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Abstract

A common component of social networks today is an activity stream,
which is a list of recent activities performed by users. The purpose of
an activity stream is to give users an easy way to keep up to date with
other users. Activity streams can often grow very quickly and become
so large and update at such a fast pace that they become unusable for
the purpose they were intended. To ameliorate this problem an activity
stream can be ranked, giving each activity a score based on its relevancy,
bubbling relevant activities to the front or hiding activities that are
below a certain threshold. Doing this will in theory help users keep up to
date with activities that are relevant. The aim of this project is to create
a system that manages a ranked activity stream called "FanFlow” on
the photo-sharing website YouPic.com. The "FanFlow” activity stream
consists of photos uploaded by YouPic.com users which a user is a fan
of. The first part implements a system termed an activity engine which
routes each photo to the correct "FanFlow”. The second part is to
implement and evaluate ranking metrics on this activity stream.
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Chapter 1

Introduction

In this chapter, the main topic of the project and the motivation behind
it are introduced. This starts off with a presentation of the problem
background in Section 1.1. Following this, the problem formulation is
given in Section 1.2. Finally, an outline of the rest of the report is given
in Section 1.3.

1.1 Background

Modern social media has made keeping up to date with the activities
of people seamless[1]. If one of your friends on Facebook changes their
relationship status it will immediately show up in your news feed, if
someone you follow on Twitter tweets, your cellphone might buzz with
a notification that this has occurred. The information one can monitor
is virtually limitless and available the instant it happens.

This convenient model of sharing information is based on subscrib-
ing to a person’s activities and three of the most popular social networks
at the time of writing (Facebook, Twitter and Google+) use a varia-
tion of it. For example on Facebook you have the "News Feed” which
is the activities of your friends. These collections of activities are usu-
ally called activity streams[2] but go by other names such as Timelines
(Twitter) and Feeds (Google+ and Facebook).

Activities are in their simplest form small phrases consisting of an
actor, a verb, an object and a target[2] an example would be "Alice
liked a photo on Facebook” where Alice is the actor, liked is the verb,
and photo is the object and Facebook is the target. What is and what
isn’t an activity is wholly defined by the service for example the only
activities on Twitter are tweets and retweets unlike Facebook which
counts everything from updating your telephone number to commenting
on a photo as an activity. When activities are collected they make an
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activity stream. A good activity stream should form activities into a
narrative that is easy for the reader to follow and understand.

While activities are lightweight and not a lot of data is required to
represent them the sheer amount that can be produced by a user and the
need to deliver them to other users makes handling them a significant
scalability problem. On a large social network the average number of
receiving users can be as high as 100 000[3]. Even on a small service
all the tiny nuggets of information generated by every user reflected
by their number of followers can become a torrent that is difficult to
manage. Ensuring that activities reach their correct destination in a
timely manner may sound like a simple problem but at scale the system
can get overloaded. An overloaded system might see increasing delays
and in the worst case might start dropping activities.

A system that manages activity streams is called an activity engine
and the first part of this project will be describing and implementing
one. Often an activity engine is specifically tailored to a service’s needs,
for example Twitter uses the in memory database Redis to store activity
streams so that they can be retrieved in milliseconds[4]. Other services
might not prioritize fast retrieval but instead focus on things such as
space efficiency or ease of filtering the activity stream, for them the
internals of their activity engine might be radically different.

Just like a system can get overwhelmed by the amount of activities
so can a user receiving them[5], logging into their account to see a
hundred, a thousand or ten thousand updates since they last used the
service, when this happens there is need to either highlight or bring to
the top activities that are interesting[6]. Both Facebook and Google+
use some sort of ranking that is not solely chronological. While Google+
ranking has not been clearly defined, Facebook has published theirs
which they call "EdgeRank”[7]. The main idea behind EdgeRank is to
rank activities based on the affinity between the receiving user and the
creating user, the thought being that if a user interacts positively with
another’s users activities they would like to see more of them. Ranking
activities can have unintended consequences and designing them is as
much psychology as it is engineering[8].

While the usefulness for the user of ranking activity streams can
be debated (Twitter’s Timelines are strictly chronological) doing it is
a difficult problem because of the amount of activities that need to be
ranked. Ranking algorithms need to be designed to be fast so that they
don’t add unnecessary delays to the system, usually relying on caching
for important variables such as affinity score in "EdgeRank”. Creating
ranking algorithms that are both fast and increase user engagement is
the second part of this project [9].
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1.1.1 YouPic.com

YouPic.com is a photo-sharing website for professional and traveling
photographers. It has since 2012 been in Chalmers Innovation’s incu-
bator program, at the time of writing YouPic.com has 30000 users and
200000 uploaded images.

