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Abstract

In this thesis, performance metrics are established to evaluate the efficiency and
accuracy of various grid-less multiple target detection algorithms in radar. A high-
fidelity radar simulation environment is established with a liberty to change parame-
ters affecting the radar base-band frequency estimation. The radar data is generated
using a base-band sinusoidal signal model, in which clutter and noise can be added
or removed. Different settings of data generation are used in order to replicate mul-
tiple realistic scenarios. The detection algorithms are rigorously tested under these
scenarios including high noise and dense clutter environment. Special cases when
two target frequencies are very close to each other, are also monitored. The errors
are recorded for various noise levels, signal lengths and clutter spread and strengths.
A mapping metric i.e. GOSPA, is used to correlate estimated and actual parameters
in order to perform an effective evaluation. The aim of this work is to provide a
detailed evaluation platform for detection algorithms. Moreover, different clutter
removal techniques are also introduced for the detection algorithms.
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1

Introduction

Target detection in a radar system is the primary task to determine if an object is
present at a certain location in space. A classical approach to solve this problem is
to test if a target is present in any of a set of discrete hypothetical target locations.
If the volume to be searched for targets is large and the grid on which the search is
performed over is dense, the computational complexity becomes a practical problem
to be feasible for real-time operation. In some radar configurations, it is possible
to perform so called grid-less detection where the location of a possible target is
determined by solving an associated estimation problem. In contrast to grid-based
detection, grid-less detection requires more advanced signal processing algorithms.
In a radar scenario where the sensing array senses signals from multiple targets
returns and ground clutter, the computational complexity of the grid-less detection
may also increases. In order to reduce this complexity, beamspace transformation
can be done which divides the input into multiple beams and data from each beam
is processed in parallel.

1.1 Aim

The aim of the project is to investigate various grid-less estimation algorithms
that can be applied to beamspace transformed data, to determine how they can
be adopted to such data, and characterize the performance of the overall methodol-
ogy. To do the performance evaluation, a high-fidelity radar simulation environment
is established. In the end, it should be possible to demonstrate accuracy of multiple
estimation algorithms.

1.2 Thesis Outline

Chapter 1 gives the introduction to the topic and explains the aim of the project.
Chapter 2 describes the theoretical background of radar target detection and esti-
mation, grid-less detection techniques and various performance metrics that can be
used to evaluate these algorithms. It also illuminates the theory behind some other
algorithms used in this project like GOSPA metric etc. The theoretical background
of signal model and clutter is also presented in this chapter. Chapter 3 describes
the methodology adopted to carry out various tasks in the project. It also gives a
brief description on the estimation algorithms used in the simulation. Chapter 4
consists of all simulation results for various test cases. Moreover, these results are
presented along with detailed discussions in which investigations have been made
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behind results and how they can be improved. The final chapter concludes the thesis
and briefly describes the outcome of the thesis.



2

Theory

This chapter gives a brief introduction to radar theory, the multiple target detec-
tion problem, multiple target estimation algorithms and metrics to evaluate their
performance.

2.1 Basic Theory of Radar detection

Radar stands for Radio Detection and Ranging. It is a device which can be used
to detect location, distance and speed of the object in its vicinity. The working
principle of Radar is based on transmission of electromagnetic waves into space and
to detect objects from the reflected signals. Typically a radar system consists of a
transmitter and an antenna which radiate electromagnetic waves, and a receiver with
antenna to collect the reflected waves. A radar could use same or different antennas
for transmission and reception depending on system design. But nonetheless, a
radar typically does not receive signals while it is transmitting. Depending upon
the complexity of system, a radar may use array of antennas. A basic block diagram
of radar is shown in figure 2.1.

. Waveform
Duplexer [« Transmitter [« Modulator |«
Generator
Antenna
A 4
. Signal
Receiver Demodulator &
Processor

Figure 2.1: Basic Block Diagram of Radar

o The waveform generator generates the complex transmission signal. The pulse
duration of transmitted pulse is controlled here.

e The Modulator modulates the waveform pulse to carrier frequency, which is
ranges from 5MHz to 130GHz in modern radars.

o The transmitter combined with antenna radiates the waves. Usually a high
power amplifier is needed in order to transmit such high energy waves.

o The receiver collects the reflected waves from targets.
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o The demodulator demodulates the received signal back to base-band frequency
i.e, frequencies closer to zero.

o In Signal Processor, matched filtering is applied to received signal in order
to maximize it’s signal-to-noise ratio (SNR). Subsequently, detection and es-
timation algorithms are applied to detect if there is any potential target in
the echoe and different techniques can be applied to estimate its range and
Doppler.

