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Abstract

This project, designed and implemented at Parker Hannifin AB, was to design and
implement an advanced control system for the swing function of a forestry machine,
a forwarder. The objective behind the swing control function is to improve the accu-
racy of the forwarding procedure, i.e. to improve the machines loading performance
by means of advanced closed-loop control design. The focus aim was on exploring
the benefits of model-based and optimal control systems with specific attention on
real time control applications.

Alternative control scenarios were developed and tested on a real forestry machine
configuration. To start with, a steady-state, state-feedback and Linear Quadratic
(LQ) control solution was chosen as a preliminary controller for the project. Integral
action was implemented in order to remove steady-state errors. Since the inertia
is time varying, LQ solution is not optimal for the entire operating window and
therefore two other control solutions were also tested. Gain scheduled LQ controller,
where a set of linear controllers are designed for different working points, and a
Linear Parameter Varying (LPV) controller where some parameters are allowed to
vary in specified intervals.

When estimating the unknown velocity of the crane, the estimation became noisy
and filtering was needed. A Kalman filter was implemented for an optimal estimation
of the states fed back to the controller.

To evaluate the control solutions an experienced forestry machine driver tested and
evaluated the system. Compared to the old system, open-loop control solution, the
machine behaved more harmonically, less shaky and better damped with the LPV
or gain scheduled LQ controller. With these new systems the amount of lever shifts
could become less than for the old system if the driver learns how to use it. The
change in response to the driver is not remarkably impaired. The gain scheduled
solution is slightly faster than the LPV solution, while the LPV solution behaves
more harmonically.
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Sammanfattning

Det här projektet, designat och utformat av Parker Hannifin AB, syftade till att
designa och implementera ett styrsystem för svängfunktionen p̊a en skotare. Syftet
var särskilt att undersöka och utreda om det är möjligt att uppn̊a en mjukare och
effektivare styrning än med dagens system.

En LQ-regulator valdes som utg̊angspunkt i projektet. Integralverkan och ett Kalman
Filter implementerades för att f̊a bort kvarst̊aende fel samt reducera brusp̊averkan.
Eftersom trögheten i systemet varierar med tiden s̊a är LQ-regulatorn inte opti-
mal för hela arbetsomr̊adet. För att lösa detta togs tv̊a andra lösningar fram.
Schemalagd LQ-reglering där ett set av LQ-regulatorer designas för olika arbet-
spunkter, och en LPV-regulator där vissa parametrar till̊ats variera i förbestmda
intervall.

Vid skattning av den okända hastigheten hos kranen, blev skattningen brusig och
filtrering nödvändig. Ett Kalman filter implementerades för en optimal skattning
av de tillst̊and som återkopplas till regulatorn.

För att utvärdera de tv̊a olika lösningarna fick en testförare köra med systemen och
utvärdera dem. Jämfört med det gamla systemet som används idag, s̊a beter sig
maskinen mer harmoniskt, mindre skakigt och har en bättre dämpning med LPV
eller den schemalagda LQ-regulatorn. Med de nya systemen skulle troligen antalet
joystick rörelser kunna minskas om föraren blir van vid systemet och inser att han
inte behöver agera regulator själv. Responstiden är i stort sett oförändrad. Den
schemalagda lösningen är n̊agot snabbare än LPVn, medan LPV lösningen är mer
harmonisk.

Nyckelord: LQ, RLS, LPV, Kalman Filter, Reglering, Filtrering
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1 INTRODUCTION

The hydraulic industry is matured where the major efforts has been put into pro-
duction quality and accurate dimensions. A critical area is to be as energy efficient
as possible. In the traditional way of improving the fluid power systems, limited
measures are available for energy efficiency break troughs. That is why a new per-
spective of the problem is needed, and an electro hydraulic control system could be
a part of the solution. With such a system the performance of the system may also
be improved, especially when considering damping of the system.

Earlier studies of electro hydraulic control have already been made on other applica-
tions for the proof of concept. Attention can now be directed to apply sophisticated
and model-based control theory to explore these advanced theories in novel forestry
machine configurations.

A hydraulic system with high inertia, as in the swing function for a forestry machine,
which is controlled in a traditional way has problems with large oscillations when
the commands of the driver are not smooth. Pressure feedback with guide functions
and online identification with pressure feedback from an observer are two techniques
for handling those problems (Krus 1989).

An earlier study made by Krus and Gunnarsson on a lorry crane describes how an
Recursive Least Square, RLS, algorithm can be used to, online, estimate unmeasur-
able parameters from the system, which then are used to calculate the parameters
for the controller. Difficulties of implementing such an algorithm into a real appli-
cation, with for example a poor excitation and time varying parameters, are also
described (Krus and Gunnarsson 1993).

