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Abstract
Regarding outdoor positioning, GPS has become de facto standard, however, there
is no equivalent system in the indoor scenario. The literature considers promis-
ing solutions in the domain of indoor positioning, however, it does not use widely
available hardware. This thesis considers a new map-based approach on indoor po-
sitioning that assumes the availability of an indoor map and affordable on-board
sensors that are available on modern, off-the-shelf smartphones. By implementing
a map matching algorithm, it is possible to reduce the uncertainty, arising from the
use of affordable sensors, and improve the accuracy of the indoor positioning system.

A pilot of the design has been implemented and the results from the validation
showed an average improvement of 17.8 % in accuracy and also an average improve-
ment of 3.33 % in room correctness compared to the same design without including
the indoor map. However, developers who choose to implement the map-based ap-
proach should be aware of the increased costs in computational demand and power
consumption of the design when developing applications.

Keywords: iBeacon, sensor fusion, indoor positioning, Bluetooth 4.0, BLE, smart-
phone, Particle filter, Bluetooth smart, recursive Bayesian estimation, inertial nav-
igation
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1
Introduction

Positioning is a topic that is gaining in popularity. Multiple concepts of computing,
such as ubiquitous computing and location- and content-aware systems, are de-
pendent on positioning. Regarding outdoor positioning, GPS has become de facto
standard, however, there is no equivalent system in the indoor scenario. The liter-
ature considers promising solutions in the domain of indoor positioning, however,
it does not use widely available hardware. By making indoor positioning feasible
with widely available hardware, the range of application can be broaden. This work
offers an attractive solution for indoor positioning using only affordable sensors that
are available on modern, off-the-shelf smartphones.

This work considers a new approach on indoor positioning that assumes the avail-
ability of an indoor map and affordable on-board sensors. By implementing a map
matching algorithm, it is possible to reduce the uncertainty, arising from the use of
affordable sensors, and improve the accuracy of the indoor positioning system. The
implementation uses Bayes filter to swift out unwanted noise from the sensors and
also to combine data from different sources, such as external beacons and inertial
navigation.

1.1 The Challenge of Indoor Positioning
The problem considers estimating the position of a mobile device, where the device
is moving on a plane and follows some unknown path. A path is defined as a step,
which is defined as a motion on a short straight line in constant speed, between two
points with a duration of a time unit t. A walk is defined as a number of subsequent
steps.

The device receives rangings from beacons with well-known locations. A ranging is
defined as r = {(x, y), d}, where (x, y) is the position of the beacon and d is the
distance to the beacon from the mobile device. The distance is derived from the
signal strength of the received package from the beacons. During each time unit t,
multiple rangings, {(xi, yi), di}i∈I , are received. The device has to receive at least α
rangings from unique beacons, |I| ≥ α.

The task is to, at the end of each step, estimate the current position, (x, y), of
the device. The challenge is to reduce the error, (x̂, ŷ), defined as the difference
between the real and estimated position of the device.

1



1. Introduction

1.1.1 Existing Solutions
Reducing the error is a challenge because the sensors are imprecise and subject to
noise. The beacon rangings suffer from noise and non-deterministic delays, they are
most likely also disturbed by reflections and interference. To filter out inaccuracies,
Bayes filters can be used, for example a Kalman filter [1] or a particle filter [2]. The
filters are able to filter out inaccuracies by estimating the unknown state with the
help from the current measurements and the previous known states according to the
hidden Markov model. A position is referred to as a state in this context. These
filters also have the ability to fuse data from independent sources, a technique called
sensor fusion [3]. This can be used to reduce the state space by removing unlikely
states, which improves the estimation of the unknown state.

To utilise sensor fusion, it is assumed that the device has access to on-board sensors.
It is also assumed that the on-board sensors consist of a gyroscope, an accelerometer
and a magnetometer. These sensors also suffers from noise and inaccuracies as the
rangings do [4]. However, by using sensor fusion, it is possible to reduce the impact
from the noise [3].

1.1.2 Opportunity
Everywhere where an indoor positioning system is used, an application map must
be present. An example is in exhibitions, where the visitors gets a map of the
premises to make it easier for them to find what they are looking for. This map
needs to contain information about the premises, such as the walls and doors, in
other words, all possible locations for a visitor. In current indoor positioning system,
this information is just used for relating a position into a location, but not in the
position estimation process itself.

1.1.3 Our Approach
To improve the accuracy and the performance of the indoor positioning system,
a model containing map information is included in the position estimation. The
information from the map can be used to disqualify impossible states in the hidden
Markov model. Impossible states are those that imply an impossible movement, such
as a wall crossing. Because of the reduced state space, it is possible to improve the
accuracy and performance since fewer, and only feasible, states has to be considered.

1.1.4 Evaluation Criteria
The result of this thesis is a prototype of an indoor positioning system. To validate
its performance, two different criteria are evaluated. The first criterion is the ac-
curacy which is the distance between the estimated position and the real position.
The accuracy can be expressed in different ways, for example in a single time unit

2



1. Introduction

or an average over time.

The accuracy does not, unfortunately, tell the whole truth. The accuracy can be
good, but the position estimation can be in a adjacent room. To account for these
scenarios, a second criterion, called correct room estimation, is introduced. The cri-
terion is a boolean, true or false, telling whether the position estimation is in the
correct room in the current time unit. Over time, the criterion can be expressed
as a percentage. This criterion is useful in real life scenarios, where, for example,
a shopping mall could offer indoor positioning and stores could use the information
to target special offers to people depending on their location.

The correct room estimation and accuracy testing is carried out in a static and
controllable environment. The tests are done with both the map, map-based, and
without, map-less approach. The tests are repeatable and performed a predefined
number of times to reduce the impact caused by arbitrary faults. When evaluat-
ing the possible performance gain of the map-based approach, the results from the
map-less approach are used as a reference.

1.1.5 Our Contribution
This thesis studies the potential benefit of solving the indoor positioning problem
while considering a map-based approach. Based on the potential improvement, we
design a prototype and implement a pilot in MATLAB. The pilot is tested to validate
the approach and the results show that it is worthwhile considering a map-based
approach in future indoor positioning systems.

The prototype utilises Bluetooth low energy iBeacons and all sensor data has been
collected on an iPhone 5S. The prototype uses a Bayes filter to accommodate for
noise and inaccuracies. To estimate the position, a particle filter is used in combi-
nation with a mobility model which estimates the walk pattern of a human.

1.2 Related Work
The existing literature on indoor positioning relays on advanced hardware that is
not likely to be available soon on off-the-self smartphones. This includes [5] and
[6], which propose solutions while assuming the availability of specialised hardware,
such as infrared cameras and precise on-board sensors. The goal of this thesis is to
make indoor positioning available on modern smartphones, using widely available
hardware. This thesis therefore proposes an alternative solution that utilises avail-
able sensors on a modern, off-the-shelf smartphone.

One way to solve the indoor positioning problem is by considering the use of internal
sensors, so called inertial navigation. A requirement of inertial navigation is a highly
accurate inertial measurement unit (IMU). The authors of [6] utilises inertial navi-
gation in the form of pedestrian dead reckoning (PDR). The PDR algorithm is fed

3



1. Introduction

with data from an IMU, worn on the foot, that detects steps and the heading of the
user. The experiments in [6] shows a 5 % drift of the total travelled distance when
using a highly accurate IMU. Also, the authors of [7] observes drift in their PDR im-
plementation, using a torso-mounted IMU. Since the IMU in a modern smartphone
is not accurate enough, inertial navigation is not feasible on its own without using
accessory sensors.