On YouPic.com users create relationships between each other by
becoming fans. Like ‘follow‘ on Twitter becoming a fan of a user is
unidirectional and doesn’t require the other user to accept the relation-
ship.

Users show their appreciation for photos by making them a ‘fa-
vorite’. A favorite is either on or off and a user can only favorite a
photo once.

The activity stream FanFlow on YouPic.com consist of the photos
from users of whom that user is a fan. In this project it will be ranked
by one of four algorithms described in chapter 3.

Figure 1.1: YouPic.com’s FanFlow activity stream, showing photos from
a selection of users.

1.2 Problem formulation

The purpose of this project is to describe, implement and analyse a
system for managing ranked activity streams (an activity engine with
a ranking function.)

Main questions this project tries to answer are:

e What are the methods an activity engine needs to implement?



1.3. RELATED WORK CHAPTER 1. INTRODUCTION

e How are these methods best implemented in context of YouPic.com?

e What is a good metric for ranking activities in the FanFlow ac-
tivity stream?

e What are the pros and cons of the implemented activity engine?

To answer these questions, first, the abstract methods of an activ-
ity engine are described and defined, then concrete implementations
of these methods are done. This leads into an analysis of the chosen
implementation, finally a conclusion with examples of extensions.

1.3 Related work

e Berkovksy et al’s paper Personalized Network Updates: Increas-
ing Social Interactions and Contributions in Social Networks [10]
provides an introduction to ranked activity streams and an imple-
mentation of a ranking algorithm. They develop a personalized
model for predicting the importance of activities in a social net-
work. Their ranking algorithm takes into account the strength
of the relationship between users and evaluates the ranking algo-
rithm based on how often the first activity in the stream is clicked.
Their conclusion is that a stream ranked with their algorithm suc-
cessfully promoted activities that were relevant to the user and
made information easier to find.

e Personalized activity streams: sifting through the river of news
by[11] written by Guy et al gives a good overview of the problem
of information overflow in activity streams. The paper gives an
explanation of the higher importance of freshness in the relevancy
of activities compared to other recommendations. They introduce
the concept of throughput, defined as the number of activities
their system produces over given period of time as a metric for
the effectiveness of activity stream recommendations. One the
filtering algorithms they describe is a called a Stream-based profile,
which is built through analysing the user’s own activity stream,
this is similar to some of the ranking algorithms used for the
FanFlow in chapter 4.

1.4 Contribution of project

The key contribution of this project is an implementation of an activity
engine for YouPic.com together with an analysis of it. Another con-
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tribution is the evaluation of different algorithms for ranking activity
streams.

1.5 Outline of report
The report is structured as follows:

e Chapter 2 presents definitions of the activity engine methods. The
definitions aim to clearly and in a concise way describe why the
methods are needed and what they do.

e Chapter 3 describes the implementation of the activity engine.
In this chapter information about the data structures and the
ranking algorithms is found.

e Chapter 4 presents an analysis of the implementation in chapter 3
with both empirical measurements of performance and theoretical
analysis of the algorithms and data structures.

e Chapter 5 a discussion of the implementation and the problem
formulation.

e Chapter 6 concludes the report by evaluating what has been done
and if it has been successful with a section on further work.



Chapter 2

Definitions

In this chapter the behavior of four core methods that make up an
activity engine are defined. These four methods will be given a concrete
implementation in the following chapter. The methods are simple so
that the trade offs in the implementation will be clear. The aim is to be
clear and concise about what these methods do and what implications
they have for the implementation.

2.1 Put

The first and most fundamental method of an activity engine is the
put method which adds an activity to an activity stream. It takes two
arguments = (an activity) and A (an activity stream) and returns an
activity stream A’ which must include x and all activities in A. The
put method should prevent duplication of activities in the stream, if x
is in A then put(x, A) should return A.

A good implementation of the put method ensures good write per-
formance. If the activity engine should be optimized for writing the put
should be as fast as possible.

