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A Formal Semantics for Javalette in the K framework

BURAK BİLGE YALÇINKAYA
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis is about developing an executable formal semantics for Javalette in the
K framework. Javalette is an imperative programming language. Its syntax is
formally specified using BNF (Backus-Naur form) notation, but it does not have
a formal semantics. The semantics of the language is informally documented in
English. Javalette has several extensions that enrich the language’s syntax and
semantics with new types, statements, and expressions. K is a toolset for program-
ming language design and implementation. It provides a specification language for
formally defining syntax and semantics. From these definitions, K automatically
generates various tools such as parsers, interpreters, model checkers, and deductive
verifiers. The purpose of this project is to develop a complete formal semantics for
the Javalette language, design an architecture for extending the language modularly
and implement language extensions, find and resolve undefined behaviors in the lan-
guage, and use the formal semantics to develop an input fuzzer for testing Javalette
programs and implementations.

Keywords: Formal semantics, K framework, programming languages, Javalette.

v





Acknowledgements
I would like to thank my supervisor Magnus Myreen and advisor Rikard Hjort for
their endless support. Thank you for recommending this project idea and guiding
me with interesting discussions throughout the project. I also would like to thank
Runtime Verification and all the contributors for creating and open-sourcing the K
framework. Lastly, I want to thank my family and friends for their support and
encouragement.

Burak Bilge Yalçınkaya, Gothenburg, May 2022

vii





Contents

List of Figures xi

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Javalette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The K Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Syntax declarations . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 K-Javalette: A formal semantics for Javalette 9
3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Processing Top-level Definitions . . . . . . . . . . . . . . . . . . . . . 11
3.4 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Statements and scope rules . . . . . . . . . . . . . . . . . . . . 12
3.4.3 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Return checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6.1 Expressions and values . . . . . . . . . . . . . . . . . . . . . . 16
3.6.2 Environment and store . . . . . . . . . . . . . . . . . . . . . . 17
3.6.3 Conditional statements . . . . . . . . . . . . . . . . . . . . . . 18

4 Language Extensions 21
4.1 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Dynamic Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Unspecified Behaviors 31
5.1 Core Javalette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Variable scope rules in conditional statements . . . . . . . . . 31
5.1.2 Multiple variable declarations in one statement and evaluation

of initial values . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.3 Evaluation order of operands/arguments . . . . . . . . . . . . 32

ix



Contents

5.2 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 Default values for arrays . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Evaluation order in array indexing expressions . . . . . . . . . 33

5.3 Precedence of pointer and array expressions . . . . . . . . . . . . . . 34

6 Testing Javalette Implementations 37

7 Discussion 39
7.1 Formal semantics in K . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Modules and extensions . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Using the semantics for testing . . . . . . . . . . . . . . . . . . . . . 40
7.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 43

x



List of Figures

2.1 A simple Javalette program . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Syntax for the integer calculator . . . . . . . . . . . . . . . . . . . . . 4
2.3 Configuration for the integer calculator . . . . . . . . . . . . . . . . . 5
2.4 Initial configuration for "1 + -2 * 3" . . . . . . . . . . . . . . . . . . . 5
2.5 Configuration with an environment . . . . . . . . . . . . . . . . . . . 6
2.6 Addition of two integers . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Addition of two integers - simplified . . . . . . . . . . . . . . . . . . 6
2.8 State change after addition . . . . . . . . . . . . . . . . . . . . . . . 6
2.9 Multiplication of two Ints increments the counter . . . . . . . . . . . 6
2.10 Division by non-zero . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.11 Integers are results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.12 A non-total function . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.13 A total function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Main components of K-Javalette . . . . . . . . . . . . . . . . . . . . 9
3.2 Javalette syntax in K . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Javalette syntax in LBNF . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Assignment syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Main configuration of K-Javalette . . . . . . . . . . . . . . . . . . . . 10
3.6 Main configuration of K-Javalette . . . . . . . . . . . . . . . . . . . . 11
3.7 Processing top-level definitions . . . . . . . . . . . . . . . . . . . . . . 11
3.8 Javalette types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.9 Type-checking configuration . . . . . . . . . . . . . . . . . . . . . . . 12
3.10 Type-checking a program . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.11 Type-checking a function . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.12 Type-checking variable declaration . . . . . . . . . . . . . . . . . . . 13
3.13 Multiple variable declarations . . . . . . . . . . . . . . . . . . . . . . 13
3.14 Type-check assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.15 Type-checking block statements . . . . . . . . . . . . . . . . . . . . . 14
3.16 Type-checking expressions . . . . . . . . . . . . . . . . . . . . . . . . 14
3.17 Type inference for addition . . . . . . . . . . . . . . . . . . . . . . . . 14
3.18 Type inference for addition . . . . . . . . . . . . . . . . . . . . . . . . 15
3.19 Return checker implemented as a function . . . . . . . . . . . . . . . 15
3.20 Terminating statements . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.21 Execution configuration . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.22 Values in core Javalette . . . . . . . . . . . . . . . . . . . . . . . . . . 16

xi



List of Figures

3.23 Evaluating binary operations . . . . . . . . . . . . . . . . . . . . . . . 17
3.24 Short-cut evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.25 Variable lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.26 Variable declaration and allocation in the store . . . . . . . . . . . . 18
3.27 Variable declaration without initializer . . . . . . . . . . . . . . . . . 18
3.28 Executing block statements . . . . . . . . . . . . . . . . . . . . . . . 18
3.29 An example program with variable shadowing . . . . . . . . . . . . . 19
3.30 Executing if statements . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.31 Executing while statements . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Dependencies with extensions . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Extending the syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Extending the semantics . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Arrays syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Type of an array element . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Typing rule for for-loops . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 An array is a pair of location and size . . . . . . . . . . . . . . . . . 24
4.8 Create a 2-dimensional array . . . . . . . . . . . . . . . . . . . . . . 24
4.9 Configuration after creating a 2-dimensional array . . . . . . . . . . 24
4.10 Indexing expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.11 Structs syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.12 Structs syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.13 Structs configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.14 Structs configuration: an example . . . . . . . . . . . . . . . . . . . 26
4.15 Check typedefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.16 Check struct fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.17 Check pointer dereferencing . . . . . . . . . . . . . . . . . . . . . . . 27
4.18 Pointer values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.19 Struct creation and memory allocation . . . . . . . . . . . . . . . . . 28
4.20 Creating nested structures . . . . . . . . . . . . . . . . . . . . . . . . 29
4.21 Accessing a struct field . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Ambiguous multiple declaration . . . . . . . . . . . . . . . . . . . . . 32
5.2 An equivalent program to 5.1 . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Side effect in binary operation . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Array declaration without initializer . . . . . . . . . . . . . . . . . . . 33
5.5 Declare an empty array . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Strictness of array indexing . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 Evaluation order in array indexing . . . . . . . . . . . . . . . . . . . 34
5.8 Creating a multi-dimensional array . . . . . . . . . . . . . . . . . . . 34
5.9 Problematic expressions . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Testing compilers with random input . . . . . . . . . . . . . . . . . . 37
6.2 Override the behavior of input functions . . . . . . . . . . . . . . . . 38
6.3 Override the behavior of input functions . . . . . . . . . . . . . . . . 38
6.4 Use krun to generate a random input . . . . . . . . . . . . . . . . . . 38

xii



1
Introduction

Programming is the act of precisely telling computers what to do using a program-
ming language. By this precise nature of computing, programming languages have
to be fully defined unambiguously, in contrast to human languages. Hence, writing
specifications is a critical part of programming language design and development.

Programming language specifications consist of two main parts: syntax and seman-
tics. These two components describe how programs look and behave, respectively.
When designing a programming language, formally specifying the language syn-
tax is a common practice. The syntax is usually defined using the conventional
Backus-Naur form (BNF) notation, and this specification forms a basis for parsers
and documentation. Using BNF is highly desirable since there are well-developed
tools, such as GNU Bison and Yacc, for automatically generating parsers from BNF
files[9][10]. On the other hand, instead of using formal semantics, the semantics of
the language is usually described informally using a natural language or pseudo-code
together with example programs.