Specialised hardware is commonly used to obtain accurate distance measurements.
The authors of [8] and [9] are both using different kinds of sensors, RFID and ul-
trasonic beacons respectively, that is not affordable or is difficult to deploy. The
solution proposed by [9] uses both angle of arrival (AoA) and time of flight (ToF) to
position the device. These two kinds of measurements cannot be made when using a
smartphone without the use of additional hardware and are therefore not considered
options.

The literature explores the concept of using a map of the premises to aid in an indoor
positioning system. An example is the authors of [10]. They saw an improvement in
accuracy when including a map in the position estimation. Compared to [10], that
used a particle filter, the authors of [11] implemented a deterministic map matching
algorithm. They also noticed an improvement in the accuracy when a map was
included in the position estimation.

To the best of our knowledge, no scientific publications have analysed a system
where both iBeacons, inertial navigation and map matching has been used together
on a modern, off-the-shelf smartphone.

1.3 Outline
The report is structured as follows. A Background chapter introduces the basic
knowledge about positioning. It describes positioning techniques that are used in the
implementation, the basics of Bayes filters and it explains how a particle filter works.
The Hardware chapter contains all the information about the hardware that is used;
the sensors in the smartphone, the beacons and some theory about Bluetooth. The
next chapter is the Testing chapter which is about how the positioning system
is validated. The results of the testing are presented in the subsequent Result
chapter. The Result chapter also holds the information about the implementation
of the positioning system. The report is finished with Discussion, Conclusions and
Bibliography chapters.
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2
Background

The indoor positioning system is based on the same principles as trilateration, that
is, distances are used to estimate a position. Since the distance calculations are noisy
and inaccurate, inertial navigation, using the accelerometer and magnetometer to
estimate movement, is combined with the distance measurements. A particle filter
is responsible for the fusing of the data sources, and it has access to multiple models
to interpret the data.

2.1 Positioning Techniques
Several different techniques exists to calculate a position, and these can be sorted
into two different types depending on the kind of data that is available. External
positioning techniques use external information, for example distance values, angles
or light seen through the camera, to estimate the position. Internal positioning
techniques instead use internal information, such as the magnetometer, gyroscope
or accelerometer to estimate the current position.

Some common ways to use external sensors are trilateration, triangulation and fin-
gerprinting. Trilateration uses distance measurements to calculate the current po-
sition and triangulation uses angles to calculate the position. Fingerprinting is a
bit different compared to the previous mentioned techniques. It utilises an offline
radio heat map of the premises, which is then used to relate online information
into a position estimation [12]. A technique using internal sensors is dead reckon-
ing. It recursively calculates the new position based on the last position and the
sensed movement. Dead reckoning comes in multiple variations depending on how
the movement is calculated [6].

2.1.1 Trilateration
Trilateration uses distance measurements from multiple known external reference
points, beacons, to determine the current position of the device. By knowing the
distance to a single beacon in a two-dimensional world, it can be concluded that
the user is located at the edge of a circle with the radius equal to the known dis-
tance from the beacon. By adding two more beacons, it is possible to get a position
estimation where all the circles intersects. Trilateration also works in the three-
dimensional world, where spheres intersects instead of circles. The problem with
trilateration is when the measurements are inaccurate. In such cases, multiple or

5



2. Background

none intersections can occur [13].

The distance measurements can be derived in various ways. In the case of iBeacons,
the distance is approximated by using the received signal strength (RSS) values of
the signals. See Chapter 3 for more information on the beacons. Another way is to
calculate the time of flight, and derive the distance from the other known charac-
teristics [12].

Figure 2.1 illustrates an example of trilateration in a two-dimensional plane. The
positions of the reference points, b1..3, are known, and so are the distances, d1..3.
With this information, the position of the intersection can be calculated.

b1

b2 b3

d1

d2 d3

Figure 2.1: Illustration of trilateration

2.1.2 Inertial Navigation
Inertial navigation is the concept of only utilising internal motion sensors, such as
gyroscopes, magnetometers and accelerometers, to calculate the position. The most
common approach is dead reckoning where the movement is calculated and contin-
uously added to the previous position, to calculate the new position [14].

There are different ways to calculate the movement. A common way is to integrate
the acceleration, from an accelerometer, twice. This will result in the movement
in three dimensions. Another way is to use a step detection algorithm on the ac-
celerometer data. In combination with the heading from the magnetometer, every
step will result in a movement in two dimensions. In this approach, the step length
must also be known or estimated [14].

Drawbacks of inertial navigation are that drift is very common and that the start
position must be known. Since the new position is recursively calculated from the
last position, a small error might cause a greater error in the end [14].

2.2 Bayes Filters
Filters are mathematical methods for estimating unknown variables. The estima-
tion is aided by known, observable variables like sensor input. In the localisation

6



2. Background

case, the unknown variable is the location. The strength of filters is the ability to
merge and combine multiple known variables from different sensors. This section
introduces the basics of filters with a focus on positioning.

The Bayes filter, or recursive Bayesian estimation, is a probabilistic approach to
estimate the location by using probability density functions. Since the position only
can be estimated, not calculated with full certainty, the notion of belief is introduced.
The belief is just an estimation of the state, and should not be confused with the real
position. The belief is denoted as in Equation 2.1. The filter is given measurement
data (z1:t) and control data (u1:t), applies this to different models and returns an
estimation the new state of the system, a belief, at a time t [3].

bel(xt) = p(xt | z1:t, u1:t) (2.1)
The Bayes filter is usually implemented in two steps, where in the first step only
incorporates the latest control data, and not the measurements update. This is
denoted as in Equation 2.2. The different steps are called the prediction step and
the update step.

bel(xt) = p(xt | z1:t−1, u1:t) (2.2)
In the prediction step, unwanted noise is introduced from the inaccurate sensors,
and the accuracy of the probability density function is decreased. The update step
then increases the accuracy by applying the latest measurement data. Code snippet
2.1 lists a pseudocode implementation of the Bayes [3].

Listing 2.1: Pseudocode of the Bayes filter

1 bayes_ f i l t e r (bel(xt−1, ut, zt ) ) :
2 f o r a l l xt do
3 bel(xt) =

∫
p(xt|ut, xt−1) bel(xt−1) dxt−1

4 bel(xt) = η p(zt|xt) bel(xt)
5 endfor
6 re turn bel(xt)

2.2.1 Particle Filter
The particle filter, PF, is a non-parametric implementation of the Bayes filter. Non-
parametric filters use a finite number of values to approximate the posterior, where
a parametric filter use functions. An advantage of non-parametric filters over para-
metric filters is the ability to represent multimodal beliefs, where the parametric
filters only can handle the unimodal case [3]. This means that a PF can have mul-
tiple guesses, where parametric filters only can have one.

In the PF, a number of samples, called particles, are randomly drawn from the state
space. These particles represent the distribution and each particle represents a pos-
sible position. Every particle has a weight that denotes it’s possibility to represent

7



2. Background

the correct state. The weight is used when resampling the particles.

Listing 2.2: Pseudocode of a particle filter, from [3]

1 p a r t i c l e_ f i l t e r (Xt−1, ut, zt ) :
2 Xt = Xt = ∅
3 f o r m = 1 to M do
4 sample x

[m]
t ∼ p(xt|ut, x

[m]
t−1)

5 w
[m]
t = p(zt|x[m]

t )
6 Xt = Xt + (x[m]

t , w
[m]
t )

7 endfor
8 f o r m = 1 to M do
9 draw i with p r obab i l i t y ∝ w

[i]
t

10 add x
[i]
t to Xt

11 endfor
12 re turn Xt

Listing 2.2 illustrates a particle filter. The input is, since the filter is recursive, the
last state Xt−1 and the control and the measurement updates, ut and zt. The initial
state, X0, can be initialised in numerous ways.

