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Abstract
This thesis explores how graph-based representations for cluster evaluation may
be applied on configuration topologies of radio base stations. It presents experi-
ments performed using a Weisfeiler-Lehman subtree kernel and a graph embedding
method based on graph edit distance computations. These techniques are com-
pared to the performance of simpler baseline methods.

Experiments are performed on a data set which have been categorised at two
levels of detail by RBS configuration experts at Ericsson, and evaluation is per-
formed using both intrinsic and extrinsic metrics. The Weisfeiler-Lehman subtree
kernel shows promising results and has a reasonable runtime when executed on
the provided data set. The graph embedding technique, on the other hand, gives
less promising results even when compared to the baseline methods.

Keywords: pattern recognition, radio access networks, radio base stations, config-
uration topologies, graph kernels, graph embeddings, clustering.
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1
Introduction

This thesis investigates how graph-based pattern recognition can be applied to
a specific problem in telecommunications. The data in this research can be rep-
resented as graphs, since graphs can model relations between different compo-
nents of an object in the data. Two graph-based data representations for pattern
recognition will be explored, namely graph embeddings and graph kernels. These
representations enable the use of pattern recognition algorithms developed for fea-
ture vectors. The pattern recognition algorithms evaluated in this thesis will use
unsupervised learning to divide the data into clusters. For this reason, cluster
evaluation will be an important subject in this thesis, in addition to the graph
embedding and the graph kernel representations.

In this chapter, we will present the context of the research, to motivate what
makes this research relevant to Ericsson. We will then specify the problem further
and list some previous work, relevant to this thesis.

1.1 Context
Ericsson is a global telecommunications company which provides products and
services for mobile and landline network operators. An operator provides services
for mobile users in areas with different levels of mobile traffic, ranging from rural
areas to busy city environments. The operator needs to consider mountains, tall
buildings and other obstacles of the areas it wants to cover as well as provide
services in indoor and outdoor environments. The various numbers of conditions
which the operator needs to consider require different solutions of coverage and
capacities.

A Radio Access Network (RAN) is a part of a mobile telecommunication net-
work which connects a user to the core network. A RAN contains a collection
of Radio Base Stations (RBSs), where each RBS is configured using an object-
oriented managed interface. A part of the managed interface defines the configu-
ration topology of an RBS, in particular how the RBS equipment is connected and
how the RBS functions are using the RBS equipment. An RBS can be configured
by the operator to meet different needs of coverage and capacities, which is why
a RAN can contain a number of distinct types of RBS configuration topologies.

Ericsson wants to be able to decide what types of RBS configuration topolo-
gies exist in a RAN. This information should be useful to gather statistics and to
optimise testing, so that all types of configuration topologies have corresponding
test cases. Today, the elements of the RBS configuration topology are studied by
visualising the so called management information tree structure. Deciding if two
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CHAPTER 1. INTRODUCTION

RBS configuration topologies are equal is difficult in the management informa-
tion tree because the relations between entities are not explicitly visualised in this
tree structure. However, relations between entities can be visualised by analysing
attributes of the entities in the management information tree and creating a con-
figuration topology graph.

To decide if RBS configuration topologies are equal, or different, is important
in the optimisation of test cases. Unknown configurations ought to be identified
in order to introduce test cases for such, and identifying (unknown and known)
configurations is hence of great value.

1.2 Problem

The purpose of this Master’s thesis is to investigate the performance of graph-
based pattern recognition methods applied to RBS configuration topologies. The
objective of the methods is to divide a set of configurations topologies into clusters,
so that each cluster contains configuration topologies which are similar within the
scope of this thesis.

A configuration topology of an RBS describes how RBS equipment is connected
and how RBS functions are using the RBS equipment. Within the scope of this
thesis, the connections between entities in the configurations are of great impor-
tance, since two RBSs with equal equipment can be considered different if they
have different topologies. Furthermore, the difference between the coupling of en-
tities between two RBS configuration topologies can be more significant than the
difference between the actual distribution of entity types. Due to this importance
of relations between entities, a graph representation of an RBS configuration is
preferred to model its topology.

There are some ways of configuring RBSs, which are known and tested by Er-
icsson, and recommended to its customers for different usages. However, Ericsson
has no knowledge how the operators actually configure their radio base stations.
There might be configurations invented by the operators, which Ericsson has not
previously seen nor tested. Also, the customers might have configured their RBSs
incorrectly or abnormally. Therefore, clustering is the appropriate approach of
analysis, as it tries to find patterns on its own rather than classifying them ac-
cording to known classes. Hence, with help of clustering the goal of this thesis
is to investigate methods of finding differences in configurations in a radio access
network. Thus, the research questions of this thesis are posed as:

1. To which extent can pattern recognition methods correctly find clusters in
a set of RBS configuration topologies?

2. Do the performances of more complex algorithms compensate for longer
runtimes, compared to more simple algorithms?

3. Are the algorithms able to perform well, even if they are not specifically
tailored to the problem domain?

2



1.3. RELATED WORK

1.3 Related Work
The research in this thesis is primarily based on two topics in the field of graph-
based pattern recognition: graph kernels and graph embeddings.

There have been a great number of graph kernels proposed since the first graph
kernel was introduced by Gärtner et al. [1]. Two types of graph kernels designed for
comparison of large graphs are graphlet kernels [2] and Weisfeiler-Lehman graph
kernels [3]. Both compare graphs by enumerating substructures within the graphs.

Shervashidze et al. [2] propose a graph kernel based on a distribution of sub-
graphs of a fixed size k, so called graphlets. The authors also propose two theoret-
ical speedups to cope with the prohibitively expensive enumeration of all possible
graphlets. However, the proposed graphlet kernels only consider graphs with un-
labelled vertices.

A family of graph kernels based on Weisfeiler-Lehman’s test of isomorphism was
introduced by Shervashidze et al. [3]. In contrast to the above-mentioned graph
kernel, these kernels compare graphs based on their vertex labels. One of these
graph kernels, the subtree kernel, turns out to be competitive to state-of-the-art
graph kernels in terms of both accuracy and runtime.

Both mentioned studies describe experiments on a number of different graph
data sets and compare their findings to various graph kernels. Experiments are
performed using supervised learning and the chosen classifiers are support vector
machines (SVM) [4].

Riesen and Bunke [5] propose an approach to embed graphs into feature vec-
tors in terms of graph edit distance to selected prototypes. The dimension of the
extracted feature vectors is decided by the number of prototypes and the per-
formance of the embedding method depends on both the number of prototypes
and the chosen prototype selection strategy. Another challenge that arises in this
method is the complexity of graph edit distance, which grows exponentially in the
number of vertices. Therefore, an approximation of the distance is desirable to
avoid prohibitively expensive computations. Despite these challenges, this method
offers a flexibility of choice of graph (directed or undirected, any type of vertex
labels etc.).

Another embedding method proposed by Li et al. [6] extracts a number of
topological and label attributes from a graph to a feature vector. Features include
the average edge degree, average path length and label entropy. This approach
should be efficient on large graphs and experiments are compared to a number of
state-of-the-art graph kernels.

As for graph kernels, both articles mentioned above conduct experiments using
supervised learning. In general, there seems to be a lack of examples of unsuper-
vised learning in graph-based pattern recognition.

1.4 Limitations
There are possibly thousands of different configurations, where most of them con-
sist of additional units in order to control e.g. a power supply of an RBS. This
thesis does not include these and only focuses on those units which control and

3



CHAPTER 1. INTRODUCTION

affect the actual functionality of outdoor RBSs. Indoor RBSs have a insignificant
diversity and are hence neglected in the scope of this thesis.

The work will not include designing new algorithms, but rather utilising al-
ready existing ones. In addition to baseline methods, we concentrate on one
kernel method and one more advanced embedding method. Evaluating additional
methods would be outside the scope of the thesis.

1.5 Thesis Outline
The remainder of this thesis will proceed as follows. Chapter 2 briefly discusses
the domain of the problem, with examples of aspects in the variety of RBS con-
figurations. Chapter 3 then starts by presenting some basic graph theory and its
application in this thesis. The chapter then continues describing some ways of
representing graph data for machine learning, followed by a presentation of meth-
ods chosen for this research. Chapter 3 finally presents some ways of clustering
different representations of data, and how to evaluate the clustering.

The methodology and implementation of the theory is described in Chapter 4.
In Chapter 5 the results from the executed methods described in Chapter 4 are
shown, and discussed upon in Chapter 6.

4



2
Background

In order for the reader to gain some knowledge of the domain in this thesis, this
chapter presents a short introduction to what a radio base station is, as well as
highlighting differences of the configurations of radio base stations.

2.1 Radio Base Stations
Radio Base Stations (RBSs) are nodes in large radio access networks providing
the possibility to call friends, family and colleagues, and access the Internet. Each
RBS has a number of antennas, which cover a certain area. These coverage areas
are called cells and decide to which RBS a user connects with its cell phone or
mobile device. The RBS then connects the user to the core network.

The RBSs consist of a radio equipment controller (REC) which is the main
equipment controlling the RBS. These directly control radio equipment (RE),
which in turn is connected to antennas. In Figure 2.1, a simple RBS configuration
covering three cells is visualised. The figure demonstrates that each antenna with
a corresponding RE is used by one cell. In addition, each cell uses a part of the
REC.

REC

RE

RE RE

Cell 1

Cell 2 Cell 3

Figure 2.1: A simple example of an RBS visualising its main components and
coverage. Antennas are marked as .

In this thesis, the configurations of RBSs are of most interest. As there are
different circumstances where the RBSs are located, the operators want e.g. dif-
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CHAPTER 2. BACKGROUND

ferent coverage and capacities. An extension of the configuration in Figure 2.1
with six REs and six antennas could e.g. imply the same number of cells, where
each such cell is covered with two different frequencies. It could also mean that
there are six cells. There could hence be different functionality depending on the
configurations of the RBSs.

Not only the functionality can vary between RBSs, but also the way they are
connected. Only looking at the equipment, the configuration in Figure 2.1 could
be visualised as in Figure 2.2a. In this case the three REs are star-coupled from
the REC, distributing the load on three ports on the REC. There might also be
several connections between REC and an RE, in order to distribute the load of
one RE on several connections.

Capacities and coverage are however not the only things to take into consid-
eration, but also the costs of the different equipment. There are cases when the
antennas and REs are situated on high towers and the REC at the base of the
tower. In such cases the operators might want to reduce their cost of cables and
cascade-couple the REs in order to do so (Figure 2.2b). The operator then only
connects one long cable from the REC up to an RE, and connects the REs by
shorter cables. The downside of this is that the load of the cascading REs is put
on one port of the REC.

REC

RE

RE

RE

(a) Three REs star-
coupled with an REC.

REC

RE

RE

RE

(b) Three REs cascade-
coupled from an REC.

REC MUX

RE

RE

RE

(c) Three REs connected
to an REC via a MUX.

Figure 2.2: Examples of simple RBS configurations visualising some differences in
their couplings, where antennas are marked with .

For larger configurations, there might be more REs than there are ports on the
REC. Then a multiplexer (MUX) can be used, which is an add-on enabling the
use of more REs.

There are however not only different ways of connecting REs to RECs, but also
different ways of connecting antennas to REs. In the simple examples presented
so far, there has only been one cable connecting an RE with an antenna. It is
also possible to draw two cables from an RE to an antenna in order to meet
other capacities (Figure 2.3a). With two cables from each RE, there is also the
possibility to connect an RE to more than one antenna (Figure 2.3b). In this way,
if one RE becomes faulty, a cell will not be lost, but the performance of two cells
will decrease.

6



2.1. RADIO BASE STATIONS

REC

RE

RE

RE

(a) Straight-connected an-
tennas

REC

RE

RE

RE

(b) Crossed-connected an-
tennas

Figure 2.3: Examples of simple RBS configurations visualising some differences in
the connections of antennas and REs.

As the figures presented in this chapter are simple examples, they illustrate the
main concepts of the differences in RBS configurations. The configurations contain
additional subcomponents, such as ports, which do not affect the concepts of the
differences, but are needed to be considered when analysing the configuration
topologies. Such analysis is done representing the RBS configurations as graphs.
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3
Theory

In this chapter, we introduce the theory on which we have based our research and
that will be of relevance throughout this thesis. The chapter starts by introducing
some basic graph theory and relevant notations in Section 3.1. Then it proceeds
in Section 3.2 by introducing different ways of representing graph data in the field
of machine learning. There the concepts relevant to the different representations
are explained, and the baseline methods used in this thesis are presented. In Sec-
tions 3.3 and 3.4, two more complex methods are presented, which build upon two
different representations of graph data. In addition, these sections include how to
set and modify these methods, as well as techniques to speed up their computa-
tion times. In Section 3.5, different methods of clustering data are presented, and
finally in Section 3.6, metrics of evaluating the clustering both intrinsically and
extrinsically are presented.