An approach for controlling the system electrohydraulically could be by state feed-
back. Since all states are not directly measurable it brings up the problem of un-
known states. One way of dealing with this is by implementing a Kalman Filter.
An and Seperhi (2003) show, for a hydraulic system, a practical implementation of
how an Extended Kalman Filter uses the control signal and the measurements of
the pressures in the cylinder chambers, together with a mathematical model of the
system, to estimate the pistons position and velocity, and noise rejected pressures
from the chambers.

To design a state feedback gain, an optimal controller called Linear Quadratic Reg-
ulator, LQR, may be used. It is optimal in the sense that the cost function is
minimized

J =
∞
∑

k=0

[xT (k)Qx(k) + uT (k)Ru(k)] (1.1)

where x is the state vector, Q represents the cost for each state, u is the control
signal and R represents the cost of the control signal usage. A study made by
Shao-jun and Sheng describes a practical implementation of this kind of control for

1



2 Chapter 1 Introduction

a electro hydraulic system (Shao-Jun, Sheng and Jun-Feng 2000).

The project was carried out at Parker Hannifin, a world leading company in motion
and control technologies. For them there is a need for exploring modern control
theories and of interest to see if it is convenient to via Matlab/Simulink generate
code straight into the controller. The implementation is done for the swing function
on a forestry machine.

The goal of the project is to achieve a smooth, fast, and well-damped closed-loop
system response to driver reference signals.



2 NOTATION

Abbreviations

DC Direct Current
ECU Electronic Control Unit
EKF Extended Kalman Filter
LPV Linear Parameter Varying
LQ Linear Quadratic
LQI Linear Quadratic Integrating
PWM Pulse width modulation
RLS Recursive Least Square

Capital Letters

A effective area (m2)
Ai effective area, cylinder chamber i (m2)
Av area opening valve (m2)
Avi area opening valve i (m2)
Bp viscous friction coefficient
Cq flow coefficient
Ff force, friction (N)
Fi force, cylinder chamber i (N)
Fl external load (N)
J cost function
Vi volume cylinder chamber i (m3)
V10 initial volume cylinder chamber 1
V20 initial volume cylinder chamber 2
A state matrix
B input matrix
C output matrix
L feedback gain
Q1 state cost matrix
Q2 control signal cost matrix
Q12 dependence of state and control signal cost matrix

3



4 Chapter 2 Notation

Small Letters

a acceleration (m/s2)
e measurement noise
m equivalent mass, inertia (kgm2)
p pressure (N/m2)
pi pressure cylinder chamber i (N/m2)
pt pressure tank (N/m2)
ps pressure supply (N/m2)
q volumetric flow rate (m3/s)
qvi volumetric flow rate, valve i (m3/s)
qi volumetric flow rate, cylinder chamber i (m3/s)
ui input signal valve i
v process noise
x cylinder piston position
rk reference vector
u input vector
u0 working point input vector
x state vector
xr state vector of reference states
x0 working point state vector
y output vector

Greek Letters

β bulk modulus (N/m2)
δp pressure difference (N/m2)
ρ density (kg/m3)
Φ discrete state matrix
Γ discrete input matrix



3 MODELING

The starting point of the modeling presented is a hydraulic cylinder controlled with
four valves. The forestry crane is modeled as an external mass load applied on the
cylinder. To decrease the model complexity leakage losses are not considered in the
model.

3.1 Cylinder

Two cylinders working in parallel and operating in opposite direction create a move-
ment of a wheel, which makes the crane turn, see Figure 3.1. To be able to control
the cylinders models for the flows and forces have been derived.

Figure 3.1. Cylinder movement.

3.1.1 Flow equations

The flow in the cylinder can be described by the general continuity equations for
hydraulic flow.

Q = ṗ
V

β
+ Aẋ (3.1)

where Q is the flow entering the cylinder, V is the volume, p the pressure, x is the
cylinder piston position, A is the effective area and β is the bulk modules of oil (An
and Sepehri 2003). The volume for each cylinder chamber is given by

V1 = A1x+ V10 (3.2)

and
V2 = A2(xmax − x) + V20 (3.3)

5



6 Chapter 3 Modeling

where V10, V20 and xmax are the initial volumes of the two cylinder chambers, and
xmax is the maximum value of x see figure 3.1. The following two equations describe
the flow entering cylinder chamber one and two.

Q1 = Qv1 +Qv2 (3.4)

Q2 = Qv3 +Qv4 (3.5)

where QV i is the flow from each separate valve. From Equation (3.1) it is possible
to derive how the pressures change in time, i.e.

ṗi = (Qi − Aiẋ)
β

Vi

∀i = 1, 2 (3.6)

3.1.2 Forces

The pressure in the cylinder creates forces in both cylinder chambers though with
opposite directions, i.e.