2.2 Get

Reading of activity streams is done by the get method. The method
takes a pivot activity = where it begins reading, a natural number n
which is the maximum number of activities it will read and an activity
stream A. The reason for using a pivot activity instead of a numerical
offset is to avoid duplication on sequential reads. This problem can
be illustrated by imaging reading the activities from one to five and
then later reading the activities five to ten, if the range one to five has
changed during the intermittent period it is likely that five to ten will
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contain duplicates from the previous read of one to five. If the pivot
activity = does not exist in A then the returned slice should be empty.

The implementation of get affects both write and read performance
of an activity engine as activity engines can choose to implement com-
bined activity streams as unions which greatly increases the complexity
of get. This will be further explored in the next chapter.

2.3 Route

When an activity is created it does not yet belong to any activity
stream. The task of putting it in the right activity streams falls to
the route method. The route method takes two arguments, x which is
an activity and As which is a set of activity streams. route works by
applying put(z, A) to each activity stream in the set As. For example
defining a null route (no activities are added to any activity streams)
is simply passing an empty set as As.

2.4 Rank

The final method is rank which given an activity « returns an element
which has an ordering. rank is used for determining the position of
an activity in an activity stream. For example a chronological activity
stream would define rank as rank(z) = time(x) where the function
time(x) returns the timestamp of the activity .



Chapter 3

Implementation

This chapter will first explain the motivations behind the activity en-
gine and what YouPic.com wants to achieve with it, then go through a
concrete implementation of the activity engine. The activity engine will
be implemented using the abstract methods from the previous chapter.

3.1 YouPic.com’s FanFlow

YouPic.com’ FanFlow is an activity stream consisting of content by
users a user is a fan of. It is analogous to Twitter’s "Home Timeline”
substituting tweets for photos and followers for fans.

With the FanFlow, YouPic.com wishes to increase engagement with
the content on its site, the idea being that a user will be more interested
in content from users they are fans of because they have already shown
their approval of these users.

In the FanFlow activity stream the only activities are of the type
"X uploaded a photo on YouPic.com”. In standard activity format
”X” is the subject, "uploaded” is the verb, "photo” is the object and
YouPic.com is the target[2].

To try to maximize engagement with the photos the FanFlow ac-
tivity stream is ranked by one of four algorithms. The algorithms are
assigned equal groups of user and are compared by the number of fa-
vorites in each set to see which one increases engagement the most. One
of the algorithms will be a control which is just a chronological ranking.

3.2 Activities

The only activities in the FanFlow are photos, and photos are stored
by YouPic.com in the relational database MySQL. All photos have an
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integer that uniquely identifies them in the database which is called a
primary key, the photos primary key is its photo_id.

Using the photo_id in the FanFlow activity stream is a compact way
to reference photos without needlessly copying information, although
doing this adds an extra step of having to look up the photo_id in
the database. Using this approach has the extra benefit of reflecting
changes to the photo information immediately.

3.3 Fan In and Fan Out

In broad terms there are two main ways to implement activity streams,
both of which have distinct strengths and weaknesses.

The first approach is called "Fan In”[4]. In a "Fan In” system activ-
ities are stored together with metadata that determines which activity
streams they belong to, activity streams themselves are not explicitly
stored but computed on demand. The "Fan In” name comes from the
fact that when a read is requested the activities are pulled together by
some function into an activity stream. This type of system can be natu-
rally implemented in a relational database by issuing a query which acts
as the "Fan In” function. Usually this query is a join on the different
activity streams of users.

The two main advantages of "Fan In” systems are that they are fast
to write to and that they are space efficient. Writing a "Fan In” system
is fast because there is no need to worry about routing the activity at
that time. The space efficiency comes from the fact that there are no
duplicate activities.

The weakness of "Fan In” systems are that reading activity streams
is expensive because they have to be computed by a function every
time, although this can be ameliorated to a degree by caching the re-
sult. Caching the result though does not help with the fact the activity
streams need to be rebuilt every time a new activity is added. Another
weakness is that of scalability, in a distributed "Fan In” system the ac-
tivities may be scattered across several machines making the "Fan In”
function very expensive as it might have to query them all.

The second way to implemented activity streams is called "Fan
Out”[4]. A "Fan Out” system stores each activity stream separately
and when an activity is created it is copied into each one it belongs to.
The reason why it’s called "Fan Out” is because the activities are said
to fan out into each activity stream when they are created.

