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Abstract

Stroke ranks the top number five cause of lost disability-adjusted-life-years in poor
and middle-income countries, and impaired motor function on one side of the body is
reported to be present in 80% of the cases. Correct assessment of the motor function
in survivors have been shown to play a important part in successful rehabilitation.
Previous works have reported that the kinematic variables total movement time,
trunk displacement and movement smoothness have high correlation with clinical
scales, such as Action Research Arm Test when derived from the every-day task
of drinking from a glass of water. Kinematic movement analysis is classically per-
formed using a sophisticated motion capture system, which may be unsuitable for
small practises or poor countries. This thesis presents and evaluates the design of
a system created to measure the motor impairment in the upper limbs of stroke
survivors using only a cheap IMU and a standard computer.

A motion capture system using a verified method to derive the two variables move-
ment smoothness and total movement time was used in conjunction with an IMU
mounted on the subjects wrist. The study used a population of 16 subjects, out of
which 3 subjects were affected by motor impairment due to stroke, for a total of 186
trials. A readily developed navigation algorithm using a unscented Kalman filter
fitted with a smoother was used to estimate the trajectory and speed of the IMU.
A novel algorithm was developed to derive the total movement time and movement
smoothness from the IMU estimate. Using linear regression models, the IMU sys-
tems estimate of smoothness predicted the motion capture systems corresponding
variable with a RMSE of 2.15 and R? of 0.83. The estimates of the movement
smoothness showed a notable disparity in the two systems, especially when derived
from stroke survivors. The IMU system would need considerable rise in overall per-
formance to create a next to perfect match. The movement time showed a high
level of correlation, with a RMSE of 0.45. Developing a method to also estimate
the trunk-displacement variable and use it together with the two existing estimates
would be the next step in improving the method.
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1. Introduction

1.1 Background

Roughly 15 million people suffer from stroke worldwide annually, out of which 5
million are permanently disabled [1]. The disease is more common in poor and
middle-income countries, as opposed to high-income countries. The former has been
calculated to carry 87% of the burden of stroke, measured in disability-adjusted life
years (DALYs), where it also ranks the top number five cause of lost DALYs [2]. Im-
paired motor function and movement control on one side of the body is a common
side-effect of stroke, reported to be present in 80% of the cases. Disability in the
upper limbs have been reported to occur in up to 70% of the cases, out of which
40% suffer from impaired upper extremity function 3-6 months after the event [3].
A persons quality of life can be severely affected due to such neural damage, which
commonly result in inability to perform everyday tasks and participate in society [4].

Rehabilitation is the multi-disciplinary process of attempting to achieve and re-
taining optimal function in interaction with the environment despite experienced
disability. It relies on both physical and psychological processes to heal or compen-
sate for loss of function [5, 3]. Correct assessment and evaluation play a part in
this, since factors such as goals and motivation affect the clinical outcomes of the
rehabilitation. The approach of choice is to use observational rating scales. That is,
to rely on tests with weighted scoring to determine parameters describing control,
sensor/motor function and pain in the upper limbs. The area of assessment and
application of the tests vary, leading to the existence of a number of tests, such as
ABILHAND, Fugl-Meyer Assessment and the Action Research Arm Test (ARAT).
Typical equipment range from forms to dynamometers, stopwatches and objects of
different weights or shapes [6, 7, 3].

Kinematic movement analysis refers to the practice of analysing the speed and move-
ment patterns of a subject. The term implies the use of pictures, cinematography
or in modern days, computer-based analysis of either. In rehabilitation, kinematic
movement analysis can be used in tandem with classical approaches to quantify
motor function or detect discrepancies in the subjects health. The field is histor-
ically strongly related to gait analysis in which it has seen a success and is well
documented and explored. In upper extremity analysis it is less so due to the more
complex and less predictable nature of the uses of the upper limbs. It’s as of yet
mostly used for research purposes, though a number of approaches and variables
have been explored. For the purposes of measuring the effects of stroke, a number
of variables have been show to correlate. Velocity, movement time, smoothness,
movement errors and trunk displacement amongst others have been reported in the
literature [8, 3].

Traditional optoelectrical hardware for kinematic movement analysis can be un-
suitable for at-home measurements or installation at small practices due to lack of
user friendliness and pricing. The trend of diminishing prices for computational
power and high quality sensors have however opened up for the possibility to use
cheaper equipment, heralding an era of more accessible data-collection. The use of



1. Introduction

inertial sensors (accelerometers and gyroscopes) have seen use in physiotherapy and
been applied in various smart textile applications [9, 11, 10]. The data can either be
used in raw form, or used to estimate the corresponding velocities via inertial navi-
gation. The latter opening up for applying the methodology of kinematic movement
analysis.

1.2 Problem statement

The aim is to design an algorithm which derives kinematic parameters from a reach
to-drink-task as described in [3], using only a 3-DOF gyroscope and accelerometer.
Furthermore, to evaluate the correlation between the new set of parameters and
the corresponding parameters from the already evaluated motion capture system
defined in the latter. This is to be done by evaluating the precision prediction
models constructed using the two sets of parameters. The two parameters to be
estimated are the Number of Movement Units (NMU) and Totalt Movement Time
(TMT), as defined in [3]. The overall purpose is to determine whether a INS presents
a feasible substitute for a optoelectrical system using the approach and algorithms
presented in [3].

1.3 Scope

e To choose a INS approach substituting that of the optoelectrical system.

o To create a set of algorithms deriving two parameters from the substitute
trajectory /velocity-vector estimating the MU and TMT measures.

e To evaluate the mimicked parameters precision and usefulness as predictors
against the true parameters.
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2. Theory

2.1 Assessment of upper extremity function and
activity after stroke

Motor impairment after stroke is the restriction of effective and coordinated move-
ment on one side of the body. A number of deficits contribute to the state: muscle
weakness, spasticity, muscle stiffness, loss of sensory functions and reduced muscle
length among them. The majority of the improvements after stroke occur in the first
few months, and greatly affected patients commonly have a slower rate of rehabili-
tation [3]. While patients motor functions change over time, greater differences can
be found between different people. This creates a situation where different scales
become necessary, since, much like a sensor, the scales sensitivity and range are
interconnected.

The ARAT measures upper extremity function and dexterity on a 0-57 point scale
(57 indicating normal motor performance). It uses a 4-point ordinal scale on 19 dif-
ferent items, divided into the categories of grasp, grip, pinch and gross movement.
The scale is considered valid for motor assessment in both chronic and acute care.
In the act of drinking from a glass of water (see section 3.2) two groups of vari-
ables have shown significant correlation with ARAT, compensatory movement and
smoothness/movement time. Compensatory movement includes measures of joint
angles and trunk displacement, with trunk displacement showing the highest corre-
lation of the two. Smoothness (measured in NMU, see section 3.2) and movement
time have been shown to be roughly interchangeable. 67% of the variance of ARAT
has been shown to be explained by the trunk displacement and the NMU of the
subject when using a multiple regression model. [3].

2.2 State estimation

States are variables which partially or wholly describe the dynamics of a system.
That is, describing the relations between the input(s), output(s) and time. State
estimation refers to the practice of through modelling of systems, sensors and distur-
bances attempt to calculate states of interest from input and output measurements.
The scope of the modelling (the states needed to describe the system sufficiently),
modelling of stochastic processes and attenuation of noise are all examples of chal-
lenges in the field. Noise is ever-present in sensors and signals, while models rarely
describe the dynamics of systems perfectly, making the goal of the field to describe
and minimize errors rather than finding exact answers.

