
Multi-Object Tracking using either End-
to-End Deep Learning or PMBM filtering
Master’s thesis in Systems, Control and Mechatronics

Erik Bohnsack, Adam Lilja

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019:05

Multi-Object Tracking using either End-to-End
Deep Learning or PMBM filtering

ERIK BOHNSACK
ADAM LILJA

Department of Electrical Engineering
Division of Signal Processing

Chalmers University of Technology
Gothenburg, Sweden 2019

Multi-Object Tracking using either End-to-End Deep Learning or PMBM filtering
ERIK BOHNSACK
ADAM LILJA

© ERIK BOHNSACK, ADAM LILJA, 2019.

Supervisor: Selcuk Cavdar, Volvo Group Trucks Technology
Examiner: Karl Granström, Department of Electrical Engineering

Master’s Thesis 2019
Department of Electrical Engineering
Division of Signal Processing
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: To the upper left a point cloud from an oracle view. To the lower left a Bird’s
Eye View snapshot of the same point cloud. To the right, the corresponding image
and tracking visualization showing the PMBM filter using a Constant Acceleration
motion model on simulated data from KITTI[1].

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Multi-Object Tracking using either End-to-End Deep Learning or PMBM filtering
ERIK BOHNSACK
ADAM LILJA
Department of Eletrical Engineering
Chalmers University of Technology

Abstract
A vital part of autonomous vehicles is the ability to perceive the surrounding en-
vironment in order to navigate safely. Multi-Object Tracking, solving the issues of
how many objects there are and their current dynamic state, is key to a vehicle’s
perception system. Tracking has traditionally been done in a tracking-by-detection
way, relying on receiving measurements from a detector of some sort. Recent re-
search has introduced end-to-end tracking using Deep Learning, jointly reasoning
over detection, tracking and prediction. The aim of this thesis is to compare a
conventional Bayesian filtering algorithm, a Poisson Multi-Bernoulli Mixture (PMBM)
filter, with an end-to-end Deep Learning Neural network.
The end-to-end neural network (ETENN) show to be hard to generalize for data it
has not trained on, but could possibly improve if more training data is available.
The PMBM filter performs well, even when fed with noisy measurements.

All code can be found at https://github.com/erikbohnsack/pmbm and https:
//github.com/erikbohnsack/etenn.

Videos can be found via www.adamlilja.com/m-thesis

Keywords: Multi-Object Tracking, MOT, Deep Learning, Neural Networks, Bayesian
Filtering, Poisson Multi-Bernoulli Mixture, PMBM, Fast-and-Furious, Artificial In-
telligence, Autonomous Vehicles.

v

https://github.com/erikbohnsack/pmbm
https://github.com/erikbohnsack/etenn
https://github.com/erikbohnsack/etenn
www.adamlilja.com/m-thesis

Acknowledgements
We would like to extend our humblest gratitude to our academic supervisor Karl
Granström for his help throughout the spring. This implementation of a PMBM
algorithm wouldn’t have existed without you.

Also, thanks to professor Lennart Svensson for initial discussion and ideas regarding
the thesis. Thanks to Yuxuan Xia for quick and elaborative answers on complicated
questions.

Thanks to Volvo Group Trucks Technology for having us, where a special thanks
go out to our supervisor, Selcuk Cavdar. You may eat slow, but you think fast.
Thanks to Saimir Baci for all help, quick wit and wise quotes. Also, thanks to
visiting scholar Eren Erdal Aksoy for asking the uncomfortable questions.

Erik Bohnsack, Adam Lilja, Gothenburg, May 2019

vii

Contents

List of Figures xiii

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Problem Formulation . 2
1.2 Related Work . 2

1.2.1 2D Object Detection . 2
1.2.2 3D Object Detection - Camera 2
1.2.3 3D Object Detection - LiDAR 3
1.2.4 Conventional Tracking . 3
1.2.5 Deep Learning Tracking . 4

1.3 Structure of the Report . 4

2 Poisson Multi-Bernoulli Mixture Filter 5
2.1 Theory . 5

2.1.1 Probability theory . 5
2.1.1.1 Bernoulli Distribution 6
2.1.1.2 Poisson distribution 6
2.1.1.3 Gaussian distribution 6
2.1.1.4 Uniform distribution 7

2.1.2 Bayesian State Estimation . 7
2.1.2.1 Bayesian distributions 7
2.1.2.2 Prediction and measurement update 7
2.1.2.3 Kalman Filter . 8
2.1.2.4 Unscented Kalman Filter 9

2.1.3 Dynamics . 10
2.1.3.1 Motion Models . 10
2.1.3.2 Measurement Models 12

2.1.4 Set Theory . 12
2.1.5 Poisson Multi-Bernoulli Mixture Filter 14

2.1.5.1 Hypotheses . 16
2.1.5.2 Undetected Objects 17
2.1.5.3 Detected Objects . 18
2.1.5.4 Generating new hypotheses 20

ix

Contents

2.1.5.5 Reduction . 21
2.1.5.6 Estimation . 22

2.2 Implementation . 22
2.2.1 Remarks on the Bayesian Filtering 23

2.2.1.1 Models . 23
2.2.1.2 Uncented Kalman Filter 25

2.2.2 Computational stability . 25
2.2.3 Hypotheses structures . 25
2.2.4 Partial Uniform distribution for undetected objects 26
2.2.5 Prediction . 28
2.2.6 Update . 29

2.2.6.1 Misdetection hypothesis 29
2.2.6.2 Detection hypotheses 30
2.2.6.3 Possible new targets hypotheses 30
2.2.6.4 Undetected Gaussian distributions 30

2.2.7 Generating global hypotheses 31
2.2.8 Estimation and predicted trajectory 32
2.2.9 Reduction . 32

2.2.9.1 Recycling Tracks . 32
2.2.9.2 Hypothesis Reduction 32

2.2.10 Tuning . 33

3 ETENN - Artificial Neural Network 35
3.1 Theory . 36

3.1.1 Basic Components and Layers 36
3.1.1.1 Neurons . 36
3.1.1.2 Convolutional layer 36
3.1.1.3 Fully connected layer 37
3.1.1.4 Activation functions 37
3.1.1.5 Pooling . 38
3.1.1.6 Batch Normalization 38
3.1.1.7 Deconvolution (up-sampling) layer 39
3.1.1.8 Recurrent layer . 39
3.1.1.9 Residual Building Block (ResBlock) 40

3.1.2 Basic Operations . 40
3.1.2.1 Forward Propagation 40
3.1.2.2 Loss Function . 41
3.1.2.3 Back Propagation 42

3.2 Implementation . 43
3.2.1 Data Representation . 43

3.2.1.1 Bird’s Eye View Representation 43
3.2.1.2 Voxel Feature Encoding 43

3.2.2 Data Fusion . 45
3.2.3 Prior boxes . 45
3.2.4 Network Architecture . 46

3.2.4.1 Regression Head . 49

x

Contents

3.2.4.2 Detection Head . 49
3.2.5 Matching . 49
3.2.6 Loss . 50
3.2.7 Decoding Tracklets . 51

4 Experiments 53
4.1 Evaluation Measures . 53

4.1.1 GOSPA . 53
4.1.2 CLEAR-MOT . 53

4.2 Dataset . 54
4.3 PMBM . 55
4.4 ETENN . 55
4.5 PMBM with ETENN detections . 56
4.6 Hardware setup . 56

5 Results 57
5.1 PMBM . 57

5.1.1 Predictions . 60
5.1.2 Single classes . 62
5.1.3 Noisier data . 63
5.1.4 Hard cap global hypotheses 63

5.2 ETENN . 65
5.2.1 Prediction . 68

5.3 PMBM with ETENN detections . 68

6 Discussion 71
6.1 PMBM . 71
6.2 ETENN . 73
6.3 PMBM with ETENN detections . 74
6.4 Future work . 74

7 Conclusion 77

Bibliography 79

A Appendix - PMBM I
A.1 Statistics for all sequences comparing motion models I
A.2 Statistics for all sequences comparing tracked class VI

B Appendix - ETENN VII
B.1 Statistics for all sequences comparing ETENN VIII

xi

Contents

xii

List of Figures

2.1 Variable definitions of Bicycle Model in accordance to [2] 12
2.2 Some basic set operations where the result of respective operation is

marked blue . 13
2.3 Three sets and three points. A ∈ S1, B ∈ S1, B ∈ S2, and C ∈ S2

are all true. S1 and S2 are joint since their intersection is non-empty.
S3 however is disjoint from both S1 and S2. 13

2.4 Flowchart of the PMBM Filter algorithm, showing the three steps, pre-
diction, update and reduction, with their respective details. Here
Solve Murty’s regards the association optimization algorithm called
Murty’s algorithm. 15

2.5 Example of track-oriented PMBM hypothesis tree. The tree shows the
single target hypothesis association history for object x1 and x2 and
a new potentially detected object x3. The figure is kindly borrowed
from [3]. 16

2.6 The uniform distribution area together with the KITTI [1] ground
truth positions of all objects over all training sequences. The circle
sector has radius = 100m and ranges between angles 0.78 and 2.35
radians. 27

3.1 Example of an Artificial Neural Network with one input, one hidden
and one output layer. The information from the input is combined
to produce a single output. 36

3.2 Toy example of convolution with an example filter of size 2× 2 with
stride 2. A linear combination of the input and the filter is output. . 37

3.3 Toy example of maxpooling with a filter being 2 × 2 with stride 2.
The maximum value within the filter kernel is passed as output. . . . 38

3.4 Deconvolution example from [4]. The information in the blue square
is together with the applied filter (gray) outputting the information
in the green layer. 39

3.5 The output of the layer in one iteration is saved to, in combination
with the new input, affect the next output. 39

3.6 Residual Learning Building Block introduced by He et. al in [5]. In
this figure two hidden layers are shown and the output of the last is
simply element-wise added to the input. 40

xiii

List of Figures

3.7 Forward propagation through one layer. Three inputs are weighted
and summed. A bias is also added before entering an activation func-
tion yielding the output. 41

3.8 Back propagation through one layer. Three inputs are weighted and
summed. A bias is also added before entering an activation function
yielding the output. 42

3.9 PointPillars Feature Encoding Network overview. Figure is kindly
borrowed from [6]. 44

3.10 Visualization of additional information added in the point encoding
used in the VFE. The red point is the arithmetic mean of all non-zero
points in the pillar and the blue point is the pillar’s center. 44

3.11 Voxel Feature Encoding Layer introduced by Zhou and Tuzel in Vox-
elNet [7]. 45

3.12 The ETENN network structure. Three consecutive 2-layered ResBlock
followed by a single 3-layered ResBlock and the two network heads. . 46

3.13 The ETEnn network structure. Two consecutive 2-layered ResBlock
followed by a single 3-layered ResBlock and the two network heads. . 47

3.14 Illustration showing the sizes of the tensors passing through the ETENN
network. The downsamplings are defined in Figure 3.12 and the last
dimension of the incoming tensor vector, C, depends on the choice of
input method, being larger for PointPillar encoding compared to BEV
encoding. 47

3.15 Illustration of the detection and regression tensors coming out of the
networks respective head. The incoming tensor’s last dimension F is a
generalization to cover the different sizes of detection versus regression. 48

3.16 Illustration of the logic when reasoning over time for the decoding
tracklets algorithm. At the current time tk and for n−1 time steps in
the future, the algorithm jointly reasons between the predictions from
the current time step output and the past time steps output, which in
this figure is represented by the black rectangles. For measurements
Z the superscript refers to the measurement’s time of origin and the
subscript the time of prediction of the measurement. 51

5.2 Average metrics over all sequences for the PMBM filter with different
Motion Models. 57

5.1 Image and Bird’s Eye View of the world in the same frame (18) of
sequence (12) for four different models. The trajectory of a track is
displayed as a full drawn line, the current state as a circle, the predic-
tions for 10 time steps ahead as triangles. The current measurements
are the tiny red edge boxes (transparent within) whereas the ground
truths are seen as slightly faded red rectangles, where the ground
truth width and height is used for visualization purposes only. 58

5.3 All metrics for all sequences. The red horizontal line is the mean for
that motion model. All numbers can be seen in the tables in Appendix
A.1. Note that the y-axis limit for the number of ID switches is capped
for visualization purposes. 59

xiv

List of Figures

5.4 The GOSPA score of the prediction for each time step ahead (k ∈
[1, 10]). Lower is better. 60

5.5 The GOSPA score of the prediction for each time step ahead (k ∈
[0, 10]) of a sub-set of the sequences. Lower is better. It is seen
that the domestic performance among the motion models varies a
lot depending on the sequence. For instance, the predictions from
the Bicycle Model is very poor in sequence 17, where there are only
pedestrians, and very good in sequence 18 where there only are cars. . 61

5.6 Average metrics over all sequences for the PMBM filter tracking only
cars and pedestrians respectively. 62

5.7 Average metrics over all sequences for the PMBM filter tracking using
noisier data. 63

5.8 Image and Bird’s Eye View of the world in the same frame (198) of
sequence (5) for four different models when running on noisier data.
Same structure of plotting as explained in Figure 5.1. 64

5.9 Tracking results on validation data. The left figure shows how the
network misses an object and spawns two false positives. The right
figure shows how the network misses all present objects. 65

5.10 Average metrics over all sequences for the ETENN using different net-
work architectures. 66

5.11 Image and Bird’s Eye View of the world in the same frame (132) of
sequence (0) for four different network structures. The trajectory of
a track is displayed as a full drawn line, the current state as a circle,
the predictions for 10 time steps ahead as triangles. The current mea-
surements are the tiny red edge boxes (transparent within) whereas
the ground truths are seen as slightly faded red rectangles, where the
ground truth width and height is used for visualization purposes only. 67

5.12 The GOSPA score of the prediction for each time step ahead (k ∈ [1, 5])
for the different network structures of ETENN. 68

5.13 Average metrics over all sequences for PMBM using ETENN detections
and ETENN tracking. 69

5.14 The GOSPA score of the prediction for each time step ahead for ETENN
detections + PMBM and ETENN tracking predictions (k ∈ [1, 10] and
k ∈ [1, 5] respectively). 69

A.1 Each sequence’s metrics for all sequences. The red horizontal line is
the mean for that motion model. VI

B.1 Each sequence’s metrics for all sequences. The red horizontal line is
the mean for that motion model. VIII

xv

List of Figures

xvi

List of Tables

3.1 The prior boxes the network can be tweaked in order to fit the object
as well as possible. 46

4.1 Number of frames and unique dynamic objects (cars, pedestrians,
cyclists, vans, etc) in each sequence in the Kitti Tracking Dataset. For
clarity the portion of cars and pedestrians are also displayed separately. 54

5.1 Average metrics for sequences 0-20. 57
5.2 Average metrics over all sequences for the PMBM filter tracking only

cars and pedestrians respectively. 62
5.3 Average metrics over all sequences for the PMBM filter tracking using

noisier simulated data. 63
5.4 Average metrics over all sequences for the PMBM filter tracking using

max 5 cap of global hypotheses. 65
5.5 Metrics for different network architectures. All sequences but 4, 7,

15, 16, and 17 as they were used for validation when training. 66
5.6 Results for all sequences except for 4, 7, 15, 16, and 17 69

A.1 Results for sequence 0 . I
A.2 Results for sequence 1 . I
A.3 Results for sequence 2 . I
A.4 Results for sequence 3 . II
A.5 Results for sequence 4 . II
A.6 Results for sequence 5 . II
A.7 Results for sequence 6 . II
A.8 Results for sequence 7 . II
A.9 Results for sequence 8 . III
A.10 Results for sequence 9 . III
A.11 Results for sequence 10 . III
A.12 Results for sequence 11 . III
A.13 Results for sequence 12 . III
A.14 Results for sequence 13 . IV
A.15 Results for sequence 14 . IV
A.16 Results for sequence 15 . IV
A.17 Results for sequence 16 . IV
A.18 Results for sequence 17 . IV
A.19 Results for sequence 18 . V

xvii

List of Tables

A.20 Results for sequence 19 . V
A.21 Results for sequence 20 . V

xviii

List of Algorithms

2.1 Pseudo code for one prediction, update, estimation and reduction
step for the PMBM algorithm . 15

2.2 Pseudo code for detected object’s prediction in PMBM algorithm 28
2.3 Pseudo code for the update step in PMBM algorithm 29
2.4 Pseudo code for generating new global hypotheses in PMBM algorithm 31

3.1 Pseudo code for decoding tracklets algorithm 52

xix

List of Algorithms

xx

1
Introduction

Autonomous vehicles have over the last decade headlined tech news due to its poten-
tially huge impact on our society. As we all rely on individual, public and industrial
transport it is safe to say that improved efficiency in transportation leads to higher
efficiency in society. In the race for full automation we have seen several vehicle
automation applications in production vehicles such as adaptive cruise control and
lane-keeping assistance emerge. More holistic systems are, however, yet to see the
light of being production-ready.

A vital part of autonomous vehicles is the ability to perceive the surrounding en-
vironment in order to safely navigate. The perception accounts for many different
aspects such as detecting nearby vehicles, pedestrians, drivable road, traffic lights,
and road signs. High-performing Computer Vision algorithms using Deep Learning
have over the last couple of years revolutionized the possibilities to detect surround-
ing objects in real-time, using monocular cameras, stereo cameras, or LiDAR sensors.
However, an object detector will only tell you features such as where the object is,
what it is and the size of it. To plan ahead it is important to estimate the surround-
ing objects’ motion and predict their future positions. Therefore a multiple object
tracker is needed, being able to estimate the surrounding objects’ dynamic state.

Multi-Object Tracking (MOT) can be described as the problem of both determining
the number of dynamic objects and each object’s dynamic state. In automotive sys-
tems, this has earlier been done using a cascade approach, propagating detections
of objects as measurements to Bayesian filtering methods. This is by all means
a complex task, due to possible appearance changes of objects and surroundings,
occlusion of objects, and data association, i.e. determining which measurements
should be associated with which objects. Different to the cascade approach, recent
Deep Learning progress has enabled end-to-end tracking algorithms using raw sensor
data [8, 9, 10].

The focus of this thesis is exploring the differences between a Bayesian filtering
algorithm and an end-to-end deep learning algorithm. For tracking-by-detection,
the Poisson Multi-Bernoulli Mixture (PMBM) filter [11] has shown to be a promising
tracking algorithm by yielding high performance while keeping the computational
cost down [12]. Using LiDAR data has shown very promising results in object detec-
tion using PointPillars [6]. In combination with [8] and [9] this opens up for a novel
end-to-end neural network (ETENN) approach.

1

1. Introduction

1.1 Problem Formulation
The goal of this thesis is to investigate the difference between a Bayesian tracking-
by-detection algorithm and a Deep Learning End-to-End method by implementing
state-of-the-art for the two cases. A Poisson Multi-Bernoulli Mixture (PMBM) filter
algorithm for the Bayesian case and a neural network inspired by Fast and Furious
[8] for the End-to-End deep learning case. The PMBM filter is to be implemented for
several different motion models and to be tested on both simulated data and detec-
tions from the End-to-end neural network (ETENN). The end-to-end deep learning
network is to be tested using two input processes and two network structures.

1.2 Related Work
Starting already in the 1960’s with tracking aeroplanes using radar for air-traffic
safety research within object tracking is still on-going. Traditionally, object track-
ing has been rooted in statistics and filtering, using models describing measurements
and states. In the tracking survey Tracking the Trackers [13], Leal-Taixé et al. anal-
yses state-of-the-art in multiple object tracking based on submissions to the MOT15
[14] or MOT16 [15] benchmarks.

Lately, a new branch of tracking has emerged using neural networks for solving not
only the detection of objects, but also the tracking problem as of whole. The survey
[16] focuses on providing an overview of the machine learning approaches currently
available to solve the data association problem in multiple object tracking. They do
not compare any methods, but they provide a good overview of the current litera-
ture available in the different areas.

We will in this chapter try to further discuss the current state-of-the-art in Object
detection, Conventional tracking, and Deep Learning tracking.

1.2.1 2D Object Detection
Deep Learning has been proven to perform very well for object detection in images.
So called two-staged detectors, proposing interesting regions and classifying those
regions, performed very well, but were far too slow to apply in real-time (24Hz) oper-
ation [17, 18, 19]. S. Ren et al. introduced region proposal networks in [20], almost
achieving real-time while maintaining high accuracy. Later one-staged detectors
[21] [22] performed slightly worse when it comes to accuracy, but were profoundly
quicker. Accuracy for one-staged detectors have lately increased by novelties intro-
duced in [23] [24] [25].

1.2.2 3D Object Detection - Camera
There are currently algorithms not only for predicting 2D-bounding boxes, but also
3D-bounding boxes, despite using only mono cameras [26]. However, using stereo
cameras and LiDARs has shown better performance [27].

2

1. Introduction

1.2.3 3D Object Detection - LiDAR

The combination of a point cloud’s huge amount of data and the sparsity of the
data, does not fall as natural with CNNs as images. PointNet [28] combat this by
using the raw point cloud, point wise, as input together with fully connected layers.
Instead of processing each point, it is common to divide the point cloud into a grid
of some sort to use convolution layers. In [29, 30] they use extended 2D object
detection by using 3D convolutions over the 3 dimensional space, which show good
results, but are notoriously slow. To gain speed, [31] and [32] project the point cloud
as a 2D image with channels, similar to an RGB image, but from a Bird’s eye view
(BEV) perspective. In [31] they encode height channels, while [32] creates a three
channel image with height, intensity and density of the point cloud in each pixel.
Similarly, [33] and [34] projects to a BEV, but with both height maps, intensity and
density. Chen et al. [33] also includes a front-view projection and an RGB image
as well. To find an optimal representation, [7] introduces a Voxel Feature Encoding
(VFE) layer, which learns how to represent each voxel as optimal as possible. Both
[35] and [6] extend this work, [35] by introducing a sparse convolutional network to
increase efficiency, and [6] by encoding pillars which reduce the point cloud to a 2D
image with a number of feature channels.

