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Abstract

In modern agriculture unnecessary large doses of herbicides are sprayed on arable
crops. Usually a uniform dosage that can handle the largest weed populations is chosen
for the entire field. If the dosage could be lowered in areas with small amounts of weeds
the same crops could be produced at a lower cost and with less impact on the environ-
ment. To be able to adapt the spraying the farmer needs to know the weed distribution
over the field. Also the quantity of crop plants in different areas of the field is relevant,
for example to study how many of the plants that survive the winter.

The focus of this master’s thesis is image analysis with morphological operations for
classification of weed and crop in digital photographs of pea and rape cultivations. The
number of plants, the number of weeds and the weed covered area are calculated in 51
images of pea crops and 80 images of rape crops. Digital maps of weed and crop distri-
butions can be created from this information for the purpose of precision agriculture.

For segmentation a method of removing grey background is developed. In the clas-
sification between crop and weed techniques such as Hough transform, top hat trans-
form, distance transform and colour separation using maximum likelihood ratios are
investigated and evaluated.

The results are promising, especially for the images of pea crops. Improvements
could be made in several steps of the algorithms and the programs have potential to
be useful in real systems. Under conditions with separated plants in the images and
adequate lighting, image analysis can be a powerful tool for agricultural applications.
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1 Introduction

1.1 Background

When farmers apply herbicides to their crops today they usually choose a uniform
dosage on the whole field that is adapted to kill the highest concentration of weeds.
But weeds are not evenly distributed over the field. Some parts can be almost free from
weeds while other parts are heavily weeded. Herbicides are also somewhat harmful for
the crops and limit their growth. Since herbicides can be quite expensive both economic
and environmental benefits could be made if the dosage was reduced on the areas with
lower weed populations. The same reasoning can be made regarding nutrition of the
crops, it would be better to only apply fertilizers where it is needed.

This is the aim of so called precision agriculture. By adapting the treatment of crops
and weeds to local conditions the same amount of crop could be achieved to a smaller
cost and with less impact on the environment.

The sprayers can be controlled by a digital map of the crop and weed distributions
to meet the needs of specific parts of the field. Several studies have been made on this
topic using machine vision to form such a map. One problem is that the imaging sys-
tem has to be designed specifically for different types of arable crops since their visual
appearance can be very different.

For crops that grow in uniform rows the detection of crop row positions can facilitate
the process. The crops are found in the rows and all plants outside the rows are most
likely weeds. Pérez et al. used this together with geometrical measurements such as
major axis length and area of crop/weed objects to find weeds in cereal fields [7]. Crop
row detection has among other techniques been performed with Hough transform and
double Hough transform [4].

When the rows are not distinguishable another option is to use morphological oper-
ations to enhance features that can be used to separate between crops and weeds. Soille
used this approach to extract the vein networks appearing in plant leaves to find the
plants [8]. Leaf shape examination has also been performed with other methods, for
example Neto et al. identified plants with elliptic Fourier analysis [6].

The question of how to apply herbicides based on the image information has been
treated in different ways. Tellaeche et al. divided a field into cells and determined which
cells to spray using probability and Bayesian decision theory [10]. Detection and spray-
ing in real time has been done by Dammer et al. using an optoelectronic weed sensor. In
their study herbicide savings of 24.6 % were achieved without reduction of yield [3].
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1.2 Objectives

The goal of this project is to find the information needed to create a distribution map of
crop and weed from a number of photographs of pea and rape fields using image anal-
ysis with morphological operations. For the images of rape crops the aim is primarily to
identify and count the crop plants. In the pea images the main priority is the detection
and area calculation of weeds.

2 Image Acquisition

The result of a project of this type relies heavily on the quality of the photo material that
is used as input. Ideally we want an image acquisition system that is robust in different
lighting and weather conditions. But it is also important to keep the photo acquisition
process uncomplicated since the system should be easy to use. By screening off the nat-
ural light and using spotlights instead identical lighting conditions could be achieved
in all photos but that would mean a lot more equipment had to be carried around on
the field.

All photographs used in this project were taken under natural lighting conditions
with a Nikon D70 digital camera. The photos are 24-bit RGB images, which mean
that they contain red, green and blue spectral information in separate layers. Each im-
age consists of 6.016 Mpixels and every pixel is associated with a 3-dimensional vector
(r,g,b) that contains the intensities of the colour bands. The intensity values range be-
tween 0 and 255 in a 24-bit image.

For the pea photos the camera was mounted on a 4W-motorcycle that was also
equipped with a GPS to keep a log of where each photo was taken. Those images were
taken in early May 2007 on a pea field in Skåne. Each image shows approximately 0.38
square meters of the field. The rape photos were taken with the camera mounted on a
tripod. This was done in the middle of October 2007 on four different fields near Skara.
The sites had been marked and positioned with GPS a couple of days earlier. On each
site two photos were taken of areas close to each other to be able to examine local cor-
relation in the crop and weed distributions. A wooden frame that shows one square
meter of the field was placed in all photographs of rape crops.

During all image acquisition the camera was pointing directly towards the ground
and kept at constant height above the field.
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3 Segmentation

The first step in the image treatment is to remove irrelevant information from the im-
ages, i.e. soil, stones, twigs and basically everything that is not plants (crop or weed).
The complete image I can be characterized into two subparts. I = P ∪Bg where

• P is plants (crop and weed).

• Bg is background (everything else).

Most methods to perform this separation are based on differences in the spectral bands
of P and Bg. One obvious difference is that plants contain higher intensities in the green
band which can be used to make the discrimination.

3.1 Colour Indices

By calculating an index for each pixel where P -pixels are in one end of the index spec-
trum and Bg-pixels are in the other the classification can be made with a simple thresh-
old operation. Such indices can be found from performing arithmetic operations with
the red, green and blue chromatic layers of the image. The excess green index (ExG)
defined by Woebbecke et al. [13] is widely used in agronomic applications like this one.
The definition is:

ExG = 2g − r − b

r =
R

R + G + B
, g =

G

R + G + B
, b =

B

R + G + B

Where R, G and B are RGB-values between 0 and 255 which is the intensity range of a
24-bit image. Values falling outside that range after the operation are set to be inside the
24-bit span. The result of this operation performed on each pixel is a greyscale image
where the plant pixels can be separated from the background with a threshold. (See
figure 1).

Another index also introduced by Woebbecke et al. [12] is the normalized difference
index (NDI) defined as:

NDI =
G−R

G + R

This produces values between -1 and 1 that can be scaled to the range of preferred im-
age format.
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A third index suggested by Marchant et al. [5] is:

F =
rm

gA
m

Where rm = R
B

, gm = G
B

and A is a constant calculated from characteristics of the camera.
The derivation of this index is based on the physical process of light falling on a surface
and being reflected. Starting from Planck’s formula for the spectral radiant exitance of
a blackbody radiator it can be shown that this index should be invariant to the temper-
ature of the blackbody. This means for example that shadows would not influence the
index as long as the reflected light comes from the same surface. The sun is not really a
blackbody radiator and the camera filters are not of infinitely narrow bandwidth which
is also assumed. But with the use of the CIE daylight model and an assumption of finite
bandwidth of the camera the index still holds with only a slight change to the exponent
A according to Marchant et al.

All three of these indices lead to grey level images with bimodal histograms from
which thresholds can be selected to give the classification between P and Bg. One dif-
ference from the two earlier mentioned indices is that the plant pixels end up with a
lower F -index than the background pixels. For the ExG and NDI indices the plant
pixels appear brighter than the background.

Figure 1: Example of grey level images produced by different segmentation indices and corre-
sponding histograms. In the calculation of F the parameter A was set to 1.6.
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3.2 Grey Removal

For the images of pea crops none of the mentioned methods give a perfect classification.
Some plant pixels get classified as background or the other way around depending on
where the threshold is placed. An example of this can be seen in figure 2 where the
Excess Green index and a threshold operation have been applied to an image of a single
pea plant. The threshold was selected with Otsu’s method which chooses the threshold
to minimize the variance between the two classes.

Figure 2: a) Original image b) Classified as P using ExG c) The complement to image b, i.e. the
pixels classified as Bg. As can be seen this choice of threshold results in plant pixels
ending up in Bg.

To find some characteristics of the pixels that are wrongly classified by the ExG some
misclassified plant pixels and some correctly classified background pixels were chosen
manually from the image in figure 2c and plotted in red-green-blue space.

Figure 3: left) 3D scatter plot of some pixels chosen from figure 2c. Black crosses represent
Bg-pixels and turquoise rings represent plant pixels wrongly classified as Bg. right)
Red-green projection of the same pixels. The line shows equal intensity in the red,
green and blue bands, i.e. greyscale pixels.
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As can be seen in figure 3 the background pixels are lined up closely around the line
where red=green=blue, in other words they are rather grey. The misclassified (and also
the correctly classified) plant pixels are further away from the line of equal intensities.
Based on this observation a new method of classification was set up. For all pixels in
the original image the absolute values of green minus red and green minus blue was
calculated. These give measurements of the pixels distance to the greyscale line. If both
of these distance values are greater than x the pixel is classified as P , if none or only
one are greater than x the pixel is classified as Bg. The number x is equivalent to the
threshold in the above mentioned index methods and has to be chosen based on the
available image material. For the pea images used in this study x = 7 has proven to
give a very good result. This method of removing pixels of high ”greyness” can be seen
as calculating two separate indices and then requiring that a pixel is on the correct side
of the threshold in both cases to be classified as P .

P ∈ {|G−R| > x & |G−B| > x}

The method is closely related to the Excess Green index since (G − R) + (G − B) =
2G−R−B but the ”&”-operation in the threshold requirement leads to an improvement,
at least with the image material used in this study.

A few background pixels slip through this classification and end up in P as ”grey
noise” But as long as the pictures are of high resolution at least the misclassified pixels
not in connection with a plant object can be easily removed based on area in the image.
The smallest objects of interest (small weed patches) in the used image material have
an area of at least 80 pixels. By removing all objects of area less than 35 most of the
noise was eliminated. One problem with this removal process is that if a thin part of
the plant ”breaks” during the segmentation so that one plant becomes two objects in
the segmented image the small part may be removed. But 35-pixel blocks of plants
disappearing have only a very small influence on the 6 Mpixel image. An example of
the performance of the Grey Removal method can be seen in figure 4 using the same
image as in figure 2.

Figure 4: a) Original image b) Classified as P using Grey Removal c) Classified as Bg using Grey
Removal.

The same method was used to remove the background in the images of rape crops,
for those images the threshold x was set to 4.
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From the segmentation two new images are produced. One binary image with the
background set to zero (black) and only ones (white) in the plant objects. In the second
image the background is also black but all the original colour information is kept in the
plants.

4 Features

With the background removed the next step is to separate the crop from the weeds. I.e.
to make a classification into crop C or weeds W where P = C ∪W .

In other studies the crop rows has simplified this problem. If the crop rows can be
located anything outside the rows can be classified as weeds. The pea and rape plants
are also sown in straight lines but when they grow the row pattern is not so easily dis-
tinguishable. Fragments of rows can be seen but some of the seeds never produce a
plant and the plants that actually are in the images stretch out in all directions and often
cover a large part of the distance between the seed rows.

Since the plants are not distributed in a simply recognizable pattern the best ap-
proach is to analyse the objects in the images one by one. In this approach some of
the concepts from pattern recognition are used. Decision theory for the classification is
not implemented in this project however, but the idea of extracting features specific to
a certain class is adopted. To make the classification one or several detectors that can
analyse an unknown object in the image and determine if it is crop or weed is necessary.
The detectors use differences in objects of the two classes to make the distinction. To
design the detectors a list of features that distinguish the crop plants from the weeds
was compiled.

4.1 Pea Plants

• Area The weeds are usually a lot smaller than the crop. A simple area detector can
be set up by measuring an average area of pea plants and then classify all objects
significantly smaller than this value to the weed class. Weeds that are in contact
with crop in the image and thus ending up in a larger object is not at all found by
this detector though.