A common tool for mathematical modelling of systems is the (discrete) state-space
representation, as seen in equation 2.1 and 2.2. Where x represent the state-vector,
which contains the state variables. The index k represent the time instance, ¢ the
state-noise, y the output and r the measurement noise. The symbols f and h are
the system and measurement models of the system. A useful abstraction of the state
estimation problem is to divide it into the following problems: prediction, filtering

6



2. Theory

and smoothing. The three problems are defined by at which temporal instances
the estimates are calculated. Prediction uses data to predict states several time-
instances away, filtering uses the current data to estimate the current state and
smoothing estimate the states in previous time instances. [12]

T = fkq(ikal, Qk71) (2-1)
Y = hi(h, 78) (2.2)

2.2.1 Kalman filters

The Kalman filter was invented around 1960, and has seen major use in a number
of fields ever since. Navigation and orientation estimation among them. Nowadays
a great number of variations exist, making the original Kalman filter redundant for
all but simpler applications or education purposes. A vast amount of literature and
publications exist on the subject, for more detailed information the reader is urged to
look at sources such as [16], [15], [14] and [17]. The Kalman filter is a optimal linear
state observer, i.e. an algorithm using a linear mathematical model of a real system
to estimate states at every time instance k, using only previous measurements up
until time instance k. Optimal refers to that the filter creates an optimal estimate
of the states in a MSE sense if the measurement and system noise is Gaussian. The
filter use models on the form of equation 2.3 and 2.4.

Ty = Ag_12p—1 + Br_1up—1 + qr—1 (2.3)

Yr = Hywp + 1y, (2.4)

That is, modelling the states x as a linear combination of previous states propa-
gated through model A, previous input u through model B with additive noise q.
The measurements y are similarly estimated using the measurement model H, the
estimated states of the current timestep x and additive noise 7.

The algorithm works in two steps, prediction and update. In the prediction step,
the states are propagated in accordance with the system model (eq. 2.5) and the
uncertainties are increased (2.6).

Prjp—1 = Ap—1Zp—1jp—1 (2.5)

P = Ap—1Proje—1 A}y + Qi1 (2.6)

In the update step, the difference (innovation) v between the states created using
measurements and the estimated states is weighted by the Kalman gain K and added
to the estimate. This creates a state estimate relying on both modelled behaviour
and sensor measurements (eq. 2.7).
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e = Trpp—1 + Ko (2.7)

The last step of the algorithm consists of adjusting the covariance matrix P in
accordance with the Kalman gain and innovation covariance S.

Py = Pt — Kp Sk KL (2.8)
o A: Transition matrix.
o : Estimated state vector.
e P: Covariance matrix.
e ¢ & r: Process and measurement noise with covariance matrices Q and R.
o H: Measurement model.
o K: Kalman gain, optimal gain for the correction/innovation

o v: innovation, the difference between predicted states and states calculated
using the measurements.

e S: innovation covariance.

2.2.2 The unscented kalman filter

The Kalman filter is the optimal solution for linear models only. A number of
solutions have been presented aiming to generalise the filter to nonlinear problems.
A popular approach is to estimate the moments of the distributions of the states
and measurements, creating so-called Gaussian filters. A Gaussian filter creates
a number of sigma-points (weighted samples) around the estimated mean of the
states and thereby attempt to describe the system in terms of uncertainties and
means rather than classical models. Prediction is thus the new estimated mean,
created with weighted sigma-points (W and x) as seen in equations 2.9 and 2.10.

2n
-1 = Z f(XG—1) Wi (2.9)
i=0
2n ] )
Pyjp—1 = Z T (X1 = Tpp—1) (Xjomr — @k\k—l)TWi + Qr—1 (2.10)
i=0

The update-step consists of estimating the input using sigma-points and the measurement-
model. Cross-covariance and innovation is then calculated (equations: 2.11, 2.12 &

2.13).

2n
Gk = > h(xp_1)Wi (2.11)
i=0
2n ] '
Py = Zf(xz—l - i"k\kfl)(h(XZ;—J - ij\kq)TVVi (2.12)
1=0
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Sk = Rt 3 (h(xkr) — Gue) (o) (2.13)

The Gaussian Kalman filters are generally named after the method used to approx-
imate the distribution, in this case using the unscented transform. This is not an
optimal soution, but the method has proven to be computationally efficient and to
be highly competitive in terms of precision.

2.2.3 Smoothing

The smoothing problem refers to the (optimal) estimation of states when measure-
ments and input data exists for future time-instances relative the current estimate.
Three varieties of the problem exist,

o Fixed-interval smoothing, the entire input-data set exists.
o Fixed lag smoothing, the next k instances of input-data exists.

o Fixed point smoothing, the states at a fixed time are re-estimated for each
new point of collected data.

One of the first solutions formulated to solve the (linear) fixed-interval smoothing
problem was the Rauch-Tung-Striebel smoother (for historical purposes, released
1965 [18]). That is, estimating the posteriori distribution given the entire data
set (eq. 2.14). The smoother performs backward recursion by using all estimated
and predicted means and covariances (£k+1|k, Tk, Pope & Pk+1|k) from an ordinary
Kalman filter (eq. 2.15, 2.16 & 2.17). [22].

p(zrlyir) = N(@w; T, Prjre) (2.14)
Gr = PupAr P (2.15)

Ty = Bap + (Erraye — Trae) (2.16)
Py = Pur — (Pegapk — Prorrx) Gl (2.17)

2.2.4 Dead reckoning, inertial navigation & available infor-
mation

Navigation is the field of estimating positions from available data. Dead reckoning
is a sub-field of navigation in which navigation is performed without the aid of ab-
solute references. Inertial navigation refers to using the classical laws of motion to
calculate position by integration of measured speed or acceleration. In practice, a
Inertial Navigation System (INS) uses two sensors, a 3-DOF accelerometer (mea-
suring acceleration, including the earths gravitational vector, in its own frame of
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reference) and a gyroscope (measuring rotational speed in its own frame of refer-
ence). See chapter 2.3 for more information on sensors. In its basic components, a
INS operates in the following steps

» Estimate its rotation by integration of the gyroscope measurements. eq. 2.20

o Change the accelerometer measurements frame of reference using the attitude
estimate. eq. 2.19

e Remove the earths gravitational vector from the accelerometer measurements.
Note that a errors in the attitude estimate will result in imperfect removal of

the gravity vector in this step.

o Integrate its accelerometer measurements twice. eq. 2.18

= ?g +, (2.18)
f+fm=c+8) (2.19)
C = 09, (2.20)

« $7: The position vector.

Gravitational vector

A\ .

o f: Measured acceleration.
.
g :

g & s: global and system frame of reference.
o (C: Directional cosine matrix.

e (2: Skew symmetric matrix containing the gyroscope measurements.

An INS fitted with a 3-DOF accelerometer and gyroscope need to estimate or assume
its starting orientation. If the sensor bias is small and the system is assumed to be at
rest, the accelerometer can be used to determine orientation in two dimensions using
the earths gravitational vector. This is useful since an INS is dependent on accurate
initial conditions and measurements - no error can be removed without an absolute
reference. Sensor calibration and errors estimation are thus of high importance.
Complex systems usually fuse inertial sensors and sensor systems with absolute
references to create precise systems with the capability of removing accumulated
errors with set intervals. [19)].

10
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2.3 Sensors

The cost of sensor precision and computational power has decreased to the point
where it’s possible to perform navigation using a (relatively) cheap set of devices.
A popular approach due to its low cost and electricity consumption is the use of
IMUs, defined as a device capable of measuring specific forces and angular rates using
inertial sensors. Most efficient sensor-systems require the estimation of sensor errors,
since most sensors are affected by errors drifting over time. Complex error models
and more computational power can compensate for some sensor errors. Sensor
calibration (estimation and compensation of errors) is performed by using a known
input and comparing it with the measured input. Precise calibration commonly need
to use specific calibration routines, however, on-line calibration is sometimes also
possible. Common error models for accelerometers and gyroscopes are presented in

eq. 2.22 & 2.21. All errors can be compensated for, but the zero-mean random noise
n. [19].

Oy = (14 Sp)wy + Myw, + M,w, + By + Byea, + Byga, + Bog.aya, +n,  (2.21)
e @: Measured turn-rate.

e w: Actual turn rate around the x-, y- and z-axes.

e S,: Scale-factor, proportional to input.

o M: Cross-coupling error-factors, errors due to misalignment of sensor-axes.