"Fan Out” system are good because they allow for low overhead
when reading activity streams. This is because the activity streams are
already assembled and do not need to be built on the fly when they
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are read. "Fan Out” systems is also scalable as the activity streams
are independent and all the activities needed are found in the activity
stream data structure. This makes them efficient to distribute to several
machines as a read only has to determine what machine the requested
activity stream is on.

The drawbacks with "Fan Out” systems are that they are expensive
to write to and that they take up more space than a "Fan In” system.
The cause of the expensive write is that each activity needs to be put
in each activity stream directly instead of this being done when they
are read. The space inefficiency comes from the fact an activity might
be duplicated in several activity streams, instead of as in the "Fan In”
approach where an activity resides in only one place.

To decide which approach should be used when implementing the
activity engine for YouPic.com’s FanFlow there are some question that
need to be answered:

e Will the activity stream be read more than it is written to? The
FanFlow is meant to be the main way that users explore pho-
tos on YouPic.com and therefore it is expected to be read quite
frequently. Another a very important factor to consider is the
retrieval time that a system might have. Studies have shown that
users respond poorly to slow retrieval times[12] or to retrieval
times that they cannot predict[13]. Because a "Fan In” system
uses a function to pull together activities for an activity stream
the retrieval time might be fast or slow depending on the current
load on the machine it is running on. A read operation in "Fan
out” system should both be faster and less variable in it’s retrieval
time.

e How important is scalability? YouPic.com’s ambition is to grow
as much as possible so scaling the activity engine is an important
concern. Using a "Fan In” system would make scaling trickier than
using a "Fan Out” system. In a "Fan Out” system machines could
be added incrementally to store the new users’ activity streams.

Taking into account the way in which the "FanFlow” activity stream
is to be used the decision has been made to use a "Fan Out” approach
to implementing the activity engine.

3.4 Activity Streams

The key to performance in a "Fan Out” system is choosing a good data
structure to represent activity streams.

10
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The database used to store activity streams will be the in mem-
ory advanced key value database Redis. Redis is already used by
YouPic.com for several other services and is ideal for activity streams
because it provides several data structures that can be used to imple-
mentent them.

As activity streams are simply collections of activities a natural data
structure to represent them is a list. A list is a data structure that can
represent a collection of arbitrary length. Redis has an implementation
of lists as doubly linked lists. Doubly linked lists can be traversed from
either the start or the end, but cannot be randomly accessed.

The two main advantages of using a list is that it can be of arbitrary
length and that inserting elements at the ends is cheap.

Two disadvantages of using lists is the fact that ranking is cum-
bersome and that a list can contain duplicate activities. Ranking is
difficult because inserting anywhere but the two ends of the list re-
quires extra steps, so if an activity of lower rank than the current head
comes in a computation needs to be done to find where it should go in
the list. The only ranking that works well with lists is a chronological
one, where activities are simply added to the beginning of the list. The
other problem is that lists can contain duplicates and therefore a pru-
dent put algorithm needs to check whether the list already contains the
activity before inserting it, and checking if a list contains an activity is
an expensive operation. Checking if an item is a member of a list is a
O(n) operation as every item in the list needs to be compared.

The problems with using lists to store activity streams can be solved
by using a set data structure. Redis provides two of these, one is an
unorder set and the other is sorted set. The sorted set is the better
choice because it solves both the problem of ranking and the duplicated
activites. An entry in Redis sorted set consist of an item and a score,
the item in our case will be the photo_id and score is the rank of the
corresponding activity. Pseudocode for get and put can be seen in figure
3.2 and 3.1.

function put(x, A)

score := rank(x)

return redis.ZADD(x, score, A)
end

Figure 3.1: Put method.

11
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function get(x, n, A)

i := redis.ZREVRANK(A, x)

return redis.ZREVRANGE(A, i, i+n)
end

Figure 3.2: Get method.

3.5 Routing

The activities in the FanFlow are the photos uploaded by the users a
user is a fan of. The fan relation is unidirectional and is stored as a
from_id and a to_id in a relational database. This makes YouPic.com’s
social graph a directed graph where the nodes are users and the edges
are fan relationships. The routing of activities is based on the in-degree
of the uploading user. In a directed graph the in-degree is the number
of incoming relations to a node.

When a user uploads a photo the route method of the activity engine
is called with the photo_id as an argument. The algorithm for route
works by first retrieving all of the fans of the user that has uploaded
a photo and then adding photo_id to their FanFlow activity stream by
using the put method. The route algorithm is described in psuedocode
in figure 3.3.

function route(x, As)
for A in As
put(x, A)
end

Figure 3.3: Route method.

