
	
	
	

	
	
	

	
	

Visualization of Electrical Architectures
In the Automotive Domain Based on
the Needs of Stakeholders

Master’s thesis in Software Engineering

FLORENCE MAYO
NATTAPON THATHONG

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2016

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a noncommer-
cial purpose make it accessible on the Internet. The Author warrants that he/she is
the author to the Work, and warrants that the Work does not contain text, pictures
or other material that violates copyright law.
The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Visualization of Electrical Architectures In Automotive Domain Based On the Needs
of Stakeholders
FLORENCE MAYO,
NATTAPON THATHONG

© FLORENCE MAYO, JUNE 2016.
© NATTAPON THATHONG, JUNE 2016.

Examiner: ERIC KNAUSS
Supervisor: MICHEL CHAUDRON, PATRIZIO PELLICCIONE,
TRUONG HO QUANG, ULF ELIASSON

Master’s Thesis 2016:NN
Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Electrical Architecture (designed by: Juntima Nawilaijaroen)

Typeset in LATEX
Gothenburg, Sweden 2016

ii

Abstract
The use of software in automotive engineering keeps on growing higher every year.
This has an impact on a data stored in a database in such a way that a structure
of data stored becomes complex due to hierarchy and hence difficult to understand.
The benefit of visualizing a complex data structure of a system facilitates a quick
learning of how a system work and a general understanding of where to locate a
particular piece of data in a database. A large focus in the industries is placed more
on innovating new features of a car by improving current software built in a car’s
system and also developing new software. There is rather less focus in visualizing
the software which have already been implemented in a car’s system since the vi-
sualization does not provide direct value. The purpose of this study is to provide
an automated visualization of a current implementation of software data that is
stored in a database and to understand the needs of different stakeholders who work
with the database. The visualization is meant to cover the needs, which are func-
tional and non-functional requirements, of different stakeholders interacting with a
database to aid the understanding of a system and to facilitate decision making in
their work. Our focus of the study has been to understand the field of automotive
software engineering, its architecture, understanding how to get the needs of stake-
holders, implementing an automated software visualization and finally gather more
stakeholders’ needs regarding the visualization of data. The visualization was done
on a small sub-system of the car showing how the logical components were connected
to one another via input and output signals, this covers a view in an automotive ar-
chitecture called a logical view. On the later stage of the thesis, we interviewed other
stakeholders to gather more needs towards automated visualization. One of their
needs we gathered was that the stakeholders wanted to have another view which is
named a physical view in the automotive industry. In additional to that, the stake-
holders proposed to have an interactive way when visualizing the data, meaning
that the visualization should provide the ability to view less or more details, to be
able to filter the contents, to sort the contents and also to have the output that can
easily be understood without cracking your brain.

Keywords: architecture, automated visualization, automotive, needs, stakeholders

Acknowledgements
We would like to express our gratitude to our supervisors Truong Ho Quang, Michel
Chaudron, Ulf Eliasson, and Patricio Pelliccione, who have challenged us to think in
a broader perspective so that we achieved the intended results. We are grateful for
the opportunity to do a thesis with Volvo Car Group and that has helped us to get a
wider understanding of what is taking place in automotive field. We appreciate the
support that we obtained from the employees at the company and most of all, the
support from Ulf who was our supervisor from the company. We are thankful for
the support he gave us in getting familiar with the custom proprietary tool and also
connected us with different stakeholders. We would like to express our gratitude to
our examiner, Eric Knauss for supporting and guiding us in the process to make
sure we follow the correct way of doing a master thesis work. We would also like to
thank all participants who have contributed one way or another in this thesis.

Gothenburg, June 2016
Florence Mayo, Nattapon Thathong.

Contents

List of abbreviations xv

1 Introduction 1
1.1 Statement of the problem . 2
1.2 Purpose . 2
1.3 Research questions . 3
1.4 Contribution of the study . 3
1.5 Outline of the report . 4

2 Theoretical Framework 5
2.1 Architectures in automotive domain 5

2.1.1 Low- and high-level electrical architectures at VCG 8
2.2 Software Architecture Visualization 10
2.3 Model-Driven Software Engineering 11

2.3.1 Modeling languages . 11
2.3.1.1 Meta-models, model instances, and semantics 12

2.3.2 Model transformation . 13
2.4 Graphical notation of textual description 14
2.5 Stakeholders . 16

2.5.1 Needs of stakeholders . 17

3 Methodology 19
3.1 Focus selection . 20
3.2 Data collection . 21

3.2.1 Raw JSON data . 22
3.2.2 Interview data . 22

3.3 Data analysis and interpretation . 23
3.3.1 Meta-model of JSON data . 23
3.3.2 Optimization of JSON data 24
3.3.3 Coding . 24

3.4 Take action . 25

4 Implementation 27
4.1 Cycle 1: Creating automated visualization 27

4.1.1 Focus selection . 27
4.1.2 Data collection . 29
4.1.3 Data analysis and interpretation 29

vii

Contents

4.1.3.1 Analyzing raw JSON data 29
4.1.3.2 Optimizing raw JSON data 33

4.1.4 Take action . 34
4.1.4.1 New meta-model and model instance 34
4.1.4.2 Automated visualization prototype 36
4.1.4.3 Final automated visualization prototype 39

4.2 Preliminary to cycle 2 . 41
4.2.1 Selecting stakeholders . 41
4.2.2 Preparation for interviews . 41

4.3 Cycle 2: Identifying needs of stakeholders 42
4.3.1 Data collection . 42
4.3.2 Data analysis and interpretation 42

4.3.2.1 Coding interview transcripts 43
4.3.2.2 Categorizing needs of stakeholders 44

5 Results 45
5.1 Automated visualization . 45

5.1.1 Automated visualization prototype 45
5.1.2 Final automated visualization prototype 46

5.2 Coding results . 48
5.2.1 Category: Personal info . 48
5.2.2 Category: Use of the Database 49
5.2.3 Category: Specific task . 51
5.2.4 Category: Automated visualization 52

5.3 Categories of needs of stakeholders 55
5.3.1 Dependencies . 55
5.3.2 Clusters . 56
5.3.3 Features . 56

6 Discussion 59
6.1 Research questions . 59
6.2 Use of the source code . 61

6.2.1 Tools required . 61
6.2.1.1 Open source projects 61
6.2.1.2 Eclipse software & plugins 62

6.2.2 Installation . 62
6.2.3 Deliverables . 63

6.2.3.1 Optimizing JSON document 63
6.2.3.2 Creating a meta-model and a model instance from

JSON document . 63
6.2.3.3 Generating a visualization 63

7 Validity Threats and Research Ethics 65
7.1 Validity Threats . 65

7.1.1 Conclusion validity . 65
7.1.2 Internal validity . 65
7.1.3 Construct validity . 66

viii

Contents

7.1.4 External validity . 67
7.2 Ethical consideration . 67

7.2.1 Informed consent . 67
7.2.2 Anonymity and confidentiality 67
7.2.3 Fraud . 68

8 Conclusion and Future work 69
8.1 Conclusion . 69

8.1.1 Sustainability . 70
8.2 Future work . 71

Bibliography 73

A Acceleo templates I
A.1 Acceleo template for the automated visualization prototype I
A.2 Acceleo template for the final version of the automated visualization . II

B Interview questions and transcripts V
B.1 Interview questions . V

ix

List of Figures

1.1 An example of electrical architecture of the Volvo XC90 1

2.1 Meta-model of UML-RT constructs for logical architecture. 6
2.2 Automotive development process. 7
2.3 Automotive architectural views. 8
2.4 The difference between architectural design and actual deployment. . 9
2.5 Three main ingredients that comprise a modeling language. 12
2.6 sWML model’s abstract syntax and graphical concrete syntax. 12
2.7 An example of M2T transformation. 13
2.8 UML class diagram rendered from the textual description. 15

3.1 Steps in action research. 19
3.2 Steps performed in the study. 20
3.3 Elicitation technique of stakeholder analysis. 21
3.4 A screenshot of Graphical Ecore Editor in Eclipse. 24

4.1 Overview of the steps performed in this study. 27
4.2 A screenshot of the Database. 28
4.3 An example of a visualization given by the software engineer. 29
4.4 Meta-model of the raw JSON document. 31
4.5 Meta-model of the optimized JSON document 35
4.6 Model instance from the optimized JSON document. 36

5.1 Automated visualization prototype. 46
5.2 Final version of the automated visualization. 47
5.3 Coding results of test engineer for Category: Personal info. 48
5.4 Coding results of software developer for Category: Personal info. . . . 49
5.5 Coding results of system designer for Category: Personal info. 49
5.6 Coding results of test engineer for Category: Use of the Database. . . 50
5.7 Coding results of software developer for Category: Use of the Database. 50
5.8 Coding results of system designer for Category: Use of the Database. 51
5.9 Coding results of test engineer for Category: Specific task. 51
5.10 Coding results of software developer for Category: Specific task. . . . 52
5.11 Coding results of system designer for Category: Specific task. 52
5.12 Coding results of test engineer for Category: Automated visualization. 53
5.13 Coding results of software developer for Category: Automated visu-

alization. 54

xi

List of Figures

5.14 Coding results of system designer for Category: Automated visual-
ization. 54

5.15 Needs in Dependencies group. 55
5.16 Needs in Clusters group. 56
5.17 Needs in Features group. 57

8.1 The sketch of a logical view and a physical view. 71

B.1 List of pre-determined questions. V

xii

List of Tables

2.1 Some useful syntax for UML component diagrams. 16

3.1 Stakeholder who participated in cycle 1. 21
3.2 Stakeholders who participated in cycle 2. 22

xiii

List of abbreviations

ADL Architecture Description Language
API Application Program Interface
CAN Controller Area Network
DSL Domain-Specific Language
ECU Electrical Control Unit
EMF Eclipse Modeling Framework
EPS Electrical Power System
ER diagram Entity-Relationship diagram
DVM Design Verification Method
GPML, GML, or GPL General-Purpose Modeling Language
HIT The Hybrid Innovations for Trucks project
IBD Internal Block Diagram
IDE Integrated Development Environment
JSON JavaScript Object Notation
LAC Logical Architectural Component
LC Logical Component
M2M Model-to-model transformation
M2T Model-to-text transformation
MDSE Model-Driven Software Engineering
SRD System Requirement Description
SWC Software Composition
sWML simple Web Modeling Language
SysML Systems Modeling Language
UML Unified Modeling Language
UML-RT Unified Modeling Language for Real-Time
URI Uniform Resource Identifier
VCG Volvo Car Group
XMI XML Metadata Interchange
XML Extensible Markup Language

xv

1
Introduction

O ne of the biggest challenges in the automotive industry is to build vehicles
that meet customer expectations. To overcome the challenge, more complex

system of mechanical and electrical artifacts are designed and built in modern ve-
hicles. Besides that, a huge number of software are also integrated in order to carry
out certain tasks, resulting in a number of 70 of Electrical Control Unit (ECUs) de-
ployed in a car [23]. The example is shown in Figure 1.1 which indicates the ECUs
deployed to the Volvo car. For this reason, having the automated visualization of
the complex system is of large importance which in turn can be used to verify that
every artifact and the connections between them are in the right places.2.3 Architecture Process 9

Figure 2.1: Physical view of the Volvo XC90.

In the automotive industry the physical and electrical views are usually the
one that will get most attention. This is mainly due to the fact that it is easier
to understand placement of real physical components instead of the sometimes
more abstract logical view.

In a vehicle the physical and electrical view is important since many con-
straints are determined by these views, for example the space in a vehicle is
fairly limited, packaging is always a problem, but not having a good logical ar-
chitecture might increase dependencies between different ECUs. An increased
number of dependencies will most likely cause the system to be more com-
plex, harder to remove or change components, and more difficult to add new
functionality.

Another reason why the physical and electrical views gets most attention is
that many processes are dependent on these views, such as manufacturing and
service.

2.3 Architecture Process
The process of designing an architecture for an automotive system is complex.
The architecture should comply with many different stakeholder needs. A gen-
eral process for architecture development is described in [9] including seven
key activities. One of the more important steps in the process is to identify
and engage stakeholders. A problem is that many stakeholders do not see the
architecture as their core business and easily prioritize other activities.

Figure 1.1: An example of electrical architecture of the Volvo XC90 [24].

This thesis is done at Volvo Car Group (VCG) which is a Swedish premium automo-
tive manufacturer that produces modern vehicles to the world. At the company, two
types of architectures for electrical system are used to handle complex systems of
cars [10]. The two architectures have different abstraction levels, meaning that they
serve different purposes. A high-level architecture (logical view) contains Logical
Architectural Components (LAC) designed by software architects with a purpose
of guiding and breaking down work to be developed during implementation phase.
Development team creates a low-level architecture (design view) which represents ac-
tual structure of the electrical system. The low-level architecture also shows Logical
Components (LC) which are broken down from LACs in the high-level architecture,
it also shows connections between LCs, and signals they receive/send.

The low-level architecture is stored in a custom proprietary tool, which we will call it
the Database in this thesis work. The Database stores the data such as documenta-

1

1. Introduction

tions, the software components, the ECUs, the LCs, and the LACs. Using the stored
data, the tool generates model shells to be implemented by software developers for
in-house software development and also the tool generates requirement documents
which has many functionalities to be implemented by suppliers. Moreover, it can
also generate ECU-integration and network communication in the electrical system
[11].

When a user interacts with the Database, he/she can search the information using
small pop-up window. A user fills in the few details of the needed artifacts, after
clicking on the search button, a result is displayed. The output depends on the
user’s specifications on the search pop-up window. Its limitation is that, you can
have different variants handling, different version of the same artifacts allocated in
different areas on the Database. As a result, all of this information is shown on
a list which is a difficult task to know the right artifact unless you know exactly
to where it is allocated. The architecture is enormous which makes it difficult for
the stakeholders to get what they need with less time, having experience of using
the Database is quite big support in this case, meaning someone must know where
to locate a needed artifact otherwise it will take a long time to get the needed
information. Thus, visualization of the low-level architecture is needed.

1.1 Statement of the problem
The problem that is addressed in this thesis is the difficulties in getting a needed
information on using the search option on the Database which usually gives a user
with a lot of information, sometimes unnecessary and not enough for a single search
result. This in turn forces a user to keep searching for more information until he/she
gets to the root source of what is needed in the first place. In most cases, only some
parts of the data stored in the Database are relevant to the stakeholders and this
depends on the individual’s interest. In some cases, the stakeholders do not even
know what they are looking for and this makes a task to locate what they want even
more difficult.

1.2 Purpose
The purpose of this thesis is to create an automated visualization prototype of
the electrical architecture from the data extracted from the Database using Unified
Modeling Language (UML) notations. By referring to the previous research, there
are results confirming that visualizing the architecture using the UML notations
improves the communication among software engineers [9][12]. This is briefly sum-
marized in section 2.2.

The thesis also aims to identify the needs of the stakeholders, the needs in this
context are functional and non-functional requirements towards the automated vi-
sualization. The analysis of the needs of stakeholders will allow concluding on the

2

1. Introduction

possible views/visualizations that can show the system at different levels of abstrac-
tion for different stakeholders.

In addition to the analysis of the needs of stakeholders and the creation of the au-
tomated visualization prototype, we also aim to report on what are the opinions of
stakeholders towards the automated visualization of electrical architecture. In this
particular context, we aim not only to consider the created automated visualization
prototype but also the automated visualization of the whole electrical architecture
at VCG.

1.3 Research questions
In order to address the problem mentioned, we have formulated two research ques-
tions. Both of these research questions will allow us to fulfill the purpose (Section
1.2) we have set in this thesis. The research questions are formulated as follows:

RQ 1. What are the needs of different stakeholders towards the automated visual-
ization of the electrical architectures?

The first research question covers the identification of the needs of stakeholders
towards visualization of the electrical architecture and the differences among them.
The information needs concern details such as what are the artifacts (ECUs, LCs,
etc.) that stakeholders want to be visualized and what to include and what not to
include on the visualized output.

RQ 2. How does an automated visualization fulfil the needs of stakeholders?

The second research question covers how an automated visualization helps to fulfill
the information needs of stakeholders. Since this study is newly introduced at VCG,
we intend to learn on what the automated visualization of electrical architecture can
contribute to both users and non users of the Database, the Database is the one
that stores the electrical architecture of VCG (Section 1).

1.4 Contribution of the study
The findings of this thesis work aim to encourage the use of automated visualization,
and the way of working with the electrical architecture in the automotive industry.
Since it has been newly introduced, our report will provide supportive evidences
about the benefits of applying automated visualization of data.

For the company, the data extracted from the Database and the needs that we dis-
covered from interviewing different stakeholders will be a powerful input that will
aid to provide a better automated visualization of the electrical architecture, which

3

1. Introduction

in turn will cover the needs of different stakeholders. Our study also provides an
opportunity for further research at the company to obtain greater results towards
satisfying the needs of different stakeholders and most of all to improve the way
of working with the Database. Moreover, with Model-Driven Software Engineering
creating our thesis will prove to the stakeholders in the company that creating an
automated visualization of the data from the Database is possible.

For us, as Master’s students in Software Engineering, we had an opportunity to
learn how automotive architects and stakeholders work with the architecture, and
understood the needs of different stakeholders. We have also discovered how the
automated visualization for the electrical architecture plays an important role in
the automotive domain.

1.5 Outline of the report
This report is divided into 8 chapters. Chapter 1 introduces the background of
the thesis work, statement of the problem, the purpose, research questions, and the
significance of the study. Theory related to architecture in automotive domain, soft-
ware architecture visualization, Model-driven Software Engineering, and graphical
notation of textual description are be discussed in Chapter 2. Chapter 3 presents
the scientific methods used in this work, while the implementations of the meth-
ods are explained in Chapter 4. The results of the study obtained are presented in
Chapter 5. Chapter 6 presents the answers to the research questions mentioned in
Section 1.3, and deliverables of the thesis work and open-source projects involved.
Validity threats and research ethics are discussed in Chapter 7. The last chapter
summarizes the study, our work and sustainability and what could be done in the
future work.