» DBj: Bias insensitive to the gravitational vector.

e Bg,/.: Bias due to the gravitational vectors effect on the different axes.

e B,..: Anisoelastic bias, created by faulty suspension structure in spinning-
mass gyroscopes.

e n: Zero-mean random bias.

ay = (14 S;)a, + Myay, + M,z + By +n, (2.22)
e a: Measured acceleration.
o a: Actual acceleration along the x-, y- and z-axes.
e S,: Scale-factor, proportional to input.
o M: Cross-coupling error-factors, errors due to misalignment of sensor-axes.
o Bj: Measurement bias.

e n: Zero-mean random bias.

11
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2.3.1 Accelerometer

An accelerometer is by definition a device measuring acceleration along one or more
axes. The sensor can be classified as either a mechanical or solid-state device.
Mechanical accelerometers principle of operation is based on Newton’s second law
of motion, and is realised by measuring the translational motion of a proof of mass
suspended by springs. Solid-state devices relates stress/compression of materials
to the applied forces, commonly by measuring changes of frequency of vibrations
generated in the materials. [19].

2.3.2 Gyroscope

A gyroscope is a sensor either measuring the angular displacement of a structure
or its angular rate of turn. A conventional rate-gyroscope uses a spinning mass to
capitalise on the principle of conservation of angular momentum. Other common
methods for measuring angular rates and positions include optical (using the Sagnac
effect) and vibratory. [19].

2.4 Attitude representation

A central concept of inertial navigation is that of reference frames. The rotation
of a body is described as the difference between an original, fixed, reference sys-
tem and a rotated body coordinate system. The IMU measurements are all in
the body reference frame, centred in the IMU and rotating with it. Most widely
used reference frames are orthogonal, right-handed systems. Common represen-
tations include the DCM and euler angels. In navigation and state-estimation
however, neither are practical to use. The DCM use 9 parameters to describe a
3-dimensional rotation, which is computionally inefficent. The Euler angle rep-
resentation can create non-unique representations of rotation, which is suboptimal.

The quaternion representation is a compact and efficient representation of attitude
which has seen extensive use within navigation, computer graphics and other fields.
The quaternion can be described as a representation of a rotation in three dimensions
about a single vector v, with a magnitude of v and x-, y- & z-components v,, v, &
v, (eq. 2.23). It’s commonly expressed as a four-parameter complex number on the
form seen in eq. 2.24. The product of two quaternions is called the Hamilton prod-
uct, and obey the distributive law and the normal laws of multiplication of complex
numbers. The quaternion conjugate, magnitude and normalization are described in
eq. 2.26, 2.27 and 2.28. The derivative as a function of rates, a very interesting
quantity of the quaternion in navigation and state estimation, is described in eq.
2.29. A 3-dimensional vector can be transformed between two frames of reference,
represented by a quaternion, as described in eq. 2.25, if the vector is represented as
a quaternion without scalar (letting the vectors x-, y- and z-components represent
the quaternion a-, b- and c-components). [19].

12
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= | (oy)sin(v/2)
(v,)sin(v/2)

q = la,ib, je, kd]

cos(v/2)
— {(vx/v)sm(vﬂ)]

E = quC]*
qx = |a, —ib, —jc, —kd]

N(q) = vag*

q lized = 1
normaltize N(q)

g = 0.5¢[0,w"]"

(2.23)

(2.24)
(2.25)
(2.26)
(2.27)
(2.28)

(2.29)
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3. Methodology

3.1 Overview: procedure, data acquisition and
verification

The IMUS (Inertial Measurement System) performance was evaluated by attempting
to re-create clinically valid kinematic measures of a system/method of known perfor-
mance - the MCS (Motion Capture System). Both abbreviations refer to complete
procedures, including hardware and algorithms used to derive kinematic variables.
This was achieved by collecting data using the two system simultaneously, the IMUS
and the MCS, deriving two sets of kinematic measures and evaluating the sets for cor-
relation. The measures and procedure to be evaluated against is based on previous
works, in which a procedure has been developed with capability to extracts mea-
sures with high correlation with impaired motor function in the upper limbs due to
stroke [3]. The measures are a quantified measure of smoothness (calculated as num-
ber of movement units in the velocity profile, NMU) and total movement-time [3].

The measurement units used was a shimmer3 IMU with a 3-dof accelerometer and
gyroscope (IMUS), and a 3-dimensional motion capture system (MCS) installed
at Sahlgrenska University Hospital. The relation between the two systems was
evaluated in by determining the predictive power of the IMUS against the MCS using
linear regression models. For that purpose, a similar test-procedure as described [3]
was used. It involved the task of drinking water while acquiring corresponding
sets of data from the MCS and the IMUS simultaneously. The kinematic measures
were extracted from the MCS as described in [3]. A method was developed for
estimating corresponding kinematic measures from the IMUS data. The predictive
power of the IMUS was evaluated by designing sets of uni-variate linear regression
models between different sets of data from the systems and evaluating the resulting
precision and curve-fit. The steps of the validation process and their corresponding
methodology-subchapters are as follows:

1. Data collection. Sections: 3.6, 3.8 & 3.2.
2. Reconstruct velocity vector and trajectory. Sections: 3.6
3. Extraction of kinematic measures. Sections: 3.5, 3.3 & 3.6

4. Construction of regression models and evaluation of curve-fit. Sections: 3.7.1,
3.7 & 3.8

5. Evaluation of results and conclusion.

3.2 Experimental procedure
The procedure aimed to collect data in paired sets from the two systems, i.e each

drinking task recorded by the MCS is paired with the IMUS recording from the
same trial. The paired sets were later used to predict the MCS measures from the
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Variables Samples
IMUS:NMU | Healthy
IMUS:FNMU | Stroke
IMUS:TMT | All
MCS:NMU
MCS:TMT

Table 3.1: The different variable names and sample-sets used. Can be combined in
15 different sets. Inertial Measurement Unit System (IMUS, refers to both hardware
and algorithms), Motion Capture System (refers to both hardware and algorithms),
Number of Movement Units (NMU), Filtered Number of Movement Units (FNMU,
NMUs calculated from low-pass filtered data), Total Movement Time (TMT).

IMUS data using linear regression. The data used for this purpose is structured by
variable name and from which samples it’s created, as can be seen in table 3.1. Less

commonly used notations are found in the appendix and are only relevant for other
tables in the appendix (see Table A.2 and Table A.3).

The measurement procedure consisted of a reach-to-drink task where the subject
reached for a glass, took a sip of water and returned the glass to its original position
before returning the arm to its starting position. The movement was self-paced.
The subject was seated with approximately 90 degrees flexion of the knee joints,
sitting in a height-adjustable chair behind a table. The back was in contact with
the backrest, the arm to be examined resting with the hand on the table palm facing
down and with approximately 90 degrees flexion of the elbow. The 9 spherical MCS
markers were placed on the following locations of the subject’s body and glass using
double-sided tape:

o Third metacarpophalangeal joint (hand of interest).
o Styloid process of ulna (wrist of interest)

 Lateral epicondyle (elbow of interest)

« Middle parts of acromion (both shoulders)

« Upper part of the sternum (thorax)

« Notch between eyebrows (face)

o Upper and lower edge of the glass on the opposite side of the subject

The IMU was strapped on the dorsal side of the lower arm, between the ulna
and radius, a few centimetres proximal of the wrist-marker. The glass had a di-
ameter of 7 cm and height of 9.5 cm. It was placed 30 centimetres from the
table edge of the subject along the midline of the body, and filled with 75-100
ml of water. Each subject repeated the movement when instructed a total of 10
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3. Methodology

Phases Start criterion

Reaching and grasping || The speed of the hand marker exceeds 2% of its top
speed between start and the estimated middle of the
drinking phase

Forward transport Speed of the object-marker exceeds 15 - 1072 m/s

Drinking The time at which the object marker is closer to the face
marker than the mean distance of the middle 50 samples
of the time at which the elbow is within 5 % of maximal
flexion + 15102 m

Back transport The time at which the object marker is further from the
face marker than the mean distance of the middle 50
samples of the time at which the elbow is within 5 % of
maximal flexion + 5-10"2 m

Return The point at which the object’s speed is less than 1-1072,
looking from the point at which the distance between the
wrist and object marker exceeds 1-1072 m

End Speed of the hand marker is less than 2% of its top speed
between the estimated middle of the drinking phase and
end for the last time

Table 3.2: The phases of the drinking task

to 20 times for each arm, with the starting arm being chosen randomly. The
start and end position wasn’t defined with precision, nor the alignment of the
hand or wrist. The procedure was, with respect to marker-positions, the drink-
ing task and sitting position of the subject, identical to that defined in reference [3].
The experimental procedure was changed for subject S2 (Subject nr. 2 affected by
stroke), who was unable to properly grasp the glass due to poor motor function
(FMA-UE score less than 32). The subject grasped the glass using only two digits,
the index and the thumb, as opposed to other subjects whom grasped and drunk
using their entire hand. The glass was not filled with water in the case of S2.