The filter starts by drawing M samples from the conditional density distribution
p(xt|ut, x

[m]
t−1) on Line 4 and constructs the temporal belief bel(xt). The distribu-

tion, from which the samples are drawn from, is based on the previous state xt−1
and the control ut. On Line 5, the weight of the particles, which represents the
temporal belief bel(xt), is calculated based on the conditional probability p(zt|x[m]

t )
where zt is the measurement update. The particles, now representing the new belief
bel(xt), is then put into a temporary set, Xt, on Line 6.

The next step is the resampling of the particles. How the resampling is made can
vary in different implementations. In this step, the M particles that should be in
the real set are chosen from the temporary set Xt. A particle can be chosen multiple
times or none, and it depends on its weight if it is chosen or not. That means that
a particle can be copied and be a part of the particle set on the same spot, with the
same weight. The chosen particles are added to the definitive set of particles, Xt

[3].

2.3 Models
There are several different models on how to draw samples from the conditional
density distribution p(xt|ut, x

[m]
t−1) and how to calculate the weight of a particle

based on the conditional probability p(zt|x[m]
t ). When dealing with localisation, the

models which extract samples from p(xt|ut, x
[m]
t−1) are often referred to as motion

8



2. Background

models and those who calculate the weights are referred to as ranging models. Each
of these models are however highly implementation dependent on how they extract
a sample, but they are based on the same principals.

2.3.1 The motion model
A motion model is modelled by a conditional density distribution p(xt|ut, xt−1),
where xt is the new state given previous state xt−1 and the control ut. The control
ut consists of information about the transition between the previous state and the
new state. The difference between different motion models is how they make use
of and what the control exists of. When working with robots, the control could be
estimated from the odometry sensors like wheel encoders and steering angle, but
it could also be estimated from the given commands to the engines on the robot.
The models which rely on odometry information for the control are called odometry
models and the models which relies on given commands are called velocity models.
In the localisation case with humans, is it only possible to use an odometry model.
This is because it is not possible to give commands about how to walk, it is only
possible to retrieve information about how a human have walked [3].

A possible drawback of the odometry model is that it relies on posterior data and
that implies that a movement has to be detected before it can be used in the model.
However, it is often a more accurate model since it is easier to estimate how much
the user or the robot has moved rather than how much it is going to move.

2.3.2 The ranging model
The measurement model, when dealing with range sensors, is described as a con-
ditional probability p(zt|xt, m) where zt is the measurement done at time t, xt is
the current state and the variable m is the map of the current location. The map is
needed to be able to relate the measurements zt to the current state xt. This can be
illustrated by a robot trying to locate itself in a building with the help from sonar
sensors. To locate itself based on the results from the sonar, the robot needs to have
an understanding of the current environment and various distances to different ob-
jects in the premises to be able to extract useful information from the measurement.
When dealing with other types of sensors than range sensors, the current state xt

and the measurement zt is all that is needed. Therefore, the conditional probability
can be written as p(zt|xt) were the map m, has been removed [3].
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System

An iPhone 5S, made by Apple Inc., will be used during the validation. It was re-
leased in 2013 and was at that time a high-end smartphone. It ranks currently
as the 172 best smartphone in Futuremarks Ice Storm Unlimited CPU and GPU
benchmark1. The iPhone 5S is therefore a good example of a commonly used and
commonly available, off-the-shelf, smartphone.

3.1 Sensors
The iPhone 5S has a lot of different sensors, some of which can be used in position
estimation. These are for instance the gyroscope, the accelerometer and the mag-
netometer that is needed when designing an inertial navigation system. Another
useful sensor that is found on an iPhone 5S is the Bluetooth low energy chip, which
is needed when designing a navigation system that is based on external references.

3.1.1 Gyroscope
The gyroscope gives the user the possibility to measure at what speed (angular ve-
locity) the device has been rotated with, around three different axis. These axis
are orthogonal to each other and are often referred to as roll, pitch and yaw. As
the gyroscope does not have an external frame of reference, it is only possible to
measure the relative motion in these three axis. The output from the gyroscope is
given in radians per second and often referred to as θ/s 2.

Due to the proprietary algorithms used by Apple Inc., it is unknown if the gyroscope
data has been filtered before it becomes available for the user. However, it is most
likely that it has been filtered in some way. The reason why this is suspected, is
because when working directly with a gyroscope, the user normally needs to take
the bias and drift of the sensor into account. This is not needed when working with
the gyroscope from an iPhone3.

1Futuremark. Best Smartphones and Tablets. http://www.futuremark.com/hardware/
mobileice_storm_unlimited/filter/androidioswinrtwindowsshowall. Accessed: 2015-07-
27. June 2015.

2Apple Inc. Core Motion Framework Reference. https://developer.apple.com/library/
ios/documentation/CoreMotion/Reference/CoreMotion_Reference/index.html. Accessed:
2015-04-01. Sept. 2013.

3Apple Inc. CMGyroData. https://developer.apple.com/library/ios/documentation/
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3.1.2 Accelerometer
The accelerometer works similar to how the gyroscope does, but instead of mea-
suring the angular velocity, it measures the acceleration in three different direction
which are orthogonal to each other. The accelerometer can refer to the external
references, because of the presence of gravity. By knowing this, it is possible to fix
the orientation of the accelerometer in the real world frame if the accelerometer is
stationary. The output from the accelerometer is given in G:s (G = 9.81m/s2) 4.

As the case with the gyroscope, it is not possible to know if the sensor data from
the accelerometer has been filtered. It most likely has been filtered before the data
is made available to the user.

3.1.3 Magnetometer
The magnetometer enables the user to measure the magnetic field around the sensor
in three different orthogonal directions (x, y, z). By knowing the strength of the
magnetic field in the different directions and comparing it to the magnetic field of
the Earth, it is possible to calculate in which direction the sensor is pointing at.
The output from the magnetometer is given in Tesla accompanied with a suitable
prefix.

The output of this sensor might, just like the other sensors, be filtered by the
smartphones operating system before it is delivered to the user. This is however not
a problem as the operating system offers another convenient way to work with the
magnetometer. The most common goal with the magnetometer is to determine the
geographical north which implies some problems that needs to be solved. The first
problem is to interpret the readings from the magnetometer, to extract the heading
to the magnetic north. The second problem is that the magnetic north is not the
same as the geographical north. The operating system solves these two problems
and is able to directly output the true geographical north to the user5.

3.1.4 iBeacon
The beacons used are from Estimote Inc. and they are certified under the Apple
Inc. iBeacon specification. The certification includes specifications on, for example,
identification and wireless technology of the beacon6. The beacons have a 32-bit

CoreMotion / Reference / CMGyroData _ Class / index . html # / / apple _ ref / occ / instp /
CMGyroData/rotationRate. Accessed: 2015-08-15. May 2010.

4Apple Inc. Core Motion Framework Reference. https://developer.apple.com/library/
ios/documentation/CoreMotion/Reference/CoreMotion_Reference/index.html. Accessed:
2015-04-01. Sept. 2013.

5Apple Inc. Core Location Framework Reference. https://developer.apple.com/library/
ios/documentation/CoreLocation/Reference/CoreLocation_Framework/index.html. Ac-
cessed: 2015-07-01. Sept. 2013.