• Tendrils A pea plant in this growth stage typically has developed two or three
tendrils protruding from the plant centre. The thin tendrils resemble antennas
as they spread out in different directions. Their shape is characteristic of the pea
plants and is not found in any of the weeds.

• Contour The shape of the tendrils makes the contour of the pea plant quite differ-
ent from weed contours. To use this feature the contour could be vectorised and
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approximated with some orthogonal polynomial. Perhaps a detector could mea-
sure how the coefficients of such a polynomial correlates with coefficients from
known objects. The detector would then first have to be ”trained” with contours
of known pea and weed objects. This approach has been used in letter recognition
[11].

• Leaves The leaves in the centre of the pea plant can be recognised using shape or
colour criteria.

• Extent Extent in this case means the longest straight line that can fit inside an
object. This should be larger in the pea plants than in the weeds.

• Perimeter The distance around an object is larger for the pea plants, this feature
could be used in the same way as the area feature.

• Colour variance The pea objects seem to contain a larger colour span than the
weed objects. If the colour variance in an object is found to be small it would
suggest that it is weed.

4.2 Rape Plants

• Area, Extent, Perimeter Also in the images of rape crops the weeds are in general
smaller than the crop plants. As long as the weeds are not in connection with
plants in the images they can be detected using a size threshold in the same way
as for the images of pea crops.

• Leaf veins The leaves of the rape plants have bright vein networks that do not
appear in the weeds. The vein structure is of the pinnate type which means that
a large vein runs through the centre of each leaf and from the central vein other
veins branch out in a feather like pattern.

5 Methods

In this section some image analysis methods that are later used in the detectors are
introduced.

5.1 Colour Separation Using a Maximum Likelihood Ratio Test

If we want to detect the tendrils (and thus the plant) a good first step would be to
remove leaves from the object. The tendrils appear slightly brighter than the leaves
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in the images so one approach is to use the colour difference. I.e. to find a plane in
RGB-space that separates leaves and tendrils. To study the colours some images were
constructed manually in an image editor to contain only leaf pixels and other images
were made to contain only tendril pixels. Separate images makes it easy to get the
pixels in separate vectors and plot them in RGB-space to see the difference between the
two groups without risking misclassification in the plot. An example of this manual
separation is shown in figure 5 and the pixels plotted in RGB-space are displayed in
figure 6.

Figure 5: a) Original image of a pea plant. b) Tendril pixels extracted manually. c) Leaf pixels
extracted manually.

Figure 6: The green rings represent pixels originating from tendrils while the red crosses repre-
sent leaf pixels.
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As can be seen from figure 6 the two groups are not entirely separated from each
other and some pixel values are identical which makes a perfect distinction using only
single pixel manipulations impossible. But perhaps could a majority of the groups still
be separated by a plane.

If we assume that the two groups are normally distributed this separating plane can
be found using a Maximum Likelihood ratio test on the two distributions. A normal
(or Gaussian) distribution is described fully by the expectation value and the variance.
Since the values in this case are 3-dimensional vectors (RGB) we use an expectation
vector and a covariance matrix instead. Using N pixels with RGB-values in row-vectors
x these can be estimated as:

Expectation vector µ = 1
N

N∑
k=1

xk

Covariance Matrix Ω = 1
N

N∑
k=1

(xk − µ)T (xk − µ)

Doing this for the tendril pixels xT and the leaf pixels xL separately we obtain two
normal distributions where xT ∼ Norm(µT , ΩT ) and xL ∼ Norm(µL, ΩL). Now the
likelihood density functions can be calculated:

f(x|T ) =
1

(2π)
2
3 |ΩT |

1
2

e−
1
2
(x−µT )Ω−1

T (x−µT )T

and correspondingly for f(x|L).
For an unknown pixel x a likelihood ratio can be calculated to find if the pixel is

most likely in a leaf or in a tendril.

f(x|T )

f(x|L)
=
|ΩL|

1
2

|ΩT |
1
2

e−
1
2
(x−µT )Ω−1

T (x−µT )T + 1
2
(x−µL)Ω−1

L (x−µL)T

= γ

If γ is greater than some value the pixel x is likely to be in a tendril, if γ is smaller than
the same value our guess is that the pixel is in a leaf. This expression can be simplified
further by applying the natural logarithm on both sides of the equation.

1

2
ln
|ΩL|
|ΩT |

− 1

2
(x− µT )Ω−1

T (x− µT )T +
1

2
(x− µL)Ω−1

L (x− µL)T = ln γ

(x− µL)Ω−1
L (x− µL)T − (x− µT )Ω−1

T (x− µT )T = α

Where α is a new constant (α = 2 ln γ − ln |ΩL|
|ΩT |

). Using expectation vectors and covari-
ance matrices calculated from the pixels in figure 6 a good value for the constant α can
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Figure 7: Example of tendrils separated from leaves through maximum likelihood ratio test.

be found through trial and error. The left hand side of the equation is calculated for
all pixels x in an object. If the obtained value is greater than α the pixel is classified as
tendril, if it is smaller than α it is most likely in a leaf or weed and removed from the
image. A difficulty with this method is that the optimal α will vary for different objects
depending on lighting conditions in the image etc. And as mentioned before a perfect
separation is impossible using only single pixel colour criteria since the pixel groups in
figure 6 are intertwined. As can be seen from the example in figure 7 the tendrils are
extracted quite well but some bright pixels from leaves and weeds are still present.

5.2 Hough Transform

A Hough transform can be applied to find lines or any other shape that can be for-
mulated in a parameterisation in an image [9]. The idea here was to use it to find the
straight lines in tendrils.

Each pixel in an image has x and y coordinates in a Cartesian coordinate system (the
row and column position of the pixel). All points connected by a straight line in the
image have coordinates (x, y) that satisfy the equation of a straight line y = kx + m. I.e.
all points in the line have the same values in the parameters k and m. In a parameter
space (k, m) every possible straight line in image space is uniquely defined by a point.
A Hough transform involves conversion into such a parameter space but since a vertical
line in the image would lead to k → ∞ the mentioned parameterisation is not suitable.
Instead ρ = x cos θ + y sin θ is used to describe straight lines and every possible line is
represented by a unique point (ρ, θ) in parameter space. An example of this is shown in
figure 8, ρ is the distance from the origin to the line along a vector that is perpendicular
to the line and θ is the angle between the x-axis and this vector.
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Figure 8: A line in image space (left) and in parameter space (right).

The Hough transform needs an image with uniform background to work. This is to
make the distinction between background and foreground easy. A binary image is ideal
for this purpose. For every pixel that is not in the background a line test is performed
in all possible directions to see if the pixel is in a straight line with another foreground
pixel. The parameters (ρ, θ) that correspond to a line connecting with another pixel are
saved in an accumulator matrix H . The parameters of the lines that actually appear in
the image will show up frequently in H when more pixels are tested since many pixels
connect to each other with those same parameters. Parameters that connect only a few
pixels will only very seldom be added to H . So when all pixels are tested the lines in
the image can be found as the largest accumulated values in H .

Figure 9: Binary image of pea plants where leaf pixels have been removed using a maximum
likelihood ratio test. The red lines show the result of a Hough transform.
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Figure 10: The same line markings as in figure 9 shown on the original pea object.

The Hough transform does find lines in pea tendrils but also inside the plant leaves.
In figure 9 the transform has been performed after removing leaf pixels with another
method. Still some tendrils are not found while a line in a leaf is found as can be seen
in figure 10. In this case the tendrils were localised better by the maximum likelihood
ratio test alone. Another idea was to use the Hough transform to count the number of
tendrils in the image but since multiple lines often are found in the same tendril that
did not work very well either. In the end, Hough transform was not used in any of the
detectors.

5.3 Distance Transform

Another technique that utilises the thinness in the tendrils compared to the leaves is dis-
tance transform combined with skeletonisation. The distance transform is performed on
a binary image; every white pixel is assigned with the value of the distance to the clos-
est border. Distance in this case has been chosen as the number of steps through neigh-
bouring pixels to reach the border. Figure 11 shows an example of distance transform
applied on an object using 8-connectivity (both edges and corners count as neighbours
which means every pixel has eight neighbours). An example of this method applied to
an image of a pea plant can be seen in figure 12c.
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Figure 11: A white object with its distance transform values, all squares represent pixels.

Figure 12: a) Original pea object. b) Binary pea object. c) Distance values shown as intensity. d)
The skeleton formed from b). e) Skeleton combined with distance transform after a
threshold operation. f) Tendril skeletons obtained after removing the small rests of
leaf edges.
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The skeleton of an image object is a thinned (one or a few pixels thick) version of
its shape that can give a representation of its part structure. One early definition of a
skeleton says that it is the medial axis formed by centre points of the largest possible
circles inscribed in the object [1]. But skeletons can be constructed in several ways. For
instance it can be seen as the local maxima in the distance transformed image. In Matlab
(and this project) it is formed by successively removing border pixels without allowing
the skeleton to break apart. An example of skeletonisation is shown in figure 12d.

The distance transformed object and the skeleton can be combined to form a skeleton
with distance values in all points. By removing large values from this distance skeleton
with a threshold the bulky parts of the object disappear, see figure 12e. For the pea
objects this can be done to remove the leaves and only keep the skeleton of the tendrils.
Some skeleton parts from the edges of leaves remain but can easily be removed with a
size threshold as has been done in figure 12f.

5.4 Morphological Operations

The mathematics behind morphological operations on an image is based on the algebra
of non-linear operators operating on object shape [9]. In practice they are performed
with a structuring element (small matrix) that is moved across every pixel in the image.
An output image is produced with pixel values that depend on the structuring element,
the neighbourhood in the original image that is covered by the structuring element and
the type of operation. Several morphological operations have been used in this project
on binary images. A binary image can be described as a two-dimensional set of points
(pixels) that are either ”on” or ”off”, (1 or 0). In the following definitions for binary
images I is all the pixels in the output image, X is the set of pixels in the input image
with value 1 and B is the structuring element.

5.4.1 Dilation and Erosion

Dilation can be defined as:

X ⊕B = {p ∈ I : p = x + b, x ∈ X, b ∈ B}

Where p is the set of pixels in the output image that will have value 1 after the operation.
Objects in the image get thicker in the directions where the structuring element consists
of ones since pixels neighbouring the object will be set to 1 by this operation, see figure
13b.

Erosion can be defined as:

X 	B = {p ∈ I : p + b ∈ X, b ∈ B}
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The erosion operation X 	 B will set the pixels p in the output image to 1. The out-
put image will consist only of the pixels at positions where the structuring element fits
inside the objects in the original image so this operation makes the objects thinner, see
figure 13c.

Figure 13: Example of morphological dilation and erosion operations performed with a struc-
turing element of size 3x3 with value 1 in all positions. a) Original image. b) Dilation
of image a. c) Erosion of image a.

5.4.2 Opening and Closing

Erosion may seem like the inverse of dilation but in fact it is not, if an image is eroded
and then dilated with the same structuring element the result will not be identical to the
original image. Erosion followed by dilation is an opening operation:

X ◦B = (X 	B)⊕B

This will remove thin parts of the object and can be used to separate an object into
several smaller ones, see figure 14b.

Dilation followed by erosion is a closing operation:

X •B = (X ⊕B)	B

This operation will close holes and gaps in image objects but keep the exterior object
borders intact. It can be used to merge objects in the image that are close to each other,
see figure 14c.

Figure 14: Example of morphological open and close operations performed with a structuring
element of size 3x3 with value 1 in all positions. a) Original image. b) Opening of
image a. c) Closing of image a.
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5.4.3 Top Hat Transformation

A top hat transformation T is defined as the arithmetic difference between the original
image and an opened version of the image.

TB(X) = X \ (X ◦B)

This will remove parts of the objects that have the same size or are larger than the struc-
turing element. On an image of a hat only the top of the hat would be extracted provided
that the structuring element fits in the brim of the hat but not in the top, see figure 15c.

Figure 15: Example of top hat transformation performed with a structuring element of size 3x3
with value 1 in all positions. a) Original image. b) Opening of image a. c) Top hat
transformation of image a.