A similar situation applies to the Javalette language. Javalette is an imperative
programming language designed for teaching compiler construction [5]. Its syntax
is formally specified using BNF notation, but the semantics is vaguely described in
English. There is also a collection of test programs that contributes to the spec-
ification of the language. These programs are used to prevent ambiguities and
misunderstandings as well as to test Javalette compilers. Compiler implementors
refer to the test suite to better understand the language. Compilers that pass all
the test cases are assumed to be correct.

Informal descriptions of the semantics of a language can not be precise enough and
usually carry ambiguities due to the limitations of natural languages. In the ab-
sence of formal semantics, compiler and interpreter implementors have to rely on
their understanding of the language. For this reason, there can be inconsistencies
between different implementations of the same language, and reasoning about pro-
grams becomes harder. On the other hand, rigorously written formal semantics
help developers to communicate clearly and understand the language better. Fur-
thermore, it is possible to use formal specifications for the automatic generation of
programming language tools.

Despite all these reasons, formal semantics is not widely used due to high devel-
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1. Introduction

opment cost and not having direct benefits as in BNF. The K framework aims to
balance these cost and benefits. K is a framework for designing and implementing
programming languages. Language designers can formalize their languages in K and
then build various tools around the language, such as parsers, interpreters, compil-
ers, and verifiers. A complete formal semantics written in K is enough to get an
interpreter for free. The automatic generation of such tools closes the gap between
defining and implementing a programming language [12].

This project aims to write a formal semantics for Javalette in the K framework, and
to answer the following research questions:

1. What aid can we get from K when writing formal semantics for a language
which has not been formalized before? What advantages does it offer for
spotting unspecified behaviors?

2. How difficult is it to add extensions to a formalization in K? Can we modularly
grow a programming language with new syntax and semantics?

3. How can we benefit from K for testing implementations of a language? How
can we generate interesting test cases using K?

1.1 Contributions
The main contribution of this project is K-Javalette1, an executable formal semantics
for the Javalette language. Being executable, the semantics also yields a reference
interpreter for the language. The interpreter is tested against the test suite and it
passes all test cases. Chapter 3 explains the implementation of K-Javalette.

In addition, we provide language extension modules for arrays and pointers. Chapter
4 explains how language extensions are defined in K, and shows that it is feasible
to modularly extend a programming language defined in K.

We also identify underspecifications in Javalette semantics. Chapter 5 documents
how K-Javalette fixes these issues, and provides example programs to describe ex-
pected behaviors.

Lastly, we propose an application of K-Javalette in randomized testing of compilers.
Chapter 6 describes how our formal semantics in K is used for input fuzzing.

1K-Javalette is publicly available on GitHub [2].
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2
Background

This section aims to provide the background information needed to understand the
following chapters. Section 2.1 is an overview of the Javalette language. Section
2.2 introduces the core concepts of the K framework that are used to develop K-
Javalette.

2.1 Javalette
Javalette [5] is an imperative programming language with a C-like syntax. It was
designed for educational purposes and is used in the Compiler Construction course
at Chalmers University of Technology. The core language has only primitive data
types, basic control structures and statements for imperative programming, and
procedures. It does not have heap-allocated data or dynamic data structures. Figure
2.1 shows an example program that demonstrates variables, procedures, and loops.
It prints numbers from 1 to 10.

1 int main () {
2 printString (" Counting ...");
3 printNumbers (10);
4 return 0;
5 }
6
7 void printNumbers (int n) {
8 int i;
9 i = 1;

10 while (i <= n) {
11 printInt (i);
12 i++;
13 }
14 }

Figure 2.1: A simple Javalette program

The core of the Javalette is a very simple programming language yet it can be
extended with various features. Some possible extensions proposed in the course are
arrays, dynamic data structures, pointers, and object orientation with or without
dynamic dispatch [1].

3



2. Background

2.2 The K Framework
K [12] is an executable semantics framework for designing and implementing pro-
gramming languages. Given a language definition, K is capable of creating parsers,
interpreters, and program verification tools automatically. These tools are use cases
of formal semantics, but they also support the development of formal semantics, for
instance, by running the generated interpreter to test the semantics. It has been
used for specifying formal semantics of several major real-world languages such as
C, JavaScript, and Java [7, 11, 6].

K specifications consist of syntax, configuration, and rule declarations. Configura-
tions represent the program state and rule declarations describe how the language
constructs are executed. The K compiler (kompile) takes a language specification
and outputs an interpreter for the language.

K provides two backends for different purposes: LLVM and Haskell. The default
backend is the LLVM backend, which is an efficient and optimized backend for fast
concrete execution. It compiles the language definition and creates an interpreter
using LLVM. The other backend is the Haskell backend. It provides more advanced
features for symbolic execution and formal reasoning. The Haskell backend also
supports concrete execution but it is not as performant as the LLVM backend [14, 3].
In this project, we use the LLVM backend to generate an interpreter.

In this section, we go through the basics of K by implementing a basic calculator
language for integers.

2.2.1 Syntax declarations
For syntax declarations, K has a BNF-like notation extended with annotations.
Figure 2.2 defines an expression syntax for arithmetic operations on integers.

1 module ARITH - SYNTAX
2 imports INT - SYNTAX
3
4 syntax Exp ::= Int
5 | Exp "+" Exp [left , seqstrict , add]
6 | Exp "*" Exp [left , seqstrict , mult]
7 | Exp "/" Exp [left , seqstrict , mult]
8
9 syntax priorities mult > add

10 endmodule

Figure 2.2: Syntax for the integer calculator

For parsing integers, the built-in INT-SYNTAX module is used. The left annotation
makes the second production left-associative. The seqstrict annotation automat-
ically creates rules to evaluate the sub-expressions. The user-defined add and mult
labels are later used in the priority declaration. Since add has a lower priority than
mult, an addition cannot be an immediate child of a multiplication or division.

4



2. Background

2.2.2 Configurations
To give semantics to the language, we first need to define the state of a running
program. Configurations are XML-like nested structures organized as cells. Each
cell stores a semantic component such as environments, stores, call stacks, or threads.

Suppose, in our integer calculator, we also want to count the number of multipli-
cation operations performed. Figure 2.3 is the configuration declaration for our
calculator.

1 configuration
2 <T>
3 <k> $PGM:Exp </k>
4 <counter > 0: Int </ counter > // ": Int" is a cast to Int
5 // to prevent ambiguity
6 // between Int and Exp
7 </T>

Figure 2.3: Configuration for the integer calculator

In the above configuration, <k/> is a special cell that contains a series of compu-
tations sequenced with the sequencing operator (~>). Its initial value will be an
expression (Exp) parsed from the input. The $PGM variable is a special variable de-
noting the parsed input to the interpreter. The second cell in the configuration is
<counter/>, which is initialized to 0. The <T/> cell is the top-level cell that holds
other cells. Figure 2.4 shows the initial configuration for the input string "1 + -2 *
3". The <k/> cell contains the parsed expression, and the counter is initially 0. The
<k/> cell ends with "~> .", which denotes the end of the computation.

1 <T>
2 <k>
3 1 + -2 * 3 ∼> .
4 </k>
5 <counter >
6 0
7 </ counter >
8 </T>

Figure 2.4: Initial configuration for "1 + -2 * 3"

Configurations can be deeply nested. We may want to have variables in our language.
Then, we can add an environment map to the configuration using the built-in Map
data structure (Figure 2.5).

2.2.3 Rules
Rule declarations give semantics to the language constructs by defining rewrite op-
erations on configuration cells. Rules can refer to relevant configuration cells for
reading or writing. Figure 2.6 shows a rule that states when there is an addition of

5



2. Background

1 configuration
2 <T>
3 <k> $PGM:Exp </k>
4 <counter > 0: Int </ counter >
5 <env > .Map </env > // .Map is an empty Map
6 </T>

Figure 2.5: Configuration with an environment

two integers (A and B) on top of the <k/> cell, replace it with the sum of the numbers
using the built-in addition operator (+Int). The => operator denotes the rewrite
operation. The pattern inside the parenthesis matches the first computation in the
cell. The Rest variable matches the rest of the sequence and leaves it unchanged.