1.2.4 Conventional Tracking

There are several developed techniques to battle the problem of multi-object track-
ing using filtering. In [36] they name Joint Probabilistic Data Association (JPDA),
Multiple Hypothesis Tracking (MHT), and Random Finite Sets (RFS) as the most
common approaches. In [37] they state that JPDA and MHT are well established,
while RFS is an emerging paradigm that has gotten a great deal of attention during
the last decade. JPDA is a method to associate measurements at each time instance
with existing objects by using a joint probabilistic score. The MHT revisited [38]
shows good results in the 2017 survey by Leal Taixé et al. [13], while JPDA revisited
[39] performance lags behind the other algorithms.

For keeping the label information from detectors one can use Labeled Random Fi-
nite Sets or Generalized Labeled Finite Sets, something which is done in [40, 41].
Here both undetected and detected objects as well as clutter is modelled as labeled
multi-Bernoulli distributions.

Another interesting way of using RFS is called Poisson Multi-Bernoulli Mixture
(PMBM), first introduced in [42] and [43] and is thoroughly investigated in [11] where
also derivation and implementation is presented. Here all detected objects are mod-
elled as Bernoulli distributions, whereas the undetected objects and the clutter is
modeled with Poisson’s distribution (hence the name Poisson Multi-Bernoulli mix-
ture). In [12], the authors evaluates different multi-Bernoulli conjugate prior filters
and argue that PMBM has the overall best performance concerning the metric GOSPA
[44] and computational time.

3

1. Introduction

1.2.5 Deep Learning Tracking
In a tracking-by-detection sense, receiving detections as measurements from an ob-
ject detector, [45] uses Recurrent Neural Networks (RNN) and Long Short Term
Memory (LSTM) networks to track and solve the data association. Xiang et al. for-
mulates the problem as a reinforcement learning problem, where they model the
objects as Markov Decision Processes.

Algorithms for visual tracking performs well, often by crafting affinity measures com-
paring two consecutive video frames. In [46] they use RNNs with affinity measures
for appearance, motion and interaction. Zhu et al. [47] proposes a dual matching
attention network to handle the data association, using matching patterns of image
pairs. Tang et al. [48] formulates the problem as a graph-based problem, using ap-
pearance matching. Choi [49] proposes a local flow descriptor, encoding the relative
motion pattern between two temporally different detections. In [50] they use a deep
feature extractor, an affinity estimator and the Hungarian Algorithm. GOTURN
[51] is a simple but highly effective single object tracker, using the past detection to
search and compare regions over time. Leal-Taixé et al. [52] matches associations
by learning a Siamese CNN to match based spatial-temporal features.

Luo et al. [8] proposes an end-to-end approach called Fast and Furious, due to its
efficiency, which jointly reasons about 3D detection, tracking and motion forecasting
using only a single convolutional neural network. They input past n frames of LiDAR
data to the network to be able to reason over time and predict the object’s location
n frames ahead. Frossard et al. [10] uses both camera and LiDAR data, inferring
for each time step separately, to output detections which they input to a matching
network suggesting connections over time.

1.3 Structure of the Report
The report starts with outlining the theory behind and our implementation of the
PMBM filter in chapter 2. We proceed by going through the theory of neural networks
and the implementation of our end-to-end neural network ETENN in chapter 3. The
results of the experiments discussed in Chapter 4 are then presented in chapter 5,
Results. Discussion regarding the method and results are held in chapter 6 and the
thesis is concluded in chapter 7.

4

2
Poisson Multi-Bernoulli Mixture

Filter

The Poisson Multi Bernoulli Mixture (PMBM) filter is a, relatively, new approach to
the Multiple Object Tracking (MOT) problem. It is able to track object by using
Bayesian recursion, while it models undetected objects and detected objects as two
different probability distributions. It has been proven to outperform other tech-
niques [11].

2.1 Theory

In order to understand how to implement a PMBM filter, some basic theory is neces-
sary. The PMBM filter is a Bayesian recursion algorithm for Multi-Object Tracking,
it naturally lies on the foundation of Probability theory, Set Theory and Bayesian
State Estimation.

2.1.1 Probability theory

The Bayesian interpretation of probability, describes the quantities of interest as
random. It regards probability as a degree of belief of a quantity or event, where
the degree of belief is set from a prior knowledge and updated based on retrieved
measurements/data. Another interpretation of probability is the frequentism, which
describes the quantities of interest as unknown, but deterministic. The work in this
thesis relies on Bayesian statistics.

The probability density function (PDF) represents a distribution of a continuous
random variable and is used to specify the probability of a random variable falling
within a certain range of values. Integrating over the PDF will give the probability
that the random variable will fall in that specified integral interval. The integral for
a PDF naturally sums to one. The probability mass function (PMF) is similar to PDF,
but represents the discrete random variables probability of taking a specific exact.

Probability theory holds many types of distributions. Bernoulli, Poisson, Gaussian
and Uniform are important distributions used in the thesis.

5

2. Poisson Multi-Bernoulli Mixture Filter

2.1.1.1 Bernoulli Distribution

The Bernoulli distribution is a special case of the Binomial distribution, but for a
single trial only. The binomial can be described of the discrete probability of how
many successes k you get when you conduct n independent experiments, each with
a probability p to result in 1 or q = 1− p to result in 0 with the PMF

f(k, n, p) =
(
n
k

)
pk(1− p)n−k (2.1)

The factor
(
n
k

)
is the binomial coefficient, which is how many number of different

ways k successes can come to be out of n trials. The Bernoulli distribution is the
discrete probability distribution of a trial with two possible outcomes, either 1 or 0,
with respective probability p and q = 1 − p. The probability mass function can be
written as

f(k; p) =
{
p if k = 1
q = 1− p if k = 0 (2.2)

where k is the possible outcome, and p and q are the respective possibilities. The
Bernoulli distribution is used to model the objects’ distributions given that the
object is either detected (k = 1) or missdetected (k = 0).

2.1.1.2 Poisson distribution

The probability mass function of a Poisson distribution is

f(k, λ) = e−λ
λk

k! (2.3)

where k is the number of events and λ is the average number of events occurring. λ
can also be seen as the expected number of events in an interval [a,b], noted N(a, b),
namely E[(a, b)] = λ(b− a).

A Poisson Point Process (PPP) is a random process being tightly connected to the
Poisson distribution. The intensity of a PPP, λ, equals the expected number of events
within a interval of unit length (0, 1). If a random number of points within a finite
interval is a PPP, the number of points is a random variable with a Poisson distribu-
tion. The Poisson distribution is a discrete random probability which represents the
probability of events occurring. Thus can the Poisson distribution be used to model
the birth of new, previously unseen, objects as well as identify clutter measurements.

2.1.1.3 Gaussian distribution

The Gaussian distribution’s PDF is bell-shaped and specified by the mean µ and
variance σ2:

f(x|µ, σ2) = N (x;µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 (2.4)

By modelling each object’s states as Gaussian distributions it is possible to account
for noisy measurements. The states are assumed to be normally distributed with an
uncertainty instead of having a firm value.

6

2. Poisson Multi-Bernoulli Mixture Filter

2.1.1.4 Uniform distribution

In this thesis the continuous uniform distribution is of interest. It distributes the
probability evenly throughout the entire interval. For the one-dimensional case the
PDF is

p(x|b, a) =


1
b−a , if x ∈ [a, b]
0, otherwise

(2.5)

This can be used in the PMBM filter’s birth process if assuming it is equally likely
that an object spawns throughout the entire field-of-view.

2.1.2 Bayesian State Estimation
Bayesian state estimation, also called Bayesian filtering, is a probabilistic approach
to estimate an unknown probability density function. Bayesian probability relies on
the Bayes theorem

p(x|z) = p(z|x)p(x)
p(z) ∝ p(z|x)p(x) (2.6)

which describes the posterior probability of the random variable x given z. p(z) is
often seen as a normalization factor giving the proportionality.

2.1.2.1 Bayesian distributions

Prior distribution p(x) is a probability distribution of the state x which reflects your
beliefs before any evidence is observed.

The likelihood function p(z|x) is the probability of getting a measurement z given
the state x.

The posterior distribution is the distribution of the state x conditioned on the ev-
idence observed z. It is proportionate to the prior times the likelihood, as the
denominator is only a normalization constant. The posterior is computed using the
Bayes’ theorem:

p(x|z) = p(z|x)p(x)∫
p(z|x)p(x)dx ∝ p(z|x)p(x) (2.7)

2.1.2.2 Prediction and measurement update

In order to estimate a state using Bayesian estimation, two updates are subsequently
performed. When the posterior distribution and the prior distribution are of the
same probability density family it is called a Conjugate prior. This enables a closed-
form expression of the posterior. First, based on a prior/posterior from the last time
instance p(xk|zk−1), a prediction is done to estimate the state xk. The prediction is
performed using the Chapman-Kolmogorov equation

p(xk|zk−1) =
∫
p(xk|xk−1)p(xk−1|zk−1)dxk−1 (2.8)

7

2. Poisson Multi-Bernoulli Mixture Filter

Here p(xk|xk−1) represents a transition density, which is often described by a motion
model.

Once a measurement has been observed, a measurement update is performed to
correct the prediction. The measurement update is derived from the posterior,
Equation (2.7), giving:

p(xk|z1:k) = p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

∝ p(zk|xk)p(xk|z1:k−1) (2.9)

Here, p(zk|xk) represents the likelihood function, which is modelled using measure-
ment models.

2.1.2.3 Kalman Filter

Generally, the Bayesian filtering updates do not have a closed form solution. How-
ever, if one assumes that the models are linear with additive Gaussian noise, the
Kalman filter is the closed form solution, likewise being the optimal minimum mean
square error (MMSE) estimator. Using a motion model with state transition F and
covariance process noise Q, a measurement model with observation matrix H and
observation noise covariance of R, and assuming no external input added to the
system in any time step, k, the next time step’s predicted states, xk|k−1, are:

xk|k−1 = Fxk−1|k−1 (2.10)

and the predicted error covariance

Pk|k−1 = FPk−1|k−1F
T +Q (2.11)

It is then possible to update these priors using the measurements in the current time
step:

xk|k = xk|k−1 +Kkyk (2.12)

Pk|k = (I −KkH)Pk|k−1 (2.13)

where the measurement residual is

yk = zk −Hxk|k−1 (2.14)

the innovation:
Sk = R +HPk|k−1H

T (2.15)

and the Kalman gain
Kk = Pk|k−1H

TS−1
k (2.16)

8

2. Poisson Multi-Bernoulli Mixture Filter

2.1.2.4 Unscented Kalman Filter

The ordinary Kalman Filter relies on linear state transition and measurement mod-
els to complete the prediction update and measurement update. However, if it is
the case of nonlinear dynamics, there are special methods to encounter the non-
linearities. Extended Kalman Filter (EKF) requires differential state transition and
measurement models, as it uses linearization before using the basic Kalman filter
update. Unscented Kalman Filter (UKF) uses a deterministic sampling technique,
which propagates specifically placed points through the non-linear function, from
which it forms a new mean and covariance in what they call an Unscented Trans-
form. The work in this thesis uses UKF to perform nonlinear Kalman updates, hence
only this method will be explained in detail.

The 2L + 1 points to be propagated are called sigma points. The sigma points are
sampled around the prior distribution N (x, Px) according to:

X0 = x (2.17)

Xi = x +
(√

(L+ λ)Px

)
i

i = 1, ..., L (2.18)

Xi = x−
(√

(L+ λ)Px

)
i−L

i = L+ 1, ..., 2L (2.19)

Each sigma point have a corresponding weight Wi:

W
(m)
0 = λ

λ+ L
(2.20)

W
(c)
0 = λ

λ+ L
+ (1− α2 + β) (2.21)

W
(m)
i = W

(c)
0 = 1

2(λ+ L) i = 1, ..., 2L (2.22)

λ = α2(L+ κ)− L (2.23)
Where λ is a scaling parameter, set from the hyperparameters α and κ. α affects
the spread of the points around x, often set to a small positive value, while κ is
often set to 0 [53]. β incorporates prior knowledge of the states’ distributions, and
for Gaussian distributions β = 2 is optimal.

For the prediction step of the Bayesian recursion, the sigma points are propagated
through the nonlinear state process function

Yi = g(Xi), i = 0, ..., 2L (2.24)

The predicted mean and covariance are approximated using the weighted mean and
covariance from the propagated points

x̂k|k−1 ≈
2L∑
0
W

(m)
i Yi (2.25)

9

2. Poisson Multi-Bernoulli Mixture Filter

Pk|k−1 ≈
2L∑
i=0

W
(c)
i [Yi − y][Yi − y]T + Q (2.26)

where Q is the process noise matrix.

To perform the update step, new sigma points Xi from the predicted mean and
covariance are propagated through the measurement function h:

Zi = h(Xi), i = 0, ..., 2L (2.27)
and with the measurement noise matrix R, the empirical measurement mean, ẑ,
and covariance, Ŝ, is given through:

ẑ =
2L∑
0
W

(m)
i Zi (2.28)

Ŝ ≈
2L∑
i=0

W
(c)
i [Zi − ẑ][Zi − ẑ]T + R (2.29)

After propagating the predicted state to measurement space, one needs to perform
the Kalman update equations, (2.30) - (2.33), similar to the basic linear case:

Pz,x =
2L∑
i=0

W
(c)
i [Zi − ẑ][Xi − x̂k|k−1] (2.30)

K = Pz,xŜ−1 (2.31)

x̂k|k = x̂k|k−1 −K(z− ẑ) (2.32)

Pk|k = Pk|k−1 −KŜKT (2.33)

2.1.3 Dynamics
Models of how the states of objects change with time are essential for predicting
the potential movement in between measurements and are referred to as Motion
Models. In order to extract the needed information from sensors’ output and map it
to the filtered states a Measurement Models is used. These two models are further
discussed below.

2.1.3.1 Motion Models

Motion models are modelling the states’ behaviour in between measurements. Given
a certain state one can predict the next state by propagating through a motion
model. Not only the state, e.g. position and velocity, is of interest, but also the
accuracy of the new state. Mathematically a motion model is defined as the propa-
gation of the old state through a function with some added noise

xk = fk−1 (xk−1) + qk−1 (2.34)

10

2. Poisson Multi-Bernoulli Mixture Filter

There are different well known motion models, one is Constant Velocity (CV)
which uses the state vector containing positions and velocities x =

[
p v

]T
. The

update is linear and performed through the matrix operations:

xk = Fxk−1 + qk−1 (2.35)

where the motion noise is expected to be Gaussian qk−1 ∼ N (0,Q). The position is
updated by Euler integrating the velocity (p = ∆t ∗ v) and the velocity is remains
unchanged. The matrices F and Q for the two dimensional position case (x =
[x, y, ẋ, ẏ]), which is of interest in this thesis, are defined as

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (2.36)

QCV = σ2
Q


∆t3

3 0 ∆t
2 0

0 ∆t3
3 0 ∆t2

2
∆t2

2 0 ∆t 0
0 ∆t2

2 0 ∆t

 (2.37)

Where σ2
Q is the motion noise which needs to be tuned to fit the application and ∆t

is how long time in the future to predict.

Taking it one step further than the CV-model is the Constant Acceleration (CA)
model. For the two dimensional case the state vector is x = [x, y, ẋ, ẏ, ẍ, ÿ], and the
transition model and process noise are

F =



1 0 ∆t 0 T 2

2 0
0 1 0 ∆t 0 T 2

2
0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1


(2.38)

QCA = σ2
Q



∆t5
20 0 ∆t4

8 0 ∆t3
6 0

0 ∆t5
20 0 ∆t4

8 0 ∆t3
6

∆t4
8 0 ∆t3

3 0 ∆t2
2 0

0 ∆t4
8 0 ∆t3

3 0 ∆t2
2

∆t3
6 0 ∆t2

2 0 ∆t 0
0 ∆t3

6 0 ∆t2
2 0 ∆t


(2.39)

Another motion model is the non-linear Bicycle Model. There are several ways
of defining this model and the definition used in this thesis is based on [2]. The
state vector is, for the 2D case, x =

[
x y ψ v δ

]T
, where ψ is the heading, v the

speed and δ the steering angle, as seen in Figure 2.1. The state vector, assuming

11

2. Poisson Multi-Bernoulli Mixture Filter

constant velocity and steering angle, is updated through:

x =


x
y
ψ
v
δ

 =


x+ v · cos(ψ + β)∆t
y + v · sin(ψ + β)∆t
ψ + v

lr
· sin(β)∆t
v
δ

 (2.40)

where
β = atan2 (lr · tan(δ), (lr + lf))

and lr and lf are lengths of the rear and forward part of the objects. The process
noise is a matrix of tunable parameters.

v β
ψ

δ

lflr

(x, y)

Figure 2.1: Variable definitions of Bicycle Model in accordance to [2]

2.1.3.2 Measurement Models

The measurement model defines the relationship between the sensors’ outputs and
the states currently being filtered. For the current time step k, the raw sensor output
yk, and some known, or model of, noise or bias rk yield the observations through a
measurement model,

zk = hk (yk) + rk (2.41)

Of course, this is conditioned on that the information is extractable from the raw
sensor data. If the measurement model is linear with Gaussian noise our measure-
ment becomes:

zk = Hyk + r , r ∼ N (0, R) (2.42)

where R is the measurement noise covariance matrix.

2.1.4 Set Theory
A set may contain anything: a digit, vector, matrix or another set. The content of
a set is unordered and can be empty, infinite or anything in between. In Figure 2.2
some basic set relations are seen. The intersection ∩ means only the content two (or
more) sets have in common, whereas the union ∪ represents the sum of sets’ content.
The exclusive or, A ∩B, is the content where the sets differs. The subtraction is,
as you would suspect, removing one part from another.
An element is in, ∈, a set if one can find the element in the set. In Figure 2.3 for
instance A is in S1, or mathematically: A ∈ S1. In the same figure one can se that
the set S1 also contains B. The element C, however, is not part of set S1 but it is

12

2. Poisson Multi-Bernoulli Mixture Filter

A

B

A ∩B

(a) Intersection

A

B

A ∪B

(b) Union

A

B

A−B

(c) Subtraction

A

B

A ∩B

(d) Exclusive or

Figure 2.2: Some basic set operations where the result of respective operation is
marked blue

in S2, i.e. C ∈ S2 and C 6∈ S1. In Figure 2.3 it can also be see that the intersection
between S1 and S2 is non-zero, i.e. S1 ∩ S2 6= ∅ and thus having some elements in
common, B for instance. S3 on the other hand is disjoint from both S1 and S2,
i.e. S1 ∩ S3 = S2 ∩ S3 = ∅. Two sets are disjoint when the sets have no elements
in common. For a family of sets S, if all pairs in the set is disjoint to each other,
the sets would be mutually disjoint. Elements of mutually disjoint sets is denoted
S1] ...] Sn = S. Note that the sets in Figure 2.3 are not mutually disjoint since
S1 ∩ S2 6= ∅.

A B

C
S1

S2

S3

Figure 2.3: Three sets and three points. A ∈ S1, B ∈ S1, B ∈ S2, and C ∈ S2
are all true. S1 and S2 are joint since their intersection is non-empty. S3 however is
disjoint from both S1 and S2.

A Random Finite Set (RFS) is a set where both the cardinality and the variables
within the set is random [54, 55]. Due to the nature of the MOT problem, where the
amount of objects and the object’s state is unknown, combining Bayesian recursion
with RFS has shown to be a promising method to derive solutions from. Using RFS
for MOT, one models both the single object state as a stochastic variable as well
as the number of objects. During the update step in the Bayesian recursion the
measurements of the object state is given. Modelling the object states like such and
given a prior multi-object state as f(·) and a measurement likelihood of Z given X,
l(Z|X), Bayes’ rule gives the posterior multi-object density [11]

p(X|Z) = l(Z|X)p(X)
ρ(Z) (2.43)

13

2. Poisson Multi-Bernoulli Mixture Filter

2.1.5 Poisson Multi-Bernoulli Mixture Filter

The Poisson Multi-Bernoulli Mixture (PMBM) filter is a RFS-based algorithm, first de-
rived in [42, 43] and later extended in [11]. The key part of the filter is the ability to
model undetected and detected objects differently. The undetected objects are mod-
elled using a distribution, while detected objects are modelled by a Multi-Bernoulli
Mixture (MBM). Combining the two densities gives a density shown in equation (2.44),
where Pk|k is the Poisson density,MBMk|k is the Multi-Bernoulli mixture. It also
allows to compute the prediction and update steps for single object densities instead
of full multi-object predictions and updates, reducing the complexity [11]. By letting
X be the set of all objects, which can be divided into the disjoint union of the set of
undetected objects Xu and the set of detected objects Xd, the distribution becomes

PMBMk|k(X) =
∑

Xu]Xd=X
Pk|k(Xu)MBMk|k(Xd) (2.44)

In [11] they derive a proof of conjugacy for the PMBM filter, meaning that the dis-
tribution after the prediction and update step will be of the same distribution form
as the initial prior. Thus, given the updated PMBM density from previous time step
PMBMk|k(Xk) and motion model p(Xk+1|Xk) the next time step’s predicted PMBM
density can be written:

PMBMk+1|k(Xk) =
∫
p(Xk+1|Xk)PMBMk|k(Xk)δXk (2.45)

Furthermore, by adding information from the measurement model p(Zk|Xk), one
can update the PMBM density with:

PMBMk+1|k+1(Xk+1) = p(Zk+1|Xk+1)PMBMk+1|k(Xk+1)∫
p(Zk+1|X′k+1)PMBMk+1|k(X′k+1)δX′k

(2.46)

Before explaining the Bayesian recursion, hypotheses methodology, reduction, and
estimation steps in detail, the PMBM filter’s structure in a holistic sense is shown in
Figure 2.4. Furthermore Algorithm 2.1 combines the details explained in upcoming
sections below.