5.4.4 Greyscale Operations

The extension from binary images to greyscale images for morphological operations is
more complex [2]. For dilation the structuring element is summed to the original image
in the neighbourhood of its current position and the obtained maximum value from that
neighbourhood is assigned to the output pixel. For the output pixel with coordinates
(u, v) the dilation with a structuring element B covering the pixels in the set [r, s] can be
defined as:

(X ⊕B)(u, v) = max
(r,s)∈B

{A(u− r, v − s) + B(r, s)}

where A is the set of all pixels in the original image.

Erosion is performed in a similar way, the structuring element is subtracted from the
positions in the original image and the minimum value of the current neighbourhood
is assigned to the output pixel. With the same notation as above erosion can be defined
as:

(X 	B)(u, v) = min
(r,s)∈B

{A(u + r, v + s)−B(r, s)}

Other morphological operations follow using the same definitions as for binary images
but based on the modified dilation and erosion operators.
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When used on greyscale images the top hat transformation will extract small fea-
tures in the image that differ in brightness compared to the rest of the image. In the
opening step all structures that can not contain the structuring element are removed.
By subtracting the opened image from the original a darker image is obtained where
the thin bright structures stand out. An example of this applied to an image of a rape
plant can be seen in figure 16c. Through thresholding (with Otsu’s method for example)
we get a binary image of these features, see figure 16d.

Figure 16: a) Original image of a rape plant. b) Red channel (after background removal). c) Top
hat transformation performed on image b (shown here with adjusted intensity). d)
Binary image obtained from thresholding image c showing leaf veins and other thin
bright structures.
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6 Summarising the Algorithms

Two image analysis algorithms for pea crops and one for rape crops were developed. In
this section the programs that were used to produce the results in section 7 are presented
along with the ideas behind them.

6.1 Pea Crops

As already mentioned the algorithm splits up in two separate tracks that will be
described below. The two tracks differ mostly in the treatment of tendrils on the pea
plants but the first step after segmentation is identical for both methods.

Measurement Box: Objects (pea or weed) that are cut off by one of the image borders
have unpredictable properties, their size and shape is not comparable to other objects.
So the first step after segmentation is to remove all objects that touch one of the borders.
To keep the same statistics of plants per area unit as in the original image the measure-
ments are performed only on objects inside a smaller box in the upper left corner of the
image. The idea is to remove objects that are touching the original image borders and
keep all objects that touch the other two edges even if they are partly outside of the box.
Such objects are to compensate for the removed ones. The box size is determined by
the extent Dmax of the largest object in the image. If the original image has width w and
height h the box size is set to (w − Dmax) · (h − Dmax). This should make it impossible
for an object to be inside the box and still touch one of the original image borders. An
example is shown in figure 17 where all objects that are completely outside the box or
touching one of the image borders have been removed.
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Figure 17: The red lines show the borders of the measurement box whose size is determined by
the extent of the largest object.

This method works well as long as the objects in the image are relatively small. In
other images pea plants grow so closely together that they form one very large object
that causes Dmax to be huge. In some cases this leads to a measurement box that is so
small that no pea objects fit inside, therefore the maximum size of Dmax has been set to
one third of the image height.

6.1.1 Algorithm Track 1

The idea here is to first detect all weeds that are not in connection with a pea plant in
the image and then treat the pea plants with possible attached weeds in the last step.

Area detector: The first detector measures the area of all remaining objects in the
binary version of the image and classifies all beneath a certain limit as weeds. Objects
above the limit are not classified or handled at all in this step. Weed and pea plant sizes
vary in the images so no absolute limit exists that can handle all images without mis-
classification but the limit has been set to never misclassify a pea plant as weed. The
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size of the objects has been found to correlate somewhat to the number of objects in
the image. Many objects in the image indicate that the growth has been better in this
region and both weeds and pea plants are bigger. Of the tested area limits the one that
has produced the best result was a linear function of the number of objects that sets the
limit value between 3500 and 9125 pixels.

But the box size complicates the relation between size and number of objects. If Dmax

is very small this indicates that the growth in the region has not reached very far and
the area limit should be low, but a small Dmax also leads to a large box which means the
number of objects will be high. For this reason an extra condition has been applied to
the limit that sets it to 4000 pixels if the number of objects is above 110. A few weed
objects still fall outside these conditions but a large majority is detected.

A morphological close-operation is then performed on all detected weed objects.
This is done since their stems often disappear in the segmentation which leaves the
weed object with a hole in the centre. The quantity of detected weed objects and their
total area is then calculated and saved.

Mean Area Detector: As mentioned some free weed objects still remain in some
images. These are quite large since they passed the first area limit detector. But the
surrounding pea plants are even larger; if the weeds have grown big the peas will have
done the same. This second detector measures the area of all remaining objects and
calculates the mean value from these measurements. If the area of one object is smaller
than 10 % of the mean value it will be classified as weed. In the available image material
this detector has found additional weeds without making misclassifications.

Tendril Weed Detector: A lot of the remaining undetected weed is situated near
the pea tendrils. This detector was therefore constructed to locate the tendrils and find
weeds in connection with them. It requires both a binary image and a colour image of
pea objects with connecting weeds since it uses both shape and colour criteria.

The first step is to find the tendril skeletons using the method of distance transform
and skeletonisation described in section 5.3. Then a dilation operation is performed
around the skeleton to make it 5 pixels thicker. This thickened version of the skeleton
is used as a mask that touches the majority of the tendrils and weeds nearby. When
subtracting the mask from the original binary object the remaining parts will be the big
leaf centre on the pea plant and small weed and tendril parts that has been cut off by the
mask. An area measurement is then performed and the small parts are kept and added
to the mask while the largest (the leaves) are deleted.

A low estimation of the number of pea plants is also found in this process. Since
every pea plant has this large leaf centre the number of thrown away large objects is
saved as the number of pea plants. This estimation will be lower than the real quantity
because overlapping plants will not be counted correctly.

The tendril mask with the added small parts should now contain only tendrils and
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possibly weeds as in the example in figure 18b. To separate weeds from tendrils a max-
imum likelihood ratio test based on colour is performed (see section 5.1). Apart from
a binary mask of weeds figure 18c shows that small tendril parts end up on the wrong
side in the separation. After removing those with a size threshold we are left with only
weeds. Their area and total quantity is calculated and saved.

Figure 18: a) Original object containing two pea plants and some weeds. b) Tendrils and weed
remaining after removal of the leaf centre using dilated tendril skeletons. c) Binary
image of the weeds and tendril rests after ML ratio colour test. d) After removing
small objects (tendril rests) image c can be used as a mask to mark the weeds.

6.1.2 Algorithm Track 2

The second approach is to first remove tendrils from the image which will cut free more
weeds to become separate objects that can be found based on size.

Tendril Removal: Since tendrils are thin and brighter than surrounding leaves and
weeds they can be found using the top hat transformation described in section 5.4.3.
To do this the red channel is used as greyscale image and a square structuring element
of size 10x10 is used in the top hat. There is a significant intensity difference between
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tendrils and leaves in all colour channels but the red channel was chosen since the dif-
ference between leaves and weeds seems to be smaller there. After setting a threshold
using Otsu’s method a binary image of tendrils and small artifacts from leaves and
weeds is obtained. To remove these artifacts the fact that tendrils are quite long com-
pared to the leaf rests is used. The major axis length is measured on all objects, that
is the length in pixels of the major axis of an ellipse approximated around each object.
This gives a measurement of the extent of the objects. A length threshold then sorts
tendrils from the leaf rests, if the major axis length of an object is shorter than 25% of
the maximum major axis length found in the image that object will be deleted. Finally
a morphological close operation is performed to tie broken tendril parts back together.
The result is an image of (almost) only the tendrils. This is then subtracted from the
original image to leave only leaf centres of the plants and weeds.

Area Detector: This detector separates pea and weed objects based on their area but
a slightly different way to set the area threshold was chosen since the removal of tendrils
from the pea plants makes the plants smaller and thus the difference in size from weeds
smaller. The area of all objects is measured and then objects with area smaller than
15% of the largest object in the image are classified as weed. The weed objects are also
required to be larger than 80 pixels to avoid counting noise from the segmentation as
weeds. Just as in the area detector of the first algorithm a close operation is performed
on the detected weed objects before the final quantity and area is calculated.

The number of pea plants is calculated as the number of objects larger than or equal
to 15% of the area of the largest one.

6.2 Rape Crops
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The problem with plants that are cut off by one of the image borders has not been
handled at all for the rape images. Often the plants grow so closely together that almost
everything would be removed if a measurement box was implemented in the same way
as for the pea images. A wooden frame of size 1 m2 shows which area to analyze in each
photo. To remove the frame a rectangular cropping was performed manually on every
image. But depending on the orientation of the frame in the image some parts of the
measurement areas were lost in the cropping.

As mentioned in the introduction the main focus for the images of rape crops is to
find and count the number of plants. Inspired by an article by Soille [8] the idea of lo-
calising plant centres from information in the leaf veins is used. The amount of leaves
on the rape plants vary but the central vein of each leaf always grow out from the plant
centre and the branch pattern of other veins in a way look like arrows pointing towards
the centre of the plant (see figure 16). But the first step after segmentation is still to de-
tect small weeds not in connection with the plants.

Area Detector: This detector simply classifies all objects with 5000 pixels or less as
weeds. The threshold is set quite low but still some leaves of rape plants that get cut
off in segmentation are misclassified as weeds. After this step weeds are not handled
anymore by this program.

Detection of Leaf Veins: The top hat transform with a 3x3 square structuring ele-
ment is used to extract the thin leaf veins from the image. Again the red channel was
chosen as intensity image to perform the top hat on. The transform also results in a lot
of unwanted structures especially from the edges of the plant leaves (see figure 16d). To
remove this, a mask of the edges is created using distance transform with a threshold to
keep only the six outermost pixels of the leaves. That mask is then subtracted from the
top hat transformed image, which removes a large portion of the artifacts. But still quite
a lot of structures besides the leaf veins remain in the image as shown in 19b. Another
problem that causes errors in later steps of the algorithm is that the leaf veins are not
always intact after the top hat transform. In general the leaf veins are longer objects
than any of the artifacts so after thresholding to get a binary image, a measurement of
major axis length is done on all remaining objects in the transformed image. Anything
shorter than 25 % of the longest structure is removed.

Now the image should contain only leaf veins and a closing operation is performed
to put broken parts back together. It can be seen in figure 19c that the closing operation
is not always enough, a side branch in the pattern from the upper right leaf is not in
connection with the central vein.

The final step is to thin the leaf veins down to a thickness of one pixel using skeleton-
isation as has been done in figure 19d. The image of leaf vein skeletons is then passed
on to the next part of the program.
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Figure 19: a) Original image of a rape plant and some weeds. b) Binary image of the top hat
transform performed on the red channel of image a (Leaf edges removed). c) Leaf
veins extracted from image b based on major axis length. d) Leaf vein skeletons.

Endpoints, Intersections and Vectorisation: Every skeleton is now treated sepa-
rately and the number of skeletons is saved as an estimation of the number of leaves in
the image. To find out how the leaf is orientated and in which direction the plant cen-
tre is situated information from endpoints and intersections in the leaf vein skeletons
is needed. A program written by a previous diploma worker at SIK, Rasmus Nisslert,
removes small artifacts on the skeletons (any branch shorter than 6 pixels is deleted)
and returns coordinates for all endpoints and intersections on the skeletons.

The next step is to localise the direction of the central vein. The distances between
all endpoints in the skeleton are measured and the central vein is simply assumed to
be between the two points furthest apart. An example can be seen in figure 20. This
method of finding the central vein causes errors sometimes when the leaves are wide or
the central vein breaks up in the top hat transform and gets shortened but in most cases
it works like it is supposed to. If only two endpoints are found on a skeleton they are
assumed to be on the central vein. The plant centre should then be somewhere along
that line but the specific direction is impossible to know without side branches.
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Figure 20: a) The skeletons from figure 19d. Endpoints are marked with red rings, intersections
with green rings and central veins with blue lines. In the upper right leaf an error is
visible where a side branch has been cut off and is treated as a leaf of its own. b) The
markings displayed in the original image.