3.6 Ranking

The rank of an activity should be based on the relevancy of the activity
to the consuming user[14]. The crux is defining what relevancy is in the
context that the activity stream is used. One nearly universal factor of
relevancy though is that it is timed based: an activity that happened
recently is more relevant than an activity that happened a year ago. The
second aspect of relevancy is the importance of the activity. Importance
is of course a nebulous concept but an illustration of it can be made

12



3.6. RANKING CHAPTER 3. IMPLEMENTATION

by thinking about activities on Facebook, what is more important your
cousin twice removed liking a picture of a cat or your partner changing
his/her relationship status? Of the two aspect of ranking an activity
(time and importance) importance is the more complex construction
but time is the more important factor. For example Twitter’s aptly
named Timelines are only ranked in chronological order.

3.6.1 EdgeRank

A good example of how an actual activity ranking algorithm works
is Facebook’s News Feed ranking algorithm EdgeRank[7]. EdgeRank
takes three inputs to rank an activity or edge as Facebook calls them,
affinity score (ue), edge weight (w.) and time decay (d.).

The affinity score is a quantification of the relationship between
the user receiving the activity and the user the creating it. The score
becomes higher the more the receiving user interacts with the creating
users activities. So if the receiving user has in the past commented or
liked activities from that user the affinity score will be high and if they
have ignored their activities the score will be low.

Edge weight is determined by the type an activity has. Facebook
has several activity types such as statuses, likes, comments and photo
uploads. Usually the activities that take more effort to create have a
higher edge weight so a comment will be scored higher than a like for
example.

The last input to EdgeRank is time decay which is calculated as 1/t
where t is time since activity was created. This input keeps the News
Feed from becoming stale with lingering old activities.

3.6.2 Static and continuous ranking

An important question to ask about a ranking function is whether it is
static or continuous.

A static ranking function only needs to be applied once to an activity
when it is created. Ranking activities by time is a simple static ranking
function because the time the activity was created never changes.

A continuous ranking function on the other hand needs to be update
every time the score changes. For example if a ranking function was
defined in terms of the number of Favorites a photo has it would need
to be reapplied every time the number Favorites on a photo changes.

As continuous functions are computationally expensive the ranking
functions that will be used will all be static. This circumvents the
problem of having to recalculate the entire activity stream every time
a new activity is added.

13
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3.6.3 Time as the base of ranking

Almost all ranking algorithms take into account how long ago an activ-
ity was created. EdgeRank does this with its time decay input which
is defined as 1/t. The problem is that "time since activity was created”
needs to be updated to accurately reflect time since the activity was
created and having to recalculate an entire activity stream every time
an activity is added is computationally expensive.

As time is the foundation of all the ranking algorithms that are
going to be tested, expressing the importance part of the ranking score
in terms of time would make it so the activity only has to be updated
whenever the importance changes. That means that an activity will
“time-travel” forward because the importance score will be added to
the time. This means that an activity with a high importance might
go forward by a day, while a low ranking one only by a minute or two.

3.6.4 Ranking 1: Chronological

The first ranking algorithm is a simple chronological ranking were the
score is the time (the timestamp) when the activity was created. This
algorithm will act as control for the other ranking algorithms we are
going to test. Psuedocode for the chronological ranking is in 3.4.

function rank(x)
return x.timestamp
end

Figure 3.4: Chronological ranking.

3.6.5 Ranking 2: Favorites

Another way to to rank activities is to look at the history of the viewing
user and whether that user has positively interacted with the creating
users’ activities before. On YouPic.com a way to positively interact
with photos is to favorite them. With this we can create a ranking that
gives priority to photos from users that have received many favorites
from the viewing user. Psuedocode for the favorite ranking algorithm
can be found in figure 3.5.

3.6.6 Ranking 3: Category

The third ranking algorithm investigated uses the number of favorites
per photo category instead of favorites per user. The logic being that a

14
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function rank(x)
ratio := favs(x.user) / total_favs
return (24*60*60*ratio) + x.timestamp
end

Figure 3.5: Favorite ranking.

user will be interested in photos that have the same category of photos
they have favorited before. Psuedocode describing this ranking algo-
rithm is in figure 3.6.

function rank(x)
ratio := category(x.user) / total_favs
return (24%60*60*ratio) + x.timestamp
end

Figure 3.6: Category ranking.