3.1 Graph Theory

Graphs are data structures which describe a set of entities (vertex set) and a set
of binary relationships between these entities (edge set). We say that a graph is
directed if its edges are represented by ordered pairs of vertices, and undirected
if they are represented by unordered pairs. Additionally, both vertices and edges
can be labelled, meaning that there are labelling functions which map a vertex or
an edge to a label. For the purpose of this thesis, the edge labelling function is
omitted and all graphs are considered undirected.

Definition 3.1 (Graph). A graph G = (V,E, `) is an ordered triplet, where V is
a set of vertices, E ⊆ V ×V is a set of edges and ` : V → Σ is a labelling function
from the set of vertices to a set of equipment and function labels Σ.

For simplicity we may denote by V (G) and E(G) the vertex set and edge set,
respectively, of graph G. Also, when considering a set of graphs G, the labelling
function may be joint for all graphs in G, i.e. ` : ⋃G∈G V (G)→ Σ.

In this thesis, RBS configurations will be described as graphs, where each ver-
tex in the graph has a symbolic label corresponding to what type or instance of
equipment or function the vertex represents. An edge represents either a cable con-
necting two pieces of equipment, an application of functionality or an “ownership”-
relation between for example a piece of equipment and its ports. The type of an
edge is easily distinguished by the vertices the edge connects. In Section 4.1, the
specific representation of RBS configurations used during experiments is explained.

9



CHAPTER 3. THEORY

3.1.1 Notation
For clarity of the remainder of this thesis, let us state and define some concepts
used in this thesis.

We denote by the size of a graph G the number of vertices in G, i.e. |V (G)|.
The neighbourhood N (v) of a vertex v is the set of nodes to which v is connected
by an edge, i.e. N (v) = {v′ | (v, v′) ∈ E}. A star is a structure within a graph
which contains a vertex and the vertex’s outgoing edges. Hence, for a given graph
G = (V,E, `) and a vertex v ∈ V , a star Sv is defined as

Sv =
(
v, {(v, u) | (v, u) ∈ E}, `

)
.

A walk is a sequence of vertices in a graph, in which consecutive vertices are
connected by an edge, and a path is a walk which consists of distinct vertices only.
We call a graph connected if there exists a path between any pair of vertices in
the graph. A subgraph G′ = (V ′, E ′, `′) of a graph G = (V,E, `), written G′ ⊆ G,
is a graph such that V ′ ⊆ V , E ′ ⊆ E ∩V ′×V ′ and `′(v′) = `(v′) for every v′ ∈ V ′.
With subtree we mean a connected subgraph of a graph, which contains no cycles,
but has an designated root vertex. Two graphs G = (V,E, `) and G′ = (V ′, E ′, `′)
are said to be isomorphic if there exists a bijective mapping f : V → V ′ such that
(u, v) ∈ E if and only if

(
f(u), f(v)

)
∈ E ′, and `(v) = `′

(
f(v)

)
for every v ∈ V .

This means that two graphs are isomorphic if they are structurally identical, i.e.
if each vertex in the first graph has a one-to-one correspondence to a vertex in
the second graph having the same label and edge structure as the first, and vice
versa.

3.2 Data Representation for Machine Learning
Machine learning is a field in computer science that has gained much attention in
recent years. The key idea is that machines should learn patterns in a data set
by using learning algorithms and be able to come to a desirable conclusion when
exposed to new data.

Two main learning approaches in machine learning are supervised and unsuper-
vised learning. In the former, the algorithms use a training data set, where each
element is associated with a specific class. For example, recognition of handwritten
digits, where each element in the training set is associated with the corresponding
digit. In unsupervised learning, the elements in the data set are not associated
with a specific class. Due to paucity of knowledge of how the operators config-
ure their radio base stations, and to be able to identify unknown configurations,
unsupervised learning will be used in this project by reasons of its ability to find
structures which are not predefined. This opposed to supervised learning, which
learns from imitating given structures.

In some machine learning applications, it may be desirable to represent ele-
ments in a data set as graphs. A graph can represent an object, not only by
what entities an object has, but also the relations between the entities. However,
graph representations give rise to a few challenges. First of all, algorithms for
graph matching are computationally demanding. Second, there is a paucity of

10



3.2. DATA REPRESENTATION FOR MACHINE LEARNING

mathematical structure in the graph domain. As a consequence, there is a lack of
machine learning algorithms that are applicable directly on graphs.

In this work, we are looking at approaches which enable graph data to be
applied on machine learning algorithms designed for vectors and kernels.

3.2.1 Vector Representation
Feature vectors are common data structures to represent objects in machine learn-
ing. A feature vector represents an object by n numerical measurements of the
object, called features.

Graph embeddings can be thought of as (feature) vector representations of
graphs. To represent a graph as an n-dimensional feature vector a mapping

φ : G → Rn

is defined. A graph embedding method can be trivially simple or very complicated
depending on which algorithm is used to extract the features. The features could
also vary from counting specific substructures in the graphs to a comparison with
other objects. Once a graph has been mapped into a feature vector it can be used
on any available learning algorithm designed for vector input.

Two Simple Graph Embedding Methods

One simple embedding method is the one producing a feature vector containing
the number of occurrences of each label in a graph. If there are n discrete possible
labels, then we have a mapping to a feature space Rn, where each dimension is
the occurrence of a specific label. Due to its simplicity, this method will be used
as a baseline in this thesis.

Given a graph G = (V,E, `), let #(σi, G) denote the number of vertices with
label σi ∈ Σ in G, i.e. #(σi, G) =

∣∣∣{v ∈ V | `(v) = σi}
∣∣∣. The baseline vector φB is

then computed as

φB(G) =
(
#(σ1, G),#(σ2, G), . . . ,#(σn, G)

)
. (3.1)

Note that this approach does not take any relations between entities in account.
An extended version of the previous method also captures relations between

vertices. This method outputs a feature vector containing the number of occur-
rences of each type of instance of entities in a configuration (as for the previous
method), as well as the number of occurrences of edges between pairs of vertices
of any labels in the graph. Given a graph G = (V,E, `), let #(σi ↔ σj, G) denote
the number of edges between vertices with labels σi, σj ∈ Σ in G, i.e.

#(σi ↔ σj, G) =
∣∣∣∣{(u, v) ∈ E(G)

∣∣∣ `(u) = σi, `(v) = σj ∨ `(v) = σi, `(u) = σj
}∣∣∣∣.

Combining these occurrences with φB(G) gives the feature vector of what will be
referred to as the extended baseline:

φB+(G) =
(
φB(G),#(σ1 ↔ σ1, G),#(σ1 ↔ σ2, G), . . . ,#(σ|Σ| ↔ σ|Σ|, G)

)
. (3.2)

A more sophisticated graph embedding method will be introduced in Section 3.3.
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CHAPTER 3. THEORY

3.2.2 Kernels
Graph kernels are tools for representing graph data and have seen rapid develop-
ment since first introduced by Gärtner et al. [1]. As they respect and exploit graph
topology, but restrict themselves to comparing substructures of graphs which are
computable in polynomial time, they are an attractive way of comparing graphs.

Graph kernels, and other kernel methods, can be applied in high dimensional
feature spaces without explicitly computing the feature map. This is often referred
to as the kernel trick, due to which kernel methods are computationally attractive.
The explicit computation for graph kernels would be costly, since graph kernels
often extract features by counting substructures of the graphs.

Formally, a kernel method uses a positive semidefinte kernel function κ : X ×
X → R on some input space X . This function can be seen as first applying an
implicit mapping φ : X → H to the inputs, where H is a Hilbert space, and then
taking the scalar product of the resulting mappings, i.e. κ(x, x′) =

〈
φ(x) , φ(x′)

〉
for x, x′ ∈ X .

As the feature map φ is implicit, there is no constraint of it being unambiguous.
Assume X ⊆ R2 and for x = (x1, x2) ∈ X we have φ(x) = (x2

1, x
2
2,
√

2x1x2). Then
the kernel function will compute:

κ(x,x′) =
〈
φ(x) , φ(x′)

〉
= (x2

1, x
2
2,
√

2x1x2) · (x′21 , x′22 ,
√

2x′1x′2)
= (x1x

′
1)2 + (x2x

′
2)2 + 2x1x

′
1x2x

′
2

= (x1x
′
1 + x2x

′
2)2

= 〈x , x′〉2.

(3.3)

Note that if we instead would have defined the feature map in a 4-dimensional
feature space as φ(x) = (x2

1, x
2
2, x1x2, x2x1) we would have got the same result.

So, there is no explicit feature map present in kernel functions, and hence, it does
not need to be computed.

One reason to use kernel methods and move the computations to higher di-
mensions can easily be motivated when working with linearly inseparable data.
As the data are not linearly separable in some input space the implicit mapping
to a higher dimensional feature space enables the data to be linearly separated in
the feature space. In such cases, it is easier to group the data by separating them
by hyperplanes (Figure 3.1). Another reason is that kernel methods are also ap-
plicable directly on the input, as exemplified in (3.3), leaving the explicit feature
map uncomputed.

In the field of machine learning, there are several different graph kernels defined.
Despite their differences, they can be categorised into three classes: graph kernels
based on walks [1, 7] and paths [8], graph kernels based on limited size subgraphs
[2], and graph kernels based on subtree patterns [9].

The first class, graph kernels based on walks and paths, compares two graphs
by the number of matching pairs of random walks or paths in the graphs. As an
example, Borgwardt and Kriegel [8] present a shortest path kernel, which counts
the pairs of shortest paths having the same lengths and the same source and target
labels in two graphs.
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Input Space

φ

Feature Space

Figure 3.1: The idea of feature mapping: transform linearly inseparable input data
to linearly separable data in feature space via φ. Crosses and circles represent data
points of different categories and the dashed lines represent decision boundaries.

In the second class, graph kernels based on limited size subgraphs, we find
kernels based on so called graphlets, where the graphs are represented as the
numbers of occurrences of each possible subgraph of size k ∈ {3, 4, 5} in the
graphs [2].

A kernel from the third class, subtree kernels, is used in this thesis, and is
presented in Section 3.4. The very first subtree kernel, defined by Ramon and
Gärtner in 2003 [9], compares two graphs G and G′ by iteratively comparing the
neighbourhoods of two vertices v ∈ V (G) and v′ ∈ V (G′). In other words, for
every pair of vertices v ∈ V (G) and v′ ∈ V (G′), the kernel counts all pairs of
matching substructures in subtrees pattern with v and v′ as roots. This kernel has
later been refined for applications in, inter alia, chemoinformatics and handwritten
digit recognition [3].

3.3 Graph Embedding Using Dissimilarities
Dissimilarity space embeddings use dissimilarity measures as features for pattern
recognition. In this sense, objects are represented by vectors of dissimilarities
to prototype objects, rather than absolute features. The idea is that objects, in
our case graphs, which are regarded similar should have similar differences to the
prototypes.

Graph embedding using dissimilarities (GEUD) [5] embeds a graph G into a
feature vector using prototype selection and graph edit distance computations.
Let G be a set of input graphs, P = {p1, ..., pn} ⊆ G be a set of n prototype
graphs and d(G, pi) be a function computing (an approximation of) the graph edit
distance between graph G and prototype pi ∈ P . Then the mapping

φPn : G → Rn (3.4)

is defined as the function

φPn (G) =
(
d(G, p1), d(G, p2), . . . , d(G, pn)

)
. (3.5)

Graph edit distance measures the dissimilarity between graphs by the minimum
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amount of distortion it takes to transform one of the graphs so that it is isomorphic
to the other. This means that a vector representation of a graph will contain the
dissimilarities of this graph to each prototype in the prototype set, in terms of
these distortions.

This method gives rise to three challenges. The first is that the graph edit
distance problem is NP-hard [10], which requires some approximation to be com-
putationally feasible. The second and third challenges are how to choose proper
prototypes and how many to choose. In this section we will describe methods to
overcome each of these challenges.