4

2
Theoretical Framework

T his chapter introduces theories related to this study, which cover the areas of
architecture in automotive domain. The two types of electrical architectures

that are used at VCG are also explained. Basic knowledge of Model-Driven Software
Engineering is presented, including the difference types of stakeholders.

In this chapter, we have covered several applicable knowledge to our thesis. The
thesis is done in automotive field, Section 2.1 introduces what is in this field and most
important, since our thesis is based on the system architecture, that explains why we
have discussed about the architecture in the automotive domain. The Section 2.1.1
explains the architecture at VCG which is what our automated visualization will be
applied. In the Section 2.2, it is where we discuss about the previous research done
on system’s visualization, one was done on the component based system and the
second visualization was about getting a reversed architecture from the source code
of the system. The last two sections (Section 2.3 and Section 2.4) in this chapter
cover the knowledge that we will apply to visualize the electrical architecture at
VCG. This includes the discussion of different concepts in Model-Driven Software
Engineering that will be of useful in getting the automated visualization of electrical
architecture.

2.1 Architectures in automotive domain
Proper architecture is necessary for designing and building modern vehicles which
are mostly driven by electronics and software. In this section, we explain some re-
lated works of how an architecture plays an important role in the automotive domain.

Beeck [23] developed a modeling approach for development of software for ECUs
at BMW Group, which supports the development of logical and technical architec-
tures (high- and low-level architectures, respectively). The approach was developed
based on the notation Unified Modeling Language for Real-Time (UML-RT) aimed
at compromising the complexity issue of developing, integrating, and maintaining
software-intensive systems in vehicles. The logical architecture model was devel-
oped using UML-RT’s capsule structure diagrams to represent graphical system
view of automotive functions. The technical architectures separated into software
and hardware architecture were developed using UML-RT’s component diagrams
(for software) and deployment diagrams (for hardware).

5

2. Theoretical Framework

For the logical architecture, the author created a UML-RT constructs and used
them to model the architecture. From the meta-model (Figure 2.1), capsules, ports,
protocols, signals, and connectors notations were used for modeling architectural
artifacts. Capsules represent functions, while ports and protocols model function
interfaces. A port was used to specify a communication point of a capsule. Each
port had associated protocol, which contained two sets of signals, export and im-
port. Connectors represented channels between function interfaces.

For the technical architectures, the component notation was used to model software
components. Hardware components such as ECUs and sensors were modelled using
UML-RT nodes.

The author also reported some problems regarding the use of UML-RT. One of the
problems was, the set of UML-RT diagram notations was quite restricted. It was
difficult for ECU developers, who were familiar with non-object-oriented notations,
to work with. In addition, the two protocols associated with ports did not meet
requirements of some ECUs.

This paper gave us some suggestions that UML-RT is not the most suitable nota-
tions to be used in our automated visualization since not all developers know and
are familiar with every notation.

Development of Logical and Technical Architectures for Automotive Systems 209

Fig. 3 Meta model of
UML-RT constructs for
logical architectures

– Capsules
– Ports
– Protocols
– Signals
– Connectors

Capsules are used to model functions. They offer pre-
cisely defined interfaces, the communication is signal
based and defined by interfaces and channels. Functions
can be hierarchically refined by a system of communi-
cating (sub)functions. Ports and protocols (of capsules)
model function interfaces. A port specifies a communi-
cation point of a capsule. The protocol associated with
this port contains two sets of signals: the set of signals,
which can be exported at this port and the set of signals,
which can be imported at this port. Connectors model
channels between function interfaces. Figure 3 presents
the meta model for the modeling constructs of UML-RT
for logical architectures.

As mentioned before a distinction between type infor-
mation and instance information is very important.
Therefore, in the case of logical architecture the nota-
tion UML-RT e.g. distinguishes between a capsule (=
capsule type) and a capsule role (= capsule instance).2

2 In this paper we do not distinguish between the UML-RT con-
cepts of a “capsule role” and a “capsule role instance”, i.e. we
consider these notions as being synonyms. Furthermore, for sim-
plicity we sometimes abbreviate the term “capsule role instance”
by “capsule instance”. However, keep in mind that we distinguish
between a capsule (= capsule type) and a capsule role (= capsule
instance).

Figure 4 provides a very simple example of a logical
architecture developed with the notation UML-RT and
the corresponding tool Rational Rose RT. The example
presents a system that calculates the car velocity from
signals provided by four wheel sensors and that displays
the resulting velocity.

Figure 4 presents three windows. The window on the
left side — we call it the browser window — shows a
tree-like structure of the UML-RT model separated in
“Use Case View”, “Logical View”, “Component View”,
and “Deployment View”. In this first example we have
only modeled the “Logical View” which corresponds to
our (conceptual) logical architecture level. The “Log-
ical View” is modeled in structure diagram “Vehicle”
which is shown in the upper right window. Note that
the name of this structure diagram also occurs in the
browser window under the entry “Logical View”. This
diagram contains for example function role funAng-
VelProcessing that uses four input signals of angle
velocity for calculating the car velocity as output signal.
Function role funAngVelProcessing is a hierarchi-
cal element: it is refined by structure diagram FunAng-
VelProcessing shown in the lower right window.

5.2 UML-RT language constructs for the technical
architecture

UML-RT provides the following modeling constructs
which we use for the development of technical architec-
tures:

Figure 2.1: Meta-model of UML-RT constructs for logical architecture [23].

Grönniger et al. [14] developed an approach for modelling logical architecture of
automotive systems using views (Figure 2.2). Function nets which are valid Sys-
tems Modeling Language (SysML) Internal Block Diagrams (IBD) were used to
model complete automotive functions and views which described the environment
and context of a certain aspect of function net. In addition to that, views could be
used to model features in a self-contained way, and to specify consistency conditions
for consistency between a view and a function net.

6

2. Theoretical Framework

The authors claim that function nets and views could be used to describe and to ex-
plain scenarios of use-cases like how an automotive system reacts to external events
or failures caused by subsystems. However, numerous models had to be created as
well as references between these models. The authors states in their work that an
investigation of existing model management strategies to handle number of models
would be performed in the future.

Figure 2.2: Automotive development process [14].

Dajsuren [8] presented a research which was part of Hybrid innovations of Trucks
project and it covers the automotive Architecture Description Language (ADL) and
quality of automotive software. This research had a role of identifying a proper ways
of developing automotive software.

The author suggests that automotive software development enabled interaction be-
tween different engineering fields such as mechanical engineering, electrical engi-
neering, and software engineering. ADL was said to be an effective way to manage
such multi-disciplinary engineering information. It had been defined on the paper
as ‘one of the approach to formalize the representation of the automotive systems
and software architecture’. Examples of ADL used in automotive companies are,
definition of AML for BMW company, EAST-ADL and TADL for Volvo, Fiat, and
VW/Carmeq.
The different levels of the architecture had been mentioned as well, these include:

• Feature view that shows the number of features in a system,
• Function view that shows the number of functions or subsystems in a system.

A single feature could include one or more functions,
• Software view that shows a detailed architecture. It shows components and

blocks which represent the implementation of the functions specified in the

7

2. Theoretical Framework

function view, and
• Hardware view that contains ECUs, sensors, actuators and Controller Area

Network (CAN).

The author decided to use ADL language SysML1 in modelling a functional view
(Figure 2.3). MATLAB/Simulink had also been mentioned as one of the most pop-
ular graphical modelling language and a simulation tool for modelling software view.

Figure 2.3: Automotive architectural views [8].

2.1.1 Low- and high-level electrical architectures at VCG
To have a better understanding of how low- and high-level electrical architectures
have been constructed and used in VCG, we studied some researches that were con-
ducted at the company.

Eliasson et al. [10] found that VCG and Volvo Group Truck Technology (VGTT)
have two types of architecture: a high-level architecture and a working architecture
(low-level architecture). The high-level architectures produced by high-level archi-
tects contain design decision, principles, rules, and pattern that should govern the
overall system. The working architecture produced by low-level architects contains
logical components which are broken down from the high-level architecture and more
details. The study shows that the working architecture is always kept updated by
developers as the product evolve, while the high-level architecture is only updated
when the project has started. Because of this reason, the inconsistency between

1https://sysml.org

8

https://sysml.org

2. Theoretical Framework

the two architecture occurs. They also suggest that having two different groups of
architects result to problems. High-level architects have a thought that the low-
level architects are very focused on short-term solutions which makes them miss an
overall picture of the system, while low-level architects see that another group lacks
an understanding of current situation and is too focused on solutions that might be
good in long run.

It has also been presented on the article by Eliasson et al. [11] that the software
architecture in VCG is divided in 3 different views, the logical view, the design
view and the deployment view. The logical view defines the intended architectural
structure of the system, it has the logical architectural components (LACs) which
represent a group of functions, LAC to LACs, logical view is in the form of UML
model. The design view determines the actual structure of the system, LACs are
broken down to LCs and each LC representing a single unit of functionality. The de-
ployment view details how each group of functionality is deployed in different ECUs
in the system. The logical view is done by system architecture group. The detailed
design, design view is done by engineers in different sub-systems and components
and the deployment view is done by both, each take part of it.

Eliasson et al. [11] suggest that the presence of the architecture technical debt at
the design level of the VCG plays an important role on the efficiency of commu-
nication between components. In this paper, there is discovery of the ATD items
(architectural violations) such as the misplaced LCs (logical components) and their
impacts on the software development process. The ATD items together with the
inputs from the stakeholders at VCG were used to assist in creating a visual tool
which provides a better visualization of the ATD items and their interest. With this
tool, the visualization is more comprehensive to the stakeholders (see Figure 2.4).

Fig. 3. Image depicting an LAC and its assigned LCs being deployed to two
different ECUs. The dotted lines show how the components are deployed and
the dashed lines the communication between components.

tool automatically collect the necessary data from models and
databases, and compare the high-level architecture with the
detailed design, calculating the technical debt and visualize it.
An early version of the tool was also shown and discussed in
a workshop at VCG with two domain experts, in order to get
early feedback on the current direction regarding the kind of
visualization and the attributes to be visualized. Such activity
was aimed at answering RQ3.

Finally, we evaluated the ATD items, their interest and
the visualization tool in three separate interviews with three
domain experts at VCG (in order to increase the reliability of
our results through triangulation, as recommended in [12]).
During the validation interviews, the tool was demoed for
domain experts, followed by a semi-structured interview with
the purpose to asses the usefulness of the metrics chosen and
understandability of the visualization presented by the tool.

In particular, in the validation interviews we asked questions
with respect to the following aspects:

• Participants’ background, e.g. ”What is your role with
respect to the architecture”

• Feedback on the debt items, e.g. ”Does the visualized
debt item reflect a situation that occurs in the system?”

• We described the metrics used for defining and repre-
senting the interest and we asked questions such as ”Do
you think that it would be useful to identify the interest
caused by additional dependencies due to the LCs having
dependencies that does not exist in their LAC?”

• In the visualization part, we asked questions such as
”Is the interest difference between debt-items clearly
communicated?”

IV. RESULTS

In this section, we report our results for each of our three
research questions.

A. RQ1: What is a Typical ATD Item for the Automotive
Industry?

From our initial interviews we found that the stakeholders
considered valuable to identify a specific ADT item originating
from architecture violations: we called it Misplaced LC.

The ATD Misplaced LC comes from the fact that although
the architectural rules say that all the LCs contained in one
LAC should be realized on the ECU where the LAC is
deployed, the architecture group have no means to technically
enforce this. This can lead to LCs being deployed on different
ECUs than the ones that were intended by the architects,
resulting in non-allowed dependencies between different do-
mains (the actual technical debt). An illustration of this can
be seen in Figure 4.

Fig. 4. Illustration of the Debt Item (Misplaced LC) depicting an LC, assigned
to an LAC, deployed to a different ECU than its LAC states. The left part
shows the intended deployment and the right part the actual one.

As the cost of communication differs depending on if it is
internal on the ECU, if it is between ECUs or if it’s across
the domains, such a violation may result in a change in the
amount of communication over the network have an impact
on efficiency, as seen in Fig. 5.

Fig. 5. Illustration of the effect of the Debt Item (Misplaced LC) depicting
LC2 introducing a dependency from ECU1 to ECU2 by being misplaced.
The left side shows the intended architecture while the right side displays the
actual architecture. Note the discrepancy in communication cost.

B. RQ2: What is the Impact, or Interest, of such ATD Item?

For Misplaced LC, an LC is deployed to an ECU that
it should not be deployed to according to the architecture
models. This may change the cost of communication since
communication between ECUs or between domains is more
costly than communication within an ECU, as shown in 2.

To get the interest for this debt we look at the dependency
cost for an LC if it was deployed in accordance with the
architecture and then subtract it from the actual dependency

36

Figure 2.4: The difference between architectural design and actual
deployment [11].

Our intention in this thesis is to find different information needs of stakeholders
towards automatic visualization and make a prototype that could visualize the elec-
trical architecture at VCG. But before that, we need to know of what makes the
architecture, meaning the logical components, the communication between the com-
ponents such as the inter-ECU communication, intra-ECU communication and the

9

2. Theoretical Framework

intra-domain communication. Luckily, the two articles [10] and [11] were useful for
that. So generally speaking, the articles somehow provided us with a systematic
approach to the system.

2.2 Software Architecture Visualization

The emerging of component based software are said to have a repercussions on soft-
ware visualization. On visualizing a component-based software product, one has to
consider a visualization of component model, software components and of software
assemblies. Favre and Cervantes [12] suggest to visualize a component model by
describing it as a set of UML class diagram (meta-model). The meta-model will
have all the necessary concepts to describe components without getting to the im-
plementation details. The concept of meta-modelling can be considered as a basis in
specifying a graphical notation of visualizing components. The graphical notation
simplifies the understanding of a meta-model. On visualizing components, a specific
notation must be used for each component technology. The authors also mentioned
the usefulness of a graphical notation that it allows software engineers to communi-
cate without the burden of speaking in technical terms.

Most software engineers think in low-level programming when designing a compo-
nent model rather than a conceptual entities. Favre and Cervantes [12] mentioned
the useful of having the visualization of the software products to software engineers
since they designed the model ‘blindly’, so the visualization would help them to get a
complete overview of the implementation. They also elaborated several options that
we could apply in visualizing the data stored in the Database. Some challenges had
been mentioned in visualizing complex components which might have many ports,
so in this case, hiding ports with no connection and show only ports with connection
could be of useful when it comes to a visualization process. Another challenge that
was mentioned was the visualizing the components with complex connectors.

The visualization of the architecture was also done at Ericsson, where the task was to
recover the architecture, it involved getting models from a source code. Darvas and
Konnerth [9] mentioned on the advantages of having an automated visualization
as it makes the architecture consistent with the current implementation found in
a source code. In their work, they mentioned on grouping the ports using cable
and port group pattern, it was the technique to merge the connectors to a single
connector. The use of abstraction pattern could be useful in our case as the single
component can have many ports and hence make the diagram not readable. In our
case, we may be needed to find the corresponding metrics that will help to group
the ports based on some similarities. Another thing that was mentioned in their
work was the way of preserving the hidden information, this implies that once the
artifacts are grouped, there will not be a way to see what is inside the grouped
artifacts, so having a comment (text) next to the grouped artifacts can be useful to
briefly describe what is inside of them.

10

2. Theoretical Framework

2.3 Model-Driven Software Engineering

In creating a visualization of the electrical architectures, we applied Model-Driven
Software Engineering methodology to our work. This section aims at giving the
readers basic knowledge of the method.

In software development, models are used to depict software artifacts in software
engineering activities throughout software development life cycle. A model itself
is used as primary artifact representing more abstract view of a software to be
built. In this context, the methodology is known as Model-Driven Software Engi-
neering (MDSE), aiming at tackling the complexity problem caused by the large
size of a software due to the needs of humans [2]. The goals of MDSE also include
increasing the software development speed which can be done by transformations
(Chapter 2.3.2), reducing cost in long-term, and supporting the reuse of model for
repeatable processes.

Based on the book ‘Allgemeine Modelltheorie (General Model Theory)’ written by
Stachowiak [20]2, he describes that a model should have 3 fundamental properties:
reduction, mapping, and pragmatic. Reduction property of a model is that it contains
only details relevant to model creators and users. Generally speaking, the model
does not include all details of its original. The mapping property means a model is
always the model of something else i.e. its original. The pragmatic property of a
model is the model can replace its original with respect to some purpose.

2.3.1 Modeling languages

Models and transformations need to be defined in some notation which in MDSE
context it is called modeling languages. A modeling language is a tool that designers
use for specifying definition of the concrete representation of a model for a software
system [2]. It is comprised of three main ingredients: abstract syntax, concrete syn-
tax, and semantics (see Figure 2.5).

A modeling language may consist of graphical representations, textual represen-
tations, or both. Modeling languages can be classified into two main categories:
Domain-Specific Language (DSL) and General-Purpose Modeling Language (GPML,
GML, or GPL). DSLs are the languages that are designed for specific domain, con-
text, or company. The purpose of this type of languages is to help people to describe
and explain things in a certain domain. In contrast, GPLs are the languages that
are designed for general use. They lack specific features for a specific domain. An
example of this type of languages is UML.

2 https://modelpractice.wordpress.com/2012/07/04/model-stachowiak/ (en-
glish translation)

11

https://modelpractice.wordpress.com/2012/07/04/model-stachowiak/

2. Theoretical Framework

57

C H A P T E R 6

Modeling Languages at a Glance
Modeling languages are conceptual tools aimed at letting designers formalize their thoughts and
conceptualize the reality in explicit form,being it textual or graphical.This chapter describes the main
features of modeling languages, considering the peculiarities of general-purpose languages (GPLs),
domain-specific languages (DSLs), and the intermediate solutions that allow the customization of
GPLs for specific purposes.

6.1 ANATOMY OF MODELING LANGUAGES
A modeling language is defined through three core ingredients.

• Abstract syntax: Describing the structure of the language and the way the different primitives
can be combined together, independently of any particular representation or encoding.