3.3 Kinematic measures

The kinematic measures used for verifying the IMUS performance against that of
the MCS are a quantified estimate of movement smoothness (Number of Movement
Units, NMU, defined in section 3.5.1, derived from the wrist) and Total Movement
Time (TMT, beginning and end of the phases defined in Table 3.2) in a reach-to-
drink task. The measures have been reported to have significant correlation with
ARAT (see section 2.1) and discriminate between discrete levels (moderate, mild
and none) of impaired motor function in the upper limbs due to stroke, defined
by FMA-UE scores of 32-57 (moderate) and 58-66 (mild) [21]][20][3][13]. Together,
these measures can create one out of two prominent features for estimating upper
limb motor deficiency, the other one being trunk displacement [3].
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3. Methodology

3.4 Inertial Measurement System: Velocity & tra-
jectory estimation

The IMUS is a dead reckoning system which estimates the trajectory and velocity
from the gyroscope and accelerometer data, from which an estimated set of kinematic
measures is derived. The system uses a smoother to improve its accuracy, based on
an Unscented Kalman Filter (UKF) due to the non-linear nature of the navigation
equations [14][19]. Numerical stability and computational efficiency is improved
using a square-root implementation [17]. Furthermore, the system decreases some
of the errors arising from its lack of absolute reference by assuming the start and
stop velocity is zero (Zero Velocity Updating, ZUPT). The state vector is as follows
R

p

p
biasgee
bias gyro

T =

SCLCC

assuming additive Gaussian noise, using the Q-matrix (process noise, see Chapter:
2.2.2):

[ones(4,1) - (VQ T)? ]

ones(3,1) - (2 - T?)?

Iy ones(3,1) - (Va - T)?

@ = diag ones(3,1) - (V2 - T)?

ones(3, 1) (VP T)?

(T

v

The commands are written using Matlab syntax and the variables are defined as
Quaternion (q), Position (p), Acceleration scale factor (s), sampling interval (T) &
Variance (V). The measurement model assumes no control input, and thus estimate
both accelerometer and gyroscope data (see chapter: 2.2.1). Further assumptions
are that the IMU’s body coordinate system is aligned with the world coordinate
system at start and that the system is at rest before navigation starts.

3.5 Parameter extraction

The IMUS attempts to emulate the approaches used by the MCS. It uses the same
definition as the MCS to define movement units, but lack the necessary information
to calculate the phases of the movement as defined in [3]. The MCS calculates the
TMT using an algorithm applicable by the IMUS, since it only uses the speed of the
wrist. However, the IMUS estimates the TMT using a novel algorithm less prone to
outliers.
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Velocity and acceleration vectors of the MCS are estimated with a first order for-
ward finite difference approximation from the measured positions. The estimates
are low-pass filtered using a second order Butterworth-filter to remove noise and
errors introduced by the velocity and acceleration estimation. Magnitude and phase
response of the filter is given in Figure 3.1.

Frequency (Hz)

2 4 6 8 10 12 14 16 18
Frequency (Hz)

Figure 3.1: The magnitude and phase response of the Butterworth filter.

3.5.1 MCS: Movement units & TMT

The NMU measure was calculated from the magnitude of the velocity vector (speed)
of the wrist marker with the help of the positions of the elbow, shoulder, face and
object-markers. NMU is defined as the sum of points in the reaching, forward
transport, back transport and returning phase (defined in table 3.2) full-filling the
following criteria: magnitude greater than adjacent points, magnitude difference
greater than 2 - 1072 m/s with respect to adjacent MUs and occurring more than
15-1072 s apart. TMT is defined as the time between the first and last phase (table:
3.2).

3.5.2 IMUS: Movement units

The IMUS derives two different estimates of the NMU, Filtered Number of Move-
ment Units (FNMU) and ordinary NMU. The approach used by the IMUS to esti-
mate the NMU & FNMU measures differs only in the phase-estimation stage from
that of the MCS. An algorithm based only on the movement of the wrist was devel-
oped and used:

1. Estimate the middle of the motion by finding the highest estimated position
along the z-axis (i.e, the point where the wrist is highest above the table. This

20
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Total Measurement Time estimation in IMUS
14 -~
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Figure 3.2: Estimated Total Movement Time by the IMUS from accelerometer
data

point corresponds to the point where the MCS calculates maximum flexion of
the elbow.

2. From point (1) to end, calculate at which point the maximum value of the
x-axis is achieved (i.e a point close to where the glass is placed in the return
phase). Calculate maximum speed of the wrist along this trajectory.

3. From point (2) to end, calculate the last point at which the object moves with
more speed than 5 % of the speed calculated in (2). This corresponds to the
time between the Return and End phases.

4. From point (2) to beginning, calculate the last point (from point 2) at which
the objects speed is greater than 5 % of the top speed within the interval. This
estimates the beginning of the reach phase.

5. From point (1), find the first point within 250 samples (1.22 seconds) in each
direction at which point the object moves with speed greater than the speed
in (1) + 0.2 m/s. This estimates the drinking phase.

The algorithm relies on a few key assumptions, for example that the wrist reaches its
highest point along the z-axis of the world coordinate system during the drinking-
phase. Relative measures are used in order to prevent errors due to sub-optimal
navigation. In the case of the FNMU, the navigated data is filtered using the MCS’s
Butterworth filter. This is the only difference between the two parameters. This
is an arbitrary solution based on the MCS’s algorithm, addressing the problem of
outlier sensitivity. The definition of the movement unit states that any single point
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with sufficient temporal difference from other movement units and magnitude from
adjacent samples is a movement unit. Low energy noise is thus indistinguishable
from true movement units, possibly warranting a low-pass filtering of the data to
ensure its relevance.

3.5.3 IMUS: Total time

The algorithm used by the MCS to estimate TMT is prone to outliers, since it
defines (table: 3.2) the start and stop times as the first and last time the magnitude
of the velocity vector exceeds a percentage of the magnitude in another point. A
movement recorded before the actual trial start would thus lead to a premature
starting point. While the MCS record data only after being activated through
Qualisys Track Manager, the IMUS records several trials in a row. The IMUS thus
also records movements between the trials and needs to be robust against outliers.
The IMUS system uses a decision algorithm capitalising on the fact that the TMT’s
standard deviation and mean is known from [3].

1. Calculate the magnitude of the accelerometer vector for every point.

2. Estimate g + accelerometer bias by taking the mean of the first 100 samples of
the magnitude vector with a sample variance less than 4.6 * 10~* (a threshold
determined by trial and error using the shimmer3 IMU).

3. Find every point containing movement data, defined as every point with a
magnitude deviating from the estimated mean with more than 0.1.

4. Sum the data created in (3), consisting of only zeroes and ones, over a 40
samples wide window running over the entire set. For each summation larger
than 3, set all samples within the window to 1. Set all windows not full-filling
the criteria to zero.

5. Sum the data created in (4), consisting of only zeroes and ones, over a 1000
samples wide window running over the entire set. For each summation larger
or equal to 950, set all samples within the window to 1. Set all windows not
full-filling the criteria to zero. Each sample containing a 1 is now considered
data, while all other samples (containing 0) are outliers.