3.6.7 Ranking 4: Reputation

On YouPic.com users are given a rank using a metric called reputation
which is based on a modified version of the Hirsch index[15].

The Hirsch index is an academic impact metric which is designed
to measure the productivity and the impact of a scholars published
works[16]. To compute it a list of the papers a scholar has published
and the number of citations to each paper is needed. Then the Hirsch
index is defined as the number of papers h that have been cited at least
h times in other papers.

The Hirsch index is adapted to YouPic.com by substituting pho-
tographs for papers and favorites for citations. The metric derived is
called "reputation” and stands for the how much impact a photographer
has on the YouPic community.

The last ranking uses the "reputation” metric to rank photos. The
importance of a photo on YouPic.com is determined by the reputation of
the photographer. The idea being that a photo uploaded by somebody
with a high reputation will be of higher quality. Psuedocode for this
ranking can be found in figure 3.7.

15
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function rank(x)
rep := reputation(x.user)
return 60*rep + x.timestamp
end

Figure 3.7: Reputation ranking.

16



Chapter 4

Analysis

In this chapter an analysis of the implementation from the previous
chapter with both measurements of performance and theoretical anal-
ysis of the algorithms and data structures. In the first section we go
through each method of the activity engine and determine its complex-
ity class. In the next section each method is subject to performance
measurements with different inputs.

4.1 Complexity

Determining the complexity class of each method is important because
this can tell us about how the activity engine will work at scale. The
time complexity of the activity engine is mostly determined by the
data structures we have chosen to use in the Redis database. The
complexity of different Redis operations can be found in the Redis
documentation[17].

The implementation of the put method maps directly to the Redis
command ZADD which according to the Redis documentation has a
time complexity of O(log(N')) where N is the number of elements in the
activity stream.

To make get comply with its definition the index of pivot element
x must first be found using the Redis command ZREV RAN K, which
has the time complexity O(log(IN)) where N is the number of elements
in the activity stream. Using the index of the pivot element the correct
slice of the activity stream is retrieved by using the Redis command
ZREV RANGE with the index of x as an argument and z + n as
the offset. The ZREVRANGE command has the time complexity
O(log(N) + M) where N is the number of elements in the activity
stream and M is the number of elements returned which is necessarily
always less than n. Putting these two together the complexity of the
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implementation of get is O(log(N) + M) + O(log(N)).

The route method iterates over all the fans of the user that uploaded
activity = applying the put method to each FanFlow activity stream.
This loop has the time complexity O(M) where M is the number of fans
the user that uploaded = has. As the put method has time complexity
O(log(N)) the total time complexity is O(M * log(N)).

The rank method is O(1) as it is simply an arithmetic between
the reputation integer and the time x was uploaded. Although the
computation of the reputation is O(N)+ O(M) where N is the number
of photos and M the number of favorites.

4.2 Memory

The amount of memory the activity engine uses is determined by how
many references to activities are stored in the activity streams. Know-
ing how much memory the activity engine is going to use is crucial as
the Redis database is strictly an in memory database.

A quick estimate of how many references there are in the system
is just taking the median number of relationships each user has and
the median number of photos each user has uploaded. Having these
two numbers an estimation can be calculated by the simple formula
R % P % Uiot where R is the median number of relations, P the median
number of photos each user has uploaded and Uy, the total number of
users in the system.

The maximum number of references happens when the social graph
between users is fully connected i.e. everyone is a fan of everyone else.
In that case the number of references to activities is (Uiot — 1) x Px Uyot
where P is the median number of uploaded photos per user and U,ot is
the total number of users in the system.

Because Redis is an in memory database unbounded growth of ac-
tivity streams can be dangerous as when the database runs out of mem-
ory it becomes unresponsive or shuts down. Therefore on production
systems the length of activity streams is usually capped at some fixed
number. In this case the maximum number of references in the system
is L * Uyot where L is the maximum length of an activity stream. This
is beneficial because the cap L can be decreased as the number of users
increase, thus thwarting memory problems.

4.3 Performance

In this section the performance of the implemented activity engine will
be evaluated using test data. The performance is divided into two
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parts: one is the time it takes to route the activities and the other is
the amount of space that is taken up by the stored activities. The script
that evaluates the activity engine takes three arguments: the number
of users in the system, the number of relationships in the system and
the number of activities to be published.

