 25 weights
and 11 biases (free parameters) to be optimized. For N = 100 we then have 3636 free
parameters. The upper plots in Figure 6.1 show two sample paths of uncontrolled
processes, BSDE controlled processes and analytically controlled processes, all with
the same noise. The corresponding control signals are compared in the lower plots in
Figure 6.1. Figure 6.2 shows the average of 500 controlled and uncontrolled processes
and the average of their corresponding control signals. The shaded areas represents
an empirical 95% confidence intervals. This means that 95% of the training has been
performed inside the gray shaded area in Figure 6.2 to the left. We can therefore,
with high certainty conclude that the network is able to learn the optimal Markov
control policy in this area.

6.1.2 Non-linear control
In this section we consider a state equation with a nonlinear drift given by

dX̄t = a sin
(
πX̄t

c

)
dt+ σ dWt, t ∈ (0, T ]; X̄0 = x0, (6.3)

for a ∈ R, c ∈ R \ {0} and σ ∈ R+. This process has stable stationary points at
odd multiples of c and unstable stationary points at even multiples of c. Our aim
is to control the process around 0 by adding a feedback control in the drift term of

1Strictly speaking it is an approximation since we have to approximate the Riccati equation
(3.51). We use a simple explicit Euler scheme to approximate (3.51) with 10N grid points.

58



6. Numerical experiments

Figure 6.1: Upper: The BSDE control and the analytic control applied to two
sample paths of an Ornstein-Uhlenbeck process. Lower: The BSDE controller and
the analytic optimal control for two different sample paths of an Ornstein-Uhlenbeck
process.

Figure 6.2: Left: The average of 500 test samples of controlled and uncontrolled
Ornstein-Uhlenbeck processes with an empirical 95% confidence interval. Right:
The average of 500 sample paths of the control signals that corresponds to the
controlled processes in the plot to the right.

59



6. Numerical experiments

(6.3). For b ∈ R+ and ut ∈ R for t ∈ [0, T ), the controlled state equation is given
by

dXt =
(
a sin

(
πXt

c

)
+ b ut

)
dt+ σ dWt, t ∈ (0, T ]; X0 = x0. (6.4)

We let T = 0.5, N = 50, a = 1, b = 1, c = 0.2, σ = 0.05, R = 10, G = 1, r = 1
and x0 ∼ U([−0.22, 0.22]). The upper plots in Figure 6.3 shows the average of 500
test samples of controlled and uncontrolled processes, with the naive controller to
the left and the FBSDE controller to the right. Note that we have separated the

Figure 6.3: Average of 500 controlled and uncontrolled processes with a 95%
empirical confidence intervals. Upper left: The naive controller. Upper right: The
FBSDE controller. Lower: The FBSDE2 controller.

uncontrolled processes ending up in the upper half plane from those ending up in the
lower half plane to make the plots more visual. We note that the process controlled
by the FBSDE controller is oscillating. To avoid this we have also included a slightly
different version of the FBSDE controller that counteracts oscillation in this section.
This is done by adding a regulating term to the single batch loss function which for
ρ ∈ R+ becomes

lossFBSDE2(ϑ ; x0) = (g(XN)− YN)2 + ρ
N∑
k=0

(Xk+1 −Xk)2.

For all experiments in this section we use ρ = 2.5. The lower plot in Figure 6.3 shows
the average of processes controlled by the FBSDE2 controller, which we for conve-
nience denote the modified version of the FBSDE controller by. In Figure 6.4 sample

60



6. Numerical experiments

paths of controlled processes are compared with their uncontrolled counterpart for
the naive controller, the FBSDE controller and the FBSDE2 controller. Figure 6.5

Figure 6.4: One sample of a controlled process and one sample of an uncontrolled
process. Upper left: The naive controller. Upper right: The FBSDE controller.
Lower: The FBSDE2 controller.

shows the average control signal for the three algorithms. For this problem, it is
clear that the naive controller performs better than the FBSDE controllers. We
further see that the oscillation decreases when the FBSDE2 controller is used but
the performance is still not as good as with the naive controller.