To find out which of the two points on the central vein that is closest to the plant
centre the additional endpoints and intersections are used. First the projections of all
remaining endpoints and intersections onto the line of the central vein are calculated.
For every side branch the intersection point should now be closer to the plant centre
than the projected endpoint of that branch. Therefore the endpoint on the central vein
that is closer to the mean value of the intersections than the mean value of the projected
endpoints is chosen as the one closest to the plant centre.

Some markers are now saved in a separate image like the one in figure 21b where
the plant centre search will be performed in the last part of the program. For a skeleton
with side branches a 100 pixels long (distance can be chosen) line is drawn from the
endpoint closest to the plant centre in the direction of the central vein. This line is given
intensity 3. For skeletons without side branches lines of the same length are drawn in
both directions. They are given intensity 2 since the probability of those lines going
through the plant centre is smaller.

Figure 21: a) Same as figure 20b but with direction markers. Purple lines are from leaves without
side branches and turquoise lines are from leaves where the specific direction was
detected. b) The marker image with weighted intensities that is sent on to the final
part of the program.
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Plant Centre Detector:A line in the marker image indicate probability of a plant cen-
tre being somewhere along that line. Now a summation is performed where each pixel
is assigned the sum of all pixels in a certain neighbourhood. The pixel value will then
be high where many marker lines intersect or are close to each other. In this way every
pixel is treated as a possible plant centre and the value of the pixel after summation will
correspond to the probability of an actual plant centre in that position.

The summation is performed in larger and larger neighbourhoods. The first neigh-
bourhood is a 3x3 square, so the pixel will be assigned the sum of its own value and the
values of its eight closest neighbours. After the summation all plant centre candidates
(values above a certain limit) are saved in a vector and sorted in descending order. A
marker is put on the maximum value to indicate a plant centre at that position. Then
all lines and plant centre candidate points within a 100 pixel radius around that point
are removed. Another centre marker is placed at the remaining highest value candidate
and this process is iterated until the candidate vector is empty.

Now the most probable plant centres should be detected and saved and the corre-
sponding lines of those centres are removed. A new summation is then performed in
a larger neighbourhood and the process is repeated. The program goes through five
neighbourhood sizes in the same manner. They are all squares and their side lengths
are 3, 5, 8, 20 and 30 pixels.

The limit for letting a position into the centre candidate vector is the same indepen-
dent of summation neighbourhood size. The minimum requirement is one line with
weight 3 (turquoise in figure 21a) and one line with weight 2 (purple in figure 21a) go-
ing through the neighbourhood square. Two purple lines are therefore not enough but
all other combinations of lines will result in a plant centre candidate. In fixed numbers
the value of a pixel must be larger than 12, 20, 32, 80 and 120 for the respective square
sizes.

Finally the number of plants, the number of weeds and some other parameters are
saved to a file. Two result images are also saved, one showing the line markers, the
detected central leaf veins and the detected plant centre positions. The other one shows
only plant centre markings.

7 Results

Here quantitative results produced by the programs from the available image material
described in section 2 are presented in tables and graphs. Examples of result images can
also be found in this section.
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7.1 Pea Program Track 1

Using the program described in section 6.1.1 (the first track of the algorithm) the number
of peas, the number of weeds and the total weed covered area were calculated in 51
images. For each image this data was saved to a file and a new image was produced
that shows what was actually detected. In these result images the weeds found by the
area detector are coloured blue and the weeds found by the mean area detector and the
tendril weed detector are coloured red.

Figure 22: Examples of result images. Weeds classified by the area detector are blue and weeds
classified by the mean area detector and the tendril weed detector are red.

Figure 22 shows the result from four images with different densities of weeds and
pea plants. As can be seen most of the weeds are found by the area detector. The two
large completely red weeds in image d are examples of objects that were missed by the
area detector but found by the mean area detector. The rest of the red coloured regions
have been classified by the tendril weed detector. Some of those red markings are mis-
classifications.
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Resulting data are presented in the following tables. Areafraction weed is the de-
tected weed area in per cent of the area of the measurement box. The boxfraction is the
measurement box area divided by the original image area. When Dmax reaches it maxi-
mum of one third of the image height the boxfraction is at its minimum (0.5187). Since
the original images show approximately 0.375 m2 of the field the last two columns were
calculated as quantity / (boxfraction · 0.375).

Image Number NoP Number NoW Area- Box- NoP NoW
of Peas (man. of Weeds (man. fraction fraction /m2 /m2

(NoP) count) (NoW) count) weed(%)
1 18 131 1.1255 0.6489 74.0 538.3
2 9 83 0.7596 0.5304 45.2 417.3
3 16 137 0.895 0.7254 58.8 503.6
4 18 124 0.694 0.719 66.8 459.9
5 19 97 0.626 0.6825 74.2 379.0
6 16 93 0.7036 0.6434 66.3 385.5
7 16 88 0.5433 0.7098 60.1 330.6
8 7 42 1.0115 0.5187 36.0 215.9
9 11 16 42 25 0.5099 0.5541 52.9 202.1

10 15 41 0.3127 0.5769 69.3 189.5
11 11 55 1.0111 0.5224 56.2 280.8
12 15 40 0.409 0.6516 61.4 163.7
13 20 46 0.7233 0.5187 102.8 236.5
14 22 46 0.3379 0.7077 82.9 173.3
15 12 30 0.3285 0.5503 58.2 145.4
16 16 23 12 6 0.1314 0.5553 76.8 57.6
17 18 21 48 28 0.335 0.6625 72.5 193.2
18 7 8 33 13 0.311 0.5187 36.0 169.7
19 15 74 1.2674 0.5497 72.8 359.0
20 24 28 61 10 0.4482 0.7297 87.7 222.9
21 9 27 0.1665 0.6287 38.2 114.5
22 16 37 0.3792 0.6448 66.2 153.0
23 14 34 0.3359 0.5224 71.5 173.6
24 16 21 118 67 1.052 0.5187 82.3 606.6
25 9 72 0.6783 0.5187 46.3 370.2
26 10 16 80 63 1.8801 0.5187 51.4 411.3
27 14 52 0.9783 0.5422 68.9 255.7
28 15 24 77 47 0.8825 0.6121 65.3 335.5
29 9 12 51 37 0.5987 0.5737 41.8 237.1
30 10 12 43 26 0.4023 0.6088 43.8 188.3

Table 1: Results from the first algorithm for pea crops
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Image Number NoP Number NoW Area- Box- NoP NoW
of Peas (man. of Weeds (man. fraction fraction /m2 /m2

(NoP) count) (NoW) count) weed(%)
31 10 13 37 29 0.421 0.5515 48.4 178.9
32 9 37 0.5732 0.5187 46.3 190.2
33 9 63 0.509 0.6307 38.1 266.4
34 10 18 61 40 0.8465 0.6016 44.3 270.4
35 10 15 45 18 0.5212 0.5242 50.9 228.9
36 5 8 38 21 0.4244 0.5187 25.7 195.4
37 15 17 40 20 0.3853 0.5187 77.1 205.6
38 6 8 93 70 1.7857 0.5187 30.8 478.1
39 17 139 1.9474 0.5187 87.4 714.6
40 14 154 2.2164 0.5187 72.0 791.7
41 9 127 2.3387 0.5187 46.3 652.9
42 3 119 2.6827 0.5187 15.4 611.8
43 9 12 130 75 2.6022 0.5187 46.3 668.3
44 13 17 113 77 2.5777 0.5187 66.8 580.9
45 8 14 116 86 2.7904 0.5187 41.1 596.4
46 11 163 3.3093 0.5187 56.6 838.0
47 10 14 94 50 1.9553 0.5187 51.4 483.3
48 16 123 2.2813 0.5187 82.3 632.4
49 13 185 4.5436 0.5187 66.8 951.1
50 11 161 3.102 0.5187 56.6 827.7
51 12 202 4.0541 0.5187 61.7 1038.5

Table 2: Results from the first algorithm for pea crops

As can be seen in tables 1 and 2 the number of weeds per square meter in the images
ranges between 58 and 1039 so there is a real variation in weed density but in many of
the images with high image numbers the Boxfraction has reached its minimum value.
This indicates that the method of removing objects with a measurement box is not fully
applicable for those images and the statistics of plants/weeds per area unit and also the
areafraction weed are unsure there.

To get some indication of the accuracy of the calculations the numbers of pea plants
and weeds were counted manually in 20 randomly chosen images (in the same mea-
surement boxes that the program uses). Results from this manual counting is displayed
in tables 1 and 2 in the third and fifth columns. The counted result should not be seen
as completely correct either since it in some cases can be hard to tell if small objects are
a single weed or parts of a bigger weed. Pea plants growing closely together can also
cause uncertainty in the counting. But the counted results should be fairly accurate and
can at least give a comparison between the program and a human observer, in the plots
in figures 23 and 24 each star symbol corresponds to results from one image.
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Figure 23: Number of pea plants in 20 images, the straight line shows where the results would
be equal.

Figure 24: Number of weeds in 20 images, the straight line shows where the results would be
equal.
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Some error calculations were also performed by manually counting the number of
misclassifications in the randomly chosen result images. The ”Missed weeds” in table
3 are weeds or parts of weeds that were not fully marked in red or blue. The column
”Weed misclassifications” displays the share of the objects classified as weeds that were
actually part of a pea plant.

Image Number of Peaparts classified Missed Weed
Weeds (program) as weed weeds misclassifications

9 42 5 0 12%
16 12 4 0 33%
17 48 7 0 15%
18 33 7 0 21%
20 61 37 0 61%
24 118 21 1 18%
26 80 2 4 3%
28 77 1 3 1%
29 51 2 1 4%
30 43 2 0 5%
31 37 4 3 11%
34 61 4 2 7%
35 45 16 0 36%
36 38 0 1 0%
37 40 5 1 13%
38 93 3 2 3%
43 130 4 6 3%
44 113 10 10 9%
45 116 2 6 2%
47 94 8 6 9%

Table 3: Error calculations for the first algorithm for pea crops
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7.2 Pea Program Track 2

Using the second track of the algorithm, described in section 6.1.2, results were pro-
duced from the 20 images that had previously been manually counted to be able to
evaluate the result. As before the number of peas, the number of weeds and weed
area coverage were calculated in these images. Result images were produced with blue
markings on objects classified as weeds.

Figure 25: Example of a result image from the second version of the Pea program.

It can be seen in figure 25 that separate weed patches are detected as well as weeds
in between tendrils. Some thin parts of weeds are not marked blue since they were re-
moved in the top hat transform along with the tendrils. Those parts are not counted
as pea plants by the program but were removed from the image when the area detec-
tor made the classification. Another type of misclassification comes from parts of pea
plants that are cut off when the tendrils are removed and become small enough to be
misclassified as weeds.
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Quantitative data are presented in the following table:

Image Number NoP Number NoW Weed- Box- NoP NoW
of Peas (man. of Weeds (man. fraction fraction /m2 /m2

(NoP) count) (NoW) count) (%)
9 10 16 36 25 1.0654 0.5541 48.1 173.3
16 18 23 15 6 0.3153 0.5553 86.4 72.0
17 19 21 34 28 0.4107 0.6625 76.5 136.9
18 7 8 16 13 0.2328 0.5187 36.0 82.3
20 26 28 28 10 0.4081 0.7297 95.0 102.3
24 16 21 67 67 1.3285 0.5187 82.3 344.5
26 10 16 85 63 2.1624 0.5187 51.4 437.0
28 16 24 74 47 0.9364 0.6121 69.7 322.4
29 8 12 48 37 0.8218 0.5737 37.2 223.1
30 10 12 41 26 0.4915 0.6088 43.8 179.6
31 13 13 34 29 0.5347 0.5515 62.9 164.4
34 10 18 55 40 1.0107 0.6016 44.3 243.8
35 11 15 24 18 0.2178 0.5242 56.0 122.1
36 6 8 24 21 0.5154 0.5187 30.8 123.4
37 15 17 32 20 0.3788 0.5187 77.1 164.5
38 6 8 76 70 1.7266 0.5187 30.8 390.7
43 8 12 90 75 2.9647 0.5187 41.1 462.7
44 11 17 93 77 2.8507 0.5187 56.6 478.1
45 7 14 90 86 3.6849 0.5187 36.0 462.7
47 9 14 64 50 1.9478 0.5187 46.3 329.0

Table 4: Results from the second algorithm for pea crops

The same analysis of the results as for the first program was done for the data pre-
sented in table 4. Figures 26 and 27 show graphs comparing the result with the manual
count.
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Figure 26: Number of pea plants found by the second program track compared with the manual
count.