3.3.1 Graph Edit Distance

Graph edit distance (GED) is a measure of dissimilarity between two graphs which
has the benefit that it can be applied on any type of graph, but has the down-
side of being computationally demanding. In GED a dissimilarity measure is the
minimum cost of edit operations which transforms a source graph G to a target
graph G′. Edit operations on a graph include deletion and insertion of vertices
and edges, and substitution, i.e. relabelling, of vertices.

Definition 3.2 (Edit Operations). Let G = (V,E, `) be the source graph and
G′ = (V ′, E ′, `) be the target graph. Furthermore, let v ∈ V , (v, u) ∈ E, v′ ∈ V ′,
(v′, u′) ∈ E ′ and ε denote an empty vertex or edge. Then an edit operation ε can
be any of the following operations:
• v → v′ substituting v for v′
• v → ε deleting v
• ε→ v′ inserting v′
• (v, u)→ (v′, u′) substituting (v, u) to (v′, u′)
• (v, u)→ ε deleting (v, u)
• ε→ (v′, u′) inserting (v′, u′)

Let γ(G,G′) = {ε1, ε2, . . . , εk} be an edit path which transforms G to G′ and let
c(εi) be the cost of edit operation i. An example of an edit path is found in
Figure 3.2.
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Source Graph
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edge deletion
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vertex deletion

D
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edge deletion
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A

C

B

Target Graph

vertex substitution

Figure 3.2: Example of an edit path which transforms the source graph to the
target graph.

Definition 3.3 (Graph Edit Distance). Let G be the source graph and G′ be the
target graph. Then the graph edit distance between G and G′ is defined as

d(G,G′) = min
γ(G,G′)∈Γ(G,G′)

∑
ε∈γ(G,G′)

c(ε), (3.6)

where Γ(G,G′) denotes the set of all edit paths which transforms G to G′.

Setting the Cost of Edit Operations

The cost function c(ε) can be defined on any kind of graph structure definition,
such as directed or undirected graphs with any type of vertex or edge labels, such
as symbolic or numerical values. This is what makes GED flexible. Before we
establish cost functions for edit operations on stars, we introduce cost functions
for edge and vertex edit operations. The presented costs are rudimentarily based
on the concepts and possibilities of RBS configurations. This means that there is a
cost of changing equipment of different types, but no weight is put on the difference
of the types, i.e. there either is a difference or there is not. Obviously, there may
be changes of equipment that are more substantial than others, but this would
require more knowledge of the problem domain. This will not be investigated
further.

Let G = (V,E, `) be the source graph and G′ = (V ′, E ′, `) be the target graph
and assume v ∈ V and v′ ∈ V ′. Also, let Ev denote the set of outgoing edges from
v ∈ V , i.e. Ev = {e ∈ E | e = (v, u)}. Then the costs of substituting Ev with Ev′ ,
deleting Ev and inserting Ev′ are:

c(Ev → Ev′) =
∣∣∣|Ev| − |Ev′ |

∣∣∣ substitution
c(Ev → ε) = |Ev| deletion
c(ε→ Ev′) = |Ev′ | insertion.
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Since the vertex labels are symbolic in this thesis the cost function is defined so
that there is no cost for substituting two vertices with equal labels

c(v → v′) =

0 if `(v) = `(v′)
1 otherwise

c(v → ε) = c(ε→ v′) = 1

We then have the cost of substituting, deleting or inserting of stars

c(Sv → Sv′) = c(v → v′) + c(Ev → Ev′) star substitution
c(Sv → ε) = c(v → ε) + c(Ev → ε) star deletion

c(ε→ Sv′) = c(ε→ v′) + c(ε→ Ev′) star insertion

Constraints on the cost functions need to be added so that the cost of a path
that transforms a source graph to a target graph is a true edit distance. These
constraints apply to both vertex and edge operations, hence we for now denote
by element either vertex or edge. Any edit operation ε either adds or does not
add any cost to the total cost. This requires that c(ε) ≥ 0, for any edit operation
ε. Further constraints are added so that no path contains an insertion with a
subsequent deletion of the same element

c(a→ ε) > 0 deleting a
c(ε→ a) > 0 inserting a.

Finally, constraints to avoid unnecessary substitution of elements in a path are
added,

c(a→ b) ≤ c(a→ c) + c(c→ b) substituting a to b
c(a→ ε) ≤ c(a→ b) + c(b→ ε) deleting a
c(ε→ a) ≤ c(ε→ b) + c(b→ a) inserting a,

where a, b and c are all either vertices or edges.
Computing the exact graph edit distance is usually carried out by an imple-

mentation of the A∗ search algorithm [11], whose computational complexity is
exponential in the number of vertices of the graphs [12].

Approximations of GED

An approximation of GED solvable in polynomial time by means of bipartite
graph matching (BP) was introduced by Riesen and Bunke [12]. BP transforms
GED into an instance of the linear assignment problem. The method defines an
(n + m) × (m + n) cost matrix C, given a source graph G of size n and a target
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graph G′ of size m. An approximation of the optimal edit path γ(G,G′) is found
by using Munkre’s algorithm [13] on C. The cost matrix is defined so that element
cij of the upper left n×m quadrant of C is the cost of substituting a star Svi

in G
to a star Svj

in G′. The element cii of the n×n quadrant in the upper right corner
is the cost of removing Svi

, and cjj in the bottom left m×m quadrant is the cost
of inserting star Svj

. Non-diagonal elements of the upper right and bottom left
quadrants are set to infinity since any star only can be deleted and inserted at
most once. Element cij in the bottom right m×n quadrant is the cost of inserting
and deleting a non-existent element, i.e ε → ε, which is zero. BP has the same
complexity as Munkre’s algorithm, which depends on the size of the cost matrix,
i.e. O((m+ n)3). More formally the cost matrix C have the following structure:

C =



c11 c12 · · · c1m
c21 c22 · · · c2m
... ... . . . ...
cn1 cn2 · · · cnm

c1ε ∞ · · · ∞
∞ c2ε · · · ∞
... . . . . . . ∞
∞ · · · ∞ cnε

cε1 ∞ · · · ∞
∞ cε2

. . . ...
... . . . . . . ∞
∞ · · · ∞ cεm

0 0 · · · 0
0 0 . . . ...
... . . . . . . 0
0 · · · 0 0


.

When executing Munkre’s algorithm of C an approximation of the optimal edit
path γ(G,G′) is found with a total cost, EditCost(G,G′) = ∑

ε∈γ(G,G′) c(ε), which
is an approximation of the GED.

A BP approach with faster computation was introduced by Serratosa [14]. This
method has a complexity of O(max(m,n)3) and gives the same result as in [12]. A
new cost function and a new cost matrix C∗ are defined. The only limitations are
that the sum of the cost for removal and inserting stars is larger than substitution.
The trick is to redefine the cost function

EditCost′(G,G′) = EditCost(G,G′)− CostInsertDeleteStar (3.7)

where CostInsertDeleteStar is the sum of costs of inserting stars in G′ and deleting
stars in G. An n×m cost matrix C∗ is defined to solve EditCost′:

C∗ =


c11 − (c1ε + cε1) c12 − (c1ε + cε2) · · · c1m − (c1ε + cεm)

... ... ...
cn1 − (cnε + cε1) cn2 − (cnε + cε2) · · · cnm − (cnε + cεm)

 .
The true EditCost is then computed as the cost of the approximation of the
optimal path found by Munkre’s algorithm added with CostInsertDeleteStar.

3.3.2 Prototype Selectors
As previously stated, a big challenge in using graph embedding using dissimilarities
is to choose the number of prototypes and which prototypes to use. In this section,
we consider the number of prototypes being chosen to be n, and present some
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strategies of choosing these n prototypes. For the interested reader, a complete
list of prototype selection strategies is presented in [5].

In order to easier specify these strategies, let us first define some special graphs.

Definition 3.4 (Set Median Graph). Let G be a set of graphs. The set median
graph Gmdn is then the graph whose sum of graph edit distances to all graphs in G
is minimal, and is defined by

median(G) = Gmdn = argmin
G∈G

∑
G′∈G

d(G,G′).

Definition 3.5 (Set Centre Graph). Let G be a set of graphs. The set centre
graph Gc is then the graph for which the maximum distance to all other graphs in
G is minimal, and is defined by

centre(G) = Gc = argmin
G∈G

max
G′∈G

d(G,G′).

Both these special graphs are located in the centre of the graph set. The difference
is that the set centre graph can be seen as the geometrical centre of the graph set,
while the set median graph also takes the densities in the graph set into account.

Targetsphere Prototype Selector (tps) [5] The main idea of the target-
sphere prototype selection strategy is to distribute the prototypes as uniformly as
possible in terms of the distance from the set centre graph. It is done by concep-
tualising n − 1 equidistant spheres around the set centre graph, and choosing a
prototype closest to each sphere.

First the set centre graph Gc = centre(G) is determined and selected as pro-
totype. After Gc is found, the graph furthest away from Gc is located, i.e. the
graph Gf ∈ G with the maximal distance to Gc, and selected as prototype. De-
note the distance between Gc and Gf as dmax, i.e. dmax = d(Gc, Gf ), and let
each r ∈ {iw}n−2

i=1 be the radius of a sphere around Gc, where w = dmax
n−1 is the

distance between each sphere. Then choose the graph closest to each sphere to be
a prototype, that is

p = argmin
G∈G

| d(Gc, G)− iw | for i ∈ {1, ..., n− 2}.

For a pseudo-code description see Algorithm 1.
The targetsphere prototype selector hence distributes the prototypes uniformly

in terms of the distance from the set centre graph, but it does not take into account
the distance between each prototype. Depending on the graph set, this prototype
selector might distribute the prototypes well, but it might also only choose the
prototypes in between the set centre graph and the graph furthest away, leaving
suitable prototype graphs in other directions in the graph space unchosen.
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Algorithm 1 Targetsphere prototype selector (tps)
Input: set of N graphs G
Output: set of n prototypes P ⊆ G

1: Initialise P as ∅
2: Let Gc = centre(G)
3: Let Gf = argmax

G∈G
d(G,Gc)

4: Let dmax = d(Gc, Gf ), and set w = dmax

n− 1
5: P = P ∪ {Gc, Gf}
6: G = G \ {Gc, Gf}
7: for each i ∈ [1, n− 2] do
8: p = argmin

G∈G
| d(G,Gc)− iw |

9: P = P ∪ {p}
10: G = G \ {p}
11: end for

Spanning Prototype Selector (sps) The main idea of the spanning prototype
selector is to find prototypes uniformly distributed over the graph set. It starts
by finding the set median graph Gmdn = median(G), and adds it to the set of
prototypes P . Then, until n prototypes are found, the next prototype is the
graph furthest away from the graphs already in P , i.e.

p = argmax
G∈G

min
p′∈P

d(G, p′).

For a pseudo-code description see Algorithm 2.
In contrast to the tps, the sps considers all distances to the already selected

prototypes in the selection, where the tps only considers the distances to the set
centre graph. The purpose and result of the spanning selection strategy is hence
to span the space of the graph set.

Algorithm 2 Spanning prototype selector (sps)
Input: set of N graphs G
Output: set of n prototypes P ⊆ G

1: Initialise P as ∅
2: Let Gmgn = median(G)
3: P = P ∪ {Gmdn}
4: G = G \ {Gmdn}
5: while |P| < n do
6: p = argmax

G∈G
min
p∈P

d(G, p)

7: P = P ∪ {p}
8: G = G \ {p}
9: end while
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3.3.3 Choosing the Number of Prototypes

The graph embedding method in (3.5) depends on the choice of number of pro-
totypes and the prototypes selected. This means that the number of prototypes
needs to be set a priori. This kind of parameter is usually referred to as meta-
parameter.

Choosing the proper number of prototypes when using unsupervised learning
differs from when using supervised learning. Bunke and Riesen [15] perform ex-
periments using supervised learning. In these experiments the true classes of the
data are known, and one can then simply choose the number of prototypes as the
number giving the lowest classification error or the highest accuracy.

In unsupervised learning, one can use clustering validation indices (Section 3.6)
instead of the classification error to decide the best choice of number of prototypes.
Experiments using clustering algorithms are presented in [16], where for each
validation index considered the number of prototypes giving the best result is
chosen. The experiments have been performed on a fixed number k of clusters,
as this value is known in the data sets they have used. Generally, this value is
unknown when using unsupervised learning, which will be explained in Section 3.5.

The number of clusters k in a set of RBS configuration topologies will vary
from operator to operator and we can hence not use a fixed value of k when
choosing the number of prototypes. The number of prototypes can be chosen
after performing experiments over an interval of the number of clusters, where
the number of prototypes is chosen as the one having the best average validation
index score over the interval.