6Apple Inc. Getting Started with iBeacon. https : / / developer . apple . com / ibeacon /
Getting-Started-with-iBeacon.pdf. Accessed: 2015-03-31. June 2014.
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ARM Cortex M0 CPU and supports Bluetooth low energy7. More technical speci-
fications are listed in Table 3.1.

The beacons are set up to send advertisements at 1 Hz frequency, at their high-
est possible signal strength, +4 dBm. An update interval of 1 Hz gives a good
balance between performance and battery life. The signal of the beacons are emit-
ted in every direction and and the range at the highest signal strength is about 70 m.

CPU ARM Cortex M0
Memory 256 kB
Bluetooth 2.4 GHz Bluetooth 4.0 BLE
Max range 70 m
Advertising frequency 1− 10 Hz
Broadcasting power −30 dBm to +4 dBm

Table 3.1: Estimote iBeacon technical specifications

3.2 Bluetooth Low Energy
Bluetooth is a wireless standard for connecting different types of devices and the
main use is to transmit data over short distances. Today, Bluetooth is built into
billions of products, mobile phones, computers, cars, etc. The technology operates
on multiple different channels in the 2.4 GHz band, 2.4 to 2.485 GHz.8.

Bluetooth low energy (BLE) is an extension to the original Bluetooth that was
introduced in the Bluetooth 4.0 specification. The main purpose of the extension
is to provide low-power communication of smaller amounts of data. The low-power
characteristics enables BLE products to run for months on battery9.

3.2.1 Signal Characteristics
A beacon advertises its UUID (universally unique identifier) and its major and mi-
nor values (configurable identifier values) at the selected advertising frequency. The
UUID and major and minor values are used to identify the beacon. The identifica-
tion will enable localisation of the beacon on a map.

The receiving smartphone will receive the received signal strength (RSS) value of
the advertisement broadcast. The RSS value is used to calculate the distance be-
tween the sender (beacon) and receiver (smartphone). Many beacon manufacturers
supply an API which calculates the distance, otherwise it can be calculated with

7Estimote Inc. API Documentation. http://estimote.com/api/. Accessed: 2015-03-24.
8Bluetooth SIG, Inc. Bluetooth Fast Facts. http : / / www . bluetooth . com / Pages / Fast -

Facts.aspx. Accessed: 2015-05-05.
9Bluetooth SIG, Inc. Bluetooth Fast Facts. http : / / www . bluetooth . com / Pages / Fast -

Facts.aspx. Accessed: 2015-05-05.
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the following formulas. Equation 3.1 is the equation of the RSS, where n is the
propagation path loss exponent, d is the distance, d0 is a reference distance and X
is the noise [22][23].

RSS(d) = RSS(d0) + 10n log10(
d

d0
) (3.1)

The propagation path loss exponent n is unknown, but can be derived from Equation
3.1, resulting in Equation 3.2.

n = RSS(d0)−RSS(d)
10 log10( d

d0
)

(3.2)

Equation 3.1 can be changed into Equation 3.3 to calculate the distance. RSS(d0)
is a setting on the beacons, and it is −60 dBm. d0 is equal to 1 m.

d = d0 ∗ 10
RSS(d0)−RSS(d)

10∗n (3.3)

The accuracy of the RSS values was examined by [24] and it was concluded that
it is not suitable on its own to use for positioning purposes. This is since the RSS
values fluctuate, and therefore the calculated distance will also fluctuate. Estimote,
the manufacturer of the beacons used, reports deviations listed in Table 3.210.

The RSS values will fluctuate more or less depending on the environment. Ob-
structing line-of-sight has a great impact on the RSS values. People moving around,
holding the smartphone at different angles, other signals, such as WiFi, and walls
are typical things that also worsens the RSS fluctuations and also are common.

distance deviation
20 cm 5− 6 cm

1 m 15 cm
> 10 m 2− 3 m

Table 3.2: Reported deviation from Estimote Inc.

10Estimote Inc. What are the characteristics of Beacons’ signal? https : / / community .
estimote . com / hc / en - us / articles / 201029223 - What - are - the - characteristics - of -
Beacons-signal-. Accessed: 2015-05-06.
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4
Testing

To validate the positioning system, a set of use cases is considered. Based on these
use cases, a set of test cases and evaluation criteria are proposed to examine the
performance of the positioning system. The testing itself is carried out in a pub-
lic building consisting of several adjacent rooms and a hallway connecting them.
The building is mostly used for conferences and meetings and is therefore spacious
furnished.

4.1 Use cases
A set of use cases is identified to be able to do a proper evaluation of the system.
With the help of these, a set of test cases and the associated evaluation criteria are
proposed. The following two use cases are identified and are considered during the
testing.

Routing
Routing is a good example of a service that could benefit from a positioning
system. Without having to rely on the user to supply the starting position,
which could be erroneous, the positioning system supplies an estimation of the
starting position instead. However, this puts great demands on the accuracy of
the positioning system. If the position estimation is wrong with a few meters,
it could lead to an incorrect routing which can affect both user experience and
also the safety of the user in some cases.

Proximity marketing
Location dependent services are something that is gaining in popularity. An
example is proximity marketing where the user can get store dependent infor-
mation, like sales or information about specific products. Another example
could even be that competing stores offers coupons to customers who are in
the competitors store. To be able to offer the right service, at the right time,
it is important that the positioning system is able to correctly detect which
location the user is located in.

4.2 Evaluation Criteria
To evaluate the use cases (Section 4.1), a set of evaluation criteria is defined. The
first evaluation criterion is accuracy, which tests how far the estimated position is
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from the real position. The second criterion is correct room estimation, a boolean
telling if the estimated position is in the same room as the real position. This
criterion is a complement to accuracy because the error of the estimation could be
really small but still be in a adjacent room.

4.2.1 Accuracy
Accuracy is how correct the position estimation, (x′, y′), is compared to the real
position, (x, y). The error, (x̂, ŷ), can be calculated, being the difference between
the estimated and real position as shown in equations 4.1 and 4.2.

x̂ = |x− x′| (4.1)

ŷ = |y − y′| (4.2)

When a path has been traversed, an average error can be derived using Equation
4.3 where N is the total number of estimation points. The accuracy is the primary
aspect of the evaluation criteria since the purpose of a positioning system is to give
an as correct position estimation as possible.

erroravg =
N∑

i=0

√
x̂i

2 + ŷi
2

N
(4.3)

4.2.2 Correct room estimation
The accuracy tells only half of the story about the error. The accuracy can be good,
but the system may still estimate a position in another room than the real position.
This is an important criterion since an indoor positioning system application may
be based on the room estimation rather than the estimated position of the user. The
correct room estimation criterion is used to measure this kind of error by assuming
the value zero when the estimated position is in the wrong room and assuming
the value one when in the correct room. From these values, a percentage can be
calculated, like Equation 4.4 shows. In the equation, N is the total number of
estimation points.

|{(x′i, y′i) : r(x′i, y′i) = r(xi, yi)}|
N

(4.4)

r(x, y) = room of coordinate (x, y) (4.5)

4.3 Test Environment
The tests are carried out in a public building consisting of several adjacent rooms
and a hallway connecting them. The floor plan and the placement of the beacons
are visible in Figure 4.1. In the forthcoming figures, the black lines represent walls,
the circles are the beacons and the dotted lines are the path walked, that is, the real
position.
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Figure 4.1: The testing environment, located in Chalmers student union building,
on the second floor.