1 rule <k> (A:Int + B:Int => A +Int B) ∼> Rest </k>

Figure 2.6: Addition of two integers

Since it is a common pattern, there is a syntactic sugar for matching the beginning
of a sequence. The "..." pattern denotes that there can be more elements in the
sequence.

1 rule <k> A:Int + B:Int => A +Int B ... </k>

Figure 2.7: Addition of two integers - simplified

1 <T>
2 <k> 1 + 2 ∼> . </k>
3 <counter > 0 </ counter >
4 </T>

1 <T>
2 <k> 3 ∼> . </k>
3 <counter > 0 </ counter >
4 </T>

Figure 2.8: State change after addition

Note that the addition rule only mentions the <k/> cell since addition does not
involve the <counter/> cell. This feature is called configuration abstraction. On the
other hand, the multiplication rule uses both cells. It performs the multiplication
and also increments the counter. The rewrite operator can appear multiple times
anywhere in the configuration.

1 rule <k> A:Int * B:Int => A *Int B ... </k>
2 <counter > C => C +Int 1 </ counter >

Figure 2.9: Multiplication of two Ints increments the counter

6



2. Background

1 rule <k> A:Int / B:Int => A /Int B ... </k> requires B =/= Int 0

Figure 2.10: Division by non-zero

Which rule to apply is determined by pattern matching the configuration with
rules. In addition to pattern matching, it is possible to use side conditions with
the requires keyword. The rule in Figure 2.10 is only applied when B is not zero

All of the above rules assume that operands are Int literals, so they are not able
to operate on more complex expressions. For more complex expressions, we need to
define how to recursively evaluate sub-expressions. Strictness annotations (strict
and seqstrict) in syntax definitions automatically generates necessary rules to take
out operands (redexes) and plug them back when they are evaluated. When there
are multiple operands, seqstrict is used to specify the evaluation order from left
to right. To enable strictness annotations, we need to define the KResult sort to
tell the compiler what sorts do not need to be evaluated further.

1 syntax KResult ::= Int

Figure 2.11: Integers are results

2.2.4 Functions
Sometimes it is more convenient to define a part of the semantics as a function. In
K, functions are defined by using the function attribute in the syntax declaration.
When function symbols appear in the configuration, they are immediately evaluated
using associated rules. Figure 2.12 shows an example function that takes a List
and returns the first element.

1 syntax KItem ::= listHead (List) [ function ]
2 rule listHead ( ListItem (X) Xs:List) => X
3 // listHead (. List) is undefined

Figure 2.12: A non-total function

As in this example, functions do not always return a value. To define a total function,
the functional attribute is used. The compiler performs a check for non-exhaustive
patterns in total functions.

1 syntax Int ::= listLength (List) [function , functional ]
2 rule listLength ( ListItem (_) Xs:List) => 1 +Int listLength (Xs)
3 rule listLength (. List) => 0

Figure 2.13: A total function
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3
K-Javalette: A formal semantics

for Javalette

This chapter describes how the Javalette language is formalized in K. It provides a
detailed explanation of the main components of K-Javalette. Figure 3.1 shows the
steps of running a program with the interpreter generated from K-Javalette.

Figure 3.1: Main components of K-Javalette

3.1 Syntax
The syntax module is based on the existing syntax definition of the language pro-
vided as a BNFC file. Since K uses a similar BNF notation, there is a close resem-
blance between the two specifications. See Figure 3.2 and Figure 3.3 for a comparison
of syntax declarations in K and BNF. The main difference is the use of annotations
in K. Operator precedence and associativity rules are defined using annotations as
explained in Section 2.2.1. Besides, K has strictness annotations, which are, in fact,
a part of the semantics.

1 syntax Exp ::= // ...
2 | Int [ literal ]
3 | Id
4 | Id "(" Args ")" [ funcall ]
5 | "-" Exp [strict , unary]
6 | Exp MulOp Exp [left , seqstrict (1 ,3) , binaryMult ]
7 | Exp AddOp Exp [left , seqstrict (1 ,3) , binaryAdd ]
8 | Exp RelOp Exp [left , seqstrict (1 ,3) , binaryComp ]
9 > Exp "&&" Exp [right , strict (1)]

10 // more productions ...
11 syntax Args ::= List{Exp , ","}
12 syntax priorities literal > funcall > unary > binaryMult
13 > binaryAdd > binaryComp

Figure 3.2: Javalette syntax in K

9
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1 ...
2 ELitInt . Expr6 ::= Integer ;
3 EVar. Expr6 ::= Ident ;
4 EApp. Expr6 ::= Ident "(" [Expr] ")" ;
5 Neg. Expr5 ::= "-" Expr6 ;
6 EMul. Expr4 ::= Expr4 MulOp Expr5 ;
7 EAdd. Expr3 ::= Expr3 AddOp Expr4 ;
8 ERel. Expr2 ::= Expr2 RelOp Expr3 ;
9 EAnd. Expr1 ::= Expr2 "&&" Expr1 ;

10 ...
11 separator Expr "," ;
12 coercions Expr 6 ;
13 ...

Figure 3.3: Javalette syntax in LBNF

Another major difference is in the assignment syntax. In the original specification,
only identifiers are allowed on the left-hand side of an assignment. On the other
hand, K-Javalette allows any expression in the syntax. Consequently, it requires
additional checks in the type-checking. The purpose of this is to allow extensions in
the future.

1 syntax Stmt ::=
2 Exp "=" Exp ";" [ strict (2)]
3

1 Ass. Stmt ::=
2 Ident "=" Expr ";" ;
3

Figure 3.4: Assignment syntax

3.2 Configuration

1 <jl>
2 <common >
3 <program > $PGM: Program </ program >
4 <progress > .K </ progress >
5 <funs > .Map </funs >
6 </ common >
7 <typecheck />
8 <exec/>
9 </jl>

Figure 3.5: Main configuration of K-Javalette

Figure 3.5 shows the main configuration of K-Javalette, which consists of three sub-
cells:

• <common/>: Stores the information used by all phases of interpretation. The
<program/> sub-cell keeps the input program. The <progress/> cell keeps
a sequence of high-level steps to be executed. The initial value ".K" denotes

10



3. K-Javalette: A formal semantics for Javalette

an empty sequence. Figure 3.6 shows the initialization of this cell. The last
sub-cell <funs/> is a map of globally declared functions in the program. It is
populated during the #processTopDefs step.

• <typecheck/>: Stores the type checker-related information explained in Sec-
tion 3.4.

• <exec/> Stores the execution-related information explained in Section 3.6.

1 rule
2 <program > Prg: Program </ program >
3 <progress > . =>
4 # processTopDefs ∼>
5 # typecheck ∼>
6 # returncheck ∼>
7 # execute ∼>
8 # set_code
9 </ progress >

Figure 3.6: Main configuration of K-Javalette

3.3 Processing Top-level Definitions
In core Javalette, function definitions are the only top-level forms. This step goes
through all the top-level definitions in the program and creates a map of func-
tions in the <funs/> cell. It also ensures that all function names are unique. The
processTopDef helper is executed for each top-level definitions in the program.

1 rule
2 <progress > processTopDef (T I (Ps) Body) => . ... </ progress >
3 <funs > FUNS => FUNS[I <- (T I (Ps) Body)] </funs >
4 requires notBool (I in_keys (FUNS))

Figure 3.7: Processing top-level definitions

3.4 Types
There are four basic types in Javalette and they are defined in the syntax module.

1 syntax Type ::= "int"
2 | " double "
3 | " boolean "
4 | "void"

Figure 3.8: Javalette types

The type-checking state consists of four elements as shown in Figure 3.9. It contains
program fragments to type-check (<tcode/>), the return type of the surrounding

11
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function (<retType/>), a map from variables in the current scope to their types
(<tenv/>), and a set of variables declared in the current block (<tenv-block/>).