14

2. Poisson Multi-Bernoulli Mixture Filter

Figure 2.4: Flowchart of the PMBM Filter algorithm, showing the three steps, pre-
diction, update and reduction, with their respective details. Here Solve Murty’s
regards the association optimization algorithm called Murty’s algorithm.

Algorithm 2.1 Pseudo code for one prediction, update, estimation and reduction
step for the PMBM algorithm
Inputs:
Posterior from previous time step: PMBMk−1|k−1
New set of measurements: Z
Output:
Posterior for current time step: PMBMk|k

- Perform prediction, i.e. acquire PMBMk|k−1

Find potential new targets among the Poisson components:
for z ∈ Z do

- Perform gating w.r.t all Poisson components
if Number of gated Poisson components > 1 then

- Perform Moment Matching
end
if z within gate of x̄µj,i then

- Create new detected target x̄dj,i
end

end
Update the previously detected targets:
for i ∈ [1, Nd] do

for s ∈ [1,Number of Single Target Hypotheses for x̄dj,i] do
- Create missed detection hypothesis
- Perform gating and create plausible hypotheses

end
end
for j ∈ [1,Number of Global Hypotheses] do

- Create cost matrix
- Generate the K best global hypotheses using Murty’s Algorithm

end
- Estimate the target states
Perform reduction:
- Prune Poisson components with wui < Γu
- Prune Bernoulli components with wdj,i < Γd
- Prune Global Hypotheses with wj < Γj

15

2. Poisson Multi-Bernoulli Mixture Filter

2.1.5.1 Hypotheses

For each measurement at each time step, there are three possible outcomes, either
it’s a newly detected target, a previously detected target or clutter (a faulty mea-
surement not belonging to any real object). To combat the uncertainty in the asso-
ciation, which measurement belongs where, a methodology of hypotheses is needed
and there are currently two ways one can go about to do this, hypothesis-oriented
[56] and track-oriented [57]. The work in this thesis uses a track-oriented approach
as it’s computationally more efficient [3], hence the following section will explain
how a track-oriented PMBM filter works.

As mentioned in section 2.1.5, each detected target is modelled as a Bernoulli dis-
tribution. In a track-oriented approach, this Bernoulli distribution is included in a
"track". Figure 2.5 displays a track-oriented PMBM hypothesis tree, displaying three
tracks. Here the track of object x1 includes the single target association history
hypotheses, showing that at time 1, the object was associated to measurement z1

1 ,
while at time 2 it was not detected. At time 3, it shows two possible associations,
so called Single Target Hypothesis, (STH), for the object. Either a missdetection, 0,
or an association with z1

3 .

x1

z11

∅

∅ z13

x2

z21

∅

∅ z13

x3

z13

Time

0

1

2

3

Figure 2.5: Example of track-oriented PMBM hypothesis tree. The tree shows the
single target hypothesis association history for object x1 and x2 and a new potentially
detected object x3. The figure is kindly borrowed from [3].

Track-oriented PMBM forms global association hypotheses from the possible combi-
nations of the single target hypotheses, containing one single target hypothesis from
each potential target, with the restriction that one measurement can only be asso-
ciated with one STH. For instance, in the example in Figure 2.5, a feasible global
hypotheses at time 3 would be { x1:missdetected, x2:missdetected, x3: new object
from z1

3} or { x1:missdetected, x2:connected to z1
3}.

16

2. Poisson Multi-Bernoulli Mixture Filter

2.1.5.2 Undetected Objects

The Poisson components are henceforth assumed to be Gaussian mixtures (GM) such
that the distribution of all undetected objects (xu ∈ Xu) belong to a mixture of
normal distributions. x̄u and P u is the undetected objects state and variance re-
spectively. On top of these two values, an undetected object is also parameterized
with a weight wuj,i defining how important this object is for the total distribution.
One can write the total undetected object intensity with Nu undetected targets as:

ρu(xu) =
Nu∑
i=1

wuN (xu; x̄u, P u) (2.47)

In order to model predicted newly born undetected object the new born object
PPP-intensity for all global hypotheses are defined as follows:

ρb(x) =
Nu∑
i=1

wbiN (x; x̄bi , P b
i) (2.48)

It is also possible to model the Poisson intensity as partially uniform to decrease
the computional cost. In [58] they show that a uniform birth model has similar
accuracy as GM birth models with many Gaussian components, and better accuracy
than GM birth models with few Gaussian components. As described in [58], if one
would use a GM, the Gaussian components needs to be many and well placed in order
to describe an (approximately) uniform distribution. This would model the birth as
the weighted sum

ρb(xu) =
Nu∑
i=1

wuγk(θ, φ) (2.49)

where each componet is described as

γk(θ, φ) = wbkU(θ; β)N (φ; φ̄, σ2
φ) (2.50)

where U(θ, β) is the undetected uniform distribution, β is the uniform distribution
volume. Here, θ represents the states in the state vector x that are measureable,
and φ represents the unmeasurable states.

In the prediction step we can use the Bayesian filtering prediction step to get the
posterior Poisson intensity:

ρuk+1|k(xu) = ρb(xu) + ps
Nu∑
i=1

wuiN (xu;F x̄ui , FP u
i F

T +Q) (2.51)

where ps is the survival probability defining how likely an object is to survive from
one time step to another and F and Q are the motion model.

For the update step however, as per definition, the objects that do not have any
measurement associated to them remain undetcted. The Bayesian update will thus
not change the states or variances for the Poisson distribution since no more infor-
mation is added. On the other hand, if the probability of an object being detected

17

2. Poisson Multi-Bernoulli Mixture Filter

is constant pd the object ought to have been detected with that probability. In the
undetected intensity, the weight of each undetected object, is thus decreased with a
factor (1− pd) as to account for the decreased probability of existing:

ρuk+1|k+1(xu) = (1− pd)ρk+1|k(xu) (2.52)

2.1.5.3 Detected Objects

The Multi-Bernoulli Mixture (MBM) components are also henceforth assumed to have
Bernoullis with Gaussian state densities, such that the distribution of a detected
object, i, in a certain global hypothesis j, can be written:

µj,i(xd) = N (xd; x̄dj,i, P d
j,i) (2.53)

where x̄uj,i and P u
j,i is the detected objects state and variance respectively. On top of

these two values a detected object holds a probability of existence rdj,i and a weight
wdj,i that is related to the posterior probability of the global hypothesis j, see [11].
Note that the probability of existence does not affect the distribution, but is being
important in a later stage. Furthermore, can the interested reader find the definition
of the density function in [11].

Prediction for the linear and Gaussian case, using the basic Bayesian filtering
prediction step, the predicted MBM distribution becomes:

µj,i(xd) = N (xd;F x̄dj,i, FP d
j,iF

T +Q) (2.54)

where Nd is the number of detected objects and F , and Q are the state transition
matrix and noise covariance matrix respectively, defined by the motion model. The
weight wdj,i remains unchanged whereas the probability of existence, rdj,i, is scaled
with ps as follows

wdj,i = wdj,i (2.55)

rdj,i = psr
d
j,i (2.56)

In the Update step a non-empty set of measurements and the measurement model
p(zk|xk) = N (z;Hx, R) are given, and the predicted state is updated by weighing
in the information contained in the measurements. There are two different types
of updates to perform: the objects being detected for the first time as well as the
detected objects from the previous time step. The update steps share the majority
of the process, but they are here discussed individually for clarity.

Since an object must be connected to a measurement in order to be classified as
detected for the first time all components in the Poisson distribution must be
considered by performing gating in order to see which measurements are close enough
to the PPP intensity components. Then, when all measurements have been gated,
Moment Matching is performed with regards to all the components connected to each
measurement in order to combine the different updated PPP intensity components

18

2. Poisson Multi-Bernoulli Mixture Filter

into one fused distribution. The probability of existence rdj,i and object state density
µdj,i for an object detected for the first time are

rdj,i = ej(z)
ρj,i(z) (2.57)

µdj,i(xj,i) =
Nu∑
i=1

ŵj,iN (x; x̂j,i(z), P̂j,i) (2.58)

where c(z) is the clutter intensity and

ej(z) = pd
Nu∑
i=1

wuj,iN (z; x̂j,i(z), Ŝj,i) (2.59)

ρj(z) = ej(z) + c(z) (2.60)

ŵj,i ∝ wuj,iN (z; x̂j,i(z), Ŝj,i) (2.61)

x̂j,i(z) = x̄uj,i + K̂j,iŜ
−1
j,i (z−Hx̄uj,i) (2.62)

P̂j,i = P u
j,i − K̂j,iŜ

−1
j,i K̂

T
j,i (2.63)

K̂j,i = P u
j,iH

T (2.64)

Ŝj,i = HP u
j,iH

T +R (2.65)

To reduce the computational cost of the tracking algorithm, the mixture density in
Equation 2.58 is reduced to a single Gaussian using moment matching. The weight
of the newly created components is set to wdj,i = ρj(z) if the current global hypothe-
sis includes the object. If the current global hypothesis does not include the object
wdj,i = 1 and the existence probability is rdj,i = 0.

On the other hand, if an object was detected in a previous time step it adds
the possibility of the object still being present but that the measurement is miss-
ing. Furthermore, all potentially detected targets and investigate every possible
measurement connections. Here, too, gating can be used to reduce the number
of possible connections. For the misdetection hypothesis the object component’s
existence probability and weight are changed according to

rdj,i =
rdj,i(1− pd)

1− rj,i + rj,i(1− pd)
(2.66)

wdj,i = wdj,i (1− rj,i + rj,i(1− pd)) (2.67)

19

2. Poisson Multi-Bernoulli Mixture Filter

where pd is the probability of the sensor detecting the object. The states and vari-
ances remain unchanged for the misdetection hypothesis. For the detected object
xj,i associated to a measurement z the standard Kalman filter update yields:

µj,i(xj,i) = N (xj,i; x̂j,i(z), P̂j,i) (2.68)

where
x̂j,i(z) = x̄dj,i + K̂j,iŜ

−1
j,i (z−Hx̄dj,i) (2.69)

P̂j,i = P d
j,i − K̂j,iŜ

−1
j,i K̂

T
j,i (2.70)

K̂j,i = P d
j,iH

T (2.71)

Ŝj,i = HP d
j,iH

T +R (2.72)
The probability of existence is

rdj,i = 1 (2.73)
and the updated weight is

wdj,i = wdj,irj,ipdN (z; x̄dj,i, Ŝj,i) (2.74)

Additional details and derivations can be found in [11].

2.1.5.4 Generating new hypotheses

After updating based on a new set of measurements as described in section 2.1.5.3,
one still needs to solve the association problem, solving which measurement is con-
nected to which component. This is done by creating cost matrices, one for each
previous global hypothesis, where each row corresponds to a measurement and each
column corresponds either a previous object or a possible new object. Solving the
cost matrices using an optimal assignment algorithm solves the data association.

For the previous global hypothesis h with Nh many single target hypotheses, mea-
surements {zi, . . . zmk} ∈ Zk, the cost matrix is

Lh =


−l1,1,h −l1,2,h . . . −l1,Nh,h −l1,0 ∞ . . . ∞
−l2,1,h −l2,2,h . . . −l2,Nh,h ∞ −l2,0 . . . ∞

...
−lmk,1,h −lmk,2,h . . . −lmk,Nh,h ∞ ∞ . . . −lmk,0

 (2.75)

The first Nh columns are for the previous components, where the last mk columns
are for the possible new detections. The elements for the previous components are
the negative logarithm of the corresponding single target hypothesis-measurement
pair weight divided by the components missdetection weight

lj,i,h = log(wdj,i)− log(wd0,i) = log
(wdj,i
wd0,i

)
(2.76)

20

2. Poisson Multi-Bernoulli Mixture Filter

For the possible new detections, the diagonal elements for corresponding measure-
ment j is the corresponding weight, wdj,i, which as explained in section 2.1.5.3 is
given by equation (2.60), and becomes

lj,0 = log(wdj,0) = − log(ρj(z)) (2.77)

The Hungarian algorithm [59] is an optimization algorithm which solves the assign-
ment problem. In the case of the data association problem and cost matrix, it will
find the optimal assignment, giving pairs of measurements and targets (j, i) which
minimizes the cost, thus maximizing the combination of logarithmic weights. An
extension of the Hungarian algorithm is Murty’s algorithm [60], which outputs the
K best assignments instead of only the optimal. This algorithm is here used to
create new global hypotheses.

2.1.5.5 Reduction

As by definition, the assignment problem in multiple object tracking will theoret-
ically become NP-hard[61], it is of high importance to reduce the computational
complexity. Luckily, there are several methods to decrease the computational com-
plexity, namely pruning, capping, gating, recycling and merging.

Pruning can be done for both Poisson distributions, MB distributions, and global
hypotheses by simply removing distributions or hypotheses with weights below a
certain threshold. For Poisson, wui < Γu. For MB distributions, remove the ones with
wdi < Γd. For global hypotheses, remove the ones with wh < Γh.

Capping refers to reducing the amount of global hypotheses and detected objects.
If there are more than Nd

max detected objects, keep the ones with highest weights.
Same, with the global hypotheses, only keep the Nh

max best global hypotheses.

Gating is the limitation of the possibility to associate an object, either undetected
or detected, with a measurement. Ellipsoidal gating is a widely used technique us-
ing the Mahalanobis distance, equation(2.78), which measures how many standard
deviations zj is from ẑi. If d2

M ≤ G than measurement zj is relevant for object i.

d2
M = [ẑi − zj]TS−1[ẑi − zj] (2.78)

As the Mahalanobis distance uses the innovation covariance, it takes into account
the uncertainties of the prediction and the measurement.
Euclidean distance (2.79) can also be used.

d2
E = [ẑi − zj]T [ẑi − zj] (2.79)

Another neat reduction trick for PMBM is the idea of recycling. Recycling refers to
moving the distribution of detected objects with probability of existence below a
threshold, rik|k < Γr, to the undetected distribution. This allows to reduce the com-
plexity by not having to account for as many objects to connect associations with,

21

2. Poisson Multi-Bernoulli Mixture Filter

while at the same time not losing information as pruning would force. Mathemati-
cally, the undetected density is after recycling

ρuk|k(xu) = ρuk|k(xu) +
∑

i:ri
k|k<Γr

wdj,ir
i
k|kµj,i(xj,i) (2.80)

There is no need for non-unique global hypotheses, hence merging identical global
hypotheses reduces the computational complexity without affecting performance.
While merging identical global hypotheses, one should add together the individual
global hypotheses weight’s. One should also look to merge similar Poisson distribu-
tions, especially after recycling. For a track-oriented approach, it is also possible to
merge the local hypotheses.

2.1.5.6 Estimation

The final step in the PMBM filter is to yield an estimate of the current objects and
their states. We choose the global hypothesis with highest weight, i.e. the most
probable one

j∗ = argmaxj
Nd∏
i=1

wdj,i (2.81)

where the total global hypothesis weight is the product of its detected object weights.
After finding the best global hypothesis j∗ the state values xj∗,i for all MBM compo-
nents with a probability of existence greater than a certain threshold, rj∗,i > γ are
considered the output of the algorithm for this time step. Note that as the proba-
bility of existence will decrease, with a rate depending on the survival probability
ps and detection probability pd, if misdetected, the threshold γ will have a great
impact on how many consecutive time steps an object will survive although not
being connected to any measurement.

2.2 Implementation
The PMBM filter was implemented with object-oriented Python. All objects are
tracked in the longitudinal and lateral 2D coordinates with position and direction
with respect to the ego vehicle. As mentioned in section 2.1.5.1 the implementation
is done with a track-oriented approach, meaning that each object is modelled as a
track, containing both object state properties and single target association hypothe-
ses history. Each track can have several measurement associations at each time
instance, each responding to what we call a single target hypothesis. The state of
the filter contains several global hypotheses, each global hypothesis holding, at one
time instance, combinations of track IDs with respective single target hypothesis
IDs, corresponding to different measurements.

The filter was implemented for three different motion models, the CV, CA and the
Bicycle model, described in section 2.1.3.1.

22

2. Poisson Multi-Bernoulli Mixture Filter

There is a vast hypothesis space which grows exponentially for each time step. In
order to make the algorithm computationally tractable we use a number of simpli-
fications. We use gating for only creating reasonable connections between an object
and a measurement and Murty’s algorithm to only further investigate the most prob-
able global hypotheses. On top of that we use weights from the log domain in order
to avoid very small numbers, with the cost of having to reformulate some equations.

2.2.1 Remarks on the Bayesian Filtering
Two different filtering methods were applied to deal with the linear CV/CA models and
the nonlinear Bicycle model. A basic Kalman prediction and update, as described
in Equations (2.10) - (2.16), was used for the CV/CA models. Meanwhile, a UKF
prediction and update, Equation (2.24) and (2.33), was used for the Bicycle model.

2.2.1.1 Models

The state vector looks different depending on which motion model is connected to
the target. The state vector for the CV and CA modes are:

xCV =
[
x y ẋ ẏ

]T
(2.82)

xCA =
[
x y ẋ ẏ ẍ ÿ

]T
(2.83)

and for the Bicycle Model:

xBicycle =
[
x y ψ v δ

]T
(2.84)

where the position coordinates x, y are relative to the ego vehicle, i.e. in the middle
of the ego vehicle, x is defined rightward in the lateral direction and y forward in
the longitudinal. The rest of the states, however, are relative the real world in order
for the motion models to be realistic. For instance is the bicycle model fitted for
replicating how an object moves in the real world rather than the movement relative
another object. The coordinate system is thus translated and rotated for each time
step in order to fit the ego vehicle’s motion. Another perk of this is that we don’t
have to transform the measurements since the sensors always yields distances with
respect to the ego vehicle. Using the notation: object states x, imu data with lateral,
longidtudinal and rotational velocities vx, vy, rz, and sampling time ∆t, we can get
the transformed states by first Euler integrating the angle: α = −rz∆t and then
using rotation and translation matrices according to:
CV : 

x+

y+

ẋ+

ẏ+

 =


cos(α) − sin(α) 0 0
sin(α) cos(α) 0 0

0 0 cos(α) − sin(α)
0 0 sin(α) cos(α)



x
y
ẋ
ẏ

−

vx∆t
vy∆t

0
0

 (2.85)

23

2. Poisson Multi-Bernoulli Mixture Filter

CA:

x+

y+

ẋ+

ẏ+

ẍ+

ÿ+


=



cos(α) − sin(α) 0 0 0 0 0
sin(α) cos(α) 0 0 0 0 0

0 0 cos(α) − sin(α) 0 0 0
0 0 sin(α) cos(α) 0 0 0

0 0 0 0 cos(α) − sin(α)
0 0 0 0 sin(α) cos(α)





x
y
ẋ
ẏ
ẍ
ÿ


−



vx∆t
vy∆t

0
0
0
0


(2.86)

Bicycle: 
x+

y+

ψ+

v+

δ+

 =


cos(α) − sin(α) 0 0 0
sin(α) cos(α) 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




x
y
ψ
v
δ

−

vx∆t
vy∆t
rz∆t

0
0

 (2.87)

As we created our own data loader which loads the detections as the x and y center
positions, and the rotation rz around the object’s upward axis we get a measurement:

z =
[
x, y, rz

]T
(2.88)

As to fit the states for each motion model we set the linear measurement model for
CV :

HCV =

1 0 0 0
0 1 0 0
0 0 0 0

 (2.89)

with measurement noise:

RCV = σCV

1 0 0
0 1 0
0 0 0

 (2.90)

And for the CA model:

HCA =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

 (2.91)

with measurement noise:

RCA = σCA

1 0 0
0 1 0
0 0 0

 (2.92)

And for the bicycle model:

HBC =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 (2.93)

with measurement noise:

RBC = σBC

1 0 0
0 1 0
0 0 1

 (2.94)

where we ended up using σCV = σCA = σBC = 0.1.

24

2. Poisson Multi-Bernoulli Mixture Filter

2.2.1.2 Uncented Kalman Filter

As the Bicycle Model is rather non-linear we need to do some sort of approximation.
We use the Uncented Kalman Filter (UKF) with weights always yielding positive
weight to the centre point:

λ = α2(L+ κ)− L = α2(5 + κ)− 5 (2.95)

w0 = λ

λ+ L
(2.96)

wi = 1
2(λ+ L) (2.97)

Setting the condition λ > 0 to ensure positive weights, one can derive a relation
between α and κ. Knowing that for the bicycle model, the state dimension L = 5,
the following relation is found.

5
5 + κ

< α2 (2.98)

Using α = 0.01 gives κ > 5 · 104 − 5.
Using the same α with a more generic κ, say a small integer gives a negative λ
severely affecting the results. Even though it is theoretically sound as the weight
sums up to one, it gives w0 as a large negative number. The consequence of this
becomes a prediction in the wrong direction, as the speed becomes negative due to
the weights. Using the derived weights mentioned above gives expected results.

2.2.2 Computational stability
Several methods were used to increase the computational stability. All weights were
transferred to the logarithmic domain, both for single target hypotheses and global
hypotheses. The covariance matrix from the Kalman update needs to be semi-
positive definite, and to ensure this, Equation (2.99) is performed after each time a
covariance matrix is altered.