The two smaller rooms have a ceiling height of about 2.5 m whilst the greater room
is a larger auditorium with high ceiling. The environment consists of mostly open
space, housing some tables and chairs. The space was not sealed off from disturb-
ing signals from other radio sources such as WiFi and other Bluetooth units. The
environment is thereby a good example of a real world scenario where an indoor
positioning system could have been operating in.

The path loss exponent in the testing environment was derived to approximately
2.1525 when using Equation 4.6, which also can be found in Chapter 3. The RSS(d0)
is a setting on the beacons, and it is −60 dBm. d0 is equal to 1 m. The path loss
exponent is used in the distance estimation, see Equation 3.3.

n = RSS(d0)−RSS(d)
10 log10( d

d0
)

(4.6)
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4.4 Tests

A set of test cases are proposed according to the use cases (Section 4.1). Each test
case examines different scenarios were the prototype could experience difficulties,
such as door crossings or narrow passages. The tests are designed to be repeatable
and are carried out in a static environment and is done for both the map-based ap-
proach and the map-less approach, to see the potential performance gain of the map.

Figure 4.2: Wall Crossing
test

Figure 4.3: Walk through
door test

4.4.1 Wall crossing
In this test, the user walks by a wall. The goal of the test is to see if the map model
manages to prevent wall crossings and take advantage of the presence of the wall to
increase the accuracy. The path walked is illustrated in Figure 4.2.

4.4.2 Walk through door
Since the map-based approach is supposed to prevent wall crossings, this test ex-
amines if the model can handle that a door is walked through. The door is walked
through by coming up on the side of it and walking diagonally through it. This is
considered a more difficult test case than just walking straight through it. Paths
straight through doors are available in other test cases though. Figure 4.3 illustrates
the path.
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4.4.3 Unbounded path
This test examines a straight path, in the middle of a large room, to check if the
map matching feature makes any difference. The aim is to investigate if the map
matching features could improve the estimation even in large rooms without any
nearby walls. The path is illustrated in Figure 4.4.

Figure 4.4: Path un-
bounded by walls

Figure 4.5: Nearly enter
room test path

4.4.4 Nearly enter room
In an attempt to fool the system, a straight path is walked by a door. When passing
the door, a step is taken into the adjacent room, and then a step back is taken
and the previously path is continued. This is made to fool the system and can be
considered a worst-case scenario, since the system might believe that the other room
was entered. Figure 4.5 illustrates the path walked.

4.4.5 Longer path
A longer path is walked to see how well the indoor positioning system can handle
more realistic scenarios where the user navigates through several adjacent rooms.
This is the type of behaviour that is expected from a typical user. The test also
investigates how the prototype handles any accumulating of potential errors. Figure
4.6 illustrates the walked path.
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Figure 4.6: Longer path
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5
Results

The results of the map-based approach showed an average improvement of 17.8% in
accuracy and also an average improvement of 3.33 % in room correctness compared
to the map-less approach. An improvement of 3.33 % in room correctness might
seem small but in most test cases was the room correctness already around 90 % to
95 % which means that the error of the room estimation has been reduced between
33% and 66%. The minimum and maximum error was also reduced with an average
of 26.2 % and 20.4 % which is a significant improvement. The standard deviation
showed an average improvement of 4 % but the improvement varied considerably
between different test cases.

5.1 The Design of the Prototype

The design uses data from sensors found on a modern, off-the-shelf smartphone. It
also uses a map of the premises and calculates the position by using a particle filter.
The processing of the sensor information also includes accounting for sensor noise
and step detection. The used sensors are the accelerometer, the magnetometer and
the Bluetooth low energy chip.

5.1.1 System Architecture

The accelerometer delivers acceleration data in the three axes inG, (G = 9.81m/s2)
to the Step_detection component (Section 5.1.2). The value of each of the axes
are added together to get the magnitude of the acceleration and from this value are
the steps detected. When the Step_detection component detects a step, the cur-
rent heading from the Heading_estimation is sent to the Prediction_model.
The Heading_estimation component itself, gets the current heading by interpret-
ing the magnetic field received from the magnetometer.

The Prediction_model (Section 5.1.3), is responsible for moving the belief of the
particle filter in the direction and with the length of the step. It is this movement
that can be restricted by the Map_matching component. When the belief has
been moved, the Map_matching component corrects parts of the belief that is
impossible. After the new belief has been created, it is sent to the Update_model
(Section 5.1.4) who incorporates the distance measurements from the beacons.
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Figure 5.1: The system setup (Accelerometer, Magnetometer,
Bluetooth_low_energy, Step_detection, Heading_estimation,
RSS_to_distance, Particle_filter): the accelerometer samples the accel-
eration with a frequency of 40 Hz and sends it to the Step_detection component
(Accelerometer), the magnetometer samples the magnetic field with a frequency
of 10 Hz and sends it to the Heading_estimation component (Magnetometer),
the Bluetooth chip ranges the iBeacons with a frequency of 1 Hz and sends the
RSS values to the RSS_to_distance component (Bluetooth_low_energy), the
Step_detection (Section 5.1.2) component receives acceleration data and trigger the
Prediction_model if a step is detected (Step_detection), the Heading_estimation
component receives magnetic fields readings from the Magnetometer and converts
it into a heading estimation. This component is provided by the iOS platform
(Heading_estimation), the RSS_to_distance component receives the RSS
values from the iBeacons rangings and converts them into distances according
to Equation 3.3 and the given path loss exponent (RSS_to_distance), the
particle filter processes the input from the Step_detection, Heading_estimation
and RSS_to_distance components and outputs a position estimation. A more
thoroughly description is presented in figure 5.2 (Particle_filter)

The Bluetooth_low_energy chip delivers RSS values combined with the UUIDs
from all beacons in range. The RSS values are converted to distance measurement
by the RSS_to_distance component. The distance measurements are then used
to update and weight the belief in the Update_model (Section 5.1.4).

After the weight has been updated, the belief is sent the to the Resample compo-
nent where a new set of particles, which represents the belief, is created. The new
set is created by, based on the weight of the particles, randomly drawn particles
from the old set into the new one. This results in that only the most likely parti-
cles survives to the next iteration of the particle filter. To achieve a final position
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Figure 5.2: The particle filter (Prediction_model, Update_model,
Map_matching, Resample, Extract_position): the Prediction_model (Sec-
tion 5.1.3) moves the belief according the the estimated heading and step length
(Prediction_model), the Update_model (Section 5.1.4) updates the belief accord-
ing to the reported distances (Update_model), the Map_matching (Section 5.1.3)
component corrects the new belief according to the premises (Map_matching), the
Resample component is responsible for doing the resample step in the particle fil-
ter. The Low-variance algorithm provided by [3] is used to realise this component
(Resample), the Extract_position (Section 5.1.5) component extracts the estimated
position from the belief (Extract_position)

estimation to be handed to the user, a weighted average is calculated from the new
belief by the Extract_position component which receives the new belief from the
Resample component. The average is based on the weight and position of the
particles.

5.1.2 Step Detection
The step detection algorithm is used to trigger the prediction model when a step has
been detected. When detected, a reading from the magnetometer is also made and
sent to the prediction model. However, the detection functionality already exists
in the iPhone1 but tests show that the data is delayed to a degree there it is not
possible to use it to trigger the prediction model. Instead, a step detection algorithm

1Apple Inc. CMPedometer. https://developer.apple.com/library/prerelease/ios/
documentation/CoreMotion/Reference/CMPedometer_class/index.html. Accessed: 2015-08-
07. Aug. 2015.