3.6 Hardware

The MCS data-acquisition hardware is a optoelectric system produced by Qualisys
(ProReflex MCU240). It consists of five cameras with sampling rate of 240 Hz and
has sub-millimeter spatial precision. The position data collected is stored and han-
dled by Qualisys Track Manager. The software for estimating velocity, acceleration
and kinematic measures is written in Matlab (Mathworks inc).
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Accelerometer Gyroscope
Range t/_ 4g +/_ 250 dps
Sensitivity 1000 LSB/g at */_ 2g 131 dps/g at */_ 250 dps
Numerical Resolution || 16-bit 16-bit
RMS noise 27.5-107%m/s* 0.0481 dps

Table 3.3: Specs of the sensors in the IMU

The Inertial Measurement System (IMUS) consisted of a Shimmer3 (produced by
Shimmer) IMU using its 3-dof accelerometer and gyroscope with precision given
in table 3.3. The data acquired by the IMUS is imported to Matlab where the
trajectory and velocity vectors are estimated using a square-root Unscented Kalman
Filter.

3.7 Statistical methods

3.7.1 Linear regression

The methodology is designed to evaluate how much the extracted parameters of the
IMUS and MCS correlates. To this purpose, linear regression models (uni-variate
linear models and polynomial models of the second degree) are designed using data
from the IMUS and the corresponding MCS data. The polynomial models are only
used as a predictor for the NMU with the FNMU as training data. A choice based
on the FNMU feature’s superiority as a predictor. The models fit and precision are
evaluated, which indicates if the data-sets correlates in the way described by the
models. Model fit and precision is evaluated using the R? statistic and RMSE. In
order to explore trends and relationships between sub-sets of the data, the models are
designed by and applied to different sets of data, with primary focus on the difference
between the sets "healthy", "affected" and "all". More intricate comparisons are also
made and can be found in the appendix. The sub-sets choices are based on which
data is expected to differ from other data - data from a subject with stroke is
expected to differ from that of a healthy individual. Due to adverse effects on the
results in combination with the modified procedure (more details can be found in
the result and discussion chapters), S2 is not included in any set unless explicitly
specified. In order to avoid over-fitting, 10-fold cross-validation is used: each data
set thus yields 10 models. The population variance and mean of the diagnostic
statistics are calculated from the result of each set of 10 models applied to another
data set. The resulting mean of the diagnostics will thus indicate the precision and
correlation of the models used, while the variance indicate the robustness of using
a model based on that set of data. The study methodology for this step is:

1. Divide data into sets of two (MCS and corresponding IMUS) and design linear
and polynomial regression models using 10-fold cross-validation.

2. Apply all 10 polynomial and linear models designed after each set to all other
sets.
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Subjects 13
Male/female 5/8

Left /Right /double-handed | 0/12/1

Age, mean+ std [yrs] 62.254+13.36
Length, mean+ std [m] 1.68+0.077
Arm length, mean+ std [m] || 0.5418+0.0467
Measurements 173

Table 3.4: The healthy participants of the study-population

3. Check the models robustness and precision by calculating population variance
and mean of of the diagnostic statistics R? & RMSE.

3.8 Population and recruitment

The principles of recruitment are availability and convenience. Healthy subjects are
pseudo-randomly picked from peers and social circles of the author (table 3.4). Indi-
viduals with stroke are picked from patients previously hospitalised at Sahlgrenska
University hospital (table 3.5). The sample size consist of thirteen healthy indi-
viduals performing 10-15 measurements with each arm and three individuals with
stroke performing 15 measurements with their affected arm. Approximately half of
the trials have been deemed unfit for inclusion. The three major major reasons, of
roughly equal significance and size, are as follows.

1. The IMUS failing to navigate properly.
2. Mismatched data-sets.

3. Failure of the MCS to spline the trajectory due to reflective markers being
obscured.

The mismatched data sets occurred due to a weakness in the experimental procedure,
which did not include a structured way of handling different amounts of data sets
measured by the two systems from the same subject. When one system failed to
produce data due to errors, different amounts of data sets would be available and
thus yield errors. Since the data sets are to be compared between the systems, the
potential mismatch warranted exclusion of affected data sets.

3.8.1 Inclusion and exclusion criteria for individuals with
stroke

Inclusion criteria:
The individual is to have been clinically diagnosed with stroke, either infarction or
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Subject 201 (S1) | 202 (S2) | 203 (S3)
Male/female M F M
Age [yrs] 65 59 54
Length [m] 1.65 1.62 1.9
Arm length [m)] 0.52 0.52 65
Left /Right-handed R R R
Measurements unaffected/paretic arm 0/8 14/9 0/6
Time since stroke [yrs] 4 6 2
Paretic arm [Left/Right] L L L
Ishemic/Hemorragic H I I
FMA-UE 0-66, 66 indicates no clinical impairment || 32 26 59
ARAT 0-57, 57 indicates no impairment/deficit 49 27 o1

Table 3.5: The stroke participants of the study-population

bleeding, with resulting upper extremity sensorimotor impairment. The individual
has to be able to understand and follow simple instructions. Upper extremity sen-
sorimotor impairment is defined as scoring less than full score in a Modified Motor-
or Fugl-Meyer -Assesment.

Exclusion criteria:

The individual must not be suffering from other neurological or muscoloskeletal
diseases/disorders that will affect the movement ability in the affected arm.

3.8.2 Inclusion and exclusion criteria for healthy individuals
Inclusion criteria:

The individual has to be above 39 years of age.
Exclusion criteria:

The individual must not be suffering from any disease or disorder which may hamper
or affect the movement of the trunk or upper extremities.
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4. Results

4.1 Estimation quality and robustness

The IMUS’s estimate of the speed vary in quality with respect to the MCS’s esti-
mates. The majority of the healthy samples result in IMUS and MCS estimates of
comparable form and magnitude as can be observed in Figure: 4.1. The most promi-
nent differences between such pairs are described in table: 4.1. Estimates of sam-
ples from stroke survivors are prone deviate more and usually lack a clear four-peak
profile. A typical example of such a sample can be observed in figure: 4.3. The dif-
ferences in estimates from affected samples are more difficult to quantify than those
from healthy samples, though table: 4.1 is still relevant. Most notably the IMUS
estimates from affected samples usually contain a higher number of small peaks with
resulting MUs, which are not present in corresponding MCS estimate. Low quality
estimates (figure: 4.2) are present both in healthy and affected samples. Signs of de-
generation, such as arcs of a sector, speed over 1 m/s or other unrealistic behaviours
(figure: 4.4), are also present in both affected and healthy samples. Low quality/de-
generation in estimates are more common and prominent in samples from affected
subjects.
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Speed of wrist marker with phases & MUs, estimated by the IMUS
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Figure 4.1: A pair of estimates from a healthy subject (H110), made by the MCS
and IMUS, where the estimate of the IMUS contains small errors with respect to
other estimates.

The different approaches of phase-estimation used in the two methods correspond in
the case of healthy samples with a common level of estimation quality, save for the
beginning of the reach phase. The phase-placements of most interest are: the begin-
ning of the reach-phase (marking the beginning of the movement), the placement of
the drinking-phase (in which MUs are not counted due to the high amount of MUs
present) and the end of the return-phase (the end of the movement). Estimates from
affected samples have larger differences in phase estimation. Erroneous estimates
of the drinking-phase rarely give rise to large errors (different amount of MUs) in
estimates with clear four-peak shape. This is due to the rarity of MUs in the end
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IMUS - deviation

MCS - normal case

Phase/location

Near equal top speed
in all phases.

Higher speed in for-
ward /backward trans-
port phase.

Reach, return, for-
ward and backward
transport phases.

Non-zero speed out-
side drinking phase

Reaches zero between
each phase.

Between  the  two
transport phases and
reach/return phases.

High number of low-
amplitude peaks.

Smoother speed vec-
tor.