Fi = piAi (3.7)

where pi is the pressure in the cylinder chamber and Ai is the effective area. The
total force that makes the piston move is described by Newtons second law,

F = ma = mẍ (3.8)

where m is the equivalent mass of the crane and a = ẍ is the acceleration of the
cylinder piston.

Depending on the positioning of the machine an external load force, F l, will be
created, which will act as a force on the cylinder. There is also a friction force, Ff

in the cylinder, which can be given by

Ff = Bpẋ (3.9)

where Bp is the friction coefficient. Using Equations (3.7) - (3.9), the following force
equilibrium for the cylinder can be derived:

mẍ = F1 − F2 − Ff − Fl = p1A1 − p2A2 − Bpẋ− Fl (3.10)

3.2 Valve

Four valves are used to control the flow through the cylinder. The valves are assumed
to static, since the valves are approximately hundred times faster compared to the
dynamics of the crane and therefore it can be neglected. The flow in each valve is
given by

qv = CqA

√

2

ρ
∆p (3.11)
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where Cq is a flow coefficient, A is the cross-sectional opening area for the valve, ρ
is the oil density and ∆p is the pressure drop over the valve (An and Sepehri 2003).

Each valve is connected to a pressure compensator, keeping the pressure over each
valve constant. The pressure drop ∆p over each valve, is set to 7 Bar. This implies
that the flow can be modeled as a linear function. If k is defined as

k = Cq

√

2

ρ
∆p = Cq

√

14

ρ
(3.12)

then the flow is (Merritt 1967).
qv = kAv (3.13)

3.3 State-space representation of the overall system

According to the Equations (3.6), (3.10) and (3.13) a state space model of the crane
system can be formulated as.

x1 = p1

x2 = p2

x3 = x

x4 = ẋ

u1 = Av1

u2 = Av2

ẋ1 =
β

A1x3 + V10
(ku1 − A1x4)

ẋ2 =
β

A2(xmax − x3) + V20
(ku2 + A2x4)

ẋ3 = x4 (3.14)

ẋ4 =
A1x1 −A2x2 −Bpx4 − Fl

m

where the first two states are the pressures in cylinder chamber one and two. The
third state is the cylinder piston position and the fourth state is the velocity of the
piston. The control signals u1 and u2 are the valve area openings .

3.4 Nonlinear vs linear state-space models

The state space model 3.14 is non linear and can be written on the form

ẋ(t) = f(x(t),u(t)) (3.15)

y(t) = g(x(t),u(t))
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Most control design methods requires linear models. The nonlinear model is therefor
linearized around an operating point such that

∆ẋ(t) = A∆x(t) +B∆u(t) (3.16)

∆y(t) = C∆x(t) +D∆u(t)

where

A =
δf

δx

∣

∣

∣

∣

(x0,u0)

B =
δf

δu

∣

∣

∣

∣

(x0,u0)

C =
δg

δx

∣

∣

∣

∣

(x0,u0)

D =
δg

δu

∣

∣

∣

∣

(x0,u0)

(3.17)

∆x(t) = x(t)−x0, ∆u(t) = u(t)−u0, ∆y(t) = y(t)−y0, (3.18)

and the operating point follows from assuming steady-state (ẋ = 0) i.e.

0 = f(x0,u0) (3.19)

y0 = g(x0,u0)

(Lenartsson 2002).
The linearization of the crane system can be seen in Appendix A.

3.5 Measurements

Some states of the modeled system cannot be measured directly, namely the posi-
tion and velocity of the piston in the cylinder. The angle of the crane though is
measurable and by scaling the measurement with a scaling factor, the position of
the piston becomes indirectly measurable.



4 CONTROL DESIGN

This chapter gives a brief description of the theory behind each type of controller
that has been designed, implemented on the crane and then evaluated.

4.1 Optimal control

A continous time state space model including noise can be described as

ẋ(t) = Ax(t) +Bu(t) + v(t)

where A is the state matrix, B is the input matrix, x is the linearized state vector
and u is the input signal and v is white gaussian process noise with zero mean value.
Sampled into discrete time the model can be given by

x(k + 1) = Φx(k) + Γu(k) + v(k) (4.1)

y(k) = Cx(k) + e(k) (4.2)

where y is the output vector, Φ is the discrete state system matrix, Γ is the discrete
input matrix, C is the output matrix and e(k) is white gaussian measurement noise
with zero mean value. The basic idea of regulation is to drive the system towards
the origin starting from an arbitrary state

x(0) ∈ X (4.3)

For an observable and controllable system, using a design criteria, which will be a
weighting between the magnitude of the states and the control signals.