6.2 Control of a single inverted pendulum on a
cart

In this section we use the algorithms described in Section 4.2 to control a single
inverted pendulum on a cart with the dynamics from Section 5.4.1. We compare the
performance of the naive, DPE and FBSDE controllers by means of the cost during
training. We further demonstrate that the FBSDE controller is able to swing up the
pendulum from a position close to its downright position to the unstable upright
position. This is done by showing single trajectories from controlled processes as
well as the average of 500 controlled processes. In Section 6.2.1 we demonstrate
that by changing the running and terminal cost matrices we can easily change the
control strategy. Section 6.2.2 deals with an attempt to increase the robustness of

61



6. Numerical experiments

Figure 6.5: The average control signal with an empirical 95% confidence interval.
Upper left: The naive controller. Upper right: The FBSDE controller. Lower: The
FBSDE2 controller.

62



6. Numerical experiments

Single pendulum
Case I Case II

N 100 100
Msamples 10000 20000
T 4 4
M 2 2
m 1 1
L 2 2
s 0.05 0.05
r 0.1 0.1
R11 0 1
R22 0 5
R33 10 50
R44 5 25
G11 10 0
G22 10 0
G33 50 0
G44 25 0
x0 U([0, 0]) U([0, 0])
ẋ0 U([−0.5, 0.5]) U([−0.5, 0.5])
θ0 U([π−0.5, π]) U([π−0.1, π])
θ̇0 U([−0.5, 0.5]) U([−0.5, 0.5])

Table 6.1: Parameters and constants for the single inverted pendulum on a cart
used in the numerical experiments.

the control by increasing the noise level. The somewhat sloppy term ’robust control’
means that the control strategy does not break down if the system is exposed to
some perturbation, e.g., if the pendulum is perturbed, causing a rapid change in the
state. We also show that the FBSDE controller performs well over a large domain
of initial values, i.e. for different initial velocities, angles and angular velocities.

6.2.1 Two different control strategies
Consider the two cases with values of the parameters as given in Table 6.1. We use
N subnetworks to approximate Zk for k = 0, 1, . . . , N − 1 and one subnetwork to
approximate Y0, which gives a total of N + 1 subnetworks. Each subnetwork has 2
hidden layers with 14 nodes and both the input and the output are 4-dimensional.
This means that each subnetwork consists of 308 weights and 32 biases to be op-
timized. For N = 100 we then have 34340 free parameters. In both parameter
settings the goal is to stabilize the pendulum around its upright equilibrium point.
The difference lies in the running and terminal cost matrices. In Case I running cost
is low and the terminal cost high. It results in a control strategy that is passive in
the beginning and then quickly swings up the pendulum to the upright position close
to the end of the time interval. In Case II the strategy is the opposite, thus control-
ling the pendulum as quick as possible to the upright position and then balancing it

63



6. Numerical experiments

at this point for the remaining time. The computing times were approximately as
follows, Case I: The naive controller 7000 seconds, the FBSDE and DPE controllers
8000 seconds. Case II: The naive controller 15000 seconds, the FBSDE and DPE
controllers 17000 seconds. Note that no effort has been made to optimize the algo-
rithm from a computing time perspective.

One problem when evaluating the algorithms is that we cannot determine how close
the approximate controllers are to the optimal Markov control policy. What we can
do, however, is to compare the naive controller, the DPE controller and the FBSDE
controller by means of the cost during training. We also want to approximate the
cost during training to make sure that the cost actually decreases. To do this we
denote the i:th initial value and control by xi0 and ui = {uik}k∈{0,1,...,N−1} respectively
and let the step size ∆t = T

N+1 . We train 5 different networks with the same initial
parameters and initial values. Then for i = 1, 2, . . . , Msamples we use the formula

J(0, xi0, ; ui) ≈ 1
5

5∑
j=1

(
N∑
k=0

(|RX i
k|2 + r2(uik)2)∆t+ |GX i

N |2
)
. (6.5)