1 <typecheck >
2 <tcode > .K </tcode >
3 <retType > void </ retType >
4 <tenv > .Map </tenv >
5 <tenv -block > .Set </tenv -block >
6 </ typecheck >

Figure 3.9: Type-checking configuration

3.4.1 Functions
At the beginning of type-checking, the </tcode> cell is initialized with the whole
program. Then, each top-level definition is type-checked separately. Following rules
separate the top-level definitions in the input program. (A Program is a list of
TopDefs, and .Program is an empty list.)

1 rule <tcode > TD: TopDef Prg: Program => TD ∼> Prg ... </tcode >
2 rule <tcode > . Program => . ... </tcode >

Figure 3.10: Type-checking a program

Figure 3.11 shows the typing rule for functions. It validates the parameters, sets the
environment and the return type, and finally leaves the function body in <tcode/> to
be type-checked. The paramMap helper function creates a map from parameter names
to their types, and validParams is a boolean function that checks the parameter
names and types. Parameters cannot be void, and all parameter names must be
unique.

1 rule <tcode > T:Type FName:Id ( Ps: Params ) Body
2 => Body ...
3 </tcode >
4 <tenv > _ => paramMap (Ps) </tenv >
5 <tenv -block > _ => .Set </tenv -block >
6 <retType > _ => T </ retType >
7 requires notBool (FName in builtinFuns )
8 andBool validParams (Ps)

Figure 3.11: Type-checking a function

3.4.2 Statements and scope rules
A variable declaration "T V = E;" is well-typed if T is not void, V is not previously
declared in the block, and E has the type T. If these preconditions hold, the variable is
added to the scope. Figure 3.12 shows the implementation of this rule in K-Javalette.

12
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1 rule <tcode > ( T:Type V:Id = E:Exp ; ):Stmt => . ... </tcode >
2 <tenv > ENV => ENV[V <- T] </tenv >
3 <tenv -block > BLK => SetItem (V) BLK </tenv -block >
4 requires T =/=K void
5 andBool notBool (V in BLK)
6 andBool checkExp (T, E)

Figure 3.12: Type-checking variable declaration

Note that the initializer expression E is type-checked before V is introduced to the
scope.

Multiple variable declarations are split into separate statements.

1 rule <tcode >
2 T:Type V: DeclItem , V2 , Vs: DeclItems ; )
3 =>
4 (T V;) ∼> ( T V2 , Vs ; ) ...
5 </tcode >

Figure 3.13: Multiple variable declarations

As stated in Section 3.1, assignments have a more permissive syntax in K-Javalette.
Thus, there is a need to check if the left-hand side of an assignment is a valid
expression. Figure 3.14 defines the typing rule for assignments using the isLValue
function, which returns true if the given expression is an identifier. The inferExp
and checkExp functions are used for type-checking expressions. If V is an identifier,
inferExp(V) implicitly checks if it is in the scope.

1 rule <tcode > ( V = E ; ) => . ... </tcode >
2 requires checkExp ( inferExp (V) , E)
3 andBool isLValue ( V )
4
5 syntax Bool ::= isLValue (Exp) [function , functional ]
6 rule isLValue (_:Id) => true
7 rule isLValue (_:Bool) => false
8 rule isLValue (_:Int) => false
9 rule isLValue (_:Float) => false

10 // ... and more rules to return false for all other expressions

Figure 3.14: Type-check assignment

Block statements and bodies of control structures (if/else, while) create new
scopes in the environment. After these statements, the environment must be re-
stored to the previous state. Variables declared in the block must be removed from
the environment. In order to implement this behavior, we introduce environment
recovery actions to be used in <tcode/>. Figure 3.15 demonstrates the use of the
twithBlock action, which takes a chunk of code and sets a reminder to recover the

13
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environment after checking the given code. The twithBlock helper is also used for
bodies of conditional statements.

1 rule <tcode > { Ss } => twithBlock ( Ss ) ... </tcode >
2
3 syntax KItem ::= tenvReminder (Map , Set)
4 | twithBlock (K)
5
6 rule <tcode > twithBlock (S) => S ∼> tenvReminder (ENV ,BLK) ...
7 </tcode >
8 <tenv > ENV </tenv >
9 <tenv -block > BLK => .Set </tenv -block >

10
11 rule <tcode > tenvReminder (ENV ,BLK) => . ... </tcode >
12 <tenv > _ => ENV </tenv >
13 <tenv -block > _ => BLK </tenv -block >

Figure 3.15: Type-checking block statements

3.4.3 Expressions
The typing rules for expressions are implemented as functions since they do not
manipulate the state. The inferExp function infers the type of the given expression
and checkExp uses inferExp to type-check an expression against the given type.

1 syntax InferRes ::= Type | "# typeError "
2 syntax InferRes ::= inferExp (Exp) [function , functional ]
3
4 syntax Bool ::= checkExp (InferRes , Exp) [function , functional ]
5 rule checkExp ( T:Type , E ) => equalType (T, inferExp (E))
6 rule checkExp ( #typeError , _ ) => false

Figure 3.16: Type-checking expressions

As an example, Figure 3.17 shows the type inference rule for the addition operation.

1 rule inferExp ( E1:Exp + E2:Exp ) => inferArith ( inferExp (E1), E2)
2
3 syntax InferRes ::= inferArith (InferRes , Exp) [function , functional ]
4 rule inferArith (T:Type , E2:Exp) => T requires isNumeric (T)
5 andBool checkExp (T, E2)
6 rule inferArith (# typeError , _) => # typeError

Figure 3.17: Type inference for addition

Inference rules for variable expressions and function applications need to look up
from the configuration. K has a special syntax (double square brackets around
the evaluation rule) to allow function rules to read the configuration. The rule in
Figure 3.18 states that if the environment maps the identifier V to type T, then the
expression V has type T.

14
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1 rule [[ inferExp (V:Id) => T ]]
2 <tenv > ... V |-> T ... </tenv > // pattern matching on a Map

Figure 3.18: Type inference for addition

3.5 Return checking
In Javalette, every non-void function must return a value. If there is a conditional
statement in the function, both execution paths must return. The return checker is
implemented as a function that goes through all functions in the program. State-
ments in a function body are checked sequentially. If none of them is a terminating
statement, the function is rejected.

1 syntax Bool ::= retcheckProgram ( Program ) [function , functional ]
2 rule retcheckProgram (. Program ) => true
3 rule retcheckProgram (F: TopDef Rest) =>
4 retcheckTopDef (F) andBool retcheckProgram (Rest)
5
6 syntax Bool ::= retcheckTopDef ( TopDef ) [function , functional ]
7 rule retcheckTopDef (FD: FunDef ) => retcheckFunDef (FD)
8
9 syntax Bool ::= retcheckFunDef ( FunDef ) [function , functional ]

10 rule retcheckFunDef (T _ (_) { Body }) =>
11 (T ==K void) orBool retcheckStmts (Body)
12
13 syntax Bool ::= retcheckStmts (Stmts) [function , functional ]
14 rule retcheckStmts (. Stmts) => false
15 rule retcheckStmts (S Ss) =>
16 retcheckStmt (S) orBool retcheckStmts (Ss)

Figure 3.19: Return checker implemented as a function

To be considered a terminating statement, a statement must be a return statement,
a block statement with a terminating statement, or a conditional statement where
both branches are terminating (Figure 3.20).

3.6 Execution
The execution configuration consists of four components:

• <k/>: the computation cell

• <env/>: a map from variable names in the scope to their locations in the
memory

• <store/>: a map from memory locations to values

• <next-loc>: an integer denoting the next available location in the memory

15
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1 syntax Bool ::= retcheckStmt (Stmt) [function , functional ]
2 rule retcheckStmt ( return _;) => true
3 rule retcheckStmt ( return ;) => true
4
5 rule retcheckStmt (if(_) T else F) => retcheckStmt (T)
6 andBool retcheckStmt (F)
7 rule retcheckStmt ({ Ss }) => retcheckStmts (Ss)
8
9 rule retcheckStmt (;) => false

10 rule retcheckStmt (_:Type _: DeclItems ;) => false
11 rule retcheckStmt (_ = _ ;) => false
12 rule retcheckStmt (_ ;) => false
13 rule retcheckStmt (while(_)_) => false

Figure 3.20: Terminating statements

• <stack/>: the call stack

1 <exec >
2 <k> .K </k>
3 <env > .Map </env >
4 <store > .Map </store >
5 <next -loc > 0 </next -loc >
6 <stack > .List </stack >
7 </exec >

Figure 3.21: Execution configuration

The execution starts with a call to the main function in the <k/> cell. Initially, the
environment, store, and stack are empty.