3.4 Weisfeiler-Lehman Kernels

In this section, we present a subtree kernel based on the 1-dimensional Weisfeiler-
Lehman (WL) test of graph isomorphism. This subtree kernel was introduced by
Shervashidze et al. [3] and uses this test of isomorphism as a similarity measure,
as opposed to GEUD which instead is a measure of the cost of making graphs
isomorphic. The idea is that graphs are most similar if they have many matching
vertex labels, which in turns of this test implies that their subtrees match. This is
an interesting approach, since it ought to be able to capture important differences
of connections in, and topologies of, RBS configurations.

This subtree kernel ought to be more suitable for this domain than a graphlet
kernel or a shortest path kernel. Even if graphlet kernels are good at capturing
subpatterns in unlabelled graphs, it would not be feasible to apply one on the
labelled graphs considered in this thesis, as they are not efficient for labelled graphs
[2]. Also, a shortest path kernel jeopardises to disregard cycles which might occur
in the cascading of radio equipment.

The WL test of isomorphism proceeds in iterations and tests whether two given
graphs G and G′ are isomorphic. During each iteration, indexed by i, the following
steps are performed:
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Algorithm 3 One iteration of the 1-dimensional Weisfeiler-Lehman test of graph
isomorphism
Input: graphs G = (V,E, `), G′ = (V ′, E ′, `) and number of iterations h
Output: label functions l0, ..., lh
Comments:Mi(v) are multiset-labels, i.e. multisets of labels for a vertex v,

Σ∗ is a set of strings made up by letters in Σ

1. Multiset-label determination
– for each v ∈ V ∪ V ′ do

– if i = 0, let Mi(v) = {l0(v)} = {`(v)}
– if i > 0, let Mi(v) = {li−1(u) |u ∈ N (v)}

2. Sorting each multiset
– for each multiset-label Mi(v), sort the elements in Mi(v) in ascending
order and concatenate them into a string si(v)

– if i > 0, for each string si(v), add li−1(v) as prefix to si(v)
3. Label compression

– sort the strings si(v) for all v ∈ V ∪ V ′, in ascending order
– map each string si(v) to a new compressed label, using a function f :

Σ∗ → Σ such that f(si(v)) = f(si(v′)) iff si(v) = si(v′)
4. Relabeling

– for each v ∈ V ∪ V ′, set li(v) = f(si(v))

The key idea of Algorithm 3 is to enhance the vertex labels by the sorted set of
vertex labels of neighbouring vertices, and compress these enhanced labels into
new, short labels [3]. The algorithm terminates after iteration i < h if the newly
created labels are not identical in G and G′, i.e. {li(v) | v ∈ V } 6= {li(v′) | v′ ∈ V ′},
which means that the two graphs are not isomorphic. If the sets are identical after
h iterations it means either that G and G′ are isomorphic, or that the algorithm
could not determine that they are not isomorphic.

Letting for now n denote the maximal number of vertices in a G or G′, and
m the maximal number of edges in G or G′, i.e. n = max(|V |, |V ′|) and m =
max(|E|, |E ′|), the time complexity of running Algorithm 3 in h iterations would
be O(hm) as each step in the algorithm can take O(m) time. A complexity
analysis can be found in [3].

From each iteration i of the WL algorithm (Algorithm 3) we obtain a new label-
ing function li(v) for each vertex v. Recall that vertices in G and G′ will get identi-
cal new labels if, and only if, they have identical multiset labels. We can therefore
think of one iteration of the WL relabeling as a function r

(
(V,E, li)

)
= (V,E, li+1)

which depends on the considered set of graphs and transforms all graphs in the
set similarly [3]. Let us extend this thought in terms of graphs.

Definition 3.6. For a given graph G = (V,E, `), the ith iteration Weisfeiler-
Lehman rewriting is denoted Gi = (V,E, li), where G0 = G and l0 = `, and is
computed using Algorithm 3.

We note that G0 is the original graph and that Gi = r(Gi−1) is the ith relabeling.
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Figure 3.3: Illustration of the computation of the Weisfeiler-Lehman subtree kernel
with h = 1 for two graphs G and G′. Here 1, 2, ..., 11 ∈ Σ are considered labels.

Based on the WL algorithm, we consider the general Weisfeiler-Lehman kernel
as Definition 3.7.

Definition 3.7. Let κ be any kernel for graphs, which we refer to as the base
kernel. The Weisfeiler-Lehman kernel with h iterations and base kernel κ is then
defined as

κ
(h)
WL(G,G′) =

h∑
i=0

κ(Gi, G
′
i). (3.8)

3.4.1 The Weisfeiler-Lehman Subtree Kernel
There exist various numbers of Weisfeiler-Lehman kernels [3]. In this section we
present the WL subtree kernel. In order to define this kernel we first need to
introduce some notations. Consider the two graphs G and G′ and let Σi ⊆ Σ be
the set of labels which occur at least once in G or G′ at the end of iteration i of
the WL algorithm. Let Σ0 be the set of original node labels of G and G′. Assume
that all Σi are disjoint, and w.l.o.g. that every Σi = {σi1, σi2, ..., σi|Σi|} is ordered.
Also define a map #i : Σi × {G,G′} → N computing the number of occurrences
of a letter σij ∈ Σi in graph G or G′.

Definition 3.8. The Weisfeiler-Lehman subtree kernel on two graphs G and G′
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with h iterations is defined as

κ
(h)
WLsubtree(G,G′) =

〈
φ

(h)
WLsubtree(G) , φ(h)

WLsubtree(G′)
〉
, (3.9)

where

φ
(h)
WLsubtree(G) =

(
#0(σ01, G), ...,#0(σ0|Σ0|, G), ...,#h(σh1, G), ...,#h(σh|Σh|, G)

)
We note that the WL subtree kernel counts common labels in the two graphs.

The WL subtree kernel in (3.9) is indeed a special case of the general WL kernel
in (3.8).

Theorem 1 (Shervashidze et al. [3]). Let V and V ′ be the sets of vertices in graphs
G and G′, respectively. Furthermore, let κδ defined as

κδ(G,G′) =
∑
v∈V

∑
v′∈V ′

δ
(
`(v), `(v′)

)
,

be the base kernel, where δ is the Dirac kernel, which tests for equality, that is,
it is 1 if its arguments are equal, and 0 otherwise. Then for all graphs G and G′
κ

(h)
WL(G,G′) = κ

(h)
WLsubtree(G,G′).

Proof. We note that the base kernel κδ is a function counting pairs with matching
vertex labels. Hence, we easily notice that

κ
(h)
WL(G,G′) =

h∑
i=0

κδ(G,G′)

=
h∑
i=0

(∑
v∈V

∑
v′∈V ′

δ
(
li(v), li(v′)

))

=
h∑
i=0

( |Σi|∑
j=1

#i(σij, G) ·#j(σij, G′)
)

=
〈
φ

(h)
WLsubtree(G) , φ(h)

WLsubtree(G′)
〉

= κ
(h)
WLsubtree(G,G′).

3.4.2 The Weisfeiler-Lehman Subtree Kernel on N Graphs
Up to now, we have only considered computing the Weisfeiler-Lehman subtree
kernel on pairs of graphs. In most cases, there is a set of N graphs which we want
to compare. An obvious and naïve way of computing the WL subtree kernel on
these N graphs is to compute the kernel on every pair of graphs. Shervashidze
et al. [3] propose a faster algorithm to simultaneously process all N graphs. This
algorithm is presented in Algorithm 4.
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Algorithm 4 The Weisfeiler-Lehman subtree kernel computation on N graphs
Input: a set G of N graphs

– for i = 0 to h do
– for every graph G ∈ G simultaneously do

1. Multiset-label determination
– for each v ∈ V (G), let Mi(v) = {li−1(u) |u ∈ N (v)}

2. Sorting each multiset
– for each multiset-label Mi(v), sort the elements in Mi(v) in
ascending order and concatenate them into a string si(v)

– for each string si(v), add li−1(v) as a prefix to si(v)
3. Label compression

– map each string si(v) to a compressed label using a hash func-
tion f : Σ∗ → Σ such that f(si(v)) = f(si(v′)) iff si(v) = si(v′)

4. Relabeling
– for each v ∈ V (G), set li(v) = f(si(v))

The result of running Algorithm 4 is an N ×N kernel matrix K such that Kij =
κ

(h)
WLsubtree(Gi, Gj) for each Gi, Gj ∈ G.
Let for now n denote the maximal number of vertices in a graph in G, and

m the maximal number of edges in a graph in G, i.e. n = maxG∈G |V (G)| and
m = maxG∈G |E(G)|, then running the naïve implementation in h iterations would
result in O(N2hm) time, but this algorithm only consumes O(Nhm + N2hn)
time, where the first term dominates the overall runtime in practice [3]. This can
be accomplished by explicitly computing φ(h)

WLsubtree for each G ∈ G and only then
taking the pairwise scalar product. For a more profound time complexity analysis,
we refer to [3].

3.5 Clustering Methods
Clustering algorithms aim to partition a data set into clusters so that all elements
which fall into the same cluster are considered similar. This means that it is equally
important that any two elements which are dissimilar are assigned to two different
clusters. What makes two elements similar or dissimilar may vary depending on
the application. Therefore, it is important that the data are represented so that
patterns which are relevant in the application are captured.

In more technical terms, a clustering algorithm takes a data set X as input
and outputs a set of clusters C. In this work, we only allow disjoint clusters that
cover the whole data set. In other words, Cm ∩ Cn = ∅ for any pair of clusters
Cm, Cn ∈ C, where m 6= n, and ⋃C∈C C = X .

There exist numerous clustering algorithms, such as density-based clustering
[17] and hierarchical clustering [18]. In this work, we will use centroid-based
clustering, which opposed to density-based clustering and hierarchical clustering,
requires that the number of clusters k to be predefined. We will use k-means for
feature vectors and kernel k-means for kernels. Both algorithms partition X into
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k clusters. A method for choosing the value of k which best represents the true
number of clusters in X is presented in Section 3.5.4.

3.5.1 k-Means Clustering
The k-means clustering method is an unsupervised learning method which aims
to divide an input set of patterns into k clusters so that the within-cluster sum of
squared distances to the cluster’s centroid is minimised.

Given a set of input data X , where each element in X is a d-dimensional feature
vector, the objective is to find a partitioning of k clusters C = {C1, .., Ck} which
minimises this error. Formally,

C = argmin
C

k∑
i=1

∑
x∈Ci

‖x− µi‖2, (3.10)

where µi is the centroid of cluster Ci and is computed as

µi = 1
|Ci|

∑
x∈Ci

x. (3.11)

Finding the optimal solution to the objective function is NP-hard even for
k = 2 [19]. A widely used algorithm to find an approximate solution to k-means is
Lloyd’s algorithm [20], which has polynomial runtime. This method first initialises
the cluster centroids randomly, then proceeds to assign elements in the data set to
their closest centroid and then updates the centroids with respect to its cluster’s
elements. This is repeated until there is no change in the cluster assignments.
This means that the algorithm is sensitive to the centroid initialisation. Often the
algorithm is executed a number of times and then chooses the cluster assignment
C with the smallest cluster error. To speed up the convergence, an extension of
this algorithm uses a randomised seeding technique for the centroid initialisation,
which is called k-means++ [21].

3.5.2 Kernel k-Means Clustering
When comparing entities in the input space X using a kernel (see Section 3.2.2),
instead of comparing them as feature vectors, the clustering is performed slightly
differently. Similar to the ordinary k-means one wants to find a partitioning which
minimises the clustering error:

C = argmin
C

k∑
i=1

∑
x∈Ci

‖φ(x)− µi‖2, (3.12)

where φ : X → H is some implicit mapping from the input space to some feature
space.

To utilise the so-called kernel trick we want to express the Euclidean distance
using scalar products. Let Ni be the number of elements which have been assigned
to cluster Ci, then we may write the cluster centroid as

µi = 1
Ni

∑
y∈Ci

φ(y). (3.13)
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This gives the expression

‖φ(x)− µi‖2 =
〈
φ(x) , φ(x)

〉
− 2
Ni

∑
y∈Ci

〈
φ(x) , φ(y)

〉
+ 1
N2
i

∑
y,z∈Ci

〈
φ(y) , φ(z)

〉
.