In Figure 6.6 we see that in Case I, the cost is similar when using the FBSDE
controller and the DPE controller and the cost is slightly higher when the naive
controller is used. In Case II, on the other hand, we see a significant difference in
the cost during training where the FBSDE and the DPE controllers have significantly
lower cost than the naive controller. Note that the number of training samples, N ,
are chosen larger when the algorithms are evaluated in order to guarantee that the
values of the cost have stabilized. After comparing the different algorithms, the

Figure 6.6: Cost plotted against the number of training iterations for different
algorithms. Left: Case I. Right: Case II.

remaining part of this chapter is about the FBSDE controller. Figures 6.7 (Case I)
and 6.8 (Case II) show the average of 500 controlled processes. In Figures 6.9 (Case
I) and 6.10 (Case II) we choose at random one of the 500 samples and compare the
controlled and the uncontrolled processes. Figure 6.11 shows the average control
signal at each time point with a 95% empirical confidence interval. We have seen
that the FBSDE controller is able to control the pendulum to an upright position
in both Case I and Case II. To emphasize the difference in the different control

64



6. Numerical experiments

Figure 6.7: The average of 500 test samples of the uncontrolled and controlled
processes with an empirical 95% confidence interval with settings as in Case I.

65



6. Numerical experiments

Figure 6.8: The average of 500 test samples of the uncontrolled and controlled
processes with an empirical 95% confidence interval with settings as in Case II.

66



6. Numerical experiments

Figure 6.9: One typical, randomly chosen sample of a controlled and uncontrolled
process with settings as in Case I.

67



6. Numerical experiments

Figure 6.10: One typical, randomly chosen sample of a controlled and uncontrolled
process with settings as in Case II.

Figure 6.11: The average control signal with an empirical 95% confidence interval.
Left: Case I. Right: Case II.

68



6. Numerical experiments

strategies the average angle and angular velocity for controlled processes in Case I
and Case II are compared in Figure 6.12.

Figure 6.12: The average of 500 test samples of the angles and the angular veloc-
ities with an empirical 95% confidence interval. Left: Case I. Right: Case II.

6.2.2 Some strategies to improve the robustness of the con-
trol

As described in Section 4.2 the control signal at time tk is given by the mapping
(tk, Xk) 7→ uk. A problem with our algorithms is that they are not reliable for
(t,X) outside the domain in which the neural network is trained which in turn may
lead to a less robust control. In an attempt to make the control more robust, the
network was trained over a larger domain of initial values. We use the same settings
as in Case I but with ẋ0 ∼ U([−1, 1]) and θ̇0 ∼ U([−4, 2]). In Figure 6.13 we see
that the controller works for a large domain of different initial values but after t = 2
the shaded areas becomes narrower, indicating a less robust control for t > 2. By
increasing the noise to s = 0.3 we obtain wider empirical confidence intervals, which
is displayed in Figure 6.14. One problem with this procedure is that by increasing
the noise, the state equation describing the pendulum becomes less realistic. An
attempt to resolve this problem was done by using s = 0.3 when training the neural
network and removing the noise, i.e. letting s = 0 when testing the algorithm. The
corresponding plots are displayed in Figure 6.15. It should be emphasized that the
optimal Markov Control policy for the two cases s = 0 and s = 0.3 are not the
same. On the other hand, it is likely that the optimal Markov control policy for
the problem with s = 0.3 works sufficiently well for the corresponding problem with
s = 0.

6.3 Control of a double inverted pendulum on a
cart

This section deals with numerical experiments of control of a double inverted pendu-
lum on a cart. Recall that while a single pendulum has one unstable and one stable

69



6. Numerical experiments

Figure 6.13: Settings as in Case I but with the larger domain of initial values. Left:
The average of 500 test samples of angles and angular velocities with an empirical
95% confidence interval. Right: The average of 500 test samples.