Figure 27: Number of weeds found by the second program track compared with the manual
count.
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Error calculations were performed also on these result images. The ”Missed weeds”
in table 5 are weeds or parts of weeds that were lifted out by the top hat. As mentioned
they were not counted as pea plants however.

Image Number of Peaparts classified Missed Weed
Weeds (program) as weed weeds misclassifications

9 36 11 3 31%
16 15 6 0 40%
17 34 9 0 26%
18 16 4 0 25%
20 28 15 1 54%
24 67 11 1 16%
26 85 9 3 11%
28 74 5 7 7%
29 48 7 4 15%
30 41 8 3 20%
31 34 5 3 15%
34 55 12 5 22%
35 24 5 4 21%
36 24 6 2 25%
37 32 10 4 31%
38 76 4 6 5%
43 90 5 10 6%
44 93 6 4 6%
45 90 9 18 10%
47 64 4 8 6%

Table 5: Error calculations for the second algorithm for pea crops

7.3 Rape Program

The program described in section 6.2 processed all 80 images of rape crops producing
two result images from each as well as quantitative data saved to a file. In the result
images plant centres found by the program are marked by dots of five different colours
in a range from red to white. The colour of the dot indicates the size of the square used in
the summation to find the plant centre. A red dot means the plant centre was found by
the smallest square size (highest probability) and a white dot means the largest square
was used (smallest probability). Examples of such result images from the four different
fields are presented in figure 28. The second type of result image also contains the line
markers from the leaves to help identify errors in the program.
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Figure 28: Four result images from the program for rape crops. The photos exemplify conditions
on different fields: a) Bjertorp 1, b) Bjertorp 2, c) Axvall, d) Ribbingsberg. Blue mark-
ings show areas classified as weeds. Red, pink and white dots indicate plant centres.
The different sizes of the images are due to the cropping to remove the wooden frame.
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Results from the four different fields are given in tables 6, 7, 8, 9, 10 and 11. The first
figure in the image number indicates on which of the four fields the photo was taken
according to the following key.

• 1 - Bjertorp 1 (skifte 15)

• 2 - Bjertorp 2 (skifte 10)

• 3 - Axvall

• 4 - Ribbingsberg

The next two figures in the image number is the site number and the last figure (1 or 2)
shows which of the two squares on the site the photo came from. The image size shows
how much of the image that was left after cropping. As size reference the first image
(1011) was chosen since the frame was well aligned in that photo, this made it possible
to extract the full square meter in the cropping. The manual count of rape plants was
performed on the field. This count includes all plants and is sometimes higher than the
number of plants actually visible in the photos. The number of leaf vein skeletons gives
an estimation of the number of leaves in the image. The areafraction weed is the total
detected weed area in percent of the image size.

Image Image Number of NoR Number of Number Area- NoR NoW
Size Rape plants (man. leaf vein of Weeds fraction /m2 /m2

(m2) (NoR) count) skeletons (NoW) weed(%)
1011 1.00 23 36 112 65 0.76 23.0 65.0
1012 0.85 17 38 80 65 1.38 20.1 76.7
1021 0.88 17 30 80 120 2.15 19.3 136.2
1022 0.86 10 37 55 145 2.19 11.6 168.7
1031 0.84 9 31 54 96 1.52 10.7 114.2
1032 0.84 9 36 44 114 2.29 10.7 135.9
1041 0.88 6 23 33 61 1.43 6.8 69.2
1042 0.89 2 29 21 112 2.14 2.2 125.9
1051 0.81 9 44 59 89 1.84 11.1 109.3
1052 0.87 14 43 78 48 1.07 16.0 54.9
1061 0.83 16 46 92 74 2.03 19.3 89.3
1062 0.87 21 40 105 96 2.13 24.2 110.6
1071 0.84 18 34 100 117 2.54 21.4 139.1
1072 0.86 11 30 62 143 4.33 12.8 165.9

Table 6: Results from the program for rape crops, photos from Bjertorp 1
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Image Image Number of NoR Number of Number Area- NoR NoW
Size Rape plants (man. leaf vein of Weeds fraction /m2 /m2

(m2) (NoR) count) skeletons (NoW) weed(%)
1081 0.89 21 43 103 92 1.60 23.6 103.2
1082 0.86 17 40 90 171 4.44 19.8 198.9
1091 0.81 5 24 26 182 3.36 6.2 225.8
1092 0.81 4 37 24 131 2.86 4.9 161.3
1101 0.87 11 43 81 66 1.45 12.6 75.5
1102 0.86 14 50 80 140 2.71 16.4 163.6
1111 0.87 21 67 135 81 2.02 24.1 93.1
1112 0.85 14 31 69 147 3.60 16.4 172.6
1121 0.89 15 43 93 142 2.52 16.9 159.7
1122 0.86 12 29 71 187 4.17 14.0 218.0
1131 0.91 8 36 55 93 1.50 8.7 101.7
1132 0.84 16 29 75 99 1.49 19.1 118.3
1141 0.90 7 31 47 360 4.05 7.7 397.9
1142 0.86 9 39 67 323 3.03 10.4 373.8
1151 0.89 21 47 113 38 0.51 23.6 42.6
1152 0.79 15 34 86 26 0.86 19.0 32.9
1161 0.82 17 50 95 43 0.94 20.8 52.5
1162 0.81 14 36 84 32 0.56 17.3 39.6
1171 0.84 9 29 57 344 6.06 10.7 410.0
1172 0.86 5 28 50 306 5.29 5.8 355.0
1181 0.86 5 21 34 281 4.32 5.8 326.0
1182 0.90 9 29 47 348 4.90 9.9 384.6
1191 0.87 12 32 73 89 1.32 13.8 102.5
1192 0.90 19 37 96 54 1.39 21.2 60.1

Table 7: Results from the program for rape crops, photos from Bjertorp 1

Image Image Number of NoR Number of Number Area- NoR NoW
Size Rape plants (man. leaf vein of Weeds fraction /m2 /m2

(m2) (NoR) count) skeletons (NoW) weed(%)
2011 0.81 15 42 94 70 1.20 18.6 86.8
2012 0.86 16 42 79 67 1.05 18.6 77.9
2021 0.83 24 53 110 53 1.10 29.1 64.2
2022 0.82 15 54 102 92 1.68 18.3 111.9

Table 8: Results from the program for rape crops, photos from Bjertorp 2
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Image Image Number of NoR Number of Number Area- NoR NoW
Size Rape plants (man. leaf vein of Weeds fraction /m2 /m2

(m2) (NoR) count) skeletons (NoW) weed(%)
2031 0.84 17 53 98 128 0.75 20.3 152.6
2032 0.79 22 47 128 48 0.43 27.9 61.0
2041 0.82 19 42 110 32 0.64 23.2 39.1
2042 0.82 18 54 104 28 0.66 21.8 34.0
2051 0.84 12 46 72 113 2.14 14.3 134.7
2052 0.81 16 50 82 67 1.51 19.8 82.9
2061 0.80 8 30 47 72 1.39 10.0 90.2
2062 0.75 23 62 124 124 1.09 30.6 164.9
2071 0.81 2 41 28 252 2.35 2.5 310.3
2072 0.73 11 41 63 197 2.17 15.1 270.5
2081 0.74 4 47 29 185 3.26 5.4 250.0
2082 0.73 8 30 41 92 2.18 10.9 125.3
2091 0.80 10 54 69 61 1.80 12.5 76.3
2092 0.77 14 52 103 86 1.02 18.1 111.2

Table 9: Results from the program for rape crops, photos from Bjertorp 2

Image Image Number of NoR Number of Number Area- NoR NoW
Size Rape plants (man. leaf vein of Weeds fraction /m2 /m2

(m2) (NoR) count) skeletons (NoW) weed(%)
3011 0.79 14 188 112 10 0.14 17.8 12.7
3012 0.76 14 94 105 3 0.02 18.5 4.0
3021 0.77 23 142 126 15 0.21 30.0 19.5
3022 0.78 19 88 112 12 0.14 24.4 15.4
3031 0.76 31 114 157 6 0.15 40.6 7.9
3032 0.77 25 128 157 15 0.13 32.3 19.4
3041 0.83 25 124 170 18 0.16 30.2 21.8
3042 0.76 35 124 206 29 0.55 45.8 38.0
3051 0.79 34 190 208 14 0.12 43.2 17.8
3052 0.75 33 130 201 7 0.06 43.9 9.3
3061 0.71 23 148 144 43 0.91 32.3 60.3
3062 0.77 32 100 195 37 0.56 41.6 48.1

Table 10: Results from the program for rape crops, photos from Axvall
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Image Image Number of NoR Number of Number Area- NoR NoW
Size Rape plants (man. leaf vein of Weeds fraction /m2 /m2

(m2) (NoR) count) skeletons (NoW) weed(%)
4011 0.77 9 35 74 156 2.90 11.8 203.8
4012 0.79 13 40 95 50 0.73 16.5 63.3
4021 0.81 7 32 61 28 0.55 8.6 34.6
4022 0.74 9 27 90 144 0.73 12.2 194.7
4031 0.79 6 42 65 20 0.25 7.6 25.2
4032 0.78 7 47 106 59 1.04 9.0 76.1
4041 0.79 6 19 32 486 2.85 7.6 618.5
4042 0.76 6 26 43 663 3.31 7.9 872.6
4051 0.76 4 52 62 20 0.11 5.3 26.3
4052 0.76 18 41 121 45 0.54 23.8 59.4
4061 0.77 19 41 143 38 2.27 24.6 49.1
4062 0.77 8 37 59 155 5.56 10.3 200.3

Table 11: Results from the program for rape crops, photos from Ribbingsberg

Figure 29: Manual count performed on the field plotted versus the number of plants found by
the program. The four graphs show data from the separate fields.
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Figure 29 shows a comparison between the result from the program and the manual
count of plants on the four fields. For these graphs the full image material could be used
in the comparison since all sites had been manually counted.

In some sites the plant density is very high, especially at the Axvall field as can be
seen in the manually counted numbers in table 10. In figure 30 the plant+weed area
fraction (the total area of plants and weeds in the image divided by total image area) is
plotted versus the number of plants from the manual count (for all 80 images).

Figure 30: The number of plants as a function of vegetation coverage in the images.

By subtracting the number of plants found by the program from the manually counted
numbers the dependency of vegetation coverage for the program error can be studied.
See the plot in figure 31.
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Figure 31: The difference in the plant quantity result as a function of vegetation coverage in the
images.

8 Discussion

Pea program 1: In figures 23 and 24 a trend can be seen in the points towards the line
that marks the desired result. The numbers of pea plants found by the program are in all
cases lower than those found in the manual count. This was to be expected, the number
of plants in the program are taken as the number of leaf centres that are removed by the
tendril weed detector. Each pea plant has such a leaf centre but if two plants overlap
they will only be counted as one. For example, the two pea plants in figure 18 will be
seen as one.