J =

∞
∑

i=0

[xT (k)Q1x(k) + 2xT (k)Q12u(k) + uT (k)Q2u(k)] (4.4)

is called the cost function and minimizing this results in an optimal control. The
matrix Q1 represents the cost for each state. The matrix Q2 represents the cost of
the control signal usage and the matrix Q12 represents the cost of the correlation
between the states and the control signal (Astrom and Wittenmark 1997).

4.1.1 Steady-state Linear Quadratic control

Assuming the deterministic case, where v(k) = 0 and e(k) = 0 implies that the
model (4.1) is

x(k + 1) = Φx(k) + Γu(k) (4.5)

9



10 Chapter 4 Control Design

A linear quadratic controller (LQ) which will minimize the cost function is defined
as

u(k) = −Lx(k) (4.6)

where
L = (ΓTSΓ +Q2)

−1(ΓTSΦ+Q12

T ) (4.7)

with S being the solution for the discrete time Riccati equation

S = Φ
TSΦ+Q1 − (ΦTSΓ +Q12)(Γ

TSΓ +Q2)
−1(ΓTSΦ+Q12) (4.8)

Thus the linear system with LQ control is described by

x(k + 1) = (Φ− ΓL)x(k) (4.9)

(Astrom and Wittenmark 1997).

A pure LQ-controller is not able to handle hard constraints. TheQ1 andQ2 matrices
are only used to punish the states and the control signal activity. This means that
each state is given different priority. In this system the pressure in the cylinder
chambers must be positive. Since the LQ-controller cannot handle constraints a
reference signal is set for the pressures. The smallest pressure is then punished hard
enough to avoid the pressure becoming negative.

The Q1 and Q2 matrices may for a starting point be chosen by Brysons rule as

Q1ii =
1

(maximum value of state i)2
(4.10)

Q2jj =
1

(maximum value of input signal j)2
(4.11)

to get a reasonable relation between the state costs and the control signal usage
costs. Thereafter tuning is needed to get desirable performance of the system
(Franklin,Powell and Emami-Naeini 2002).

Assuming that the radius of the crane is fixed and that no external mass is being
lifted by the crane. An LQ controller was then designed using Matlab and Simulink.
In order to design the controller, the nonlinear state-space model was linearized
according to Appendix A. The design process was divided into two different steps.
First, the controller was designed to keep the velocity at zero and then to make a step
and follow a given reference signal. To avoid the pressure in the cylinder chambers
becoming negative, a reference pressure for the chambers was implemented as well
as an additional controller with a switch to make sure that the lowest pressure is
controlled. The switching controller can be seen in Figure 4.1.

Due to poor closed-loop performance this solution was dropped. Switching between
two different controllers made the movement jumpy and the overall performance
poor. Instead, an additional state was added to the model, which represents the
lowest pressure when the pressure difference between the two cylinder chambers is
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Figure 4.1. Selection of LQ controller, depending on pressure difference.

high. Punishing this state in the Q matrix makes it possible to keep the pressure in
the chambers above zero and avoid cavitation with only one controller. The state
x5 that was added to the model is described as,

x5 =
p1p2

p1 + p2
(4.12)

The state space vector is then augmented to

xa =

[

x

x5

]

(4.13)

4.1.2 Linear quadratic controller with integral action

Normally a standard LQ controller cannot eliminate stationary errors if the reference
control signal is different from zero or if load disturbance are acting on the system.
In order to remove the steady-state error, the model was extended with an integral
state according to

xi =

∫ t

0

(xr − rx)dτ (4.14)

where xr is the state vector with reference tracking and rx is the reference vector
of the states with reference tracking (Haugen 2009). The state space vector is then
augmented to

xe =

[

xa

xi

]

(4.15)

4.1.3 Gain scheduled linear quadratic control

Gain scheduling of a controller is a method to make a set of linear controllers,
designed for different operating points of a nonlinear system, and interpolate among
the controllers.
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The LQ solution is optimal for a linear system, and the state space is linearized
around a specific operating point, but the real system is expected to work for the
entire region. An LQ solution can therefore not be optimal for the entire region, and
may actually result in an unstable system in some parts of the region. By using the
theory for gain scheduling, a controller could be achieved for the entire region. Even
though the theory doesn’t guarantee stability, the generated controllers in many
cases are stable.

When scheduling gains, the control signal becomes discontinuous at the times the
controller switches gain. Therefore interpolation can be used between the different
gains to make the controller smooth for the complete region of the varying param-
eters. The varying parameter, for the swing function on a forestry machine, which
has to be considered, is the equivalent mass, m (Bruzelius 2004).

4.2 Linear Parameter Varying control

Another option for designing the controller is by solving a Linear Matrix Inequality
(LMI) problem where the parameters in the matrix are allowed to vary in given
intervals. Apart from a gain scheduling solution it can be shown that such a solution
is stable and robust for the entire region. The parameters which are varying are set
up in a vector ρ(k) (Bruzelius 2004). For this problem we set.