Figure 6.14: Settings as in Case I but with the larger domain of initial values and
with s = 0.3. Left: The average of 500 test samples of angles and angular velocities
with an empirical 95% confidence interval. Right: The average of 500 test samples.

Figure 6.15: Settings as in Case I but with the larger domain of initial values.
The algorithm is trained with s = 0.3 and tested with s = 0. Left: The average of
500 test samples of angles and angular velocities with an empirical 95% confidence
interval. Right: The average of 500 test samples.

70



6. Numerical experiments

equilibrium point, a double pendulum has one stable and three unstable equilibrium
points. In Section 6.3.1 the performances of the naive, DPE and FBSDE controllers
by means of cost during training are compared. We further show that the FBSDE
controller is able to stabilize the double pendulum around its upright equilibrium
point for initial values close to any other equilibrium point. In Section 6.3.2 we use
similar techniques to improve the robustness as for the single pendulum.

Recall the discussion in Section 5.4.2 about the numerical instability of the Euler-
Maruyama scheme for approximations of the state equation of the double inverted
pendulum. For that reason, we consider a shorter time interval than for the single
inverted pendulum.

6.3.1 Different initial values

The structure of the FBSDE controller applied to the double pendulum is similar
to the corresponding case with the single pendulum described in Section 6.2.1. One
difference is that the dynamics is six dimensional instead of four. We also use 26
nodes in each hidden layer instead of 14. The choice of 26 is chosen by trial and
error, although it is not surprising that a more complicated problem needs a larger
neural network. For N = 100 we then have 105646 free parameters to be optimized.
We consider five different cases in this section, with parameters given in Table 6.2.
Case I - Case II only differ in the initial states and the reason for this is that the time
interval is considerably shorter and different strategies are then difficult to apply.
For the same reason, we have also prioritized to control the angles and the angular
velocities in this section. The initial state in Case I is when both pendulums are
close to the equilibrium point where both pendulums are pointing downwards. In
Case II and Case III, the initial states are close to the equilibrium points where one
pendulum is pointing downwards and the other one is pointing upwards. Case IV
and Case V have higher noise in the diffusion term of the state equation and Case
V also has a larger spatial domain of initial states. They are used to increase the
robustness of the control and are further introduced in Section 6.3.2. Figure 6.16
shows a comparison of the performance of the naive controller, the DPE controller
and the FBSDE controller by means of the cost (6.5) during training for Case I -
Case V. We see that the naive controller has significantly higher cost than the two
other algorithms in all cases except Case IV where the cost is similar. To determine
definitely which one of the DPE controller and the FBSDE controller that performs
best would need further investigation since the variance is too large with only 5
trained networks. As in the previous section after the different algorithms have
been compared the continuation of this section deals exclusively with the FBSDE
controller. After having compared the performance of the different algorithms we
only consider the FBSDE controller from now on. Figure 6.17 show the average
of 500 test samples of angles and angular velocities with empirical 95% confidence
intervals for Case I - Case III. In Figure 6.18 a randomly chosen controlled process
are displayed component wise and compared with its uncontrolled counterpart with
settings as in Case I. From these figures we can conclude that the FBSDE controller
is able to swing up the double inverted pendulum to its upright position with both

71



6. Numerical experiments

Double pendulum
Case I Case II Case III Case IV Case V

N 100 100 100 100 100
Ms 10000 10000 10000 10000 10000
T 0.5 0.5 0.5 0.5 0.5
M 1 1 1 1 1
m1 0.5 0.5 0.5 0.5 0.5
m2 0.75 0.75 0.75 0.75 0.75
l1 0.5 0.5 0.5 0.5 0.5
l2 0.75 0.75 0.75 0.75 0.75
s 0.05 0.05 0.05 0.3 0.3
r 0.1 0.1 0.1 0.1 0.1
R11 10 10 10 10 10
R22 25 25 25 25 25
R33 25 25 25 25 25
R44 1 1 1 1 1
R55 1 1 1 1 1
R66 1 1 1 1 1
G11 5 5 5 5 5
G22 150 150 150 150 150
G33 150 150 150 150 150
G44 5 5 5 5 5
G55 25 25 25 25 25
G66 25 25 25 25 25
x0 U([0, 0]) U([0, 0]) U([0, 0]) U([0, 0]) U([0, 0])
ẋ0 U([−0.5, 0.5]) U([−0.5, 0.5]) U([−0.5, 0.5]) U([−0.5, 0.5]) U([−0.5, 0.5])
θ1