S = 1
2(S + ST) (2.99)

2.2.3 Hypotheses structures
The detected objects are modelled as Multi-Bernoulli Mixture distributions, where
the distributions are normally distributed with the mean value being the current
state and the variance the uncertainty of that state. Each possible new object is
starting a new track with an unique Track ID (TID) and since an object’s state
and variance will be different depending on whether it in the future time steps is
detected or not we store all these possibilities in different Single Target Hypotheses
(STH). In each STH we store the information about each object’s states and variances
separately (as opposed to storing the entire probability density function in one vari-
able). Each STH also holds a weight and probability of existence as discussed in

25

2. Poisson Multi-Bernoulli Mixture Filter

the theory section. However, here we will use logarithmic weights in order to gain
numerical stability. Weights in the normal domain tend to approach zero and thus
will machine errors impact too much. Using log-weights instead will prevent this,
but equations need some alterations (as will be discussed see further down).

On top of these values, the time of birth of this STH, the index of the measurement
being connected to the particular object in the current time step and the cost for
Murty’s Algorithm to pick this STH are stored. In order to keep track of all STH
they are also given a unique Single target ID, SID. The SID is unique in the sense
of that particular track. On top of holding all STHs, the Track contains information
of when the track was born (time of birth), what class the current track is of (car,
pedestrian, cyclist, etc). The latter in order to make it possible to use different
parameters depending on the track’s class (change of motion model for instance).
This architecture enables us to methodically go through all STHs in each Track and
perform necessary operations. It also makes it possible to use a look-up-table when
it comes to global hypotheses as a single global hypothesis only needs to point at
which TIDs and SIDs to include.

As to avoid accumulating memory usage we also store which SIDs descends from
which SID in order to remove old or unused STHs. Global hypotheses holds the TIDs
and SIDs that it believes are the correct ones. Different global hypotheses can hold
different amounts of TID-SID-pairs and can also be empty.

2.2.4 Partial Uniform distribution for undetected objects
We use a partial uniform distribution for the undetected objects, where the birth
model is modelled as a uniform distribution. The area of the uniform distribution
is formed as a circle sector, with radius = 100m and angles ∈ [0.78, 2.35] radians,
based on the KITTI [1] ground truth measurements, visualized in Figure 2.6. We will
also accumulate Gaussian Mixture (GM) components from recycled Multi Bernoulli
Mixture tracks. By instead of removing the detected objects below the pruning
threshold, reformulate and store them as undetected components in the Poisson
distribution we can keep information acquired when the object was detected. This
enables the same track to disappear and re-appear while still being considered the
same object and keeping the state information.
Comparable with Equation (2.47) the partial uniform distribution for undetected
objects is

ρuk|k(xu) = wUU
(
θ;VU

)
N (φ; φ̄, σ2

φ) +
∑
i∈µ

wiN (xµ; x̄ui , P u
i) (2.100)

Where µ refers to the recycled components. Furthermore, here θ and φ are, as
described in Section 2.1.5.2 in relation to Equation (2.50), the measurable and un-
measurable states respectively. For the CV model the measurable states are [x, y]
and the unmeasurable [ẋ, ẏ]. Respectively for the Bicycle model [x, y, ψ] was the
measurable states with [v, δ] being the unmeasurable ones. The area over the uni-
form range is declared VU . With a partial uniform distribution for the Poisson

26

2. Poisson Multi-Bernoulli Mixture Filter

Figure 2.6: The uniform distribution area together with the KITTI [1] ground
truth positions of all objects over all training sequences. The circle sector has radius
= 100m and ranges between angles 0.78 and 2.35 radians.

distribution, the birth process described in relation to only GM components in Sec-
tion 2.1.5.3, will differ. Equation (2.59) is rewritten to equation (2.101), which also
becomes the weight for the newly created object.

e(z) = pd

(
wU
VU

+
Nµ∑
i=1

wµi N (z; x̂µi (z), Ŝi)
)

(2.101)

The posterior of detected objects for the first time therefore becomes:

µdk+1|k+1(xµ) = wU
VU
N (θ; z, R)N (φ; φ̄, σ2

φ) +
Nµ∑
i=1
N (x; x̂i(z), P̂i) (2.102)

Here are the mean unmeasurable states, φ̄ be set to 0, and the covariance σ2
φ becomes

a tuning parameter. The GM Poisson components x̂i and P̂i are updated according
to equations (2.62) - (2.65). R is the measurement noise of the measurement model.

27

2. Poisson Multi-Bernoulli Mixture Filter

2.2.5 Prediction
In the two prediction steps, Poisson and Multi-Bernoulli Mixtures, are independent
of each other. By looping through all tracks’ single target hypotheses (STH) we first
perform coordinate transform of the previous state using the ego vehicle’s movement
data. Euler integrations of the lateral, latitudal, and angular velocities from the IMU
are used to get the translation and rotation matrices. For the CV model the position
states x, y needs to be rotated and translated whereas the velocities ẋ, ẏ only needs
to be rotated. For the Bicycle model the position states x, y needs to be rotated and
translated whereas the heading ψ needs to be added to the angular change and the
rest are left unchanged. When the previous states have been transformed into the
current coordinate system we can apply the respective Bayesian filtering prediction
step. Note that we for each predicted variance ensure it is symmetrical by applying
P = 0.5(P + P T) for numerical stability.

When it comes to the undetected objects the uniform part will not change, whereas
the targets that have been recycled will. These Gaussian distributions are propa-
gated through the coordinate transform and the motion model in the same manner
as the detected objects.
The algorithm for the prediction step can be seen as pseduo code in 2.2:

Algorithm 2.2 Pseudo code for detected object’s prediction in PMBM algorithm
Notations: x-state, P -variance, w-weight, r-existence probability, ps-survival prob-
ability

for Track ∈ All Tracks do
for STH∈ All STHs in Track do

- Perform coordinate transform
- Perform Bayesian Prediction:
x+, P+ = motionmodel(x, P)
w+ = w
r+ = psr
- Ensure variance is symmetric:
P+ = 0.5(P+ + P+T)

end
end

28

2. Poisson Multi-Bernoulli Mixture Filter

2.2.6 Update
Here too we loop through all tracks’ STHs. For each STH we need to add one mis-
detection hypothesis, and as many hypothesis as there are measurements within
the gate. Gating, as described in Section 2.1.5.5 is performed with the described
Mahalanobis distance. The distance threshold G is set to 3, which corresponds to
the measurement having to lie within three standard deviations of the object to be
deemed relevant. We also need to add hypotheses where possible new targets have
emerged. A brief overview of this update step is seen in Algorithm 2.3 and further
details and definitions of variables are discussed in the paragraphs below.

Algorithm 2.3 Pseudo code for the update step in PMBM algorithm
Notations: x-state, P -variance, w-weight, r-existence probability, c-cost, pd-
detection probability

for Track ∈ All Tracks do
for STH ∈ All STHs in Track do

- Create Misdetection hypothesis with:
x+ = x
P+ = P
r+ = r(1− pd)/(1− r + r(1− pd))
w+ = w + log(1− r + r(1− pd))
cmissed = w+

- Perform gating for all measurements w.r.t current STH
- Create Detection hypotheses
for z ∈ gated measurements do

- Create detection hypothesis with:
x+ = Equation 2.69
P+ = Equation 2.70
r+ = 1
w+ = w + log(r · pd · lz)
c = w+ − cmissed

end
end

end
- Create Possible new targets hypotheses
- Update Undetected Gaussian distributions

2.2.6.1 Misdetection hypothesis

We create a new STH with SID: sid+ having unchanged states and variances compared
to the parent STH with SID: sid. The new existence is defined in Equation 2.66 and
the weight update equation in Equation 2.67. However, the weight equation is
altered to follow the logarithmic rules and instead implemented as:

wtid,sid+ = wtid,sid + log(1− rtid,sid + rtid,sid(1− pd)) (2.103)

Furthermore is sid+ added to the list of children in sid and the cost of this STH is
simply the weight of hypothesis: cmissed = wtid,sid+

29

2. Poisson Multi-Bernoulli Mixture Filter

2.2.6.2 Detection hypotheses

We go through all measurements and evaluate which passes the gating. We then cre-
ate one STH for each of these gated measurement. The state x and the variance P are
both calculated with the bayesian filter update steps given the gated measurement.
While doing this we also note the measurement likelihood lz = N (z; x̄dtid,sid, Ŝtid,sid)
as it is used for calculating the weight according to Equation 2.74. The measurement
likelihood can be thought of as how likely it was that we got that exact measurement
and is thus just drawn from the multivariate normal probability density function.
Here, too, we must rewrite the weight equation into the log domain

wtid,sid+ = wtid,sid + log(rtid,sid · pd · lz) (2.104)

The cost for this STH is normalized with the cost of the misdetection weight, namely

c = wtid,sid+ − cmissed (2.105)

The probability is naturally set to one, rtid,sid+ = 1 since we here by definition
hypothesize that the object exists.

2.2.6.3 Possible new targets hypotheses

Possible new targets are found by first using gating to see if any of the measurements
fit with any of the Gaussian distributions, and then adding the effect of the uniform
distribution. When creating a new possible track with a new target id we calculate
the cost for picking the newly created track as

w+ = log(e+ c(z)) (2.106)

and the probability of existence as

r+ = e/(e+ c(z)) (2.107)

where
e = pd · Uweight/Uarea (2.108)

and c(z) is the clutter intensity. Later on Murty’s algorithm will pick this new
possible track if it’s more likely that the measurement belong to a new track than
any of the old tracks.

2.2.6.4 Undetected Gaussian distributions

For the Gaussian distributions within the undetected objects the weight is decayed
in the log domain according to

w+ = w + log(1− pd) (2.109)

whereas the states, variances, and existence probabilities remain unchanged.

30

2. Poisson Multi-Bernoulli Mixture Filter

2.2.7 Generating global hypotheses
For each global hypothesis a cost matrix is created, as described in section 2.1.5.4,
with the costs ctid,sid calculated in the update step. In the case of no previous global
hypothesis (e.g., first iteration of the algorithm), the step of creating a cost matrix
is skipped, and a new global hypothesis is formed with each new possible target
associated with the measurement it was created from.

As depicted in algorithm 2.1, for each global hypothesis, we aim at generating K
new global hypotheses, where K = dNnew · exp(wh)e. The hyperparameter Nnew

decides how many global hypotheses we desire having in total and wh is the weight
of the current global hypothesis. This allows better global hypotheses to spawn
more new global hypotheses and worse to spawn fewer. K is clamped to be within
the interval [1, 10] to ensure that we get at least one new global hypothesis while
also avoiding redundancy, i.e. all new global hypotheses originates from the same.
Nnew was tuned to 20, but if there are K− < K possible new global hypotheses we
will only create K− new ones.

The weight for the new global hypothesis w+
h is calculated in the log-domain as

w+
h = wh − Ch (2.110)

where Ch is the total cost for that particular hypothesis according to Murty’s algo-
rithm. We used a Python binding of a C++ implementation of Murty’s algorithm
[62] in order to very efficiently generate K new global hypotheses from the cost
matrix.
After generating new global hypotheses we normalize each global hypothesis weight
with the log-sum of all weights:

wh := wh − wsmallesth + log(1 +
∑

(exp(wresth − wsmallesth))) (2.111)

where wsmallesth is the smallest weight among all current global hypotheses. Pseudo
code for generating new global hypotheses can be seen in Algorithm 2.4.

Algorithm 2.4 Pseudo code for generating new global hypotheses in PMBM algorithm
for Global hypothesis ∈ All global hypotheses do

- Create cost matrix for current GH using the information stored in each STH
for k ∈ K do

- Pick and remove Murty’s algorithm solution with lowest cost
- Create new global hypothesis with:
wh = solution’s cost

end
end
- Normalize all Global Hypotheses

31

2. Poisson Multi-Bernoulli Mixture Filter

2.2.8 Estimation and predicted trajectory
In order to find the best global hypothesis we loop through all current global hy-
potheses and note which one has the highest weight. We then go through all objects
in this particular global hypothesis and collect the STH if the probability of existence
is greater than a threshold, rtid,sid > Γr = 0.01. In order to get a predicted trajec-
tory of these tracks we simply use the motion model recursively as many times as
we want to predict forward in time. If not specified otherwise we predict 10 time
steps ahead. In order to get the tracks tail we connect the tracks with same track
id over time.

2.2.9 Reduction
As to reduce the number of hypothesis a number of reduction techniques were used.

2.2.9.1 Recycling Tracks

Instead of recycling the tracks as described in Section 2.1.5.5, where an object’s
existence probability is compared against a threshold, we used a weighted sum over
all global hypotheses and single target hypotheses (STH). If a STH is in the global
hypothesis, the single target hypothesis’ probability of existence multiplied with the
global hypothesis’ weight is added to the weighted sum

r̂i =
Nh∑
j

Nd
i∑
k

rik · whj (2.112)

This way a track occurring in many global hypotheses with many single target
hypotheses will be favoured. This makes sense because it is the entire track being
recycled, rather than a single STH.
If the track’s weighted sum is below threshold Γr̂, the track is recycled. Upon recy-
cling, each single target hypothesis Gaussian components of that track is degraded
in to a Poisson component.

2.2.9.2 Hypothesis Reduction

Several reduction methods, extending the ones mentioned in Section 2.1.5.5, were
used to decrease the number of hypotheses, both global and single target hypothe-
ses, in order to decrease the complexity of the algorithm.

TheGlobal Hypotheses were decreased in three ways, pruning, capping and merg-
ing. The three methods are implemented as described in Section 2.1.5.5. With pa-
rameters according to:

• Max number of global hypotheses, Nh
max = 25

• Global hypothesis weight threshold: Γh = -6
For Single Target Hypotheses, as mentioned in Section 2.1.5.5, the Multi-Bernoulli
distributions with a weight below a certain threshold should be pruned. This was
not implemented as it’s redundant when using the track-oriented approach. With a

32

2. Poisson Multi-Bernoulli Mixture Filter

track-oriented approach, all new single target hypothesis are generated before new
global hypotheses are generated. When generating the new global hypotheses, sin-
gle target hypotheses with low weight will not be selected by Murty’s algorithm per
design. The single target hypotheses which have not been included in any global
hypothesis are automatically discarded.

A pro-active reduction technique, specific for a track-oriented approach, was imple-
mented. When generating new global hypotheses, a single target hypothesis is only
added if the single target hypothesis’ probability of existence is over a threshold Γr

Single target hypotheses in each track that were older than the current time were
removed as to not accumulate data over time. In other words, the single target
hypothesis association history including old states were removed.

2.2.10 Tuning
A lot of parameters needed to be set. Some could be reasoned to, e.g. the uniform
distributed area as seen in Figure 2.6, which were set based on the simulated mea-
surements from KITTI data. Pruning parameters could also be set with an iterative
process, running to see the amount of hypotheses, adjusting parameters and so forth
until a reasonable, i.e. computationally tractable while still being accurate, amount
of hypotheses were achieved.

To help the search of good values for the parameters for the process noise and initial
covariance for new objects, a genetic algorithm [63] was used with a combination
of GOSPA, MOTP and MOTA, metrics described in Section 4.1, as evaluation function.
The parameters from the genetic algorithm was manually fine-tuned afterwards.

33

2. Poisson Multi-Bernoulli Mixture Filter

34

3
ETENN - Artificial Neural

Network

This Chapter gives a brief overview of the most important mathematical operations
used or mentioned when discussing the Artificial Neural Network in this thesis. Gen-
erally, Artificial Neural Network (ANN) is a way of trying to replicate the behaviour
of biological brains. Even though a human’s brain is superior to today’s ANNs, there
are fields where an ANN is competitive with its biological counterpart, due to its abil-
ity to theoretically learn an arbitrarily hard mathematical mapping between input
and output. One example of a field ANNs are thriving is in Computer Vision. For the
interested reader we recommend the Deep Learning book [64] for more information
regarding Neural Networks.

This Chapter will also discuss how the neural network used in this thesis is designed.
The backbone network structure of our End-To-End-Neural Network (ETENN) is
heavily inspired by Fast and Furious [8] and IntentNet [9]. Five consecutive LiDAR
point-clouds are fed into a network performing detection and prediction of the nearby
objects. These outputs are then used to reason about the dynamic states of each
object.

35

3. ETENN - Artificial Neural Network

3.1 Theory
An ANN consists of interconnected groups of nodes. Each group is called a layer and
each node is called a neuron. The connection between neurons, replicating synapses
in biological brains, transfers information between layers. A very simple ANN can be
seen in Figure 3.1 where two inputs are going through a hidden layer in order to
produce an output.

Input #1

Input #2
Output

Hidden
layer

Input
layer

Output
layer

Figure 3.1: Example of an Artificial Neural Network with one input, one hidden
and one output layer. The information from the input is combined to produce a
single output.

3.1.1 Basic Components and Layers
To replicate the functionality of the human brain, the ANN components are modelled
mathematically. The most important models will be discussed in this section. Also
some basic layers, i.e. a set of basic components, will also be discussed.

3.1.1.1 Neurons

The artificial neurons in neural networks is a mathematical model of a biological
neuron, modelled to replicate the function of being excitable depending on input
signals. The equation of a neuron, visualized as one of the blue circles in Figure 3.1,
is simply a weighted sum of all the inputs plus a bias term, i.e.

s(x) =
n∑
i=0

wixi + bi (3.1)

where n is the number of inputs and wi the weights in the neuron and bi the bias
term. The combination of weights and input signals, giving the neuron its value
together with the bias term, represents the excitability.

3.1.1.2 Convolutional layer

A convolutional filter (CONV) slides, or convolves, a window over the inputs’ spatial
dimension, performing dot product operations, in order to create an output. It uses
the original elements’ values as inputs to a weighted sum, where the weights are
decided by the convolutional filter. An interpretation of these filters is that they are

36

3. ETENN - Artificial Neural Network

trying to find certain features and outputs a high value if it’s a match, and a low
if it’s not. It is these filters (and in particular the features of each filter) one refers
to when training a network. A toy example of a horizontal line finding features is
seen in Figure 3.2. Important notations when talking about convolutional layers are
stride and padding, where stride is the step size when sliding the window. Padding
is the term of adding values outside the borer of the original input to be able to start
the filter in the out-most regions of the input. Note that depending on filter size,
stride and padding the output can be either bigger, same or smaller size compared
to the input.

Figure 3.2: Toy example of convolution with an example filter of size 2 × 2 with
stride 2. A linear combination of the input and the filter is output.

3.1.1.3 Fully connected layer

A Fully Connected layer (FC) is different to the CONV layer talked about above. Here
we connect all the input neurons from one layer, to all the neurons in the next layer.
One example of this is seen in Figure 3.1, where the input and hidden layers are
fully connected.

3.1.1.4 Activation functions

In order to further imitate a brain, and making it possible to learn more complex
(possibly non-linear) behaviour, the neuron is only to trigger a signal to the next
layer when the weighted sum s(x) is within a certain region. This is called an
activation function, and there exists several different ones.
The Logistic Sigmoid is defined as:

y(s) = 1
1 + ecs

(3.2)

where c is a constant most commonly set to −1. Another activation function is the

37

3. ETENN - Artificial Neural Network

Hyperbolic tangent, i.e.

y(s) = 1− e−2s

1 + e−2s (3.3)

where the output is in the range [−1, 1]. Furthermore, the most used activation
function, is the Rectified Linear units (ReLu), which is defined as

y(s) = max (0, s) (3.4)

3.1.1.5 Pooling

A pooling function narrows down statistics from nearby elements in order to down-
sample big matrices. This is very useful when the input is an image, as it not
only reduces the number of computations needed but also makes features invariant
to changes in scale and/or, rotation. For instance maxpooling, which is the most
common type of pooling, simply takes a fixed region and stores the maximum value
within that region. In Figure 3.3 a toy example can be seen where the region is a
square of 2 × 2, i.e., the filter is of size 2 × 2, and we only apply the pooling once
on each subsquare within the larger matrix, i.e., the stride in this case is 2. It is
seen that the size of the matrix, in this case, after applying maxpooling has been
reduced from containing 16 elements down to 4.

Figure 3.3: Toy example of maxpooling with a filter being 2×2 with stride 2. The
maximum value within the filter kernel is passed as output.

3.1.1.6 Batch Normalization

Batch Normalization is a method which helps to speed up training a network by re-
ducing the internal covariate shift. Internal covariate shift is defined as the change of
distributions of the network activations due to the change of the networks parameters
[65]. By subtracting the batch mean and dividing by the batch standard deviation,
batch normalization enables more stability in the training, enabling higher learning
rates and thus faster training. Batch normalization also helps as a regularizer, as
it forces the network to not only learn particular patterns, but rather the overall
tendency.

38

3. ETENN - Artificial Neural Network

3.1.1.7 Deconvolution (up-sampling) layer

As exemplified in Figure 3.2 convolution layers tend to down-sample the input.
Stacking several convolutions in a row will thus eventually end up in a very dense
matrix. As to increase the size of the matrix again one may want to do the opposite
of convolution, namely deconvolution. In order to up-sample the matrix the filter
is slid over a (zero-)padded input, as seen in Figure 3.4. The filter can be either
hand-crafted or learned. Another name of this layer is Transposed Convolution.

Figure 3.4: Deconvolution example from [4]. The information in the blue square is
together with the applied filter (gray) outputting the information in the green layer.

3.1.1.8 Recurrent layer

Recurrent layers are used to store information through a sequence, e.g. time. The
recurrent layer has two sources of inputs: new and previous information. A simple
example can be seen in Figure 3.5 where the blue neuron in the middle takes previous
output(s) as inputs.