(3.14)
As explained in Section 3.2.2 a kernel function κ can be seen as a scalar product,
and we can hence compute this expression in terms of κ as

‖φ(x)− µi‖2 = κ(x, x)− 2
Ni

∑
y∈Ci

κ(x, y) + 1
N2
i

∑
y,z∈Ci

κ(y, z). (3.15)

The objective function can thus be written as

argmin
C

k∑
i=1

∑
x∈Ci

(
κ(x, x)− 2

Ni

∑
y∈Ci

κ(x, y) + 1
N2
i

∑
y,z∈Ci

κ(y, z)
)
. (3.16)

An algorithm for kernel k-means is described in Dhillon et al. [22].

3.5.3 Global (Kernel) k-Means Clustering
Most algorithms for solving the k-means and kernel k-means problems suffer from
the dependence of the final solution on the initial partitioning. To deal with
the initialisation problem for k-means the global k-means was proposed in [23],
and for kernel k-means the global kernel k-means was proposed in [24]. These
are incremental-deterministic algorithms which employ the (kernel) k-means as
a local search procedure. In terms of clustering error, these algorithms obtain
near-optimal solutions, and hence avoid getting trapped in poor local minima.

The procedure and idea behind these algorithms are principally the same. In
the following lines the global kernel k-means is presented, but for the k-means
consider instead the centroids of the input clusters and let φ(x) = x. Assume one
wants to solve the M -clustering problem, i.e. divide a data set X into M clusters
C1, C2, ..., CM . The global kernel k-means then starts by solving the 1-clustering
problem, i.e. putting all data points into the same cluster. The algorithm then
proceeds solving the 2-clustering problem by executing a kernel k-means algorithm
N times, once for each element in the data set. During the nth execution, the
initial clusters considered are {xn} and X r {xn}. The solution chosen for the
2-clustering problem is then the clustering obtained from the execution with the
lowest clustering error En

2 , given by

En
k =

k∑
i=1

∑
x∈Ci

‖φ(x)− µi‖2. (3.17)

Generally, for the k-clustering problem, let (C∗1 , C∗2 , ..., C∗k−1) denote the solution
from the (k−1)-clustering problem and assume xn ∈ C∗i . The kernel k-means algo-
rithm is then executed N times with (C∗1 , ..., Ci = C∗i r {xn}, ..., C∗k−1, Ck = {xn})
as initial clusters for the nth execution. The resulting clustering corresponding
to the lowest error E∗k = minnEn

k is then chosen as solution for the k-clustering
problem. The described procedure is then repeated until k = M .
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3.5.4 Choosing k
As previously mentioned, a drawback of k-means and kernel k-means is that k
needs to be predefined. There are a few methods of choosing k. In this section,
we will explain the method of choice.

The Elbow Method

The Elbow Method [25] can be used to determine the best choice of the number of
clusters k in a data set, by visualising the curve of the clustering error Ek to the
number of clusters k. Given a partition C = {C1, . . . , Ck}, the clustering error is
computed as

Ek =
k∑
i=1

∑
x∈Ci

‖x− µi‖2, (3.18)

where µi is the cluster centroid of cluster Ci. Given a maximum number of clusters
kmax, the Elbow method computes the clustering error for each k ∈ {1, 2, ..., kmax}.
By plotting Ek against k, the best choice of k will be where the plotted curve stops
dropping most significantly, i.e. where it has the smallest upper angle. The method
has been given its name since k will resemble an elbow in the plot. However, this
elbow might be difficult to determine if the drop is not evident.

When a kernel method has been used, the kernel trick is applied to compute
the error. That is, the clustering error is determined in the implicit feature space,
and the method is otherwise applied as described above.

3.6 Clustering Evaluation
Clustering evaluation can be divided into two categories: intrinsic and extrinsic
metrics. The former measures the compactness of the clusters and how well they
are separated from each other. This means that intrinsic measures do not need to
take “true” categories of a given set into account, and as a consequence of this we
get no measure of how well the clustering algorithm divides the input set into the
correct categories. Extrinsic metrics, on the other hand, compare clusters from a
clustering algorithm with a set of categories. This set of categories, often referred
to as a gold standard, is usually set by human experts in the domain.

In the remainder of this section we present a couple of different intrinsic and
extrinsic metrics, and explain what they measure.

3.6.1 Intrinsic Metrics
For all these validation indices, we assume an input data set X and a distance mea-
sure d(x, x′) between two elements x, x′ ∈ X such that d(x, x) = 0 and d(x, x′) ≥ 0
for every x, x′ ∈ X .

Dunn Index This index takes into account the distances between clusters and
the diameter of clusters, and was first introduced by Dunn [26]. Assume that X
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have been partitioned into k distinct clusters, C = {C1, . . . , Ck}, where
⋃k
i=1Ci =

X . The Dunn Index is then calculated as

DU(k,C) =
min

16 i< j 6 k
dist(Ci, Cj)

max
16 i6 k

diam(Ci)
, (3.19)

where dist(Ci, Cj) = minx∈Ci, y ∈Cj
d(x, y) is the distance between clusters Ci and

Cj, and diam(Ci) = maxx, y ∈Ci
d(x, y) is the diameter of cluster Ci. The idea is

that a compact and well-separated (CWS) cluster should have a smaller diame-
ter within the cluster than the distance to other clusters. The Dunn index can
take values between 0 and infinity and a value DU(k,C) > 1 indicates that the
partitions are CWS.

The Dunn index is hence a measure of how distinct and obvious the clusters
are. By measuring the maximal diameter of the clusters and the smallest distance
between two clusters, this metric gives an indication of the data are clearly sep-
arable. This metric is beyond doubt good when dealing with data that can be
perceivably clustered, but its score is decreased when having outliers in a cluster.

Silhouette Score This score is computed as the average Silhouette coefficient of
all entities in a data set. It measures how well the elements have been assigned to
their rightful cluster. The Silhouette coefficient was first introduced by Rousseeuw
[27]. Assume that we have divided X into a set of clusters. Assume that x ∈ X
have been assigned to a cluster C, then the Silhouette coefficient of x is computed
as

s(x) = b(x)− a(x)
max

(
a(x), b(x)

) , (3.20)

where a(x) is the average distance from x to all other entities in C and b(x) is
the lowest average of distances from x to all elements in a different cluster than
C. We can say that a(x) is a measurement of how dissimilar x is to all other
elements in C, and b(x) how dissimilar x is to the second-best cluster of choice
C ′, which is the closest cluster to x, to which x has not been assigned. Thus, if
the Silhouette coefficient is close to 1, x has been assigned to the correct cluster,
and if the Silhouette coefficient is close to −1, x should probably been assigned to
C ′. The Silhouette score is then the average Silhouette coefficient of every x ∈ X ,
where a result of 1 indicate well-clustered entities, 0 overlapping clusters and −1
poor-clustered entities.

Compared to the Dunn index this metric does not consider the clusters directly,
but instead the assignment of their elements. It is hence a measurement of the
certainty of the assignment of the data to their correct clusters. Outliers do not
necessarily affect the score, as this metric mainly focuses on data points at the
borders of the clusters close to other clusters.

3.6.2 Extrinsic Metrics
As extrinsic metrics we have chosen to use Purity, Inverse Purity and the BCubed
[28] variant of van Rijsbergen’s F measure [29]. These metrics measure how the

28



3.6. CLUSTERING EVALUATION

set of clusters C = {C1, C2, . . . , Ck} computed after clustering conforms with the
gold standard set L = {L1, L2, . . . , Lm} with manually set categories, of the input
data X with N elements. For a more comprehensive review of extrinsic metrics
we recommend Amigó et al. [30] for further reading.

Amigó et al. [30] present four formal constraints on evaluation metrics, which
cast light on which aspects of the quality of a clustering are captured by different
metrics. The first constraint checks for cluster homogeneity, i.e. if all clusters
contain only data points which are members of a single category. The second
checks for cluster completeness, which instead means that members of the same
category must be assigned to the same cluster. Third is a constraint called “Rag
Bag”, which puts more penalty on having noise in a clean cluster than grouping
additional noise to an already disordered cluster. Lastly, the forth constraint,
called “Cluster size vs. quantity”, prefers a small error in a large cluster to a large
number of small errors in small clusters.

Purity This method focuses on the most common category of each cluster, and
in what degree it intersects with the cluster. Purity is computed by taking the
weighted average of the maximal intersection of some category and each cluster:

Purity = 1
N

∑
i

max
j
|Ci ∩ Lj| (3.21)

This method does not reward grouping elements from the same category together,
but penalises the noise in a cluster. This means that having more and smaller
clusters with elements only from one category is more profitable than having large
clusters with little noise. In this way we can obtain maximal Purity by having one
cluster per element. By results of experiments presented in [30] we note that this
metric only fulfils the first constraint of cluster homogeneity.

This measurement hence indicates in what degree each cluster contains config-
urations sharing the same category, i.e. how pure the clusters are. It means that
this metric is an indicator of how well the applied method (embedding/kernel),
and clustering method, is able to separate the data according to the aspects of the
considered domain.

Inverse Purity This measurement is computed just as Purity but with the
difference that clusters and categories have swapped places in the computations:

Inverse Purity = 1
N

∑
j

max
i
|Ci ∩ Lj|. (3.22)

In contrary to Purity, Inverse Purity rewards grouping elements together, but it
does not penalise mixing elements from different categories. Hence, to simply use
one single cluster for all elements yields the maximal value of Inverse Purity. By
results of experiments presented in [30] we note that this metric only fulfils the
fourth constraint.

As this method is the inverse of Purity, it indicates in what degree the elements
sharing the same category have been assigned to the same cluster, and not split
into several clusters. Hence, this metric is an indicator of how well the applied
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method is able to locate the correct similarities with respect to the aspects of the
considered domain.

BCubed F Measure Unlike Purity and similar metrics, which independently
compute the quality of each cluster and category, BCubed [28] metrics decompose
the evaluation process of estimating the precision and recall associated to each
element of the input set. The precision associated to an element represents how
many elements from its cluster belong to its category, and the item recall represents
how many elements in the same category appear in its cluster.

Formally, if L(x) and C(x) denote the category and cluster, respectively, of an
element x ∈ X , we can define the correctness of the relation between two elements
x, x′ ∈ X as

Correctness(x, x′) =

1 iff L(x) = L(x′) ∧ C(x) = C(x′)
0 otherwise

.

That is, two elements are correctly related if they share category and appear in
the same cluster. The BCubed precision of an item is then the ratio of items which
share the same category in the item’s cluster. The BCubed precision of the entire
data set is then the average precision of all items in the set, and defined as

BCubed Precision = 1
N

∑
x∈X

1
|XC(x)|

∑
x′∈XC(x)

Correctness(x, x′),

where XC(x) denotes the set
{
x′ ∈ X

∣∣∣C(x′) = C(x)
}
. Analogously, the BCubed

recall of an item is the ratio of items which appear in the same cluster of those
items which share the same category. The BCubed recall for the entire data set
is hence defined as

BCubed Recall = 1
N

∑
x∈X

1
|XL(x)|

∑
x′∈XL(x)

Correctness(x, x′),

where XL(x) denotes the set
{
x′ ∈ X

∣∣∣L(x′) = L(x)
}
.

According to results of experiments presented in [30] the BCubed precision
fulfils constraints 1 and 3, and the BCubed recall fulfils constraints 2 and 4,
so an intuitive idea is to combine both these evaluation metrics into a single
metric fulfilling all four constraints. Using a standard way of combining metrics,
called Van Rijsbergen’s F measure, this can be done. This F measure is generally
computed as

F (R,P ) = 1
α
(

1
P

)
+ (1− α)

(
1
R

) ,
where R and P are two evaluation metrics and α is a relative weight of the metrics.
In this thesis we consider R being the BCubed recall and P being the BCubed
precision, and have α = 0.5 meaning the harmonic mean of R and P . Thus, we
consider
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F = 2 · BCubed Precision · BCubed Recall
BCubed Precision + BCubed Recall .
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4
Experimental Setup

In this chapter we will present the data set we have been provided, how it has
been categorised to a gold standard, as well as how we have implemented and
performed experiments. The outline of this chapter corresponds to the order we
have implemented modules and performed experiments.

4.1 Data Description

For this work, we have been given a set of configuration topologies from one of
Ericsson’s customers. The data are provided by the customer and contain data
from real RBS configurations in a radio access network.

In order to be able to apply the presented methods, these configurations are
parsed through a database from which relevant attributes, such as radio equip-
ment and its ports, are extracted. For each configuration, these attributes are
represented as vertices having a label corresponding to which piece of equipment
it represents. Cables from one piece of equipment to another, as well as the
“ownership”-relation of a piece of equipment and its ports into which cables are
put, are represented as edges. An illustration of this can be seen in Figure 4.1.