1 rule <progress > # execute => # executing ... </ progress >
2 <k> . => main (. Args) </k>

3.6.1 Expressions and values
When there is an expression on top of the <k/> cell, it should be evaluated and
replaced with its value. We define the sort of values using the built-in Int, Float,
Bool, and String sorts. To represent the results of void expressions, we use "noth-
ing" (Figure 3.22).

1 syntax Value ::= Int
2 | Float
3 | Bool
4 | " nothing "
5 syntax KResult ::= Value

Figure 3.22: Values in core Javalette
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Since we have strictness annotations in the syntax, most of the expressions are
implemented as in Section 2.2.3. Figure 3.23 provides some of the rules for evaluating
binary operations.

1 rule <k> I1:Int + I2 => I1 +Int I2 ... </k>
2 rule <k> I1:Float + I2 => I1 +Float I2 ... </k>
3 rule <k> I1:Int > I2 => I1 >Int I2 ... </k>

Figure 3.23: Evaluating binary operations

Operators in the previous examples are strict in both arguments. In contrast, con-
junction and disjunction operators are strict only on the first argument. Figure 3.24
shows the lazy semantics of the && operator. If the first operand evaluates to false,
the second operand is not evaluated.

1 rule <k> false:Value && _ => false:Value ... </k>
2 rule <k> true:Value && E => E ... </k>

Figure 3.24: Short-cut evaluation

A variable expression is evaluated by reading its value from the store. Figure 3.25
describes reading the value of a variable. The top of the <k/> cell is a variable (X),
the environment maps X to the location L, and the store maps L to the value V.

1 rule <k> X:Id => V ... </k>
2 <env > ... X |-> L ... </env >
3 <store > ... L |-> V ... </store >

Figure 3.25: Variable lookup

3.6.2 Environment and store
In K-Javalette, the memory is modeled as a map from integer locations to values.
Each variable has an associated location in the store, and the value of the variable
is kept in that location. Another approach would be to directly store values in the
environment. Our indirect approach is more flexible and makes it easy to implement
references.

Whenever a variable is declared, a fresh location is allocated in <store/> by using
the <next-loc/> cell. A simplified version of the variable declaration rule is shown
in Figure 3.26. The new variable’s identifier is added to the environment and its
initial value is stored at the next available location in the <store/> cell.

If the variable is declared without an initializer expression, the declaration statement
is re-written using the default value. Figure 3.27 shows the definition of the default
values.
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1 rule <k> T Var = Val ; => . ... </k>
2 <env > ENV => ENV[Var <- I] </env >
3 <store > S => S[ I <- Val ] </store >
4 <next -loc > I => I+Int 1 </next -loc >

Figure 3.26: Variable declaration and allocation in the store

1 rule <k> (T:Type V:Id ;):Stmt => T V = defaultValue (T) ; ... </k>
2
3 syntax Value ::= defaultValue (Type) [function , functional ]
4 rule defaultValue (int) => 0
5 rule defaultValue ( double ) => 0.0
6 rule defaultValue ( boolean ) => false
7 rule defaultValue (void) => nothing

Figure 3.27: Variable declaration without initializer

Variables declared in blocks are allowed to shadow previous declarations. For this
reason, block statements and control structures require an environment recovery
mechanism similar to twithBlock in type-checking (Figure 3.28).

1 rule <k> { Ss } => withBlock (Ss) ... </k>
2
3 syntax KItem ::= envReminder (Map)
4 | withBlock (K)
5
6 rule <k> envReminder (ENV) => . ... </k>
7 <env > _ => ENV </env >
8 rule <k> withBlock (S) => S ∼> envReminder (ENV) ... </k>
9 <env > ENV </env >

Figure 3.28: Executing block statements

Figure 3.29 is an example program with variable shadowing. The configuration
on the right shows the program state after the variable declaration on line 7.
The remaining statements in the block are listed on top of the <k/> cell, and an
envReminder comes after that.

3.6.3 Conditional statements
If/else statements are strict on the condition expression. As a result, there is no
need for defining additional rules for evaluating the condition. As shown in Figure
3.30, one of the two statements is chosen according to the condition value, and then
executed in a block.

The condition in a while statements is not strict since it needs to be evaluated before
every iteration. While loops are executed using the freezeWhile helper.
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1 int main ()
2 {
3 int x = 1;
4 int y = 2;
5
6 {
7 int x = 3;
8
9 printInt (x);

10 }
11
12 return 0;
13 }

1 <jl>
2 <exec >
3 <k> printInt ( x ) ; ∼> .Stmts ∼>
4 envReminder ( x|->0 y|->1 ) ∼>
5 return 0 ; .Stmts ∼>
6 envReminder ( .Map ) ∼> return ; ∼> .
7 </k>
8 <env >
9 x |-> 2

10 y |-> 1
11 </env >
12 <store >
13 0 |-> 1
14 1 |-> 2
15 2 |-> 3
16 </store >
17 <next -loc >
18 3
19 </next -loc >
20 // ... more cells
21 </exec >
22 // ... more cells
23 </jl>

Figure 3.29: An example program with variable shadowing

1 rule <k> if(true) T else _ => withBlock (T) ... </k>
2 rule <k> if(false) _ else F => withBlock (F) ... </k>

Figure 3.30: Executing if statements

1 syntax KItem ::= freezeWhile (Exp , Stmt)
2 rule <k> while(E) S => E ∼> freezeWhile (E,S) ... </k>
3 rule <k> true ∼> freezeWhile (E,S) => withBlock (S) ∼> while(E) S

... </k>
4 rule <k> false ∼> freezeWhile (_,_) => . ... </k>

Figure 3.31: Executing while statements
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4
Language Extensions

The modularity of K allows extending languages by adding new syntax and semantic
rules without changing existing modules. It is possible to add new productions to
an existing sort (e.g. a new form of expression) and define relevant semantic rules.
In this way, we can modularly extend languages in both syntax and semantics.

Figure 4.1: Dependencies with extensions

In the following, we develop the arrays and dynamic data structures language exten-
sions as modules that can be easily enabled. Figure 4.1 shows the general structure
of modules in the extended language. Syntax modules of the extensions import the
core syntax module and add necessary productions to relevant sorts. Then, in the
main syntax module, these additions are enabled by just importing the extension
modules (Figure 4.2).

Semantic modules for the extensions add new rules needed for the new constructs
added in the syntax module. Since some parts of the semantics are implemented as
functional symbols, the compiler shows hints to implement necessary rules needed
after the syntax extension, thanks to the non-exhaustive patterns check. Semantic
extensions, like syntax extensions, are simply enabled by importing the extension
from the main module if they do not require adding a new cell to the configuration
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1 module JAVALETTE - SYNTAX
2 imports JAVALETTE -SYNTAX -CORE
3 imports JAVALETTE -ARRAYS - SYNTAX
4 imports JAVALETTE -STRUCTS - SYNTAX
5 endmodule

Figure 4.2: Extending the syntax

or a new step to the <progress/> cell. Figure 4.3 describes how semantics for
extensions are enabled.

1 module JAVALETTE
2
3 imports JAVALETTE - ARRAYS // import semantics for arrays
4 imports JAVALETTE - STRUCTS // import semantics for structs
5 // ... more imports
6 configuration
7 <jl>
8 <common />
9 <typecheck />

10 <exec/>
11 <structs /> // add new cell for structs
12 </jl>
13 // ... more rules
14 endmodule

Figure 4.3: Extending the semantics

4.1 Arrays
This section explains the development of the arrays extension. The arrays exten-
sion consists of the array type, expressions for creating arrays and accessing array
elements, and for-loop statements to iterate over arrays. The syntax module adds
new productions for Type, Exp, and Stmt. Possible ambiguities in the syntax are
resolved by assigning suitable priority labels (e.g. literal or funcall) from the
core syntax.