Recurrent
layer

Input
layer

Output
layer

Figure 3.5: The output of the layer in one iteration is saved to, in combination
with the new input, affect the next output.

39

3. ETENN - Artificial Neural Network

3.1.1.9 Residual Building Block (ResBlock)

As He et. al show in [5] deeper neural networks are hard to train. In the same paper
they introduce Deep Residual Learning building blocks to ease the training while
also increasing the accuracy. A building block (ResBlock) consists of a few stacked
layers where the residual mapping is learned and a shortcut connection in order to
keep previous information. The block is mathematically defined as:

y = F (x,Wi) + x (3.5)

and exemplified in Figure 3.6.

hidden
layer

hidden
layer

shortcut

Input
layer

Output
layer

Figure 3.6: Residual Learning Building Block introduced by He et. al in [5]. In this
figure two hidden layers are shown and the output of the last is simply element-wise
added to the input.

3.1.2 Basic Operations

Training an ANN basically means altering the parameters, i.e., weights and bias terms
of the neurons in the network, in order to optimize the network. During training we
first need to evaluate the current state of the network, i.e., examining the output
given an input. This is done by propagating the input, executing the sequential
mathematical operations, through all layers. By comparing the outcome of this
forward propagation with the true values we can calculate how to alter the weights
in order to make the output fit the true states better. How the difference between
output and true values is calculated is decided by the loss function and the actual
alternation of weights is done in the backward propagation. These three operations
are further reasoned about below.

3.1.2.1 Forward Propagation

A full forward propagation pass includes computing all layer’s neurons values as
Equation (3.1), sequentially, with optional alterations using activation and pooling
functions. The output of the network is received after propagating through the out-
put layer, which decides the dimensions of the output.

A trivial example is shown in figure 3.7, displaying a one-layer network, with only
one neuron. It sums the weighted inputs, adds a bias and lastly propagates through
an activation function to become the output.

40

3. ETENN - Artificial Neural Network

x2 w2 Σ y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 3.7: Forward propagation through one layer. Three inputs are weighted
and summed. A bias is also added before entering an activation function yielding
the output.

3.1.2.2 Loss Function

To measure the inconsistency of a neural network, one needs to compare the pre-
dicted output from the network with the actual target value. This is done using so
called loss functions, calculating the error between the prediction and the ground
truth. There are several different loss functions and via their differences they give
different characteristics to the training/optimization of the networks. Some of the
common ones used for regression are Mean absolute error (MAE)

MAE(y, x) = 1
n

n∑
i=1
|yi − xi| (3.6)

Mean squared error (MSE)

MSE(y, x) = 1
n

n∑
i=1

(yi − xi)2 (3.7)

and the Huber Loss
SmoothL1(y, x) = 1

n

n∑
i=1

zi (3.8)

zi =


1
2(xi − yi)2, if |xi − yi| < δ

|xi − yi| − 0.5, otherwise
(3.9)

During the training, the model adjusts to minimize the loss, which depending on
the loss function, it will adjust accordingly. For example, as the MSE squares the
error, single outliers giving a large error will give a high loss value, hence the model
will adjust to minimize the outlier error, at the expanse of other samples. On the
other hand MAE will not be as affected by outliers. The Huber loss, also known as
the SmoothL1-loss, combines the robustness of L1 loss and the preciseness of L2 loss.
By conditioning on the magnitude of the error, it uses a loss similar to L1 loss if the
error magnitude is large and a loss similar to L2 if the error magnitude is below a
set value.

41

3. ETENN - Artificial Neural Network

For classification, other loss functions are used, where one of the most common is the
Cross Entropy (CE) loss, equation (3.10). The cross entropy loss uses the predicted
probability ŷ for each class in a multiple class classifier and compares it to the,
one-hot encoded, ground truth y by computing the cross entropy between the two
probability distributions for the class vector.

CE(y, ŷ) = −
∑
i

yi log ŷi (3.10)

When the case regards the binary classification of two classes, such as object versus
background, the CE loss can be simplified to a Binary Cross Entropy Loss (BCE),
Equation (3.11).

BCE(y, ŷ) = −
∑
i

yi log ŷi = −
∑
i=0,1
−y0 log ŷ0 − y1 log ŷ1

= −y0 log ŷ0 − (1− y0) log(1− ŷ0)
(3.11)

3.1.2.3 Back Propagation

To alter the weights of the network in order to learn, a method called back propa-
gation is used. Back propagation is, as the named suggests, a method which works
its way backward in the neural network. It starts by calculating the loss functions
gradient with respect to each parameter in the network. As it’s possible to use the
chain rule, it starts from the end of the network and sequentially works its way to
the first layer, using the chain rule to save computational dependency. An example
of how to calculate the gradients in a single-neuron network is displayed in figure
3.8. After computing all gradients, Back propagation uses the gradient descent ap-
proach to alter the weights. A general gradient descent step is showed in Equation
(3.12), where γ is the learning rate, a hyper parameter which affects the length of
each step.

an+1 = an − γ∇F (an) (3.12)

∂L
∂w2

= ∂L
∂y

∂y
∂w2 Σ ∂L

∂y

Output

∂L
∂w1

= ∂L
∂y

∂y
∂w1

∂L
∂w3

= ∂L
∂y

∂y
∂w3

∂L
∂b

= ∂L
∂y

∂y
∂b

Figure 3.8: Back propagation through one layer. Three inputs are weighted and
summed. A bias is also added before entering an activation function yielding the
output.

42

3. ETENN - Artificial Neural Network

3.2 Implementation
We implemented the network using PyTorch and trained it on KITTI data [1]. The
basic idea for the network is to fuse K consecutive time steps and output detection
for the current time step and predictions on where the objects will be in the future
K − 1 time steps. Two different approaches are evaluated: 1) using a hand crafted
Bird’s Eye View representation of the point cloud, and 2) letting the network learn
the encoding of a discretized point cloud.

3.2.1 Data Representation
The data needs to be fed to the network in a compact way such that as much
information as possible is saved, without requiring too large tensors. This goes
for both images and point clouds, but is of more importance for point clouds as
they generally are larger and thus more computational power can be saved. Not
only because of the vast amount of points, but also because of the sparsity between
them. In this thesis Bird’s Eye View (BEV) and Voxel Feature Encoding (VFE)
representations were implemented and this section aims to clarify these. In order to
keep the complexity down and fit the used dataset the field of interest was set to
span from the ego-vehicle and 70m forward (longitudinal direction), from 40m on
the left hand side to 40m on the right hand side (lateral direction), and from the
ground and 3.7m up in the air. All points outside this region were disregarded.

3.2.1.1 Bird’s Eye View Representation

The BEV branch is encoded as a 2D map from above where the point cloud is dis-
cretized into cells with resolution 0.2× 0.2m, values chosen to be the same as in [8].
Each cell in the 2D map contains of (M + 2) channels as the height (z-direction)
is sliced into M slices. The slices are called height maps and are stacked on top of
each other. The values for each slice is binary, 0 if there are no points in the slice
and 1 if there are points. Naturally, if M is large this is a fairly similar approach
as a traditional Voxel representation, such as [?]. A larger M means that more
information is saved, but it also means a high computational cost.

3.2.1.2 Voxel Feature Encoding

The main idea behind a VFE network is to learn the VFE network how to represent
the information in the point cloud in a optimal way. It uses the information of the
points in a voxel and transform to represent each voxel to a feature vector. This
training is done simultaneously as the training of the backbone network.

Our VFE is inspired by PointPillars [6], which divides the raw pointcloud into tall
voxels, hence the name pillars, and propagates each pillar through a Feature En-
coding Network, creating a pseudo image, as visualized in Figure 3.9. We use
square pillars with the horizontal side length of 0.2m and a height of 3.7 meters.
Each pillar contains a maximum of N = 35 points. If there are more in the point
cloud, points are randomly sampled, and if there are fewer it zero-pads up to 35.

43

3. ETENN - Artificial Neural Network

Figure 3.9: PointPillars Feature Encoding Network overview. Figure is kindly
borrowed from [6].

Figure 3.10: Visualization of additional information added in the point encoding
used in the VFE. The red point is the arithmetic mean of all non-zero points in the
pillar and the blue point is the pillar’s center.

Each point in the pillar, pi = [x, y, z], is encoded to include more information before
propagating through the VFE. On top of x, y, z, each point is encoded to include
both the distance to the arithmetic mean of all non-zero points in the pillar, xc, yc,
zc and the distance in x and y to the pillar’s center, xp, yp. These distances are
visualized in Figure 3.10, and all points after encoding are of dimension D = 8:

pencodedi =
[
x y z xc yc zc xp yp

]T
(3.13)

As mentioned in [6], not only a limit on number of points in each pillar is set, but
also a number P of non-empty pillars. This limits the dense tensor vector to be of
size (D, P , N) which is propagated through the Feature Encoding Network (FEN).
The FEN is built the same way as described in [6], which in turn is inspired by the
building blocks in VoxelNet[7]. These building blocks, called VFE-Layer, is displayed
in Figure 3.11. Each point goes through a linear layer, a batch norm and a ReLu,
generating a (C, P , N) tensor. This is followed by a max operation, resulting in
a (C, P) tensor for all non-empty pillars. Each pillar’s feature vector of size C is
then scattered back to their position from where they were taken from, giving a
pseudo image of size (C, H, W), where H and W is the pixel dimensionality in
height/width for the pseudo image. We chose C = 64 and H and W is given from:

H = xmax − xmin

xgridsize
(3.14)

44

3. ETENN - Artificial Neural Network

W = ymax − ymin

ygridsize
(3.15)

Figure 3.11: Voxel Feature Encoding Layer introduced by Zhou and Tuzel in
VoxelNet [7].

3.2.2 Data Fusion

The input, may it be combining images with point clouds or stacking temporal
information, is either fused before, after, or during propagation through a convo-
lutional neural network. These methods are called Early, Late, and Deep Fusion,
respectively. As can be seen in Figure 3.12 and Figure 3.13 we use Early Fusion to
follow IntentNet’s [9] approach stacking the BEV maps from each time step in the
z-dimension. Not only does this decrease the number of parameters to learn com-
pared to Late or Deep Fusion, but we can also use traditional 2D convolutions. For
the VFE-approach one could argue that a Late or Deep Fusion is used as the point
cloud is propagated through VFE-layers before being concatenated and fed through
the rest of the network.

3.2.3 Prior boxes

Liu et al. introduced prior boxes in [22] and it is used in plenty of well known
networks [21, 24, 25, 23, 66]. The goal of this method is to pre-define a set of
bounding boxes and letting the network choose and tweak these. After analyzing
the data we got at hand we could see that most ground truth bounding boxes can
be reached using the three priors seen in Table 3.1. In order to keep the number of
parameters down, we decided to not include the z-dimension and thus is only the
length and width of the objects are of relevance.

45

3. ETENN - Artificial Neural Network

Prior Length Width
1 3.4 1.5
2 3.9 1.6
3 4.4 1.8

Table 3.1: The prior boxes the network can be tweaked in order to fit the object
as well as possible.

3.2.4 Network Architecture
The network structure without the input processing can be seen in Figure 3.12. The
backbone network structure is heavily inspired by Fast and Furious [8] and IntentNet
[9]. We use 3 consecutive Residual Blocks with 2 layers (ResBlock-2) followed
with a single 3-layered Residual Block (ResBlock-3). On top of that we have two
heads, namely the Detection Head and the Regression Head. The Detection Head
is responsible for the classification and the Regression Head for the bounding boxes.
The outputs from the heads are two feature maps where each element contains
information of a certain region from the input point cloud. The backbone is the
same for the PointPillar inspired version, but there is an additional VFE-layer for
each input before entering the first ResBlock-2.

tk

tk−1

tk−2

tk−3

tk−4

ResBlock2
k5,/2,f160

ResBlock2
k5,f192

ResBlock2
k5,/2,224

ResBlock3
k3,/2,f512

conv5x5
BN

ReLU
conv5x5

BN

∑
ReLU

conv5x5
BN

ReLU
conv5x5

BN

∑
ReLU

conv5x5
BN

ReLU
conv5x5

BN

∑
ReLU

conv1x1
BN

ReLU

conv3x3
BN

ReLU

conv1x1
BN

∑
ReLU

conv3x3 conv3x3

conv3x3 conv3x3

Detection
Head

Regression
Head

Figure 3.12: The ETENN network structure. Three consecutive 2-layered ResBlock
followed by a single 3-layered ResBlock and the two network heads.

A smaller network (ETEnn) was also implemented, seen in Figure 3.13, in order to
combat overfitting, as larger networks has the potential to learn higher complexity,
such the noise in the training data. It only uses two ResBlock-2 before a ResBlock-3,
using fewer channels in the ResBlock-3.
The two outputs of the network are reshaped such that for each predicted time step
a cell on a certain row and column represents an area in the real world. Each and
every one of these cells contain a feature vector for each prior box. The feature vec-
tors are differently sized for the two output heads, containing only the information
needed to perform the task at hand. The shapes of the tensors passing through the
network is seen in Figure 3.14, ending in the detection and regression tensor sizes
illustrated in Figure 3.15. This section proceeds by going into more detail of these
two heads.

46

3. ETENN - Artificial Neural Network

tk

tk−1

tk−2

tk−3

tk−4

ResBlock2
k5,/2,f160

ResBlock2
k5,f192

ResBlock3
k3,/2,f224

conv5x5
BN

ReLU
conv5x5

BN

∑
ReLU

conv5x5
BN

ReLU
conv5x5

BN

∑
ReLU

conv1x1
BN

ReLU

conv3x3
BN

ReLU

conv1x1
BN

∑
ReLU

conv3x3 conv3x3

conv3x3 conv3x3

Detection
Head

Regression
Head

Figure 3.13: The ETEnn network structure. Two consecutive 2-layered ResBlock
followed by a single 3-layered ResBlock and the two network heads.

Figure 3.14: Illustration showing the sizes of the tensors passing through the ETENN
network. The downsamplings are defined in Figure 3.12 and the last dimension of
the incoming tensor vector, C, depends on the choice of input method, being larger
for PointPillar encoding compared to BEV encoding.

47

3. ETENN - Artificial Neural Network

Figure 3.15: Illustration of the detection and regression tensors coming out of the
networks respective head. The incoming tensor’s last dimension F is a generalization
to cover the different sizes of detection versus regression.

48

3. ETENN - Artificial Neural Network

3.2.4.1 Regression Head

The Regression Head is trained for reshaping the prior boxes in size and rotation.
The feature vectors of the Regression Head contain 6 values:

[
sx sy sl sw rRe rIm

]
where each element shifts the prior box positions (sx and sy), sizes in length and
width (sl and sw), as well as clockwise rotation around the objects with the imagi-
nary and real parts of the angle (rRe, rIm). In order to transform these scaling factors
into real world coordinates, sizes, and rotations we apply the following transforms
for each predicted prior box:

p̂x = (irow + σ(sx))
Hfov

Hfeaturemap

(3.16)

p̂y = (icolumn + σ(sy))
Wfov

Wfeaturemap

p̂l = exp(σ(sl))al
p̂w = exp(σ(sw))aw

p̂Re = rRe

p̂Im = rIm

Where Hfov is the field of view length in the longitudinal direction, Wfov in the
lateral direction. Hfeaturemap and Wfeaturemap are the sizes of the region tensor. irow
and icolumn are the indices of the feature map location.
The angle can be extracted using

ϕ = atan2(p̂Re, p̂Im) (3.17)

3.2.4.2 Detection Head

For the Detection Head the feature vector simply contains the class probabilities[
pbackground pobject

]
for the prior boxes in all positions for all time steps. If one

want to have the probabilities for different types of classes then one can only extend
this feature vector dimension. A softmax layer is added on each feature vector in
order to normalize the element values such that they sum to 1 and thus become a
probability.

3.2.5 Matching
To prevent all the prior boxes into fitting all the ground truths we use a matching
strategy. This will hinder the network from forcing a poorly sized prior box, for
representing that particular object, to match a certain ground truth. As introduced
in MultiBox [67] and used in, among others, [22, 6, 8, 9] we match each prior
box and ground truth with the highest intersection of union (IoU), as long as the
overlap is greater than 0.5. If there is a ground truth without any match it will
be assigned to the prior box with highest overlap greater than zero. This strategy
basically decouples the problem of sizing and rotating the bounding boxes from the
classification task.

49

3. ETENN - Artificial Neural Network

3.2.6 Loss
We split the loss function into three separate parts: target regression, angle regres-
sion and classification. They are responsible for tweaking the size of the prior box,
rotating the heading and deciding which elements contain an object respectively.
The output from the Regression Head is used in the Target and Angle Regressions,
whereas the output of the Detection Head is input to the Classification Loss. We
then take a weighted sum of these separate losses, resulting in the total loss:

L = βtargetLtarget + βangleLangle + βclsLcls (3.18)

The weights of the loss were βtarget = 0.1, βangle = 0.1, and βcls = 1. For the Target
Regression Loss Ltarget, we use a SmoothL1-loss for the matched prior boxes and the
ground truth. The values used in the loss are regression targets described in 3.2.4.1.
The mean SmoothL1-loss over all matches (i ∈ [1, N]) are added for all time steps
(k ∈ [0, K − 1])

Ltarget =
K−1∑
k=0

λk · 1
N

N∑
i

SmoothL1(p̂i,pgtj) (3.19)

where p̂i =
[
p̂x p̂y p̂l p̂w

]
is the regression prediction matched with the ground

truth pgtj =
[
pgtx pgty pgtl pgtw

]
. In order to give less weight to the predictions further

away from the current time step, we added an exponential forgetting factor λ = 0.95.

For the Angle Regression Loss, we follow Complex Yolo’s [32] lead to use a real
and imaginary fraction to estimate the heading of the objects. This not only avoids
singularities and helps generalization but also makes it possible to directly feed the
output from the Regression Head into the loss function. On the other hand we need
to transform the ground truth angle to this complex format, i.e extracting the cosine
and sine values ϕgtj =

[
cos(ϕgt) sin(ϕgt)

]
. Having the two complex entities in place

we can calculate the angular regression loss for each time step (k ∈ [0, K − 1]) over
all matches (i ∈ [1, N]) with

Langle =
K−1∑
k=0

λk · 1
N

N∑
i

SmoothL1(ϕ̂i, ϕgtj) (3.20)

where ϕ̂i =
[
p̂Re p̂Im

]
and λ = 0.95 here as well.

For the classification loss we use a focal loss [23] to battle the imbalance of amount
of negative versus positive examples in the data. As we have limited our work
to classify the category Car, a Binary Cross Entropy loss is used to compute the
loss-term:

Lcls =
K−1∑
k=0

λk · 1
N

N∑
i

BCE(γ̂i, γgtj) (3.21)

where γ̂i is the predicted class probability, and γgtj the one-hot encoded ground truth.

50

3. ETENN - Artificial Neural Network

3.2.7 Decoding Tracklets
As the output from the network is detections in the current time plus predictions in
the future frames, these do not correspond to an output from an ordinary tracker.
For example, it does not give any indication if an object in one time step is the
same as in the next. To counter this, we’ve implemented an algorithm decoding the
network’s output to link objects over time. The implementation is inspired by the
explanation of a similar algorithm in [8].

The output of the network is at each time tk+i ∀ i ∈ [0, n − 1] a random finite set
of measurements Zk+i. This data, together with the available predictions from the
past n − 1 time steps, is reasoned as shown in Figure 3.16. From the current time
step and future n− 1 time steps forward, the measurements which align over time,
black rectangles in Figure 3.16, are reasoned. With reasoned we mean that for each
time step tk+i ∀ i ∈ [0, n − 1] a new set Yk+i is formed, being the union of the sets
of measurements for this time step from either the current output or the previous
predictions. If measurements in Yk+1 are too close they are merged. Continuing, the
next step is to match reasoned detections in Yk with reasoned predictions from Yk+i,
to link objects detected with their corresponding predictions. Predictions that do
not match with detections from Yk, are excluded. This yields X̂, a set of detections
with 0 to n− 1 corresponding predictions. Note that the predictions omitted due to
not being connected to a detection are still saved in the data state, being considered
in the next iteration.

Figure 3.16: Illustration of the logic when reasoning over time for the decoding
tracklets algorithm. At the current time tk and for n − 1 time steps in the future,
the algorithm jointly reasons between the predictions from the current time step
output and the past time steps output, which in this figure is represented by the
black rectangles. For measurements Z the superscript refers to the measurement’s
time of origin and the subscript the time of prediction of the measurement.

The last step is to match the old object state X with X̂. If objects in X̂ is matched
with an old object from X, it takes over that object’s ID. New unmatched objects
are given new IDs. The pseudo code of this algorithm is given by Algorithm 3.1.

51

3. ETENN - Artificial Neural Network

Algorithm 3.1 Pseudo code for decoding tracklets algorithm
Inputs:
Detections for current time, Zk

k , and n− 1 predictions forward, Zk
k+1 . . . Z

k
k+4

Old n− 1 predictions, Zk−1
k+1...k+4, Zk−2

k+2...k+4, Zk−3
k+3,k+4, Zk−4

k+4
Object state X
Output:
Updated object state X ′

Match predictions over time:
for i ∈ [0, n− 1] do

Match old predictions and current detection/prediction for time tk+i
yielding reasoned state Yk+i

end
Link reasoned detections with predictions to give X̂:
for i ∈ [1, n− 1] do

Match reasoned detections Yk with reasoned predictions Yk+i
end
Match existing objects X with new objects in X̂ giving updated object state X ′:
for object ∈ X do

Match object with new objects from X̂
end

52

4
Experiments

4.1 Evaluation Measures
Experiments were done to test the performance for both the PMBM and the ETENN.
In order to quantify the experiments to achieve comparable results, some measure
of performance is needed. In this thesis the Generalized Optimal Sub-Pattern As-
signment (GOSPA) [44], and the CLEAR-MOT metric suite [68] are used. Despite
its name the CLEAR-MOT has not been proven to be a true metric, unlike the
GOSPA metric, but is rather a measure of performance. This thesis, however, will
not further discuss the theoretical differences between a metric and a non-metric.
Instead the use of metric can be seen as synonymous to performance measure.