0 U([π−0.1, π]) U([0, 0.1]) U([π−0.1, π]) U([π−0.1, π]) U([2π
3 , π])

θ̇1
0 U([−0.5, 0.5]) U([−0.5, 0.5]) U([−0.5, 0.5]) U([−0.5, 0.5]) U([−12, 7])
θ2

0 U([π−0.1, π]) U([π−0.1, π]) U([0, 0.1]) U([π−0.1, π]) U([2π
3 , π])

θ̇2
0 U([−0.5, 0.5]) U([−0.5, 0.5]) U([−0.5, 0.5]) U([−0.5, 0.5]) U([−12, 7])

Table 6.2: Parameters and constants for the double inverted pendulum on a cart
used in the numerical experiments.

72



6. Numerical experiments

Figure 6.16: Cost plotted against the number of training iterations for different
algorithms. Upper left: Case I. Upper right: Case II. Mid left: Case III. Mid right:
Case IV. Lower: Case V

73



6. Numerical experiments

angular velocities close to zero. Figure 6.19 shows the cost during training and the
average control against time. In Figure 6.18 we choose at random one of the 500

Figure 6.17: The average of 500 test samples of Angle 1 and angle 2 to the left and
angular velocity 1 and angular velocity 2 to the right with empirical 95% confidence
intervals. Upper: Case I. Mid: Case II. Lower: Case III.

samples and compares the controlled and the uncontrolled processes with settings
as in Case I. Figure 6.19 shows the average control signal at each time point with a
95% empirical confidence interval with settings as in Case I. To save space, we do
not show the corresponding plots for Cases II and Case III.

74



6. Numerical experiments

Figure 6.18: One typical, randomly chosen sample of a controlled and uncontrolled
process with settings as in Case I.

75



6. Numerical experiments

Figure 6.19: The average control signal with an empirical 95% confidence interval
with settings as in Case I.

6.3.2 Some strategies to improve the robustness of the con-
trol

In the same way as for the single pendulum we try to increase the robustness of the
control by using initial values over a larger spatial domain and increasing the noise
level in the state equation. In our first experiment we use the settings as in Case IV.
Note that the only difference between Case I and Case IV is the higher noise level
in Case IV. The average angles and angular velocities are displayed in the upper
plots in Figure 6.20 and by comparing to the upper plots in Figure 6.17 we see that
the empirical 95% confidence intervals are significantly wider, especially for larger t.
The left plot in Figure 6.21 shows the average control signal and an empirical 95%
confidence interval. We see that the confidence interval for the control is narrow
for small t and wider for t > 0.35 which indicates that the control is more robust
for larger t. By comparing the average control signal to the left in Figure 6.21 and
Figure 6.19 we see that by increasing s to 0.3 the oscillation in the control increased,
which indicates a less optimal control. For the next experiment we use the settings
as in Case V, which is to keep the high noise level and to increase the spatial domain
of initial states. The average angles and angular velocities are displayed to the right
in Figure 6.20 and wee see that the empirical 95% confidence intervals have increased
significantly. We see that it is possible to control processes with very different initial
values. The plot to the right in Figure 6.21 shows the average control signal and
an empirical 95% confidence interval. The confidence interval is wide for all t but it
oscillates notably.

76



6. Numerical experiments

Figure 6.20: The average of 500 test samples of Angle 1 and angle 2 to the left and
angular velocity 1 and angular velocity 2 to the right with empirical 95% confidence
intervals. Upper: Case IV. Lower: Case V.

Figure 6.21: The average of 500 control signals with an empirical 95% confidence
interval. Left: Case IV. Right: Case V.