One of the major challenges in radar signal processing is to determine the presence
of valid target with certainty. As the signal received by the signal processor, has
been through the whole chain of radar system thus deteriorating it at each step.
Moreover, it is also corrupted by interference from the environment, as well as the
Tx/Rx chain itself. The radar detector needs to determine if the signal contains any
useful target information or is it just noise. This problem can be formulated as a
binary hypothesis test [1].

{HO . Interference only 2.1)

H, : target and interference

where Hj is called Null Hypothesis and H; is called Alternative Hypothesis

2.1.1 Signal Model

Depending upon the type of radar, different types of information can be extracted
from the received signal. In Pulse-Doppler radar, the most common information
that is usually extracted from received echoes is of the target’s:
« Range: How far is the target from Radar centre?
o Doppler: At what speed, the target is approaching towards or moving away
from radar?
o Azimuth: Direction to the target. It is also called angle of arrival or direction
of arrival (DOA).
After some initial pre-processing of data, for a single point target present at range n
with Doppler k£ and on azimuth ¢, the signal is a product of sinusoids of frequencies
corresponding to target’s range, Doppler and azimuth.

T
x(n, k,i) = Zateﬂ’rfr”ej%fdkeﬂ”f“i (2.2)
t=1

oy = amplitude of target

fr = frequency corresponding to range
fa = frequency corresponding to Doppler
fi = frequency corresponding to azimuth
T = Total number of targets

FFT can be taken in each dimension to generate a three dimensional data cube as
shown in figure 2.2 [13].

4



2. Theory

Range

/

//'.
Azimuth

Doppler

Figure 2.2: 3-D data cube

For the sake of simplicity and due to repetitive nature of these cube dimensions,
this thesis assumes data in only one dimension.

2.1.2 Noise Model

As mentioned earlier, it is inevitable for received signal to have some interference
and noise. There are several noise generating sources in a radar system. Some of
these are listed below:

o Thermal noise is generated by the electronic components in radar process-
ing chain, caused by agitation of electrons. It is usually the receiver which
contributes to thermal noise.

o Atmospheric noise is caused by natural phenomenon such as lightning dis-
charges and cosmic radiations etc.

o External interference such as electromagnetic interference either caused by
nearby devices or intentionally caused by hostile jammers.

o Clutter is unwanted echoes from buildings, vegetation, sea and terrain etc.
All of these contributing factors can be modelled and compensated in radar simu-
lation, if required. However in this thesis, only additive zero mean complex white
Gaussian noise is considered. Moreover, few cases with ground clutter are also dis-
cussed.

The aforementioned complex white Gaussian noise has a PDF of the form [14]:
1 1
p(E) = — expl-— i — (2.3)
and is denoted by C'N(ji,0?) where fi is mean and o2 is the variance of noise. For
zero mean noise, g = 0.

2.1.2.1 Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR) is a fundamental metric used to quantify the quality
of a signal relative to the level of noise present in a system. It characterizes the
ratio of the power or amplitude of the desired signal to the power or amplitude
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of the unwanted noise. SNR is often expressed in logarithmic form using decibels
(dB), which provides a more convenient and meaningful representation of the ratio.
Mathematically, SNR is defined as:

Psig

noise

SNR(dB) = 101log;, (2.4)

where Py, is power of signal and P, is power of noise.

A higher SNR means that a signal is stronger and more distinguishable from the
noise. A lower SNR indicates that signal is buried in noise and more difficult to
detect, which may lead to degradation of accuracy and reliability of system.

2.2 Multiple target detection in digital Radar

The multiple target detection problem in a digital radar can be illustrated by the
figure 2.3. Targets can be in any direction and a grid-less method will estimate
the locations of all targets present. The computational complexity for the grid-less
detection problem may be too large for real-time operation due to many simultaneous
targets and clutter returns.

Target returns

Array YY YYonYYYYYY M elements
antenna | ]
vy vvy M channels
— s
Detection of
targets in all Detection
directions

Figure 2.3: Detection without beam forming

In the figure 2.4, a potential solution to reduce the complexity is illustrated. In a
first step, the signal from the array is transformed by a beamspace transformation
into N virtual beams and the data from each beam can be processed in parallel.
Naturally, the number of potential targets in each beam is now drastically reduced
and it is possible to employ a grid-less detection method in each beam at a reduced
computational cost.