4.1.1 GOSPA
GOSPA is a metric which penalizes both the localization error and the cardinality
error in a mathematically sound way. The metric is defined as

d(c,a)
p (X, Y) , minγ∈Γ

[(∑
(j,i)∈γ

d(xi, yj)p + cp

a
(|X|+ |Y | − 2|γ|)

)]1/p
(4.1)

Here X is the set of ground truth objects and Y the estimates. d(xi, yj) is the
distance measure between an assigned pair of ground truth i and estimate j from
the assignment set γ. The metric is minimized over all possible assignments sets Γ.
The parameters c and a determines the cardinality mismatch error while p penalizes
the localization error.

4.1.2 CLEAR-MOT
CLEAR-MOT is a suite of several performance measures, with Multi-Object Track-
ing Accuracy (MOTA) and Multi-object Tracking Precision (MOTP) as the more preva-
lent ones. MOTP is the total error over all frames between estimates and their assigned
truth

MOTP =
∑
i,t d

i
t∑

t ct
(4.2)

Here dit is the distance between assignment i’s estimate and ground truth for frame
t. MOTP is averaged by ct, which is the total number of assignments.
MOTA takes false negatives fnt, false positives fpt and mismatches mmet into account.

53

4. Experiments

It is averaged by the total number of ground truth, gt

MOTA = 1−
∑
t fnt + fpt + mmet∑

t gt
(4.3)

We also use two other metrics: Mostly Tracked (MT) and ID switches (IDsw) from
[69]. Mostly Tracked is the percentage of ground truth trajectories which are covered
by the tracker output for 80% of its length. ID switches is the total amount of times
a trajectory gets a new track ID even though the ground truth identity remains the
same.

4.2 Dataset
We use KITTI tracking dataset [1] totaling 8009 data time steps from 20 different
scenarios. The sampling rate is ∆t = 0.1s and includes images, point clouds, IMU
data, and annotations. In Table 4.1 the number of frames per sequence can be seen.

Sequence #Frames #Objects #Cars #Pedestrians
0 155 15 12 2
1 447 98 92 3
2 233 20 16 1
3 144 9 9 0
4 314 39 29 5
5 297 36 34 0
6 270 15 13 0
7 800 63 57 2
8 390 27 25 0
9 803 89 87 1
10 294 28 16 2
11 373 60 55 5
12 78 4 2 1
13 340 68 3 42
14 106 17 15 2
15 376 26 9 11
16 209 28 4 19
17 145 11 0 9
18 339 21 21 0
19 1059 106 10 62
20 837 133 125 0

Total 8 009 913 634 167

Table 4.1: Number of frames and unique dynamic objects (cars, pedestrians, cy-
clists, vans, etc) in each sequence in the Kitti Tracking Dataset. For clarity the
portion of cars and pedestrians are also displayed separately.

54

4. Experiments

4.3 PMBM
PMBM was tested using four different motion models, CV, Bicycle, CA and Mixed.
Mixed uses CV for pedestrians, and Bicycle Model for cars and bicyclists. As to avoid
bias from our detection network, and to show that PMBM can be used to track any ob-
ject class, we simulate measurements by applying noise and clutter to KITTI ground
truth data. The applied noise is chosen as to resemble a state-of-the-art-detector,
e.g. PointPillars [6]. We independently and identically sampled the noise from a
normal distribution, N (x; 0, σ2), where σ2 was an identity matrix with σ2

i = 0.1 on
the diagonal elements for either i = {x, y} or i = {x, y, ψ} depending on the measur-
able states. Clutter and miss-detections were added with probabilities pclutter = 0.02
and pmiss = 0.05, where a clutter was uniformly sampled in the field of view. Note
that the probability of clutter was drawn at every ground truth, i.e. more ground
truths generated more clutter and no ground truth did not generate any clutter.
Also note that for a certain sequence all filter configurations are run with the same
measurements as to make a fair comparison.

To evaluate the different motion models’ performance on different objects a test
was performed where the CV model and Bicycle model were single-handedly used on
Pedestrian and Cars respectively.

A test with noisier data was also performed to test the robustness of the algorithm,
where pmiss = 0.1 and noise σ2

i = 0.2. No changes in the tuning of the process/mea-
surement noise matrices were done in order to improve the results.

A test with fewer allowed global hypotheses was performed in order to see how
the performance was affected. The original configuration uses a max of 100 global
hypothesis, where the test uses 5.

4.4 ETENN
Four different networks were trained and tested, overlapping on two degrees of free-
dom in the overlying structure.

1. BEV input with ETENN network structure: bev_NN
2. Pointpillars input with ETENN network structure: pp_NN
3. BEV input with the smaller ETEnn network structure: bev_nn
4. Pointpillars input with the smaller ETEnn network structure: pp_nn

The different networks were trained using one NVIDIA Tesla V100 Tensor Core
GPU with 32GB memory with different batch sizes for the different network and
input structures, as the memory usage was different.

When training, we split the KITTI training dataset into a training and a valida-
tion set with the intention of using the separate test set for evaluating the actual
performance. At first the data was split in 70% training and 30% validation data,
but since the networks didn’t generalized we also tried training on all sequences but

55

4. Experiments

one. Different sequences for validation was tested but with negligible difference.

We used the Adam Optimizer with learning rate 1 · 10−4 and weight decay 1 · 10−4

for the final training. Test on both the validation set and the training set were
performed, computing performance metrics over complete sequences. Test on the
training data were done to show the potential of the network if more data was
present.

4.5 PMBM with ETENN detections
In order to compare the difference between the two approaches, tests were done
where we fed the detections in the current time step from the ETENN networks directly
to the PMBM filter.

4.6 Hardware setup
Both PMBM and ETENN tests were performed on a computer with an Intel Core i7-
6820HQ CPU @ 2.70GHz 4-core processor together with graphics card: NVIDIA
GM107GLM [Quadro M1000M] GPU Clock 993 MHz, Memory Clock, 1253 MHz,
Memory size 2GB. The PMBM algorithm runs on CPU while the ETENN takes help from
the GPU. ETENN inference is performed on the GPU, then the output is moved to the
CPU for post-inference tracklets decoding. On this setup the PMBM algorithm takes
on average 0.02s per iteration and ETENN on average 0.5s per iteration. However,
evaluating the ETENN algorithm on the training computer with a NVIDIA Tesla V100
Tensor Core GPU we get the inference times displayed in the results below, where
on average one iteration barely takes 0.1 seconds. This is the same period time as
the Kitti data is annotated, and the PMBM algorithm is tested on.

56

5
Results

5.1 PMBM
A qualitative visualization from the tracker when running Sequence 12 can be seen
in Figure 5.1. Each track gets assigned a color and a unique track ID. The full
drawn lines are the past positions, and the triangles the predicted states. The el-
lipses are the 3σ-variances, meaning the object is with 99% certainty within that
area. The ground truths are visualized through faded and filled red rectangles where
the ground truth widths and heights are used for visualization purposes only. The
ego vehicle is the blue square with center coordinates close to the origin.

Figure 5.2 and Table 5.1 displays the average metrics over all sequences for the PMBM
with measurements generated as explained in Section 4.3. The sequence-wise values
leading to these average metrics can be found in Appendix A.1 and Figure 5.3. It
can also be seen that the Mixed model performs best, but takes considerably longer
time than CV and CA. The Bicycle model has inferior results over all metrics, being
the slowest as well.

BC CA CV Mixed0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035 0.036

0.018 0.018

0.03

Average Time per iteration

(a) Lower better
BC CA CV Mixed0

5
10
15
20
25
30
35
40 41.131

31.754 31.775 29.486

Average GOSPA

(b) Lower better
BC CA CV Mixed0.0

0.2

0.4

0.6

0.8 0.816 0.859 0.859 0.885
Average MOTA

(c) Higher better
BC CA CV Mixed0.0

0.2

0.4

0.6

0.8

1.0
0.9 0.946 0.945 0.964

Average MOTP

(d) Higher better

Figure 5.2: Average metrics over all sequences for the PMBM filter with different
Motion Models.

Model AvgTime AvgMOTA AvgMOTP AvgGOSPA AvgMT AvgIDsw

BC 0.0361 0.8157 0.9000 41.1310 43.476 114.333
CA 0.0176 0.8590 0.9457 31.7543 43.476 17.762
CV 0.0185 0.8590 0.9452 31.7748 43.476 17.810
Mixed 0.0303 0.8853 0.9643 29.4857 43.476 16.333

Table 5.1: Average metrics for sequences 0-20.

57

5. Results

(a) Constant Velocity (b) Constant Acceleration

(c) Bicycle Model (d) Mixed

Figure 5.1: Image and Bird’s Eye View of the world in the same frame (18) of
sequence (12) for four different models. The trajectory of a track is displayed as a
full drawn line, the current state as a circle, the predictions for 10 time steps ahead
as triangles. The current measurements are the tiny red edge boxes (transparent
within) whereas the ground truths are seen as slightly faded red rectangles, where
the ground truth width and height is used for visualization purposes only.

58

5. Results

0 10 20
Sequence [idx]

0.00

0.05

0.10

0.15

Ti
m

e
[s

]

BC
Avg time/iter

0 10 20
Sequence [idx]

CA
Avg time/iter

0 10 20
Sequence [idx]

CV
Avg time/iter

0 10 20
Sequence [idx]

Mixed
Avg time/iter

0 10 20
Sequence [idx]

0.00

0.25

0.50

0.75

1.00

M
OT

A
sc

or
e

BC
MOTA

0 10 20
Sequence [idx]

CA
MOTA

0 10 20
Sequence [idx]

CV
MOTA

0 10 20
Sequence [idx]

Mixed
MOTA

0 10 20
Sequence [idx]

0.00

0.25

0.50

0.75

1.00

M
OT

P
sc

or
e

BC
MOTP

0 10 20
Sequence [idx]

CA
MOTP

0 10 20
Sequence [idx]

CV
MOTP

0 10 20
Sequence [idx]

Mixed
MOTP

0 10 20
Sequence [idx]

0

50

100

150

M
ea

n
GO

SP
A

sc
or

e

BC
Mean GOSPA

0 10 20
Sequence [idx]

CA
Mean GOSPA

0 10 20
Sequence [idx]

CV
Mean GOSPA

0 10 20
Sequence [idx]

Mixed
Mean GOSPA

0 10 20
Sequence [idx]

0

50

100

M
os

tly
 T

ra
ck

ed

BC
Mostly Tracked

0 10 20
Sequence [idx]

CA
Mostly Tracked

0 10 20
Sequence [idx]

CV
Mostly Tracked

0 10 20
Sequence [idx]

Mixed
Mostly Tracked

0 10 20
Sequence [idx]

0

50

100

no
f I

D
Sw

itc
he

s

BC
ID Switches

0 10 20
Sequence [idx]

CA
ID Switches

0 10 20
Sequence [idx]

CV
ID Switches

0 10 20
Sequence [idx]

Mixed
ID Switches

Figure 5.3: All metrics for all sequences. The red horizontal line is the mean
for that motion model. All numbers can be seen in the tables in Appendix A.1.
Note that the y-axis limit for the number of ID switches is capped for visualization
purposes.

59

5. Results

5.1.1 Predictions
The average GOSPA score, over all sequences, of the predictions for each time step
ahead can be seen in Figure 5.4. Note that the predictions’ GOSPA score varies a
lot depending on the sequence, as can be seen in Figure 5.5 where a subset of all
the sequences have been randomly chosen and displayed. Furthermore, the chosen
number of predicted time steps is rather arbitrary and could be set to a higher or
lower value dependent on the use case.

It is seen that the GOSPA score increases with higher number of time steps ahead,
and that the GOSPA score has doubled ten time steps ahead. The mixed motion
model performs best for the first 5 time steps ahead, but then yields a higher GOSPA
than both CV and CA motion models. The Bicycle Model has a relatively high GOSPA
and is also increasing with the highest rate. In particular, it can be seen that
the predictions from the Bicycle Model are very poor in sequence 17, where there
are only pedestrians present. However, in sequence 18, containing only cars, the
predictions are rather good.

2 4 6 8 10
Time steps ahead

30

40

50

60

70

80

Av
er

ag
e

GO
SP

A
sc

or
e

Average Prediction GOSPA over sequences:
 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

BC
CA
CV
Mixed

Figure 5.4: The GOSPA score of the prediction for each time step ahead (k ∈ [1, 10]).
Lower is better.

60

5. Results

(a) Sequence 0 (b) Sequence 1 (c) Sequence 6

(d) Sequence 8 (e) Sequence 9 (f) Sequence 12

(g) Sequence 14 (h) Sequence 17 (i) Sequence 18

Figure 5.5: The GOSPA score of the prediction for each time step ahead (k ∈
[0, 10]) of a sub-set of the sequences. Lower is better. It is seen that the domestic
performance among the motion models varies a lot depending on the sequence. For
instance, the predictions from the Bicycle Model is very poor in sequence 17, where
there are only pedestrians, and very good in sequence 18 where there only are cars.

61

5. Results

5.1.2 Single classes

The results of tracking a certain class, i.e. car and pedestrian, can be seen in Figure
5.6 and Table 5.2. Here it is clear that the CA and CV models outperform the bicycle
model for Pedestrians. They are faster due to the Bicycle model being non-linear,
and thus propagated via the UKF, but it also yields more than three times lower
GOSPA, higher MOTA and higher MOTP. It is not as clear difference for the Car category,
where Bicycle model has slightly better GOSPA and marginally better MOTP, but just
lower MOTA. The CA/CV models are more than three times faster than the bicycle
model for pedestrians, but with similar performance. The CA/CV models are also
faster for cars than pedestrians. This is because the pedestrians, often located in
group and tightly located together, creates many more plausible hypotheses from the
measurements. This in turn creates more global hypotheses to optimize over, taking
more time. Furthermore, it is seen that the Bicycle model is struggling to connect
objects over time as the average number of IDsw is high. This applies not only when
tracking cars, but also when tracking pedestrians. The differences between CA and
CV are rather negligible.

Ca
r-B

C

Ca
r-C

A

Ca
r-C

V

Pe
d-

BC

Pe
d-

CA

Pe
d-

CV

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175

0.013

0.0040.004

0.019

0.0110.012

Average Time per iteration

(a) Average time
per iteration.
Lower is better.

Ca
r-B

C

Ca
r-C

A

Ca
r-C

V

Pe
d-

BC

Pe
d-

CA

Pe
d-

CV

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

17.4
19.3 19.3

17.1

4.7 4.7

Average GOSPA

(b) Average GOSPA
score. Lower is bet-
ter.

Ca
r-B

C

Ca
r-C

A

Ca
r-C

V

Pe
d-

BC

Pe
d-

CA

Pe
d-

CV

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 0.8140.8250.825

0.383

0.5550.555

Average MOTA

(c) Average MOT
Accuracy. Higher
is better.

Ca
r-B

C

Ca
r-C

A

Ca
r-C

V

Pe
d-

BC

Pe
d-

CA

Pe
d-

CV

0.0

0.2

0.4

0.6

0.8

1.0 0.9680.951 0.95
0.87

0.975 0.99
Average MOTP

(d) Average MOT
Precision. Higher
is better.

Figure 5.6: Average metrics over all sequences for the PMBM filter tracking only
cars and pedestrians respectively.

Metric AvgTime AvgMOTA AvgMOTP AvgGOSPA AvgMT AvgIDsw

Car-BC 0.0133 0.8138 0.9676 17.3723 30.1905 33.6190
Car-CA 0.0041 0.8252 0.9509 19.3028 30.1905 15.3333
Car-CV 0.0040 0.8252 0.9500 19.3047 30.1905 15.3333
Ped-BC 0.0188 0.3828 0.8700 17.1171 7.9524 74.3809
Ped-CA 0.0112 0.5547 0.9747 4.7385 7.9524 2.7619
Ped-CV 0.0115 0.5547 0.9895 4.7104 7.9524 2.0952

Table 5.2: Average metrics over all sequences for the PMBM filter tracking only cars
and pedestrians respectively.

62

5. Results

5.1.3 Noisier data
Results for the tests with noisier data, described in Section 4.3, is shown in Table
5.3 and Figure 5.7. A qualitative comparison is shown in Figure 5.8 for frame 198 of
sequence 5. The quantitative results barely differ from the less noisy data, presented
in Table 5.1. However, it can be seen in the qualitative comparison that the bicycle
model overestimates the steering angle, e.g. for the orange coloured car in Figure
5.8(c) and (d). This leads to incorrect predictions, especially further in the future,
as it predicts the car to turn. The quantitative results is unaffected because the
filter only uses the prediction for one time step ahead. Despite the overshoot of
steering angle it is able to create correct trajectories, however somewhat uneven due
to the overshooting predictions.

Model AvgTime AvgMOTA AvgMOTP AvgGOSPA AvgMT AvgIDsw

BC 0.0368 0.8161 0.8942 41.3690 43.476 119.4761
CA 0.0169 0.8585 0.9409 32.3861 43.476 17.1904
CV 0.0186 0.8590 0.9395 32.2666 43.476 16.8571
Mixed 0.0330 0.8842 0.9561 30.2347 43.476 15.2380

Table 5.3: Average metrics over all sequences for the PMBM filter tracking using
noisier simulated data.

BC CA CV Mixed0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

0.037

0.017 0.019

0.033

Average Time per iteration

(a) Average time
per iteration.
Lower is better.

BC CA CV Mixed0
5

10
15
20
25
30
35
40 41.369

32.386 32.267 30.235

Average GOSPA

(b) Average GOSPA
score. Lower is bet-
ter.

BC CA CV Mixed0.0

0.2

0.4

0.6

0.8 0.816 0.859 0.859 0.884
Average MOTA

(c) Average
MOTAccuracy.
Higher is better.

BC CA CV Mixed0.0

0.2

0.4

0.6

0.8

1.0
0.894 0.941 0.94 0.956

Average MOTP

(d) Average
MOTPrecision.
Higher is better.

Figure 5.7: Average metrics over all sequences for the PMBM filter tracking using
noisier data.

5.1.4 Hard cap global hypotheses
Results from running PMBM with a cap of max five global hypothesis is shown in
Table 5.4. For CV/CA, it roughly halves the average time per iteration landing below
9 ms, while not dropping considerably in performance compared to Table 5.1, which
uses a cap of max 100 global hypotheses.

63

5. Results

(a) Constant Velocity (b) Constant Acceleration

(c) Bicycle Model (d) Mixed

Figure 5.8: Image and Bird’s Eye View of the world in the same frame (198) of
sequence (5) for four different models when running on noisier data. Same structure
of plotting as explained in Figure 5.1.

64

5. Results

Model AvgTime AvgMOTA AvgMOTP AvgGOSPA AvgMT AvgIDsw

BC 0.0286 0.8138 0.8971 41.8380 43.4761 113.4761
CA 0.0089 0.8528 0.9385 33.5980 43.4761 17.6190
CV 0.0087 0.8547 0.9395 33.4690 43.4761 17.3333
Mixed 0.0230 0.8804 0.9576 31.5328 43.4285 14.8095

Table 5.4: Average metrics over all sequences for the PMBM filter tracking using
max 5 cap of global hypotheses.

5.2 ETENN

The networks were not able to generalize during training, even though extensive tests
of parameters were conducted. Running the network on validation data does not
give any reasonable output, as can be seen in Figure 5.9, which is a good example of
how the network guesses randomly. Why the network does not succeed to generalize
for unseen data is discussed in Section 6.2. Henceforth, this section will now show
results when running on training data, data the network has seen before, to showcase
the potential of the algorithm.

(a) BEV ETENN, frame 12 sequence
7

(b) BEV ETENN, frame 12 sequence
7

Figure 5.9: Tracking results on validation data. The left figure shows how the
network misses an object and spawns two false positives. The right figure shows
how the network misses all present objects.

65

5. Results

The results from running ETENN including tracklet on training data, specifically on
all sequences but 4, 7, 15, 16, and 17, can be seen in Figure 5.10 and Table 5.5.
The ETENN column specifies which network structure was used, bev represents the
BEV input processing and pp is the PointPillar input processing. NN represents the
ETENN network structure and nn represents the smaller network structure. Here it
can be seen that the BEV input with the larger network, bev_NN, and the Point-
Pillar input with the smaller network, pp_nn, performs best. The average time for
one time step includes the network’s inference together with the decoding tracklet
algorithm. It can be seen that the average time per iteration is more dependent on
how the input is processed than the network size. The PointPillar input with the
large ETENN structure is clearly the worst on all performance metrics.

bev_NNbev_nn pp_NN pp_nn0.00
0.02
0.04
0.06
0.08
0.10
0.12

0.084

0.066

0.13

0.094

Average Time per iteration

(a) Average time
per iteration.
Lower is better.

bev_NN bev_nn pp_NN pp_nn0

20

40

60

80

100

28.795

66.68

113.623

53.993

Average GOSPA

(b) Average GOSPA
score. Lower is bet-
ter.

bev_NN bev_nn pp_NN pp_nn0.0

0.1

0.2

0.3

0.4

0.5

0.6 0.609

0.384

0.178

0.472

Average MOTA

(c) Average
MOTAccuracy.
Higher is better.

bev_NN bev_nn pp_NN pp_nn0.0

0.1

0.2

0.3

0.4

0.5 0.508

0.312

0.022

0.238

Average MOTP

(d) Average
MOTPrecision.
Higher is better.