• Concrete syntax: Describing specific representations of the modeling language, covering encod-
ing and/or visual appearance issues.The concrete syntax can be either textual or graphical.The
concrete syntax is what the designer usually looks up as a reference in modeling activities. If
the syntax is a visual one, the result of the modeling activity consists of one or more diagrams.

• Semantics: Describing the meaning of the elements defined in the language and the meaning
of the different ways of combining them.

Semantics

Abstract
Syntax

Concrete
Syntax

(derived)

Representations

Figure 6.1: The three main ingredients of a modeling language (semantics, abstract syntax, and concrete
syntax) and their relationships.

Figure 2.5: Three main ingredients that comprise a modeling language [2].

2.3.1.1 Meta-models, model instances, and semantics

As introduced in Section 2.3.1, a modeling language is comprised of abstract syntax,
concrete syntax, and semantics (see Figure 2.5). An abstract syntax is defined using
meta-models [2]. A meta-model is a precise definition of the parts and rules needed
to create valid models [22], so to speak a type of model used to describe the model.

7.3. ABSTRACT SYNTAX DEVELOPMENT 91

enumerations act only as constraints for the attribute values, but cannot be instantiated. Third, the
meta-features of attributes and references, i.e., multiplicities and uniqueness constraints, act only as
constraints for the object diagrams. Finally, the containment references are also just represented as
links in object diagrams. However, if a container object is deleted all directly and indirectly contained
elements, i.e., objects linked by containment references, are automatically deleted. To enhance the
readability, containment links are shown in the following by using the black diamond notation.

Instantiating the sWML metamodel. In Figure 7.7, the object diagram for an excerpt of the sketched
example model (cf. Figure 7.3) is shown.To better illustrate the relationships between (i) metamodel
and model level and (ii) abstract and concrete syntax, the identiÞers of the objects are annotated in
the concrete syntax as special labels to the model elements. As can be seen in this Þgure, all model
elements are represented as objects in the abstract syntax.

name=“Conference…“

Abstract
syntax

Concrete
syntax

001 : WebModel

002 : HypertextLayer

003 : ContentLayer

name=“StartPage“
004 : StaticPage

name=“TutorialList“
005 : IndexPage

name=“TutorialDetails“
006 : EntityPage

008 : NCLink

009 : CLink

name=“Tutorial“
007 : Class

name=“presenter“
type = String

010 : Attribute

name=“title“
type = String

011: Attribute

target

links

target

homepage

displayed
Class

representativeAttribute

001

003

002

007
010

011

005 006008 009

displayed
Class

links

classes
content

hypertext

attributes

pages

004

Figure 7.7: sWML modelÕs abstract syntax.

Feedback for metamodel improvements. When testing metamodels, several changes may be iden-
tiÞed which are needed to represent and formalize the language properly. For example, the fol-
lowing simple modiÞcations are quite common: mark classes as concrete/abstract, set references as
containment/non-containment, restrict/enlarge multiplicities of features, make feature types more
specialized/generalized, or just delete existing and introduce new elements. Not only simple modiÞ-

Figure 2.6: sWML model’s abstract syntax and graphical concrete syntax [2].

A concrete syntax is the concrete notation of a modeling language. It can be either
a graphical or textual representation of model instances. The Figure 2.6 shows the
abstract syntax and graphical concrete syntax of one of the well-known DSLs, simple
Web Modeling Language (sWML).

12

2. Theoretical Framework

The third ingredient of a modeling language is semantics. They define the meaning of
abstract syntax and concrete syntax (indirectly). In software engineering, semantics
are classified into two main categories: static semantics and dynamic semantics.
The former specifies the allowed structure in a modeling language such as well-
formedness and typing of meta-models, while the latter describes the execution
behavior or run-time effect of a model [21].

2.3.2 Model transformation
Model transformation is another core concept of MDSE. It allows the mappings
between different models. One example is transforming UML class diagram3 to
Entity-relationship (ER) diagram4.

There are two kinds of model transformation, model-to-model (M2M) and model-
to-text (M2T) transformation. M2M transformation takes in a source model as the
input and the output is named a target model. M2T transformation takes in a
source model as the input and the output is code(text). The model transformation
can be done by using template-based approach or visitor-based approach [7]. In
this thesis, we were mostly interested with M2T transformation and so we applied
template-based approach in order to do a M2T transformation. The example of
M2T transformation can be seen in Figure 2.7.

9.2. CODE GENERATION THROUGH PROGRAMMING LANGUAGES 129

Tutorial

title : String
É

checkAvailability() :
Boolean

É

package entities;

import java.io.Serializable;

public class Tutorial implements Serializable{

private String title;

public String getTitle() {
return title;

}

public void setTitle(final String title) {
this.title = title;

}
…
public boolean checkAvailability(){

…
}
…

}

M2T

Figure 9.3: Excerpt of sMVCML model and corresponding code.

The Java program for producing the discussed Java code from the sMVCML language is
shown in Listing 9.1. For phase one, namely loading the models, the EMF API is used which
provides classes for loading resources, in our case the sMVCML models, into memory. In phase
two, all model elements are queried from the input model, and subsequently, iterated. If the model
element is a class (cf. instanceof type check), a String variable named code is initialized and
further Þlled with Java statements as String values. In phase three, a stream is deÞned to a Java Þle
with the name of the processed class and the value of the code variable is persisted to this Þle. Of
course, more sophisticated GPL-based code generators may be developed using design patterns such
as the Visitor pattern [23], but the drawbacks stated in the following also apply for such solutions.

Listing 9.1: Java-based Code Generation
// PHASE 1: load the sMVCML model using the EMF API
ResourceSet resourceSet = new ResourceSetImpl ();
Resource resource =
resourceSet.getResource(URI.create (" model.smvcml "));

// PHASE 2: collect the code statements in variable
// traverse the complete model using the EMF API
TreeIterator allElementsIter = resource.getAllContents ();
while (allElementsIter.hasNext ()) {

Object object = allElementsIter.next ();
if (! object instanceof Class) continue;
Class cl = (Class) object;

// String variable for collecting code statements
String code = "package entities ;\n\n",
code += "import java.io.Serializable ;\n\n";
code += "public class " + cl.getName () + "implements Serializable {\n";

// generate Attributes :
Iterator <Attribute > attIter = cl.getAtts (); ... code += ...

Figure 2.7: An example of M2T transformation [2].

We have applied M2T transformation because it increases the analyzability of the
generated output(code) as one can go through line by line which in turn allows early
error detection in the code. As mentioned already, M2T transformation is done by
applying template based approach, another reason why we chose M2T transforma-
tion is that the template based approach allows an easy description of variables that

3A static structure diagram that represents the structure of a system showing classes, attributes,
methods, and the relations among objects.

4A data model that describes data in business aspect.

13

2. Theoretical Framework

depend on the model and the variables that does not depend on the model. The
example of variables can be observed in Appendix A and Appendix B where the
dependent variable of the models are subsystem, hasLC, hasPort, etc and also the
variables such as the ones for styling on the visualized diagram are not dependent
on the model.

To do a M2T transformation, a number of template engines are available. The tem-
plate engines are capable of generating files with texts of different formats depending
on how the generator file has been programed. The content of a generated file(s)
depends on the meta-model specified and also the model instance of a meta-model,
this will be discussed in details in Section 4.1.4.2.

We used Acceleo5 as the template engine. It is an open source software and also
available as a plugin in eclipse software. We have used Acceleo because of its ability
to give a generated text from different sources such as UML models, ecore models
and most of all a custom made meta-model which is something we have done in this
thesis. The structure of an Acceleo template (see Listing 2.1) is composed of module,
template, main, and generating files. Module in Line 1 is the part where Uniform
Resource Identifiers (URIs) of the meta-models instantiating the models that you
want to generate code from are parameterized. Template in Line 2 is where the
name of the template and its parameters are specified. The parameters are declared
in the convention <name>:<type>, where name is the parameter name belonging
to type which is provided by meta-model. The code in Line 3 indicates the entry
point of the generation. Line 4 is for specifying the name of generated file. The
code written after that will be generate textual description.

1 [module moduleName(’http://www.eclipse.org/emf/2002/Ecore’)/]
2 [template public genMyTemplate(aParam: EClass)]
3 [comment @main/]
4 [file (’filename.txt’, false, ’UTF-8’)]
5
6 [/template]

Listing 2.1: An example of Acceleo template

2.4 Graphical notation of textual description

The output from M2T transformation is textual description. It is used for generat-
ing visualization based on a model instance, which conforms to its meta-model. To
create a visualization of the electrical architectures, several tools such as PlantUML6

and Umple7 can be used.

5https://eclipse.org/acceleo/
6http://plantuml.com/
7http://cruise.eecs.uottawa.ca/umple/

14

https://eclipse.org/acceleo/
http://plantuml.com/
http://cruise.eecs.uottawa.ca/umple/

2. Theoretical Framework

In this thesis, we use the open-source PlantUML as a graph visualization tool. The
language of PlantUML is well-formed and human-readable code from which the di-
agrams are rendered. The tool allows users to create UML diagrams from textual
description written in its DSL and we would like to create an automated visualiza-
tion using the standard UML notations.

We chose PlantUML because of its richness in symbolic expressions which are easier
to understand, apart from that, there are many examples on their website which
are easily applicable and easy to understand. The availability of a plugin in eclipse
makes it better tool to use since you only need to set small configuration for you to
see the graphical view of the transformed text.

1 @startuml
2

3 class Accommodation {
4 +Int Floor
5 +Int Wall
6 +Int Ceiling
7 +Int Door
8 +Int Window
9 }

10

11 class Apartment
12 class House
13

14 Accommodation <|-left- Apartment: Inheritance
15 Accommodation <|-right- House: Inheritance
16

17 @enduml

Listing 2.2: An example of textual description of a class diagram

Figure 2.8: UML class diagram rendered from the textual description in
Listing 2.2.

Different types of UML diagrams such as class diagrams can be generated. Fig-
ure 2.8 shows the UML class diagram rendered from the code in Listing 2.2. There
are other different types of representations that can be applied in visualizing the
data but instead we picked UML diagrams. This is due to its richness in visual
elements which are easy to follow. UML diagrams also provide a standard for the
software development and its widely used in both academic and industrial domain.

15

2. Theoretical Framework

UML component diagrams can also be created from the textual description by using
some specific syntax. Table 2.1 shows the examples of how to use PlantUML syntax.
The use of them will be explained in Chapter 4.

Description PlantUML syntax Representation

Package package Package

Component [component]

Components, ports,
and connection [c1] #-# [c2]

Components, and ports
with required/provided

interfaces
[c1] #-(0-# [c2]

Rectangle rectangle Rectangle

Component, required
interface, and rectangle

rectangle Rectangle
[c1] -(Rectangle

Table 2.1: Some useful syntax for UML component diagrams.

With the combination and modification of the syntax, visualizing electrical archi-
tectures is possible.

2.5 Stakeholders
On referring to the article of Community Tool Box [4], there are three different kinds
of stakeholders: primary stakeholders, secondary stakeholders and key stakeholders.
On the later part of the study, we will interview different stakeholders. Some of the
advantages of interviewing the stakeholders include getting more ideas, obtaining
different perspectives, helping to avoid misunderstanding of the problem, and also
increasing the chances of delivering a valuable output to the stakeholders.

The primary stakeholders in our case are the people who are directly interacting
with the Database, also named beneficiaries and we, the students are the target.
The automated visualization prototype can aid the beneficiaries in obtaining a sim-
plified overview of a data found on the Database which in turn can provide a quick
understanding of the needed artifacts and the interactions between them.

The secondary stakeholders are the ones who are indirectly affected by the Database.
They are the ones who may be affected by the decision made by the stakeholders
who interacts directly with the Database, which in our case will be due to the use of
the obtained visualization. Our supervisors at the university can also be in a group
of secondary stakeholders, they are not directly interacting with the obtained visu-
alization but they also play a greater role in pushing forward our goals for delivering

16

2. Theoretical Framework

a good visualization.

The key stakeholder is the person from the company and this is one of our supervi-
sors. He plays a very important role in bringing efforts that could result to a better
solution of the problem that we intend to resolve.

We, the students and as part of the primary stakeholders (targets), intend to provide
a visualization output that could aid in quick understanding of the data stored on
the Database and also provides the opportunity for further research depending on
the final output that we will get in this report.

2.5.1 Needs of stakeholders
The needs of stakeholders can be varied and in different areas [4]. In this thesis
we defined the ‘needs’ of stakeholders as functional and non-functional requirements
towards automated visualization. Functional requirements cover the needs of stake-
holders with respect to the information that they want to see as well as additional
features in automated visualization. The information, in this context, is the data
from the electrical architecture such as the artifacts (ECUs, LCs, etc.), details of
signals (source and destination), and signal bus types. Non-functional requirements
cover the needs in regards to software quality aspects such as usability and perfor-
mance of the automated visualization. The classification of the needs of stakeholder
will be explained in details later in Section 4.3.2.

17

3
Methodology

T his study was conducted using Action Research (AR) methodology which is
one of the common primary approaches to research in software engineering.

Since our study aims at providing an automated visualization of the electrical ar-
chitecture for VCG, AR is an appropriate method as it emphasizes on providing
practical value to an organization while contributing to acquisition of new theoreti-
cal knowledge [19].

The methodology consists of four basic steps [13] which are focus selection, data
collection, data analysis and interpretation, and take action (shown in Figure 3.1).
The general concept of the steps of AR methodology and how it was applied to this
study are introduced in this chapter, while the implementation of the approach is
presented in Chapter 4.

Focus selection

Data collection

Data analysis and
interpretation

Take action

Figure 3.1: Steps in action research.

AR is cyclical approach, meaning that the process does not have to be terminated
after the fourth step. In this thesis, we performed two cycles as shown in Figure 3.2.
The reasons why we decided to perform only two cycles are: firstly, the accessibility
of the data since we did not have full access to the Database, and secondly, due
to time constraints. We started with selecting a focus and identifying a scope of
visualization with the first stakeholder, a software engineer (see Table 3.2). Then,
we collected the first set of data from the Database and analyzed them. We took
action by developing a prototype of automated visualization and presented it to the

19

3. Methodology

stakeholder in order to get some feedback for the improvement.

Once we finalized the automated visualization prototype, we began the new half
cycle. We collected the second set of data, by conducting semi-structured interviews
with other stakeholders who use the Database to work on their daily assignments.
We recorded conversations during the interview sessions. The second data analysis
was done by transcribing the tape records, and the transcripts were analyzed using
a scientific method for qualitative data analysis called Coding [17] (will be described
in Section 3.3.3). In the final part of the work, the results from the coding process
were used for answering the research questions of this study. As it was mentioned
earlier that due to unlimited amount of time and resources, we stopped in the step
of data analysis and interpretation, the list of prioritized actions to be taken in the
take action step of AR methodology have been presented in Section 8.2.

Focus selection

Data collection

Data analysis and
interpretation

Take action

Data collection

Data analysis and
interpretation

start

Future work

Cycle 1 Cycle 2

Figure 3.2: Steps performed in the study.

The implementation of the two cycles is presented in Section 4.1 and Section 4.3,
respectively.

3.1 Focus selection

In order to identify the scope to visualize the Database, we applied the elicitation
technique known as stakeholder analysis described by Lauesen [15]. In figure 3.3,
taken from the book by Lauesen [15] (Figure 8.2 : Elicitation techniques), it can
be seen that the technique is strongly applicable in a situation where the researcher
wants to elicit on the goals and key issues, also to find out about the present prob-
lems.

20

3. Methodology

Figure 3.3: Elicitation technique of stakeholder analysis [15].

In our case, we applied the technique on this first step of the AR methodology by
conducting meetings with the stakeholder(Table 3.1).

Stakeholder Role Cycle & step
Software engineer Develop software for ECUs Cycle 1: focus selection

Table 3.1: Stakeholder who participated in cycle 1.

The stakeholder was chosen by our supervisor at VCG due to the reason that he
had been working with the Database for a long time and he had a good suggestion
on which scope of the Database we would start to visualize. The first meeting
was purposely to understand the problem at the company that we can address and
identifying the scope to visualize. The second meeting was mainly to validate the
first visualization(Figure 5.1) and also to get contacts of other stakeholders that we
wanted to interview for the cycle 2 of the AR methodology. Through these meetings,
we were also able to get a clear understanding of the Database. The technique had
also helped us to come up with the scope to visualize and also helped us largely to
understand the concepts used in automotive fields.

3.2 Data collection

Data used in this study were collected from two main sources, from the Database,
and from interviewing stakeholders. This section explains how the data was col-
lected from the data sources. The first part discusses the raw JSON data and gives
an example of a JSON object structure. On the second part of this section, we
introduced the applied approach to collect a meaningful data from interviewing the
stakeholders.

21

3. Methodology

3.2.1 Raw JSON data
To create an automated visualization, we extracted data from the Database. The
best way that was suggested to retrieve data from the Database was to use an ap-
plication program interface (API). At VCG, we were given a documentation that
had a list of APIs and the description of how to use the APIs in order to get the
data from the Database. In order to access the data, one has to be within the VCG
network. Since we were not granted access, then we did most of the work outside
the company area and that had forced us to use the censored data file. The use of
API is more dynamic than visualizing a static file. However, this does not make the
step to retrieve data from the Database less meaningful, it is still the same data but
later on, a static file will need to be replaced with a specific API to get the data
from the Database.

The data found in the static file retrieved from the Database was in JSON format.
A simple example of JSON object is shown in the Listing 3.1 below:

1 {
2 "id": 1,
3 "name": "Master Thesis report",
4 "year": 2016,
5 "place" : "Sweden",
6 "examiner" : "Eric",
7 "Supervisors": ["Truong", "Ulf", "Michel","Patrizio"]
8 }

Listing 3.1: An example of JSON object

3.2.2 Interview data
We conducted semi-structured interviews to collect data from stakeholders. This
type of interview allowed us to prepare pre-determined and open-ended questions
relevant to our study and the research questions. It allows interviews the freedom
to express their views and opinions in their own ways. The list of stakeholders that
we have interviewed, their roles at VCG, and also which step they took part in this
study can be seen in Table 3.2.