77



6. Numerical experiments

78



7
Discussion

In this chapter we briefly discuss the results of this thesis. In particular we point to
some aspects that need further investigation in order to properly determine how well
the algorithms perform. Furthermore, we discuss some ideas for further development
of the algorithms.

7.1 Evaluation of the results
Recall Chapter 6, where the different algorithms, ability to control the single and
double pendulums was evaluated. This was done by studying the controlled pro-
cesses and by comparing the cost during training for the different algorithms. For
the basic cases, i.e., those cases where we did not aim to make the control robust,
we could safely draw the following conclusions:

• All three algorithms were able to swing up the pendulum/pendulums and
control it around its fully inverted unstable equilibrium point,

• The FBSDE controller and the DPE controller performed significantly better
in terms of the cost in most cases. On the whole, it seems that the FBSDE
controller performs slightly better than the DPE controller.

From a practical point of view, this may be sufficient, but from a mathematical
perspective we would like to know how close to optimality our approximate controls
are. This could be done by considering problems where an analytic solution to the
HJB equation exists and then comparing the optimal Markov control policy to our
approximate control signal. One problem with this approach is that we are limited
to a few control problems, which may not be representative. Another option is to
adopt an engineering approach and redo experiments done by others with our con-
trol algorithms and compare the results.

In order to better assess the performance of the various algorithms, a hyperparam-
eter optimization would have been required. The optimization should be done over
all parameters associated with the neural network, and separately for the different
algorithms.

7.2 Future work
The first and arguably most important improvement of the algorithms would be
to change to a energy preserving numerical scheme for the state equations. It is a
well known fact that the energy in the system increases with time when the forward

79



7. Discussion

Euler method (the Euler-Maruyama method’s counterpart for deterministic state
equations) is used to approximate a dynamical system. An alternative would have
been to use the Crank-Nicolson method, which is an energy preserving method (in
the deterministic case) and also more stable to initial values. To be precise, instead
of the Euler-Maruyama method given by (5.18) we would use the Crank-Nicolson
method which reads as

Xk+1 = Xk + 1
2 (f(Xk)− f(Xk+1)) ∆t+ σ(Wk+1 −Wk); X0 = x0, (7.1)

to approximate the state equation. This would allow us to use a larger T in the case
of the double pendulum.

As we saw in Section 3.6.2 the BSDE controller did perform well in the LQR prob-
lem but could not be used in nonlinear problems because the neural network was
trained in the wrong spatial domain. This problem could possibly be resolved by a
modification of the training algorithm.
Set k = N − 1 and repeat until k = 0:
(1) Choose an initial value xk from a spatial domain,
(2) View xk as initial data, and for fixed θm for m > k > N , use the training

algorithm for the BSDE solver to approximate θk, i.e. all parameters corre-
sponding to the k:th subnetwork are trained,

(3) Fix θk and let k = k − 1.
With this algorithm we train the N+1 subnetworks individually N plus N−2 extra
networks to approximate Yk for k = 1, 2, . . . , N − 1. With the algorithm above we
solve a BSDE instead of a FBSDE. If this is an advantage or not needs to be further
investigated.

In addition to the suggested algorithms above, we briefly mention some other ways
to formulate the stochastic optimal control problem, which would lead to completely
different methods. The first suggestion is to consider a constrained control problem
instead. With this setting we would introduce restrictions on the control, e.g. that
the force used needs to be less than a certain limit. The final suggestion is to instead
consider an infinite horizon control problem. Without going into details we would
loose the time dependency of the control and the optimal control would be given by
an algebraic HJB equation.

80



Bibliography

[1] Bellman, R. Dynamic programming. Courier Corporation, 2013 (Reprint of the
1957 edition).

[2] W, E., Han, J., & Jentzen, A. Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic dif-
ferential equations. Communications in Mathematics and Statistics, 2017.

[3] Han, J., & Jentzen, A. Solving high-dimensional partial differential equations
using deep learning. arXiv preprint arXiv:1707.02568, 2017.