Figure 5.10: Average metrics over all sequences for the ETENN using different
network architectures.

ETENN AvgTime AvgMOTA AvgMOTP AvgGOSPA AvgMT AvgIDsw

bev_NN 0.0840 0.6087 0.5081 28.7950 25.6250 291.1875
bev_nn 0.0656 0.3837 0.3118 66.6800 7.4375 180.6250
pp_NN 0.1300 0.1781 0.0225 113.6231 1.1250 106.6250
pp_nn 0.0945 0.4725 0.2381 53.9925 27.3125 303.3750

Table 5.5: Metrics for different network architectures. All sequences but 4, 7, 15,
16, and 17 as they were used for validation when training.

A qualitative look on the performance is seen in Figure 5.11, showing the tracking
output at frame 132 for the training data sequence 0. Here it can be seen that the
pp_NN is barely able to track any present objects. The other versions are tracking
all objects, except bev_NN missing one.

66

5. Results

(a) BEV ETENN (b) BEV smaller ETENN

(c) PointPillars ETENN (d) PointPillars smaller ETENN

Figure 5.11: Image and Bird’s Eye View of the world in the same frame (132)
of sequence (0) for four different network structures. The trajectory of a track is
displayed as a full drawn line, the current state as a circle, the predictions for 10
time steps ahead as triangles. The current measurements are the tiny red edge
boxes (transparent within) whereas the ground truths are seen as slightly faded
red rectangles, where the ground truth width and height is used for visualization
purposes only.

67

5. Results

5.2.1 Prediction
The average prediction GOSPA of ETENN for sequence 0 can be seen in 5.12. It can
be seen that the smaller networks perform better for longer predictions, as bev_nn
passes bev_NN for the third prediction step and forward.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time steps ahead

100

120

140

160

180

200

220

Av
er

ag
e

GO
SP

A
sc

or
e

Average Prediction GOSPA over sequences:
 [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20]

bev_NN
bev_nn
pp_NN
pp_nn

Figure 5.12: The GOSPA score of the prediction for each time step ahead (k ∈ [1, 5])
for the different network structures of ETENN.

5.3 PMBM with ETENN detections
In this section the detections from ETENN are used as measurements to the PMBM filter
with Constant Velocity (CV) motion model. This section also re-visit the results of
the tracking/prediction output from the ETENN algorithm as to easen the comparison
between the two approaches. All sequences except for 4, 7, 15, 16, and 17 are used
when evaluating the performance as those sequences were used as validation data
when training the ETENN networks.

In Figure 5.13 and Table 5.6 the average metrics are displayed. The PMBM filter with
CV model does not manage to improve the detection GOSPA, MOTA or MOTP. It does,
however, manage to keep the number of average IDsw down. That means that we get
better estimations on each tracks velocities. In turn, this leads to better predictions,
as seen in Figure 5.14 where the predictions of the PMBM algorithm outperforms the
ones of the pp_nn network. The most notable difference between the two is when it
comes to iteration time, the ETENN is much slower.

68

5. Results

PMBM-CV-4 pp_nn0.00

0.02

0.04

0.06

0.08

0.003

0.094
Average Time per iteration

(a) Average time
per iteration.
Lower is better.

PMBM-CV-4 pp_nn0
10
20
30
40
50
60
70
80

84.737

53.993

Average GOSPA

(b) Average
GOSPA score.
Lower is better.

PMBM-CV-4 pp_nn0.0

0.1

0.2

0.3

0.4
0.328

0.472
Average MOTA

(c) Average
MOTAccuracy.
Higher is better.

PMBM-CV-4 pp_nn0.00

0.05

0.10

0.15

0.20

0.25 0.231 0.238
Average MOTP

(d) Average
MOTPrecision.
Higher is better.

Figure 5.13: Average metrics over all sequences for PMBM using ETENN detections
and ETENN tracking.

Tracker AvgMOTA AvgMOTP AvgGOSPA AvgMT AvgIDsw

PMBM-CV 0.3275 0.2312 84.7368 4.3125 68.1875
pp_nn 0.4725 0.2381 53.9925 27.3125 303.3750

Table 5.6: Results for all sequences except for 4, 7, 15, 16, and 17

2 4 6 8 10
Time steps ahead

100

120

140

160

180

Av
er

ag
e

GO
SP

A
sc

or
e

Average Prediction GOSPA over sequences:
 [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20]

PMBM-CV-4
pp_nn

Figure 5.14: The GOSPA score of the prediction for each time step ahead for ETENN
detections + PMBM and ETENN tracking predictions (k ∈ [1, 10] and k ∈ [1, 5] respec-
tively).

69

5. Results

70

6
Discussion

The aim of comparing the two approaches could unfortunately not be done in a
fair way due to the ETENN not being able to generalize during training. The two
approaches plus the combination of using PMBM with ETENN detections are therefore
discussed separately. The chapter ends with Section 6.4, Future Work, where rec-
ommendations are proposed to be able to individually improve the two approaches
and thus be able to thoroughly compare them.

6.1 PMBM

In order to mimic a state-of-the-art detector, the noise on the simulated data was
independently and identically sampled from a normal distribution for all categories.
This is arguably inaccurate in several ways. To begin with, as can be seen in Table
1 from [6], the performance of object detectors differs between the object categories.
Continuing, sampling the angle measurements with the same variance as the position
measurements might not reflect well. Partly because there is a difference between
performance in orientation and bounding box regression, as seen when comparing
Table 1 and 3 in [6], but also because the same level of noise is arguably relatively
different in radians than in meters. Lastly, the simulated noise does not take into
account the difficulty of the detections, such as occlusions or distance to object.

The PMBM performs well on the simulated data, for both levels of noise applied to
the simulated data, generating smooth trajectories and good predictions. As can
be seen in Figure 5.2 the Bicycle model’s performance is inferior, while also being
computationally heavier. Being the least efficient is reasonable, since it is non-linear
and thus needs to be filtered with a non-linear Kalman Filter, in this case UKF.
However, if one looks at the per-sequence detailed statistics, Figure 5.3, it shows
that it has huge problems with a sub-set of the sequences, while performing fairly
well on others. It performs especially poorly on sequence 16 and 17, having a high
GOSPA, and low MOTP and MOTA . These are sequences with a lot of pedestrians, and
sequence 16 in particular has a lot of pedestrians walking closely together. This is
further emphasized in Figure 5.6, clearly showing the CV outperforming the bicycle
model for pedestrians. Looking at the nature of the motion models compared to
the nature of pedestrians movement, it makes sense that the bicycle model does
not fit pedestrians movement. For example, the steering angle of the bicycle model
does not resemble a natural state of the pedestrian. When it comes to the avarage
number of switches the Bicycle model is inferior as well. This could very well be due

71

6. Discussion

to it being harder to tune, but is also likely to originate from the poor predictions
of pedestrians’ movement.

The Mixed motion model is according to Figure 5.2 performing best, something that
is underlined in Figure 5.3. Here it can be seen that the Mixed model covers the
scenarios where the individual models lag behind. To be more specific, the Mixed
performs well on sequence 16 and 17, sequences with a lot of pedestrians, because
the CV model is more accurate for pedestrians. It also performs better on sequence
8 and 10 compared to CA/CV where there are many cars. The Mixed, using bicycle
for cars, can change the speed and direction necessarily fast compared to CA/CV,
because the bicycle model uses the orientation as measurement, compared to the
CA/CV only using position. The CA/CV looses track and births new objects because
it can’t alter the direction and speed fast enough.

Despite being better than the bicycle model on pedestrians, Figure 5.6 clearly shows
that both CV and CA has low MOTA for pedestrians, meaning that CV and CA has prob-
lems with tracking pedestrians as well. As mentioned above, the sequences with a
lot of pedestrians are difficult tracking scenarios, but one thing that could affect
the result is the tuning of the noise matrices. The matrices are the same for the
different object classes, which might not reflect reality. Having different matrices,
reflecting a difference in uncertainty of movement and measurement between cars
and pedestrians, might have performed better.

The predictions for PMBM are only compared against future ground truth which are
present in the current frame. That is, if a new object emerges in the future it will not
affect the prediction GOSPA score. Another remark on the prediction GOSPA is that
if there is a cardinality error in the prediction in the current frame, the cardinality
error will be present for all future prediction steps.

The birth process of an object is not a straightforward choice. As described in Sec-
tion 2.2.4, we use a Partial Uniform distribution for the undetected objects. When
birthing, if no recycled Poisson component is connected to a measurement, the un-
measurable states are set to 0. This creates a problem. As discussed above, CA/CV
do not perform as well on cars moving with some speed in the opposite direction, as
the velocity cannot change fast enough. Using Poisson components as a Gaussian
mixture instead of a uniform distribution does not solve the problem. Even if one
set the velocity to a value depending on location of the measurement, e.g. velocity in
the opposite direction of the ego vehicle for Poisson components located in location
representing the opposite direction, it is not general enough. For example, the lane
to the left of the ego vehicle is different depending on which road and which lane
the ego vehicle is on. An idea would be to use a multi-modal Poisson distribution,
changing models depending on the information available. If there is information re-
garding speed limits, ego-vehicle position in relation to road lanes, ego vehicle speed
etc., it would be possible to create a system optimizing the birth process.

The test comparing the result of different cap of global hypothesis shows that the

72

6. Discussion

PMBM does not need many global hypotheses to perform well. We would argue that
this is because of letting the best global hypotheses generate more new global hy-
potheses than the not as good ones. By generating more new global hypotheses
from the better ones, the need of keeping global hypotheses with lower weight is
redundant. This might of course be a generalization proved wrong in certain cases,
but our argument is that it is unlikely. Pruning for both weight and max cap is a
method which should cover the case of not keeping around unnecessary ones while
being able to ramp up when many measurements are close to many objects, creating
many hypotheses.

The coordinate transform before predicting is simply an Euler integration of the
data given by the IMU. Therefore the noise from the IMU becomes infused into the
tracker and thus affects the performance of the tracking algorithm. Using a more
sophisticated method for ego-motion could possibly improve the performance.

6.2 ETENN
The first and foremost problem with ETENN was underestimating the amount of data
we needed. Even though training on all but one training sequence on KITTI, the
network is far from generalizing and the validation loss, especially the classification
loss, does not improve. The authors of Fast-and-Furious [8] use a dataset 20 times
the size of KITTI.

We do not use any data augmentation, which we in hindsight believe clearly affected
the inability to generalize. The authors of PointPillars [6] state the importance and
suggest several methods. The problem with data augmentation for ETENN, and the
reason behind us not implementing it, is the situation of adding realistic data over
all time steps. Adding random ground truths, to balance positive/negative samples,
becomes a very complex problem when it is to be done for 10 consecutive frames in
a row. To augment the movement of an object over all these time steps in a realistic
way seemed too far fetched. Not only do one have to ensure the added objects does
not clash with an already existing object in any time step, it must also always be
on the road. The added objects must be in the field of view and cannot be occluded
by any other objects because then the LiDAR beams would not in reality be able
to reach it. However, flipping, small rotations and translations could, and probably
should, have been tested in order to generalize the data slightly.

In [8] they describe the importance of coordinate transforming the input data to
account for the ego motion of the ego vehicle. We did not implement this, inputting
data for each time step in relation to that current position of the ego vehicle. This
means that the network learns to track objects relative to itself. This adds unnec-
essary complexity since the NN not only needs to learn how the surrounding objects,
but also how the ego vehicle move. As it is realistic to assume the IMU data is
available in real time this coordinate transform would be a relatively simple way to
favour the learning process.

73

6. Discussion

Furthermore, we did not encode reflectivity when using PointPillars input process-
ing. This is something which we would do different if starting over training the
networks, as it without adding much complexity adds important information. Re-
flectivity can be a good source of information to when deciding if it is a car or not,
and it is reasonable to hypothesize that including reflectivity could have improved
the performance.

There are currently a lot of unnecessary computations being done, as the input
point cloud is quite a lot bigger than the FOV holding the ground truths. Due to
the necessity of symmetry in the convolutions of the network, the input point cloud
was not formed as the FOV but rather a rectangle. Except for unnecessary com-
putations, this will further complicate the training, as it adds more imbalance to
the positive/negative sample ratio, as the area outside the FOV only contain negative
samples. It might also affect the end-to-end training with the PointPillar VFE layer,
as it is one VFE layer for all pillars.

It is hard to argue for characteristics of the algorithm based on the results showed
on the training data, as it is simply not possible to say what is actually learned and
what is overfitted learning. The results however show the potential of the decoding
tracking algorithm, which by jointly reasoning between current detection and pre-
dictions performs quite well despite bad detections and predictions.

The decoding tracklet algorithm is a simple algorithm logic-wise, jointly reasoning
over detections and given predictions. A thought could be to use Bayesian recursion
filter after the ETENN instead of this.

6.3 PMBM with ETENN detections
PMBM performs adequately given the measurements from ETENN. It does not improve
the GOSPA, MOTA, or MOTP compared to ETENN. It does, however, improve the predic-
tions further ahead and keeps the number of IDsw at a lower level. Further, the PMBM
filter makes it possible to predict further ahead in time, possibly due to being able
to keeping the same trackID for an object and thus accumulating more information
about the velocity and heading. However, it should be noted that since the ETENN
predictions are based on the same data it was trained on it is impossible to know
how overfitted they are.

6.4 Future work
To perform well for a vast variety of tracking scenarios the two approaches needs to
be improved in different ways. However, as ETENN never generalized, it is necessary
to improve ETENN to be able to compare the two approaches at all.

For ETENN, improving the issues mentioned Section 6.2 is a key together with im-
plementing data augmentation. After that, the next step is to use more data. We

74

6. Discussion

looked into using NuScenes [70], which offer more data, but only has annotations
every fifth time frame, clocking in at 2Hz. It would be interesting to see if despite
the sparsity in annotation it would be possible to train an ETENN-like network.

We firmly believe, based on the performance of [6], that the combination of a more
sophisticated point cloud representation as the presented and implemented Point-
Pillar can improve the performance of the complete ETENN compared to the BEV
representation.

Using a real object detector would validate the performance of the PMBM. One could,
e.g., submit a run on the test data to the KITTI benchmark, being able to compare
against the state-of-the-art tracking algorithms. To overall improve the performance,
the algorithm needs to be tuned for different models depending not only on object
class, but also on the current state and environment. Using a more sophisticated
birth process such as discussed above in Section 6.1 would arguably also improve
the performance.

Neither our ETENN-structures nor Fast-and-Furious propagate any uncertainty. Luo
mentioned in the [8] conference talk that they are working on it. This could be an
interesting perspective to look into.

The decoding tracklet post ETENN could possibly be replaced by some kind of RNN,
such as [45]. This would truly make it End-to-End Deep Learning. The decoding
tracklet could also be replaced by a more sophisticated filter method, such as the
PMBM. Using the predictions as additional measurements could help the performance
of the PMBM compared to only receiving measurements containing location, orienta-
tion and size.

Neither ETENN nor PMBM has any Affinity Model, such as appearance modelling of
objects and measurements, implemented, which as described in [13] is one of the key
characteristics of the top trackers studied in that paper. Extending ETENN with a
RNN would e.g. allow for matching of extracted feature maps at a lower level in the
network. To implement this for PMBM, the object detector would need to be modified
to output the affinity measurement.

75

6. Discussion

76

7
Conclusion

In this thesis, the problem of Multi-Object Tracking was approached in two differ-
ent ways. A Poisson Multi-Bernoulli Mixture filter (PMBM) was implemented and an
end-to-end deep learning neural network (ETENN) was implemented and trained. As
the ETENN approach did not generalize we were not able to compare the two methods
explicitly. However, the individual performances were studied.

The PMBM filter performs well for several motion models on simulated noisy data
from KITTI [1] ground truth labels. The added noise aims to imitate the behaviour
of a state-of-the-art 3D object detector. The PMBM filter manages to connect in-
formation from objects over time and fairly accurately predicts future states. The
motion model heavily affects the performance of the tracking algorithm, and to use
different motion models depending on object class is shown to be superior. The al-
gorithm is rather robust to noise, but further fine-tuning and adding the possibility
of using different tuning for different scenarios can enhance the performance further.

The ETENN was implemented using two different input processes, one Bird’s Eye
View grid and one self-learning feature extractor, and two different backbone net-
works, both implemented using ResNet blocks of different sizes. None of the network
structures were able to generalize from the training, which arguably was partly due
to implementation issues and partly due to the amount of data available.

Comparing the PMBM fed with ETENN detections as measurements with the ETENN
tracking on training data, the GOSPA, MOTA, and MOTP were superior for the latter
case. However, the PMBM filter is superior when it comes to predictions further ahead
in time, as well as keeping the same track ID for a certain object, i.e. understanding
it is the same object over a longer period of time.

Suggestions on how to improve the PMBM and the ETENN were proposed to be able to
fully compare the two approaches.

All code can be found at https://github.com/erikbohnsack/pmbm and https:
//github.com/erikbohnsack/etenn. Videos can be found via www.adamlilja.
com/m-thesis

77

https://github.com/erikbohnsack/pmbm
https://github.com/erikbohnsack/etenn
https://github.com/erikbohnsack/etenn
www.adamlilja.com/m-thesis
www.adamlilja.com/m-thesis

7. Conclusion

78

Bibliography

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
the kitti vision benchmark suite,” pp. 3354–3361, 2012.

[2] C. K. Law, D. Dalal, and S. Shearrow, “Robust model predictive control for
autonomous vehicles/self driving cars,” CoRR, vol. abs/1805.08551, 2018.

[3] K. Granstrom and L. Svensson, “Multi-object tracking for
automotive systems,” 2019. https://www.edx.org/course/
multi-target-tracking-for-automotive-systems,.

[4] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-
ing,” ArXiv e-prints, vol. abs/1603.07285, 2016.

[5] S. R. J. S. Kaiming He, Xiangyu Zhang, “Deep Residual Learning for Image
Recognition,” ArXiv e-prints, vol. abs/1512.03385v1, 2015.

[6] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Point-
pillars: Fast encoders for object detection from point clouds,” arXiv e-prints,
vol. abs/1812.05784, 2018.

[7] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based
3d object detection,” arXiv e-prints, vol. abs/1711.06396, 2017.

[8] W. Luo, B. Yang, and R. Urtasun, “Fast and furious: Real time end-to-end
3d detection, tracking and motion forecasting with a single convolutional net,”
pp. 3569–3577, 2018.

[9] S. Casas, W. Luo, and R. Urtasun, “Intentnet: Learning to predict intention
from raw sensor data,” in Proceedings of The 2nd Conference on Robot Learning
(A. Billard, A. Dragan, J. Peters, and J. Morimoto, eds.), vol. 87 of Proceedings
of Machine Learning Research, pp. 947–956, PMLR, 2018.

[10] D. Frossard and R. Urtasun, “End-to-end learning of multi-sensor 3d tracking
by detection,” in 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 635–642, 2018.

[11] Angel F. García-Fernandez, Jason L. Williams, Karl Granstrom, and Lennart
Svensson, “Poisson multi-Bernoulli mixture filter: direct derivation and imple-
mentation,” 2017.

[12] Y. Xia, K. Granstrom, L. Svensson, and A. F. García-Fernández, “Performance
evaluation of multi-bernoulli conjugate priors for multi-target filtering,” pp. 1–
8, 2017.

[13] L. Leal-Taixé, A. Milan, K. Schindler, D. Cremers, I. D. Reid, and S. Roth,
“Tracking the trackers: An analysis of the state of the art in multiple object
tracking,” arXiv e-prints, vol. abs/1704.02781, 2017.

79

https://www.edx.org/course/multi-target-tracking-for-automotive-systems
https://www.edx.org/course/multi-target-tracking-for-automotive-systems

Bibliography

[14] L. Leal-Taixé, A. Milan, I. D. Reid, S. Roth, and K. Schindler, “Motchal-
lenge 2015: Towards a benchmark for multi-target tracking,” arXiv e-prints,
vol. abs/1504.01942, 2015.

[15] A. Milan, L. Leal-Taixé, I. D. Reid, S. Roth, and K. Schindler, “MOT16:
A benchmark for multi-object tracking,” arXiv e-prints, vol. abs/1603.00831,
2016.

[16] P. Emami, P. M. Pardalos, L. Elefteriadou, and S. Ranka, “Machine learning
methods for solving assignment problems in multi-target tracking,” arXiv e-
prints, vol. abs/1802.06897, 2018.

[17] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” arXiv e-prints,
vol. abs/1311.2524, 2013.

[18] R. B. Girshick, “Fast R-CNN,” arXiv e-prints, vol. abs/1504.08083, 2015.
[19] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: object detection via region-based

fully convolutional networks,” arXiv e-prints, vol. abs/1605.06409, 2016.
[20] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards

real-time object detection with region proposal networks,” arXiv e-prints,
vol. abs/1506.01497, 2015.

[21] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” arXiv e-prints, vol. abs/1506.02640, 2015.

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg,
“SSD: single shot multibox detector,” arXiv e-prints, vol. abs/1512.02325, 2015.

[23] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” arXiv e-prints, vol. abs/1708.02002, 2017.

[24] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” arXiv e-
prints, vol. abs/1612.08242, 2016.

[25] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv
e-prints, vol. abs/1804.02767, 2018.

[26] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun, “Monocular
3d object detection for autonomous driving,” pp. 2147–2156, 2016.