ρ(k) = 1/m(k) (4.16)

The system can now be written as

x(k + 1) = A(ρ(k))x(k) +Bu(k) (4.17)

By assuming that

x(k) and
1

m(k)
(4.18)

are available a state feedback scheduled solution for tracking can be obtained.

u(k) = −K(ρ(k))x(k) + r(k) (4.19)

The closed loop system is then

x(k + 1) = A(ρ(k))x(k) +B(−K(ρ(k))x(k) + r(k))

= (A(ρ(k))−B(K(ρ(k)))x(k) +Br(k)

= Ã(ρ(k))x(k) +Br(k) (4.20)

where
A(ρ(k))−B(K(ρ(k)) = Ã(ρ(k)) (4.21)

z(k) = Cx(k)− r(k). (4.22)
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which gives the closed loop system

A(ρ(k)) = A0 +A1ρ(k) (4.23)

K(ρ(k)) = K0 +K1ρ(k) (4.24)

For quadratic stability, define a lyapunov function:

V (k) = x(k)TPx(k) , where P = P T > 0 (4.25)

With stability condition:

V (k + 1)− V (k) < 0 => x(k + 1)TPx(k + 1)− x(k)T − Px(k) < 0 (4.26)

Replacing x(k + 1) by A(ρ(k))x(k) +Br(k) gives

V (k+1)−V (k) < 0, (A(ρ(k))x(k)+Br(k))TP (A(ρ(k))x(k)+Br(k)) < 0 (4.27)

By solving this matrix inequality K(ρ(k)) is obtained. By introducing disturbance
rejection, reference tracking is obtained:

V (k + 1)− V (k) + J ≤ 0 (4.28)

Trt(P ) =
||z||

||r||
≤ γ (4.29)

J = z(k)Tz(k)− γ2r(k)Tr(k) <= 0 (4.30)

The above inequality can be transformed to Linear Matrix Inequality which is pa-
rameter dependant. Because of scheduling parameter affinity, only a finite number
of LMIs has to be solved to obtain K(p) (Bruzelius 2004).



5 FILTER DESIGN

This chapter presents different filter strategies used in order to reduce the noise
impact and to make it possible to estimate non measureable states for state-feedback
control design.

5.1 Kalman Filter

The Kalman Filter estimates the states for a given linear process in a way that
minimizes the variance of the state estimation error. The Kalman filter is only
optimal if the noise is white and Gaussian. For cases with given mean and standard
deviation of noise the Kalman filter is considered to be the best linear estimator.

Depending on the available measurements different estimators can be designed.
Given the data Y k = {y(i),u(i)|i ≤ k} an estimation of the state x(k + n) is
desired. This implies three different types of estimators.

• Smoothing: n < 0

• Filtering: n = 0

• Prediction: n > 0

The two most common versions are the Kalman prediction and filter cases. For
a control system implementation on a forestry a combination of these two can be
used.(Astrom and Wittenmark 1997)

5.1.1 Discrete Time Kalman Filter

The discrete time plant model which is used for designing the filter is

x(k + 1) = Φx(k) + Γu(k) + v(k)

y(k) = Cx(k) + e(k) (5.1)

The noise covariances are given by

E{v(k)v(k)T} = R1, E{e(k)e(k)T} = R2 and E{v(k)e(k)T} = R12 (5.2)

The design criterion for the filter is to minimize the variance of the estimation error

P (k + 1) = ΦP (k)ΦT +R1

− (ΦP (k)CT +R12)(R2 +CP (k)CT )−1(CP (k)ΦT +RT
12) (5.3)

14
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where
P (0) = R0

The estimator itself is

x̂(k + 1|k) = Φx̂(k|k − 1) + Γu(k) +K(k)(y(k)−Cx̂(k|k − 1)) (5.4)

where the Kalman gain K can be calculated using

K(k) = (ΦP (k)CT +R12)(R2 +CP (k)CT )−1 (5.5)

and the x̂ denotes estimated state (Astrom and Wittenmark 1997).

5.2 Extended Kalman Filter

Since the operating region for a forestry machine varies in time a regular steady-
state Kalman Filter based on a linear model is not enough to cover a range of
operating points. However an Extended Kalman Filter (EKF) can handle systems
with nonlinear dynamics, unlike the standard Kalman filter (Hameed 2010).

Consider a system with nonlinear dynamics

x(k + 1) = f((x(k),u(k)) + v(k) (5.6)

y(k) = h((x(k)) + e(k)

where v(k) and e(k) are gaussian noise and the covariance data matrices are as in
(5.2).