[4] Berg, J., & Nyström, K. A unified deep artificial neural network ap-
proach to partial differential equations in complex geometries. arXiv preprint
arXiv:1711.06464, 2017.

[5] Raissi, M. Forward-Backward Stochastic Neural Networks: Deep Learn-
ing of High-dimensional Partial Differential Equations. arXiv preprint
arXiv:1804.07010, 2018.

[6] Berg, J., & Nyström, K. A unified deep artificial neural network ap-
proach to partial differential equations in complex geometries. arXiv preprint
arXiv:1711.06464, 2017.

[7] Bismut, J-M. An introductory approach to duality in optimal stochastic control.
SIAM review 20.1, 1978.

[8] Pardoux, E., & Peng, S. Adapted solution of a backward stochastic differential
equation. Systems & Control Letters, 1990.

[9] Pardoux, E., & Peng, S. Backward stochastic differential equations and quasilin-
ear parabolic partial differential equations. Stochastic partial differential equa-
tions and their applications. Springer, Berlin, Heidelberg, 1992.

[10] El Karoui, N., Peng, S., & Quenez, M.C. Backward stochastic differential equa-
tions in finance. Mathematical finance, 1997.

[11] Zhang, J. Backward Stochastic Differential Equations: From Linear to Fully
Nonlinear Theory Springer Vol 86, 2017.

[12] Zhang, J. Backward Stochastic Differential Equations: From Linear to Fully
Nonlinear Theory. Springer, 2017.

[13] Delong, L. Backward stochastic differential equations with jumps and their ac-
tuarial and financial applications. Springer, 2013.

[14] Touzi, N. Optimal stochastic control, stochastic target problems, and backward
SDE (Vol. 29). Springer Science & Business Media, 2012.

[15] Oksendahl, B. Stochastic differential equations. Springer, 1995.
[16] Yamada, T. and Watanabe, S. On the uniqueness of solutions of stochastic

differential equations. Journal of Mathematics of Kyoto University, 1971.

81



Bibliography

[17] Skorokhod, A.V. Studies in the theory of random processes. Vol. 7021. Courier
Dover Publications, 1965.

[18] Klebaner, F.C. Introduction to stochastic calculus with applications. World Sci-
entific Publishing Company, 2005.

[19] Fleming, W.H., & Soner, H.M. Controlled Markov processes and viscosity solu-
tions. Springer Science & Business Media, 2006.

[20] Yong, J., & Zhou, X. Y. Stochastic controls: Hamiltonian systems and HJB
equations Springer Science & Business Media, 1999.

[21] Nisio, M. Stochastic Control Theory. Dynamic Programming Principle, 2nd
edn. Probability Theory and Stochastic Modelling, 2015.

[22] Boubaker, O. The inverted pendulum: A fundamental benchmark in control
theory and robotics. Education and e-Learning Innovations (ICEELI), 2012 in-
ternational conference on. IEEE, 2012.

[23] Frisk, D. A Chalmers University of Technology Master’s thesis template for
LATEX. Unpublished, 2016.

[24] Grimmett, G. & Stirzaker, D. Probability and random processes. Oxford uni-
versity press, 2001.

[25] Hu, Y., & Peng, S. Solution of forward-backward stochastic differential equa-
tions. Probability Theory and Related Fields, 1990.

[26] Kac, M. On distributions of certain Wiener functionals. Transactions of the
American Mathematical Society, 1949.

[27] Bogdanov, A. Optimal control of a double inverted pendulum on a cart. Oregon
Health and Science University, Tech. Rep. CSE-04-006, OGI School of Science
and Engineering, Beaverton, OR, 2004.

[28] Karatzas, I., Lehoczky, J. P., & Shreve, S. E. Optimal portfolio and consumption
decisions for ”a small investor” on a finite horizon. SIAM journal on control
and optimization, 1987.

[29] Lokenath, D., & Mikusiński, P. Hilbert spaces with applications. Academic press,
2005.