Piece of

Equipment

Piece of

Equipment
Port

“Ownership”-relation

Port

“Ownership”-relation

Cable

Figure 4.1: Illustration of what is represented as vertices and edges.

The data are processed on two levels of detail: the first level contains a shallow
specification of hardware equipment along with its ports and relations, and the
second level expands the first level by adding functionality such as cells into the
model. Thus, the data representation has different sizes at the two levels.

To provide some information of the data set, which consists of 486 RBS con-
figurations, Table 4.1 shows some indication of the sizes of the configurations in
the set at the different levels of detail, and Figure 4.2 visualises the distribution
of these sizes.
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Table 4.1: The maximal, minimal, average and median number of vertices and
edges in the graph representations of the RBS configurations in the provided data
set at the two considered levels of detail.

Level 1 Level 2
Max Min Average Median Max Min Average Median

Vertices: 112 11 79.20 99.0 145 14 102.55 129.0
Edges: 125 11 87.87 111.0 125 11 87.87 111.0
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at level 1.

20 40 60 80 100 120
|E|

0

50

100

150

200

250

300

C
ou

n
ts

Level 1

(b) Histogram of the number of edges at
level 1.
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(c) Histogram of the number of vertices at
level 2.
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(d) Histogram of the number of edges at
level 2.

Figure 4.2: Histograms of the number of vertices and edges in the configurations
in the provided data set at the two considered levels of detail.

4.2 Manual Categorisation by Experts
In order to evaluate the clustering of the data set according to Ericsson aspects,
the configurations have been visualised using the matplotlib.pyplot module in
Python. The images obtained therefrom have then been given to two configuration
specialists at Ericsson, who have categorised these configurations depending on
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their topologies. As an example, the configuration shown in Figure 4.3a belongs
to the same category as the configuration shown in Figure 4.3b, but not the same
category as the configuration shown in Figure 4.3c. Even though the configurations
in Figures 4.3a and 4.3c have the same pieces of equipment they do not have the
same topology (due to the cascading), which the configurations in Figures 4.3a
and 4.3b do, and are thus not considered similar.

REC
RE

RE

(a) Two radios star-
coupled with a REC.

REC

RE

RE

RE

(b) Three radios star-
coupled with a REC.

REC
RE

RE

(c) Two radios cascade-
coupled from a REC.

Figure 4.3: Examples of simple RBS configurations visualising some differences
of the considered categorisation. REC denotes radio equipment controller, RE
denotes radio equipment and denote antennas.

The occurrence of cascading, and the occurrence of MUXs, are two of four
aspects taken into account at the first level of detail, giving a possible division of
16 categories. At the second level of detail, four additional aspects are considered,
giving a theoretically possible division of 256 categories. Due to company secrets,
we are not allowed to specify any other aspects. The provided data set was anyhow
only sorted into four categories by the Ericsson specialists at the first level of
detail, and five categories at the second level. At both levels there is one category
containing only one RBS configuration, which can be seen in Table 4.2 along with
the sizes of the other categories. Note that, if the data set would have been from
more operators’ networks, then the data would probably have been sorted into
more of the 256 categories.

Table 4.2: The number of graphs assigned to each category on each level of detail.

(a) Level 1

Category #Graphs
1 112
2 46
3 1
4 327

(b) Level 2

Category #Graphs
1 112
2 34
3 12
4 1
5 327

The specialists concurred with this division as it is how they separate the
configurations in their every-day work. Another division would hence be peculiar.
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4.3 Data Representation
Once the RBS configuration topologies have been represented as graphs, we used
the proposed methods to transform the set of graphs G into suitable data repre-
sentations. The baseline methods and the graph embedding using dissimilarities
method produce sets of feature vectors from G, while the Weisfeiler-Lehman sub-
tree kernel1 produces a kernel matrix. For representations of and operations on
arrays we have used the numpy package and for some algorithms we have used
the NetworkX module for graph representation. We also measured the run time of
computing these representations.

For the purpose of convenience we have given the produced sets the the names
presented in Table 4.3.

Table 4.3: Names used for each graph representation produced by the methods
used in this work at both levels of detail.

Method Level 1 Level 2
Baseline BI BII
Extended Baseline B+

I B+
II

Graph embedding using dissimilarities (tps) GEUDtps
I GEUDtps

II
Graph embedding using dissimilarities (sps) GEUDsps

I GEUDsps
II

Weisfeiler-Lehman subtree kernel WLI WLII

The Weisfeiler-Lehman subtree kernel was computed for 1 iteration, as we
believe that running another iteration of the test of graph isomorphism would not
distinguish the configurations any further. This belief is based on that at an early
stage we computed the kernel with 2 iterations, which yielded the same result
as for 1 iteration, and hence only resulted in additional runtime. The baseline
methods are straightforward, but in order to compute the graph embedding using
dissimilarities we produce two sets of feature vectors at each level of detail, i.e.
one for each prototype strategy. Recall that the number of prototypes needs to be
set before computing the graph embedding, which will be explained in the section
below.

4.3.1 Choosing the Number of Prototypes
The number of prototypes was chosen for both prototype selectors and levels of
detail to create the representations GEUDtps

I , GEUDtps
II , GEUDsps

I and GEUDsps
II .

Hence, the procedure described below was repeated in order to create all these
representations.

We decided to choose the number of prototypes from the list n ∈ [5, 10, 20, 40, 80].
The reason we decided to use these values was because how computationally de-
manding the prototype selectors are and that we wanted to explore different orders
of magnitude. For each value of n we first generated P so that we could compute

1We have used an implementation of the Weisfeiler-Lehman subtree kernel available at
GitHub. Link to the repository: https://github.com/emanuele/jstsp2015/blob/master/
gk_weisfeiler_lehman.py
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the graph embedding of all graphs in the data set. Once the representations of
graph embeddings were computed, clustering was performed using k-means for
k ∈ {2, 3, . . . , 18} and the Dunn index was computed for each clustering. The
number of prototypes n ∈ [5, 10, 20, 40, 80] which gave the best average Dunn in-
dex was chosen as representation for GEUD for each level of detail and prototype
selector.

4.4 k-Means Usage
Once the sets were generated, we used them as input to the chosen clustering algo-
rithms. We have used a k-means algorithm for the computed feature vectors and
a kernel k-means algorithm for the computed Weisfeiler-Lehman subtree kernels.

For the k-means algorithm, we used the method KMeans available in the Python
module scikit-learn. We have used the default arguments to this method, which
means that the k-means++ algorithm has been executed. In addition, the method
runs the algorithm 10 times and chooses the clustering which has given the smallest
clustering error Ek.

To perform clustering using the Weisfeiler-Lehman subtree kernel we have im-
plemented the global kernel k-means algorithm, as there were no available packages
implementing this algorithm for arbitrary kernels. The reason of using the global
kernel k-means algorithm instead of an “ordinary” kernel k-means algorithm in
our case is that the rise of empty clusters is easier avoided. The algorithm was
implemented as described in Section 3.5.3 with the adjustment of ignoring cluster
initialisations yielding empty clusters.

4.5 Clustering Evaluation
We have used the Elbow method to investigate how well the methods are able to
separate the data and what value of k was chosen when an elbow was evident.
Since we have been provided a gold standard of the data set, we want to investigate
whether or not the methods are able to choose the value of k corresponding to the
number of categories at each level.

To select k the Elbow method was executed on all methods and at both levels
of detail. Recall that this method is used to visually decide the best value of
k, which means that we have generated plots of the clustering error against k ∈
{2, 3, . . . , 18} with a circle indicating which value of k that has been chosen, if
evident.

We then proceeded to evaluate the clustering performance for each method.
We used both intrinsic and extrinsic metrics, in order to evaluate how distinct the
clusters are and measure how the clusters correspond to the categories.

Since we had a value of k which was indicated from the Elbow method, we used
an interval surrounding this value and computed all intrinsic and extrinsic metrics
in this interval. We wanted to use the same interval of k for all methods and at
each level, so it would be easier to compare the methods. Hence, we evaluated
the clustering performance at k ∈ [kmin − 1, kmax + 1], where kmin and kmax are
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the minimum and maximum values of k chosen using the Elbow method for all
methods.

For the intrinsic metrics, we needed to compute the distance differently de-
pending on the input has been feature vectors or kernels. The Euclidean distance
was used for the vectors and the kernel trick was used for the kernels. All metrics,
except the Silhouette score, were implemented by us. The Silhouette score was
computed using the silhouette_score method in scikit-learn.
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5
Results

In this chapter we present the results obtained from the different executions de-
scribed in Chapter 4: first the executions of choosing the numbers of prototypes,
then the executions of choosing the number k of clusters, and eventually the re-
sults of the clustering evaluation. Finally, the runtimes of generating the data
representations are presented. The results are then discussed upon in Chapter 6.

5.1 Number of Prototypes for GEUD

The number of prototypes for both prototype selectors and at each level of detail
was chosen considering the best average Dunn index score in Tables 5.1a–5.1d.
Complete scores for each prototype selector and level with k = 2, 3, ..., 18 can be
seen in Tables A.1–A.4.

Table 5.1: Average Dunn index scores for different numbers of prototypes using
the targetsphere (tps) and spanning prototype selection (sps) strategies. The best
performing numbers of prototypes, and corresponding scores, are marked in bold.

(a) Using tps at level 1

#Prototypes Average Dunn Score
5 0.288254
10 0.332445
20 0.322803
40 0.322138
80 0.319137

(b) Using sps at level 1

#Prototypes Average Dunn Score
5 0.349372
10 0.305997
20 0.315880
40 0.333604
80 0.363447

(c) Using tps at level 2

#Prototypes Average Dunn Score
5 0.275140
10 0.295968
20 0.298037
40 0.300540
80 0.218416

(d) Using sps at level 2

#Prototypes Average Dunn Score
5 0.260252
10 0.278309
20 0.346390
40 0.319017
80 0.293630

39



CHAPTER 5. RESULTS

5.2 The Elbow Method
Figure 5.1 shows the elbow plots for all methods at level 1. In the baseline method
in Figure 5.1a we cannot observe any elbow, since the curve of the clustering error
drops smoothly as k increases. Hence, there is no marker in that plot indicating
which value of k to choose. In Figures 5.1b–5.1e we observe elbows at k = 4,
where the Weisfeiler-Lehman subtree kernel has the most significant elbow.
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(a) Elbow plot of the simple baseline
method.
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(b) Elbow plot of the extended base-
line method.
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(c) Elbow plot of the graph embed-
ding using dissimilarities method
with 10 prototypes chosen by tps.
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(d) Elbow plot of the graph embed-
ding using dissimilarities method
with 80 prototypes chosen by sps.
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(e) Elbow plot of the Weisfeiler-
Lehman method.

Figure 5.1: Elbow plots for the used methods at level 1. Red circles indicate the
choice of k.
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In the elbow plots for level 2, shown in Figure 5.2, we see that for each method
the choice of k is also 4, even for the baseline method. As for level 1, the most
significant elbow occurs in the elbow plot of the Weisfeiler-Lehman method.
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method.
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(b) Elbow plot of the extended base-
line method.
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(c) Elbow plot of the graph embed-
ding using dissimilarities method
with 40 prototypes chosen by tps.
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(d) Elbow plot of the graph embed-
ding using dissimilarities method
with 20 prototypes chosen by sps.
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Lehman method.

Figure 5.2: Elbow plots for the used methods at level 2. Red circles indicate the
choice of k.
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5.3 Clustering Evaluation
In this section, we will present the results from the intrinsic and extrinsic met-
rics which we have used to evaluate the clustering performance of the proposed
methods.

5.3.1 Dunn Index
Recall that the Dunn index measures how compact and well separated a set of
clusters is, and can be seen as a relation between separation and compactness.
Hence, the larger the Dunn index is the more distinct are the clusters.

Table 5.2: Dunn index scores for both levels of detail.

(a) Level 1

Method k = 3 k = 4 k = 5
BI 0.235702 0.105409 0.117851
B+

I 0.219382 0.132686 0.169516
WLI 0.278746 0.177711 0.216469

GEUDsps
I 0.079020 0.132175 0.132175

GEUDtps
I 0.127680 0.108372 0.108372

(b) Level 2

Method k = 3 k = 4 k = 5
BII 0.252439 0.233762 0.216295
B+

II 0.099015 0.143101 0.152795
WLII 0.366401 0.165873 0.223819

GEUDsps
II 0.205938 0.072608 0.072608

GEUDtps
II 0.171997 0.123505 0.123505

For Dunn index at level 1, we observe in Table 5.2a that the Weisfeiler-Lehman
kernel outperforms all other methods for all considered values of k. The extended
baseline has notably a better Dunn index than any of the GEUD methods, which
are not consistently better than the baseline method.

