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Continuous Integration in Component-Based Embedded Software Development: Prob-
lems and Causes
ÍVAR GAUTSSON
ÞÓRHILDUR HAFSTEINSDÓTTIR
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Background: Continuous integration is a widely used practice in which software
developers are expected to do frequent changes to a common code base. Potential
integration issues can therefore be identified early on and fixed quickly. However,
adopting continuous integration may sometimes be difficult, e.g. when developing
embedded software, since specialized hardware is needed to run and test the software.

Aim: The goal of this study is to assess what problems come with the use of
continuous integration in the context of component-based embedded software de-
velopment together with identifying the causes for those problems. The continuous
integration system being used for the development of an automotive infotainment
head unit software system is analyzed, and the main problems and their causes are
then identified.

Method: The aforementioned continuous integration system is modeled using the
Cinders framework to gain an understanding of the system. Interviews with seven
employees working on the project reveal what problems they are facing with regards
to continuous integration. Ishikawa diagrams are used to show the main problems
and some of their causes.

Results: Four main problems associated with using continuous integration in the
development of component-based embedded software are identified: late discovery
of defects, the overall integration process takes too much time, the system build
breaks too often and interrupted development flow. The causes for these problems
are also identified.

Conclusion: This study reveals some of the continuous integration related prob-
lems in the development of a component-based embedded software project. The
results might not be relevant to all projects using continuous integration as some of
the results are specific to component-based and/or embedded software development.
Only one software project was under study and the results might therefore not be
generalizable.

Keywords: Agile software development, continuous integration, component-based
software, embedded software, Cinders
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1
Introduction

Large software projects generally require multiple developers to collaborate with
each other. In most cases, this means that more than one developer is working
on the same code base in parallel. At some point in time, the developers need
to integrate their individual code changes, which can be an incredibly demanding
and risky process [12]. Developers often have no way of knowing how long this
integration phase will take, so uncertainty levels can therefore be high [12]. One
practice that has proven useful in combating this problem of integrating code from
multiple developers is called continuous integration (CI) [12].

Continuous integration means that the members of a team integrate their work
frequently, e.g. once a day or more often [12]. Each integration is then verified by an
automated build, which usually includes compiling and testing the software, allowing
integration errors to be detected early on [12]. Risk reduction is often claimed to be
the main benefit of continuous integration, since integration problems are addressed
immediately and in smaller increments [11,12]. The risk of introducing defects also
becomes reduced [11,12]. By running tests continuously, it becomes possible to find
and fix bugs before they are introduced to the software [11]. It also becomes easier
to assess the health of the software project as a whole, since the practice enables
projects to generate working software many times a day [11].

Adopting continuous integration can have its difficulties. Duvall [11] claims
that continuous integration should preferably be implemented early in a project. It
is also possible to adopt it late in a project, but he finds that doing so can lead to
people being under more pressure and more likely to resist change. Some research
has been done in the field of continuous integration with regards to the challenges
and problems that can appear when companies adopt the practice [9, 18, 21, 25].
However, more research is needed to assess the problems that can emerge and how
they can be mitigated, especially when working with software systems combined
with electrical and mechanical systems [21].

A systematic literature review on continuous integration (and other contin-
uous practices) found that a considerable amount of the studies in this area lack
contextual information [33]. Many papers do not provide any information on the
domain or type of application that continuous integration is being used to develop,
and organizational factors such as size and domain are also frequently left out. They
recommend that future research should include more contextual information, as it
will likely improve the quality and credibility of research in this area [33]. This thesis
therefore includes a section in which contextual factors are stated, i.e. Section 1.4.
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1. Introduction

1.1 Problem Statement
The company Delphi Automotive Systems Sweden AB has somewhat recently started
using continuous integration for one of their Infotainment Head Unit (IHU) projects.
Their goal is to adopt continuous delivery in the near future, but in order to achieve
that they need to fix the problems they are currently facing with regards to their
continuous integration system [25]. One of those problems is that system builds are
frequently broken, which has a negative impact on the development flow. Another
problem is that the lack of automation for system tests requires developers to do
manual regression testing, which can be quite time-consuming.

1.2 Purpose
The purpose of this study is to investigate the main problems associated with using
continuous integration in the development of component-based embedded software
together with finding the causes for those problems. The architecture of a continuous
integration system being used for an IHU project is modeled with Cinders [37],
which is an architecture framework for modeling continuous integration and delivery
systems. That model, together with unstructured and semi-structured interviews
with members of the IHU project, is used to identify continuous integration related
problems and their causes. This results in a model which consists of a number of
Ishikawa diagrams (also known as cause-and-effect diagrams). This model can help
the case company identify how the continuous integration system can be improved.
By identifying the main problems and their causes, it becomes easier for the company
to fix or mitigate those problems.

Nilsson et al. [24] claim that visualizing testing activities in a model can help
with identifying key improvement areas. Bosch and Ståhl [37] similarly state that
modeling continuous integration systems can help with the identification and plan-
ning of improvements. This means that modeling the continuous integration system,
which has never been done before in the case company, can help the company identify
what needs to be improved. Identifying and understanding continuous integration
related problems that a component-based embedded software project is experiencing
will make a contribution to the field of continuous integration. Other organizations
that wish to adopt continuous integration or are facing similar problems might also
benefit from the results of the study. Additionally, since Cinders has never been
used before in published research, this will be the first study using that framework
to model a continuous integration system.

1.3 Research Questions
The research questions that are addressed in this thesis are:

RQ1: What are the main problems associated with using continuous inte-
gration in the development of component-based embedded software?

2



1. Introduction

RQ2: What are the main causes for the problems associated with using
continuous integration in the development of component-based em-
bedded software?

In RQ1, the main problems associated with using continuous integration in the
development of component-based embedded software will be listed. In order to un-
derstand why these problems occur, the causes of the problems need to be identified,
which in turn addresses RQ2.

1.4 Infotainment Head Unit Project
This study is done in collaboration with the company Delphi Automotive, which
provides technological solutions to the automotive and transportation sectors. The
company is quite large, with over 173.000 employees and a presence in 44 countries.
In this study, the continuous integration system being used for one of the projects at
Delphi is studied. The project in question is an infotainment head unit system de-
signed for automotive vehicles. The software being developed is a component-based
embedded operating system and has been under development for approximately one
and a half years. Many different teams located in several countries are working
on the project and there are over 250 employees working on it, most of whom are
engineers.

1.5 Outline of the Paper
The remainder of this thesis is organized as follows. In Chapter 2, the theoretical
framework is provided, and in Chapter 3, related work is presented. The research
design applied to this study is presented in Chapter 4 and the results are then
shown in Chapter 5. A discussion is provided in Chapter 6 and Chapter 7 includes
the concluding remarks, where a summary of the main findings is presented.
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2
Theoretical Framework

Definitions of important concepts are provided in this chapter. First, continuous
integration is discussed in general in Section 2.1. Then, the concepts of component-
based software and embedded software are defined in Section 2.2 and Section 2.3,
respectively. Next, the architectural framework Cinders is presented in Section 2.4.
Finally, the Ishikawa diagram is described in Section 2.5.

2.1 Continuous Integration
The term continuous integration comes from the Extreme Programming develop-
ment process and is one of its original practices [12]. As mentioned before, con-
tinuous integration requires team members to integrate their work frequently, e.g.
once a day or more often. This means that it is possible to detect integration er-
rors quickly, since each integration is verified by an automated build which usually
consist of compiling the code and executing tests as well. Many developers think
that this practice results in more rapid software development and fewer integration
problems [12]. Continuous integration has received a lot of attention as of late from
both industry and research. There is plenty of information available on this topic,
for instance Martin Fowler’s 2006 article “Continuous Integration” [12], which has
been influential in this field and is still a useful resource. Before continuous inte-
gration is explained in more detail, it is worth noting that many implementation
variations exist and disagreements are common on many aspects of the practice [36].

According to Fowler [12], the adoption of continuous integration usually entails
having some specific tools in place, as shown in Fig. 2.1. He states that one of the
tools needed is a version control system, which makes it possible to store source
code in a common repository. The version control system manages versions of the
software being developed and stores each version as a commit in the repository [27].
In other words, commits are used by version control systems to keep track of the
changes that have been made to a software project [22]. Another tool that Fowler
finds to be helpful is a continuous integration server. The continuous integration
server monitors the repository for changes and takes care of verifying that those
changes did not break anything. This verification is done every time a developer
pushes code to the repository and usually involves an automated build [12]. Quite
often, there is more than one type of build being done, so it can be confusing to
just say "the build". Usually, there is a commit build which is run by the continuous
integration system for every single new commit [12]. This build should provide fast
feedback to developers, and ten minutes is often stated as a guideline for how long it

5



2. Theoretical Framework

should take [12], although a literature review by Laukkanen and Mäntylä suggests
that a build time of two minutes is optimal [19]. To keep this build fast, usually only
small or medium tests are included in it. Developers are therefore not blocked for
long and can be notified when the build is done [47]. Another common build is the
second stage build, which includes more end-to-end tests and other time-consuming
tests [12]. This build is not run for every single commit, since it can take quite
a lot of time, so it is usually run periodically, e.g. every 10 minutes or every N
commits [47]. Setting up a good continuous integration infrastructure is, however,
not enough. Some changes also need to be made to the development workflow.
Everyone working on the team needs to ensure that new changes both pass the
build and also have a minimal impact on the production environment [23].

Figure 2.1: Basic continuous integration infrastructure.

Testing in continuous integration should be automated and executed continu-
ously, which helps to find defects quicker. Both low-level and high-level testing can
be conducted in this context. Low-level tests are usually white box tests, e.g. unit
tests, while high-level tests are often gray or black box tests that test the components
of the system as a whole and how they work together, e.g. GUI-based testing [4].
Duvall [11] claims that in continuous integration, unit tests, component tests, sys-
tem test and functional tests should be automated. They state that unit tests verify
small elements in a software system whilst component tests verify bigger portions.
This means that component tests have more code coverage and take a longer time
to run than unit tests. These tests may also require some external dependencies
or even the fully installed system. System tests are tests that verify the complete
software system, which means that such tests require a fully installed system [11].
Functional tests, which are sometimes called acceptance tests, are defined as tests
that verify the functionality of the system from the client’s viewpoint [11].

2.2 Component-Based Software
Fully adopting continuous integration seems to be a struggle in many projects, espe-
cially large ones, and Bosch and Ståhl [38] argue that breaking down large software
systems is a key enabler for continuous integration at scale. One way to break down
a software system is to use a component-based software architecture. In component-
based software development, the software is built from multiple components which

6



2. Theoretical Framework

can be developed independently from each other [17].
There are many different definitions of what a software component is, and some

even claim that the term "component" cannot be defined [7]. Szyperski [44] claims
that a component has three characteristic properties. The first property is that
a component is a unit of independent deployment [44]. To achieve independence, a
component therefore needs to be separated well from both other components and its
environment as a whole. The fact that a component is a unit of deployment means
that a component is never deployed partially — only as a single unit. The second
property of a component is that a component is a unit of third-party composition
[44]. This means that a component has to come with specifications of how it can
be used, since it might have been developed by a third party. Interfaces must
therefore be well-defined, so that it is clear what services a component requires to
function properly, and also what services it provides to its environment. A simple
component diagram can be seen in Fig. 2.2, which shows how two components
communicate through their interfaces. The third and final property of a component
is that a component has no (externally) observable state [44]. This stateless nature
of components means that it would make little sense to load more than one copy of
the same component into a system, since the copies would be indistinguishable from
each other [44].