Figure 4.1: Space performance with 1000 users and 1000 relationships
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In figure 4.1 we can see the progression of memory usage when we
increase the number of activities in the system. As we can see from the
graph the memory usage is linear with the number of activities. The
number of users in the system is a 1000 and the number of relationships
are 1000 making the median outdegree of the social graph 1.

Figure 4.2 shows the usage of memory when we increase the number
of fan relationships in the system. Just like when we increase the activi-
ties, the memory usage increases linearly as predicted by the analysis of
the system. The number of users in the system is 1000 and the number
activities created in the system is 1000. The space consumed increases
because the activities are copied into each users activity stream.

Figure 4.3 shows the same test as in figure 4.1 but instead of space
the time it takes to route the activities is measured. The time to route
the activities in the system increases linearly.

Figure 4.3 shows the same test as in figure 4.2 with the time mea-
sured instead of the space.
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Figure 4.2: Space performance with 1000 users and 1000 activities
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Figure 4.3: Time performance with 1000 users
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Figure 4.4: Time performance with 1000 users and 1000 activities
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4.4 Evalution

4.4.1 User engagement on YouPic.com

The overarching goal of an activity engine is to increase user engagement
with content on the service. In the context of YouPic.com engagement
with content can be said to be how many "favorites” a photo gets. If
this metric increases when the activity engine is introduced then we
can say that the activity engine has been successful. This is of course
easier said than done because YouPic.com is constantly changing its
user interface. This iteration of the Ul adds confounding factors in the
data, making it difficult to parse out the trend for the activity engine.
Nevertheless an attempt has to be made to measure if the activity
engine has had any positive effect on the user engagement. To do this
I have decided to measure the favorites per photo before and after the
introduction of the FanFlow activity stream. Taking May 27, 2013 as
the date at which FanFlow was added to YouPic.com we can see from
Figure 4.5 that the favorites per photo has increased substantially.
The increase in engagement with content by activity streams is sup-
posed to come from the fact that the activity streams serve up more
relevant content. The hypothesis being that a user is more prone to
engage with content that he/she finds relevant. As we can see this is
what has happened at YouPic.com since the introduction of the Fan-
Flow activity stream. Users are getting photos from other users they
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Figure 4.5: Favorites per photo
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have actively shown interest in by becoming fans of them, presumably
because they like their photos. Increasing this type of engagement
makes users more likely to come back to the site because they get more
feedback on their photos and more interaction with other users|[18].

Taking into account the hypothesis effect of the activity engine and
the actual result we can determine that the activity engine has at least
been correlated with an increase in favorites on YouPic.com. The user
engagement increased in the way we hoped and the activity engine
performed well.

4.4.2 Ranking algorithms

In section 3.6 we define four different ranking algorithms that are going
to be evaluated. The way chosen to evaluate the ranking algorithms is
by doing what is called an A/B test. An A/B test is a simple random-
ized experiment where a users are segmented into equal groups each
given a variant of the experiment. When the A/B test is concluded
some metric is measured to see which of the variants score the highest.
Testing the ranking algorithms is done by dividing the user base into
four equal groups and assigning them each on of the ranking algorithms.
The groups are created by taking the user_id modulus 4, if the result
is 0 then that user is assigned ranking method 1 and so on.

The performance of the different ranking algorithms is charted in
Figure 4.6. The cumulative number of favorites is used to show the
different impact the ranking algorithms have on the number of favorites.
At the 19th of December the top ranking and the bottom ranking differ
by 38% favorites.

The ranking algorithm that resulted in the most favorites was the
one that took into account the user’s reputation score. As the reputa-
tion metric gives a higher score to those that have contributed a lot of
good quality photos. This points to the fact that the reputation metric
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Figure 4.6: Evaluation of the different ranking algorithms described in
chapter 3.
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might be a good indicator whether future photos from a user will result
in more engagement. The ranking algorithm that took into account the
amount of favorites that a user had given a category did poorly and
didn’t not beat the control chronological ranking.
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Chapter 5

Discussion

This chapter discusses the implementation and the results of the anal-
ysis. The goals set up in the introduction will serve as an outline for
this chapter.

5.1 General framework

One of the goals of this project was to find a set of simple methods that
can be implemented to create an activity engine. For these methods
to be considered good they need to be implementation agnostic. This
means that they are general enough so that they can implemented in
several programming languages and computer architectures. The meth-
ods also have to be precisely described so as there is no ambiguity as
to what they are intended to do.