Figure 24 shows that the number of weeds is overestimated in all images by the
program. Probably this is mostly due to those weeds that split into several objects in
the segmentation. Some errors are also made by the area detector where parts of pea
tendrils that have been cut off in the segmentation are wrongly classified as weeds.
An additional source of error in the weed quantity calculation is that weeds covered
by tendrils sometimes will be counted as two separate weeds since they form separate
objects on each side of the tendril. An example of this can be seen in figure 18 c and d.
All these factors lead to overestimation in the number of weeds. In the error estimation
calculated on 20 randomly chosen images (table 3) the misclassification rate of weeds
vary from 0 to 61% with a mean value of 13%.
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The covered weed area (areafraction weed) is very hard to compare to a correct result
in a quantitative way. The only available method of evaluation is to study where the
coloured areas in the result images are situated. From looking at those images it seems
like the tendril weed detector is the one that makes most misclassifications. Since it
separates weeds from tendrils based on colour the lighting in the image is an important
factor. In darker images the tendrils are less bright and in those images a lot of errors
are made. This causes errors not only in covered area calculations but also in weed and
plant quantity. The high misclassification rates in certain images are mostly due to this
problem. For this method to work in a more stable way uniform lighting conditions in
all images would be preferable. In the brighter images very few errors are made and the
value of the weed covered area should be fairly correct. The area based detectors seem
to function well also in darker images.

Pea program 2: From table 5 it can be seen that the misclassification rate for this
program is in general slightly higher than for the first version of the program. But the
comparison with the counted reference in figures 26 and 27 indicates that the program
performs at least equally well as the first algorithm in quantitative numbers. Some
errors occur in the top hat transformation as weeds or parts of weeds are lifted out
before the area based classification. But the high misclassification rates in some images
are mostly caused by pea parts that get cut off when the tendrils are removed and then
get classified as weeds. This type of errors also affects the covered weed area.

The first algorithm is more stable in its performance, especially in calculating weed
covered area, but the second is less sensitive to bad lighting conditions since it does
not use any method that is only based on colour. With more development the second
method might be more reliable and then it would be the preferable of the two because
of the robustness to lighting conditions.

Rape program: Figure 29 shows that the program for rape crops underestimates
the number of plants in all images. One of the reasons for this is that the reference
counting used was performed on the fields and includes plants that may be too small to
be considered relevant and also plants that are hidden under leaves which mean they
are not visible in the photos. That plants cover each other can be seen in figure 30.
The jump in the trend that can be seen around 70% area coverage can be explained by
overlapping of plants when the quantity is high on a small area. This also means that
a smaller part of each plant is visible in each photo. In figure 31 it is evident that the
program error in plant quantity is a lot higher for images with high vegetation density.

The sowing of the Axvall field was performed a couple of weeks earlier than on the
other fields. Therefore those plants are larger and denser as can be seen in figure 28c.
The photos from the Ribbingsberg field were taken at sunset, figure 28d is for example
darker than the others. Darker images cause more errors in the segmentation and also
in later steps of the algorithm. The conditions on the fields at Bjertorp were better with
plants at an early growth stage and better lighting in the images. Figure 29 also indicates
that the quantitative result were more accurate on those fields.
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9 Conclusions

Perhaps the programs developed in this project are not ready to be used in real applica-
tions in their current state but the results still show that image analysis can be a useful
tool for these types of tasks.

The performance depends a lot on the images used as input. When the plants are
separated from each other in the images the results have been shown to be better. Also
the lighting conditions are important to be able to make a reliable analysis. By acquir-
ing all photos when the plants are small and under uniform lighting much would be
gained.

Top hat transform has been the most useful of all image analysis methods evalu-
ated in this project. It has proven to be very good for extracting thin features such as
leaf veins or tendrils. Many types of crops have thin structures that could be used to
identify the plant so top hat transform could probably be a good tool also in other crops.

10 Future Work

The results from the programs for pea crops indicate that the methods are not that far
from a possible implementation in a real system. The second track of the algorithm for
pea crops was put together rather quickly towards the end of the project and improve-
ments could probably be made. The main reason for misclassifications in the second
program is parts of pea plants being cut off when the tendrils are removed. Perhaps
this could be solved by localising the large leaf centres of the plants and perform a clos-
ing operation with objects nearby.

The program for rape crops could also be improved in a number of ways. Firstly a
method of performing a precise cropping should be developed if a wooden frame is to
be put in the photos. For extracting the leaf veins Soille [8] describes another type of top
hat transformation using a rank-max opening that possibly could give a better result.
With the top hat used here side branches in the leaf vein pattern are often not obtained
and thus the specific direction of the leaf is impossible to detect. To find the central vein
in the pattern more sophisticated ways than measuring the distance between endpoints
can certainly be used. In cases when this step goes wrong marker lines are sometimes
obtained pointing in directions perpendicular to the leaf which is bound to cause errors
in the search for plant centres. Perhaps the weighting of probability markers and the
size of summation filters could also be optimized. So given more time for development
this program can potentially detect rape plants in a much more reliable way.
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A Matlab Code, Pea programs

A.1 Main pea program 1

clear all
close all
clc

global bildnamn WeedsizeArea WeedTendArea NumWeedA NumWeedT NumPea
global BoxArea BoxFraction colim AreaWeedim TendWeedim

first = true;
for i = 9179:9229

bildnamn = [’../Artor/DSC_’ num2str(i) ’.JPG’];
disp([’Running image DSC_’ num2str(i) ’.JPG’]);
Ia = imread(bildnamn);

s = size(Ia);
%Remove background
[binim, colim] = Segment(Ia);

%Remove edges and objects outside the "box"
[NonEdgeim, BoxArea] = Edgerm(binim);
BoxFraction = BoxArea/(s(1) * s(2));

%Detect weedobjects
[WeedsizeArea, NumWeedA, AreaWeedim] = AreaDetector(NonEdgeim);
WeedFraction = WeedsizeArea/BoxArea;

disp([’Detected weed coverage:’ num2str(100 * WeedFraction) ...
’%, Number of Weeds:’ num2str(NumWeedA)]);

%Form binary image of the remaining pea objects
binim = imsubtract(NonEdgeim, AreaWeedim);
binim8 = im2uint8(˜binim);
%Form colour image of the remaining pea objects
colim(:,:,1) = imsubtract(colim(:,:,1),binim8);
colim(:,:,2) = imsubtract(colim(:,:,2),binim8);
colim(:,:,3) = imsubtract(colim(:,:,3),binim8);

%Detect weed near tendrils
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[WeedTendArea, NumWeedT, NumPea, TendWeedim] =...
TendrilWeedDetector(binim, colim);

WeedFraction = WeedTendArea/BoxArea;
disp([’Detected Weed coverage: ’ num2str(100 * WeedFraction)...

’%, Number of Weeds:’ num2str(NumWeedT)]);

WeedFraction = (WeedsizeArea+WeedTendArea)/BoxArea;
TotNumWeed = NumWeedA+NumWeedT;
disp([’Total Weed coverage: ’ num2str(100 * WeedFraction) ...

’%, Number of Weeds:’ num2str(TotNumWeed)]);
disp([’Number of Peas:’ num2str(NumPea) ...

’, Boxfraction: ’ num2str(100 * BoxFraction) ’%’]);

%Save calculated data and save a result image
if first

savedata(1);
first = false;

else
savedata;

end
saveimage(true);

end

A.2 Segmentation

function [segbin, segcolor] = Segment(im)

%SEGMENT removes background from uint8 image.
%[segbin, segcolor] = Segment(im) returns a binary image segbin
%and a color image segcolor, both with background set to zero.
%
%segbin = Segment(im) returns only the binary segmented image

gray1 = imsubtract(im(:,:,2),im(:,:,1));
gray2 = imsubtract(im(:,:,2),im(:,:,3));
s = size(im(:,:,1));
segbin = false(s);

for i=1:s(1)
for j=1:s(2)

if gray1(i,j) > 7 && gray2(i,j) > 7
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segbin(i,j) = true;
end

end
end

% Remove small noise (<35 pixels)
L = bwlabel(segbin);
data = regionprops(L,’Area’);
area = [data.Area];

brus = find(area < 35);
tabort = ismember(L,brus);
segbin = imsubtract(segbin,tabort);
segbin = im2bw(segbin);

% remove background from color image
segcolor = zeros(size(im));
segcolor = im2uint8(segcolor);
uint8bin = im2uint8(˜segbin);

segcolor(:,:,1) = imsubtract(im(:,:,1),uint8bin);
segcolor(:,:,2) = imsubtract(im(:,:,2),uint8bin);
segcolor(:,:,3) = imsubtract(im(:,:,3),uint8bin);

A.3 Measurement box creator

function [binim_out, DmaxArea] = Edgerm(binim_in)

%EDGERM removes all objects that are touching the edge or are
%completely outside the measurement box in a binary image.
%
%binim_out = Edgerm(binim_in) returns a binary image with
%all such objects removed.
%
%[binim_out, DmaxArea] = Edgerm(binim_in) also returns the total
%area of the measurement box.

%Create binary mask of edges
s = size(binim_in);
edgeframe = false(s);
edgeframe(1:end,1) = true;
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edgeframe(1:end,end) = true;
edgeframe(1,1:end) = true;
edgeframe(end,1:end) = true;

%Label all objects in the image
[L nO] = bwlabel(binim_in);

touch = L. * edgeframe;
edgeobj = unique(touch);
edgeobj = edgeobj(2:end);

%Remove objects touching the edge
remove = ismember(L,edgeobj);
binim_out = imsubtract(binim_in,remove);
binim_out = im2bw(binim_out);

%Find Dmax
data = regionprops(L,’MajorAxisLength’);
MAL = [data.MajorAxisLength];
Dmax = round(max(MAL));
if Dmax > min(s)/3

Dmax = round(min(s)/3);
disp(’Warning: Dmax is too big and therefore reduced’)

end

%Create mask for Dmax-box
box = false(s);
box(1:s(1)-Dmax,1:s(2)-Dmax) = true;
touch = L. * box;

boxobj = unique(touch);
boxobj = boxobj(2:end);
allobj = 1:nO;
nonboxobj = setdiff(allobj,boxobj);

%Remove objects outside the box
remove = ismember(L,nonboxobj);
binim_out = imsubtract(binim_out,remove);
binim_out = im2bw(binim_out);

%Calculate Area of the Dmax box
DmaxArea = (s(1)-Dmax) * (s(2)-Dmax);
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A.4 Area detector

function [WeedArea, NumWeed, Weedbinim] = AreaDetector(binim)

%AREADETECTOR classes all objects below an area limit in a binary
%image as weed. The limit is set between 3500 and 9125 pixels
%depending on the number of objects in the image.
%
%[WeedArea, NumWeed, Weedbinim] = AreaDetector(binim) returns the
%total detected weed area, the number of detected weed objects and
%a binary image with only weed objects.
%
%WeedArea = AreaDetector(binim) returns only the detected weed area.

%Measure area of all objects
disp(’Running area weed detector’);
[L nO] = bwlabel(binim);
data = regionprops(L,’Area’);
area = [data.Area];

%Area Limit is set to a value between 3500 and 9125 depending on
%the number of objects
if nO <=110

limit = abs(nO-35) * 75+3500;
else

limit = 4000;
end
small = find(area < limit);
Weedbinim = ismember(L,small);

%Repair broken weedobjects with a morphological close operation
se = strel(’disk’,5);
Weedbinimclosed = imclose(Weedbinim,se);

%Count the number of weeds and calculate their total area
[L nO] = bwlabel(Weedbinimclosed);
data = regionprops(L,’Area’);
area = [data.Area];
WeedArea = sum(area);
NumWeed = nO;
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A.5 Mean area detector and tendril weed detector

function [WeedArea, NumWeed, NumPea, Weedim] = ...
TendrilWeedDetector(binim, colim)

%TENDRILWEEDDETECTOR detects weed near tendrils. Arguments should be a
%binary image and a color image of the same objects.
%
%WeedArea = TendrilWeedDetector(binim, colim) returns the area of the
%detected weed.
%
%[WeedArea, NumWeed, NumPea, Weedim] = TendrilWeedDetector(binim, colim)
%also returns the number of detected weeds, the number of detected pea
%objects and a binary image with the detected weed.

disp(’Running tendril weed detector’);
s = size(binim);
%Label remaining objects
[L nO] = bwlabel(binim);
data = regionprops(L,’Area’);
area = [data.Area];
MeanArea = mean(area);
WeedA = zeros(1,nO);
WeedN = zeros(1,nO);
PeaN = zeros(1,nO);

Weedim = binim;

for o=1:nO
disp([’Treating object ’ num2str(o) ’ of ’ num2str(nO)]);
objind = [];
objind = find(L==o);
%Object indices in the full image
[x1 y1] = ind2sub(s,objind);

%Mean Area detector
if area(o)/MeanArea < .1

disp(’Mean Area detector activated’);
WeedA(o) = area(o);
WeedN(o) = 1;
for i = 1:length(objind)

Weedim(objind(i)) = 1;
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end
else

%Object indices in separate object box
x2 = x1-(min(x1)-1);
y2 = y1-(min(y1)-1);

%Create box containing only one binary object
binobj = false(max(x2),max(y2));
%Create box containing only one colour object
colobj = zeros(max(x2),max(y2),3);
colobj = im2uint8(colobj);

for i = 1:length(objind)
binobj(x2(i),y2(i)) = binim(x1(i),y1(i));
colobj(x2(i),y2(i),1) = colim(x1(i),y1(i),1);
colobj(x2(i),y2(i),2) = colim(x1(i),y1(i),2);
colobj(x2(i),y2(i),3) = colim(x1(i),y1(i),3);

end

%Send single object to subroutine ObjWeedArea
[WeedA(o), WeedN(o), PeaN(o), weedmask] = ...