When component-based software is being developed, there is a risk that soft-
ware components and applications have different kinds of requirements, which can
result in components not satisfying the application requirements and vice versa [6].
Crnkovic [6] states that when changes are made on the application level (e.g. com-
ponents are updated), then there is a risk that the changes cause system failure.
Therefore, component-based software tends to be quite sensitive to changes [6]. This
could be considered a challenge when using continuous integration, since frequent
changes to the code base is one of the key factors in continuous integration.

Figure 2.2: In this example component diagram, Component2 provides an
interface (i.e. some service) to Component1.

As mentioned in Section 2.1, there are commonly two builds in continuous
integration: a commit build that is fast and a second stage build which executes
more thorough tests. This can, however, be done differently when the software
architecture is modular. For example, if the software is component-based, then each
component can have its own independent build and continuous integration processes,
and another build can then be triggered when a new component dependency is made
available [29,40].
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2.3 Embedded Software

Embedded software is software written for embedded systems [43] and Mårtensson
et al. [21] define software-intensive embedded systems as software systems combined
with electrical and mechanical systems. In the past, embedded software was not
considered to be as important as it is today, as the software was just something that
was quickly developed when the hardware was ready [43]. The software was then
typically developed by someone who knew the hardware well. Nowadays, systems
have become more complex which has resulted in using software specialists instead
to write the code for embedded systems. Walls lists several things that one has to
bear in mind when working in embedded software development and they are listed
below.

• Memory size. Embedded systems have limited memory and because of power
and cost consumption demands, excess memory is not an option. This is
different for developers who are working with desktop systems as they often
do not have to think about memory, mainly because memory is cheap and
operating systems can expand it using hard drive space.

• CPU power. The amount of CPU power for embedded systems is often
only just enough for the function required, which has an effect on code and
operating system efficiency. This is due to strict cost and power consumption
requirements. Desktop computers, on the other hand, have CPUs that are
cheap and developers do not have to worry about heat dissipation and power
consumption.

• Code optimization. Developers working with embedded software need to
develop optimized code, but it depends on their needs what they want to
optimize. Controllability is, for instance, a key feature of an embedded com-
piler. Code optimization is also performed by developers who are working with
desktop systems. However, embedded systems and desktop applications often
have different priorities, where the latter would probably focus more on e.g.
the speed of the software.

• Operating system. An embedded system may have an operating system
which could be a special variant of Windows or Linux, an in-house developed
operating system or one of many real-time operating systems. A desktop
computer, on the other hand, would probably only have Windows or Mac OS
X as its operating system.

• Real time behavior. Most embedded systems are real time, which means
that the system is predictable-deterministic and not necessarily fast. Desktop
systems, on the other hand, are seldom real time.

• Development paradigm. For embedded systems, code is developed on the
"host" (desktop computer) and then later executed on the "target" (the embed-
ded system itself). This is different for desktop applications since the software
is usually developed and executed on the same machine. The execution phase
is also more complex for embedded systems than desktop computers because
the software must either be run under some kind of simulation environment
or be transferred to a target.

• Execution paradigm. The execution of software for most embedded systems
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goes on continuously from start-up until the device is powered down. This is
different for desktop applications since the execution of software depends on
what the user wants.

• Every embedded system is different. Embedded systems can be different
in so many ways, e.g. different operating systems, memory architecture etc.
This means that embedded software developers not only have to learn how to
work close to the hardware and real-time systems, but also that they might
need to learn about different operating systems, a selection of development
tools, multiple CPU architectures and so forth. This may be the biggest
difference between embedded and desktop systems; desktop systems have only
a few variations, while every embedded system is different.

2.4 Cinders
Cinders is an architectural framework designed specifically for the purpose of de-
scribing continuous integration and delivery systems created by Ståhl and Bosch [37].
It contains four architectural viewpoints, each of which represents a unique aspect
of the continuous integration and delivery system. These viewpoints are:

• Causality Viewpoint: Causality implies that one action or task causes some
other action or task to be triggered. This viewpoint is therefore used to rep-
resent triggering relationships in continuous integration and delivery systems.
The Causality Viewpoint’s meta-model can be seen in Fig. 2.3.

Figure 2.3: A meta-model of the Causality Viewpoint in Cinders.

• Production Line Viewpoint: This viewpoint is similar to the Causality
Viewpoint, but instead of showing the causal relationships between activities
and tasks, it shows consuming relationships. The purpose of this viewpoint
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is to show how artifacts, i.e. source code revisions and their derivatives, pass
through the system. Some other differences from the Causality Viewpoint are
that repositories, tasks and activities are described in more detail and external
triggers are omitted. The meta-model for the Product Line Viewpoint is shown
in Fig. 2.4, and Table 2.1 describes what each base set in the viewpoint is.

Table 2.1: The base sets used in the Product Line Viewpoint.

Base set Class Definition Values

pre-
integration-
procedure

Repository
The steps that are needed be-
fore new code is integrated with
the integration target

one or more of
{none, review,
queue, tests,
automated}

integration-
target Repository

The kind of storage or branch
that the repository node repre-
sents

one of
{private, team,
development,
release}

automation Activity
and Task The degree of automation

one of
{none, support-
ing, full}

functional-
confidence Activity

How much confidence the activ-
ity provides in regards to func-
tional aspects

one of
{none, some,
extensive}

non-
functional-
confidence

Activity
How much confidence the activ-
ity provides in regards to non-
functional aspects

one of
{none, some,
extensive}

queue-time Activity

The minimum and maximum
time a triggered activity spends
in a queue, before it can exe-
cute some activity

{tmin,tmax}

duration Activity
The minimum and maximum
time spent executing some ac-
tivity

{tmin,tmax}

system-
completeness Activity

The degree of system complete-
ness at which the activity oper-
ates

one or more
of {unit, par-
tial, full, cus-
tomer on-site}

lead-time Activity
and Task

In a fully automated system,
this would be the sum of
duration values and upstream
queue-time. If manual trigger-
ing is involved, then this value
might not be as meaningful

{tmin,tmax}
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Figure 2.4: A meta-model of the Product Line Viewpoint in Cinders.

• Test Capabilities Viewpoint: Provides an overview of which test activities
are performed. This viewpoint should indicate the level of system completeness
and the feedback lead time for each test activity. The meta-model for this
viewpoint can be seen in Fig. 2.5.

• Instances Viewpoint: This is the most detailed view and is supposed to
illustrate implementation details. It is considered to be an optional part of the
framework and in the paper where Cinders is presented, no example illustration
is provided for this viewpoint.
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Figure 2.5: A meta-model of the Test Capabilities Viewpoint in Cinders.

2.5 Ishikawa Diagram
The Ishikawa diagram, which is also known as the cause-and-effect diagram, shows
the relationship between the cause and the effect. In other words, it is a causal
diagram which lists possible causes for a particular effect. The effect could, for
instance, be a quality characteristic or a problem [13]. Fig. 2.6 shows what this type
of diagram looks like, where each cause of a specific problem is categorized.

Figure 2.6: An Ishikawa diagram (also known as a cause-and-effect diagram).
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Related Work

Several literature reviews have been published on continuous integration or related
topics. Some of them were useful for finding research that is relevant to this thesis
and will therefore be briefly discussed. One of these literature reviews, which was
done by Bosch and Ståhl [36], discusses the continuous integration implementation
variations that are to be found in published research. They claim that the practice is
interpreted and implemented differently from case to case and that there is currently
no consensus on continuous integration as a single, uniform practice. They then
state that it would be worthy to investigate if any contextual factors of software
projects influence which variation gets chosen. Another literature review by Shahin
et al. [33] discusses different approaches, tools, challenges and practices in the areas
of continuous integration, delivery and deployment. They found that a considerable
amount of the studies in these areas lack contextual information such as the domain
or type of application being developed. Organizational factors such as size and
domain are also frequently left out. Future research should in their opinion include
more contextual information, as it will likely improve the quality and credibility of
research in these areas. Yet another systematic literature review by Laukkanen, et
al. [18] focuses on the problems that arise when adopting continuous delivery. They
identify the causes of some of the problems and solutions are even provided in some
cases. The problems they found are divided into seven themes: build design, system
design, integration, testing, release, human and organizational, and resource.

As mentioned previously, the aspects of continuous integration are often de-
fined differently. One source of variation is how build failures and successes are
defined. Commonly, a build is considered to have failed if any test fails during the
build [1, 28]. However, that is not always the case. For example, Rogers [30] pro-
claims that for most development teams, it is fine to allow acceptance tests to break
over the course of an iteration, as long as all tests pass before the end of the itera-
tion. Other requirements sometimes need to be fulfilled before a build is considered
a success, e.g. there is a certain level of test coverage [46] or a specified threshold for
some metric is not exceeded [15]. Another requirement for a successful build could
be that there is an absence of severe code analysis warnings [15]. Some sources also
mention that for a build to succeed, the compilation must succeed as well [10,15,46],
although that usually seems to be implicitly assumed. There is not a lot of research
that explores why builds fail and how they can be prevented from breaking when
using continuous integration. Kerzazi et al. [16] investigated the main factors im-
pacting build failure. A quantitative analysis that they did found that build failures
correlate with the number of simultaneous contributors on the branch, the type of
work performed on a branch (feature development, bug fix, etc.), the build type
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(integration build vs. continuous build), and the roles played by the stakeholders of
the builds. They also did a qualitative investigation, which showed that the typical
circumstances under which a build breaks are missing referenced files, mistakenly
checking in work-in-progress, and transitive dependencies. Storm [41] proposes a
solution to mitigate the impact of build failures in the context of component-based
software development. His solution uses backtracking, which means that if the build
of a component fails, then other components that depend on it will be built using the
previous successful build of the component that had the build failure. His reasoning
for why this is a good solution is that any build is better than no build at all.

An industrial experience paper by Kim et al. [17] introduces an integration
procedure and automated integration system for a software project with hundreds
of components. In that paper, there were three main lessons that they learned
from implementing their system. The first lesson was that users need to be trained.
They state that developers and component maintainers need to be pressed to closely
monitor the integration status and also need to respond to defects found during the
integration. One idea that they like is to punish component maintainers when their
components have trivial defects. They also say that component maintainers should
be encouraged to do frequent small releases, and avoid adding lots of features alto-
gether, since that makes it harder to detect the source of a problem. The second
lesson was that the component maintainer’s task should be automated. Component
maintainers can often do simple mistakes or skip basic tests because of overconfi-
dence. The third lesson relates to the testing environment. If developers set up
their own testing environment, then that could lead to problems for others running
different environments. Therefore, the same testing environment should be provided
to everyone with the actual integration.