6
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Target returns

Array
antenna |

YYYYY M elements
|

1 H v J v Mchannels

~
Beamspace
transform
N beams
~
Detection in Detectionin | Detection in
Beam 1 Beam 2 Beam N

Parallel detection of
targets in each beam

Figure 2.4: Detection with beam forming

2.3 Target Detection and Estimation

The significance of radar target detection and estimation algorithms can be un-
derstood through their ability to extract relevant information from radar signals.
These algorithms employ sophisticated mathematical and statistical techniques to
distinguish targets from clutter, noise, and environmental interference. By effec-
tively isolating the desired signals, they enable the precise detection and tracking of
objects of interest.

As mentioned earlier, the radar detection problem can be formulated as a binary hy-
pothesis test (2.1). A very basic method to determine which hypothesis is correct for
a given received signal is Likelihood Ratio Test (LRT) [2]. It is a statistical hypothesis
testing method that compares two competing hypotheses using the likelihood ratio
as the test statistic. A likelihood function for both the Null hypothesis, fr(L|H,),
and Alternative Hypothesis, fr(L|H;) is established using sufficient statistic under
Hy and H;. And the LRT can then be expressed as:

Ju(L[Hy) g,

fr(L|Hy) Mo ! 2

A generalized form of this test is called Generalized Likelihood Ratio Test (GLRT)
[1] which maximizes both likelihood functions in (2.5), and then determines their
ratio.

Over the years, various techniques have been developed to precisely detect the pres-

ence of valid target in radar echo and to estimate it’s characteristics such as range,
doppler, amplitude etc. A mere identification of targets and removal of clutter could

7
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be done using simpler algorithms like Moving Target Indicator (MTI) [3]. One of
the classical radar detection algorithm is the Matched Filter [4]. It correlates the
received radar signal with a known reference signal (typically the transmitted wave-
form) to maximize the detection of targets with the same characteristics as the
reference signal.

With the advent of advanced technology, it was possible to enable more sophisti-
cated techniques such as the Constant False Alarm Rate (CFAR) [5], which enabled
adaptive thresholding to maintain a consistent false alarm rate in the presence of
varying clutter levels. This technique revolutionized clutter rejection and improved
detection performance in complex environments. Some other techniques like Adap-
tive Matched Filtering [6] [7] also bear CFAR property. And many variants of CFAR
have also been developed. Some examples are cell averaging CFAR (CA-CFAR), or-
der statistic CFAR (OS-CFAR), greatest of CFAR (GO-CFAR) etc.

Even better techniques were developed with the rise of digital signal processing,
for example CLEAN [8] [9] and Orthogonal Matching Pursuit (OMP) [10]. They
are the grid version of radar detection which first place the received signal on grid
(usually FFT grid) and then remove all strong echoes from it in a repetitive manner.
With the constant technological development, it is possible to increase the efficacy
of these type of techniques by simply increasing the length of the grid.

2.4 Performance Metric for Estimation Algorithms

The development of several performance evaluation metrics to assess the efficiency
of radar target estimation algorithms hold a significant value in the realm of radar
technology. By thoroughly measuring the algorithmic performance through these
metrics, engineers and researchers can effectively enhance radar system design, op-
timize target detection capabilities, and enhance the overall efficacy and reliability
of radar technology in diverse applications such as surveillance, navigation, and de-
fense.

Several metrics have been developed in particularity to determine radar target de-
tection and estimation algorithms. Some of these are briefly discussed below:

2.4.1 Binary Hypothesis test

A binary hypothesis test as mentioned in (2.1), is a statistical procedure used to
make a decision between two competing hypotheses, Null Hypothesis, Hy and Al-
ternative Hypothesis, Hy regarding the absence or presence of a target signal in the
received radar data respectively. The figure 2.5 (reference: [23]) illustrates Gaussian
probability density functions for binary hypothesis test.

The threshold, v determines which hypothesis will be selected. If the signal power is
above this threshold, H; is selected and if it’s below this value, then Hj is selected.
The PDFs of these two hypothesis is shown in the figure. Two important metrics,
probability of detection and probability of false alarm can determine the efficacy of
this test. These metrics are defined below:



2. Theory

0.4

0.35 Py(y | H1)
031

0.25

Relative Probability
o
- o
w 3]

o
-
T

0.05 -

Figure 2.5: PDFs for BHT

« Probability of Detection, Pp is a conditional probability that the alterna-
tive hypothesis, Hy, is selected if the received signal has both interference and
target. This metric quantifies the algorithm’s ability to correctly detect and
identify targets in the presence of noise and clutter. A higher Pp indicates a
better detector.

o Probability of False Alarm, Pr, is a conditional probability that the al-
ternative hypothesis, H; (2.1), is selected if the received signal has just in-
terference and no target. This metric measures the algorithm’s tendency to
generate false alarms or spurious detection in the absence of a target. A lower
Pr 4 indicates a better detector.