Stakeholder Role Cycle & step
Test engineer Involve in testing process Cycle 2: data collection

Software developer Develop functions for CEM Cycle 2: data collection
System designer Write system requirements Cycle 2: data collection

Table 3.2: Stakeholders who participated in cycle 2.

The stakeholders above were chosen by the software engineer that we had a meeting
with in the cycle 1. His criteria of choosing was based on the roles of the stakehold-
ers which cover the three main phases in software development process, which are

22

3. Methodology

design, development, and testing phases.

To collect data effectively, we applied a goal-oriented data collection methodology
developed by Basili [1]. We started off by setting the goals of data collection in
order to find a pattern for collecting data. After establishing the goals, we created
a list of pre-determined questions and categorized them based on the goals (see
appendix B). The stakeholders were asked these questions in the interviews and a
voice recorder was used to record all conversations. Then, we analyzed the collected
data to extract essential pieces of information for answering the research questions.

3.3 Data analysis and interpretation
In this section, we will discuss the approach applied to analyze and interpret the
collected data in both cycles of the applied AR methodology. The first part of the
section covers the applied steps to analyse the data from the Database in cycle 1.
The second part of the section explains the approach we applied on analysing the
data from the interviews which is part of cycle 2.

3.3.1 Meta-model of JSON data
The retrieved JSON file from the Database was in the format of JSON and so we
needed to identify what were the objects in it. To understand the raw JSON data
from the Database, we firstly created a meta-model of the data in order to see the
schema of the file which specifies the relationship among the artifacts.
We have used Eclipse1 software in both this step of analyzing and interpreting the
data and also in the take action step of the cycle 1. One can create manually a
meta-model and a model instance by using Eclipse Modeling Framework (EMF)
with an Eclipse plug-in called EcoreTools2. EcoreTools is a complete environment
including a Graphical Ecore Editor (Figure 3.4) for creating meta-models (Ecore)
and model instances.

An alternative way of creating a meta-model and a model instance is to use JSON
discoverer3. JSON discoverer is an open-source project developed by Javier Luis
Cánovas Izquierdo and Jordi Cabot. It provides a feature that automatically dis-
covers the implicit schema (meta-model) and a data model (model instance) of a
JavaScript Object Notation (JSON) document.

Based on the paper written by the tool creators Javier Luis Cánovas Izquierdo
and Jordi Cabot [3], the discovering process is a model-based process which is com-
posed of three phases: pre-discovery phase, single-service discovery phase, and multi-
service discovery phase. The first phase aims to extract the low-level a JSON model
out of a JSON document. The second phase is to obtain the schema information of

1https://eclipse.org/
2http://www.eclipse.org/ecoretools/
3http://som-research.uoc.edu/tools/jsonDiscoverer/

23

https://eclipse.org/
http://www.eclipse.org/ecoretools/
http://som-research.uoc.edu/tools/jsonDiscoverer/

3. Methodology

a JSON document. The last phase aims at obtaining common schema of more than
one JSON documents. Since the data of the sub-system Visiblity Control SPA that
we extracted from the Database was in one single JSON document, multi-service
discovery phase was not part of the work.

In our case, choosing JSON discoverer tool has been a good practice since data in
the Database was extracted in JSON format. To create a meta-model and the model
instance, we simply imported the JSON file as an input to the tool. The analysis of
the obtained raw JSON file has been discussed in Section 4.1.3.1.

Figure 3.4: A screenshot of Graphical Ecore Editor in Eclipse. The blue area
(left) is the editor where meta-model can be created. The red area (right) is the

editor for creating model-instance.

3.3.2 Optimization of JSON data
The data retrieved from the Database had so many information that were somehow
not needed in the visualization. The first step we did was to find a way to omit the
data that was not needed and keep the one that we only needed to visualize. The
optimized JSON content was applied again to the JSON discover to get the meta-
model and the model instance.The detailed explanation of how this was perfomed
is covered in Section 4.1.3.2.

3.3.3 Coding
Apart from the raw JSON data extracted from the Database which was done in
cycle 1, another set of data was collected from interviewing stakeholders in cycle 2.
We started the analysis of the data by listening to the tape records twice in order
to understand the conversations and to get some key points that the interviewee
emphasized during the interviews. The process continued by transcribing the tape
records word by word manually. During this analysis, we would have applied voice
recognition software but we decided not to use any due to the fact that the software

24

3. Methodology

has to be trained for each voice, and it requires speakers to speak slowly making the
interview inefficient.

The transcript files were then analyzed using coding method. To give a basic de-
scription what coding is, it is one of the methods used in qualitative data analysis
especially the analysis of interview transcripts. It is the process of capturing es-
sential words or phrases from set of data that give the same ideas, themes, and
categories [17]. Before starting the coding process, a list of codes were created
based on the goals of the pre-determined questions presented in Section 4.2.2. Once
we had the list of codes, each of us began coding the transcripts files. Together, we
then compared the results from coding to summarize the coded data. The list of
codes and the results are presented in Section 4.3.2.1 and Section 5.2, respectively.

3.4 Take action
After the data collection in cycle 1, we developed an automated visualization from
the data extracted from the Database using the concept in MDSE described in 2.3.
A meta-model and model-instance were constructed. An Acceleo template was cre-
ated for a M2T transformation. A textual description generated from the template
was the input of PlantUML to create an automated visualization. The implemen-
tation of this step has been elaborated in Section 4.1.4.

Due to the issue of time and the workload of the report, the take action step of cycle
2 is reported on the Section 8.2, with the list of prioritized stakeholders needs which
have also been discussed on Section 6.1.

25

4
Implementation

T his thesis work was conducted using AR research methodology introduced
in Chapter 3. This section presents how steps of the methodology were

performed in each cycle as shown in Figure 4.1, starting with the steps in cycle 1
which are focus section, data collection, data analysis and interpretation, and take
action. Actions preliminary to cycle 2 consisting of how we selected stakeholders
and prepared for interviews are explained in Section 4.2. The implementation of
cycle 2 is then presented in Section 4.3.

Cycle 2Cycle 1
Focus

selection
Data

collection
Data analysis and

interpretation
Take
action

Data
collection

Data analysis and
interpretation

Cycle 2Cycle 1

Focus selection Data collection Data analysis and
interpretation Take action Data collection Data analysis and

interpretation

Cycle 2Cycle 1

Focus selection Data collection Data analysis and
interpretation Take action Data collection Data analysis and

interpretation

Cycle 2Cycle 1

Focus selection Data collection Data analysis and
interpretation Take action Data collection Data analysis and

interpretation

Cycle 2Cycle 1

Focus selection Data collection Data analysis and
interpretation Take action Data collection Data analysis and

interpretation

Cycle 2Cycle 1

Focus selection Data collection Data analysis and
interpretation Take action Data collection Data analysis and

interpretation

Future
work

Extract data
from the
Database

Meet the first
stakeholder

Optimize the
data from the

Database

Create
automated

visualization
using MDSE

Interview the
other three
stakeholders

Transcribe and
code interview

transcripts

Figure 4.1: Overview of the steps performed in this study.

4.1 Cycle 1: Creating automated visualization
This section explains the first four steps shown in Figure 4.1. The first step is about
identifying the scope of visualization which is being covered in section 4.1.1. In
the section 4.1.2, we discuss a bit about the implementation of data collection, the
section 4.1.3 covers implementation of data analysis and interpretation and the last
step of the cycle 1 is presented in section 4.1.4.

4.1.1 Focus selection
At VCG, the Database is being used for storing data of the vehicles such as re-
quirement documents, software components, ECUs, LCs, and LACs. These data
are structured similar to directory structure1 of an operating system, comprising
folders and sub-folders,a also shown in figure 4.2.

To understand how the Database has been used in development process, we arranged
a meeting with a software developer who works with one of the biggest and impor-

1The organization of files into hierarchy of folders.

27

4. Implementation

tant ECUs within a car, which we call it the Node in this report. In the meeting, he
explained that searching for an artifact in the Database was a big challenge because
of the lack of visualization features in the tool. One of the examples that he gave
us to explain the challenge was, considering a problem with LC where a fault signal
from a port of one of its associated LCs was sent to. To solve the problem, the
in-house developers responsible for this task must look for the port using a search
text-area field in the Database. The tool then returned a list of more than 20 ports
of the associated LCs, which the developers will need to check them one by one
unless if they already knew by experience which port they should look for. Thus,
having a visualization of the signals sent/received among LCs would be an advan-
tage in this aspect.

Figure 4.2: A screenshot of the Database where the data is stored hierarchically.

The discussion with the software engineer was for approximately two hours and it
was then we figured that we needed to visualize the logical view in the Database
which will include LCs, ports and data elements. He also proposed to visualize the
physical view in the Database which would include the ECUs.

The relationship between ECU and LC can be elaborated as follows : first of all,
an ECU can have one to many software compositions (SWCs). The SWC is simply
a group of LCs. The LC can have zero to many ports and each port has one data
element, it is the data element that connects one LC to another through ports. For
example, LC 1 with PORT 1 can be linked to LC 2 with PORT 2 only if PORT 1
and PORT 2 have the same data element.

In the discussion with the software engineer, we decided to visualize a sub-system.
An example of a simple sub-system can be observed from the Figure 4.3 on the
top left, there is a small box named SUBSYSTEM and inside of it, there are two
ECUs, one ECU has two LCs and another ECU has one LC. The LCs are con-
nected together via ports. The LCs inside the sub-system are also connected to
other LCs outside the sub-system but our scope is only for LCs inside a single sub-
system. For this report, we visualized a specific sub-system which we gave it a name

28

4. Implementation

Visibility Control, this sub-system has 18 LCs and 179 ports at the moment.

ECU

LC LC

ECU

LC

SUB-SYSTEM

ECU

LC

ECU
SWC

LC LC

ECU
SWC

LC

Figure 4.3: An example of a visualization given by the software engineer.

4.1.2 Data collection
The data of the sub-system Visibility Control was extracted from the Database
with help from our industrial supervisor. The data were also censored due to security
policy of the company and we had no access to the Database by all means.

4.1.3 Data analysis and interpretation
In this section, we started by analysing the raw JSON data, the process is explained
in section 4.1.3.1. The next part of this section covers the step we did on optimizing
the raw JSON data, it is presented in section 4.1.3.2.

4.1.3.1 Analyzing raw JSON data

On this sub-section, we had to understand the meaning of the JSON objects found
on the retrieved data and their relations with one another. The static file had
approximately 45 thousands line of code. The beginning of the static file that was
retrieved from the Database is shown in the Listing 4.1 below:

1 {
2 "elementName": "Visibility Control",
3 "name": "Visibility Control",
4 "state": "In work",
5 "classType": "GSUBSYSTEM",
6 "variant": "MAIN",
7 "domain": "VCC_EEDM",
8 "creationUser": "Anonymous",
9 "className": "SUBSYSTEM",

10 "contentRelations": [
11 {
12 "destination": {

29

4. Implementation

13 "elementName": "LTC 1",
14 "name": "Name for LTC 1",
15 "classType": "GLTC",
16 "variant": "MAIN",
17 "domain": "VCC_EEDM",
18 "creationUser": "Anonymous",
19 "className": "LTC",
20 "state": "Frozen",
21 "modificationUser": "Anonymous",
22 "modificationDate": "2013-06-25T05:13:36+0000",
23 "attributes": {
24 "MaximumLatency": "250",
25 "Access control": "Access allowed",
26 "NominalLatency": "-1",
27 "RefinedConstraints": [],
28
29 },
30 "creationDate": "2013-05-02T11:48:25+0000",
31 "id": "1937212",
32 "elementId": "1169278",
33 "revision": 0
34 },
35 "contentAttributes": {}
36 },
37
38 }

Listing 4.1: The section found in the beginning of the visualized static file

From the Listing 4.1 shown above, the variable elementName that appears in Line
1 of the file specifies the name of the sub-system that is visualized which has the
value Visibility Control. The variable className that appears in Line 9
determines the class of the static file that is visualized, it has the value SUBSYSTEM.

In order to explain the relationships between JSON objects found in the retrieved
file, we created a meta-model for the purpose of explaining the contents of the file,
see Figure 4.4.

30

4. Implementation

Figure 4.4: Meta-model of the raw JSON document to explain the content of the
retrieved data from the Database.

31

4. Implementation

The meta-model shown in the Figure 4.4 has sum up most of the variables found
in the static file. The classes that we needed the most are the contentRelations,
destination and attributes. It can be noticed that the class contentRelations
has an association of one to many with the class destination and also the class
destination has an association of zero to one with the class contentRelations.
Also, the class destination has an association of one to one with the class
attribute.

The objects of the class destination could be LC, port, data-element, data-type,
REQSET, etc. In order to elaborate this, we will give an explanation of how it
appears in the JSON file :

1. a LC which is a JSON object of a class destination has a JSON object of
a class contentRelations, let’s name it CR1,

2. a JSON object CR1 can have an array of JSON objects of a class destinations,
a port being one of the JSON object of a class destination in that array,

3. a port has a JSON object of a class contentRelations, let’s name it CR2,
4. a JSON object CR2 can have an array of JSON objects of a class destinations,

a data-element being one of the JSON object of a class destination in that
array,

5. a data-element has a JSON object of a class contentRelations, let’s name
it CR3,

6. a JSON object CR3 can have an array of JSON objects of a class destinations,
a data-type being one of the object of a class destination, etc.

The Listing 4.2 below presents the LC 1, its port and its data element, some data
have been omitted to allow the possibilities to see how the LC, port, data-element
and data-type are related:

1 {
2 "destination": {
3 "elementName": "LC 1",
4 "name": "Name for LC 1",
5,
6 "contentRelations": [
7 {
8 "destination": {
9 "elementName": "PORT 1",

10 "name": "Name for PORT 1",
11,
12 "contentRelations": [
13 {
14 "destination": {
15 "elementName": "DATA-ELEM 1",
16 "name": "Name for DATA-ELEM 1",
17
18 "contentRelations": [
19 {

32

4. Implementation

20 "destination": {
21 "elementName": "DATA-TYPE 1",
22 "name": "Name for DATA-TYPE 1",

.....,
23 "attributes": {
24 "IODirection": "REQUIRE",
25 ...
26 }\\

Listing 4.2: A sample part of a JSON file showing the relationship between LC,
port and data-element

A JSON object with the name attributes can be noticed from the Listing 4.2 at
line 145, inside this object, there is a variable with the name IODirection. The
variable IODirection determines whether a port provides to another port or a
port requires another port. The principle in this context of require and provide is
that it explains about a dependency between ports and when it comes to visualize
the connection between LCs, we took a look at this variable to determine on how
to map the ports in a visualized component diagram.

4.1.3.2 Optimizing raw JSON data

As it can be observed in the listing 4.1, the raw JSON data had lots of information
that was necessary to be filtered. What we did was to write an algorithm that is
able to read the original JSON data and get only the data that we used in the
visualization. The optimized data included the names of LCs, the ports for each
LCs, the name of the ports, the IODirection of the port which determines the
connection between the ports and the data-element of the ports.

To explain how the algorithm works, we will write down the steps that we followed:
1. Read from a original JSON file
2. Get the name of the sub-system
3. Introduce loop 1 that gets all the LCs of the sub-system.
4. Introduce loop 2 inside loop 1 that gets all the ports of a single LC
5. Get the name of the port
6. Get the name of the data-element
7. Get the value of IODirection of the port
8. End of the loop 2, End of loop 1
9. Write an optimized content to a new file

The result of the algorithm that does a JSON optimization appears in the listing4.3
below :

1 {
2 "elementName": "Visibility Control",
3 "hasLC": [
4 {
5 "elementName": "LC 1",
6 "hasPort": [
7 {

33

4. Implementation

8 "elementName": "PORT 1",
9 "IOdirection": "REQUIRE",

10 "dataElement": "DATA-ELEM 1"
11 }
12]
13 },
14 {
15 "elementName": "LC 2",
16 "hasPort": []
17 },
18 {
19 "elementName": "LC 3",
20 "hasPort": [
21 {
22 "elementName": "PORT 2",
23 "IOdirection": "REQUIRE",
24 "dataElement": "DATA-ELEM 2"
25 },
26 {
27 "elementName": "PORT 3",
28 "IOdirection": "REQUIRE",
29 "dataElement": "DATA-ELEM 3"
30 }
31
32 }

Listing 4.3: A sample part of the optimized JSON content

4.1.4 Take action

This is the last step of the cycle 1, it has three sections. In Section 4.1.4.1, we
explained on the steps we came up with meta-model and the model instance. The
first automated visualization prototype is discussed in Section 4.1.4.2 and the final
automated visualization prototype is discussed in Section 4.1.4.3.

4.1.4.1 New meta-model and model instance

Once the raw JSON data is optimized (Listing 4.3), we created a meta-model
and a model instance using the open-source tool JSON discoverer. With the op-
timized version of the raw JSON file, JSON discover provided us a very-simple-
but-efficient meta-model. From Figure 4.5, the meta-model comprises three classes
SubSystem, HasLC, and HasPort. Each class has at least one attribute (prop-
erty). SubSystem has an attribute elementName which represents the name of
sub-system. The class HasLC has one attribute elementName which represents
the name of LC. The class HasPort has three attributes namely elementName
containing the name of port, IODirection specifying the type of port (PROVIDE
or REQUIRE), and dataElement keeping the name of port. All attributes are of
type String.

34

4. Implementation

Figure 4.5: Meta-model of the optimized JSON document discovered by JSON
Discoverer tool.

The meta-model also has two class relationships: hasLC and hasPort. The first
relationship is a composition meaning that the class HasLC will be destroyed if the
class SubSystem is destroyed. The same type of relationship is also applied to
the relationship between the class HasLC and HasPort. Both relationships have
multiplicity 1..* according to the optimized JSON document. Note that the anno-
tations coverage included in all classes are resulted from the the JSON grammar
rules the authors of JSON discoverer created to guide the generation of the JSON
meta-model [3].