The dependency between components and component interfaces makes mod-
ularization difficult and is a challenge that Bosch mentions in his book [4]. This
also makes development teams highly dependent on each other. He also mentions
that it is difficult to have automated testing and daily builds when working with
embedded systems involving hardware with slow development cycles. Applying con-
tinuous integration to software systems combined with electrical and mechanical
systems seems to be challenging, but research in this area is scarce. A paper by
Mårtensson et al. [21] lists which factors must be taken into account when applying
continuous integration for the development of these kinds of systems. They define
issues within seven topics, i.e. long build times, complex user scenarios, compli-
ance to standards, many technology fields, security aspects, test environments and
architectural runway.

According to a case study by Debbiche et al. [9], coordinating integration
dependencies became more difficult after the adoption of continuous integration. In
that study, four different issues related to the adoption of continuous integration
were reported by developers. The first one was that component interfaces needed to
be more clearly defined. The second one was that it was harder to locate the source
of errors during integration, because code is delivered from different teams. The
third one was that more failures were experienced during integration. The fourth
and final one was that there was a need to wait until other components or parts
were done before integrating work.
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Another case study by Olsson et al. [25] analyzed a company that was tran-
sitioning to continuous integration. That company was dependant on code from
many different suppliers, which one developer thought had a negative effect on the
company’s development speed. Several interviewees also mentioned that fitting dif-
ferent components from different suppliers was time consuming, so not only was the
development lead time long, but also the integration of components. The paper
mentions that one common barrier is the dependency between components and the
dependency between component interfaces. This means that separation is difficult,
and development teams are therefore very dependant on each other. The paper also
mentions that when transitioning towards agile development, there should be a shift
to small development teams and a focus on features instead of components.

Modeling continuous integration systems has many benefits according to Bosch
and Ståhl [37]. They found that modeling such systems can improve understanding
and also help with identifying improvement areas. The authors of this paper found
two techniques for modeling continuous integration systems and one architectural
framework. Automated Software Integration Flow (ASIF) is a descriptive model
created by Ståhl and Bosch [34], which shows automated activities, together with
nodes that represent external triggering factors and inputs, that are connected with
input and triggering relationships. Continuous Integration Visualization Technique
(CIViT) is a technique created by Nilsson et al. [24] that visualizes the testing
activities performed around a product or a product platform. This technique aims
to give an overview of end-to-end testing activities, which can prevent or mitigate
problems such as duplicate testing efforts and slow feedback loops. In another
paper by Ståhl and Bosch [35], they applied both the CIViT and ASIF continuous
integration modeling techniques to four separate industry cases in three companies
and investigated what impact it would have. The Cinders framework, which was
introduced in another paper by Ståhl and Bosch [37], is based on both CIViT and
ASIF, and is described in Section 2.4,
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Research Design

The main goal of this study is to find out what continuous integration related prob-
lems the case company is having. The research method used in this thesis is design
science research. In design science research, an artifact is created [42], which in
this case is a model. This model consists of a number of Ishikawa diagrams which
show the main continuous integration related problems and their causes. According
to Ishikawa [13], identifying the relationship between cause and effect of a problem
makes it possible to take an action to solve it. The case company can therefore uti-
lize the model to improve its continuous integration system. In addition, researchers
can utilize the model to see what problems a real world software project has faced
with regards to continuous integration and what the causes of these problems are.

Another improvement method, action research, is often a viable alternative
to design science research. In action research, changes (or actions) are made in a
problematic situation and data collection techniques need to be used before, during
and after the action-taking stages [8]. This method was not chosen, because no direct
actions were performed to change the continuous integration system at the case
company. In addition, data collection was only performed once, i.e. to identify the
main problems and their causes. Furthermore, according to Baskerville [3], design
science research emphasizes on solving problems by creating an artifact, which in
this study is a model, whilst action research emphasizes on solving problems through
social and organizational change.

Design science research will be explained in more detail in Section 4.1. Then,
the plan of the study will be described in Section 4.2. Finally, the data collection
methods and data analysis methods used in this thesis work will be described in
Section 4.3 and Section 4.4, respectively.

4.1 Design Science Research

According to a paper by Vaishnavi and Kuechler [39], design-science research focuses
on creating new knowledge by designing an artifact and analyzing that artifact, in or-
der to improve and understand some specific parts of information systems. The same
paper also mentions that design science research is sometimes called “Improvement
Research”, which puts emphasis on its problem-solving or performance-improving
nature. The design science research process model is visualized in Fig. 4.1, where
an overview is presented of how such research is conducted.

The following five process steps are followed in this thesis work: awareness of
problem, suggestion, development, evaluation and conclusion. Awareness of problem
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Figure 4.1: An overview of the design science research methodology. Activities
that were performed for this thesis are mapped to specific steps in the process.

is the first process step and it involves two activities: a current state analysis and
data collection. The current state analysis results in a model of the IHU project’s
continuous integration system created using Cinders. The aim of the data collection
activity, which includes documentation analysis, unstructured and semi-structured
interviews, is to identify any problems that employees in the IHU project have when
they use the continuous integration system. In the next step, i.e. the suggestion step,
the data analysis is performed which results in identifying the main problems of the
continuous integration system and also identifying the causes for those problems.
In the development step, the problems and their causes from the previous step
are further investigated and a number of Ishikawa diagrams are created, which is
the model. This model is then evaluated in the evaluation step with a descriptive
method called informed argument, where information from relevant research is used
to build a convincing argument for the model’s utility [42]. The literature used in the
informed argument method is collected using the backward snowballing approach. In
that approach, highly cited studies, e.g. systematic literature reviews, are identified
and used to find more literature from the reference list [45]. The evaluation of the
model is presented in Section 6.1. Then, the final step is the conclusion step, where
the results are described. The knowledge gained from the process, i.e. design science
knowledge, may well serve as the subject of further research [39].

During this thesis work, the seven guidelines for design science by Hevner et
al. [42] are followed. The first guideline is designing an artifact and according to
the second guideline, the artifact must be created for a specified problem domain.
Guideline 3 demonstrates that an evaluation of the design must be made. Guideline
4 states that a design science research must provide clear and verifiable contributions
in the areas of the design artifact, design foundation, and/or design methodologies.
According to Guideline 5, design science research requires the application of rigor-
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ous methods in both the construction and evaluation of the designed artifact. This
entails that appropriate data collection and analysis methods will be used. Guide-
line 6 demonstrates that a design is a search process where many different design
alternatives are generated and the goal is to find the most effective one that meets
the requirements and constraints. According to guideline 7, the result of a design
science research method should be communicated effectively both to technical and
managerial audience.

4.2 Plan of Study
In this section, the research plan is presented. This study is split into two phases: a
current state analysis phase and a problem identification phase. In the first phase,
the continuous integration system used in the IHU project is analyzed. In the
second phase, continuous integration related problems that the project is facing are
presented and some of their causes identified.

4.2.1 Current State Analysis
This thesis is not just an analysis of the current state of the continuous integration
system architecture being used in the IHU project. The focus is rather on finding
out what the project’s main problems are with regards to continuous integration, to-
gether with identifying their causes. However, the authors of this paper feel that the
current state of a continuous integration system’s architecture has to be understood
well before the main problems and their causes can be identified. This subsection
therefore explains how the current state of the system was analyzed.

In order to understand the workflow and the continuous integration system
being used in the IHU project, unstructured interviews were conducted with two
members of the integration team and documents created by the same team were also
analyzed. In case some of the documents had outdated information, more discussions
were held with the integration team to acquire correct information. The creation
of a model of the current state of the continuous integration system helped gain
more understanding of it and the intended workflow. This model was created using
Cinders, which is described in Section 2.4. A reason for choosing Cinders, but not
the other continuous integration modeling techniques, i.e. ASIF or CIViT, is that
Cinders has been proven to be an improvement over those method, as it combines the
best from the other two techniques. Cinders represents the integration flows in two
different viewpoints (the Causality Viewpoint and the Product Line Viewpoint) and
the overview of the test activities performed in another one (the Test Capabilities
Viewpoint). These viewpoints are rendered from the same underlying data model
and therefore give a more complete overview of the continuous integration system
than ASIF and CIViT alone [37].

4.2.2 Problems and Their Causes
Since RQ1 is about finding out what the main continuous integration related prob-
lems are in the IHU project, unstructured interviews were held with two members
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in the integration team and two developers working in that project. This led to
identifying some areas of the continuous integration system that were of special
concern. These areas were then addressed in the interview question written in order
to find out which problems are the most serious ones. These questions were then
used in semi-structured interviews conducted with various employees. The aim of
these interviews was to shed light on the problems that the employees working in the
project have faced or are currently facing with the continuous integration system,
together with finding out what the main causes for these problems are, which in
turn addresses RQ2. The data collected from the semi-structured interviews was
analyzed with a theory generation method called the constant comparison method,
which is a qualitative data analysis method [32]. This method is described in more
detail in Section 4.4. This analysis resulted in several Ishikawa diagrams, which is
the model. This type of diagram is explained in Section 2.5. A reason for choosing
this diagram is that according to Ishikawa [13], it can be used for any problem. By
knowing the relationship between cause and effect of a problem, then it becomes
possible to take an action to solve it.

4.3 Data Collection
This chapter provides a general description of the data collection methods that are
used in this thesis work.

4.3.1 Documentation Analysis
Documentation analysis involves analyzing documents generated by developers. These
documents can be comments in the code or separate documents that describe a
software system. The advantage of using this technique is that it can serve as an in-
troduction to the software and the team. The documents written about the system
can present a glimpse of at least one person’s understanding of the software system.
The main disadvantage of using this technique is that this can be time consuming
and written material may be inaccurate [20]. The documents that were analyzed in
this study are two documents written by the integration team:

• Develop & Test Software document, which explains the developer’s work-flow
for committing code and how to baseline a new version of a repository.

• Continuous Integration document, which summarizes the Continuous Integra-
tion and Testing work-flow in the SUT.

4.3.2 Interviews
An interview is a conversation where at least one researcher talks to at least one
respondent at a time. The advantage of interviews is that they are highly interactive.
The disadvantages are that interviews are time consuming and cost-inefficient. A
researcher must schedule a meeting with the respondent which could take some
time, since the respondent might be busy [20]. According to Runeson and Höst
[31], interviews can be unstructured, semi-structured and fully-structured. In this
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thesis, unstructured and semi-structured interviews were conducted. Unstructured
interviews are interviews where the interview conversation will develop based on
the researcher’s interest of the subject. The interview questions are therefore put
together as interests and general concerns from the researcher. Semi-structured
interviews involve predefined questions that are not necessarily asked in the same
order as they are listed.