ObjWeedArea(binobj, colobj);

for i = 1:length(objind)
Weedim(x1(i),y1(i)) = weedmask(x2(i),y2(i));

end
end

end
Weedim = im2uint8(Weedim);
WeedArea = sum(WeedA);
NumWeed = sum(WeedN);
NumPea = sum(PeaN);

A.6 Tendril weed detection on single object

function [WeedArea, NumWeed, NumPea, swbw] = ...
ObjWeedArea(binobj, colobj)

%OBJWEEDAREA detects weed near tendrils of a single pea object.
%Arguments should be a binary image and a colour image of the
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%same object.
%
%WeedArea = ObjWeedArea(binobj, colobj) returns the pixel area
%of the detected weed.
%
%[WeedArea, NumWeed, swbw] = ObjWeedArea(binobj, colobj) also
%returns the number of detected weeds and a binary image
%containing only the detected weed.

%Normal distribution parameters
mys = [32.2768 41.7997 34.3680];
lambdas = 1e3 * [1.4655 1.8423 1.5582;

1.8423 2.3569 1.9707;
1.5582 1.9707 1.6654];

myo = [20.1220 33.3492 21.9074];
lambdao = 1e3 * [0.3792 0.5992 0.4127;

0.5992 1.0045 0.6667;
0.4127 0.6667 0.4736];

objSize = size(binobj);

%Initiate images
swbw = false(objSize);
swbwkomp = false(objSize);
swc = zeros(size(colobj));
swc = im2uint8(swc);

%Find tendril skeleton (subroutine)
swbw = DMtendril(binobj,13);
%Disregard Distance information
swbw = im2bw(swbw);

%Dilate around skeleton
se = strel(’disk’,5);
swbw = imdilate(swbw,se);

%Subtract leaf centre from the binary object
swbw = imsubtract(binobj,˜swbw);
swbw = im2bw(swbw);

%The complement of the original binary image
swbwkomp = imsubtract(binobj, swbw);
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[L nO] = bwlabel(swbwkomp);
data = regionprops(L,’Area’);
area = [data.Area];

%Throw away large objects (leaves)
tbindex = find(area < .2 * max(area));
tpindex = find(area >= .2 * max(area));
NumPea = length(tpindex);
swbwkomp = false(objSize);
swbwkomp = ismember(L,tbindex);

%Put back cut off parts to the tendrils
%The object should now contain only tendrils and surrounding weeds
swbw = imadd(swbw, swbwkomp);
swbw8 = im2uint8(˜swbw);

swc(:,:,1) = imsubtract(colobj(:,:,1),swbw8);
swc(:,:,2) = imsubtract(colobj(:,:,2),swbw8);
swc(:,:,3) = imsubtract(colobj(:,:,3),swbw8);

swc = im2double(swc);
%Clear swbw and perform ML-test between tendrils and weeds
swbw = false(objSize);
x = zeros(1,3);
for i = 1:objSize(1)

for j = 1:objSize(2)
x = [swc(i,j,1),swc(i,j,2),swc(i,j,3)];
if sum(x(1,:))>0.1 && (x-mys) * inv(lambdas) * (x-mys)’-...

(x-myo) * inv(lambdao) * (x-myo)’<-0.3437
swbw(i,j)=true;

end
end

end

swbw = imfill(swbw,’holes’);
%Remove the outermost pixels (to separate objects)
swbw = bwdist(˜swbw,’cityblock’);
swbw = swbw >1;

[L nO] = bwlabel(swbw);
data = regionprops(L,’Area’);
area = [data.Area];
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%Remove small parts (tendril parts)
tbindex = find(area <= 100);
swbwkomp = false(objSize);
swbwkomp = ismember(L,tbindex);
%Binary mask of the detectd weed
swbw = imsubtract(swbw,swbwkomp);
%Dilate one pixel back
se2 = strel(’square’,2);
swbw = imdilate(swbw,se2);

%Calculate total area of the detected weed
[L nO] = bwlabel(swbw);
data = regionprops(L,’Area’);
area = [data.Area];
WeedArea = sum(area);
NumWeed = length(area);

A.7 Distance mapped skeletons

function DMtendril = DMtendril(Im,tjock)
%DMstipel returns distancemapped skeleton of tendrils. Argument
%should be a binary pea object

se = strel(’rectangle’, [2 2]);
Im = imclose(Im,se);

%Calculate distance from each plant pixel to closest border
D = bwdist(˜Im,’cityblock’);
skel = bwmorph(Im,’skel’,Inf);
%Mask with ones in the entire object except its skeleton
skelmask = immultiply(D,˜skel);
%Distancemap-skeleton
DM = imsubtract(D,skelmask);
%Save only the thin parts of the skeleton
kant = DM >= 1 & DM <= tjock;

[L nO] = bwlabel(kant);
data = regionprops(L,’Perimeter’);
perimeter = zeros(1,nO);
perimeter = [data.Perimeter];
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small = find(perimeter < 250);
tabort = ismember(L,small);
%Remove small parts (parts of leaves)
kant = imsubtract(kant,tabort);
%Distancemap of (hopefully) only tendril skeletons
DMtendril = kant. * DM;

A.8 Tendril removal (second program)

function tendrilbin = tendrils(Ia)

% TENDRILS uses a to hat transform to localise tendrils
% in an image of pea plants.
% tendrilbin = tendrils(Image) returns a binary image
% of only tendrils.

disp(’Running tendril detector’);
%Intensity image (red channel)
int = Ia(:,:,1);

%Tophat filter
TH = imtophat(int,strel(’square’,10));

%Create binary image
level = graythresh(TH);
BW = im2bw(TH,level);
BW = imclose(BW,strel(’disk’,2));

%Measure Major axis length on all objects
L = bwlabel(BW);
data = regionprops(L,’MajorAxisLength’);
MAL = [data.MajorAxisLength];

%Remove short objects
small = find(MAL<.25 * max(MAL));
tabort = ismember(L,small);
tendrilbin = imsubtract(BW,tabort);
tendrilbin = imclose(tendrilbin,strel(’disk’,8));
tendrilbin = im2bw(tendrilbin);
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B Matlab Code, Rape program

B.1 Main rape program

clear all
close all
clc

global imnum imsize NumWeed WeedArea TotArea NumLeaves
global Dirfound NumPlants

%Set parameters showimage and saveimage to true or false
showimage = true;
saveimage = false;

%Bjertorp 1
first = true;
for i = 101:119

for j = 1:2
imnum = 10* i+j;
imname = [’../CroppadRaps/Bjertorp1/’ num2str(imnum) ’.jpg’];
disp([’Running image ’ num2str(imnum) ’.jpg’]);
Im = imread(imname);

s = size(Im);
imsize = s(1) * s(2);

%Remove background
[binim, colim] = Segment(Im);

%Detect weedobjects
[WeedArea, NumWeed, TotArea, AreaWeedim] = AreaDetector(binim);
WeedFraction = WeedArea/imsize;

disp([’plant+weed coverage: ’ num2str(100 * TotArea/imsize) ’%’]);
disp([’Detected weed coverage: ’ num2str(100 * WeedFraction)...

’%, Number of Weeds: ’ num2str(NumWeed)]);
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%Binary image of the remaining rape objects
binim = imsubtract(binim, AreaWeedim);
binim8 = im2uint8(˜binim);
%Color image of the remaining rape objects
colim(:,:,1) = imsubtract(colim(:,:,1),binim8);
colim(:,:,2) = imsubtract(colim(:,:,2),binim8);
colim(:,:,3) = imsubtract(colim(:,:,3),binim8);
%Mark detected weeds blue
Weed8 = im2uint8(AreaWeedim);
colim(:,:,3) = imadd(colim(:,:,3),Weed8);

%Find leaf vein skeletons
vskelim = Leafveins(colim);

%Find plant centre probability markers
[Markerim, Refim, NumLeaves, Dirfound] =...

findmarkers(vskelim,colim,showimage,saveimage);

%Find plant centers
NumPlants =...

findcenters(Markerim,Refim,colim,showimage,saveimage);

if first
savedata(1);
first = false;

else
savedata;

end
end

end

B.2 Leaf vein extraction

function skelim = Leafveins(Ia)

%LEAFVEINS finds leaf veins in a colour image using a top
%hat transform.
%skelim = Leafveins(Image) returns a binary image
%of thinned (skeletonised) leaf veins.
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%Intensity image (red channel)
int = Ia(:,:,1);

%Create mask of Leaf edges
bin = im2bw(int,.9/255);
D = bwdist(˜bin,’cityblock’);
middle = D > 6;
edge = imdilate(middle,strel(’disk’, 6));
edge = imsubtract(edge,middle);
edge = im2uint8(edge);

%Tophat filter
TH = imtophat(int,strel(’square’,3));

%remove edges
TH = imsubtract(TH,edge);

%Create binary image
level = graythresh(TH);
BW = im2bw(TH,level);

%Measure Major axis length
L = bwlabel(BW);
data = regionprops(L,’MajorAxisLength’);
MAL = [data.MajorAxisLength];

%Remove short objects
small = find(MAL<.25 * max(MAL));
tabort = ismember(L,small);
veinbin = imsubtract(BW,tabort);
veinbin = imclose(veinbin,strel(’disk’,8));

%Skeltonisation
skelim = bwmorph(veinbin,’thin’,Inf);

B.3 Plant centre line markers

function [Markerim, Referenceim, NumLeaves, Dirfound] =...
findmarkers(skelim, colim, show, save)
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% FINDMARKERS produces an image with plant centre probability
% line markers from a binary image of leaf vein skeletons.
% function [Markerim, Referenceim, NumLeaves, Dirfound] =...
% findmarkers(skelim, colim, show, save)
% returns Markerim with the marker lines, Referenceim which
% is an image of the same size containing reference numbers for
% all markers. Output data NumLeaves is the number of leaf vein
% skeletons in the image and Dirfound is the number of skeletons
% where the precise direction was found. Input skelim should be a
% binary image of leaf vein skeletons. Colim should be the original
% image of plants (for display). Parameters show and save should
% be set to true or false depending on if the result should be
% displayed and/or saved to file.

global vectorim

s = size(skelim);
%Put one pixel thick frame around the colour image
colimframe = zeros(s(1)+2,s(2)+2,3);
colimframe = im2uint8(colimframe);
colimframe(2:s(1)+1,2:s(2)+1,:) = colim;
vectorim = colimframe;
%Put one pixel thick frame around the skeleton image
skelimframe = false(s+2);
skelimframe(2:s(1)+1,2:s(2)+1) = skelim;
if show

figure, imshow(colimframe)
hold on

end

s = size(skelimframe);
z = s(1) * s(2);
%Create image where line markers will be saved
Markerim = zeros(s);
Markerim = im2uint8(Markerim);
%Create Reference image
Referenceim = zeros(s);
Referenceim = im2double(Referenceim);
%Parameter mindist determines the length of the line markers
mindist = 100;
Dirfound = 0;
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[L NumLeaves] = bwlabel(skelimframe);
disp([’Number of leaves: ’ num2str(NumLeaves)])
data = regionprops(L,’BoundingBox’);