Most prominent by
the end of the return-
phase.

"V'-shaped speed in
the drinking phase

Frequently reaches

Zero.

The drinking phase.

Split peaks/high fre-

Four peak profile.

Middle reach, return

and  forward/back-
ward transport.

quency components.

Table 4.1: Most common differences between the IMUS and MCS speed estimates.

of the forward transport-phase and the beginning of the backward transport-phase
in such samples. In the case of a obscured four-peak shape due to poor estimation
or high level of disability in the subject, the latter statement does not hold. In-
stead, the drinking-phase can be the source of large errors due to being placed in
the wrong area. Identification of the beginning of the reach-phase differs between
the algorithms, mostly due to the sensitivity of the tuning in the MCS (as can be
observed in figure: 4.2). Different amounts of MUs due to the placement of the
beginning of the reach-phase appears to have little effect. The time measurement
is however affected. The end of the return phase is a source of errors, since the
end of the movement commonly contains large numbers of peaks resulting in MUs.
Though the MCS and IMUS differ little in this estimate, large errors can still be a
by-product (as can be observed in Figure: 4.3).
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Speed of wrist marker with phases & MUs, estimated by the IMUS
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(b) MCS estimate.

Figure 4.2: A pair of estimates from a healthy subject (H110), made by the MCS
and IMUS, where the estimate of the IMUS deviates and show noticeable errors.
An example of a worse estimate with respect to other IMUS estimates.
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Speed of wrist marker with phases & MUs, estimated by the IMUS
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(b) MCS estimate.

Figure 4.3: A pair of estimates from a subject with stroke (S201), made by the
MCS and IMUS, where the estimate of the IMUS contains small errors with respect
to other estimates.
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Figure 4.4: A pair of estimates from a subject with stroke, made by the MCS and
IMUS (S201), where the estimate of the IMUS deviates and show noticeable errors.
An example of a worse estimate with respect to other IMUS estimates.
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Scatterplot of FNMU for all samples except S2 visualized using standard deviation
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Figure 4.5: Barplots featuring the standard-deviation of the MU features for all
data.

4.2 Linear regression analysis

IMUS:NMU and FNMU show approximate linear correlation with MCS:NMU (see
figures: 4.5, A.3 and A.5). Using 10-folds cross-validation, a linear model applied
to IMUS:FNMU achieves better result with respect to other variables and models
(see table: 4.2). All combinations of variables and models yield a R? of 0.8 or more
and a mean RMSE of no more than 2.37 MU. IMUS:TMT correlates linearly with
MCS:TMT (see appendix).
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Samples from affected subjects appear to have other statistical moments than sam-
ples from healthy subjects. These non-linearities and variations between the sets are
described in table: 4.3. This is directly observable in appendix figures: A.2 & A.1.
The IMUS two MU-measures are characterised by having higher mean and std than
MCS:NMU. IMUS:FNMU has a smaller std than IMUS:NMU (3.88 and 4.46 against
6.53 and 7.31 for affected and healthy samples respectively) and lower population
mean, more akin to that of MCS:NMU. Inclusion of S2 in the set leads to increased
mean and std (see table: A.2 and A.1). The effects of the variations are qantified
and described by varying model fit in tables: A.7, A.4 & A.5 using the notation
described in table: A.3, where models are applied to data not used to design them.
The latter identifies large difference between S2 and all other groups. Its inclusion
or exclusion has larger effect on model fit than the choice between samples from
affected or non-affected arms, in most cases resulting in worse model fit. Model fit
is more variable for polynomial models and is on average better for IMUS:FNMU
than IMUS:NMU. It varies strongly for models trained on only affected data and
applied to samples from healthy subjects or the other way around.

Variable/Measure Mean RMSE | Mean R?
Linear FNMU 2.15 0.83
Polynomial FNMU | 2.24 0.83
Linear NMU 2.37 0.80
Polynomial NMU 2.30 0.82

Table 4.2: Mean RMSE and R? for polynomial and linear regression models created
using 10-fold cross-validation on all a affected (14) samples and a equal number of
random healthy samples (14). Total 28 samples.

Samples/ IMUS MCS
Variables | TMT NMU FNMU TMT NMU
Healthy 8.01£1.71 |1332+£731|800£446 |694+£1.53 | 7.21+£3.18
Affected | 12.78 £1.54 | 30.79 £6.53 | 19.00 £3.88 | 11.10 £1.26 | 14.79 + 3.17

Table 4.3: Mean and population standard deviation for the kinematic variables
sorted by level of motor-impairment.
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5. Discussion

The findings show that both IMUS: TMT, NMU and FNMU correlates well with the
corresponding MCS variables, which is largely expected. The reconstructions and
phase estimations made by the IMUS clearly relates to those of the MCS. The MU
features of the IMUS show clear correlation with the MCS:NMU. However, the IMUS
estimation quality is clearly unsteady, varying between high degree of likeness to
only inheriting basic features. The inherent sensitivity of the MU definition creates
a scenario where very small errors can give rise to additional MUs. The IMUS thus
estimates a varying (compared to the MCS) amount of MUs even when the speed
estimate is close to a correct representation of the physical reality. There are cases
where the MCS and IMUS estimates the same amount of MUs, but at different
locations, clearly showcasing a flaw in the approach. The IMUS would need an
almost perfect estimate of the speed to find the same amount of MUs at the same
location.

A mean RMSE of 2.15 and R? of 0.83 is achievable when using FNMU as predictor
in a linear regression model and applying it to a equal measure of samples from
affected and healthy subjects. The mean and standard deviation of MCS:NMU
is 14.8+3.17 (table: 4.3) for affected subjects. The corresponding values in ear-
lier works are 11.1£3.6 (FMA-UE 39-57) [20]. A RMSE of 2.15 when predicting
MCS:NMU is thus a significant error, but would likely be small enough to clearly
discern between affected and non-affected subjects. Significantly better or worse
results can be achieved by creating models from subsets of the data, and applying
them to other sets, revealing differences and non-linearities. Primarily between sam-
ples drawn from healthy subjects, affected subjects and S2. A RMSE of (table A.7)
1.89 and R? of 0.72 is reachable using a 2" degree polynomial model trained and
applied to all FNMU data, with the exception of S2. The same models applied to
the affected arms of the affected subjects result in RMSE 2.34 and R? 0.45. Models
trained on the affected arms result in a meagre improvement of precision for predict-
ing the training data and severe deterioration for other data. The proposed models
can thus not explain all variations in the data, and is better at predicting data
from healthy rather than affected subjects, due to the smaller spread of the former.
The same conclusion can be drawn from observing the scatterplots (figures: A.2 &
A.1) or simply comparing the standard deviations of sets constructed from affect-
ed/healthy samples respectively (table: 4.3). The data derived from S2 can thus be
concluded to differ from all other data, clearly having a different mean and appear-
ing to have larger variance than other sets. No other previous works have evaluated
subjects with as severely impaired motor function as S2 for the given task, setting
the resulting data set apart from the other sets, all whom are within the boundaries
of previous works. Furthermore, S2 was collected using a modified procedure. It’s
thus not implausible to consider S2 apart from the other data. Solely considering
S2’s level of motor impairment, the overall bad model fit warrants more intricate
models than those proposed. The ramifications would thus be that the proposed
models are only valid for subjects with motor-impairment ranging from moderate to
none. The fact that the changed procedure rather than the higher level of impair-
ment may be the source of the variation of the data is a moot point from a practical
modelling perspective. A motor-impairment level greater than moderate implies the
inability to complete the original procedure, rendering the models impractical for
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5. Discussion

any subject with impairment greater than moderate regardless of underlying cause.

The TMT features unsurprisingly show high levels of correlation, R? of 0.97 and
RMSE of 0.45 (table A.6) when trained by and applied to all data. There is a
deterioration of model fit when applied to data from affected subjects, primarily of
RMSE (0.69), but the overall fit still appears to be good since 92% of the variations
can be explained by the model. This pattern is repeated for all results: sets charac-
terised by small sample size and inclusion of S2 result in worse fit with roughly 0.7
RMSE and 0.9 R? while other sets have RMSE around 0.45 and slightly higher R2.