I would argue that if the methods described in chapter 2 are imple-
mented as per their definition, a correct activity engine would result.
Also that the definitions are flexible enough that they can have plurality
of implementations.

5.2 Performance

Two questions need to be answered about the performance of an ac-
tivity engine. The first is whether it copes well with the current input,
and the second being at what size input does the performance become
unacceptable.

The activity engine that is running on YouPic.com is currently han-
dling the input very well. Every day there are about 5000 photos up-
loaded to the service and with an average indegree of 3.473 that would
make an average of 17358 references added to the activity engine per
day.
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An activity engine becomes unusable when the time it takes to pro-
cess an activity is larger than the interval at which activities are added
to it. This means that if it took 10 second for the activity engine to
process a photo on YouPic.com and photos were uploaded every 9 sec-
onds then the activity engine would be broken because photos would
be queued up in perpetuity waiting to the processed.

The above scenario is simplistic though because it assumes that only
one activity is processed at a time, in fact several route methods can be
run in parallel because they do not depend on each other or in which
order they are executed. As long as the route method has the activity
and the list of activity streams it can run at anytime.

Another important performance concern is whether the activity en-
gine is horizontally scalable[19]. Being horizontally scalable means that
the activity engine can run on an arbitrary number of computers and
is not dependent on running in a single unified environment. A simple
way to scale the activity engine in practice would first be to distribute
the keys used by the redis database to several redis instances. This
could be accomplished by using consistent hashing[20] of the keys to
determine which instance has which keys. Thereafter the routing and
reading of activities be done by any number of machines because both of
these methods are not dependent on the order which they are executed.

5.3 Future work

Future work that is hinted at in the discussion is the issue of scal-
ability and making the activity engine work in a distributed manner
across several machines. With the "Fan Out” approach described in
this report scaling the system should be straight forward because the
activity streams do not depend on each other. One could imagine sim-
ply distributing activity streams on to other machines using for example
consistent hashing[20].

Another area that can be expanded on is the ranking. The ranking
algorithms used in this project are adequate but basic and do not incor-
porate all the data about a user and their preferences. There are many
opportunities to create new ranking algorithms, one interesting method
would be to apply the concepts from machine learning. With machine
learning a ranking algorithm could be trained on the preferences of a
user and in doing so create personalized experience. For example one
could create a classifier and uses the favorite photos of a user as the
training set. This classifier could then be used to rank the photos in the
activity stream. It would be a challenging task to make such a system
fast and scalable.
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Information filtering systems such as recommendation systems could
also be adapted to ranking activity streams. Recommendation systems
try to predict the rating a user would give to an item. In this project
where there are no ratings and the users only positivly engage with
photos through "favorites” the best approach would probably be to use
an item-to-item recommendation system. One such widley used system
is Amazon.com’s collaborative filtering[21] which could be adapted to
this project use case.
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Chapter 6

Conclusions

The overall purpose of this project has been to explore ranked activity
streams. This has been done first by asking the question what ab-
stract methods are needed to create a system to handle ranked activity
streams? An answer to this question is given in chapter 2 where four
methods are described that when implemented will create an activity
engine. The abstract methods are then given concrete implementations
in chapter 3. In this chapter four ranking algorithms are also imple-
mented that are are later evaluated.

The rest of the report is dedicated to analysis and discussion about
the implemented activity engine. In chapter 4 the activity engines per-
formance is analysed looking at both the theoretical performance us-
ing complexity theory and at the empirical performance with sample
datasets. The analysis shows that the activity engine performs accept-
ably for the scale it was intended.

In chapter 4 we also discuss the evaluation of the four ranking met-
rics implemented in chapter 3. The evaluation is done by partitioning
the user base into four equal groups and seeing which group has the
most favorites. The algorithm that was the clear winner was the one
that took into account the reputation of the uploading user. This result
should point readers in the direction of what would be a good ranking
of activities in a content based activity stream.

Chapter 5 is a discussion about the goals that an activity engine
should achieve. Answering questions such as, has the activity stream
increased engagement? Or whether the general interface defined in
chapter 2 is viable? From data gathered at YouPic.com we can see
that engagement has increased, but whether this is due to the activity
stream or other changes to the website is inconclusive.
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