It can be seen from figure 2.5, by increasing v, Pp — 0 and Prq4 — 0. And by
decreasing the threshold, v — 0, Pp — 1 and Pr4 — 1. Therefore, there is a
trade-off between the two and one has to select the threshold carefully.

The detectors with CFAR property are designed to maintain a constant false alarm
rate regardless of the changes in noise levels and clutter. With having the guarantee
of a consistent false alarm rate, it is easier for the operator in decision-making.

2.4.2 Receiver Operating Characteristic, ROC curves

Another metric that can be used is Receiver Operating Characteristic curves. ROC
curves provide a graphical representation of the trade-off between Pp and Pry4 for
varying Signal-to-Noise ratios. They illustrate the algorithm’s performance across
a range of operating conditions, allowing for visual comparison and selection of al-
gorithms based on desired performance characteristics. An example of ROC curve
graph is shown in figure 2.6.

As mentioned earlier, it is desirable to have a higher Pp and lower Pr4, but it can
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Figure 2.6: MATLAB generated ROC curves for different values of SNR

be seen in the figure that for lower values of SNR, this is not possible. A radar
equivalent SNR can be increased by transmitting more power, increasing antenna
gain, optimizing receiver sensitivity, using coherent pulse integration and increasing
the number of pulses in one coherent pulse interval.

2.4.3 AUC: Area Under Curve

The AUC in radar represents the area under the ROC curve. The AUC value ranges
between 0 and 1, where a higher AUC indicates better discrimination capability and
overall performance of the radar system. A radar system with an AUC value close
to 1 suggests a high Pp and a low Pra across a range of threshold values. This
indicates that the radar system is effective in detecting targets while maintaining
a low false alarm rate. A detector with AUC equal to 1 is considered as a perfect
detector.

The performance metrics discussed so far are the classical methods which give a very
deep insight of a detector efficiency, but they can only be used for a single target.
In case of multiple targets, some enhanced metrics are used to sum up the overall
performance of a detector in the presence of interference, clutter and several targets.
Some of these are mentioned below:

2.4.4 Confusion Matrix

Yet another way to measure the accuracy of radar detector, Confusion Matrix gives
a tabular representation of the relationships between predicted and actual target
states. The confusion matrix consists of four distinct elements: true positive rate
(TPR), false positive rate (FPR), true negative rate (TNR), and false negative
rate (FNR). The true positives signify the cases in which the radar system correctly
identifies the presence of a target when one actually exists. The false positives occur

10
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when the radar system erroneously indicates the presence of a target when there is
none, leading to false alarms. The true negatives denote the instances in which the
radar system correctly determines the absence of a target when there is no target
present. The false negatives refer to the situations where the radar system fails
to detect an actual target, leading to a missed detection. By organizing detection
outcomes into this matrix, the confusion matrix provides a detailed assessment of
the performance of radar detection algorithms. The sum of each column in this
matrix equals one. Also, the TPR is equal to the Probability of Detection, Pp and
FPR equals Probability of False Alarm, Pr4, mentioned in section 2.4.1. A typical
confusion matrix is represented as below:

ACTUAL

Positive Negative
E TPR FPR
8 é (Pd) (Pfa)
—
O
)]
L
('t v
a2 FNR TNR

Figure 2.7: Confusion Matrix Representation

2.4.5 False Alarm Rate

False Alarm Rate, FAR measures the rate at which false alarms occur per unit
time or per scan (360 degree span of radar antenna). It indicates the frequency of
incorrect target detection when there are no actual targets present. Target detection
algorithms that have CFAR property ensure to maintain a constant false alarm rate.

2.4.6 RMS Errors

The root mean squared error (RMSE) is a statistical metric that provides a com-
prehensive assessment of the overall accuracy and goodness of fit between observed
and predicted values of various target parameters. The RMSE is defined as:

11
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1 n
RMSE, = \l - >l — 22 (2.6)
=1

where:

x; = actual value
Z; = estimated value
n = length of estimated parameter vector

Depending upon which RMSE is desired to be computed, n could be number of
targets or number of Monte Carlo iterations. The state x can be detected Doppler,
amplitude, range or azimuth of target. Thus, RMSE provides a wide range of
possibilities in which detectors can be evaluated. This is the reason why this thesis
also utilizes this performance metric to evaluate several estimation algorithms for
multiple targets.