After enabling this syntax extension, the compiler should complain about functions
on Type, Exp, and Stmt such as inferExp and isLValue. The reason is that these
symbols are defined as total functions and we have not covered the new cases yet.

Typing rules for array expressions are implemented by adding new rules for inferExp.
Figure 4.5 is the typing rule for indexing expressions. If Arr is of type T[] and Ix
is an Int, then Arr [ Ix ] is a T.

The extension includes for-loop statements to iterate through arrays. It consists of
a loop variable X of type T, an array expression Arr of type T[], and the loop body.
Figure 4.6 describes the typing and scope rules of for-loops. The array expression
is type-checked before X is added to the scope. The scope of the variable X is limited
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1 module JAVALETTE -ARRAYS - SYNTAX
2 imports JAVALETTE -SYNTAX -CORE
3
4 syntax TypBox ::= r"\\[[ \\n\\t]*\\]" [token ]
5 syntax Type ::= Type TypBox
6
7 syntax Exp ::= "new" Type Boxes [unary]
8 | Exp Box [ funcall ]
9 | Exp "." Id [ strict (1) , unary]

10
11 syntax Id ::= " length " [token ]
12
13 syntax Box ::= "[" Exp "]" [ strict ]
14 syntax Boxes ::= NeList {Box , ""}
15
16 syntax Stmt ::= "for" "(" Type Id ":" Exp ")" Stmt [ strict (3)]
17
18 endmodule

Figure 4.4: Arrays syntax

1 rule inferExp ( Arr [ Ix ] ) => arrayElement ( inferExp (Arr))
2 requires checkExp (int , Ix)
3
4 syntax InferRes ::= arrayElement ( InferRes ) [function , functional ]
5 rule arrayElement (T []) => T
6 rule arrayElement (_) => # typeError [owise ]

Figure 4.5: Type of an array element

to the loop body. The loop body is regarded as a new block, and variables declared
in the loop body can shadow the loop variable.

1 rule <tcode > (for( T X : Arr) Body)
2 => twithBlock (
3 (T X ;):Stmt ∼>
4 twithBlock ( Body )
5 ) ...
6 </tcode >
7 requires checkExp (T[], Arr)

Figure 4.6: Typing rule for for-loops

To define the execution semantics of arrays, we need to extend the Value sort to
represent array values. An array value is a pair of the starting location and size of
the array. The default value for arrays is an empty array.

The new expression allocates consecutive locations in the store for each array ele-
ment. For multi-dimensional arrays, sub-arrays are created recursively. The pro-
gram in Figure 4.8 declares a 2-dimensional integer array.
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1 syntax Value ::= array(Int , Int) // array(Location , Length )
2
3 rule defaultValue (_:Type []) => array (0 ,0)

Figure 4.7: An array is a pair of location and size

1 int main ()
2 {
3 int [][] matrix = new int [2][3];
4 matrix [0][0] = 0;
5 matrix [0][1] = 1;
6 matrix [0][2] = 2;
7 matrix [1][0] = 3;
8 matrix [1][1] = 4;
9 matrix [1][2] = 5;

10 return 0;
11 }

Figure 4.8: Create a 2-dimensional array

Figure 4.9 shows the state after the assignments in the example program. In the
variable declaration, the initializer expression is evaluated before the allocation for
the variable. Hence, the variable points to 8.

1 <jl>
2 <exec >
3 <k>
4 return 0 ; .Stmts ∼> envReminder ( .Map ) ∼> return ; ∼> .
5 </k>
6 <env > matrix |-> 8 </env >
7 <store >
8 0 |-> array ( 2 , 3 ) // matrix [0]
9 1 |-> array ( 5 , 3 ) // matrix [1]

10 2 |-> 0 // matrix [0][0]
11 3 |-> 1 // matrix [0][1]
12 4 |-> 2 // matrix [0][2]
13 5 |-> 3 // matrix [1][0]
14 6 |-> 4 // matrix [1][1]
15 7 |-> 5 // matrix [1][2]
16 8 |-> array ( 0 , 2 ) // matrix
17 </ store >
18 <next -loc > 9 </next -loc >
19 // ... more cells
20 </exec >
21 // ... more cells
22 </jl>

Figure 4.9: Configuration after creating a 2-dimensional array

We can access elements of an array by their locations in the store. The indexing
expression also checks for array bounds.
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1 rule <k> array(Loc , Len) [ Ix:Int ] => X ... </k>
2 <store > ... (Loc +Int Ix ) |-> X ... </store >
3 requires Len >Int Ix

Figure 4.10: Indexing expression

4.2 Dynamic Data Structures
This section explains the development of the dynamic data structures extension.
This extension introduces compound data types, allocating heap objects, and point-
ers to access heap objects. An example program using structs is given in Figure 4.11.
Structures are defined using the struct keyword on the top-level. The typedef key-
word defines a pointer type. The use of pointers is limited to structs. It is not allowed
to define pointers to primitive types. The new keyword creates a heap object and
returns a pointer.

1 struct Pair {
2 int x;
3 int y;
4 };
5 typedef struct Pair * Coord;
6
7 int main ()
8 {
9 Coord pt = new Pair;

10 pt ->x = 1;
11 pt ->y = 2;
12
13 printInt (pt ->x + pt ->y); // prints "3"
14
15 return 0;
16 }

Figure 4.11: Structs syntax

The syntax extends the TopDef, Type, Exp, and Stmt sorts.

We need to add new configuration cells (Figure 4.13) to keep struct definitions and
pointer types declared in the program. The <structMaps/> cell is a map from
struct names to struct definitions. The typedefs cell is a map from pointer type
names to associated struct names. These maps are populated when processing the
top-level definitions. Pointer type names and struct names must be unique but they
use different name spaces. Field names in a struct must be unique.

For the example program in Figure 4.11, the <structs/> cell would be as shown
in Figure 4.14. Note that struct definitions in structMaps are stored as maps that
associate field names to their types and positions in the struct. In this example, the
Pair struct has two fields called x and y. Field x of a Pair is an int and it is the
first (0-indexed) field in the struct. Struct fields are stored in the memory according
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1 module JAVALETTE -STRUCTS - SYNTAX
2 imports JAVALETTE -SYNTAX -CORE
3
4 syntax TopDef ::= StructDef
5 | TypeDef
6
7 syntax StructDef ::= " struct " Id "{" FieldDefs "}" ";"
8 syntax FieldDefs ::= List{FieldDef , ""}
9 syntax FieldDef ::= Type Id ";"

10
11 syntax TypeDef ::= " typedef " " struct " Id "*" Id ";"
12
13 syntax Type ::= Id // a pointer type
14
15 syntax Exp ::= Exp "->" Id [ strict (1) , funcall ]
16 | "new" Id [unary]
17 | "(" Id ")" "null" [ literal ]
18 endmodule

Figure 4.12: Structs syntax

1 configuration
2 <structs >
3 <structMaps > .Map </ structMaps >
4 <typedefs > .Map </ typedefs >
5 </ structs >

Figure 4.13: Structs configuration

to these indexes.

1 <structs >
2 <structMaps >
3 Pair |-> ( x |-> fpair ( int , 0 )
4 y |-> fpair ( int , 1 ) )
5 </ structMaps >
6 <typedefs >
7 Coord |-> Pair
8 </ typedefs >
9 <structs />

Figure 4.14: Structs configuration: an example

At the type-checking phase, it is checked whether the struct names in the typedefs
exist.