As was mentioned in Section 4.2.1, unstructured interviews were held with two
members in the integration team in order to understand the continuous integration
system being used in the IHU project and the workflow. After the current state had
been analyzed, unstructured interviews were held again with the same members of
the integration team and two developers working in the IHU project. Those inter-
views were conducted to identify which areas of the continuous integration system
were of special concern and should thus to be addressed in the semi-structured in-
terviews. Semi-structured interviews were then held to identify the main problems
the employees have had with regards to continuous integration. Runeson and Höst
recommend selecting interview subjects based on differences. This is preferable to se-
lecting similar subjects in an attempt to replicate similarities. Therefore, employees
working in the IHU project that hold various positions and are members of different
teams were interviewed, as can be seen in Table 4.1. The interview questions can
be seen in Appendix 1, together with Fig. A.1 and Fig. A.2 which were in some
cases shown to the interviewees in order to make it easier for them to understand
the interview questions. The interviews, which took 20-60 minutes, were recorded
by both researchers in order to make sure that all the data was stored safely.

4.4 Data Analysis
The data analysis in this study is done using the constant comparison method. The
constant comparison method is a theory generation method, which is used in quali-
tative data analysis. This method involves attaching labels or codes to text pieces
that are relevant to an idea or a theme that is of interest in the study. The codes and
subcodes that were assigned to the text pieces can then be used to group the text
pieces into patterns. Next, a field memo is written in order to express a proposition
from the coded data [32].
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Table 4.1: Background information about the interviewees.

ID Position Team

Years
at the
com-
pany

Software
Development
Experience
[years]

CI
Experience
[years]

A Configuration
Manager

Integration
Team 5 5 5

B Integrator Integration
Team 0.5 1 0.5

C Scrum Master T1 1.5 15+ 8-9

D Developer T2 1.5 12 5

E Developer T3 0.5 16 15-16

F Developer T4 5 5-6 5

G Developer T5 9 9 3-4
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The findings of the study are presented in this chapter. First, the continuous inte-
gration system being used in the IHU project is explained and modeled with Cinders
in Section 5.1. Then, the main problems that the project is facing with regards to
continuous integration are listed, together with their causes in Section 5.2.

5.1 Current State Analysis
One of the traditional practices of continuous integration is that a single source
repository should be maintained [12]. In the IHU project, each component has
its own source repository, which includes all of the latest changes for that specific
component. There is also a project-level repository, as shown in Fig. 5.1, which
stores so-called recipes — one for each component in the project. A recipe is a
file which provides a set of instructions on how some unit (e.g. a component or
some other piece of software) should be built. These instructions state e.g. where
the source repository is located, which commit should be used for building the unit
and also what dependencies the unit has. A build tool can use such a recipe file
to automatically build a single component or even the software project as a whole.
The project-level repository described above is required when doing the full system
build, as the recipes provide instructions on how to build every single component.

Figure 5.1: The project-level repository stores recipes, one for each component.
In this example, Component1’s recipe states that the first commit should be used
for the system build, while Component2’s recipe states that the second commit

should be used.
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Figure 5.2: The three integration flows of the continuous integration system.

Cinders, which is described in the theoretical framework chapter, is an archi-
tecture framework used to model the current state of the continuous integration
system architecture being used in the IHU project. In this framework, three archi-
tectural viewpoints are used to describe the system, i.e. the Causality Viewpoint,
the Product Line Viewpoint and the Test Capabilities Viewpoint. The Causality
Viewpoint and Product Line Viewpoint show three different integration flows. The
first flow is for the code commit, i.e. when a developer commits code to a compo-
nent’s repository. The second flow is for a recipe commit, i.e. when a component
maintainer commits a recipe to the project-level repository. The recipes are then
used for the system build, which is the third flow. An overview of these three in-
tegration flows can be seen in Fig. 5.2. The aforementioned diagram shows that
developers can do multiple code commits, and when the component maintainer de-
cides to include these commits in the system build, then he or she does a recipe
commit.

5.1.1 Causality Viewpoint
The Causality Viewpoint represents triggering relationships in the continuous in-
tegration system. The Causality Viewpoint for the code commit, which is on a
component level, is shown in Fig. 5.3. This viewpoint shows what happens when a
developer decides to check-in or "push" code changes to a component source reposi-
tory. Git is the version control system being used, and the first thing that happens
after a developer pushes his or her changes with Git is that a new change record
is created in Gerrit. Gerrit is the system that is used for code reviews, since every
code change needs to be accepted by other team members. The new change record
in Gerrit then triggers two activities that work in parallel, i.e. the code review and
the component build. Both of these activities need to succeed in order to trigger
the merge activity. The component build is done under the target’s Software De-
velopment Kit (SDK) using the build automation tool Jenkins. This build entails
compiling and running unit tests for that component. When the code review is
completed, i.e. either accepted or rejected, a status mail will be sent automatically
to the committing developer. If the code review is rejected, then the committing
developer needs to change the code and push a new commit. When the component
build activity is finished, a mail is sent to the committing developer that informs
him or her how that activity went. If there is enough time, then static code analysis
is run using the tool Coverity. However, the static code analysis is not required and
running it can take quite some time. Hence, developers sometimes stop it in order to
speed things up. If Coverity gets the chance to finish the analysis, then a defect list
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Figure 5.3: Causality Viewpoint for a code commit.

is generated and the committing developer receives a mail. This defect list is only
informative and does not have any effect on whether the change will be accepted
or not. When the build, tests and code review have succeeded, the merge activity
is triggered automatically. The merge activity attempts to merge the code changes
with the component’s repository. If there is a merge conflict, then it triggers a task
where a mail is sent to the committing developer, telling him or her that there was a
merge conflict. However, if the merge succeeds, then the committing developer must
manually press the submit button, which submits the changes to the component’s
source repository on the centralized git server. This task then triggers a build, where
the updated component is built under the target SDK.

In Fig. 5.4, the Causality Viewpoint for the recipe commit is presented. This
viewpoint shows what happens when a component maintainer decides to "bump" a
recipe, i.e. when he or she wants a new version of that component to be included
in the system image. Component maintainers can have various roles; they can
e.g. be developers, scrum masters or integrators. When the component maintainer
commits an updated recipe for some component to the project-level repository, then
a new change record is created in Gerrit. This new change record then triggers
two activities that work in parallel, i.e. a code review and an incremental build
on target software. The code review works in the same way as in the Causality
Viewpoint for the code commit in Fig. 5.3, but it often takes less time, mainly
because the recipe files are usually tiny and only have a few lines. It would take
too long to do a clean system build for every single recipe bump, so an incremental
build is done instead. This incremental build only builds the parts of the system
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Figure 5.4: Causality Viewpoint for the recipe commit.

that have changed, and uses cached builds when possible. Only components that
were affected by the changes introduced in the recipe bump will therefore need to be
rebuilt. The software being built could be one component, a couple of components
or even the whole system. This task could take a long time if there is a long build
queue, i.e. a queue of commits that need to be built. When the incremental build
on the target software has succeeded, it triggers an activity where the incremental
build is tested on target. As was mentioned in Section 2.3, a target is defined as
an embedded system, which in this case is an IHU. This test is done manually
and after that, the developer must indicate that the build was tested on target by
manually ticking the "tested on hardware" checkbox. This checkbox is problematic,
since developers can tick the "tested on hardware" checkbox without having tested
the build on hardware. When both the code review has been accepted and the
"tested on hardware" checkbox has been ticked, the merge activity can start. The
merge activity merges the changes to the project’s recipe repository on a centralized
git. As in the previous viewpoint, in Fig. 5.3, if there is a merge conflict, a mail is
sent to the committing developers, which is the component maintainer in this case.
Otherwise, if the merge succeeds, then the component maintainer must manually
press the submit button, which submits the changes to the project-level repository
on the centralized git server.

The Causality Viewpoint for the system build can be seen in Fig. 5.5. This
build is done once a day during the night, and is considered to be a clean build, which
means that every single component is built from scratch, unlike the incremental
build. It is important that this build succeeds, since a designated smoke test team
needs it in order to perform daily smoke tests. If this build fails, then the smoke
team has nothing to test. A broken system build also has an effect on the component
teams, as will be discussed further in Section 5.2.3 and Section 5.2.4.2.
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Figure 5.5: Causality Viewpoint for the system build.

5.1.2 Product Line Viewpoint
The Product Line Viewpoint, which is described in the theoretical framework chap-
ter, shows how artifacts travel through the system. There are three Product Line
Viewpoints for the case company’s continuous integration system. The first Product
Line Viewpoint is for a code commit and it can be seen in Fig. 5.6. This viewpoint
describes the same integration flow as Fig. 5.3. The second one is for the recipe
commit and it can be seen in Fig. 5.7. This viewpoint describes the same flow as
Fig. 5.4. Lastly, Fig. 5.8 is a Product Line Viewpoint for the system build and it
describes the same flow as Fig. 5.5.

Figure 5.6: Product Line Viewpoint for the code commit.
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Figure 5.7: Product Line Viewpoint for the recipe commit.

Figure 5.8: Product Line Viewpoint for the nightly build.
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5.1.3 Test Capabilities Viewpoint
The Test Capabilities Viewpoint is shown in Fig. 5.9. This viewpoint provides an
overview of the test activities performed in the IHU project. It should be noted that
only the test activities that are relevant to the continuous integration system are
discussed in this thesis. Any late-cycle tests or tests done by independent testing
teams are therefore ignored. For each test activity in the Test Capabilities View-
point, it can be seen what their feedback lead time is and at which level of system
completeness they are executed [37]. The tests that have red borders are not auto-
mated and the ones that have green borders are automated. Smoke testing is done
in India during the night and they focus more on functional related testing, to see
if everything is working. The smoke testers follow a list of instructions on what to
test, and then have a report ready in the morning when the developers show up
to work. The smoke testing is included in the system build viewpoints and can be
seen in Fig. 5.5 and Fig. 5.8. Testing on target is done by the component teams to
check if their code works by testing their code manually on target. Test on target is
therefore quite similar to the smoke tests, but the difference is that the latter tests
the whole system in the intended production environment, but the former sometimes
only tests a part of it manually on target. The target tests are included in the recipe
commit viewpoints and can be seen in Fig. 5.4 and Fig. 5.7. Static code analysis is
done in Coverity, which is sometimes done in the component build, as can be seen
in Fig. 5.3 and Fig. 5.6.

Figure 5.9: The Test Capabilities Viewpoint. This diagram only shows the tests
that are most relevant to the continuous integration system.
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5.2 Problems and Their Causes

The qualitative interviews, which are described in Section 4.3.2, helped shed light
on what problems the case company is having with continuous integration (CI). The
main problems can be found in Table 5.1. The interviews also revealed causes for
these problems, and an overview of these causes can be found in Table 5.2. The
problems and causes can also be seen in Fig. 5.15, Fig. 5.16, Fig. 5.17 and Fig. 5.18,
where they have been tagged to specific activities and tasks in the continuous inte-
gration system.

Table 5.1: Problems with continuous integration.

Problem Description

Late discovery of defects
Defects are found during late-stage testing
instead of being found by the continuous
integration system.

The overall integration process takes too
much time

It can take a long time for a commit to get
accepted into the main build.

System build breaks too often The main system build, which is run during
the night, breaks too often.