[27] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun, “3d object pro-
posals using stereo imagery for accurate object class detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, pp. 1259–
1272, 2018.

[28] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point
sets for 3d classification and segmentation,” arXiv e-prints, vol. abs/1612.00593,
2016.

[29] B. Li, “3d fully convolutional network for vehicle detection in point cloud,”
arXiv e-prints, vol. abs/1611.08069, 2016.

[30] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, “Vote3deep:
Fast object detection in 3d point clouds using efficient convolutional neural
networks,” arXiv e-prints, vol. abs/1609.06666, 2016.

[31] B. Yang, W. Luo, and R. Urtasun, “PIXOR: real-time 3d object detection from
point clouds,” arXiv e-prints, vol. abs/1902.06326, 2019.

[32] M. Simon, S. Milz, K. Amende, and H. Gross, “Complex-yolo: Real-time 3d
object detection on point clouds,” arXiv e-prints, vol. abs/1803.06199, 2018.

80

Bibliography

[33] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object detection
network for autonomous driving,” arXiv e-prints, vol. abs/1611.07759, 2016.

[34] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3d pro-
posal generation and object detection from view aggregation,” arXiv e-prints,
vol. abs/1712.02294, 2017.

[35] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detec-
tion,” Sensors, vol. 18, p. 3337, 2018.

[36] K. Granström, M. Baum, and S. Reuter, “Extended object tracking: Introduc-
tion, overview and applications,” Journal of Advances in Information Fusion,
vol. 12, pp. 139–174, Dec. 2017.

[37] B.-N. Vo, M. Mallick, Y. bar shalom, S. Coraluppi, R. Osborne III, R. Mahler,
and B.-T. Vo, “Multitarget tracking,” Wiley Encyclopedia, pp. 1–25, 2015.

[38] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking re-
visited,” in 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 4696–4704, 2015.

[39] S. H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, and I. Reid, “Joint
probabilistic data association revisited,” in 2015 IEEE International Conference
on Computer Vision (ICCV), pp. 3047–3055, 2015.

[40] B. Vo and B. Vo, “Labeled random finite sets and multi-object conjugate pri-
ors,” IEEE Transactions on Signal Processing, vol. 61, no. 13, pp. 3460–3475,
2013.

[41] S. Reuter, B. Vo, B. Vo, and K. Dietmayer, “The labeled multi-bernoulli filter,”
IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3246–3260, 2014.

[42] J.L. Williams, “Marginal multi-Bernoulli filters: RFS derivation of MHT,
JIPDA and association-based MeMBer,” ArXiv e-prints, 2012.

[43] J. Williams, “Hybrid Poisson and multi-Bernoulli filters,” ArXiv e-prints, 2012.
[44] A. S. Rahmathullah, Á. F. García-Fernández, and L. Svensson, “A metric on

the space of finite sets of trajectories for evaluation of multi-target tracking
algorithms,” arXiv e-prints, vol. abs/1605.01177, 2016.

[45] A. Milan, S. H. Rezatofighi, A. R. Dick, K. Schindler, and I. D. Reid, “On-
line multi-target tracking using recurrent neural networks,” arXiv e-prints,
vol. abs/1604.03635, 2016.

[46] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable: Learn-
ing to track multiple cues with long-term dependencies,” arXiv e-prints,
vol. abs/1701.01909, 2017.

[47] J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, and M. Yang, “Online
multi-object tracking with dual matching attention networks,” arXiv e-prints,
vol. abs/1902.00749, 2019.

[48] S. Tang, B. Andres, M. Andriluka, and B. Schiele, “Multi-person tracking by
multicut and deep matching,” arXiv e-prints, vol. abs/1608.05404, 2016.

[49] W. Choi, “Near-online multi-target tracking with aggregated local flow descrip-
tor,” arXiv e-prints, vol. abs/1504.02340, 2015.

[50] S. Sun, N. Akhtar, H. Song, A. Mian, and M. Shah, “Deep affinity network for
multiple object tracking,” arXiv e-prints, vol. abs/1810.11780, 2018.

[51] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 FPS with deep
regression networks,” arXiv e-prints, vol. abs/1604.01802, 2016.

81

Bibliography

[52] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler, “Learning by track-
ing: Siamese CNN for robust target association,” arXiv e-prints,
vol. abs/1604.07866, 2016.

[53] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for non-
linear estimation,” Proceedings of the IEEE 2000 Adaptive Systems for Sig-
nal Processing, Communications, and Control Symposium (Cat. No.00EX373),
pp. 153–158, 2000.

[54] R. Mahler, Advances in Multisource-Multitarget Information Fusion. 2014.
[55] R. Mahler, Statistical Multisource-Multitarget Information Fusion. 2007.
[56] D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on

Automatic Control, vol. 24, no. 6, pp. 843–854, 1979.
[57] T. Kurien, “Issues in the design of practical multi-target tracking algorithms,”

Multitarget-Multisensor Tracking: Advanced Applications, 1990.
[58] M. Beard, B.T Vo, B.N Vo, S. Arulampalam, “Gaussian Mixture PHD and

CPHD Filtering withPartially Uniform Target Birth,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 49, pp. 2835–2844, 2013.

[59] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, 1955.

[60] Katta G. Murty, “An Algorithm for Ranking all the Assignments in Order of
Increasing Cost ,” Naval Research Logistics Quarterly, vol. 16, pp. 682–687,
1968.

[61] P. Emami, P. M. Pardalos, L. Elefteriadou, and S. Ranka, “Machine learning
methods for solving assignment problems in multi-target tracking,” arXiv e-
prints, vol. abs/1802.06897, 2018.

[62] “Python Package for Murty’s algorithm.” https://github.com/
erikbohnsack/murty.

[63] M. Wahde, Biologically Inspired Optimization Methods. WIT Press, 2008.
[64] Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.
[65] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” arXiv e-prints, vol. abs/1502.03167,
2015.

[66] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv e-prints, vol. abs/1704.04861, 2017.

[67] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection
using deep neural networks,” arXiv e-prints, vol. abs/1312.2249, 2013.

[68] K. Bernardin and Stiefelhagen, “Evaluating multiple object tracking perfor-
mance: The clear mot metrics,” EURASIP Journal on Image and Video Pro-
cessing, vol. 2008, 2008.

[69] C. Y. Li, C. Huang, and R. Nevatia, “Learning to associate: Hybridboosted
multi-target tracker for crowded scene,” 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2953–2960, 2009.

[70] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for
autonomous driving,” arXiv e-prints, vol. abs/1903.11027, 2019.

82

https://github.com/erikbohnsack/murty
https://github.com/erikbohnsack/murty
http://www.deeplearningbook.org

A
Appendix - PMBM

A.1 Statistics for all sequences comparing motion
models

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

0 BC 153 0.018 0.95 0.98 10.13 15 25 3
0 CA 153 0.004 0.94 0.99 12.95 15 34 3
0 CV 153 0.005 0.94 0.99 12.94 15 34 3
0 Mixed 153 0.015 0.94 0.98 13.07 15 34 3

Table A.1: Results for sequence 0

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

1 BC 426 0.035 0.79 0.97 56 98 494 146
1 CA 426 0.011 0.89 0.98 38.49 98 337 4
1 CV 426 0.011 0.89 0.98 38.48 98 337 4
1 Mixed 426 0.032 0.85 0.97 48.91 98 432 23

Table A.2: Results for sequence 1

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

2 BC 223 0.023 0.78 0.96 52.27 20 238 90
2 CA 223 0.008 0.93 0.99 23.7 20 106 1
2 CV 223 0.007 0.93 0.98 23.78 20 106 1
2 Mixed 223 0.022 0.9 0.97 30.9 20 139 7

Table A.3: Results for sequence 2

I

A. Appendix - PMBM

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

3 BC 143 0.01 0.9 0.94 12.64 9 30 3
3 CA 143 0.003 0.88 0.96 16.07 9 40 3
3 CV 143 0.003 0.88 0.96 16.05 9 40 3
3 Mixed 143 0.01 0.88 0.94 15.09 9 37 3

Table A.4: Results for sequence 3

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

4 BC 313 0.013 0.82 0.93 28.82 39 160 19
4 CA 313 0.003 0.79 0.94 33.65 39 191 15
4 CV 313 0.004 0.79 0.94 33.64 39 191 15
4 Mixed 313 0.013 0.82 0.96 30.51 39 172 3

Table A.5: Results for sequence 4

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

5 BC 296 0.018 0.87 0.97 27.63 36 159 26
5 CA 296 0.005 0.89 0.97 27.06 36 156 6
5 CV 296 0.005 0.89 0.97 27.34 36 158 7
5 Mixed 296 0.021 0.89 0.97 26.62 36 153 3

Table A.6: Results for sequence 5

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

6 BC 268 0.01 0.91 0.97 12.46 15 59 6
6 CA 268 0.003 0.89 0.98 14.78 15 72 5
6 CV 268 0.003 0.89 0.97 14.84 15 72 5
6 Mixed 268 0.011 0.89 0.97 15.24 15 74 6

Table A.7: Results for sequence 6

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

7 BC 679 0.012 0.88 0.98 18.53 63 277 38
7 CA 679 0.004 0.88 0.99 19.73 63 299 10
7 CV 679 0.004 0.88 0.99 19.72 63 299 10
7 Mixed 679 0.012 0.88 0.98 20.74 63 314 10

Table A.8: Results for sequence 7

II

A. Appendix - PMBM

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

8 BC 389 0.012 0.89 0.95 16.37 27 118 17
8 CA 389 0.004 0.64 0.77 51.83 27 392 86
8 CV 389 0.003 0.64 0.77 51.57 27 390 86
8 Mixed 389 0.013 0.87 0.95 20.36 27 149 16

Table A.9: Results for sequence 8

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

9 BC 783 0.02 0.82 0.94 33.59 89 521 152
9 CA 783 0.006 0.87 0.97 29.35 89 452 28
9 CV 783 0.006 0.87 0.97 29.89 89 461 30
9 Mixed 783 0.021 0.84 0.94 33.34 89 515 71

Table A.10: Results for sequence 9

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

10 BC 293 0.011 0.86 0.92 19.83 28 110 19
10 CA 293 0.003 0.47 0.62 67.74 28 395 95
10 CV 293 0.003 0.47 0.62 67.73 28 395 95
10 Mixed 293 0.011 0.85 0.92 22.05 28 125 13

Table A.11: Results for sequence 10

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

11 BC 372 0.041 0.9 0.98 44.23 60 317 44
11 CA 372 0.015 0.91 0.99 44.57 60 325 2
11 CV 372 0.015 0.91 0.99 44.55 60 325 2
11 Mixed 372 0.041 0.91 0.98 45.37 60 330 3

Table A.12: Results for sequence 11

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

12 BC 77 0.012 0.59 0.98 41.93 4 63 37
12 CA 77 0.003 0.96 0.99 6.79 4 10 1
12 CV 77 0.003 0.96 0.99 6.82 4 10 1
12 Mixed 77 0.009 0.96 0.98 6.85 4 10 1

Table A.13: Results for sequence 12

III

A. Appendix - PMBM

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

13 BC 339 0.05 0.65 0.85 54.46 68 357 152
13 CA 339 0.023 0.85 0.98 31.23 68 202 10
13 CV 339 0.023 0.85 0.98 31.21 68 202 9
13 Mixed 339 0.026 0.84 0.97 32.43 68 210 14

Table A.14: Results for sequence 13

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

14 BC 105 0.068 0.83 0.95 38.09 17 76 28
14 CA 105 0.033 0.9 0.97 29.24 17 58 3
14 CV 105 0.033 0.9 0.97 29.21 17 58 3
14 Mixed 105 0.048 0.89 0.97 31.66 17 63 3

Table A.15: Results for sequence 14

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

15 BC 375 0.051 0.87 0.91 30.54 26 221 69
15 CA 375 0.03 0.9 0.97 29.22 26 210 13
15 CV 375 0.032 0.9 0.97 29.22 26 210 13
15 Mixed 375 0.043 0.89 0.97 30.49 26 219 13

Table A.16: Results for sequence 15

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

16 BC 208 0.156 0.67 0.58 162.43 28 664 364
16 CA 208 0.092 0.93 0.98 54.59 28 225 5
16 CV 208 0.102 0.93 0.98 54.56 28 225 4
16 Mixed 208 0.114 0.88 0.94 74.26 28 309 55

Table A.17: Results for sequence 16

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

17 BC 144 0.077 0.65 0.55 69.48 11 198 103
17 CA 144 0.055 0.93 0.99 21.7 11 60 0
17 CV 144 0.055 0.93 0.99 21.67 11 60 0
17 Mixed 144 0.06 0.93 0.99 21.69 11 60 0

Table A.18: Results for sequence 17

IV

A. Appendix - PMBM

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

18 BC 300 0.017 0.9 0.95 17.31 21 111 24
18 CA 300 0.005 0.77 0.87 40.45 21 269 54
18 CV 300 0.005 0.77 0.87 40.43 21 269 54
18 Mixed 300 0.019 0.87 0.95 24.11 21 157 24

Table A.19: Results for sequence 18

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

19 BC 1058 0.072 0.68 0.66 84.73 106 1775 1037
19 CA 1058 0.05 0.92 0.97 33.1 106 691 14
19 CV 1058 0.056 0.92 0.98 33.03 106 690 14
19 Mixed 1058 0.063 0.91 0.97 34.6 106 724 53

Table A.20: Results for sequence 19

SeqId Cfg #Frames Time MOTA MOTP GOSPA MT FP IDsw

20 BC 836 0.033 0.92 0.98 32.28 133 524 24
20 CA 836 0.01 0.9 0.99 40.6 133 665 15
20 CV 836 0.01 0.9 0.99 40.59 133 665 15
20 Mixed 836 0.033 0.9 0.98 40.91 133 668 19

Table A.21: Results for sequence 20

V

A. Appendix - PMBM

A.2 Statistics for all sequences comparing tracked
class

0 10 20
Sequence [idx]

0.00

0.05

0.10

Ti
m

e
[s

]

Car-BC
Avg time/iter

0 10 20
Sequence [idx]

Car-CA
Avg time/iter

0 10 20
Sequence [idx]

Car-CV
Avg time/iter

0 10 20
Sequence [idx]

Ped-BC
Avg time/iter

0 10 20
Sequence [idx]

Ped-CA
Avg time/iter

0 10 20
Sequence [idx]

Ped-CV
Avg time/iter

0 10 20
Sequence [idx]

0.00

0.25

0.50

0.75

1.00

M
OT

A
sc

or
e

Car-BC
MOTA

0 10 20
Sequence [idx]

Car-CA
MOTA

0 10 20
Sequence [idx]

Car-CV
MOTA

0 10 20
Sequence [idx]

Ped-BC
MOTA

0 10 20
Sequence [idx]

Ped-CA
MOTA

0 10 20
Sequence [idx]

Ped-CV
MOTA

0 10 20
Sequence [idx]

0.00

0.25

0.50

0.75

1.00

M
OT

P
sc

or
e

Car-BC
MOTP

0 10 20
Sequence [idx]

Car-CA
MOTP

0 10 20
Sequence [idx]

Car-CV
MOTP

0 10 20
Sequence [idx]

Ped-BC
MOTP

0 10 20
Sequence [idx]

Ped-CA
MOTP

0 10 20
Sequence [idx]

Ped-CV
MOTP

0 10 20
Sequence [idx]

0

50

100

M
ea

n
GO

SP
A

sc
or

e

Car-BC
Mean GOSPA

0 10 20
Sequence [idx]

Car-CA
Mean GOSPA

0 10 20
Sequence [idx]

Car-CV
Mean GOSPA

0 10 20
Sequence [idx]

Ped-BC
Mean GOSPA

0 10 20
Sequence [idx]

Ped-CA
Mean GOSPA

0 10 20
Sequence [idx]

Ped-CV
Mean GOSPA

0 10 20
Sequence [idx]

0

50

100

M
os

tly
 T

ra
ck

ed

Car-BC
Mostly Tracked

0 10 20
Sequence [idx]

Car-CA
Mostly Tracked

0 10 20
Sequence [idx]

Car-CV
Mostly Tracked

0 10 20
Sequence [idx]

Ped-BC
Mostly Tracked

0 10 20
Sequence [idx]

Ped-CA
Mostly Tracked

0 10 20
Sequence [idx]

Ped-CV
Mostly Tracked

0 10 20
Sequence [idx]

0

25

50

75

no
f I

D
Sw

itc
he

s

Car-BC
ID Switches

0 10 20
Sequence [idx]

Car-CA
ID Switches

0 10 20
Sequence [idx]

Car-CV
ID Switches

0 10 20
Sequence [idx]

Ped-BC
ID Switches

0 10 20
Sequence [idx]

Ped-CA
ID Switches

0 10 20
Sequence [idx]

Ped-CV
ID Switches

Figure A.1: Each sequence’s metrics for all sequences. The red horizontal line is
the mean for that motion model.

VI

VII

B. Appendix - ETENN

B
Appendix - ETENN

B.1 Statistics for all sequences comparing ETENN

0 10 20
Sequence [idx]

0.00

0.05

0.10

0.15

Ti
m

e
[s

]

bev_NN
Avg time/iter

0 10 20
Sequence [idx]

bev_nn
Avg time/iter

0 10 20
Sequence [idx]

pp_NN
Avg time/iter

0 10 20
Sequence [idx]

pp_nn
Avg time/iter

0 10 20
Sequence [idx]

0.00

0.25

0.50

0.75

1.00

M
OT

A
sc

or
e

bev_NN
MOTA

0 10 20
Sequence [idx]

bev_nn
MOTA

0 10 20
Sequence [idx]

pp_NN
MOTA

0 10 20
Sequence [idx]

pp_nn
MOTA

0 10 20
Sequence [idx]

0.00

0.25

0.50

0.75

1.00

M
OT

P
sc

or
e

bev_NN
MOTP

0 10 20
Sequence [idx]

bev_nn
MOTP

0 10 20
Sequence [idx]

pp_NN
MOTP

0 10 20
Sequence [idx]

pp_nn
MOTP

0 10 20
Sequence [idx]

0

100

200

M
ea

n
GO

SP
A

sc
or

e

bev_NN
Mean GOSPA

0 10 20
Sequence [idx]

bev_nn
Mean GOSPA

0 10 20
Sequence [idx]

pp_NN
Mean GOSPA

0 10 20
Sequence [idx]

pp_nn
Mean GOSPA

0 10 20
Sequence [idx]

0

50

100

M
os

tly
 T

ra
ck

ed

bev_NN
Mostly Tracked

0 10 20
Sequence [idx]

bev_nn
Mostly Tracked

0 10 20
Sequence [idx]

pp_NN
Mostly Tracked

0 10 20
Sequence [idx]

pp_nn
Mostly Tracked

0 10 20
Sequence [idx]

0

100

200

300

no
f I

D
Sw

itc
he

s

bev_NN
ID Switches

0 10 20
Sequence [idx]

bev_nn
ID Switches

0 10 20
Sequence [idx]

pp_NN
ID Switches

0 10 20
Sequence [idx]

pp_nn
ID Switches

Figure B.1: Each sequence’s metrics for all sequences. The red horizontal line is
the mean for that motion model.

VIII

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Formulation
	Related Work
	2D Object Detection
	3D Object Detection - Camera
	3D Object Detection - LiDAR
	Conventional Tracking
	Deep Learning Tracking

	Structure of the Report

	Poisson Multi-Bernoulli Mixture Filter
	Theory
	Probability theory
	Bernoulli Distribution
	Poisson distribution
	Gaussian distribution
	Uniform distribution

	Bayesian State Estimation
	Bayesian distributions
	Prediction and measurement update
	Kalman Filter
	Unscented Kalman Filter

	Dynamics
	Motion Models
	Measurement Models

	Set Theory
	Poisson Multi-Bernoulli Mixture Filter
	Hypotheses
	Undetected Objects
	Detected Objects
	Generating new hypotheses
	Reduction
	Estimation

	Implementation
	Remarks on the Bayesian Filtering
	Models
	Uncented Kalman Filter

	Computational stability
	Hypotheses structures
	Partial Uniform distribution for undetected objects
	Prediction
	Update
	Misdetection hypothesis
	Detection hypotheses
	Possible new targets hypotheses
	Undetected Gaussian distributions

	Generating global hypotheses
	Estimation and predicted trajectory
	Reduction
	Recycling Tracks
	Hypothesis Reduction

	Tuning

	ETENN - Artificial Neural Network
	Theory
	Basic Components and Layers
	Neurons
	Convolutional layer
	Fully connected layer
	Activation functions
	Pooling
	Batch Normalization
	Deconvolution (up-sampling) layer
	Recurrent layer
	Residual Building Block (ResBlock)

	Basic Operations
	Forward Propagation
	Loss Function
	Back Propagation

	Implementation
	Data Representation
	Bird's Eye View Representation
	Voxel Feature Encoding

	Data Fusion
	Prior boxes
	Network Architecture
	Regression Head
	Detection Head

	Matching
	Loss
	Decoding Tracklets

	Experiments
	Evaluation Measures
	GOSPA
	CLEAR-MOT

	Dataset
	PMBM
	ETENN
	PMBM with ETENN detections
	Hardware setup

	Results
	PMBM
	Predictions
	Single classes
	Noisier data
	Hard cap global hypotheses

	ETENN
	Prediction

	PMBM with ETENN detections

	Discussion
	PMBM
	ETENN
	PMBM with ETENN detections
	Future work

	Conclusion
	Bibliography
	Appendix - PMBM
	Statistics for all sequences comparing motion models
	Statistics for all sequences comparing tracked class

	Appendix - ETENN
	Statistics for all sequences comparing ETENN