As it has been mentioned that JSON discoverer also provides the discovery of data
model (model instance). Using the same optimized JSON document, we obtained a
model instance in XML2 Metadata Interchange (XMI) file. A part of the file can be
seen in Listing 4.4.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <discoD:SubSystem
3 xmi:version="2.0"
4 xmlns:xmi="http://www.omg.org/XMI"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
6 xmlns:discoD="http://jsonDiscoverer/discovered/SubSystem"
7 xsi:schemaLocation="http://jsonDiscoverer/discovered/SubSystem

metamodel.ecore" elementName="Visibility Control">
8 <hasLC elementName="LC 1">
9 <hasPort elementName="PORT 1" IODirection="REQUIRE" dataElement

="DATA-ELEM 1"/>
10 </hasLC>
11 ...
12 </discoD:SubSystem>

Listing 4.4: Data model or model instance discovered by JSON discoverer

2Extensible Markup Language

35

4. Implementation

Using the editor from the EcoreTools Eclipse plug-in, the model instance and the
properties of each class are visualized as seen in Figure 4.6. From the model instance
(left), it can be seen that the attribute elementName of the class SubSystem is
"Visibility Control". It has 18 children (HasLC), LC 1, LC 2, LC 3, ...,
LC 18. Each child has its own HasPort, PORT 1 belongs to LC 1, for example.
The properties of each class are shown on the right side of the figure. Note that the
model instance was constructed conforming to the meta-model in Figure 4.5.

Figure 4.6: Model instance resulted from the optimized JSON document.

4.1.4.2 Automated visualization prototype

Up to this point, we already had the meta-model and the model instance from the
optimized JSON document. The next step was to do M2T transformation, which
could be done by create an Acceleo template for textual description. The complete
template is included in Appendix A Section A.1. Only important pieces of code will
be explained in this section.

Defining sub-system

1 ...
2 [template public generateElement(subsystem : SubSystem)]
3 ...
4 artifact [subsystem.elementName.replaceAll(’ ’, ’’)/] {
5 ...
6 }

Listing 4.5: Defining artifact for the sub-system

The sub-system Visibility Control is visualized as an artifact following
by its name. To be able to get the name, we first created a SubSystem-type

36

4. Implementation

parameter, namely subsystem. With this parameter, we could access its attribute
elementName. A replace operation is used to remove white space in the value
because PlantUML does not support name with white space. Thus, the name printed
in the visualization is Visibility Control.

Defining LCs

1 ...
2 [for (lc:HasLC | subsystem.hasLC)]
3 [’[’/][lc.elementName.replace(’ ’, ’’)/][’]’/]
4 [/for]
5 ...

Listing 4.6: Defining component for the LCs

Inside the artifact, a for-loop statement is implemented for retrieving all LCs
belonging to the sub-system. The for-loop has a parameter lc belonging to the class
HasLC which can be accessed via the class relationship hasLC. The name of the
LCs can be obtained by lc.elementName, and the replace operation is used
as well to remove white space.

Defining ports and connections

1 ...
2 [for (lc:HasLC | subsystem.hasLC)]
3 [for (port:HasPort | lc.hasPort)]
4 [for (lc2:HasLC | subsystem.hasLC)]
5 [for (port2:HasPort | lc2.hasPort)]
6 [if ((port2.dataElement = port.dataElement) and not (port2.

elementName = port.elementName) and not (lc.elementName = lc2.
elementName)) and (lc2.elementName.replace(’ ’, ’’).substring(3).
toInteger() > lc.elementName.replace(’ ’, ’’).substring(3).
toInteger())]

7 [if not (port.IODirection = port2.IODirection)]
8 [lc.elementName.replace(’ ’, ’’)/] "[port.elementName.substring(6)

/][’-’/][port.dataElement.substring(11)/]" [if (port.IODirection
= ’REQUIRE’)]#--([elseif (port.IODirection = ’PROVIDE’)]#--0[/if
][if (port2.IODirection = ’REQUIRE’)])--#[elseif (port2.
IODirection = ’PROVIDE’)]0--#[/if] "[port2.elementName.substring
(6)/][’-’/][port2.dataElement.substring(11)/]" [lc2.elementName.
replace(’ ’, ’’)/]

9 [elseif (port.IODirection = port2.IODirection)]
10 [/if]
11 [/if]
12 [/for]
13 [/for]
14 [/for]
15 [/for]
16 ...

Listing 4.7: Defining ports and connections

37

4. Implementation

Ports and connections in textual description has to be in the same line, in the fol-
lowing syntax:

A1 "B1-C1" #-(0-# "B2-C2" A2

Assume that A is the name of a LC, B is the number part of a port name, for ex-
ample, 1 is the number part of PORT 1, and C is the number part of data element
of the port. The connection between two ports was defined based on the type of a
port (attribute IODirection), #-(for REQUIRE port and #-O for PROVIDE
port.

To obtain the name of all LCs and their ports, we created a new for-loop looping
through HasLC and an inner for-loop to get port(s) of each LC looping through
HasPort. This results in obtaining A1 "B1-C1". After that, we created another
two for-loops inside the inner for-loop in order to search for each LC’s pair, resulting
in obtaining "B2-C2" A2. An if-statement is used to pair two ports by checking if
their attributes dataElement have the same value, and validate that the two LCs
are not the same LC. For the connection between two ports, two if-statements are
created, one to check the type of each port, and another to pair between two ports
having different types. This results in having two representations of connections as
follow:

• REQUIRE-PROVIDE, #-(0-#
• PROVIDE-REQUIRE, #-0)-#

From the template, Acceleo generated a textual description that could be visualized
using PlantUML. Listing 4.8 shows a piece of it.

1 @startuml
2

3 skinparam nodesep 80
4 skinparam ranksep 80
5

6 artifact Visibility Control {
7 [LC1]
8 [LC2]
9 [LC3]

10 ...
11 LC1 "1-1" #--(0--# "165-1" LC18
12 LC3 "2-2" #--(0--# "144-2" LC17
13 LC3 "4-4" #--(0--# "116-4" LC10
14 ...
15 }
16

17 @enduml

Listing 4.8: A piece of textual representation generated from Acceleo template
engine

The result from the textual description is presented in Chapter 5 Section 5.1.1.

38

4. Implementation

The automated visualization prototype of the sub-system Visibility Control
can be seen in Section 5.1.1.

4.1.4.3 Final automated visualization prototype

Once the automated visualization prototype was created, we arranged the second
meeting with the software engineer for presenting the prototype and getting some
feedback regarding the prototype. We found out that the most important informa-
tion that should be included in the visualization was the dataElement properties
of the class HasPort, not elementName. Because of this reason, we improved the
automated visualization by introducing a representation for data element as well as
redefining sub-system, and ports and connections.

Defining data element

1 ...
2 [for (lc:HasLC | subsystem.hasLC)]
3 [for (port:HasPort | lc.hasPort)]
4 rectangle [port.dataElement.replace(’-’,’’).replace(’ ’,’’)/]
5 [/for]
6 [/for]
7 ...

Listing 4.9: Defining rectangle for the data element

Rectangle was used for representing all data elements provided/required by ports.
Two for-loop statements was created. The first one is for retrieving all LCs belonging
to the sub-system. The second one is for retrieving all ports belonging to each
LC. The data element can be obtained by port.dataElement, and two replace
operations are used as well to remove dash symbol and white space.

Redefining sub-system

1 ...
2 package "[subsystem.elementName.replaceAll(’ ’, ’’)/]"{
3 ...
4 }
5 ...

Listing 4.10: Redefining package for the sub-system

Sub-system was redefined from Section 4.1.4.2. Instead of using artifact, rectangle
is used to represent the sub-system.

39

4. Implementation

Redefining ports and connections

1 ...
2 [for (lc:HasLC | subsystem.hasLC)]
3 [for (port:HasPort | lc.hasPort)]
4 [if (port.IODirection = ’PROVIDE’)]
5 [’[’/][lc.elementName.replace(’ ’, ’’)/][’]’/] -0 [port.dataElement.

replace(’-’,’’).replace(’ ’,’’)/]
6 [/if]
7 [if (port.IODirection = ’REQUIRE’)]
8 [’[’/][lc.elementName.replace(’ ’, ’’)/][’]’/] -([port.dataElement.

replace(’-’,’’).replace(’ ’,’’)/]
9 [/if]

10 [/for]
11 [/for]
12 ...

Listing 4.11: Redefining ports and connection

Ports and connection syntax was redefined as follow:

A -(D

Assume that A is the name of a LC, and D is the data element. The connection be-
tween a port and its data element was defined based on the type of a port (attribute
IODirection), -(for REQUIRE port and -O for PROVIDE port.

From the template, Acceleo generated a textual description for the final version of
the automated visualization. Listing 4.12 shows a piece of it.

1 @startuml
2 ...
3 package "Visibility Control"{
4 rectangle DATAELEM1
5 rectangle DATAELEM2
6 rectangle DATAELEM3
7 ...
8 [LC1] -(DATAELEM1
9 [LC3] -(DATAELEM2

10 [LC3] -(DATAELEM3
11 ...
12 }
13 @enduml

Listing 4.12: A piece of textual representation generated from Acceleo template
engine for the final version of the automated visualization

The result from the textual description is presented in Chapter 5 Section 5.1.2.

40

4. Implementation

4.2 Preliminary to cycle 2

4.2.1 Selecting stakeholders
We organized a second meeting with the software engineer (introduced in Section
4.1.1) and he gave us some feedback to work on. The obtained feedback lead us to
the second visualization. In the meeting, we explained to him our next step which
was having interviews with other stakeholders to get more requirements and differ-
ent perspective on the visualization of the Database. Since the visualization was
based on a single sub-system Visibility Control, we preferred to interview
the stakeholders who were familiar with the sub-system and the entire Database as
a whole. As a result, he gave us 4 contacts, 2 of the stakeholders were working at the
System level and the remaining 2 were working at the sub-system level. Luckily, we
were able to complete 3 interviews which included one stakeholder from sub-system
level and the remaining 2 stakeholders were from the system level. We did not had
a chance to interview the last person.

The first stakeholder had a position of test engineer at the company. She has been
working at the company for 3 years and she has been using the Database at least 2
days a week. Her responsibilities have been to:

• Specify test cases and test procedures for each requirement in the test domain
for system level and all functional level

• Generate test report on Database, DVM (design verification method)
• Upload the test results to Database

The second stakeholder was previously a system designer at the sub-system level
but he is now a software developer at the company. (Note that this stakeholder is
not the same person in Section 4.1.1). He has been working at the company for
approximately 4 years and he has been using the Database several times a week.
His responsibilities have been to:

• Responsible for different functions (locking and visibility)
• Work with the Node, in-house software development

The third stakeholder had the position of system designer at the company. He has
been working at the company for 2 years and he has been using daily the Database.
His responsibilities have been to:

• Define signaling within a system, and connections to other system.
• Write system level requirements
• Write functional realization requirements (depending on the size of a system)

4.2.2 Preparation for interviews
After we completed with the design of the automated visualization prototype. We
conducted three semi-structured interviews. During each interview session, an in-
terviewee was asked many questions from the list in sequence, but he/she was not

41

4. Implementation

limited to those pre-determined questions. Some questions straying from the list
were asked if the interviewers found it appropriated. All conversions in the inter-
views were recorded which were then transcribed and analyzed later to answer the
research questions.Below is the list of the applied steps when formulating questions
for interviews:

1. We established the goals of the interviews. The goals were:
• To get to know the interviewee, the position and responsibilities
• To get an understanding of how the interviewee use the Database
• To identify the needs of the interviewee towards the automated visual-

ization
• To get the opinion of the interviewee towards the automated visualization

prototype
2. We developed the list of questions of interests.

• We, as the interviewers, developed a list of pre-determined questions aim-
ing at answering the two research questions in Section 1.3 and their opin-
ions on the automated visualization prototype. The list of questions can
be seen in Appendix B.

3. We designed a template which had a list of questions to be asked during the
interview.

• It was said in the paper [1] that we needed to select someone with enough
knowledge in the area to review the interview questions. As for the
validation of the template, we had a support from our supervisor Truong
to make sure we had the correct questions and properly formulated.

4.3 Cycle 2: Identifying needs of stakeholders
The second cycle of AR methodology has two steps, the first step involved data
collection presented in Section 4.3.1. The second step of this cycle covers the data
analysis and interpretation, this is presented in Section 4.3.2.

4.3.1 Data collection
As mentioned in Section 3.2.2, we applied semi-structured interview to get the needs
from stakeholders. This step was done soon after we completed the selection of
group of stakeholders which has been explained in Section 4.2.1 and setting up the
interview questions explained in Section 4.2.2.

4.3.2 Data analysis and interpretation
The last step we followed in this AR methodology was to analyze the data and
interpret it. This is firstly covered in Section 4.3.2.1 where we have discussed on
the way we have done the coding on the interview transcripts. The second section
of this part is about categorizing the needs of stakeholders that have been obtained
from the coded interview transcripts, this is discussed in Section 4.3.2.2.

42

4. Implementation

4.3.2.1 Coding interview transcripts

After another set of data from interviewing the stakeholders were collected. We
proceeded to the data analysis by listening to the tapes recorded during each inter-
view twice in order to get familiar with the conversations. The tape records were
then transcribed manually and word by word. We also performed validation of the
transcripts according to Basili’s methodology mentioned in Section 3.2.2 by reading
through the files and listening to the records at the same time.

The next step of the data analysis was to perform the coding on the transcripts to
capture the key phrases/sentences spoken by the interviewees. We decided to use
a software for qualitative data analysis called NVivo to help handling the coding
process. In the beginning of the process, we created a list of codes and divided
them into four categories corresponding to the goals of the pre-determined interview
questions, as follow:

1. Category: Personal info
(a) code: NAME
(b) code: POSITION
(c) code: RESPONSIBILITIES

2. Category: Use of the Database
(a) code: DURATION
(b) code: FREQUENCY
(c) code: ADVANTAGES
(d) code: CHALLENGES

3. Category: Specific task
(a) code: TASK DESCRIPTION
(b) code: INFORMATION NEEDED
(c) code: SEEKING FOR INFORMATION

4. Category: Automated visualization
(a) code: OPINIONS
(b) code: NEEDS

The first category consists of three codes, NAME for the name, POSITION for the
position, and RESPONSIBILITIES for the responsibilities of each interviewee. The
second category consists of four codes, emphasizing the use of the Database. It basi-
cally covers how long the interviewees have been using the Database, how often they
use it, the good things and the problem that they face when using the Database.
The third category has three codes. The codes aim at inquiring the most recent task
that the interviewees were assigned to, including information that they needed and
how they looked for it in the Database. The fourth category consists of two codes,
capturing their opinions on the automated visualization prototype and the needs of
them towards the automated visualization.

The transcripts were coded twice by each of us, we compared the results together
in order to check if something was missing, or miscoded. The results from the
comparison were then finalized as can be seen in Section 5.2.

43

4. Implementation

4.3.2.2 Categorizing needs of stakeholders

After the data from the stakeholders were analyzed, it was then put into categories.
We came up with 3 categories which were Dependencies, Clusters and Features.
Note that these categories depend on the code of NEEDS which we have presented
in section 4.3.2.1.

The first category which is Dependencies relies more on the connection between
artifacts of car. The artifact could be requirements, ECUs, LCs, and SWCs. The
key idea of having this category is that the stakeholders insisted on being to trace
the connection between one artifact of a car to another artifact and that is why we
have this category.

The second category which is Clusters concerns grouping artifacts to show their
parent artifact. One example could be considered on several LCs which belongs to
a certain ECU. In this example, the idea is to indicate to which ECU this group of
LCs belong. The answer that, they all belong to a single ECU. The same principle
applies to a group of requirements which belongs to a single LC, a group of ECUs
which belongs to a single SWC, also a group of ECUs which belongs to a single
subsystem.

The last category which is Functional Requirements is based on the additional things
that the stakeholders wanted to see in the visualization. This can be for example new
requirement or something relating to improve the attractiveness of the visualization
output.

44

5
Results

T his Section presents both the prototype and the final version of the automated
visualization which are the results from the textual descriptions generated

from Acceleo templates. The results from coding are presented here in Section 5.2.
Section 5.3 presents the results from analyzing the needs of stakeholders aimed to
answer the research questions. The results from coding the transcripts and categories
of needs of the stakeholders are also presented here. In addition to that, this section
also presents how to use the tools both developed during this thesis work and the
open-source projects.

5.1 Automated visualization

5.1.1 Automated visualization prototype

Figure 5.1 is Automated visualization prototype of the sub-system Visibility
Control. The sub-system has 18 LCs represented by component and 179 ports
represented by small squares attached to each LC according to the PlantUML syn-
tax presented in Table 2.1 in Chapter 2. The lines show the connections between
the ports on different LCs represented by -0, or -(. The LCs which do not have
ports nor connection are the ones missing the connection with the rest of the LCs.
These are LC2, LC4, LC16 and LC16. Some of the LCs seems to be having a lot of
ports and overlapping of data in it, these are LC3, LC6, LC10, LC17, LC18. The
reason to that it is because the ports of these LCs connect to many other ports.

However, there are some limitation of PlantUML. One of the limitations is that
the tool does not allow users to move any components once they are rendered from
textual description. This makes quite a big impact to our visualization since the
sub-system has a large number of artifacts.

The automated visualization prototype gives an overview of how the artifacts in the
sub-system are connected. However, the prototype has to be improved. Another
limitation that can be seen from Figure 5.1 is, there are some overlapping texts in
the visualization which makes it difficult to read. These texts are quite important
because they represent the data element sent to/received among ports.

45

5. Results

Figure 5.1: Automated visualization prototype.

5.1.2 Final automated visualization prototype
After the automated visualization prototype was presented to the Software Devel-
oper who gave us the scope, we took his feedback into account and improved the
visualization. Figure 5.2 is the results after the improvement. The data used were
the same set. The name of the ports were omitted, and we emphasized on the
representation of the data element.