Interrupted development flow
The normal development flow of developers
is sometimes interrupted, e.g. because of
excessive waiting times.

Table 5.2: Problems with continuous integration and their causes.

Problem Causes

Late discovery of defects

Testing on target is not extensive enough,
testing on target skipped, tests are lacking
in the CI system, test bench is different
from production environment, static code
analysis ignored or skipped.

The overall integration process takes too
much time

Testing on target is time-consuming, sys-
tem build is only run once a day, static
code analysis is time-consuming, compo-
nent build takes too much time, code re-
views take too much time, too long build
queues.

System build breaks too often Missing dependencies not discovered in the
incremental build.

Interrupted development flow

Lack of inter-team communication and
synchronization, system build breaks too
often, the overall integration process takes
too much time.
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5.2.1 Late discovery of defects
Code changes sometimes introduce new defects into software. At the case company,
the test suite is not optimized to find defects before they are introduced; there is
more of a reliance on smoke tests and other late-cycle tests to find defects in the
product. This problem, i.e. late discovery of defects, is tagged to the Submit changes
to project’s (centralized) recipe repository task in Fig. 5.16. It is tagged to that task
because defects, which could have been found by tests, are sometimes submitted to
the project’s mainline. The causes for this problem can be seen in Fig. 5.10 and are
explained in more detail in the following subsections.

Figure 5.10: Late discovery of defects (cause-and-effect diagram).

5.2.1.1 Testing on target not extensive enough

One of the causes for late discoveries of defects is that the manual regression tests
performed on target by developers are often not extensive enough:

“People think they have tested on hardware — they have the illusion that
they tested it — but they didn’t test it long enough.”

- Configuration manager A

The same interviewee expands on that point:

“People are usually only testing their own functionality and not checking
for example if someone else’s is breaking.”

- Configuration manager A

That is something that developers D and G also mention in their interviews, i.e.
that when developers do testing on target, they tend to test only the feature they
are working on and do not check whether they are breaking something else.
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This cause, i.e. testing on target not extensive enough, is both tagged to the incre-
mental build tested on target activity in the Causality Viewpoint for a recipe commit
in Fig. 5.17 and also tagged to test on target in the Test Capabilities Viewpoint in
Fig. 5.18.

5.2.1.2 Testing on target skipped

Developers are required to do manual regression testing on target before submitting
their changes to the mainline. In the case company’s continuous integration system,
there is a "tested on hardware" checkbox that needs to be checked before code can be
submitted to the project’s recipe repository. However, it is possible for developers to
tick that checkbox, without having actually tested the code on target. One developer
says the following:

“The problems is that we have a real complex project. It’s really, really
complex, so there is no way that a single software engineer can oversee
all of the side-effects that your code actually causes. You can introduce
time-delays or latency in some ways that affects all the system, and you
don’t see that, if you don’t test on target.” - Developer G

Scrum master C mentions that timestamps in logs clearly show that developers
sometimes skip the manual regression testing on target. If the build is ready and
then two minutes later the code has been tested on target, then the developer has
definitely not tested the code on target. The interviewees reasoning is that it is not
possible to flash the software on target and do the manual tests in two minutes.
Since there are many reasons for why testing on target is skipped, a separate cause-
and-effect diagram is presented in Fig. 5.11, where those reasons are highlighted.

Figure 5.11: Testing on target skipped (cause-and-effect diagram).

One of the causes for skipping testing on target is because of a broken system build.
This is because a broken system build breaks the incremental build, which is needed
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to do the on-target tests:

“I think the main reason [why testing on target is not performed] is that
someone else broke [the system build]. I can’t test my functionality but
I know 99% that it works, so I check it in, because someone has broken
the master already and I can’t test until they fix the master.”

- Configuration manager A

System build breaks too often is defined as one of the four main problems and is
explained in more detail in Section 5.2.3.

Developers D, F and G; scrum master C and integrator B all think that one of the
reasons for skipping the on-target tests is because developers think that their code
change will not break the build:

“[A reason for ticking the ‘tested on hardware’ checkbox without testing
the code on target is that] you think that: ‘yeah, my feature doesn’t mess
up something else’, because you have quite good confidence in your own
code.” - Developer G

Scrum master C agrees, but also thinks that developers sometimes do not understand
the consequences of their actions:

“Some people just don’t know [that their code change can break the build]
and they don’t really understand the whole picture. And then there are
some senior developers who think that: oh, this is such an easy change,
that can’t have any impact to any other place! I can skip [testing] this
one [on target].” - Scrum master C

Developer D agrees that developers sometimes do not understand the consequences
of their actions:

“We have so many different teams committing code and sometimes it’s
hard to see how one commit can affect the entire tree, basically. Some-
times you just commit code and hope to hell it doesn’t crash. [...] A build
is 40, 50, 60gb, so it’s quite huge with all the source code and everything.
So, it’s a bit hard to get a grasp on, maybe.” - Developer D

Developer D also thinks that a reason for skipping testing on target is that testing
on target is time-consuming and developers are time pressured:

“It’s quite laborious [to test on target]. [...] Flashing it takes 5-10 min-
utes, and then you need to reboot. That’s 15-20 minutes. [...] It might
take too long for some. [...] It’s also because people are stressed — I
think that’s also [one reason for skipping testing on target] — they have
a lot of commits coming before a release.” - Developer D
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Testing on target is time-consuming is also a cause for the problem the overall
integration process takes too much time and this cause is explained in more detail
in Section 5.2.2.2.

Developer F and G mention that insufficient hardware resources is a reason for
skipping the on-target tests:

“I think you do that [tick the ‘tested on hardware’ checkbox, without test-
ing the code on target] because you don’t have access to hardware, because
the hardware is blocked in some way.” - Developer G

Developer E, who is used to working with fully-automated continuous integration
systems, thinks that testing on target should be automated. His view is that it is too
much to ask of developers to do full regression testing manually before submitting
code changes:

“I think the responsibility to put that on a software developer is too much.
[...] What does it mean that a developer should do full regression test
before submitting? [...] I don’t blame people for not doing it. [...] It
should be automated.” - Developer E

This cause is listed under process in Fig. 5.11 and is called Burden of manual testing
put on developers.

Testing on target skipped, is tagged to test on target in the Test Capabilities View-
point in Fig. 5.18 and is also tagged to the incremental build tested on target activity
in the Causality Viewpoint for the recipe commit, which can be seen in Fig. 5.16.

5.2.1.3 Tests are lacking in the CI system

Testing-related problems and causes can be seen in the Test Capabilities Viewpoint
in Fig. 5.18. According to this viewpoint, unit tests and static code analysis are
automated in the continuous integration system. On the other hand, smoke tests
and on-target tests have to be performed manually. Some teams have started to do
component tests, but most developers just focus on having a high code coverage of
unit tests:

“People concentrate too much on unit tests I think. Unit tests are quite
good but we have a very high demand on coverage.” - Developer D

Developer E thinks that the focus should perhaps be shifted from unit testing to
component testing or software integration testing:

“Maybe we should shift focus from unit testing to component testing, or
software integration testing. That’s my understanding, that yeah, people
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are just trying to reach a set KPI and maybe don’t really understand why
they should just reach this KPI.” - Developer E

Developer G states the same thing, i.e. that developers are driven by Key Perfor-
mance Indicators (KPIs) and sometimes just write unit tests to get the code coverage
percentage up:

“Sometimes KPIs — like unit test coverage, something like that — drive,
because sometimes you just write tests to get the coverage up. But it looks
on the KPI as if it’s good” - Developer G

Unit tests are important, but Developer E still feels that integration tests are some-
times more suitable:

“I think unit testing is important too, where you have units with very
complicated logic and of course you should have unit testing because it’s
much easier to find all the corner cases and test the corner cases. But
if you don’t have that complicated logic, then it’s much more value, bet-
ter price-performance, benefit ratio, bang for the buck to do integration
tests.” - Developer E

Developer E also mentions that this focus on unit testing has a high maintenance
cost, in particular when an Application Programming Interface (API) is changed:

“It’s also a maintenance cost. If you’re just writing unit tests, to get to
a certain level of code coverage, then you will pay a lot for maintaining
those. As soon as you start changing APIs on your unit, then you will
need to update all the test cases accessing those APIs and it probably
would have been cheaper if you’re just out for code coverage to do inte-
grative testing” - Developer E

Three other interviewees (A, B, D), also think that component and integration
tests are lacking in the continuous integration system and say that they should be
automated as well. One of them says the following:

“What we need is more component testing and automating the component
testing I would say, because that’s usually where the issues are. When we
have a component talking to a component and the API changes, and if
only one makes the change then it will break for the other team. [...] So
I would say for component teams what we are lacking is component tests
and integration between components.” - Configuration manager A

This cause is also tagged to the build component under the target SDK and unit
test activity in the Causality Viewpoint for the code commit, which can be seen in
Fig. 5.15.
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5.2.1.4 Test bench is different from production environment

Some regressions that are not found when testing in bench might show up in the
production environment:

“Testing in bench doesn’t give you the same results as testing in a real
car.” - Configuration manager A

This cause is both tagged to the incremental build tested on target activity in the
Causality Viewpoint for the recipe commit, which can be seen in Fig. 5.16 and also
tagged to test on target in the Test Capabilities Viewpoint in Fig. 5.18.

5.2.1.5 Static code analysis ignored or skipped

As mentioned in Section 5.1, the static code analysis is only done if there is enough
time. Developers tend to stop it when they do the component build, in order to
speed things up. This means that one of the reasons for skipping code analysis
is because running the static code analysis is time-consuming, which is discussed
further in Section 5.2.2.4. Integrator B says that static code analysis is needed, but
also that it is of low priority and developers often do not care about the result from
it. This cause refers to the analyze code with Coverity activity in the Causality
Viewpoint for the code commit, which can be seen in Fig. 5.15. This cause is also
tagged to static code analysis in the Test Capabilities Viewpoint in Fig. 5.18

5.2.2 The overall integration process takes too much time

It can take a long time for a commit to get accepted into the main build. All of
the developers (D, E, F, G) think that the overall integration process is too long.
Developer G states that the overall process sometimes takes almost half a day.
Developer E wants it to be possible to deploy new software in the car in 24 hours,
but thinks that they need to be much faster to be able to achieve that:

“I think it [the overall integration process] takes too long. [...] It won’t
be possible with the current pace to put new software in the car in 24
hours. We need to be much faster.” - Developer E

Another developer says the following:

“I think the CI environment is just slow. [...] It’s basically just too long
of a feedback loop.” - Developer D

The causes for this problem can be seen in Fig. 5.12 and are explained in more detail
in the following subsections.

36



5. Results

Figure 5.12: The overall integration process takes too much time
(cause-and-effect diagram).