5.2.1 EKF algorithm

The EKF algorithm is divided into two different parts: the predict cycle (step 1-2
below) and the filter cycle (step 3-5 below).

1. Linearize the estimation of the system around the current estimate, x̂(k|k):

x̂(k + 1|k) = f(x̂(k|k)) (5.7)

2. Calculate the state error variance matrix:

P (k + 1|k) = F (k)P (k|k)F T (k) +Q (5.8)

where F is the Jacobian matrix of f(·) and Q is state noise

3. Update the Kalman gain:

K(k+1) = P (k+1|k)HT (k+1)[H(k+1)P (k+1|k)HT (k+1)+R(k+1)]−1 (5.9)
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where H is the Jacobian matrix of h(·).

4. Derive new state estimates:

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)[y(k + 1)−H(k + 1)(x̂(k + 1|k))] (5.10)

5. Update the state error covariance matrix:

P (k + 1|k + 1) = [I −K(k + 1)H(k + 1)]P (k + 1|k) (5.11)

An EKF is not an optimal filter since it is based on a set of approximations. Neither
is it necessary convergent. This means that the matrices P (k|k) and P (k + 1|k)
do not represent the true covariance of the state estimates. However with good
approximations an EKF gives satisfactory results for the hole working area (Hameed
2010).

5.3 Recursive Least Squares algorithm (RLS)

Recursive Least Squares, RLS, is a recursive filter for estimating unknown or uncer-
tain parameters.

For a system described by

y(t) + a1y(t− 1) + ... + any(t− n) = b1u(t− 1) + ... + bnu(t− n) + v(t) (5.12)

the RLS algorithms goal is to minimize the criteria

Vt(θ) =

t
∑

k=1

(y(k)− ϕT (k)θ)2 (5.13)

where
ϕ(t) = [−y(t− 1) ... − y(t− n) u(t− 1) ... u(t− n)]T (5.14)

θ = [a1 ... an b1 ... bn]
T (5.15)

y(t) = ϕT (t)θ + v(t) (5.16)

and v(t) is the measurement noise.

The minimizing parameter vector can be computed recursively as

θ̂(t) = θ̂(t− 1) + P (t)ϕ(t)ǫ(t) (5.17)

where
ǫ(t) = y(t)− ϕT (t)θ̂(t− 1) (5.18)

and

P (t) = P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

1 +ϕT (t)P (t− 1)ϕ(t)
(5.19)
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If the estimated parameters are time varying a forgetting factor λ can be used to get
a descending effect of old values (Krus and Gunnarsson 1993). i.e. by minimizing

Vt(θ) =
t

∑

k=1

λt−k(y(k)− ϕT (k)θ)2 (5.20)

The equation then becomes

P (t) =
1

λ(t)

[

P (t− 1)−
P (t− 1)ϕ(t)ϕT (t)P (t− 1)

λ(t) +ϕT (t)P (t− 1)ϕ(t)

]

(5.21)

For a good estimation of the parameters the system also has to be excited well. In
a real application as for a forestry machine the system is often not excited at all for
large intervals of the time. Therefore, the update needs to be switched off in some
way during poor excitation. One way of solving these two problems is by adding a
varying forgetting factor which depends on both the change of the parameters and
the excitation (Krus and Gunnarsson 1993). The forgetting factor can be chosen as

λ(t) = 1− (1− λ0)

(

1−
tr(P )

γ

)

(5.22)

where λ0 and γ are tuning parameters.



Figure 6.1. Simplified connection scheme, electrical components

6 IMPLEMENTATION

This chapter presents the hardware and software that is used in this project. Some
of the equipment used in this project has been custom made by Parker.

6.1 Mechanical

The mechanical equipment used in the project is a valve block consisting of four
DF+ valves from Parker Hannifin AB. To supply the DF+ valves, a K190 Valve
delivers a constant supply pressure of 140 bar to the DF+ valve block. There are
also chock valves connected between the cylinders and the DF+ valves to make sure
the pressure doesn’t get above 160 bar in the system.

6.2 Electrical

The control unit of the system is a Motoron Electronic Control Unit, ECU, it receives
the reference signal from the lever and sends Pulse Width Modulation, PWM, control
signals to the active lowpass filter which converts the signals to a Direct Current, DC,
signal and then sends it to the signal conditioning box, which sends the signals to the
valves. Custom made units are the active low pass filter and the signal conditioning
box. The signal conditioning box receives the control signals, sends them to the
valves and it also supplies power to the valves. Sensors that are used are four
pressure sensors for measuring the pressures in the valves and one potentiometer for
measuring the angle position of the crane. A simple connection scheme can been
seen in Figure 6.1. A complete scheme is given in Appendix C.