23

https://developer.apple.com/library/prerelease/ios/documentation/CoreMotion/Reference/CMPedometer_class/index.html
https://developer.apple.com/library/prerelease/ios/documentation/CoreMotion/Reference/CMPedometer_class/index.html


5. Results

was implemented from scratch. It uses data from the accelerometer to detect when
a step has occurred. As the graph in Figure 5.3 shows, the acceleration caused by
the steps are clearly visible. The step detection algorithm’s task is just to detect
steps, not detect if the user is walking, going by car, running or some other activity.

The algorithm works by receiving data from the accelerometer, which is then low-
pass filtered. The algorithm uses two thresholds to keep track of the acceleration.
If the acceleration has been above a certain number of G and then drops below
another number of G, a step is registered. The thresholds are selected such as even
light steps will trigger the step detection but normal use of the phone will not. A
pseudocode implementation is illustrated in Algorithm 1. The second plot in Figure
5.3 illustrates the resulting low pass filtered acceleration data and the vertical bars
representing where steps have been detected.

Algorithm 1 Step detection algorithm
Input: Readings from the accelerometer at time t
Output: true if a step is detected at time t

The step detection algorithm is fed with data from the gyroscope at each
time unit t and returns true if a step was detected.

Global variables: has_been_above
Constants: thresholdhigher, thresholdlower

1: procedure step_detection(acceleration)
2: if (acceleration >= thresholdhigher) then
3: has_been_above← 1
4: end if
5: if (acceleration < thresholdlower) then
6: if has_been_above = 1 then
7: has_been_above ← 0
8: return true
9: end if

10: end if
11: return false
12: end procedure

5.1.2.1 Description of the step detection algorithm

The algorithm is constructed with two if-statements. The first one, Line 2 to 4
changes the global variable has_been_above to indicate that the acceleration has
been higher than thresholdhigher. The next if statement, Line 5 to 10, checks if
acceleration has been below thresholdlower. If it has, and also has been above
thresholdhigher, the characteristics of a step has been achieved and the step is reg-
istered.
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Figure 5.3: The step detection visualised. The vertical lines represent detected
steps.

5.1.3 Prediction Model
To observe the potential benefit of introducing a map into the position estimation,
two different versions of the prediction model were developed. As mentioned in
Section 2.3.1, the motion model is responsible for moving the particles in a particle
filter, i.e. the prediction step. Since each particle represents a possible location,
it was determined that the map should be incorporated in the prediction model
instead of in the update model.

Both models are designed in a similar way, as they both returns a new belief based
on the given control and the previous state. To construct the new belief, the mod-
els takes the given control and moves the particles, which symbolises the old state,
accordingly. Before the movement of each particle, a random noise is added to the
control. The noise is added to account for the noise of the sensor and results in
every particle moving slightly differently compared to each other. To be able to
account for false-positive step detection, both models are given a 20 % chance of
not applying the control at all. When all particles have been evaluated, a new belief
has been produced.

Pseudocode of the map-less prediction model is presented in Algorithm 2.
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The potential improvement of the map-based approach over the map-less approach
is that the map-based approach also examines if the particles new positions are
possible or not. In other words, the model checks if any particles has crossed any
walls. If that is the case, the model slightly changes the noise that was added to
the control and tries once again to move the particle according the noisy control. If
the particle still crosses any walls after a predefined number retries, the particle is
placed somewhere arbitrary and gets an initial weight of zero. As a result of this,
the prediction model can recover even if particles gets stuck in a corner which is
possible when limiting the movement of the particles with a map. Pseudocode of
the map-based prediction model is presented in Algorithm 3.

Algorithm 2 Prediction model, map-less approach
Input: a set of particles, the control(consisting of step length and heading)
Output: a set of updated particles

The motion model takes all the particles and moves them in the direction of
the step the user takes.

Global variables: −
Constants: length_deviation, heading_deviation, false_positive_ratio
1: procedure Prediction_model(particles, ut)
2: for each particle in particles do
3: length ← ut.length + add_noise(length_deviation)
4: heading ← ut.heading + add_noise(heading_deviation)
5:
6: r ← rand() . Returns random number between 0 and 1
7: if r > false_positive_ratio then
8: move(particle, length, heading)
9: end if

10: end for
11:
12: return particles
13: end procedure

5.1.3.1 Description of the map-less prediction model algorithm

Line 3 decides what length the specific particle is going to move according to. The
length is an elongated average step length, since some particles are not moved, see
Line 6 and 7 below. The function add_noise adds noise to the step length by
drawing a random sample from a normal distribution with mean 0 and standard
deviation length_deviation. In Line 4, the heading, from the magnetometer, un-
dergoes a similar procedure.

Line 6 and 7 has the functionality to skip updating false_positive_ratio particles.
This is since some steps detected may be false positives, and this thereby leaves some
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particles to cover up if a false positive detection occurs. The rest of the particles
are moved by the function move, a function that moves the particle according to
length and heading.

5.1.3.2 Description of the map-based prediction model algorithm

The code in Algorithm 3 is equal to Algorithm 2 up to line 7. Algorithm 3 also uses
the move function, but checks if the new location of the particle is valid. The check
is made with the function possible_location which checks if the particle is placed
in a possible location. If it is not, the movement is undoed in Line 13. Line 14 to
20 holds an if-statement which tries to move the particle into a possible position
count number of times. If a possible position is not found during count iterations,
the particle is not moved. Since every iteration takes time, the algorithm is slowed
down if a too high count is chosen.

5.1.4 Update Model
The update model is responsible for determining how correct the positions of the
particles are. Similar to trilateration, the update model uses distances to accomplish
this task. The main task of the model is account for the deviation and noise that the
rangings suffers from. As stated in Table 3.2, the deviation rather quickly increases
from a few centimeters to several meters when the distance increases.

To partly solve the problem with the deviation, the model only relies on the four
closest beacons. This results in the model only uses rangings with the lowest possi-
ble deviation and therefore decreases the impact of the high deviation. The number
beacons the model relies on depends on the environment and how close beacons are
placed to each other.

The purpose of the update model is to determine how correct a particle is compared
to the real world. The comparison is also referred to as weighing of the particles,
where the weight symbolise how correct a particle is. The weighing is divided into
two separate stages where the first stage calculates the theoretical distance dt to
the nearby beacons from each particle. The second stage compares the theoretical
distance to the reported distance dr from the beacons by taking dt − dr. The re-
sult from the subtraction is then used as an index in a probability density function
operating on a normal distribution with a mean equal to zero. This results in, the
smaller the difference is between the theoretical and the reported distance, a higher
value is returned from the probability density function. The returned value from the
probability density function is then used as weight and the total weight of a particle
is the sum of all weights divided by the number of used beacons.

5.1.4.1 Description of update model algorithm

Line 2 sorts the received distance measurements in ascending order. This is made
because only the beacons most nearby will be used. In Line 4, all the particles are
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Algorithm 3 Prediction model, map-based approach
Input: a list of particles, the control(consisting of step length and heading), a map
of the premises
Output: updated particles

The motion model takes all the particles and moves them in the direction of
the step of the user. The movement of the particles is controlled by the map
matching, which also is hosted in the motion model.