2.5 Target parameter Mapping

The outcome of the multiple target estimation algorithms isn’t necessarily in one
to one correspondence with the ground truth. In most of the cases the number of
target estimates could also be different from actual number of targets present in
data. In order to evaluate these algorithms correctly, it is essential to have one to
one mapping between ground truth and target estimates. Omne of the techniques
that can be used for this purpose is the GOSPA metric.

The Generalized optimal sub-pattern assignment (GOSPA) metric is the sum of lo-
calization errors for properly detected frequencies and a penalty for false and missed
frequencies. The implementation of this metric is done according the Definition 1
mention in [29)].

x| »
dp(X,Y) £ ( min 3~ d @i,y + “(1v) - |X|>) Sfor X< Y| (27)
TRV =1
where:
c = cut-oftf metric and ¢ > 0
@ = parameter of GOSPA metric and it is specified in the range [0,2]
P = switching penalty and 1 < p < oo
d(z,y) = metric for any z,y € RV
d9(z,y) = min(d(z,y), c) is its cut-off metric
I, = set of all permutations of {1,...n} for any n € N
T = Any element 7 € II,, is a sequence (7(1)...7(n))
X = {21, ...zx}, a finite subset of RY
Y = {y1,...yjy|}, a finite subset of RY

The parameter ¢ determines the maximum allowable localization error and, along
with parameter «, it also determines the error due to cardinality mismatch (|Y| —
|X|). The parameter p is used for penalty for false targets. The larger the value of
p, the more the outliers are penalized.

12
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2.6 The Cramer Rao Lower Bound

CRLB is a lower bound on the variance of any unbiased estimator. CRLB can be
used to create a benchmark against which all other estimators can be measured.
This can give us insight on which estimator to choose from many.

Let @ be an unbiased estimate of 6 and let P be covariance matrix of 8 [30]:
P=E{6-6)0-0)"} (2.8)
Then, there is a matrix called Cramer Rao Bound Matrix, P,,, such that [31]:
P>P, (2.9)

and that the difference (P — P,,) is a positive semi-definite matrix. A good starting
point to find CRLB is to calculate the Fisher Information Matrix, which always
exist. And if the inverse of Fisher Information Matrix, F', exists then:

P,=F" (2.10)

The focus is to estimate frequency and complex amplitude of target, @ is complex.
Therefore the discussion is restricted to complex data vectors that have complex
Gaussian PDF of the form [33]:

p(x; 0) = exp|—(z — p(0))"C, (0)(x — p(0))] (2.11)

1
N det(C,(0))

where parameter vector 6 is to be estimated based on complex data x. Here p is
the complex mean and C' is the covariance matrix of . Both are dependent on
parameter vector 6.

Since @ may have both real and complex components, therefore the vector of real
parameters is denoted as &. So now if we want to estimate a complex amplitude, a,
the vector & = [a, a;]”.

The Fisher Information Matrix is given by [31]:

oC (&)
0

The CRLB Matrix can then be calculated using equation 2.10.

9C.(€)
3

op" (€)
&,

o (€)

0
(2.12)

C.'(¢) C.'(€)

[F(&)]i; = tr |C;'(€) 1 +2Re [

2.7 Clutter

Clutter in radar systems can be described as the compound effect of undesirable
returns originating from terrain, buildings, atmospheric conditions, electromagnetic
interference, and other non-target objects present within the radar’s field of view.
Clutter usually covers a wide region in returned signals, much greater than a radar
range resolution cell. In addition to that a point clutter may also be present, usually

13
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a return from a tower, pole or a bird. The echoes from land or sea are called sur-
face clutter, and the echoes from rain and other atmospheric phenomenon such as
lightning, wind, cosmic radiations etc, and chaffs are know as volume clutter. These
type of clutter can have a significant Doppler content. For airborne radars, dealing
with clutter could be even more complicateD as the clutter could produce a lot of
Doppler. This makes it difficult to reject clutter on basis of near-to-zero Doppler
criteria.

Clutter poses a significant challenge in radar signal processing and target detection
tasks. The complex nature of clutter originates from its variability in intensity, spa-
tial distribution and frequency distribution, making it difficult to distinguish from
genuine target echoes. Sophisticated techniques are employed to mitigate clutter
effects in radar systems. These techniques involve the use of advanced signal pro-
cessing algorithms, adaptive filtering, statistical models, and clutter maps derived
from historical data. By modeling and analyzing the statistical properties of clutter,
sophisticated algorithms can discriminate between clutter returns and actual target
echoes, allowing for more accurate and reliable target detection and tracking.