At level 2, the Weisfeiler-Lehman kernel outperforms all methods for k = 3
and k = 5, but has the second highest score after the baseline method at k = 4.
We observe that the baseline method outperforms both the GEUD methods and
the extended baseline on all values of k. The extended baseline performs better
than both GEUD methods at k = 4 and k = 5.

5.3.2 Silhouette Score
As described in Section 3.6.1 the Silhouette score is the average Silhouette coeffi-
cient in the data set and measures the certainty of the cluster assignment. If the
Silhouette score is close to 1, this indicates that most elements have been assigned
to the correct clusters. If it is close to 0, the majority of the elements are close
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to a decision boundary, and if the score is closer to −1, this indicates that the
majority of elements have been assigned to wrong clusters.

Table 5.3: Silhouette scores for both levels of detail.

(a) Level 1

Method k = 3 k = 4 k = 5
BI 0.887939 0.913413 0.913112
B+

I 0.882862 0.908964 0.906685
WLI 0.907507 0.938726 0.952584

GEUDsps
I 0.919010 0.931832 0.928665

GEUDtps
I 0.903168 0.926443 0.933783

(b) Level 2

Method k = 3 k = 4 k = 5
BII 0.880761 0.916542 0.914107
B+

II 0.892784 0.905700 0.901169
WLII 0.922258 0.948196 0.956008

GEUDsps
II 0.922748 0.925078 0.928517

GEUDtps
II 0.910148 0.925165 0.932733

The GEUD methods and the Weisfeiler-Lehman kernels have better scores than
the baseline methods, and in general the Weisfeiler-Lehman kernel has the best
score. It can also be observed that the baseline generally has a better score than
the extended baseline. Overall, all methods perform well in terms of the Silhouette
score, as most of their values are above 0.9.

5.3.3 Purity

Recall from Section 3.6.2, that this measurement measures how pure the clusters
are, i.e. in what degree the clusters contain elements from only one category. A
value of 1 thus indicates that all clusters only contain elements from one category.
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Table 5.4: Purity measures for both levels of detail.

(a) Level 1

Method k = 3 k = 4 k = 5
BI 0.940329 0.973251 0.973251
B+

I 0.940329 0.962963 0.962963
WLI 0.997942 0.997942 0.997942

GEUDsps
I 0.923868 0.965021 0.965021

GEUDtps
I 0.930041 0.965021 0.965021

(b) Level 2

Method k = 3 k = 4 k = 5
BII 0.927984 0.960905 0.960905
B+

II 0.921811 0.950617 0.950617
WLII 0.973251 0.995885 0.995885

GEUDsps
II 0.921811 0.923868 0.923868

GEUDtps
II 0.921811 0.950617 0.923868

The Weisfeiler-Lehman subtree kernel has the highest Purity measure for all values
of k at both levels of detail, where all values except one are over 0.99. It can also in
Table 5.4 be observed that the baseline method performs better than both GEUD
methods.

5.3.4 Inverse Purity
As described in Section 3.6.2 this measurment indicates in what degree elements
of the same category are assigned to the same cluster. If the Inverse Purity is 1 it
means that no elements of the same category are split into different clusters.

Table 5.5: Inverse Purity measures for both levels of detail.

(a) Level 1

Method k = 3 k = 4 k = 5
BI 0.942387 0.942387 0.934156
B+

I 0.942387 0.952675 0.923868
WLI 1.000000 0.973251 0.952675

GEUDsps
I 0.971193 0.942387 0.921811

GEUDtps
I 0.965021 0.942387 0.925926

(b) Level 2

Method k = 3 k = 4 k = 5
BII 0.942387 0.952675 0.934156
B+

II 0.971193 0.942387 0.923868
WLII 1.000000 0.997942 0.977366

GEUDsps
II 0.965021 0.942387 0.942387

GEUDtps
II 0.965021 0.942387 0.934156
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As for the Purity measure, the Weisfeiler-Lehman subtree kernel has the best
Inverse Purity measure of all observations. The GEUD methods have in general
a lower score compared to one of the baseline methods.

5.3.5 BCubed F Measure

The BCubed F measure is, as described in Section 3.6.2, the harmonic mean of
the BCubed precision and BCubed recall. Recall that the BCubed precision is
the average ratio of items sharing the same category in the same cluster, and
that BCubed recall is the average ratio of items appearing in the same cluster of
those sharing the same category. A value of 1 thus indicates that the items are
completely correctly clustered.

Table 5.6: BCubed F measures for both levels of detail.

(a) Level 1

Method k = 3 k = 4 k = 5
BI 0.914256 0.938125 0.919397
B+

I 0.914256 0.925663 0.907104
WLI 0.997956 0.978471 0.957389

GEUDsps
I 0.917170 0.927439 0.906765

GEUDtps
I 0.918685 0.927439 0.923072

(b) Level 2

Method k = 3 k = 4 k = 5
BII 0.904453 0.933646 0.915266
B+

II 0.912523 0.918533 0.900354
WLII 0.979290 0.994060 0.973784

GEUDsps
II 0.910121 0.901432 0.901080

GEUDtps
II 0.910121 0.919968 0.921299

The Weisfeiler-Lehman have the highest BCubed F measures for all values of k
at both levels of detail. We can otherwise observe that the GEUD methods again
shows lower values than the baseline methods in many of the observations.

5.4 Running Times

The computations presented in this thesis have been timed using the time module
in Python giving the values presented in Table 5.7.
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Table 5.7: Runtimes of computing the feature vectors and kernels for each method
used. The values presented are rounded to two significant figures.

(a) Level 1

Method Time (s)
Baseline 0.019
Extended Baseline 0.13
Weisfeiler-Lehman 280
GEUD-tps (10p) 1 800
GEUD-sps (80p) 13 000

(b) Level 2

Method Time (s)
Baseline 0.026
Extended Baseline 0.26
Weisfeiler-Lehman 380
GEUD-tps (40p) 3 200
GEUD-sps (20p) 4 000

The two baseline methods are both relatively quick, and the time of computing
the Weisfeiler-Lehman kernel matrix of the provided data set is also reasonable.
Notable for the GEUDmethods is that using the spanning prototype selector seems
to be slower than using the targetsphere prototype selector, see Table 5.7b, where
the tps selects 40 prototypes at shorter time than the sps selects 20 prototypes.
Note that the size of the data set provided may be relatively small compared to
other sets in this domain, which means that the runtime might have a significant
impact of the performance when investigating larger sets of RBS configurations.
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Discussion

In this chapter we discuss the results presented in Chapter 5 and try to argue why
some methods perform better than others. In Section 6.3 we point out important
findings and try to provide answers to our research questions.

6.1 The Elbow Method

The elbow plots in Figures 5.1–5.2 show that once an elbow could be observed,
it was located at k = 4. This value corresponds to the number of categories in
the gold standard at level 1, but not at level 2 where there are 5 categories. This
means that increasing k = 4 to k = 5 does not significantly improve the clustering
of the data at any of the levels of detail. Furthermore, this method does hence
not seem to capture the additional aspects added in level 2, in this data set.

An evident elbow for BI cannot be observed since the clustering error drops
smoothly as k increases. At all other baseline methods an elbow is observed,
however it is not very significant. This indicates that there might be no proper
clustering in the data using this representation, meaning that either the data are
poorly separable or that the data representation does not capture the important
aspects of the data. Given the results of the validation indices, we consider the
latter.

Both GEUD methods show significant elbows at k = 4. Where the GEUD
using tps are a slightly more significant than GEUD using sps.

We finally observe that the Weisfeiler-Lehman subtree kernel has the most evi-
dent elbow at both levels of detail, which is a sign that the data are well clustered
at k = 4. Compared to the other methods, we may say that the Weisfeiler-
Lehman subtree kernels have the most distinct groups in its data, since the drop
of the clustering error as k grows decelerates more abruptly compared to the other
methods.

6.2 Clustering Evaluation

We will first present the intrinsic and extrinsic evaluations separately, and then
summarise the performance of each method.
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6.2.1 Intrinsic

Dunn Index

As previously mentioned, the Dunn index measures how compact and separated a
set of clusters is. If a Dunn index score is above 1 the clusters are called compact
and well-separated (CWS). This means that all clusters’ diameters are smaller
than the closest distance between any two clusters. As can be seen in the results
in Table 5.2, no set of clusterings is CWS.

At both levels of detail we observe that the Weisfeiler-Lehman subtree kernel
has the best results, with just one exception when this method is second best. This
indicates that the Weisfeiler-Lehman subtree kernel in general is more compact and
separated than all other methods at both levels. We also observe that the Dunn
index for the Weisfeiler-Lehman subtree kernel are higher at level 2 compared to
level 1, which indicates that the clusters are more distinct at the second level.
This might depend on that adding the functionality into the model distinguishes
the configurations further, and thus makes their clusters more distinct.

Additionally, we observe that the extended baseline has the second best value
at level 1. However, the Dunn index of the extended baseline decreases at the
second level and is consistently lower than the baseline. The reason for this could
be that the extended number of dimensions causes noise which negatively affects
the clustering. Hence, the extended baseline produces less distinct clusters at level
2 compared to level 1. The Dunn index of the baseline is actually higher at the
second level.

The GEUD methods, on the other hand, had consistently lower scores than the
extended baseline at level 1 and consistently lower scores than the baseline at level
2. Furthermore, we can see that GEUD using sps is generally better than GEUD
using tps at level 1, while we observe the opposite at level 2. This is probably
because the Dunn index for GEUD using sps generally decreases as we move to
level 2, while the Dunn index increases for GEUD using tps.

In summary, we see that the Weisfeiler-Lehman subtree kernel, the extended
baseline and GEUD using tps show better clusterings when using a more detailed
data representation at level 2.

Silhouette Score

When looking at the Silhouette scores obtained in Table 5.3, we see that both the
Weisfeiler-Lehman subtree kernel and the GEUD methods outperform the baseline
methods. This means that these methods are better then the baselines when it
comes to assigning the elements to their correct clusters. However, all Silhouette
scores achieve a value above 0.88, which indicates that all methods perform fairly
well.

The Weisfeiler-Lehman subtree kernel generally has the highest score, and we
note that its Silhouette score increases from level 1 to level 2. Overall, we can-
not see any significant increase or decrease of the Silhouette scores for the other
methods when comparing level 1 to level 2.

As with the Dunn index, we see that GEUD using sps is generally better than
GEUD using tps at level 1, and the opposite at level 2. However, both GEUD
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methods achieve values close to each other at all observations.
We finally note that the extended baseline in majority of the time has the

lowest score, which also could be because of the increase of dimensions, in relation
to the baseline.

6.2.2 Extrinsic
Purity

Purity is a measurement of how pure the clusters are, which means in what degree
each cluster contains elements sharing the same category. The Weisfeiler-Lehman
method achieves the highest measure of all methods and for the actual number of
categories (4 at level 1 and 5 at level 2) the method achieves measures over 0.99,
which is impressively good.

We notice that the purity measure decreases for all methods from level 1 to
level 2, which presumably depends on the increased number of categories taken
into consideration. As there are more categories, there need to be more clusters
in order for the clusters to be pure.

The GEUD methods achieve lower measures than the baseline method and
also mostly than the extended baseline. This means that the extended baseline
performs worse than the regular baseline. Also, we note that GEUD using sps
performs worse than GEUD using tps, especially at level 2.

Overall, all methods perform well since they all achieve measures above 0.92.
This means that they all manage to get somewhat pure clusters. Moreover, the
Weisfeiler-Lehman method achieves above 0.99 on most observations, which is
extraordinarily good.

Inverse Purity

Inverse Purity measures to which degree elements of the same category are assigned
to the same cluster, meaning that a high Inverse Purity indicates that the majority
of elements sharing the same category are found in the same cluster. All methods
achieve measures above 0.92, which indicates that they all perform well.