5.2.2.1 Component build takes too much time

Developers often have to wait a long time for the component build to finish. Most
respondents state that they would want the component build to take between 5 and
15 minutes maximum. However, the build times, which are of course different for
each component, are much higher in many cases. As can be seen in the Product Line
Viewpoint for a code commit in Fig. 5.6, component builds usually take between 10
and 40 minutes. There is sometimes an additional queue-time which can take up to
1 hour. Configuration manager A states that the component builds probably take
around half an hour on average:

“It depends on which component, I would say. Some are down to ten
minutes, maybe even lower. Some may take up to forty minutes. [...]
[The component builds take on] average thirty minutes I would say, if
you do them in parallel.” - Configuration manager A

Developer D also states that the tests are not causing the high build times, but
the compilations instead. This cause, i.e. Component build takes too much time, is
tagged to the Build component under the Target SDK and unit test activity in the
Causality Viewpoint for the code commit, which can be seen in Fig. 5.15

5.2.2.2 Testing on target is time-consuming

The fact that testing on target is time-consuming does not only lead on-target testing
being skipped, as discussed in Section 5.2.1.2 — it also causes the overall integration
process to take too much time. Developer D thinks that testing on target takes too
much time and adds the following:

“It’s quite laborious [to test on target]. You get test build, you flash it on
hardware and then you need to reboot, do a change.” - Developer D
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This cause is tagged to the cause testing on target skipped which is both tagged
to the incremental build tested on target activity in the Causality Viewpoint for a
recipe commit in Fig. 5.17 and also tagged to test on target in the Test Capabilities
Viewpoint in Fig. 5.18.

5.2.2.3 System build is only run once a day

The system build is only done once a day, i.e. on a nightly basis, and is therefore
not done in a continuous manner. This cause is tagged to the system build activity
in the Causality Viewpoint for the system build, which can be seen in Fig. 5.17.

5.2.2.4 Running the static code analysis is time-consuming

Configuration manager A and developer G think that the execution of the static
code analysis tool being used, Coverity, takes too much time:

“Coverity is good, but it’s too high build time for it to actually be efficient
enough in continuous integration. [...] It can add one to four times the
build. So, if your build is ten minutes without Coverity, Coverity can
increase it up to twenty or even forty, fifty minutes.”

- Configuration manager A

Since it is so time-consuming, the static code analysis is sometimes ignored or
skipped, as described in Section 5.2.1.5. This cause refers to the analyze code with
Coverity activity in the Causality Viewpoint for the code commit, which can be seen
in Fig. 5.15. This cause is also tagged to static code analysis in the Test Capabilities
Viewpoint in Fig. 5.18

5.2.2.5 Code reviews take too much time

Developers need to do code reviews before their code is merged to a component
source repository (in the code commit integration flow). Code reviews are also
required before a recipe is merged to the project recipe repository (in the recipe
commit integration flow). This problem refers to the activity which takes place in
the code commit integration flow, see Fig. 5.15. According to the Product Line
Viewpoint for the code commit in Fig. 5.6, the code review can take between 5
minutes and 2 hours. Developer G says that the code reviews slow them down,
since they need two team members to approve the code before it is sent through.
Sometimes it takes a long time for the two team members to review the code or
start the code review activity. The developer committing the code can therefore get
stuck in this review phase. The same developer also explains the main reasons for
this cause:

“One [reason for why peer reviews slow developers down] is that we have
a team where everyone is detail oriented and [...] they are quite picky
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on how the code looks like basically. [...] [Another reason] is that there
is a lot to do, so we don’t actually have time to review as well, so then
we get stuck on that.” - Developer G

5.2.2.6 Too long build queues

The continuous integration system can only run a certain amount of builds at a
time, so a queue is created when many builds need to be run at the same time.
Configuration manager A states that long build queues can cause long integration
times. Developer F says the same thing, but adds that this is only a problem at the
end of a sprint:

“Sometimes when it’s at the end of the sprints I would say there is a
lot of traffic and then lots of jobs in the queue, so it takes of course a
longer time. [...] Other than that, then there are not that many jobs in
queue.” - Developer F

This cause is tagged to the build component under Target SDK and unit test activity
in the Causality Viewpoint for the code commit, in Fig. 5.15 and also in the Incre-
mental build on target software activity in the Causality Viewpoint for the recipe
commit, in Fig. 5.16.

5.2.3 System build breaks too often
The main system build, which is done once a day, breaks often. Configuration
manager A, scrum master C, and developers F and G all think that a broken system
build is quite common. The scrum master’s opinion is that there are too many
broken builds and that it is a big issue in the project. Developer F mentions that a
broken build is sometimes a bottleneck, since everyone is dependant on the system
build’s image. Some teams are, however, less effected by a broken build than others:

“When there is a broken build then we are not affected that much. [...] It
depends on the issue as well, actually, and what feature we are developing
as well, because some features demand us to use the latest nightly build
and then it could block us.” - Developer G

This problem is tagged to the system build activity in the Causality Viewpoint for
the system build, which can be seen in Fig. 5.17. The cause for this problem can be
seen in Fig. 5.13 and is explained in more detail in the following subsection.

5.2.3.1 Missing dependencies not discovered in the incremental build

Some code change might break the system build, even though it does not break the
incremental build:
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Figure 5.13: System build breaks too often (cause-and-effect diagram).

“All the incremental builds can be fine, and you don’t see any issues and
you can even test that thing locally and everything works [but the clean
system build could still break.]” - Scrum master C

In the incremental build, a component might depend on an older version of a com-
ponent which then updates in the daily system build. Configuration manager A
mentions that in the system build, everything is built from scratch, and that the
build order of components matters in that case. The same interviewee also notes
that in the incremental build, only the components that are affected by your changes
need to be built, which makes dependency problems less likely. This cause is tagged
to the incremental build tested on target software activity in the Causality Viewpoint
for the recipe commit, which can be seen in Fig. 5.16.

5.2.4 Interrupted development flow
Developers experience interrupted development flow when they are blocked from
finishing some task that they are working on. Integrator B states that if the main
build is broken, then the teams cannot continue working and developers are delayed,
since they cannot submit new changes to the mainline. Developer D mentions that
every team gets blocked if the main build is broken, and also says that interrupted
development flow is extremely common for his team, since they depend a lot on the
other teams. This problem is tagged to the new commit pushed to Gerrit triggering
relationship in the Causality Viewpoint for the code commit, which can be seen in
Fig. 5.15. The causes for this problem can be seen in Fig. 5.14 and are explained in
more detail in the following subsections.

5.2.4.1 Lack of inter-team communication and synchronization

Teams need to be more synchronized, because changes that one teams does can
affect other teams. Scrum master C and developers D and E think that there is
a lack of inter-team communication and synchronization. One of the interviewees
states the following:
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Figure 5.14: Interrupted development flow (cause-and-effect diagram).

“I think a lot of it [interrupted development flow] has been because the
teams which we rely on have not been synchronized enough with our
needs. So it’s a synchronization issue in the project. I think that’s the
main reason [for interrupted development flow].” - Developer E

5.2.4.2 System build breaks too often

Four of the interviewees (B, C, D, F) mention that a broken system build causes
an interrupted development flow, since developers often need to wait until the build
gets fixed before they can continue their work. One of the interviewees states the
following:

“Well, if the build is broken, in the master branch, [...] teams cannot
continue. We can’t continue working if we cannot submit changes to the
master, so it delays, I would say, the developers.” - Integrator B

This cause, which is also one of the main problems, is explained in more detail in
Section 5.2.3 and is tagged to the system build activity in the Causality Viewpoint
for the system build, which can be seen in Fig. 5.17.

5.2.4.3 The overall integration process takes too much time

Scrum master C says that the fact that the system build is only done once every 24
hours can interrupt developers:

“If they [developers] have fixed a bug, they need to have a nightly official
build to verify that bug. In this case, it means that it will have 24 hours
delay immediately and those people have already jumped to some other
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areas. They need to switch between different areas and tasks and that is
always taking some time and it’s kind of unnecessary jumping back and
forth. Yeah, that’s probably one of these things which people don’t really
realize has quite a big impact.” - Scrum master C

This cause, which is also one of the main problems, is explained in more detail in Sec-
tion 5.2.2 and is tagged to the new commit pushed to Gerrit triggering relationship
in the Causality Viewpoint for the code commit in Fig. 5.15.

Figure 5.15: Causality Viewpoint for a code commit. Relevant problems (bold)
and causes are shown.
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Figure 5.16: Causality Viewpoint for a recipe commit. Relevant problems (bold)
and causes are shown.

Figure 5.17: Causality Viewpoint for a system build. Relevant problems (bold)
and causes are shown.
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Figure 5.18: Test Capabilities Viewpoint. Relevant problems and causes are
shown.
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Discussion

The results of this study are discussed in this chapter. In Section 6.1, the research
questions are addressed and the results evaluated using informed argument. Then,
potential threats to validity are discussed in Section 6.2.

6.1 Research Questions

This study has two research questions:

RQ1: What are the main problems associated with using continuous inte-
gration in the development of component-based embedded software?

RQ2: What are the main causes for the problems associated with using
continuous integration in the development of component-based em-
bedded software?

6.1.1 The Problems (RQ1)

The four main problems that are listed in Table 5.1 will be discussed here.

6.1.1.1 Late discovery of defects

The first problem is the late discovery of defects. One of the benefits of continuous
integration, according to Duvall [11], is that defects are detected and fixed sooner
when it is used. His reasoning is that running tests and inspections several times
a day leads to a higher probability of discovering defects when they are introduced,
instead of during late-cycle testing. Fowler [12] similarly states that one of the
benefits of continuous integration is that it leads to dramatically less bugs. However,
he also states that the degree of this benefit is directly tied to the quality of the test
suite. At the case company, the test suite is not optimized to find defects before
they are introduced. They rely more on smoke tests and other late-cycle tests to find
defects in the product. It can be challenging to automate some tests and run them
continuously when specialized hardware is needed [21], so this problem is partly
because the software is embedded.
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6.1.1.2 The overall integration process takes too much time

The second problem is that the overall integration process takes too much time.
Fowler [12] states that rapid feedback is “the whole point of CI” and Duvall [11]
similarly states that rapid feedback is “at the heart of CI”. In this context, rapid
feedback means that developers are notified quickly whether their code change was
accepted or not. Rapid feedback also implies that everyone involved in the project
should be able to know the status of the project several times a day [11]. In the
IHU project, the time from when a developer commits code to when that commit
is merged to the mainline is quite long. A commit can reach the mainline the next
day at the earliest — if everything goes smoothly (code reviews are finished quickly
and so on). The next day is therefore the best case scenario, but usually it takes
more than one day for a commit to reach the mainline.

6.1.1.3 The system build breaks too often

The third problem is that the system build breaks too often. Fowler [12] and Duvall
[11] both say that builds need to be fixed immediately if they break. Fowler states
that it is essential when using continuous integration to have a known stable base
for developers to work on. Broken builds are therefore obviously not good for the
project. If the build breaks too often, then it is vital to find out why it is breaking,
so that future breaks can be prevented from happening.

6.1.1.4 Interrupted development flow

The fourth problem is interrupted development flow. This problem entails anything
that decreases the productivity of developers and distracts them from writing code
for some reason. Anything that blocks the developers from their normal development
flow causes this problem. Many issues can arise when developers resume their work
after having been interrupted. Examples of such issues are more errors, loss of
knowledge, increased time to perform tasks and increased failures to perform critical
tasks [26].