14
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Methods

This chapter includes the process in which the simulation was prepared and differ-
ent tests were carried out on various estimation algorithms. It also describes the
evaluation methodology adopted to categorize these algorithms in different scenar-
ios. Some additional simulator features e.g. noise threshold, addition and removal
of clutter, and usage of GOSPA and Cramer Rao Lower Bound are also elucidated
here.

3.1 Data Generation

The signal length, N and number of targets, K are user configurable. The data is
generated according to following equation:
6j27rfk0
K 727 fil
r = Z (72
k=1

6]27Tfk(N_1)

) . ) 3.1
e327f10 eJ2mf20 eI27fK0 ( )
ei2mfil ed2mf21 ed2mfxl
= . + . 0K
ed2mfi(N-1) ed2mf2(N—1) ed2mfx(N-1)

where:

K = number of total targets
fr = normalized frequency of each target, range [0,1)
ap = complex amplitude of each target

3.1.1 Monte Carlo Simulation

The Complex White Gaussian Noise v is added to the generated targets data x.
Monte Carlo simulations are performed to produce sample based statistics on the
performance of the estimation algorithms. The number of Monte Carlo iterations is
user-configurable and in every Monte Carlo iteration noise is added to data:

=T+ v
v ~ CN(0,021)
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where:

2

0, = noise variance

v = vector of length N

3.1.2 Formulation of Data Scenarios

The estimation algorithms are evaluated in both ideal and non-ideal situations.
Therefore, different scenarios are generated such as with fewer and more targets,
well-apart and neighboring target frequencies, cluttered and clutter-free environment
and different noise levels and signal lengths. These scenarios are explained in detail
below:

3.1.2.1 Data Scenario 0 - Single target case

This is the simplest scenario where there is just one target present. This scenario
is useful to evaluate the performance of estimation algorithms with respect to the
Cramer Rao Lower Bound. (see section 2.6)

3.1.2.2 Data Scenario 1 - Target proximity case

There are two targets in the data where the frequency of one target is fixed whilst
the other target is given a frequency sweep in the range Af. The number of resolu-
tion points and total range of Af can be set in the simulation.

The RMS errors in frequency and amplitudes can then be plotted against Af. Dur-
ing the frequency sweep, when the two frequencies are equal to each other, singularity
occurs. And in order to keep the plots readable, these points are omitted.

The algorithms can be evaluated in ideal situation with zero noise and no clutter
and also with change in noise levels and clutter.

3.1.2.3 Data Scenario 2 - Distinct targets

The target frequencies are well apart and fixed. In case of lower noise levels and no
clutter, this scenario should yield smaller errors. The table 3.1 shows the example
followed in simulator.

H Target Frequency Amplitude H

1 0.1 0.7071 + 0.7071i
2 0.2 0.0000 + 0.75001
3 0.5 0.3400 + 0.5889i
4 0.6 0.0000 + 0.5200i
5 0.8 0.3182 + 0.3182i

Table 3.1: Target Parameters for Data Scenario 2

This data is tested with and without clutter and for different noise levels and signal
lengths.
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3.1.2.4 Data Scenario 3 - Closely spaced targets

This is more challenging data scenario where five targets are closely spaced in fre-
quency. This data scenario is used to evaluate the performance of different al-
gorithms in extreme situations. The environment can be further complicated by
adding clutter and increasing noise levels. The table 3.2 shows the example target
parameters used in simulator.

H Target Frequency Amplitude H

1 0.1 0.7071 + 0.7071i
0.11 0.0000 + 0.75001
0.131 0.3400 + 0.58891
0.17 0.0000 + 0.52001
0.2 0.3182 + 0.3182i

QY =] W DN

Table 3.2: Target Parameters for Data Scenario 3

3.2 Estimation Algorithms

As mentioned in section 2.3 of chapter 2, there are various detection and estima-
tion algorithms used for target detection. In this thesis, two FFT based algorithms
CLEAN and Orthogonal Matching Pursuit (OMP) are used to benchmark the per-
formance of advanced ESPRIT and fs-ESPRIT.

3.2.1 CLEAN Algorithm

A well-known classical CLEAN approach sequentially estimates the strongest com-
ponent in the received signal and then removes it until only white noise is left in the
signal [8]. It is also used to remove interference from side lobes [9]. The concept is
to clean the signal from dominant targets.