In order to log data and analyze the performance of the system two main parts are
used, a USB to CAN converter to read CAN signals into the computer, and a USB
chassi together with a module from National Instruments to read signals into the
computer.

18
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6.3 Software

In order to develop the software for the Mototron ECU some other tools were used.
The model of the system was implemented into Matlab/Simulink where simulations
could be made. The controller was designed using the Matlab/ Control toolbox.
Motohawk, which is an addon to Simulink, was used to make the model compatible
with the Mototron ECU and to include input and output signals to receive and
send signals with the Mototron. The real-time workshop toolbox and a c-compiler
was used in order to convert the model into programmable files for the Mototron.
Through the Mototune software the files were programmed to the Mototron.

6.3.1 Filtering

Since the DF+ valves needs a DC voltage, and the Mototron unit does not have
analog outputs, a filter had to be implemented to make the PWM-output become
a DC voltage. The PWM-output is a Low signal output, which means that when
switched high, the ground is connected and the filtered signal becomes only about
60% of its desired value. Therefore an active filter had to be developed. Unfor-
tunately the PWM-output of the Mototron unit was not sufficiently accurate for
higher frequencies (the duty cycle became to small), and therefore a calibration of
the output signals had to be made in the software as well.

6.3.2 Safety

The control system implemented is electrically supplied from an external socket.
Therefore the emergency switch from the machine was connected to a hardware
switch in the control system which cuts the voltage supply to the valves. On the
IQAN module MDL, there is a switch for enabling the crane. That switch was also
implemented into the software of the controller.

6.3.3 Measuring possibilities

To be able to evaluate the results of the system measurements are required. The
USB measuring device from National Instrument was used to log data from all the
sensors at a rate of 50 Hz. Mototune can only log data at a rate of 20 Hz, and
was therefore only used for logging the internal data from the ECU, namely the
reference velocity, and the differentiated and filtered angular velocity. The control
signals were also logged via Mototron, but could also have been logged after the
lowpassfilter via the USB measuring device.

The state space of the system is built on the position and the velocity of the piston
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in the cylinder, but those states cannot be measured directly. Therefore a ratio was
calculated between the angle of the crane, α, and the piston position, x.



7 RESULTS

This chapter presents the results obtained in the project. The controllers that gave
satisfactory results in simulations were tested in a real crane system. The final
experimental results have been done by a test driver.

7.1 Controller for fixed, known inertia

The first controller designed was the standard LQ-controller designed for a fixed
inertia. Problems occurred with cavitation as can be seen in Figure 7.2.

A controller controlling the output of the lowest pressure, LQpmin, as in Figure 4.1
and Equation (4.12), was implemented and in Figure 7.2 it is seen that cavitation
is no longer present. However from the step response in Figure 7.3 it can be seen
that there is a significant steady-state error for the LQpmin controller. Introducing
integral action through Equations (4.15) and (4.14) error vanish.

An off-switching integral action, LQIreset, makes zero tracking faster as can be seen
in Figure 7.3, implemented as in Figure 7.1. For the real tests of the LQIreset
controller, a differentiation of the position was used to achieve an estimation of the
velocity. The measurement noise of the position made the velocity extremely noisy
and a lowpass filter with bandwith of 20 rad/s was used. It can be seen in Figure
7.4 that the output is still very noisy compared to the simulated one in Figure 7.3.

ResetI

1

Logical
Operator4

NOT

Logical
Operator3

AND

Ref

2

Controller ON

1

Figure 7.1. ResetOfIntegrator

7.2 Filtering

The differentiation and lowpass filtering (Derivationfilter 20) of the position is stable
but noisy for the entire region of the inertia. A Kalman Filter (Kalman Filter)
designed for filtering of all of the feedback states performs really well for a fixed and
known inertia, but when the inertia changes, the estimation becomes bad as can be
seen in Figure 7.5. An Extended Kalman Filter (EKF), with non-fixed, but known

21
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Figure 7.4. Reality: LQI-reset step response

inertia, performs really well for the entire region.

7.3 Mass estimation

A Recursive Least Square filter, RLS, used for estimating the mass was compared
to the EKF with a dummy state representing the mass. It can be seen in Figure
7.6 that both of the filters perform quite good after they have got time to converge
from the initial settings. The EKF is stable throughout the entire simulation while
the RLS becomes unreliable after about 40 seconds.

7.4 Controller for non-fixed inertia

The performance of a LQIreset controller, a Linear Parameter Varying (LPV) con-
troller and a Gain Scheduled LQIreset controller was tested. From simulations, with
known inertia (see Figure 7.7) it can be seen that

• The LQIreset controller is a bit slow for higher inertias than designed for,
optimal for the inertia it is designed for, and too powerful for a decreased
inertia. It becomes unstable when reaching minimum inertia.
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Figure 7.7. Simulation: Angular velocity, Controller Comparison between LQR,
LPV and scheduled LQR.