Again, we see that the Weisfeiler-Lehman subtree kernel has the best values.
This means that this method does not only produce fairly pure clusters, it also
manages fairly well to not separate elements sharing the same category into dif-
ferent clusters. At k = 3 the Inverse Purity is 1, which means that no category
has been split into different clusters. However, as k increases the score decreases
since some elements of the same categories have been assigned to different clus-
ters. A decrement is although expected as the number of clusters increases and
exceeds the number of categories, since the elements of some category then need
to be separated in order to avoid empty clusters. Additionally, we note that this
method has a better score at level 2 compared to level 1, which can be explained
by the increased number of categories. As the number of categories increases, the
sizes of the categories decreases, which means that the elements sharing the same
category are presumably not separated in the same extent.

The performance of the GEUD methods are comparable to the baseline meth-
ods.
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BCubed F Measure

In this measure, a value of 1 indicates that the data set has been correctly clustered.
Recall that it is the harmonic mean of two metrics measuring in what degree
elements appearing in the same cluster are correctly related and in what degree
elements sharing the same category are correctly related. Also, recall that two
elements are correctly related if they share the same category and appear in the
same cluster.

The Weisfeiler-Lehman subtree kernel has the best results for all values of k
at both levels of detail and achieves a score above 0.95 at all observations. This
suggests that the Weisfeiler Lehman subtree kernel yields a more correct clustering
than the other methods.

For the other methods we can see that the GEUD methods have values similar
to the baseline methods. Most values are above 0.90 which should be considered
values of sufficiently high quality.

6.2.3 Summary
In these experiments, we could observe that the Weisfeiler-Lehman subtree kernel,
with few exceptions, has the best results. The Dunn index scores indicate that
the Weisfeiler-Lehman subtree kernel in general yields the most compact and well
separated clusters of all methods, and at all values of k. Furthermore, the results of
the Silhouette scores indicate a high certainty of the cluster assignments, since the
score is above 0.9. In the extrinsic evaluations, we compared how the methods had
clustered relative to the gold standard. The obtained clusters from the Weisfeiler-
Lehman subtree kernel have generally the best Purity and Inverse Purity scores,
as well as the additional BCubed F measures.

The GEUD methods do not show as much promise as the Weisfeiler-Lehman
subtree kernel. These methods show generally low scores in the Dunn index com-
pared to other methods, which indicates that they are generally less compact
and separated than the other methods. The GEUD methods have higher Silhou-
ette scores than the baseline methods, but have lower scores than the Weisfeiler-
Lehman subtree kernel. In the extrinsic measurements, they show similar results
as the baselines.

We believe that the GEUD methods could be improved either by more profound
cost functions for graph edit distance computations, or by a more detailed graph
representation. The costs could, in the former approach, be more adapted by
putting more weight on substituting very dissimilar pieces of equipment and on
deleting and inserting important types of equipment. The latter approach, with a
more detailed representation, would force the GED algorithm to substitute vertex
labels, rather than just edges, in order to capture differences in topologies.

In Figure 4.3, we can see that it would require more edit operations to transform
the configuration in Figure 4.3a to the configuration in Figure 4.3b, since this
would require insertions of both an RE and an antenna with corresponding edge
insertions, while transforming the configuration in Figure 4.3a to the configuration
in Figure 4.3c only will require one edge deletion and one edge insertion. Hence,
GED will see the configuration in Figure 4.3a as more similar to the configuration
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in Figure 4.3c than to the configuration in Figure 4.3b.
It is also important to take the running times into account. The GEUD meth-

ods need a much larger computation effort than the other methods which can be
seen in Table 5.7. This is probably due to the costly computations of obtaining
the prototype sets.

As for the baseline methods, we could observe that the extended baseline often
has lower scores than the regular baseline. We think that this could be because of
the additional dimensions cause noise. We also observe that none of the methods
manage to correctly identify the configuration sharing category with no other
configuration.

6.3 Conclusion
In this research we have explored two graph representation techniques found in lit-
erature, and implemented two simple baseline methods as additional graph repre-
sentations. The purpose of the baseline methods was to compare the performances
of the explored graph representations to the performances of these simpler meth-
ods.

We were also provided a data set that was categorised by Ericsson experts.
This data set contained only around 5 categories of at least 256 estimated number
of possible RBS configuration topologies.

We observed that the Weisfeiler-Lehman subtree kernel showed very good re-
sults. This is probably because this method compares RBS configurations by their
topologies in subtrees and is thus able to capture differences of important topo-
logical attributes. Overall, this method shows excellent results for the extrinsic
evaluations, which indicates that this method is able to capture the categories
set by Ericsson experts, and is thus able to relatively well find correct clusters
in a set of RBS configuration topologies. Another important aspect is that the
Weisfeiler-Lehman subtree kernel is straightforward, in the sense that it does not
require to be tailored to our application.

The GEUD methods are both significantly more computational demanding
compared to the other methods and have often the worst results. Further investi-
gations are needed in order to improve the GEUD methods. One of the strengths
of this method is that the cost functions can be defined depending on the appli-
cation, but this will require more domain knowledge in order to achieve desirable
results. Even if an increase of the performance is achieved, this might not jus-
tify the runtime or additional work to tailor these methods. However, the GEUD
methods could be relevant in other applications for RBS configuration topologies,
where the level of distortions between RBS configurations are important.

We believe that our research motivates further investigation of clustering RBS
configuration topologies. In further research different sets of RBS configuration
topologies should be explored for further evaluation. In our setup the performance
of the Weisfeiler-Lehman subtree kernel justifies the increased runtime compared
to the baseline methods; this might not be the case for any larger sets of RBS con-
figuration topologies. More importantly, further investigation on more diverse sets
of RBS configuration topologies needs to be done to verify if the Weisfeiler-Lehman
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subtree kernel can discriminate other types of RBS configuration topologies, which
are not present in the provided data set. The clustering approach seems promising,
especially when we only consider the equipment topologies.

Another approach, which we did not investigate in this thesis, is to define a set
of substructures which captures important attributes of RBS configuration topolo-
gies. These substructures may then be extracted from the graphs to compute
feature vectors where each dimension corresponds to one of these key substruc-
tures. An RBS configuration topology may hence be discriminated from another
by these features. This however, would require some expert knowledge to define
important substructures. On the other hand, this approach may be more efficient
and accurate than the Weisfeiler-Lehman kernel.

We believe that future investigations of graph-based representation for cluster-
ing evaluation may result in a tool to discriminate RBS configuration topologies
in RANs. Hence, Ericsson ought to be able to cover test cases which are present
in live RANs.
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A
Choosing the Number of

Prototypes

A.1 Level 1

Table A.1: Dunn index scores for different numbers of prototypes using the tar-
getsphere prototype selection strategy at level 1.

#Prototypes→ n = 5 n = 10 n = 20 n = 40 n = 80
k = 2 0.459015 0.405090 0.597625 0.898328 0.972987
k = 3 0.080099 0.127680 0.180233 0.078853 0.173276
k = 4 0.109243 0.108372 0.100812 0.089089 0.085196
k = 5 0.109243 0.108372 0.127721 0.183634 0.178020
k = 6 0.167866 0.165518 0.154307 0.129134 0.178020
k = 7 0.167866 0.181818 0.154307 0.158739 0.161033
k = 8 0.181818 0.181818 0.168509 0.141825 0.213371
k = 9 0.314805 0.322068 0.349048 0.317041 0.264573
k = 10 0.279389 0.206514 0.343163 0.355968 0.264573
k = 11 0.279389 0.471802 0.343163 0.329788 0.321579
k = 12 0.376654 0.397218 0.446159 0.359325 0.334495
k = 13 0.376654 0.391814 0.446159 0.377211 0.360045
k = 14 0.297761 0.428571 0.446159 0.364487 0.360045
k = 15 0.384655 0.397218 0.395293 0.410106 0.360045
k = 16 0.479934 0.482711 0.444399 0.377211 0.360045
k = 17 0.384655 0.656685 0.395293 0.410106 0.356583
k = 18 0.451278 0.618292 0.395293 0.495502 0.481449
Average 0.288254 0.332445 0.322803 0.322138 0.319137
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APPENDIX A. CHOOSING THE NUMBER OF PROTOTYPES

Table A.2: Dunn index scores for different numbers of prototypes using the span-
ning prototype selection strategy at level 1.

#Prototypes→ n = 5 n = 10 n = 20 n = 40 n = 80
k = 2 0.550541 0.579094 0.566269 0.504935 0.478858
k = 3 0.069763 0.075794 0.078377 0.078819 0.079020
k = 4 0.101244 0.109931 0.125886 0.130966 0.132175
k = 5 0.111800 0.125215 0.128377 0.130966 0.132175
k = 6 0.147636 0.201673 0.159031 0.164746 0.167508
k = 7 0.182156 0.182107 0.179326 0.188002 0.179533
k = 8 0.222098 0.219806 0.172586 0.218241 0.249014
k = 9 0.324342 0.319561 0.329899 0.324610 0.322229
k = 10 0.396513 0.371764 0.357357 0.331665 0.285966
k = 11 0.396513 0.371764 0.420540 0.420432 0.410489
k = 12 0.396513 0.371764 0.357357 0.420432 0.410489
k = 13 0.396513 0.291158 0.371349 0.287407 0.221925
k = 14 0.407903 0.384983 0.357357 0.287407 0.595874
k = 15 0.582298 0.334126 0.403790 0.629883 0.316976
k = 16 0.710724 0.334126 0.193205 0.145209 0.699587
k = 17 0.710724 0.386978 0.488774 0.674331 0.711046
k = 18 0.232048 0.542099 0.680486 0.733214 0.785733
Average 0.349372 0.305997 0.315880 0.333604 0.363447

A.2 Level 2
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A.2. LEVEL 2

Table A.3: Dunn index scores for different numbers of prototypes using the tar-
getsphere prototype selection strategy at level 2.

#Prototypes→ n = 5 n = 10 n = 20 n = 40 n = 80
k = 2 0.532962 0.462485 0.642384 1.042531 1.066754
k = 3 0.173739 0.169024 0.168917 0.171997 0.168619
k = 4 0.069605 0.069605 0.063115 0.123505 0.079654
k = 5 0.069605 0.112773 0.098025 0.123505 0.079654
k = 6 0.109442 0.112773 0.098025 0.078831 0.050650
k = 7 0.157755 0.162287 0.141299 0.114012 0.073349
k = 8 0.167063 0.174402 0.154093 0.123896 0.079141
k = 9 0.276041 0.278806 0.264097 0.177985 0.158849
k = 10 0.276041 0.278806 0.264097 0.364923 0.171874
k = 11 0.318128 0.327438 0.329410 0.393229 0.172671
k = 12 0.247115 0.280656 0.351614 0.294296 0.162156
k = 13 0.247115 0.280656 0.326281 0.294296 0.183765
k = 14 0.310363 0.344305 0.326281 0.270820 0.254659
k = 15 0.362987 0.413960 0.351614 0.294296 0.162156
k = 16 0.413255 0.480384 0.454406 0.392732 0.254659
k = 17 0.473079 0.562540 0.516484 0.424163 0.363191
k = 18 0.473079 0.520558 0.516484 0.424163 0.231265
Average 0.275140 0.295968 0.298037 0.300540 0.218416

Table A.4: Dunn index scores for different numbers of prototypes using the span-
ning prototype selection strategy at level 2.

#Prototypes→ n = 5 n = 10 n = 20 n = 40 n = 80
k = 2 0.592168 0.617127 0.709322 0.582077 0.533460
k = 3 0.183813 0.199510 0.205938 0.190063 0.180039
k = 4 0.074305 0.074160 0.072608 0.077803 0.077864
k = 5 0.074305 0.074160 0.072608 0.083273 0.083304
k = 6 0.124197 0.111807 0.123828 0.161822 0.083304
k = 7 0.168014 0.155510 0.171207 0.173469 0.168546
k = 8 0.168014 0.155510 0.175877 0.173469 0.207596
k = 9 0.320892 0.290942 0.336915 0.322250 0.305825
k = 10 0.320892 0.307023 0.339241 0.322250 0.311000
k = 11 0.218176 0.259672 0.367218 0.348398 0.269587
k = 12 0.218176 0.269074 0.375986 0.348398 0.319613
k = 13 0.231789 0.269074 0.375986 0.348398 0.319613
k = 14 0.262759 0.338024 0.375986 0.394302 0.348349
k = 15 0.313957 0.387324 0.546476 0.489149 0.448117
k = 16 0.313957 0.387324 0.546476 0.489149 0.463515
k = 17 0.356631 0.387324 0.546476 0.443923 0.428625
k = 18 0.482243 0.447681 0.546476 0.475093 0.443354
Average 0.260252 0.278309 0.346390 0.319017 0.293630
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