46

5. Results

Figure 5.2: Final version of the automated visualization.

47

5. Results

5.2 Coding results

The data collected from interviewing the stakeholders were transcripted and ana-
lyzed using the coding method were explained in Section 4.3.2.1. In this section,
the results from the coding are presented by diagrams for four coding categories in
the following sub-sections. Each diagram consists of the three objects: grey rectan-
gle represents coding category, oval represents code, and floating object represents
coded data from the transcripts.

5.2.1 Category: Personal info

Diagrams in Figure 5.3, 5.4, and 5.5 illustrate the codes and their coded data un-
der the category Personal info of the stakeholders (interviewees). As it has been
introduced, the category has three codes: NAME is used for data in the transcripts
that provide the name of the stakeholders, POSITION states the their positions,
and RESPONSIBILITIES is for the data that describe the responsibilities of their
positions. Note that the interviewee’s names are omitted due to anonymity reason.

The first stakeholder (Figure 5.3) works as a test engineer and is responsible for
specifying test cases and test procedures for each requirement. After executing test
cases, she uploads the results to the Database. In addition to that, she also generates
Design Verification Method (DVM) report from the Database.

Personal info

NAME POSITION

RESPONSIBILITIES

<omitted> Test engineer

Specify test cases and test
procedures for eachrequirement
in the test domain for system
level and all functional level

Generate test report on the Database,
DVM (design verification method)

Upload the
test results to
the Database

Figure 5.3: Coding results of test engineer for Category: Personal info.

The second stakeholder (Figure 5.4) that we interviewed works as a software de-
veloper. His main responsibility for the position is to develop software for different
functions in-house.

48

5. Results

Personal info

NAME POSITION

RESPONSIBILITIES

<omitted> Software developer

Responsible for
different functions

Work with CEM,
in-house software

development

Figure 5.4: Coding results of software developer for Category: Personal info.

The third stakeholder (Figure 5.5) works as a system designer. His responsibili-
ties are to write function realization requirements, system requirements, including
defining signals and their connections with in a certain sub-system.

Personal info

NAME POSITION

RESPONSIBILITIES

<omitted> System designer

Write system level
requirements

Define signaling within a
system, and connections to

other system

Write functional realization
requirements (depending on

the size of a system)

Figure 5.5: Coding results of system designer for Category: Personal info.

5.2.2 Category: Use of the Database

Diagrams in Figure 5.6, 5.7, and 5.8 illustrate the codes and their coded data under
the category Use of the Database. The category has four codes: DURATION is
used for data in the transcripts that describe how long the stakeholders have used
the Database, FREQUENCY is for the data that provides information on the fre-
quency the stakeholders use the Database in a week, ADVANTAGES explains the
advantages of the Database they envision, and CHALLENGES is used for the data
that describe disadvantages/challenges the stakeholder have faced when using the
Database.

From the Figure 5.6, the test engineer has used the Database for 3 years, at least two
days a week. From her point of view, advantage of the Database is that it provides
statistical data such as the number of test cases that fail or pass, and the number
of test verification. Still, she finds the Database difficult to interact with, especially
when filling in information in the tool. It cannot cannot show which requirements
are for specific software releases. These are the data that she needs to see.

49

5. Results

Use of the
Database

DURATION FREQUENCY

ADVANTAGESCHALLENGES

3 years At least 2
days a week

Easy to give an answer
how many requirements
are tested (fail or pass)

Generate diagram
with statistic results
of test verification

Difficult to fill
in information

Hard to locate
desired information

Lack some information
(different requirements for
different software releases)

Figure 5.6: Coding results of test engineer for Category: Use of the Database.

From the Figure 5.7, the software developer has used the Database since the begin-
ning of his work at VCG for approximately 4 years, and several times a week. He
said that the tool has some advantages, for example, it provides him some informa-
tion he needs such as requirements on each signals. But, the Database is quite slow
from time to time. The tool does not provide the visualization of the connections
and signals among ECUs. Sometimes, the information such as revisions of each
artifact is not up-to-date or it is updated before the implementation, which causes
confusion. In addition to that, he finds it hard to handle variants of artifacts.

Use of the
Database

DURATION

FREQUENCY

ADVANTAGES

CHALLENGES

Approx. 4 years

Several times a week Easy to understand the
connection between

requirements and signals

Hard to follow
signaling between
different nodes

Quite slow (sometimes)

Not very good to visualize
how nodes are connected to

other nodes

Hard to handle
the variants

Revisions somewhere not
updated and some are updated

before even implemented

Difficult to find the desired
information unless you know

by experience

Figure 5.7: Coding results of software developer for Category: Use of the
Database.

From the Figure 5.8, the system designer has used the Database for 2 years on
daily basis. The advantages he sees when using the tool are that, it is the place
where the data are organized, and the data in the tool can be used as a reference
when communicating with other people both in the same and other departments.
However, the Database is slow from time to time and it does not have user-friendly
interface. Some background information of why an artifact is created is missing.

50

5. Results

Furthermore, information is misplaced sometimes due to human error. Some useful
features such as a feature to log deviations, and a feature to specify accepted/denied
requirements are not available. He also added that there are failures occurred once
per week.

Use of the
Database

DURATION
FREQUENCY

ADVANTAGES

CHALLENGES

2 years
Daily

Organized

Miss some background information (for example, the LC could
be created and it lacks the explanation of why it was created)

Some artifacts are
missing allocation due

to human error

Not possible to log the deviations, accepted
requirements and denied requirements

Have failures once per week

Slow (sometimes)

Not use-friendly to work

Can be used as a reference
when communicating with

other people

Take some effort
to locate artifact

Figure 5.8: Coding results of system designer for Category: Use of the Database.

5.2.3 Category: Specific task
The codes and their coded data under the category Specific Task are shown in the
diagrams in Figure 5.9, 5.10, and 5.11. The category has three codes: TASK DE-
SCRIPTION is used for the data in the transcripts that describe the details about
the most recent task of the stakeholders, INFORMATION NEEDED specifies what
information they need to complete the task, and SEEKING FOR INFORMATION
explains how the stakeholders look for those information.

The test engineer explained us her most recent task (see Figure 5.9), which was
to write test procedure of a sub-system based on System Requirement Description
(SRD). In order to write test procedure, she needed to know the requirements of
each LC under ECUs in the sub-system. These requirements were stored in the
Database, only she had to locate them using the search function provided by the
tool.

Specific task
TASK

DESCRIPTION

Write test procedure for a sub-system
Visibility for each requirement according to

SRD (System Requirement Description)

INFORMATION
NEEDED

Test all LC in the
sub-systemRequirements of each LC

Test procedures

SEEKING FOR
INFORMATION

Use search function in the
Database to find desired ECUs

and their requirements

Figure 5.9: Coding results of test engineer for Category: Specific task.

51

5. Results

The most recent task that the software developer used as an example was, to add
signals and ports from new requirements to the existing LCs and ECUs (see Fig-
ure 5.10). To be able to complete the task, he needed to know the name of the ECU
where the LCs belong to, and in which SWC. The way to find the information was
to contact the person responsible for the specific artifact, or else he had to know by
his experience where the artifact was located in the Database.

Specific task TASK
DESCRIPTION

Add signals to the existing LC
and ECU, for the new

requirement (Autonomous drive)

INFORMATION
NEEDED

Add new/existing ports
to the corresponding

SWCs level
Type of signals
(continuous or

sporadic signals)

Source and
destination of signals

SEEKING FOR
INFORMATION

Contact the responsible
person for a specific node

The name of the
responsible node

SWCs in CEM

Knowing by experience

Figure 5.10: Coding results of software developer for Category: Specific task.

The most recent task that the system designer worked on was to design a system for
autonomous drive by adding variants, and functional requirements into the system
(see Figure 5.11). The information that he needed was the requirements on the
system, including the corresponding LACs, LCs, SWCs, signals, sub-system, and
variants. To get hold of this information, he needed to talk to people responsible
for the artifacts, and to look for the artifacts in the Database using search function.

Specific task

TASK
DESCRIPTION

Design the system for the
autonomous drive vehicle

INFORMATION
NEEDED

Add variants,
features, functions

Signals

Requirements

SEEKING FOR
INFORMATION

Talk to
people

LCs, SWCs, sub-
systems, variants, LACs

Use search function in the Database
to find desired artifact

Figure 5.11: Coding results of system designer for Category: Specific task.

5.2.4 Category: Automated visualization
Diagrams in Figure 5.12, 5.13, and 5.14 illustrate the codes and their coded data
under the category Automated visualization. The category has two codes: OPIN-
IONS presents the stakeholders’ opinions on the automated visualization in general,
and NEEDS is the functional and non-functional requirements that the stakeholders

52

5. Results

want for the improvement of the automated visualization.

The test engineer also expressed her opinions on the automated visualization (see
Figure 5.12). She says that it is easy to understand how the sub-system Visibility
Control works, and how everything is connected. The visualization can provide
her some information that she needs, and it is faster than looking for it in the
Database.

Automated
visualization

OPINIONS

NEEDS
Which bus the signals

come from/go to

Source and destination
(ECU) of signals

Trace which ECU
has failed

Show different
revisions of LC

Which revisions is
connected to which SWC

ECUs

Which SRD connects
to which LC

Knowing if the signals is
internally, the signal which is

not sent out on the bus

Good information

Give a good
complete picture

Easy to understand
how the system works

Easier to understand how
everything is connected

Good to have when discussing
with someone that’s not involved

in this system

Give the
information quicker

Figure 5.12: Coding results of test engineer for Category: Automated
visualization.

However, the test engineer needs the automated visualization to combine physical
view (ECUs) and the logical view together. It should be possible to see the source,
destination of the signals, and the bus where the signals are sent to/received from
ECUs. On top of that, showing which SRD relates to which LC, and which revision
is connected to which SWC would be useful information for her.

The software developer gave us his opinions on the automated visualization (see
Figure 5.13). He says that it looks nice. The visualization has good information
on connections among artifact in the sub-system which makes it easy to understand
how the system works. He thinks that it might the visualization will be difficult to
deal with if the sub-system is bigger.

53

5. Results

Automated
visualization

OPINIONS

NEEDS

Source and
destination (ECU) of
signals (signalling)

Another layer of SWCs

Connection
among ECUs

Connection among SWCs
Checking everything

at a time

Another layer
of ECUs

Filter function, show only
providers, maybe only
signals from one ECU

Very nice

Good informationIt’s a good startEasy to understand
the connections in a

system

Might be a bit confusing if
a system is big, if you have

all the signals visible

Figure 5.13: Coding results of software developer for Category: Automated
visualization.

The software developer also specified his needs towards the automated visualiza-
tion. Similar to what the test engineer mentioned, another layer of ECUs and SWCs
would be beneficial. Being able to know the source and destination of signals sent
to/received from ECUs are useful. In addition to that, some features such as filter
function filtering only information that he needs to see would make the visualization
more efficient.

The software designer gave us his opinions on the automated visualization (see Fig-
ure 5.14). He says, it is beneficial for him. But, it still lacks of information. Similar
to the software developer said, the visualization might be difficult to deal with if the
sub-system is big. On top of that, it should be more user-friendly and intuitive.

He specified his needs towards the automated visualization. Adding another view of
LACs could be more beneficial for him. Similar to the test engineer’s needs, some
other important information such as buses the signals are sent to/received from, is
missing. Moreover, being able to sort and filter information shown on the visualiza-
tion, and to distinguish buses by different colors would be more efficient.

Automated
visualization

OPINIONS

NEEDS

Be able to select,
deselect to view

details

Be able to sort, filter

Right click to see more
information on signals (specific
PNC, partial network concept)

Diagram needs to be easily
understandable

Buses

Another layer
of LACs

Different colors for
different buses

Beneficial
Might look messy if a system is big

Should be user-friendly

Should be
intuitive

Lack information

Know which requirement
belongs to the specific ID

Figure 5.14: Coding results of system designer for Category: Automated
visualization.

54

5. Results

It is obvious that some needs are the needs towards the automated visualization in
common, and some needs are specific to individual’s role and responsibilities. The
common need is that, for example, they want to see which type of bus the signals
are sent on. The needs specific to each stakeholder is, for example, the test engi-
neer wants to see the number of failed ECUs, but this is not in the interest of the
software developer and the system designer since testing is not their responsibili-
ties. Similarly, the system designer wants the visualization to show the connections
among LACs which is another abstract level, but the test engineer and the software
developer did not mention about it as it is not useful for them.

5.3 Categories of needs of stakeholders

In the section 4.3.2.2, we introduced the categories of the analyzed needs of stake-
holders which were the dependencies, clusters and features. Again, in the sec-
tion 5.2.4, we have reported the results of the code of NEEDS, specifically shown
in figure 5.12, figure 5.13 and figure 5.14. So, in this section, we have categorized
the needs of stakeholders by considering what has been reported in the CODE of
NEEDS. These categories will aid us to answer the first research question.

5.3.1 Dependencies

Dependencies
Which revision does the

SWC belongs to

Which SRD does the LC
belongs to

Connections among ECUs

Connections among SWCs

Test engineer System designer

Software developer

Figure 5.15: Needs in Dependencies group.

If you take a look on figure 5.15, you will notice that under the category of Depen-
dencies, it has two needs which were mentioned by all stakeholders, these were the
connection between the ECUs and the connection between the SWCs. This may
imply that the ECUs and the SWCs are the artifacts that stakeholders interacts
with frequently. The remaining two needs in this category were mentioned by the
test engineer and she would like to to see the relationship that exists between dif-
ferent revisions of the SWCs and also to see the relationship between the LCs and
the SRDs. This is something that she said to be a challenge in her area of work in a
sense that it is important to know if she was testing the correct revision of the SWC.
It also applies if she is testing the requirements of the LCs which is found on the
SRDs, then it is also important to know if she was testing the correct requirements.

55

5. Results

5.3.2 Clusters

Clusters
ECUs

SWCs

LACs

Requirements of each LC

Test engineer

System designer

Software developer

Figure 5.16: Needs in Clusters group.

As of the category of Clusters in figure 5.16, we have ECUs which was mentioned
by all the stakeholders. As it was mentioned earlier, the ECU is said to have a com-
position of LCs, so this make a single cluster. The same concept of cluster applies
to SWCs, however the SWC is said to have a composition of ECU and this, in turn,
make a single cluster. LACs have a composition of LCs and this was only proposed
by the software developer. The last cluster was the requirements, since each LC is
said to have many requirements then it explains why we have this need under the
category of Clusters. This was only proposed by the test engineer since she mostly
work with testing requirements.

5.3.3 Features
The category of Features covers the additional things that can be added to the
visualization to make it more attractive and flexible. As you can see on the visual-
ization presented in Section 5.1.2, there are lots of input signals and output signals
on a LC, and that was a visualization of one small sub-system. So the additional
features categorized in this section would rather produce of a better outcome. The
system designer and the software developer proposed to have a feature of filtering,
this would allow the visualization output to show less input and output signals. The
implementer has a flexibility to apply different techniques so that he/she gets a nice
filtered visualization. The system designer had needs such as to have a sorting fea-
ture on the visualized output, to visualize bus types and to add color for each type,
to visualize the IDs of the requirements and how they are related. He also proposed
to have a more dynamic visualization where a viewer of the diagram could select,
deselect, or right click on artifact to view extra details if available on the visualized
artifact. The system designer also insisted on producing the output that was user
friendly.

The filtering was said to be beneficial but again the software developer said that it
was also good to visualize everything at a time, this means the filtering should be
to specific artifacts. The test engineer added features such as to be able to see the
failed ECU, this is based to her tasks of testing, so then, the ability to visualize such

56

5. Results

situation could be of benefit. She also added on the ability to different the internal
signals and the output signals.

Features
Diagram needs to be easily

understandable

Showing signal types
(internally or externally)

Showing the failed ECUs

Showing buses

Test engineer

Software developer

Filtering

Visualizing everything at a
time

Showing requirement ID

Bus coloring

Right click to see more
information on signals

Be able to select, deselect to
view details

SortingSystem designer

Figure 5.17: Needs in Features group.

57

6
Discussion

T his chapter presents answers to the research questions stated in Section 1.3
and on the second part of this chapter, we have explained on how to use the

source code that has resulted to the automated visualization.

6.1 Research questions
RQ 1. What are the needs of different stakeholders towards the automated visual-
ization of the electrical architectures?

The needs which we have presented in the Section 5.3 depend on the requirements
of tasks that each individual has been working on and also their responsibilities.
The responsibilities depend on the position of the individual at the company. One
important thing to note is that, the needs of stakeholders were based on the analysis
of each interview session. The elicitation process was not affected by our automated
visualization prototype. The prototype was shown to the stakeholders at the very
end of each interview session, which in turn allowed the stakeholders to think outside
of the box when discussing about their needs towards the visualization of Database.
In order to answer this research question, we will discuss the synergies that exist
between the categorized needs(dependencies, clusters and features) and the stake-
holders.

Dependencies : High synergy exists on the dependency about connection between
ECUs, this is because it has been mentioned by the first stakeholder (figure 4.3)
on the first cycle of the applied AR methodology and also by all stakeholders (fig-
ure 5.15) on the second cycle. The next dependency which seems to have moderate
synergy is the connection between SWCs and this was mentioned by two stakehold-
ers on the second cycle and also mentioned by the Software Engineer on the first
cycle (figure 4.3). The remaining dependencies can be said to have weak synergy
since they were only mentioned by the Test Engineer on the second cycle. These
dependencies are the relationship that exists between different revisions of the sys-
tem with respect to their corresponding SWCs and also the relationship that exists
between the SRD and the LC, which simply means to which SRD does the LC be-
longs. In this report, the two dependencies with weak synergy are mostly applicable
to Test Engineer and this can be due to the fact that the revisions and the SRDs of
the car keeps on changing, so it is important for the Test Engineer to know if she is
testing the correct(current or old) artifacts.