%This loops goes through all skeletons and treats them separately
for o = 1:NumLeaves

%------------------------------------------------------------
% Create frame (1 pixel thick) around single skeleton object
%------------------------------------------------------------
BB = data(o).BoundingBox;
xMin = floor(BB(2));
xMax = xMin+BB(4);
yMin = floor(BB(1));
yMax = yMin+BB(3);

skelobj = false(fliplr(BB(3:4))+3);
skelobj(2:end-1,2:end-1) = skelimframe(xMin:xMax,yMin:yMax);

%------------------------------------------------------------
% Get end points and intersections
%------------------------------------------------------------
endPoints = getEndPoints(skelobj);
intersections = getIntPoints(skelobj);

%------------------------------------------------------------
% Convert end and intersection points to Java vectors
%------------------------------------------------------------
if (˜isempty(endPoints))

endVector = javaMethod(’createPointVector’,’GelTree’,...
endPoints(:,1)-1,endPoints(:,2)-1);

else
endVector = java.util.Vector;

end
if (˜isempty(intersections))

intVector = javaMethod(’createPointVector’,’GelTree’,...
intersections(:,1)-1,intersections(:,2)-1);

else
intVector = java.util.Vector;

end

%------------------------------------------------------------
% Remove branches shorter than minBranchSize
%------------------------------------------------------------
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minBranchSize = 5;
I_clean = javaMethod(’cleanSkeleton’,’GelTree’,skelobj,...

endVector,intVector,minBranchSize,1,size(skelobj,1),...
1,size(skelobj,2));

%Find end points and intersections
ep = getEndPoints(I_clean);
ip = getIntPoints(I_clean);
%Convert to coordinates in the original image
ep(:,1) = ep(:,1)+yMin-2;
ep(:,2) = ep(:,2)+xMin-2;
ip(:,1) = ip(:,1)+yMin-2;
ip(:,2) = ip(:,2)+xMin-2;
%Vectors where distances of projected points to central vein
%endpoint will be stored
edist = 0;
idist = 0;

if size(ep,1)>1
%Find the central leaf vein (longest vein)
maxlen = 0;
for j=1:size(ep,1)-1

for k=j+1:size(ep,1)
len = norm(ep(j,:)-ep(k,:));
if len > maxlen

maxlen = len;
p(1,:) = ep(j,:);
p(2,:) = ep(k,:);
longind = [j k];

end
end

end

v = p(2,:)-p(1,:); %Direction vector of central vein
ep(max(longind),:) = []; %Remove central vein from ep
ep(min(longind),:) = [];
%If possible, gather information to find vein orientation
if size(ep,1)>0

%Projections of endpoints onto central vein
for j = 1:size(ep,1)

w = ep(j,:)-p(1,:);
a = dot(v,w)/norm(v)ˆ2;
edist(j) = norm(a * v);
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end
%Projections of intersection points onto central vein
for j = 1:size(ip,1)

w = ip(j,:)-p(1,:);
a = dot(v,w)/norm(v)ˆ2;
idist(j) = norm(a * v);

end
end

%Display/save result
if show

plot(p(:,1),p(:,2)) %Central vein (blue)
plot(p(:,1),p(:,2),’or’) %Central vein endpoints (red)

end
if save

%Draw blue line on central vein
ind = drawline(fliplr(p(1,:)),fliplr(p(2,:)),s);
vectorim(ind) = 0;
vectorim(ind+z) = 0;
vectorim(ind+2 * z) = 255;
%Mark endpoints of central vein with red rings
radius = min([5 p(1,2)-1 s(1)-p(1,2) p(1,1)-1 s(2)-p(1,1)]);
vectorim(:,:,1) = MidpointCircle(vectorim(:,:,1),...

radius, p(1,2), p(1,1), 255);
vectorim(:,:,2) = MidpointCircle(vectorim(:,:,2),...

radius, p(1,2), p(1,1), 0);
vectorim(:,:,3) = MidpointCircle(vectorim(:,:,3),...

radius, p(1,2), p(1,1), 0);
radius = min([5 p(2,2)-1 s(1)-p(2,2) p(2,1)-1 s(2)-p(2,1)]);
vectorim(:,:,1) = MidpointCircle(vectorim(:,:,1),...

radius, p(2,2), p(2,1), 255);
vectorim(:,:,2) = MidpointCircle(vectorim(:,:,2),...

radius, p(2,2), p(2,1), 0);
vectorim(:,:,3) = MidpointCircle(vectorim(:,:,3),...

radius, p(2,2), p(2,1), 0);
end
t = mindist/norm(v);
%Determine direction of the leaf if possible
if sum(edist)>0 && sum(idist)>0 &&...

abs(mean(idist)-mean(edist))>3
Dirfound = Dirfound+1;
if mean(idist)<mean(edist)

%p(1,:) was found to be closest to plant center
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q = round(p(1,:)-t * v);
ind = drawline(fliplr(p(1,:)),fliplr(q),s);
Markerim(ind) = Markerim(ind) + 3;
Referenceim(ind) = o;
if save

%Draw cyan colored line in result image
vectorim(ind) = 0;
vectorim(ind+z) = 255;
vectorim(ind+2 * z) = 255;

end
if show

plot(p(1,1),p(1,2),’xc’,’MarkerSize’,10)
plot([p(1,1);q(1)],[p(1,2);q(2)],’c’)

end
else

%p(2,:) was found to be closest to plant centre
q = round(p(2,:)+t * v);
ind = drawline(fliplr(p(2,:)),fliplr(q),s);
Markerim(ind) = Markerim(ind) + 3;
Referenceim(ind) = o;
if save

%Draw cyan colored line in result image
vectorim(ind) = 0;
vectorim(ind+z) = 255;
vectorim(ind+2 * z) = 255;

end
if show

plot(p(2,1),p(2,2),’xc’,’MarkerSize’,10)
plot([p(2,1);q(1)],[p(2,2);q(2)],’c’)

end
end

else
%No direction found
q = round(p(1,:)-t * v);
ind = drawline(fliplr(p(1,:)),fliplr(q),s);
Markerim(ind) = Markerim(ind) + 2;
Referenceim(ind) = o;
if save

%Draw magenta colored line in result image
vectorim(ind) = 255;
vectorim(ind+z) = 0;
vectorim(ind+2 * z) = 255;

end
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if show
plot([p(1,1);q(1)],[p(1,2);q(2)],’m’)

end

q = round(p(2,:)+t * v);
ind = drawline(fliplr(p(2,:)),fliplr(q),s);
Markerim(ind) = Markerim(ind) + 2;
Referenceim(ind) = o;
if save

%Draw magenta colored line in result image
vectorim(ind) = 255;
vectorim(ind+z) = 0;
vectorim(ind+2 * z) = 255;

end
if show

plot([p(2,1);q(1)],[p(2,2);q(2)],’m’)
end

end
if show

drawnow
end

end
end

B.4 Plant centre detector

function NumPlants = findcenters(Markerim, ref, colim, show, save)

% FINDCENTERS performs a search for probable plant centres in an
% image of line markers.
% NumPlants = findcenters(Markerim, ref, colim, show, save) returns
% NumPlants as the number of detected plant centres. Input Markerim
% should be an image with line markers. ref should be an image of the
% same size containing reference numbers for the lines. Colim should be
% the original image of plants (for display). Parameters show and save
% should be set to true or false depending on if the result should be
% displayed and/or saved to file.

global imnum vectorim

s = size(colim);
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%Put one pixel thick frame around the colour image
centreim = zeros(s(1)+2,s(2)+2,3);
centreim = im2uint8(centreim);
centreim(2:s(1)+1,2:s(2)+1,:) = colim;

%Create image that will be used to remove marker lines
touch = zeros(size(ref));
%Matrix where plant center positions will be saved
centers = zeros(1,2);

%Size of summation squares
sumsize = [3 5 8 20 30];
divider = zeros(1,length(sumsize)+1);
%Intensity requirement after summation
req = [12 20 32 80 120];
%Colour arguments for the show command
farg = ([’oy’; ’or’; ’om’; ’oc’; ’ob’]);
%Colour arguments for the save command
probcolor = [0 64 127 191 255];
%Vector where centre dot colour will be stored for each centre
centcolor = 0;
%Parameter mindist determines the radius of the circle in
%which markers and centre candidates will be removed
mindist = 100;

%This loop goes through the summation sizes
for l=1:length(sumsize)

markersum = filter2(ones(sumsize(l)),Markerim);
%Find plant centre candidate positions
index = find(markersum>req(l));
%Sort candidates in descending order
[blaj tempindex] = sort(markersum(index),’descend’);
index = index(tempindex);

%Go through list of candidates and put plant centre markings
%or remove the candidate from list.
while length(index)>0

tooclose = false;
[a b] = ind2sub([s(1) s(2)]+2,index(1));
for d = 2:size(centers,1)

%Check if the current point is too close to a previous
%centre point
if norm(centers(d,:)-[a b])<mindist
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tooclose = true;
index(1) = [];
break

end
end
if ˜tooclose

%Decide radius of removal circle (mindist if not too
%close to the image border).
r = min([mindist a-1 s(1)-a b-1 s(2)-b]);
for j = 0:r

touch = MidpointCircle(touch, j, a, b, 1);
end
%Save plant centre position and dot colour
centers(end+1,:) = [a b];
centcolor(end+1,:) = probcolor(l);
index(1) = [];

end
end

%Remove lines close to the detected plant centres
touch = touch. * ref;
remove = ismember(ref,nonzeros(unique(touch)));
remove = im2uint8(remove);
Markerim = imsubtract(Markerim,remove);
divider(l+1) = size(centers,1)-1;

end

centers(1,:) = [];
centcolor(1) = [];
%Number of plant centres found
NumPlants = size(centers,1);
disp([’Number of plants: ’ num2str(NumPlants)])

%Display and/or save result image
if show

plot(centers(:,2),centers(:,1),’oy’,’Markersize’,4)
title([’Number of plant centers: ’ num2str(size(centers,1))])

figure, imshow(centreim)
hold on
for l = 1:length(sumsize)

plot(centers(divider(l)+1:divider(l+1),2),...
centers(divider(l)+1:divider(l+1),1),...
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farg(l,:),’Markersize’,4);
end
title([’Number of plant centers: ’ num2str(size(centers,1))])

end
if save

for i = 1:size(centers,1)
for j = 1:6

radius = min([j centers(i,1)-1 s(1)-centers(i,1)...
centers(i,2)-1 s(2)-centers(i,2)]);

vectorim(:,:,1) = MidpointCircle(vectorim(:,:,1),...
radius, centers(i,1), centers(i,2), 255);

vectorim(:,:,2) = MidpointCircle(vectorim(:,:,2),...
radius, centers(i,1), centers(i,2), 255);

vectorim(:,:,3) = MidpointCircle(vectorim(:,:,3),...
radius, centers(i,1), centers(i,2), 0);

centreim(:,:,1) = MidpointCircle(centreim(:,:,1),...
radius, centers(i,1), centers(i,2), 255);

centreim(:,:,2) = MidpointCircle(centreim(:,:,2),...
radius, centers(i,1), centers(i,2), centcolor(i));

centreim(:,:,3) = MidpointCircle(centreim(:,:,3),...
radius, centers(i,1), centers(i,2), centcolor(i));

end
end
imtitle = [num2str(imnum) ’Vectors.jpg’];
imwrite(vectorim, imtitle, ’jpeg’, ’Quality’,100);
imtitle = [num2str(imnum) ’Centers.jpg’];
imwrite(centreim, imtitle, ’jpeg’, ’Quality’,100);

end
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