Figure 4.16 shows the type-checking rules for struct definitions. Struct fields must
have valid data types. If the type of a field is an identifier, it must be a pointer type
declared in a typedef. (#ptr(T) is the internal representation for pointer type to
struct T)
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1 rule <tcode > typedef struct SName * _ ; => . ... </tcode >
2 <structMaps > Structs </ structMaps >
3 requires SName in_keys ( Structs )

Figure 4.15: Check typedefs

1 rule <tcode > struct _SName { Fields }; => . ... </tcode >
2 requires validFields ( Fields )
3
4 syntax Bool ::= validFields ( FieldDefs ) [function , functional ]
5 rule validFields (. FieldDefs ) => true
6 rule validFields ((T _;) FDs) => validDataType (T) andBool

validFields (FDs)
7
8 rule [[ validDataType (T:Id) => T in_keys (TD) ]]
9 <typedefs > TD </ typedefs >

10 rule [[ validDataType (# ptr(T)) => T in_keys (TD) ]]
11 <structMaps > TD </ structMaps >

Figure 4.16: Check struct fields

A pointer dereferencing E -> F is well-typed if the expression is E is a pointer to a
struct that has a field F. Figure 4.17 shows the encoding of this rule in K. (The #let
expression is a syntactic sugar for binding names to intermediate values in RHS of
rules.)

1 rule inferExp (E -> F) => inferField ( inferExp (E), F)
2
3 syntax InferRes ::= inferField (InferRes , Id) [function , functional ]
4
5 rule [[
6 inferField (TName:Id , F) =>
7 #let fpair(T,_) = SM[F]
8 #in T
9 ]]

10 <typedefs > ... TName |-> SName ... </ typedefs >
11 <structMaps > ... SName |-> SM ... </ structMaps >
12 requires F in_keys (SM)

Figure 4.17: Check pointer dereferencing

A pointer either points to a struct in the memory or it is a null pointer. We
represent the value of a pointer as a pair of struct name and starting location of the
struct (Figure 4.18). Elements of a struct are consecutively placed in the memory.
Uninitialized pointers default to null.

When a struct object is created with new (Figure 4.19), a memory location is allo-
cated in <store/> for each field (line 4). Then, each field is initialized to default
values of its type (line 10). If a struct field is a pointer, it is initially null.

27



4. Language Extensions

1 syntax Value ::= struct (Id , Int)
2 | "# nullptr "
3
4 // syntax Value ::= defaultValue (Type) [function , functional ]
5 rule defaultValue (# ptr(_)) => # nullptr
6 rule defaultValue (_:Id) => # nullptr

Figure 4.18: Pointer values

1 rule <k> new SName:Id => initFields (I, values (SM)) ∼>
2 struct (SName , I) ... </k>
3 <structMaps > ... SName |-> SM ... </ structMaps >
4 <next -loc > I => I +Int size(SM) </next -loc >
5
6 syntax KItem ::= initFields (Int , List)
7 rule <k> initFields (_, .List) => . ... </k>
8 rule <k> initFields (I, ListItem (fpair(T,X)) FDs) =>
9 initFields (I, FDs) ... </k>

10 <store > ST => ST[I +Int X <- defaultValue (T)] </store >

Figure 4.19: Struct creation and memory allocation

Figure 4.20 is an example of creating nested structures. Inline comments show the
content of the store. When creating an Obj_s on line 14, no allocation is made for
a Pair_s, so myObj->p is initially null.

Figure 4.21 shows the evaluation rule for pointer dereferencing. To access a field of
a struct, the address of the struct and the index of the field are used.

Since there is no rule for dereferencing null pointers, if the struct pointer is null,
then the execution gets stuck.
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1 struct Pair_s {
2 int x;
3 };
4
5 typedef struct Pair_s * Pair;
6
7 struct Obj_s {
8 int t;
9 Pair p;

10 };
11
12 typedef struct Obj_s * Obj;
13
14 int main () {
15 Obj myObj = new Obj_s; // <store >
16 // 0 |-> 0
17 // 1 |-> # nullptr
18 // 2 |-> struct ( Obj_s , 0 )
19 // </store >
20
21 myObj ->t = 123; // <store >
22 // 0 |-> 123
23 // 1 |-> # nullptr
24 // 2 |-> struct ( Obj_s , 0 )
25 // </store >
26
27 myObj ->p = new Pair_s ; // <store >
28 // 0 |-> 123
29 // 1 |-> struct ( Pair_s , 3 )
30 // 2 |-> struct ( Obj_s , 0 )
31 // 3 |-> 0
32 // </store >
33 return 0;
34 }

Figure 4.20: Creating nested structures

1 rule <k> struct (SName , Loc) -> F =>
2 #let fpair(_,I) = SM[F]
3 #in ST[Loc +Int I] ... </k>
4 <store > ST </store >
5 <structMaps > ... SName |-> SM:Map ... </ structMaps >

Figure 4.21: Accessing a struct field
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5
Unspecified Behaviors

Formalizing the semantics requires being precise about the details and thinking
about corner cases. While developing the formal semantics, we have discovered a
number of undefined behaviors in the Javalette documentation and proposed nec-
essary changes to resolve them. We also created relevant test cases to demonstrate
the expected behavior. This chapter explains our findings in detail.

5.1 Core Javalette

5.1.1 Variable scope rules in conditional statements
In the following program, the body of the if statement is not a block. Therefore,
whether x is defined or not after the if statement is ambiguous. In order to resolve
this ambiguity, we decided to always regard bodies of conditional statements as new
blocks. Therefore, it is a failing program in K-Javalette.

1 int main ()
2 {
3 if( readInt () > 0)
4 int x = 0;
5
6 printInt (x);
7
8 return 0;
9 }

5.1.2 Multiple variable declarations in one statement and
evaluation of initial values

The documentation does not fully specify the order of adding variables to the scope
and evaluating initial values. It leads to undefined behavior when an initial value
in a variable declaration has side effects or refers to other variables. In Figure 5.1,
it is not clear whether y is initialized to 1 or 2.

In K-Javalette we decided to regard multiple declarations as separate statements.
Therefore, the program in Figure 5.1 is equivalent to the one in Figure 5.2, and it
should print "2".
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1 int main ()
2 {
3 int x = 1;
4
5 {
6 int x = 2, y = x;
7
8 printInt (y);
9 }

10
11 return 0;
12 }

Figure 5.1: Ambiguous multiple declaration

1 int main ()
2 {
3 int x = 1;
4
5 {
6 int x = 2;
7 int y = x;
8
9 printInt (y); // prints "2"

10 }
11
12 return 0;
13 }

Figure 5.2: An equivalent program to 5.1

5.1.3 Evaluation order of operands/arguments
The order of evaluation in binary operators and function calls was not specified.
Thus, side effects in operands/arguments could lead to unexpected behavior. For
example, the program in Figure 5.3 can output "1\n2" or "2\n1" depending on the
evaluation order.

In order to eliminate this, we specified the evaluation order to be from left to right.
Thus, the example program prints "1\n2".

5.2 Arrays

5.2.1 Default values for arrays
When a variable is defined without an initial value, it is initialized to the default
value of its type. We decided default values for arrays to be 0-length arrays, and
not to introduce a null value for arrays. Therefore, the two programs in Figure 5.4
and Figure 5.5 are equivalent, and the output should be "0".
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1 int main ()
2 {
3 int t = foo (1) + foo (2));
4
5 return 0;
6 }
7
8 int foo(int x)
9 {

10 printInt (x);
11
12 return x;
13 }

Figure 5.3: Side effect in binary operation

1 int main ()
2 {
3 int [] arr;
4
5 printInt (arr. length );
6
7 return 0;
8 }

Figure 5.4: Array declaration without initializer

1 int main ()
2 {
3 int [] arr = new int [0];
4
5 printInt (arr. length );
6
7 return 0;
8 }

Figure 5.5: Declare an empty array

5.2.2 Evaluation order in array indexing expressions
Like binary operations, array indexing expressions contain two sub-expressions.
Therefore, the order of evaluation needs to be specified. In K-Javalette, the or-
der of evaluation is specified using seqstrict as shown in Figure 5.6.