59

6. Discussion

Clusters : The first two clusters presented in figure 5.16 which are ECUs and SWCs
have high synergies with respect to the number of stakeholders participated in this
report, this can be explained in similar way as the dependency of the connection
between ECUs and dependency of the connection between SWCs. The cluster of
LACs can be said to have weak synergy as it was mentioned by only the System
Designer and the cluster of requirements of each LC can also be said to have a weak
synergy as it was mentioned by only the Test Engineer.

Features : This category corresponds to the needs that are neither in dependencies
category nor clusters category. It includes the properties that were proposed to be
added on the visualized diagram. These properties are:

1. Showing signal types (Externally and internally)
2. Showing the failed ECUs
3. Showing buses
4. Showing bus coloring
5. Showing everything at a time(all the ECUs of the system)
6. Showing requirement ID
7. The diagram needs to be understandable.

Suitability is the only non-functional requirement which can be seen from the re-
ported features in fig 5.17. As it was defined from the ISO/IEC paper [25]), suit-
ability is “the capability of the software product to provide an appropriate set of
functions for specified tasks and user objectives”. The features which support this
quality are filtering, sorting, right click to more information on the specified arti-
facts, be able to select and deselect to view details of an artifact. This quality is
expected to be applied on the tool that will provide the visualization.

In general, the category of feature seems to have weak synergy between the stake-
holders in almost all of the needs reported. The need to have filtering on the vi-
sualized output was mentioned by the System designer and the Software Developer
and so this need can be said to have moderate synergy. All in all, each stakeholder
interviewed can be seen to have their own preferences when it comes to features that
they want to be considered on the visualized diagram as well as the tool that does
the visualization.

RQ 2. How does an automated visualization of electrical architectures fulfil the
needs of stakeholders?

On the interviews with stakeholders, we showed them our visualization of electrical
architectures (Figure 5.2). Our diagram had visualized the LCs, signals, both the
source signal and the receiver signal of the sub-system Visibility Control.
The next paragraphs respond to RQ2 with respect to the perception of each stake-
holder towards the automated visualization.

60

6. Discussion

The test engineer was interviewed first, one of the difficulties that she mentioned
when using the Database was that, it is difficult to locate the desired information
in the Database. After we showed her the diagram, she responded that this type
of visualization give a good complete picture of the system. She also added that it
was easy to understand how the system works and how everything is connected. In
addition to that, she said sometimes they discuss with other stakeholders who do
not use the Database and with this visualization, it will help through their discussion.

The software developer was the second person to be interviewed, when asked about
the challenges of using the Database, he said that the Database did not have a good
way to visualize how nodes (ECUs) are connected and also he said that it was dif-
ficult to find the desired information unless someone knows by experience where to
look for a specific information. When we showed him our visualization, he responded
that it was very nice. Since our visualization did not have information of the nodes
which is useful for his work, he said it was a good start. Note that, the need to
visualize the nodes was reported to have high synergy on the first research question.
In general, the Software Developer responded that with this kind of visualization,
it was easy to understand the connections in a system.

The last person to be interviewed was the system designer. One of the mentioned
problem of using the Database was similar to the previous stakeholder which was the
difficulty in locating an artifact on a Database. Another problem that he mentioned
was that, sometimes an artifact could be wrongly allocated on the Database and
this could be due to human-errors. An example was when someone has allocated the
LC to the wrong LAC or maybe forgetting to allocate the LC to the specific LAC.
He mentioned that, this kind of mistakes can’t be observed in the Database unless if
you have a complete overview of the allocation of each LC to their responsible LAC.
So, when he was asked about the visualization, he responded that it was beneficial
in this kind of situations.

6.2 Use of the source code
This Section presents the tools required for creating an automated visualization,
including the how-to steps.

6.2.1 Tools required
6.2.1.1 Open source projects

• JSON Optimizer
A Java project developed in this thesis work. The project can be downloaded
from https://github.com/florencemayo/visualization1.git

• VisualizationModels.Acceleo
An Acceleo project developed in this thesis work. The project
can be downloaded from https://github.com/nattaponx/
VisualizationModels.Acceleo.git

61

https://github.com/florencemayo/visualization1.git
https://github.com/nattaponx/VisualizationModels.Acceleo.git
https://github.com/nattaponx/VisualizationModels.Acceleo.git

6. Discussion

• JSON Discoverer
A tool developed by Javier L. Cánovas Izquierdo and Jordi Cabot for discov-
ering the implicit schema (meta-model) and the data model (model instance)
of JSON documents. The tool consists of 7 projects:
– jsonDiscoverer
– jsonDiscoverer.coverage
– jsonDiscoverer.docs
– jsonDiscoverer.web
– jsonDiscoverer.tests
– jsonDiscoverer.examples
– jsonDiscoverer.zoo

The project can be downloaded from https://github.com/
SOM-Research/jsonDiscoverer.git. Note that only jsonDiscov-
erer project (core implementation) and jsonDiscoverer.examples are used to
create meta-model and model instance, but it is recommended to download
all the projects.

6.2.1.2 Eclipse software & plugins

• Eclipse Modeling Tools
An Eclipse modelling package containing tools and runtimes for
building model-based applications. The package can be down-
loaded from http://www.eclipse.org/downloads/packages/
eclipse-modeling-tools/mars2

• EcoreTools
A plugin for developing graphical modeling for ECORE. The plugin can be
downloaded from http://www.eclipse.org/ecoretools/

• Acceleo
A code generator for M2T transformation. The plugin can be dowloaded from
https://eclipse.org/acceleo/

• PlantUML
An Eclipse plugin version of PlantUML tool allowing users to create UML
diagrams from textual descriptions. The plugin can be downloaded from
http://plantuml.sourceforge.net/updatesitejuno/

6.2.2 Installation
Please follow the instructions below to install the tools:

1. Install Eclipse Modeling Tools.
2. Once Eclipse Modeling Tools is installed, open the software and go to Help

> Eclipse Marketplace.... Search for EcoreTools and Acceleo, and install
them.

3. Go toHelp > Install New Software.... Copy the the download link http:
//plantuml.sourceforge.net/updatesitejuno/ and paste it inWork
with: text field. Select PlantUML and install.

62

https://github.com/SOM-Research/jsonDiscoverer.git
https://github.com/SOM-Research/jsonDiscoverer.git
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/mars2
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/mars2
http://www.eclipse.org/ecoretools/
https://eclipse.org/acceleo/
http://plantuml.sourceforge.net/updatesitejuno/
http://plantuml.sourceforge.net/updatesitejuno/
http://plantuml.sourceforge.net/updatesitejuno/

6. Discussion

4. Clone the projects JSON Optimizer, VisualizationModels.Acceleo, and JSON
Discoverer projects from GIT repositories and import them to Eclipse Model-
ing Tools.

6.2.3 Deliverables
6.2.3.1 Optimizing JSON document

To create an optimized JSON document, go to JSON Optimizer project in Eclipse
Modeling Tools and follow the instructions below:

1. Go to src/jsons. Open the JSON file called vcspa, and replace the content in
the file with the content in the raw JSON data extracted from the Database.

2. Go to src/fileOptimizer and run the Java file JsonOptimizer. An output
optimized JSON document will be created in the same directory where vcspa
is located.

6.2.3.2 Creating a meta-model and a model instance from JSON docu-
ment

To create a meta-model from JSON document, go to JSON Discoverer project in
Eclipse Modeling Tools and follow the instructions below:

1. Go to jsonDiscoverer.examples/exampleData/simpleDiscoverer. Open
the JSON document called json1A. Replace the content with the optimized
JSON data from 6.2.3.1 and save.

2. Go to jsonDiscoverer.examples/src/jsondiscoverer.examples. Run the
Java file called ExampleJsonSimpleDiscoverer. The ECORE file of meta-
model will be created as exampleSimpleDiscover.ecore in the same direc-
tory where json1A locates.

To create a model instance,

1. Go to jsonDiscoverer.examples/exampleData/injector. Open the JSON
document called json. Replace the content with the optimized JSON data
from 6.2.3.1 and save.

2. Go to jsonDiscoverer.examples/src/jsondiscoverer.examples. Run the
Java file called ExampleJsonInjector. The XMI file of model instance will
be created as exampleInjector in the same directory where json locates.

6.2.3.3 Generating a visualization

To create a visualization, go to VisualizationModels.Acceleo project and follow the
instructions below:

1. Go toVisualizationModels.Acceleo/src/VisualizationModels.Acceleo.main.
2. Right click on the MTL file called generate and select Run as > Run

Configuration....
3. Create a new Acceleo configuration. Specify the Acceleo project, main class,

model instance, and location of the output textual description in the text fields

63

6. Discussion

Project:,Main class:,Model, and Target:, respectively. Click Run button.
The output file will be generated in the location you specify.

4. Open the textual description file.
5. Go to Windows > Show View > Other... and select PlantUML. The

visualization will be displayed in the View.

Note:
1. The steps to create meta-model are performed only one time, unless the schema

of JSON document extracted from the Database is changed. The steps to
create a model instance and to generate a visualization must be performed
every time that you want to create a visualization of a new JSON document.

2. The tools created in this thesis are ready to be used as open source software,
still they need some improvement and to be merged as a single tool.

64

7
Validity Threats and Research

Ethics

T his chapter is divided in two sections. The first section discusses different
validity threats that we have encountered and how we mitigated them. The

second section discusses about the research ethics.

7.1 Validity Threats
In this section, the three types of threats to validity are presented. The threats are
being discussed with reference to what have been detailed explained by C. Wohlin
et al [6].

7.1.1 Conclusion validity
This type of validity applies to what could hinder us not to draw a correct conclusion
from the treatment and the outcomes of the experiment.

Reliability of measures: Some of the questions that we asked during the interview
were not answered effectively, meaning not in the way we wished to be answered.
This might have been caused by either a wrong way of formulating a question or
maybe the respondent did not understand the question. In order to mitigate this
threat, we spend a bit of time on repeating the question by adding examples so that
the interviewee could understand the question and it turned to be effect but time
consuming.

7.1.2 Internal validity
Here we talk about threats that can affect the independent variables without the
researcher’s knowledge.

Instrumentation: In our visualization, we had applied the MDSE technique to
get a diagram out of a text (textual description). And the text was transformed
using a tool named JSON discoverer. The tool does the transformation of JSON
file to XML file. We cannot be sure that the tool may be 100 percent efficient but
again, its human who has designed a tool and nobody is perfect and so, this can
also be a threat to the final diagram that we get for the visualization. However, we

65

7. Validity Threats and Research Ethics

manually verified on the transformed XML file and the final diagram to make sure
all the components and all the data elements found in the original file were mapped
correctly.

Selection: On the second cycle of the AR methodology, we interviewed only 3
stakeholders. We are limited in terms of the number of stakeholders. The stake-
holders selected had different roles interacting with the Database. Two stakeholders
were of the same role (system designer), one at the system level and another one
at sub-system level. The third stakeholder was of different role, the Test Engineer
and she was working on a system level. Different stakeholders have different needs,
what we obtained from the stakeholders have a bit of similarities but that does not
mean we might have gotten less or more needs. However, we consider the threat at
acceptable level since:

1. We have applied the AR methodology which might contain a number of itera-
tions. For the first iterations, with limitation in resource access, we considered
the people who were interested in the visualization the more. We can involve
more people in next iterations of the research.

2. The three stakeholders, test engineer, software developer, and system designer,
who participated in the semi-structure interviews in the cycle 2 were chosen
by the first stakeholder who give us the scope in the cycle 1. We considered
the three stakeholders the representatives of each role for the data collection in
cycle 2 as the Database was one of the main tools they used almost every day,
their interests in automated visualization, and the their roles covered the three
main phases in software development process, which are design, development,
and testing phases.

7.1.3 Construct validity
This concerns generalizing the results based on the theory or concept behind it.

Inadequate pre-operational explication of constructs: We had experienced a
bit of misunderstanding while interviewing one of the stakeholders. The question on
the interview template was not clear to the interviewee so the interviewee explained
a lot of things and many of the responses were out of topic. The purpose of the
question was to know how does the interviewee find the tool (the Database) but
then the interviewee decided to compare the tool to a similar requirement handling
tool that we had not used or seen before. In order to mitigate this issue, we had
to let the interviewee finish what he was explaining and we had to explain again on
the purpose of the question, the side-effect was that we had used more time on this
interview.

Mono-operational bias: The visualization was done on a single subsystem with
rather few number of components and signals. The results is expected to be different
if the system was rather bigger than the one visualized. Also, the visualization
would have been different if it involved different artifacts such as requirements,
LACs, SWCs or ECUs and this would vary for different subsystems. We consider

66

7. Validity Threats and Research Ethics

the threat at acceptable level. Again, we have applied the AR methodology which
allows to go through different iteration do this threat may be mitigated on the next
iterations.

7.1.4 External validity
Here we discuss about the conditions that limit us to generalize the results.

Interaction of selection and treatment: The needs that we obtained do not
cover the entire population of stakeholders at VCG. The company is big and hence
it has different people that are responsible for different tasks. We consider the
threat at acceptable level since the task was to visualize the data stored in the
Database, then it would have been better if the stakeholders that we interviewed
were of different levels, meaning primary stakeholders, secondary stakeholders and
key stakeholders. Some stakeholders do not interact with the Database but that
does not mean, they do not have an impact on the needs that we analyzed. This
means that, the stakeholder who does not interacts with the Database have an in-
direct impact on the results of the needs that we have obtained at the end. This
threat can be mitigated on the next iterations.

7.2 Ethical consideration
Two important things that we took into account when conducting this study were,
harm that might happen to participants involved in this thesis work, and to report
everything with honesty. This Section is aimed to present the actions we took in
order to minimize the risk of harm according to the principles explained by Louis
Cohen, Lawrence Manion, and Keith Morrison [5] and to the way we report the
results.

7.2.1 Informed consent
We had four main participants involved in this work, including the first Software
Developer who gave us the scope of visualization, and the three stakeholders that
were interviewed during the data collection in cycle 2. To minimize the risk of harm,
we provided them, (1) clear explanation of the study and (2) what information that
is required from them. The clear explanation included the information about us
such as our names and our universities, the purpose, the steps taken, and the desired
outcome of the study. The participants were also informed what kind of information
was needed as part of the study. In addition to that, the participants were not forced
to take part in any work in the study.

7.2.2 Anonymity and confidentiality
The data collected from the participants including their personal information were
anonymous. The first set of data extracted from the Database contained some in-

67

7. Validity Threats and Research Ethics

formation that could identify who created the data. To make sure that the harm
would be minimized, the pieces of information were censored.

During the interview sessions with the stakeholders, we asked for their permissions
to record the conversations. The tape records and transcripts were kept anonymous
and confidential. In the process of analyzing the data, we removed their personal
information that could disclose their identities as much as possible to ensure that
there would be no physical harm to them, and to prevent psychological distress and
discomfort they might face after giving their information as a part of this thesis
work.

7.2.3 Fraud
We also considered the fraud that may happen when collecting, analyzing, and
reporting the results from the study. The data in the study are real and not made
up as well as the methods we used to get them are explained clearly. Moreover, the
data were not manipulated or discarded in order to get the desired outcome. To make
sure that we, our universities, and the company will get the most benefit from the
study, we report everything both negative and positive results. Most importantly,
we have not taken someone else’s work without giving the credits to them.

68

8
Conclusion and Future work

I n this chapter, we present three sections. The first section covers the conclusion
of our thesis work, covered in Section 8.1. The next part which is Section 8.1.1

covers the discussion about how our thesis work will be sustainable to the way of
working with electrical architecture at VCG. In the Section 8.2 which is the last one
in this chapter, we discuss the proposed future work.

8.1 Conclusion
The problem mentioned in Section 1.1 was that, a stakeholder found it hard to lo-
cate the needed information which in some cases, it mostly worked if a stakeholder
knew where to get the information. To tackle this problem, it was then the idea of
visualization was introduced which would, in turn allow a stakeholder to get a quick
overview of the needed information when interacting with the Database. After we
determined that the visualization was needed, we then proceeded with design of the
automated visualization prototype as the first step in responding to this problem,
this corresponds to the cycle 1 of the applied AR methodology in this thesis work.
We conducted several interviews in cycle 2 of the applied AR methodology in or-
der to get more needs towards the visualization of the Database. We followed the
qualitative research methodology (Coding) to analyse the data collected from the
stakeholders. The stakeholders that we interviewed were of different roles and they
all had different experiences on the use of the Database. Their experiences relied on
the duration of how long they have been using the Database and also the frequency
of how often they have been using it.

This study has shown that automated visualization of data has some advantages
and one of them being, it provides a quick overview of the relationship between arti-
facts stored on the Database. The automated visualization of data was done for the
first time at the company and it was fun and interesting to see the emerged needs
after the prototype was presented to the stakeholders. The prototype was designed
to demonstrate how the visualization can be done and it was well interpreted by
different stakeholders. The designed prototype did not fully cover the suggestions
that were given by the first stakeholder that we met at the company and that was
because of difficulties of getting the data from the company.

The study has also provided different views of how the data can be visualized which
were the logical and the physical view. Each of these views have a different way

69

8. Conclusion and Future work

of presentations, the physical view can be represented using a UML deployment
diagram and the logical view remains in UML component diagram as it was done
on our prototype. The The use of UML notation was beneficial to us in a sense
that, we had applied less effort on explaining our visualization output, especially
when explaining artifacts such as components (LCs) and the signals (provider and
require). However, the stakeholders requested for more information needs to be rep-
resented in the visualized diagram which in turn may be a limitation to the use of
UML diagrams.

The second cycle of the applied AR methodology was done half way and that was
due to the limited amount of time that we had, the proposed implementation of the
discovered needs from different stakeholders will be discussed in Section 8.2.

8.1.1 Sustainability

One of the new subjects in software engineering process in the past several decades
is how a software development process and the product itself have an impact on
the environment in the present and the future. During the thesis work we took this
concern into account which aspects of the automated visualization could improve
the sustainability by considering several actions described in [18] by Birgit Penzen-
stadler.