Global variables: −
Constants: length_deviation, heading_deviation, false_positive_ratio, retries
1: procedure Prediction_model(particles, ut, map)
2: for each particle in particles do
3: length ← ut.length + add_noise(length_deviation)
4: heading ← ut.heading + add_noise(heading_deviation)
5:
6: r ← rand() . Returns random number between 0 and 1
7: if r > false_positive_ratio then
8: count ← 0
9: while true do

10: move(particle, length, heading)
11: p ← possible_location(particle, map)
12: if p = false then
13: undo_movement(particle, length, heading)
14: if count = retries then
15: break . Do not move particle
16: else
17: length ← ut.length + add_noise(length_deviation)
18: heading ← ut.heading + add_noise(heading_deviation)
19: count ← count + 1
20: end if
21: else
22: break
23: end if
24: end while
25: end if
26: end for
27:
28: return particles
29: end procedure
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Algorithm 4 Update model
Input: a list of particles, RSS values from beacons in range
Output: modified particles

The sensor model updates the particles according to the measurements re-
ceived from the beacons.

Global variables: −
Constants: number_of_beacons
1: procedure update_model(particles, zt)
2: sort(zt, ’ascending distance’)
3:
4: for each particle in particles do
5: weight ← 0
6: for i ← 1 to number_of_beacons do
7: position ← get_beacon_position(zi

t.id)
8: distance ← dist2(position, particle)
9: variance ← (p2

0 · distance+ p1 · distance+ p2)
10: weight ← weight + prob2(zi

t.real_dist− distance, variance)
11: end for
12: particle.weight ← weight / number_of_beacons
13: end for
14:
15: return particles
16: end procedure
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looped through. Each particle is having its weight reset and in the next for loop, on
Line 6, the particle is having its weight set again.

The new weight is calculated based on its position in relation to the position of
the number_of_beacons closest beacons. Throughout the testing, 4 beacons have
proven to supply the best balance between performance and speed. The function
get_beacon_position looks up and returns the position of the beacon being in-
putted to it. The function dist2 calculates and returns the distance between the
beacon and the particle. The distance is used to derive the variance(line 9) which
is one of the two inputs to prob2. The other input is the difference between the
real and the calculated distance. prob2 returns a value from a probability density
function, operating on a normal distribution with a mean of zero and the supplied
variance. The second parameter is used as an index and the return value represent
the weight, given by that beacon. A particles total weight is then calculated on line
12 as the sum of all weights divided by the number of used beacons.

5.1.5 Extract position
To get any useful data form a particle filter, there needs to be some sort of mech-
anism that can extracts the information from the belief. As the belief consists of
a finite number of particles, where each particles holds a fraction of the wanted
information, each particle needs to be included in the extraction.

There are two methods of extracting the information from the belief, where one
way is to use the position of each particle and derive an average of all positions to
get an estimation. The other method is to also include the weight of each particle
when deriving the average. This gives a better estimation because only the posi-
tion of a particle does not contain any information about how good the estimation is.

5.1.5.1 Description of Extract position algorithm

Line 3 loops trough every particle in the given set as every particle needs to be
evaluated. On the lines 4-5, the current particle’s weight is multiplied with its
position and saved during each iteration of the loop. Line 6 sums up the total
weight of all particles. Line 8 and 9 calculates the weighted average for both the x
and y coordinate.
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Algorithm 5 Extract position
Input: a set of particles
Output: a position estimation (x,y)

Takes a set of particles and extracts the position estimation from it.

Global variables: −
Constants: −
1: procedure extract_position(particles)
2: weight_x, weight_y, weight ← 0
3: for each particle in particles do
4: weight_x ← weight_x + (particle.x · particle.weight)
5: weight_y ← weight_y + (particle.y · particle.weight)
6: weight ← weight + particle.weight
7: end for
8: x ← weight_x / weight
9: y ← weight_y / weight
10: return (x, y)
11: end procedure

5.2 Validation of the Indoor Positioning System
Due to the probabilistic nature of the algorithms that is used, it is difficult to present
a result that reflects the true performance of the system. Even if the same data is
fed to the system, the results will vary. A way to minimise this problem is to feed
the system with the same data a multiple number of times and derive an average
of the results. The average will then give a good representation of the performance.
The presented results is based on an average calculated from ten different runs. The
improvement factor, defined as the map-less value divided by the map-based value,
is also presented. The greater the improvement is, the greater the map-based ap-
proach performed, compared to the map-less approach. If the improvement factor
is below 1, the map-less approach performed better.

A set of test cases is defined in Chapter 4 which each one evaluates different aspects
of the system. The longer path test case represents, to a greater extent than the
others, a realistic use of the system. Therefore, a greater focus will be on the results
from that test case where the others are mentioned briefly. A complete presentation
of the results can be found in Appendix A.
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5.2.1 Wall crossing test results
The map-based approach shows an improvement over the map-less approach when
moving close to walls. The most evident improvement is the error in room correct-
ness, which decreases from 9 % to 3 % in this test, i.e. a 67 % decrease in error. The
other values are very similar as can be seen in Table 5.1. When looking at Figure
A.2, it is visible how the map-less approach allows the position to be estimated in
the adjacent room more often compared to the map-based approach. Both version
do however estimate in the wrong room when being close to the door. The map-
based approach allows this since the positioning estimation must be allowed to enter
through doors.

Table 5.1: Results of wall crossing test

Map-less Map-based Improvement factor
Average error [m] 1.54 1.50 1.03
Min error [m] 0.24 0.27 0.89
Max error [m] 3.27 3.26 1.00
Standard deviation [m] 0.82 0.82 1.00
Correct room estimation 91% 97%

The distribution of the error for both the map-based and map-less approach is shown
in Figure 5.4.

Figure 5.4: The distribution of errors in the wall crossing test
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5.2.2 Walk through door test results
In the walk through door test, the map-based approach performs better than the
map-less approach. Its standard deviation is lower, which means it delivers a more
consistent result. This is clearly visible in the maximum value, where the map model
lowers the most erroneous estimation with a meter. The correct room estimation is
the same for both versions. Figure A.4 is indicating that the transition to one room
to the other occurred at the same time for both versions, which means that the map
model does not prevent that a user moves through a door. The result is listed in
Table 5.2.

Table 5.2: Results of walk through door test

Map-less Map-based Improvement factor
Average error [m] 2.50 2.42 1.03
Min error [m] 1.35 1.23 1.10
Max error [m] 5.51 4.40 1.25
Standard deviation [m] 0.75 0.58 1.29
Correct room estimation 90% 90%

The distribution of the error for both the map-based approach and map-less ap-
proach is shown in Figure 5.5.

Figure 5.5: The distribution of errors in the walk through door test
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5.2.3 Unbounded path test result
This test produced an interesting result. The map-less approach has a lower standard
deviation than the map-based approach, however, when comparing the average, it
is visible that the map-based approach has a far better accuracy. Figure 5.6 and
Figure A.6 also clearly illustrates the outcome. The map model reduces the average
error with over a meter, a 41 % change. The correct room estimation is at 100 %
for both versions, signifying that no estimated position was in the wrong room. The
goal of the test is to make sure that the map-based approach also works when being
far away from walls. Table 5.3 presents the numbers.

Table 5.3: Results of unbounded path test

Map-less Map-based Improvement factor
Average error [m] 2.66 1.56 1.70
Min error [m] 2.03 1.00 2.03
Max error [m] 3.07 2.50 1.23
Standard deviation [m] 0.24 0.50 0.50
Correct room estimation 100% 100%

The distribution of the error for both the map-based approach and map-less ap-
proach is shown in Figure 5.6.

Figure 5.6: The distribution of errors in the unbounded path test
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5.2.4 Nearly enter room test result
The main goal of this test is to exploit the underlying functionality of the map-
based approach. When entering a room, particles will be spread inside that room.
During this test, just a small step was taken into the room, enough to spread and trap
particles inside, and then continue the path outside the room. Both versions handled
the scenario well since the position estimation was quite far from the adjacent room,
resulting in not many particles spreading in the room. The accuracy and room
correctness values are listed in Table 5.4.