1 syntax Exp ::= Exp "[" Exp "]" [seqstrict , funcall ]

Figure 5.6: Strictness of array indexing

The following program should print "array\nindex".
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1 int main ()
2 {
3 int x = mkArray ()[index ()];
4 return 0;
5 }
6
7 int mkArray ()
8 {
9 printString ("array");

10 return new int [5];
11 }
12
13 int index ()
14 {
15 printString ("index");
16 return 1;
17 }

Figure 5.7: Evaluation order in array indexing

Similarly, the evaluation order of length expressions in array creation should be
specified as well. In K-Javalette, lengths are evaluated sequentially from left to
right. The example in Figure 5.8 should output "1\n2\n3"

1 int main ()
2 {
3 int [][][] x = new int[f(1) ][f(2) ][f(3) ];
4 return 0;
5 }
6
7 int f(int x)
8 {
9 printInt (x);

10 return x;
11 }

Figure 5.8: Creating a multi-dimensional array

5.3 Precedence of pointer and array expressions
Precedences between array and pointer expressions are not specified. According to
the test suite, the syntax should allow the first expression in Figure 5.9. It should
also allow parsing (2) a chain of pointer dereferencing and array indexing, as well
as (3) creating multi-dimensional pointer arrays.

The first expression requires precedence of pointer dereferencing to be lower than
or equal to struct creation. Otherwise, a struct creation cannot be parsed as an
immediate child of pointer dereferencing. The second case requires array indexing
and pointer referencing to be at the same level. If these two conditions hold, the
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1 new foo ->x
2 foo ->bar[x]->baz
3 new foo [1][2]

Figure 5.9: Problematic expressions

third expression becomes ambiguous. It can be parsed as an array indexing on struct
creation, or two-dimensional array creation.

In order to keep the syntax consistent and reasonable to implement, we decided to
disallow the first case, which is dereferencing a newly created pointer. This change
does not bring any practical limitation to the language because the same behavior
is achieved by using parenthesis.
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6
Testing Javalette Implementations

Besides being a reference for the language, formal semantics in K has several appli-
cations for testing and verification. In this work, we use K-Javalette to develop an
input generator for testing Javalette compilers. A test case in the test suite consists
of a Javalette program, an input file for the program, and the expected output.
Since we have a reference interpreter obtained from the semantics, it is possible to
generate the expected output for a given pair of Javalette program and input. Thus,
using an input generator as illustrated in Figure 6.1 eliminates the need for input
files and leads to more effective use of existing test programs by covering as many
execution paths as possible.

Figure 6.1: Testing compilers with random input

For generating random inputs, we created a new module that overrides the behavior
of built-in input functions readInt and readDouble so that while evaluating these
functions, instead of reading the standard input, random numbers are generated.
The module extends the configuration with a seed variable for the random number
generation (Figure 6.2). The seed is initialized via a command-line argument to
krun.

Figure 6.3 shows the implementation for the readInt function. It generates a ran-
dom integer using the built-in random number generator of K, writes it to stderr,
and leaves the number on top of the <k/> cell. The priority annotation next to
the rule allows overriding existing rules. By default, all rules, including the core
Javalette rules, are assigned the priority of 50. Setting a lower number (49 in this
case) gives a higher priority to the rule.
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1 configuration
2 <randomize >
3 <jl/>
4 <rand -seed > $SEED:Int </rand -seed >
5 <rand - initialized > false:Bool </rand - initialized >
6 </ randomize >

Figure 6.2: Override the behavior of input functions

1 rule <k>
2 readInt (. Args) => # logInt ( jlRandomInt ()) ...
3 </k> [ priority (49)]
4
5 syntax KItem ::= # logInt (Int)
6 rule <k>
7 # logInt (I) =>
8 writeln ( Int2String (I), # stderr ) ∼> I ...
9 </k>

Figure 6.3: Override the behavior of input functions

Once the language is compiled with these definitions, the generated interpreter works
as an input/output generator. The krun command is used to run the input generator
(Figure 6.4). It generates a random input for the given source file (<source-file>).
The generated input and output are stored in <input-file> and <output-file>
respectively.

1 krun <source -file > \
2 -cSEED=<rng -seed > \ # seed for the random number generator
3 -cRUN =1 \
4 --output -file /dev/null \ # do not print the final config .
5 > <output -file > # generated expected output
6 2> <input -file > # generated input

Figure 6.4: Use krun to generate a random input

The input generator can be used on the fly when running the test suite, or inputs
can be pre-generated and stored in the test suite.
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Discussion

In this chapter, we reflect on our development process and results with respect to
the research questions.

7.1 Formal semantics in K
K-Javalette is the first formal semantics for Javalette. Therefore, detecting ambi-
guities in the language was a considerable part of the development process. All
problems we have found in the semantics are caused by underspecification. These
issues were usually caught by carefully reading the documentation.

As for the benefits of K, adopting the framework is easy since semantic rules in K
usually resemble functional programs and it does not require advanced logic or pro-
gramming knowledge. It also provides shortcuts for solving common problems such
as associativity and strictness annotations. In addition, being able to execute the
semantics allowed us to follow a test-driven approach throughout the development.
Finally, compilation warnings for non-exhaustive checks helped us find unhandled
cases such as default values for uninitialized arrays.

K allows having nondeterministic semantic rules. In other words, one can define
rules with the same preconditions but different results. This feature enables defin-
ing nondeterministic languages and exploring possible execution paths. However,
this can be an obstacle in our case. Ambiguities in the Javalette documentation
may lead to unintentionally writing nondeterministic rules in the formal semantics.
Unfortunately, K does not automatically check for nondeterminism.

7.2 Modules and extensions
K features such as modules, configuration abstraction, and rule priorities allow ex-
tending languages modularly. Chapter 4 explains how language extensions were
defined in K-Javalette. Once implemented correctly, one can conveniently choose a
subset of extensions and compile the language.

Although K allows developing extensions as separate modules, it is unrealistic to do
it without examining the interaction between the extensions. Otherwise, there can
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be conflicts between syntax or semantic rules from different modules. K is able to
automatically diagnose conflicts in the grammar. However, there is not an easy way
to check conflicts in the semantics.

7.3 Using the semantics for testing
Having executable semantics unlocks great potential for applications. Chapter 6
explains how we use K-Javalette for testing compilers. We developed a random
input generator using the semantics with a small add-on. Together with the reference
interpreter, it is used for testing compilers with random inputs.

7.4 Related work
Ellison et al. [7] developed an executable semantics in the K framework for C. It was
considered to be the most comprehensive formal semantics for the C language with
a 99.2% success ratio in the GCC test suite. The C language standard intentionally
leaves some unspecified behaviors. For instance, argument evaluation order and
integer sizes are implementation-specific. Ellison et al. parameterize the semantics
by taking advantage of K’s modularity, whereas we chose to completely specify the
behavior in similar cases.

KWasm is a formal semantics of WebAssembly in K [8]. Elrond Semantics is a
formal semantics in K for the Elrond Virtual Machine for blockchains [4]. Elrond
semantics extends KWasm with Elrond-specific features for blockchain operations.

SpecTest [13] is a K-based compiler testing tool for Java and Solidity compilers.
It consists of an executable semantics, an input fuzzer, and a program mutator.
The input fuzzer generates random inputs for programs generated by the program
mutator. The program mutator takes a seed program and generates a new program
by applying a set of mutations. It also analyzes the execution and tries to find less
used rules to increase the testing coverage.

7.5 Future work
In this project, we chose to implement two of the extensions. One natural follow-
up is to add more extensions to K-Javalette. Object orientation is one of the most
preferred extensions in the Compiler Construction course. It would be an interesting
avenue for future work since it brings new top-level definitions, types, expressions,
and scope rules for methods.

Currently, K-Javalette relies on the LLVM backend for input/output functions,
which prevents using the K framework’s Haskell backend. Implementing the I/O
functionality in a backend-independent way to enable the Haskell backend would be
beneficial. After that, it would be possible to use K-Javalette for reasoning about
programs or proving the properties of the semantics itself.
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7.6 Conclusion
The tools used in programming language development are of great importance. In
this project, we have demonstrated the capabilities of the K framework in defining
programming languages. We have developed an executable formal semantics for
the Javalette language using K. As a by-product of the formal semantics, we have
acquired a reference interpreter that supports all features of Javalette including
input/output functions. We have shown that languages formalized using K can be
extended modularly by adding new features implemented in separate K modules.
On top of the core language, we have developed extension modules for supporting
arrays, structs, and pointers. At last, we have demonstrated an application of
executable semantics in randomized testing of compilers by developing a random
input generator.
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