In the implementation of CLEAN, the frequency of each dominant target is esti-
mated by detecting the global maxima on the DFT grid. The index value of the
maxima is then converted to normalized estimated frequency, fk Knowing the for-
mation of transmitted signal from (3.1), the estimated frequency, fk, can be used to
mimic the component of original signal, corresponding to one target. This signal is
called steering vector s. This leads to a least square minimization problem where
we need to estimate the target amplitude, ay.

min ||z — say|? (3.2)
875

This least square problem can be solved for ay by taking derivative of (3.2) w.r.t.
ay and equating it to zero. The algorithm to calculate fj, and «y is described below:

Tres = T (3.3)
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while k < K:
LTrft = fft(wresy NFFT) (34)
7 Lift
= — 3.5
Jr = argmax | = (3.5)
ei2m fi0
eI2m fil
s = _ (3.6)
A S mres
= 3.7
g = o (3.7
Lres = Lres Sdk (3 8)
where:
T = input vector
k = An integer representing target number with total targets K
fr = estimated frequency of one target
xsre = FEFT of the residual vector &,es
N = Signal length i.e. length of vector x
Nrpr = length of zero padding in FFT
dr = estimated amplitude (complex) of one target.

The equation (3.7) is derived by solving least squares problem of (3.2). In CLEAN
algorithm, there can be several ways to set the stopping criteria, for example, in
[8], the signal is cleaned from all the strong echoes until just white noise remains.
But this thesis follows a rather simpler approach to the said problem. The above
mentioned approach can lead to a difference between number of target estimates
and number of actual targets. This can generate more complexity when mapping
the estimates to ground truth. Therefore, the stopping criteria used in this work is
predefined number of given targets, K.

List of all configurable parameters for this algorithm is given in table 3.3.

H Parameter Description Range H
K Number of Targets {0,1,2,3,...}
Nrppr FFT zero padding >N
fs Freq start point 0-1
fe Freq end point 0-1

Table 3.3: Hyper-parameters for CLEAN Algorithm

It is also possible to select the frequency range in which the algorithm should find
the target peaks. This can be done by setting two other parameters f, and f. with
range 0-1. The vector ¢z will then be truncated as below:

xppe = xrpe(fs o Je) (3.9)
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3.2.1.1 Effect of Zero Padding on Algorithm Performance

The minimum range for Nppr is the data length, N, and the increase in zero padding
highly affects the results in some scenarios. To understand this, we first need to see
that in CLEAN technique, we try to maximize the following expression:

m;xx sH(f)w‘ (3.10)

1 2 Nppr —1
e 3.11
! { Nrpr Nppr Nrpr ( )

As increasing the zero padding increases the resolution of DFT grid. Hence the dis-
tance between the true frequency and grid point decreases. This results in decrease
in error.

3.2.2  Orthogonal Matching Pursuit (OMP) Algorithm

The Orthogonal Matching Pursuit (OMP) is an iterative greedy algorithm which
recovers the non-zero components from a sparse signal [10]. For target detection,
the algorithm is same as CLEAN except that the a estimates for previous targets
are updated when new estimates are calculated. Instead of a vector s, the matrix
S is now formed which contains the s vectors for the current and all previous
frequencies. The detection is repeated in a loop for all targets.

Lyes = T (3.12)
while k < K:
LTrrt = Ht(mre37 NFFT) (313)
fr = arg mex % (3.14)
327 fr0
ei2m fil
S = ) (3.15)
ei2m fr(N—1)
S=1|s81 8 --- sk} (3.16)
ej27rf10 €j27rf20 L ej27rfk0
pi2mfil ei2rfal co. ei2mfil
S = . . . . (3.17)
ei2rfi(N=1)  gi2nfa(N=1) | . cj2nfu(N-1)
@, = (878)7 18 g (3.18)
Tres = T — SAY, (3.19)
where:
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x = input vector
k= An integer representing target number with total targets K
fr = estimated frequency of one target

e = FFT of the residual vector @,

N = Signal length i.e. length of vector x

dy = vector of estimated amplitude (complex) of all target k and all previous
targets 1 — (k — 1).

Apart from calculation of S and dj, there is another difference from CLEAN algo-
rithm evident from (3.19). In case of OMP, the amplitudes for all estimated targets
are re-estimated in each iteration.

The stopping criteria for OMP is same as in CLEAN. The frequency selection is
also possible. The hyper-parameters for OMP is also same as CLEAN and are men-
tioned in table 3.3. The effect of zero padding is also the same as discussed in section
3.2.1.1.

3.2.3 ESPRIT Algorithm

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) is
a subspace-based algorithm for estimating the parameters of multiple sinusoidal sig-
nals from their received measurements. It exploits the rotational invariance property
of a uniform linear array (ULA) to decompose the received signal into two subspaces,
enabling accurate and computationally efficient parameter estimation.