Table 5.4: Results of nearly enter room test

Map-less Map-based Improvement factor
Average error [m] 2.01 2.05 0.98
Min error [m] 0.86 0.85 1.01
Max error [m] 4.52 3.99 1.13
Standard deviation [m] 0.80 0.87 0.91
Correct room estimation 100% 100%

The distribution of the error for both the map-based approach and map-less ap-
proach is shown in Figure 5.7.

Figure 5.7: The distribution of errors in the nearly enter room test
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5.2.5 Longer path test result

While walking a longer, more realistic, path, the map-based approach shows an
improvement over the map-less approach. The average error is reduced by nearly
half a meter, 13 %. The maximum error is seeing a decrease of over two meters.
The standard deviation is also lower, meaning that the map model produces a more
consistent result, supporting the other values. The improvement is also visible in
the upper part of Figure 5.8 where the absolute error is shown for each time unit.
Figure 5.10 is a graphical representation on a map which compares the different
versions. Most notable difference in Figure 5.10 is the map-less estimation which
takes a shortcut over the non-accessible area in the middle of the figure.

Table 5.5: Results of longer path test

Map-less Map-based Improvement factor
Average error [m] 3.37 2.94 1.15
Min error [m] 1.03 0.78 1.32
Max error [m] 7.79 5.51 1.41
Standard deviation [m] 1.63 1.12 1.46
Correct room estimation 65% 68%

The distribution of the error for both the map-based and map-less approach is shown
in Figure 5.9. The estimated paths and the real path are visible in Figure 5.10.

Figure 5.8: Error and correct room estimation of longer path test
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Figure 5.9: The distribution of errors in the longer path test

Figure 5.10: Graphical representation of the estimated positions
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6
Discussion

A design of an indoor positioning system is presented that includes a step detection
model as well as a particle filter that base the position estimation with a map-based
approach. The design utilises sensors found on a modern, off-the-shelf, smartphone
and knowledge of the current premises. A pilot of the design has been implemented
in MATLAB and the validation of the pilot shows an improvement compared to the
map-less approach.

6.1 Implementation
The data gathering was made on an iPhone 5S, a platform having some limitations
in the ability to collect data from the different sensors. For example, the frequency
of collecting beacon updates was limited and the different functions for retrieving
sensor updates from the accelerometer and the magnetometer did not come with any
in-depth documentation on how the data was processed. The general perception is
that the data is filtered and processed in different ways before reaching the client. If
the data is filtered, this may degrade the performance of the algorithm compared to
when designing all the filtering by oneself. Filtering the data twice is also a potential
waste of CPU cycles.

A design for each of the models was selected and implemented, leaving alternative
designs out. In the case of the map-based prediction model, a design using map
matching that did not allow particles to move to impossible positions was selected.
Another design that was considered was by constructing the most common routes
through the different rooms and lock the user to them. This idea is similar to how a
GPS works in a car, where the car is locked to the closest road because a car can not
be driven outside a road. However, this design has some obvious flaws like not being
able to position the user outside of the routes, but, while traversing a room in the
common way, there is a possibility that the accuracy had increased. The outcome
could have been completely different compared to the selected design but it would
also introduce a new problem, the construction of the routes.

A design improvement that was tested was the ability to calculate which beacons
that was behind the user and therefore not being in line-of-sight of the smartphone.
The values of those beacons were supposed to be trusted less due to the RSS values
being decreased by the obstructing body of the user. However, the heading estima-
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tion was not accurate enough to ensure the correctness of such calculations and was
therefore not included in the proposed design. If it was possible to achieve a more
accurate heading estimation, this approach might have improved the performance
of the proposed design.

6.2 Validation

The validation of the pilot showed a clear improvement in accuracy in the map-
based approach compared to the map-less approach in most test cases. However,
in the nearly enter room test case, Section 5.2.4, there was a degradation of 2 % in
accuracy. This degradation is however negligible since it is just a matter of a few
centimetres compared to the map-less approach. The degradation could possibly
be due to that a particle filter uses probabilistic models where the output could
differ between different runs. The probabilistic models is at the same time also the
strength of the design, because without it, it would not be possible to account for
the noise that is experienced by the sensors.

In the longer path, Section 5.2.5, the room correctness is much worse than what was
initially expected, at least in the map-based approach. This might however depend
on that the prediction model, Section 5.1.3, uses an odometry model that is based
on a control that has happened and not what is going to happen. This might be
the reason why the position estimation is a bit behind while moving which is likely
to affect the room correctness in a negative way.

A notable observation can be made from the results from the unbounded path
test case, Section 5.2.3, where the biggest improvement of accuracy can be seen
amongst all test cases. This was the test case where it was most likely to see a
small improvement or non at all due to the great distances to any adjacent walls. It
appears that the map-based approach not only improves the performance in smaller,
closed space as initially thought but also in bigger, more open spaces too. This could
be due to the fact that the available sensors on the smartphone are so inaccurate,
that in even bigger rooms there is a need of restraining the movement of the belief
in the prediction step.

6.3 Test cases

The tests were conducted in a static environment to see the potential increase in
performance without any interference affecting the results. This means that no
dynamic environment were evaluated and it is therefore not possible to conclude how
well the proposed design would perform when there, for example, is other people
present. The reasons why this was not considered during the testing was that it is
difficult to control the environment and also make the testing repeatable. Though,
by looking at the results from the test that were conducted, it seems that it is correct
to assume that a dynamic environment would not degrade the performance of the
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map-based approach relatively the map-less approach. However, actual testing needs
to be conducted in a dynamic environment to solidify this assumption.
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7
Conclusion

The map-based approach showed an improvement in both accuracy and room cor-
rectness compared to the map-less approach. It also showed a clear improvement in
the maximum and minimum estimation error. However, the developers who choose
to implement the map-based approach should be aware of the increased costs in
computational demand and power consumption of the design when developing appli-
cations. This work facilitate the use of a map-based approach in future smartphone
platforms that are not restricted by computational or energy constraints.

The extension of this work include further testing of the map-based approach and
comparing it to the map-less in future smartphone.

7.1 Further extension
Some thoughts that arose during the work and was not further investigated, was if
the placement of the beacons affects the performance of the positioning system. If
the placement affects the performance, will the performance be the same for both
the map-based and map-less approach. It seems that it is worth investigating if it
is better to focus on the placement of the beacons instead of trying to improve the
design of the systems to gain performance.

Another possible approach to improve the performance that is worth investigating
is if it is better to lock the user to predefined routes as mention in the discussion,
Section 6.1. However, this approach raises some other problems that needs to be
addressed. Some of these are how to create optimal routes throughout different
rooms and how to handle temporary changes of the environment. A possible solution
to these problems is to utilise big data and do an analysis of the moving pattern
from the users and constantly update the routes according to the observed pattern.
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A
Appendix 1

Omitted Result Figures
This appendix presents the result figures and plots.
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A. Appendix 1

Wall crossing test result

Figure A.1: Average error and correct room estimation plots

Figure A.2: Real and estimated paths
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A. Appendix 1

Walk through door test result

Figure A.3: Average error and correct room estimation plots

Figure A.4: Real and estimated paths
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A. Appendix 1

Unbounded path test result

Figure A.5: Average error and correct room estimation plots

Figure A.6: Real and estimated paths
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A. Appendix 1

Nearly enter room test result

Figure A.7: Average error and correct room estimation plots

Figure A.8: Real and estimated paths
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