The results give reasons to believe the system could be of use, but would need
further evaluation. Using the same methods as the MCS would be the first step,
meaning multivariate linear regression with the variables MCS:NMU, TMT & trunk
displacement models. The first obstacle in this would be to find a substitute variable
for trunk displacement, which could then be used in tandem to design and evaluate
a multivariate model similar to that applied to the MCS. While the total trunk
displacement would be likely to be less sensitive than the MU measure, problems
with degenerated speed estimates and sensitivities of MUs could prove insurmount-
able problems. Should the precision of the IMUS be too low to achieve a useful
predictive power, the estimates of the trajectories would need to be improved. The
sensor errors could be improved using sensors of higher precision or evaluating the
method of calibration and possibly improve it. The system also suffers from a ini-
tial position-problem due to a lack of information. To solve it, either the procedure
would need to include a specific start position and location of the IMU, or the IMUS
would need to be fitted with an absolute orientation algorithm. Such an algorithm
would require the IMU to be fitted with a magnetometer or similar sensor, since a
(low precision) gyroscope and accelerometer doesn’t supply enough information to
find the absolute orientation of a system. Other approaches to improve the estimate
of the trajectory would be possible. A sensor capable of tracking an external ref-
erence could potentially help attenuate and even reduce the ever-growing errors of
the inertial navigation. It’s also possible that it would be more efficient to derive
information directly from the accelerometer/gyroscope data rather than the trajec-
tory estimate. Such an approach would require identifying new sets of features, but
would not suffer from the inherent problems of the dead reckoning systems such as
increasing errors over time.
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6. Conclusion

The IMUS:FNMU/NMU features of the IMUS correlates with those of the MCS
and can be used to predict the latter with an error (RMSE of 2.15 for FNMU)
likely to be smaller than the difference between sick and healthy individuals. The
IMUS estimates have varying quality. They commonly result in a matching profile
when compared with the MCS, but show signs of degeneration and deviation at a
notable number of times. These deviations are especially prominent in estimates
from samples of affected subjects. The estimates are unlikely to have matching tem-
poral locations for MUs, even when the estimates have highly comparable profile.
This disparity indicates that predictions with high (next-to-perfect) precision would
demand a considerably enhanced IMUS estimate. The estimates of the total time
show high levels of correlation and precision. No final conclusion can be drawn
whether the precision is good enough without emulating the whole MCS method in
the IMUS. That would require implementing the features in a multivariate linear
regression model trained to predict ARAT-scores (and a significantly larger sample
size). Such an approach would require the identification of a trunk displacement
feature replacement for the IMUS. Finding the latter is the primary challenge re-
maining before the system can be fully compared and evaluated against the MCS.
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A. Appendix 1

A.1 Moments of MU-sets

Table A.1: Moments of the sets for the MU-variables, on the form mean-+std.

I1

Set/Var | MCS:NMU | IMUS:NMU | IMUS:FNMU
Set 1 7.2+3.2 13.3£7.3 8.0£4.5
Set 2 28.1+17.5 39.3+12.7 27.6+11.6
Set 3 16.4+2.3 31.1£6.6 20.4+4.4
Set 4 47.3£9.0 51.6£8.2 39.9+6.2
Set 5 12.7£3.0 30.3£7.1 17.2£2.3
Set 7 5.8+1.5 10.7+2.3 5.9£0.9
Set 14 | 5.5£0.9 8.6+1.8 5.4£0.7
Set 15 | 5.5£1.1 10.4£1.8 6.3+1.2
Set 18 | 14.14+2.8 28.1+6.4 17.3£4.2
Set 20 | 14.843.3 30.8£6.5 19+£3.9
Set 21 | 11.14+4.8 21.3+10.8 13.2£6.7




A. Appendix 1

Group | Subjects
Set 1 Healthy
Set 2 Stroke
Set 3 S1

Set 4 S2

Set 5 S3

Set 7 H2

Set 14 | H9

Set 15 | H11

Set 18 | H11

Set 20 | S1 & S3
Set 21 | H9 & H14

Table A.2: Notation of set-divisions used to detail the moments of the MU-

distributions

Group Subjects

Group 1 | All data

Group 2 | Stroke (S2 included)

Group 3 | Affected, both arms

Group 4 | Healthy

Group 5 | All data (S2 excluded)

Group 6 | Stroke (S2 excluded)

Table A.3: Notation of set-divisions used to train and test regression models

A.2 Polynomial and linear regression-models
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A. Appendix 1

Training group 1 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 4.66 11.35 9.10 2.99 3.29 6.01
Variance RMSE || 0.0000 0.0888 0.0476 0.0170 0.0229 0.1411
Mean R? 0.73 0.56 0.72 0.11 0.17 -2.61
Variance R? 0.0000 0.0005 0.0002 0.0059 0.0057 0.1979
Training group 2 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 13.32 9.79 10.31 13.86 13.40 8.46
Variance RMSE || 1.7864 0.0876 0.4747 2.0874 1.8979 0.1867
Mean R? -1.22 0.67 0.64 -18.28 -12.83 -6.17
Variance R? 0.2236 0.0004 0.0025 18.2840 | 9.1454 0.5423
Training group 3 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 6.36 9.67 7.99 5.95 5.98 7.71
Variance RMSE || 0.2063 0.0239 0.0063 0.3452 0.3096 0.3003
Mean R? 0.50 0.68 0.78 -2.55 -1.75 -4.96
Variance R? 0.0054 0.0001 0.0000 0.5088 0.2692 0.6731
Training group 4 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 6.04 17.82 14.01 1.79 1.94 3.02
Variance RMSE || 0.0042 0.0441 0.0259 0.0000 0.0000 0.0045
Mean R? 0.55 -0.09 0.33 0.68 0.71 0.09
Variance R? 0.0001 0.0007 0.0002 0.0000 0.0000 0.0017
Training group 5 || group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 5.95 17.55 13.80 1.79 1.94 2.97
Variance RMSE || 0.0047 0.0527 0.0305 0.0000 0.0000 0.0032
Mean R? 0.56 -0.05 0.35 0.68 0.71 0.12
Variance R? 0.0001 0.0008 0.0003 0.0000 0.0000 0.0011
Training group 6 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 6.31 17.35 13.78 2.85 2.94 2.74
Variance RMSE || 0.3860 0.7503 0.5754 0.8041 0.7083 0.0081
Mean R? 0.50 -0.03 0.35 0.12 0.29 0.25
Variance R? 0.0099 0.0105 0.0050 0.3220 0.1741 0.0025

Table A.4: Performance of linear regression for NMU with NMU as predictor
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Training group 1 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 3.67 8.30 6.55 2.71 2.80 4.53
Variance RMSE || 0.0000 0.0299 0.0175 0.0039 0.0058 0.0520
Mean R? 0.83 0.76 0.85 0.27 0.40 -1.05
Variance R? 0.0000 0.0001 0.0000 0.0011 0.0011 0.0414
Training group 2 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 3.78 8.82 6.96 2.68 2.69 3.60
Variance RMSE || 0.0004 0.0653 0.0360 0.0165 0.0161 0.0216
Mean R? 0.82 0.73 0.84 0.28 0.45 -0.30
Variance R? 0.0000 0.0002 0.0001 0.0051 0.0029 0.0121
Training group 3 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 4.15 7.46 5.98 3.66 3.72 5.45
Variance RMSE || 0.0221 0.0018 0.0003 0.0405 0.0363 0.0599
Mean R? 0.79 0.81 0.88 -0.34 -0.06 -1.97
Variance R? 0.0002 0.0000 0.0000 0.0222 0.0120 0.0691
Training group 4 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 5.21 15.09 11.83 1.91 1.92 2.49
Variance RMSE || 0.0134 0.1433 0.0866 0.0000 0.0001 0.0178
Mean R? 0.66 0.22 0.52 0.64 0.72 0.38
Variance R? 0.0002 0.0016 0.0006 0.0000 0.0000 0.0046
Training group 5 || group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 4.99 14.38 11.28 1.91 1.91 2.31
Variance RMSE || 0.0097 0.1098 0.0663 0.0000 0.0000 0.0071
Mean R? 00.69 0.29 0.57 0.64 0.72 0.47
Variance R? 0.0002 0.0011 0.0004 0.0000 0.0000 0.0015
Training group 6 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 4.99 13.82 10.88 2.29 2.27 2.21
Variance RMSE || 0.1615 1.6475 1.0461 0.1446 0.1355 0.0055
Mean R? 0.69 0.34 0.59 0.46 0.60 0.51
Variance R? 0.0025 0.0132 0.0052 0.0326 0.0177 0.0011