6.1.2 The Causes (RQ2)
The causes for each of the main problems are listed in Table 5.2 and will be discussed
here.

6.1.2.1 Late discovery of defects

The first problem, late discovery of defects, has five causes that are all testing-related
and can be seen in Fig. 5.10. One of those causes is static code analysis ignored or
skipped. According to a paper by Ayewah et al. [2], static code analysis tools can
be used to find important defects in code. Not running the static code analysis can
therefore contribute to the late discovery of defects.

Another one of the causes for late discovery of defects is that tests are lacking in
the CI system. A lot of effort is put into reaching a high code coverage for unit tests
in the IHU project. This focus on unit tests means that component and integration
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tests get little attention. Interestingly, Jalote et al. [14] found that most defects
of a component were found by testing other components. By running automated
component testing for instance, one could detect more defects since those types of
testing use more dependencies than unit testing [11].

Test bench is different from production environment is a cause for late discovery
of defects and relates to embedded software development. The test environment
becomes a limited resource if the hardware needed for the system under test is
expensive or in short supply [21]. In the automotive industry for instance, it might
not always be possible to test the software in an actual car (i.e. the production
environment). If code changes are not regression tested with a car, then defects can
go undetected.

Testing on target is not extensive enough is another cause for the late discovery
of defects. It addresses the fact that manual hardware testing is sometimes not
performed extensively enough. According to Duvall [11], 100% of all tests must
pass for every single build when continuous integration is used. He claims that not
running the tests can lead to broken code and lower-quality software. In the IHU
project, the testing on target is not automated and has to be performed manually.
Broken code can reach the mainline if these tests are not extensive enough. It
could be argued that these manual regression tests do not "pass" if they are not
done extensively enough. This would not be as big of a problem if this testing was
automated, as Mårtensson et al. [21] and Duvall [11] state it should be.

The cause testing on target skipped has seven causes of its own, as seen in
Fig. 5.11. Some of these causes are put in a category called people in the cause-and-
effect diagram. Laukkanen et al. [18] list some similar human and organizational
problems that make the adoption of continuous integration and delivery difficult.
They define lack of discipline as a problem where developers lack discipline, e.g.
in doing tests before committing their code. More pressure is also a human and
organizational problem that they mention, which is sometimes caused by lack of
experience which also causes lack of understanding. Debbiche et al. also define
increased pressure as a challenge when adopting continuous integration [9]. Hardware
testing is also defined as a problem according to Laukkanen et al. [18], which happens
when the hardware needed in hardware testing is not always available and can
be defined as the same cause listed under infrastructure in Fig. 5.11 and is called
insufficient hardware resources. Another cause for skipping the on-target tests is that
the burden of manual testing put on developers. Mårtensson et al. [21] mention in
their paper that automated tests should be a prerequisite for continuous integration
and add that manual tests are less predictable and take a longer time to execute
than automated tests. Furthermore, Debbiche et al. [9] have also identified too many
manual tests as a challenge associated with testing at a telecommunication services
and infrastructure provider. They found in their case study that teams working
closer to the hardware need to do more manual tests than the teams working on the
application level.

6.1.2.2 The overall integration process takes too much time

The second problem, the overall integration process takes too much time, has six
causes as seen in Fig. 5.12. Four of those causes relate to time-consuming activities,
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and together with too long build queues, they all slow down the overall integration
process.

System build is only run once a day is also a cause for the overall integration
process taking too much time. Duvall [11] claims that one cannot claim to be
practicing continuous integration if the build is not run continuously. One of the
cornerstones of continuous integration, in his view, is that several integration builds
occur each day. He considers regular builds to be important so that everyone can
learn the state of the project several times a day. It is therefore not enough to just
run the build once a day on a hard-schedule, like it is done in the IHU project.

6.1.2.3 System build breaks too often

System build breaks too often is the third of the main problems listed and has only
one cause, i.e. missing dependencies not discovered in the incremental build, as can
be seen in Fig. 5.13. This cause is mainly due to the fact that the software is
component-based. One interviewee mentioned that if the components are not built
in the right order in the system build, then that build might break, even though the
incremental build done previously succeeded. Debbiche et al. [9] mention in their
paper that it is important to consider how code dependencies affect the integration
process. They identify a couple of issues related to integration dependencies and
one of them is that the amount of failures experienced during integration increased
after the adoption of continuous integration.

6.1.2.4 Interrupted development flow

The last problem, Interrupted development flow has three causes as can be seen in
Fig. 5.14. Two of them are main problems that were discussed earlier, i.e. sys-
tem build breaks too often and the overall integration process takes too much time.
Laukkanen et al. [9] also identified similarly that there is a causal relationship be-
tween a broken build and broken development flow.

The causes for the overall integration process taking too much time, which are
listed in Fig. 5.12, can also cause an interrupted development flow. As was mentioned
in Section 6.1.2.2, three of the causes for this problem are related to time-consuming
activities. These activities are similar to the time-consuming testing problem that
Laukkanen et al. identify [18]. According to them, time-consuming testing causes
interrupted development flow (which they call broken development flow). Debbiche
et al. [9] define too long build queues, which they call integration queue in their paper,
as a challenge, since due to a constant stream of integrations the risk of blocking
the integration queue increases, which can lead to the mainline being blocked for
some time. Like a broken system build, a broken mainline can cause an interrupted
development flow. The development flow can also be interrupted when builds take
too much time according to Brooks [5].

System build is only run once a day can also be considered as a cause for
interrupted development flow. Duvall [11] states that if developers have to stop their
development activities because they need to wait for feedback, then that affects the
development flow.
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Lack of inter-team communication and synchronization is the final cause for
interrupted development flow. This challenge relates to component-based software
development, since development teams are highly dependent on each other [4, 25].
This means that development teams sometimes need to wait for other parts to be
finished before integrating their work, which interrupts the development flow [9].

6.2 Threats to Validity

In this section, the threats to validity are discussed. Assessing the validity of a study
is important, as it indicates how trustworthy the results are [31]. Four different
categories of validity threats are addressed in this study and they are discussed in
the sections below.

6.2.1 Construct Validity

Construct validity refers to what extent the operational measures that are studied
represent what is investigated according to the research questions and what the
researchers have in mind [31]. Runeson and Höst [31] say that triangulation can
be used to improve research validity. In essence, triangulation means that different
angles of the studied object are analyzed to get a broader perspective. This becomes
especially important when qualitative data is being used, since it is less precise than
quantitative data. Three types of triangulation were applied in this study:

• Data triangulation was used by collecting data from different sources. Seven
subjects were interviewed from 5 different development teams and one inte-
gration team. The subjects also held various roles in the company.

• Observer triangulation was achieved by having two researchers conduct the
interviews. In addition, both supervisors of this thesis, i.e. the one from uni-
versity and the one from the case company, reviewed the interview questions.
Their comments then led to some refinements being done before the interviews
were conducted.

• Methodological triangulation was achieved by using different methods for col-
lecting data, i.e. unstructured interviews, semi-structured interviews and doc-
umentation analysis.

The data from the semi-structured interviews was the principal source used to iden-
tify the main continuous integration related problems and their causes. It is worth
noting that some interviewees seemed to have thought that breaking the build and
introducing broken code into the build meant the same thing. Also, since no vi-
sualization of the continuous integration system is in place at the case company,
developers were sometimes unsure about what build was being asked about. Some
of the construct validity threats were addressed by showing the interviewees Fig. A.1
and Fig. A.2 in the semi-structured interviews, in order to show them what parts of
the continuous integration systems they were being asked about.

49



6. Discussion

6.2.2 Internal Validity
Internal validity needs to be considered when examining causal relations. This
means that when the researcher is investigating whether factor A affects an inves-
tigated factor B, then there is risk that factor B is also affected by a third factor
C. There is a threat to internal validity if the researcher is not aware of factor C or
does not realize to what extent it affects factor B [31].

In this study there is a risk of internal validity threats since causal relations
are being investigated. Interviewees helped identify the causes for certain problems
and it is of course possible that the interviewees are sometimes wrong in their as-
sessments. Interviewees might think that one factor causes another factor, but the
reality might be that some third hidden factor was the actual cause.

6.2.3 External Validity
External validity refers to what extent the findings are of interest to people that
are outside the investigated case and to what extent it is possible to generalize the
findings [31]. The fact that only one project in a single company was under study
in this thesis can be considered to be an external validity threat.

6.2.4 Reliability
Reliability is one aspect that indicates whether the results would be the same if
another researcher later conducted the same study. This validity therefore refers to
what extent the data and the analysis of the data are dependent on the researchers
that conducted this study in the first place [31].

In this study, the main continuous integration related problems and their
causes were identified with unstructured and semi-structured interviews with 7 em-
ployees at the case company. In order to get more reliable data, it would be essential
to have interviews with more employees at the case company. As was mentioned in
Section 6.2.1, observer triangulation was achieved by having two researchers conduct
interviews, which would reduce bias by individual researchers. Thus, the reliability
of the study is improved [31].
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Conclusion

In this study, the problems associated with using continuous integration in the
development of component-based embedded software are assessed. Additionally,
potential causes for those problems are identified. The continuous integration system
being used for a component-based embedded software project was modeled using
Cinders, which is an architectural framework for describing continuous integration
and delivery systems. The Cinders model and interviews conducted with project
members helped identify four main problems related to the continuous integration
system: late discovery of defects, the overall integration process takes too much
time, the system build breaks too often and interrupted development flow. The
causes for those problems were also identified and a model was created in that
regard. This model includes five Ishikawa diagrams: four diagrams for the main
problems and then one additional diagram for one of the potential causes. These
diagrams list all the causes for a particular problem or a cause, which can help
the case company identify how the continuous integration system can be improved.
A lot of the research in the field of continuous integration is missing important
contextual information, e.g. the type of application that continuous integration
is being used to develop and what the domain is. This study therefore includes
contextual information on the product and the organization developing it.

This study and others suggest that continuous integration works well with
component-based software development. Breaking a large software project into com-
ponents makes using continuous integration on a large scale more manageable. How-
ever, good inter-team communication and synchronization seem especially important
when the software architecture is component-based. This seems to be the case, at
least partly, because components are quite sensitive to changes, and developers are
expected to do frequent changes to the common code base when continuous inte-
gration is used. One of the main problems at the case company is that the nightly
system build, which builds the whole system from scratch, breaks too often. This
problem is caused by missing dependencies and thus directly linked to the fact that
the software is component-based. Before submitting changes to the mainline, an
incremental build is run and the software is then tested on target. This incremental
build is much faster than a full system build and therefore reduces the overall inte-
gration time. However, this reduction in time comes at a cost, as it leads to more
broken builds. The nightly system build can break even though the incremental
build was successful, as missing dependencies are sometimes not discovered in the
incremental build.