[30] Dragomir, S.S. Some Gronwall type inequalities and applications. New York:
Nova Science Publishers, 2003.

[31] Percival, I.C., & Richards, D.Introduction to dynamics. Cambridge University
Press, 1982.

[32] Kloeden, P.E., Platen, E., & Schurz, H. Numerical solution of SDE through
computer experiments. Springer Science & Business Media, 2002.

[33] Folland, G.B. Real analysis: modern techniques and their applications. John
Wiley & Sons, 2013.

[34] Debnath, L., & Mikusiński, P. Hilbert spaces with applications. Academic press,
2005.

[35] Hodgkin, A.L., & Huxley, A.F. A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve. The Journal of
physiology, 1952.

[36] Goodfellow, I Deep learning. Vol. 1. Cambridge: MIT press, 2016.
[37] Hahnloser, R, et al. Digital selection and analogue amplification coexist in a

cortex-inspired silicon circuit. Nature 405.6789, 2000.

82



Bibliography

[38] Glorot, X, Bordes, A & Bengio, Y Deep sparse rectifier neural networks. Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics, 2011.

[39] Dodge, S., & Karam, L. A study and comparison of human and deep learn-
ing recognition performance under visual distortions. Computer Communication
and Networks (ICCCN), 2017.

[40] Cireşan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. Deep, big,
simple neural nets for handwritten digit recognition. Neural computation„ 2010.

[41] Sirignano, J, & Spiliopoulos, K. DGM: A deep learning algorithm for solving
partial differential equations. Journal of Computational Physics, 2018.

[42] Thibault, J., & Grandjean, B. P. A neural network methodology for heat transfer
data analysis. International Journal of Heat and Mass Transfer, 1991.

[43] Da Silva, I.N., Spatti, D.H., Flauzino, R.A., Liboni, L.H.B., & dos Reis Alves,
S.F. Artificial neural networks. Springer International Publishing, 2017.

[44] Ruder, S. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[45] Kingma, D.P., & Ba,J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[46] W, E. & Han, J. Deep Learning Approximation for Stochastic Control Problems.
arXiv preprint arXiv:1611.07422, 2016.

83


	List of Figures
	List of Tables
	Introduction
	Forward backward stochastic differential equations
	General setting
	Forward stochastic differential equations
	Backward stochastic differential equations
	BSDEs with zero generator
	BSDEs with non zero generator

	Forward backward stochastic differential equations
	Decoupled FBSDEs


	Stochastic optimal control
	General setting
	Conceptual overview of the strategies for finding the optimal Markov control policy
	A sketch of derivation of the Hamilton–Jacobi–Bellman equation
	Existence and uniqueness theorem for the HJB equation and a verification theorem
	Reformulation of a stochastic optimal control problem to a FBSDE
	Change of drift coefficients
	Affine state equation
	The linear quadratic regulator
	Reformulation of the control problem to the FBSDE
	Analytic solution via a system of ODEs



	The neural network based algorithms
	Deep neural networks - function approximators
	The structure of an artificial neural network
	Example of a low dimensional neural network
	The loss function
	Training of a neural network
	Optimization algorithms used in the training procedure


	Neural network based algorithms for solving stochastic optimal control problems
	The naive controller
	The DPE controller
	The FBSDE controller
	The Deep BSDE Solver


	Inverted pendulum on a cart
	Single inverted pendulum on a cart
	Double inverted pendulum on a cart
	Numerical methods for simulations of inverted pendulum on a cart
	Numerical experiments for simulations of inverted pendulums on a cart
	Single inverted pendulum
	Double inverted pendulum


	Numerical experiments
	Examples in one dimension
	Linear quadratic regulator
	Non-linear control

	Control of a single inverted pendulum on a cart
	Two different control strategies
	Some strategies to improve the robustness of the control

	Control of a double inverted pendulum on a cart
	Different initial values
	Some strategies to improve the robustness of the control


	Discussion
	Evaluation of the results
	Future work

	Bibliography