The first action which the author suggested is, the use of a common artifact model for
documenting during development process. Our automated visualization was aimed
to facilitate the way of working with the electrical architecture of cars by providing
diagram overview of the connections among the artifacts within a sub-system. After
it receives further development and is ready to be used in VCG, we hope that the
visualization can be used as a common source to be documented during the initial
development process, and to be a source that provides support for decision making.

The second action we considered is, the consideration of working offline for certain
tasks. One of the main activities when the stakeholders working on a specific task
was that he/she had to look for needed information on the Database which was
quite slow due to problems with the server or the tool itself. With our automated
visualization, it would speed up the act of looking for information since the tools
used for creating the visualization does not require the Internet.

The third action, which is the optimization of resource usage during software devel-
opment tasks, is similar to the second one. Not only the automated visualization
would speed up the act of looking for information, but also it would decrease the
network traffic, reduce resource usage, and energy consumption as the automated
visualization can be done on local computers without connection to server.

70

8. Conclusion and Future work

8.2 Future work
In every study process, there can be some limitations. Previously, we had knowledge
in software engineering domain. This was our first time to experience the automo-
tive domain, we have to admit that we have come a long way to reach this point.
In the beginning of the thesis, we had a bit of trouble on grasping the terms and
what they meant but it is something we came along with as time continued and this
has enabled us to get a better understanding in both of these two domains. As the
matter of fact, it has been interesting to learn the roles of software in automotive
domain and how the use of software in cars has been growing from time to time.
In this section, we will discuss on what we propose to be done in the next study
towards the automated visualization.

As discussed earlier, we applied the AR methodology which can be done in many
iterations. The next step to where we have stopped is the take action step which
is the implementation of the analyzed and interpreted data. It will involve the
implementation of the categories of needs of stakeholders presented in section 5.3.

LAC1

LC1

LC3

LAC2

LC2

LC4
LC5

REQ1

REQ2

REQ3REQ4
REQ5

REQ6

SWC1 SWC2

ECU1

ECU3

ECU4

ECU2
ECU5

LOGICAL VIEW

PHYSICAL VIEW

Figure 8.1: The sketch of a logical view and a physical view.

The categorized needs of stakeholders appears in different views/visualization as
described by Dajsuren [8] also covered in Section 2.1 and on Figure 2.3. In this
section, we propose what to be added on the logical view which we started its
implementation on the first cycle and also we propose what to be included on the
physical view. The prioritized lists of actions to be taken are:

1. We already started on implementing a logical view of a single subsystem, it
would be good idea to use our code on other subsystems and the whole system
at large. The positive side effect of applying our code on the large scale is
that it may mitigate the construct validity threats (mono-operational bias)
discussed in section 7.1.3. It is expected that the output diagram will be
even messier than our first visualized diagram 5.1. The logical view can have

71

8. Conclusion and Future work

additional artifacts which are:
(a) Include the LACs
(b) Connection among LACs
(c) Requirements of each LC
(d) Showing the ID for each requirement
The upper part of the figure 8.1 shows the example of the expected part of
the logical view.

2. The visualization of the ECUs, both at the system level and at the sub-system
level is one of the need that we have discovered. This type of visualization
covers the hardware view of the electrical architectures. This specific type of
view was mentioned by the first software developer who gave us the scope of
visualization, the second software developer and the test engineer. The lower
part of the figure 8.1 shows the expected sample of the physical view that we
proposed. The artifacts to be shown on the view are:
(a) Bus and signals
(b) Show the failed ECUs
(c) Different colors on bus types
(d) Connection among ECUs
(e) Connection among SWCs

3. It was proposed to combine both physical view and logical view within the
same diagram by one of the stakeholder, but again, one has to try out first to
see if the resulted diagram is comprehensible as compared to splitting the two
views of the electrical architecture.

4. The next study can also apply different approach to visualize the architecture
so that stakeholders can get a more dynamic visualization. This type of visu-
alization can provide the ability to do certain things on the visualized diagram
such as the filtering, sorting, select and deselect to view details(figure 5.17).
Perhaps a 3D visualization can be something more interesting. The implemen-
tation of this type of dynamic visualization will also responds to the suitability
quality the tool that will do such a visualization.

5. The next cycle which is proposed to be done after the implementation of the
categories of needs of stakeholders that we have interpreted in cycle 2 will start
again with the data collection step which is usually the first step when begin-
ning the cycle of AR methodology. In this step, it is highly recommended to
consider a large scope of stakeholders, both the primary stakeholders and the
secondary stakeholders. It is very important to find out what impacts does the
automated visualization have to not only the stakeholders who directly inter-
acts with the database but also the ones who does not directly interacts with
the Database. This way, the external validity threats explained in section 7.1.4
may be mitigated.

72

Bibliography

[1] Basili, V. and Weiss, D. (1984). A Methodology for Collecting Valid Soft-
ware Engineering Data. IEEE Transactions on Software Engineering, SE-10(6),
pp.728-738.

[2] Brambilla, M., Cabot, J. and Wimmer, M. (2012). Model-driven software engi-
neering in practice. [San Rafael, Calif.]: Morgan & Claypool.

[3] Cánovas Izquierdo, J., & Cabot, J. (2013). Discovering Implicit Schemas in
JSON Data. 13Th International Conference, ICWE 2013, Aalborg, Denmark,
July 8-12, 2013. Proceedings.

[4] Community Tool Box (2016). Chapter 7. Encouraging In-
volvement in Community Work. Retrieved from http://
ctb.ku.edu/en/table-of-contents/participation/
encouraging-involvement/identify-stakeholders/main

[5] Cohen, L., Manion, L. and Morrison, K. (n.d.). Ethic Issues In
Research. Retrieved from cw.routledge.com/textbooks/cohen7e/
data/Chapter5.ppt

[6] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Reg-
nell, Anders Wesslén. (2000).PLANNING.Experimentation in software engi-
neering.Kluwer Academic Plubishers, pp. 66-73.

[7] Czarnecki, K. and Helsen, S. (2006). Feature-based survey of model transfor-
mation approaches. IBM Syst. J., 45(3), pp.621-645.

[8] Dajsuren, Y. (2013). Automotive Architecture Description and Its Quality. Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pp.727-730.

[9] Darvas, A. and Konnerth, R. (2016). System Architecture Recovery based on
Software Structure Model. Working IEEE/IFIP Conference on Software Archi-
tecture, pp.109-114.

[10] Eliasson, U., Heldal, R., Pelliccione, P., and Lantz, J. (2015). Architecting
in the Automotive Domain: Descriptive vs Prescriptive Architecture. Software
Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference on. IEEE.

[11] Eliasson, U., Martini, A., Kaufmann, R., and Odeh, S. (2015). Identifying
and visualizing Architectural Debt and its efficiency interest in the automotive
domain: A case study. Managing Technical Debt (MTD), 2015 IEEE 7th In-
ternational Workshop on. IEEE.

[12] Favre, J.M. & Cervantes, H. (2002). Visualization of Component-based Software,
6(2), pp.205-219.

73

http://ctb.ku.edu/en/table-of-contents/participation/encouraging-involvement/identify-stakeholders/main
http://ctb.ku.edu/en/table-of-contents/participation/encouraging-involvement/identify-stakeholders/main
http://ctb.ku.edu/en/table-of-contents/participation/encouraging-involvement/identify-stakeholders/main
cw.routledge.com/textbooks/cohen7e/data/Chapter5.ppt
cw.routledge.com/textbooks/cohen7e/data/Chapter5.ppt

Bibliography

[13] Glanz, J. (1999). Action Research (pp. 22-23). Retrieved from
http://www.education.vic.gov.au/Documents/school/
teachers/profdev/actionresearchjglanz.pdf

[14] Grönniger, H., Hartmann, J., Krahn, H., Kriebel, S., Rothhardt, L., and
Rumpe, B. (2008). View-Centric Modeling of Automotive Logical Architec-
tures. Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Entwick-
lung eingebetteter Systeme IV.

[15] Lauesen, S. (2002).Elicitation .Software requirements: Styles & Techniques.
Harlow: Addison-Wesley. pp 338-339 and pp 350- 351.

[16] Niesel, K. (2014). Software center day: The All-New XC90 [PowerPoint slides].
Retrieved from http://softwarecenter.gu.se/digitalAssets/
1506/1506474_sw-center---sk--ne-volvo.pdf

[17] OnlineQDA (2016). Online QDA - How and what to code. [online] Avail-
able at: http://onlineqda.hud.ac.uk/Intro_QDA/how_what_to_
code.php [Accessed 2 April 2016].

[18] Penzenstadler, B. (2012). Supporting Sustainability Aspects in Soft-
ware Engineering. In: 3rd International Conference on Computa-
tional Sustainability (CompSust’12). [online] Available at: http:
//www.computational-sustainability.org/compsust12/
papers/24.pdf [Accessed 30 May 2016].

[19] Sjoberg, D., Dyba, T., and Jorgensen, M. (2007). The Future of Empirical
Methods in Software Engineering Research. 2007 Future Of Software Engineer-
ing, 358-378. http://dx.doi.org/10.1109/FOSE.2007.30

[20] Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien, New York: Springer-
Verlag.

[21] Stuurman, G. (2010). Action Semantics applied to Model Driven Engineering
(Master Thesis). University of Twente.

[22] Tichy, M. Model-Driven Engineering (MDE) Lecture 3: Meta-Modelling
[PowerPoint slides]. Retrieved from https://pingpong.chalmers.se/
courseId/4401/.

[23] von der Beeck, M. (2006). Development of logical and technical architectures
for automotive systems. Softw Syst Model, 6(2), pp.205-219.

[24] Wallin, P. (2008). Key Challenges in Decision Making for Automotive E/E
Architectures (Licentiate Thesis, Mälardalen University, Västerås, Sweden).
Retrieved from http://www.diva-portal.org/smash/get/diva2:
127004/FULLTEXT02.pdf

[25] ISO/IEC FDIS 9126-1, Information technology — Software product quality —
Part 1: Quality model

74

http://www.education.vic.gov.au/Documents/school/teachers/profdev/actionresearchjglanz.pdf
http://www.education.vic.gov.au/Documents/school/teachers/profdev/actionresearchjglanz.pdf
http://softwarecenter.gu.se/digitalAssets/1506/1506474_sw-center---sk--ne-volvo.pdf
http://softwarecenter.gu.se/digitalAssets/1506/1506474_sw-center---sk--ne-volvo.pdf
http://onlineqda.hud.ac.uk/Intro_QDA/how_what_to_code.php
http://onlineqda.hud.ac.uk/Intro_QDA/how_what_to_code.php
http://www.computational-sustainability.org/compsust12/papers/24.pdf
http://www.computational-sustainability.org/compsust12/papers/24.pdf
http://www.computational-sustainability.org/compsust12/papers/24.pdf
https://pingpong.chalmers.se/courseId/4401/
https://pingpong.chalmers.se/courseId/4401/
http://www.diva-portal.org/smash/get/diva2:127004/FULLTEXT02.pdf
http://www.diva-portal.org/smash/get/diva2:127004/FULLTEXT02.pdf

A
Acceleo templates

A.1 Acceleo template for the automated visual-
ization prototype

1 [comment encoding = UTF-8 /]
2 [module generate(’http://jsonDiscoverer/discovered/SubSystem’)/]
3

4 [template public generateElement(subsystem : SubSystem)]
5 [comment @main/]
6 [file (subsystem.elementName, false, ’UTF-8’)]
7

8 @startuml
9 skinparam nodesep 80

10 skinparam ranksep 80
11 artifact [subsystem.elementName.replaceAll(’ ’, ’’)/] {
12 [for (lc:HasLC | subsystem.hasLC)]
13 [’[’/][lc.elementName.replace(’ ’, ’’)/][’]’/]
14 [/for]
15

16 [for (lc:HasLC | subsystem.hasLC)]
17 [for (port:HasPort | lc.hasPort)]
18 [for (lc2:HasLC | subsystem.hasLC)]
19 [for (port2:HasPort | lc2.hasPort)]
20 [if ((port2.dataElement = port.dataElement) and not (port2.

elementName = port.elementName) and not (lc.elementName = lc2.
elementName)) and (lc2.elementName.replace(’ ’, ’’).substring(3).
toInteger() > lc.elementName.replace(’ ’, ’’).substring(3).
toInteger())]

21 [if not (port.IODirection = port2.IODirection)]
22 [lc.elementName.replace(’ ’, ’’)/] "[port.elementName.substring(6)

/][’-’/][port.dataElement.substring(11)/]" [if (port.IODirection
= ’REQUIRE’)]#--([elseif (port.IODirection = ’PROVIDE’)]#--0[/if
][if (port2.IODirection = ’REQUIRE’)])--#[elseif (port2.
IODirection = ’PROVIDE’)]0--#[/if] "[port2.elementName.substring
(6)/][’-’/][port2.dataElement.substring(11)/]" [lc2.elementName.
replace(’ ’, ’’)/]

23 [elseif (port.IODirection = port2.IODirection)]
24 [/if]
25 [/if]
26 [/for]
27 [/for]
28 [/for]

I

A. Acceleo templates

29 [/for]
30 }
31

32 @enduml
33

34 [/file]
35 [/template]

Listing A.1: Acceleo template for generated textual description in PlantUML
lanauge

A.2 Acceleo template for the final version of the
automated visualization

1 [comment encoding = UTF-8 /]
2 [module generate(’http://jsonDiscoverer/discovered/SubSystem’)]
3

4 [template public generateElement(subsystem : SubSystem)]
5 [comment @main/]
6

7 [file (subsystem.elementName, false, ’UTF-8’)]
8

9 @startuml
10

11 left to right direction
12

13 skinparam shadowing false
14

15 skinparam component{
16 backgroundColor lightGrey
17 borderColor black
18 }
19

20 skinparam rectangle {
21 backgroundColor white
22 borderColor white
23 fontSize 11
24 }
25

26 package "[subsystem.elementName.replaceAll(’ ’, ’’)/]"{
27 [for (lc:HasLC | subsystem.hasLC)]
28 [for (port:HasPort | lc.hasPort)]
29 rectangle [port.dataElement.replace(’-’,’’).replace(’ ’,’’)/]
30 [/for]
31 [/for]
32

33 [for (lc:HasLC | subsystem.hasLC)]
34 [for (port:HasPort | lc.hasPort)]
35 [if (port.IODirection = ’PROVIDE’)]
36 [’[’/]<size:13>[lc.elementName.replace(’ ’, ’’)/][’]’/] -down-0 [

port.dataElement.replace(’-’,’’).replace(’ ’,’’)/]

II

A. Acceleo templates

37 [/if]
38 [if (port.IODirection = ’REQUIRE’)]
39 [’[’/]<size:13>[lc.elementName.replace(’ ’, ’’)/][’]’/] -up-([port.

dataElement.replace(’-’,’’).replace(’ ’,’’)/]
40 [/if]
41 [/for]
42 [/for]
43

44 }
45 @enduml
46

47 [/file]
48 [/template]

Listing A.2: Acceleo template for generated textual description in PlantUML
lanauge

III

B
Interview questions and

transcripts

B.1 Interview questions

Interview Questions (30­60 min each)
Goal of the question Question Related RQ

Getting to know
interviewee

­ Who is the person? position? responsibility? **

Emphasizing on
understanding the use of
the Database

­ How long has the person worked with the
Database?

­ How often does the person use the Database
(per day or week)?

­ What does the person think about the Database
in terms of advantages?

­ What are the problems that the person has faced
when working with the Database?

**

Identifying the needs of
stakeholders

­ What are the tasks that a person has been
working on recently? (1 task is enough).

­ What does a person have to perform in the
Database in order to complete the task?

­ Why does the person need to see the
information of the components?

1, 2

Opinions on the
automated visualization
prototype

­ What does the person think about having
automated visualization of the electrical
architecture?

­ What advantages and disadvantages does the
person envision about this?

1, 2

Research questions (RQ)
[1] What are the needs of different stakeholders towards the visualization of the electrical

architectures?
[2] How does the automated visualization satisfy the needs of stakeholders?

Figure B.1: List of pre-determined questions.

V

	List of abbreviations
	Introduction
	Statement of the problem
	Purpose
	Research questions
	Contribution of the study
	Outline of the report

	Theoretical Framework
	Architectures in automotive domain
	Low- and high-level electrical architectures at VCG

	Software Architecture Visualization
	Model-Driven Software Engineering
	Modeling languages
	Meta-models, model instances, and semantics

	Model transformation

	Graphical notation of textual description
	Stakeholders
	Needs of stakeholders

	Methodology
	Focus selection
	Data collection
	Raw JSON data
	Interview data

	Data analysis and interpretation
	Meta-model of JSON data
	Optimization of JSON data
	Coding

	Take action

	Implementation
	Cycle 1: Creating automated visualization
	Focus selection
	Data collection
	Data analysis and interpretation
	Analyzing raw JSON data
	Optimizing raw JSON data

	Take action
	New meta-model and model instance
	Automated visualization prototype
	Final automated visualization prototype

	Preliminary to cycle 2
	Selecting stakeholders
	Preparation for interviews

	Cycle 2: Identifying needs of stakeholders
	Data collection
	Data analysis and interpretation
	Coding interview transcripts
	Categorizing needs of stakeholders

	Results
	Automated visualization
	Automated visualization prototype
	Final automated visualization prototype

	Coding results
	Category: Personal info
	Category: Use of the Database
	Category: Specific task
	Category: Automated visualization

	Categories of needs of stakeholders
	Dependencies
	Clusters
	Features

	Discussion
	Research questions
	Use of the source code
	Tools required
	Open source projects
	Eclipse software & plugins

	Installation
	Deliverables
	Optimizing JSON document
	Creating a meta-model and a model instance from JSON document
	Generating a visualization

	Validity Threats and Research Ethics
	Validity Threats
	Conclusion validity
	Internal validity
	Construct validity
	External validity

	Ethical consideration
	Informed consent
	Anonymity and confidentiality
	Fraud

	Conclusion and Future work
	Conclusion
	Sustainability

	Future work

	Bibliography
	Acceleo templates
	Acceleo template for the automated visualization prototype
	Acceleo template for the final version of the automated visualization

	Interview questions and transcripts
	Interview questions