• The LPV controller is stable for the entire region but slightly slow.

• The Gain Scheduled LQIreset controller is stable and performs well for the
entire region.

From experimental results where the estimation of the mass is used (see Figure 7.8)
it is hard to decide which controller has the best response to set point changes.
Damping of the system is a little faster for the Gains Scheduled LQIreset controller
than for the others. It is, though, clear that all the controllers damp the system
much better than the original system L90, and that the response is not affected.

7.5 Test driver opinion

The test driver tested the LPV, gain scheduled LQIreset and the L90 system. His
opinion was that with the controlled systems the machine behaved more harmon-
ically and a lot less shaky and better damped than with the L90 system. He also
believe that if the driver would use it for a longer time the amount of lever shifts
could become less than for the L90 system. The change in response to the driver is
not remarkably decreased. The gain scheduled solution is a bit faster than the LPV
solution, while the LPV solution behaves more harmonically.
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8 CONCLUSIONS

The project was carried out by applying control theories in a step by step way
depending on the results and problems which occurred. Most of the problems were
expected, like that differentiation of a noisy signal amplifies the noise, a steady-state
error occurs when no integral action is implemented and that the LQ controller is
only optimal around its operating point.

8.1 Compared to initial expectations

The final designed and implemented systems, LPV and Gain Scheduled LQIreset,
has in many aspects reached the expectations which were stated from the beginning.
It demonstrates that it is possible to, design and implement a controller for the crane
which improves the accuracy of the system, especially concerning the damping of
the system. It is possible to tune the controller in a Simulink environment and then
implement it into the application for experimental results.

8.2 Tuning and weight selection

The tuning of the controller is based on the results from simulations of the nonlinear
plant. Matrices are tuned in such a way that the constraints of the system are not
violated. The tuning of the Extended Kalman Filter was based on data from experi-
mental results. The covariance matrix for the measurement was estimated from data
collected when the system was in a steady-state position. The process noise matrix
was tuned based on simulation results and then verified to give satisfactory exper-
imental results. Since the process noise matrix is not analytically derived by this
may be one of the most important parts to tune to get a better overall performance
of the closed loop system.

8.3 Challenges

The biggest issue considering advanced control theory has been to get a good esti-
mation of the mass. Both the scheduled controller and the estimation of the velocity,
depend on the estimation of the mass. A bad estimation will result in a non-optimal
controller trying to control a badly estimated state. By implementing the mass esti-
mation into the Extended Kalman Filter it became easier to tune the filter than by
tuning an RLS solution and a Kalman filter solution separately. The RLS solution
would probably work if more time were spent on tuning and testing.

27
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8.4 Further improvements

The quality of the closed loop system response highly depends on the quality of the
estimated states, of the machine. By improving the model and by putting more
effort into the tuning of the Extended Kalman Filter, the accuracy could be further
improved.

Before implementing such a control system into a real project, testing and verifica-
tion has to be done to ensure the robustness of the system in an environment where
the machine is used by customers. The controller designed in this project is for a
crane standing on a flat ground. By adding an additional dimension to the model,
where the horizontally angular position of the machine is nonzero, the model com-
plexity would increase but then would the controller made be more robust compared
to the controllers designed in this project.
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Krus, P. and Gunnarsson. (1990). Adaptive compensation of Deformations in Me-
chanical structures controlled by hydraulic actuators. PhD thesis. Linöping Uni-
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A Linearized Model

The linear system is described as

ẋ = Ax+Bu

y = Cx+Du

and the states are

x1 = p1

x2 = p2

x3 = x

x4 = v

u1 = Av1

u2 = Av2

The A, B, C and D matrices are

A =









A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44









B =









B11 B12
B21 B22
B31 B32
B41 B42









C =

(

0 1 0 0
0 0 0 1

)

D = 0
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where the matrices are

A11 = 0

A12 = 0

A13 =
−βA1(ku10 −A1x40)

(A1x30 + V10)2

A14 =
−βA1

A1x30 + V10

A21 = 0

A22 = 0

A23 =
βA2(ku20 + A2x40)

((xmax − x30)A2 + V20)2

A24 =
βA2

(xmax − x30)A2 + V20

A31 = 0

A32 = 0

A33 = 0

A34 = 1

A41 =
A1

m

A42 = −
A2

m
A43 = 0

A44 = −
Bp

m

B11 =
βk

A1x30 + V10

B12 = 0

B21 = 0

B22 =
βk

(xmax − x30)A2 + V20

B31 = 0

B32 = 0

B41 = 0

B42 = 0 (A.1)



B Simulink Models

This appendix presents the simulink models for the different control solutions
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