Table A.5: Performance of linear regression for NMU with FNMU as predictor
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Training group 1 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 0.45 0.69 0.62 0.41 0.41 0.40
Variance RMSE || 0.00000 0.00006 | 0.00003 0.00000 | 0.00000 0.00011
Mean R? 0.97 0.92 0.97 0.93 0.95 0.90
Variance R? 0.00000 0.00000 | 0.00000 0.00000 | 0.00000 0.00003
Training group 2 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 0.58 0.67 0.66 0.56 0.56 0.45
Variance RMSE || 0.00507 0.00006 | 0.00105 0.00649 | 0.00585 0.00057
Mean R? 0.94 0.93 0.96 0.86 0.90 0.87
Variance R? 0.00023 0.00000 | 0.00001 0.00171 | 0.00083 0.00020
Training group 3 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 0.46 0.68 0.61 0.43 0.44 0.52
Variance RMSE || 0.00008 0.00013 | 0.00005 0.00010 | 0.00010 0.00123
Mean R? 0.96 0.93 0.97 0.92 0.94 0.83
Variance R? 0.00000 0.00001 | 0.00000 0.00001 | 0.00001 0.00055
Training group 4 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 0.47 0.83 0.72 0.40 0.40 0.36
Variance RMSE || 0.00002 0.00050 | 0.00026 0.00000 | 0.00000 0.00002
Mean R? 0.96 0.89 0.96 0.93 0.95 0.92
Variance R? 0.00000 0.00004 | 0.00000 0.00000 | 0.00000 0.00001
Training group 5 || group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 0.47 0.80 0.70 0.40 0.40 0.35
Variance RMSE || 0.00001 0.00047 | 0.00024 0.00000 | 0.00000 0.00001
Mean R? 0.96 0.90 0.96 0.93 0.95 0.92
Variance R? 0.00000 0.00003 | 0.00000 0.00000 | 0.00000 0.00000

Table A.6: Performance of linear regression with for TMT
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Training group 1 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 3.26 7.95 6.27 2.16 2.16 2.86
Variance RMSE || 0.0099 0.1465 0.0873 0.0013 0.0018 0.0183
Mean R? 0.87 0.78 0.87 0.54 0.64 0.18
Variance R? 0.0001 0.0005 0.0002 0.0002 0.0002 0.0057
Training group 2 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 14.48 6.98 10.66 15.12 14.62 5.07
Variance RMSE || 14.8981 0.2429 2.7569 18.5519 | 17.2128 0.3378
Mean R? -1.77 0.83 0.61 -23.38 -16.51 -1.59
Variance R? 1.1770 0.0007 0.0120 96.8866 | 49.8822 0.3016
Training group 3 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 3.91 7.66 6.11 3.25 ST 4.50
Variance RMSE || 0.0373 0.3101 0.1621 0.1729 0.1693 0.2420
Mean R? 0.81 0.80 0.87 -0.07 0.17 -1.04
Variance R? 0.0004 0.0010 0.0003 0.0654 0.0382 0.1750
Training group 4 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 7.17 21.45 16.79 1.87 1.92 2.81
Variance RMSE || 0.0862 0.8718 0.5320 0.0000 0.0002 0.0237
Mean R? 0.36 -0.58 0.04 0.65 0.72 0.21
Variance R? 0.0027 0.0186 0.0068 0.0000 0.0000 0.0073
Training group 5 || group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 6.14 18.14 14.21 1.88 1.89 2.34
Variance RMSE || 0.0228 0.2401 0.1461 0.0000 0.0000 0.0044
Mean R? 0.53 -0.13 0.31 0.65 0.73 0.45
Variance R? 0.0005 0.0037 0.0014 0.0000 0.0000 0.0010
Training group 6 | group 1 | group 2 | group 3 | group 4 | group 5 | group 6
Mean RMSE 12.61 28.88 23.15 8.65 8.32 2.03
Variance RMSE || 41.8716 80.7404 | 60.5905 44.3696 | 41.0795 0.0176
Mean R? -1.44 -2.10 -1.01 -10.41 -7.10 0.59
Variance R? 8.6873 4.3148 2.1992 387.5779 | 196.5920 | 0.0030

Table A.7: Performance of polynomial regression models using FNMU as training

data to predict NMU
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A.3 Scatterplots

Scatterplot of FNMU for affected samples

MCS NMU samples

0 a5
IMUS FNMU samples

(a) Scatterplot of affected IMUS:FNMU against MCS:NMU

Scatterplot of FNMU for healthy samples visualized using standard deviation

MCS NMU samples

T I{}E}%I

15
IMUS NMU samples

(b) Barplot of healthy IMUS:FNMU against MCS:NMU

Figure A.1: FNMU scatter/bar-plots of the affected and healthy samples respec-
tively.
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(a) Scatterplot of affected IMUS:NMU against MCS:NMU

MCS NMU samples

Scatterplot of NMU for affected samples

MCS NMU samples

0
IMUS NMU samples

Scatterplot of NMU for healthy samples visualized using standard deviation

§
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IMUS NMU samples

(b) Barplot of healthy IMUS:NMU against MCS:NMU

(c) Scatterplot of healthy IMUS:NMU against MCS:NMU

MCS NMU samples

Scatterplot of NMU for all samples

xxxxx
xxxxxxxxx

xxxxxxxxx

* 1
I s 2
IMUS NMU samples

Figure A.2: NMU scatter/bar-plots of the affected and healthy samples respec-

tively.
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Scatterplot over IMUS:FNMU & MCS:NMl).I(
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(a) Scatterplot of IMUS:FNMU against MCS:NMU
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(b) Scatterplot of IMUS:NMU against MCS:NMU

Scatterplot over IMUS:TMT & MCS:TMT
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(c) Scatterplot of IMUS:TMT against MCS:TMT

Figure A.3: Scatterplots of the three different features.
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Regression model for FNMU designed using affect;e(d samples

—_ _ —_ —_
N L [e2) ©
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MCS:NMU
>

0 5 10 15 20 25 30
IMUS:NMU

(a) Linear regression for a linear model fitted against IMUS:FNMU/MCS:NMU-
data. The samples consist of 14 affected samples (S2 excluded) and 14 randomly
picked healthy samples.

Regression model for FNMU designed using an even mix of samples N
20—

MCS:NMU

|
15
IMUS:FNMU

(b) Linear regression for a 2nd order polynomial model fitted against
IMUS:FNMU/MCS:NMU-data. The samples consist of 14 affected samples (S2
excluded) and 14 randomly picked healthy samples.

Figure A.4: Regression models predicting MCS:NMU using IMUS:FNMU.
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Regression model for FNMU designed using affeg:(ted samples
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(a) Linear regression for a linear model fitted against IMUS:NMU/MCS:NMU-data.
The samples consist of 14 affected samples (S2 excluded) and 14 randomly picked
healthy samples.

Regression model for NMU designed using an even mix of samples %
20—

MCS:NMU
\
\

|
25
IMUS:NMU

(b) Linear regression for a 2nd order polynomial model fitted against
IMUS:NMU/MCS:NMU-data. The samples consist of 14 affected samples (S2 ex-
cluded) and 14 randomly picked healthy samples.

Figure A.5: Regression models predicting MCS:NMU using IMUS:NMU.
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