Adopting continuous integration in embedded software development seems
quite challenging. Some of the problems that the project discussed in this study
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is facing could be eliminated by automating tests. Developers in the project are re-
quired to perform manual regression tests on target, which often leads to those tests
not being extensive enough or in some cases not performed at all. Automated test-
ing is, however, hard to achieve in embedded software development since specialized
hardware is needed to both run the software and perform tests.

To our knowledge, this is the first study which uses Cinders to model a contin-
uous integration system — aside from the example presented in the original paper.
We liked the framework and found using it to be straightforward for the most part.
The most challenging part was to elicit the functional- and non-functional-confidence
values of activities, as people were somewhat confused by what these terms meant.
Also, we had to create all of the Cinders viewpoints manually, which was quite
tedious.

Further work is needed on the challenges and problems that can emerge when
adopting continuous integration, especially in the area of embedded software. The
findings of this study can be extended by both proposing solutions to the identified
problems and by including a larger sample of companies using continuous integra-
tion for embedded and/or component-based software development. Additionally,
developing tool support for Cinders would make it easier to use and could thus be
important for increasing its usage by both researchers and practitioners.

52



Bibliography

[1] R. Ablett, E. Sharlin, F. Maurer, J. Denzinger, and C. Schock. Buildbot:
Robotic monitoring of agile software development teams. In RO-MAN 2007
- The 16th IEEE International Symposium on Robot and Human Interactive
Communication, pages 931–936, Aug 2007.

[2] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh. Using
static analysis to find bugs. IEEE Software, 25(5):22–29, Sept 2008.

[3] R. Baskerville. What design science is not. European Journal of Information
Systems, 17(5):441–443, 10 2008. Copyright - © Palgrave Macmillan Ltd 2008;
Last updated - 2013-10-04.

[4] J. Bosch. Continuous Software Engineering. Springer, 2014.
[5] G. Brooks. Team pace keeping build times down. In Agile 2008 Conference,

pages 294–297, Aug 2008.
[6] I. Crnkovic. Component-based software engineering — new challenges in soft-

ware development. Software Focus, 2(4):127–133, 2001.
[7] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools,

and Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[8] R. Davison, M. G. Martinsons, and N. Kock. Principles of canonical action
research. Information Systems Journal, 14(1):65–86, 2004.

[9] A. Debbiche, M. Dienér, and R. Berntsson Svensson. Challenges When Adopting
Continuous Integration: A Case Study, pages 17–32. Springer International
Publishing, Cham, 2014.

[10] J. Downs, J. Hosking, and B. Plimmer. Status communication in agile soft-
ware teams: A case study. In 2010 Fifth International Conference on Software
Engineering Advances, pages 82–87, Aug 2010.

[11] P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration: Improving
Software Quality and Reducing Risk (The Addison-Wesley Signature Series).
Addison-Wesley Professional, 2007.

[12] M. Fowler. Continuous integration, 2006. (accessed 15 May 2017).
[13] K. Ishikawa. Guide to quality control. Industrial engineering and technology.

Asian Productivity Organization, 1976.
[14] P. Jalote, R. Munshi, and T. Probsting. Components Have Test Buddies, pages

310–319. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
[15] A. Janus, R. Dumke, A. Schmietendorf, and J. Jäger. The 3c approach for agile

quality assurance. In 2012 3rd International Workshop on Emerging Trends in
Software Metrics (WETSoM), pages 9–13, June 2012.

53



Bibliography

[16] N. Kerzazi, F. Khomh, and B. Adams. Why do automated builds break? an
empirical study. In 2014 IEEE International Conference on Software Mainte-
nance and Evolution, pages 41–50, Sept 2014.

[17] S. Kim, S. Park, J. Yun, and Y. Lee. Automated continuous integration of
component-based software: An industrial experience. In 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, pages 423–426,
Sept 2008.

[18] E. Laukkanen, J. Itkonen, and C. Lassenius. Problems, causes and solutions
when adopting continuous delivery—a systematic literature review. Information
and Software Technology, 82:55 – 79, 2017.

[19] E. Laukkanen and M. V. Mäntylä. Build waiting time in continuous integration:
An initial interdisciplinary literature review. In Proceedings of the Second In-
ternational Workshop on Rapid Continuous Software Engineering, RCoSE ’15,
pages 1–4, Piscataway, NJ, USA, 2015. IEEE Press.

[20] T. C. Lethbridge, S. E. Sim, and J. Singer. Studying software engineers: Data
collection techniques for software field studies. Empirical Software Engineering,
10(3):311–341, 2005.

[21] T. Mårtensson, D. Ståhl, and J. Bosch. Continuous Integration Applied to
Software-Intensive Embedded Systems – Problems and Experiences, pages 448–
457. Springer International Publishing, Cham, 2016.

[22] M. Marzban, Z. Khoshmanesh, and A. Sami. Cohesion Between Size of Commit
and Type of Commit, pages 231–239. Springer Netherlands, Dordrecht, 2012.

[23] M. Meyer. Continuous integration and its tools. IEEE Software, 31(3):14–16,
May 2014.

[24] A. Nilsson, J. Bosch, and C. Berger. Visualizing Testing Activities to Sup-
port Continuous Integration: A Multiple Case Study, pages 171–186. Springer
International Publishing, Cham, 2014.

[25] H. H. Olsson, H. Alahyari, and J. Bosch. Climbing the "stairway to heaven" – a
mulitiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software. In 2012 38th Euromicro Conference
on Software Engineering and Advanced Applications, pages 392–399, Sept 2012.

[26] C. Parnin and R. DeLine. Evaluating cues for resuming interrupted program-
ming tasks. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’10, pages 93–102, New York, NY, USA, 2010. ACM.

[27] R. Preiel and B. Stachmann. Git: Distributed Version ControlFundamentals
and Workflows. BrainySoftware.com, 2014.

[28] J. Rasmusson. Long Build Trouble Shooting Guide, pages 13–21. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[29] M. Roberts. Enterprise Continuous Integration Using Binary Dependencies,
pages 194–201. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[30] R. O. Rogers. Scaling Continuous Integration, pages 68–76. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[31] P. Runeson and M. Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131,
2009.

54



Bibliography

[32] C. B. Seaman. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on software engineering, 25(4):557–572, 1999.

[33] M. Shahin, M. A. Babar, and L. Zhu. Continuous integration, delivery and de-
ployment: A systematic review on approaches, tools, challenges and practices.
CoRR, abs/1703.07019, 2017.

[34] D. Ståhl and J. Bosch. Automated software integration flows in industry: A
multiple-case study. In Companion Proceedings of the 36th International Con-
ference on Software Engineering, ICSE Companion 2014, pages 54–63, New
York, NY, USA, 2014. ACM.

[35] D. Ståhl and J. Bosch. Industry application of continuous integration modeling:
A multiple-case study. In Proceedings of the 38th International Conference on
Software Engineering Companion, ICSE ’16, pages 270–279, New York, NY,
USA, 2016. ACM.

[36] D. Ståhl and J. Bosch. Modeling continuous integration practice differences in
industry software development. Journal of Systems and Software, 87:48 – 59,
2014.

[37] D. Ståhl and J. Bosch. Cinders: The continuous integration and delivery ar-
chitecture framework. Information and Software Technology, 83:76–93, 2017.

[38] D. Ståhl, T. Mårtensson, and J. Bosch. The continuity of continuous integra-
tion: Correlations and consequences. Journal of Systems and Software, 127:150
– 167, 2017.

[39] V. K. Vaishnavi and W. Kuechler, Jr. Design science research in informa-
tion systems, 2004; last updated: November 15, 2015. [Online; accessed 13-
February-2017].

[40] T. van der Storm. The sisyphus continuous integration system. In 11th Eu-
ropean Conference on Software Maintenance and Reengineering (CSMR’07),
pages 335–336, March 2007.

[41] T. van der Storm. Backtracking incremental continuous integration. In 2008
12th European Conference on Software Maintenance and Reengineering, pages
233–242, April 2008.

[42] R. H. Von Alan, S. T. March, J. Park, and S. Ram. Design science in information
systems research. MIS quarterly, 28(1):75–105, 2004.

[43] C. Walls. Embedded Software: The Works. Newnes, 2012.
[44] C. S. with Dominik Gruntz and S. Murer. Component Software: Beyond Object-

Oriented Programming. ACM Press/Addison Wesley Publishing Co., New York,
2 edition, 2002.

[45] C. Wohlin. Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In Proceedings of the 18th international con-
ference on evaluation and assessment in software engineering, page 38. ACM,
2014.

[46] H. M. Yuksel, E. Tuzun, E. Gelirli, E. Biyikli, and B. Baykal. Using continuous
integration and automated test techniques for a robust c4isr system. In 2009
24th International Symposium on Computer and Information Sciences, pages
743–748, Sept 2009.

[47] C. Ziftci and J. Reardon. Who broke the build? automatically identifying
changes that induce test failures in continuous integration at google scale. In

55



Bibliography

International Conference on Software Engineering (ICSE), Buenos Aires, Ar-
gentina, 2017.

56



A
Appendix 1

Interview Question Theme
1. What is your name, job title and role at [the case company]?
2. Which team are you in?
3. How long have you worked at [the case company]?
4. How long have you been working in the field of Software development?
5. How long have you used Continuous Integration?

Background

6. How often does your team integrate per day (per person)?
7. How often do you integrate per day?
8. How beneficial is CI for your team?
9. What CI activities in the current system do you dislike or think are a

waste of time?
10. What things are unclear to you about how the current CI system works?
11. What do you do if you have problems with CI?

[if needed: do you contact someone, etc.]
12. What do you think about the available information which explains the

CI system?

Human &
Organizational

13. How much time does the commit build take (i.e. the component build
and unit tests)?

14. How much time do you think the commit build should take?
15. How common are broken builds (i.e. the nightly ones)?
16. How long do builds usually stay broken?
17. How do you or your team deal with broken builds?
18. Who usually fixes the broken build?
19. How much impact does “fixing the build” have on the development flow?
20. Can you name the main reasons for the build breaking?
21. How common is work blockage?
22. What are the reasons for work blockage?
23. What are your thoughts on the time the overall integration process takes,

i.e. when changes are approved to the mainline?

Integration
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Interview Question Theme
24. What kind of testing does your team do?
25. What do you think about the quality of the current testing process?
26. What types of testing do you think are missing in the CI system?

(a) What about automated testing?
27. How do you think the current testing process can be improved?
28. What are your thoughts on the current execution time of the tests?
29. What do you do if you can’t test the code on hardware, when you are

supposed to?
30. We heard that some employees have ticked the “tested on hardware”

checkbox, without testing the code on hardware/target. Why do you
think people do that? How serious of a problem do you think it is?

Testing

35. How common are dependency conflicts/problems between components
when you build your code?

36. How well do you think CI works with component-based software devel-
opment?

System Design

35. What test automation framework is your team using (if any)?
(a) What do you like about that framework?
(b) What do you think is missing in it?

36. What do you think is important to have in an automation framework?
Resource

II



A. Appendix 1

Figure A.1: The Causality Viewpoints with their definitions and relevant
interview questions.
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Figure A.2: The Test Capabilities Viewpoint with its definition and relevant
interview questions.
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