Consider a single element uniform linear array (ULA) that receives echoes from K
distinct targets. The signal model can be expressed in form of:

K
z(n) = apel>™ " (3.20)
k=1
zn)=[1 1 - 1]¢"a=1¢"a (3.21)
where:
ei?rfi ... 0 el2mfin .. 0
o= : — ¢" = . :
0 ce. @Ik 0 .. pI2mfrn
T
Q = |:a/1 o e aK]
We note that the eigenvalues of ¢ are [eﬂ”f Lo ef?2mK } Now define the Hankel

matrix with ¢ rows when ¢ > K

g=| =) =2 =23 - : (3.22)
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Now insert values from signal model (3.21) in the Hankel matrix (3.22), we get

la  1¢a 1¢%a -+ 1¢" %

1pa 1¢*a 1¢°a

H = (3.23)

1¢q—1g 169 1¢q+1g 1¢N—1Q

The number of rows in H is ¢ and the number of columns is (N —1) — (¢—1)+1 =
N — g+ 1. It is assumed that N — ¢+ 1 > K, which admits the factorization of
rank K and resulting in £ rows and k columns, hence

1
H= 1:¢ o ¢a ¢*a - ¢V (3.24)
19!

Given the H (i.e. the signal x(n)), this factorization is not unique.
If (C,A,b) = (1T, T~*¢T, T a), then for some square invertible matrix 7

C
CA
H=| " |[b Ab .- AN-0) (3.25)
C AT
We also note that
1 ] (1T ] [ 17T 1 C
16 16T 17T 16T oA
10> |7 = | 1¢°T | = | 1TT'¢*T | = | (3.26)
: : : g1
g0t || arroigerr| LG4

This means for any rank-K factorization of H, i.e.
H=UZ where U has K-columns
there exists (C, A, b) such that
C
U= C:A and Z = [b Ab --- AN-ap)
CAT!

and some symmetric T such that A = T~1¢T, which shows that the eigenvalues of
A are same as the eigenvalues of ¢.

Since U has the structure that row p + 1 is row p multiplied with A, then if U. are
the ¢ — 1 first rows of U and U, are the ¢ — 1 last rows of U, then

UA=U, (3.27)
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Since it is assumed that ¢ > K we can solve for A if U has full rank. Now since

1
U = 1,¢ T (3.28)

1971
——
Vandermonde matrix

and both matrices to the right in (3.28) have full rank, therefore from (3.27)
A= Uu)'vfu, (3.29)

An eigenvalue decomposition of A now gives the eigenvalues e/27/1 ... ¢2™/k and the
frequencies are the angles. The amplitude a; - - - a; are obtained in the same way as
the last step in OMP by solving the LS problem.

This construction only works as intended if ¢ > K and N — g+ 1 > K. If we use
the minimal dimension ¢ = K + 1, we obtain N — (K + 1)+ 1 > K,

— N > 2K

The Reversed Conjugate signal model

This can be expressed as

K
z,(n) =Z(N —1—n)=> age 2=l (3.30)
k=1
K . .
x,(n) =Y age SN Nemi2mhin — 1 4np (3.31)
k=1
where:
b=¢'"Na

Let H, be the Hankel matrix for the z, signal, then

1
1¢
H H|P= 197 [

[S]
hASS
[S]

N0 b gh - NI (3.32)

1]
S
19
— | 1¢? [

[S]
ASS
IS

"o ¢'Na ¢*Na .- ¢ (3.33)

1o
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The matrix to the right has the rank K. If it has at least K columns, then:

AN —q+1)> K (3.34)

AN — (K+1)+1) > K (3.35)
ON — 2K > K (3.36)

N > 35( (3.37)

This implies that N > % samples are needed for the reverse conjugate signal model
also.
The factor UZ = {H Hr} is computed using the truncated singular value decom-

position,
> ||V
|H H,| l&] lVf’ (3.38)
where:
> =diag (01 e Jk) have the k-largest singular values.

In the noise free case, >, =0, so
H H|=UYVv"=Uz (3.39)

In the noisy case, [H Hr} has a rank larger than K but we use U 3. V¥ as the rank
K factorization.

The computational cost of the ESPRIT algorithm is dominated by the SVD op-
eration. However, the ESPRIT algorithm based on partial SVD and fast Hankel
matrix-vector multiplications in [12] has much lower cost. Using the cyclic convo-
lution property of discrete Fourier Transform and applying fast Fourier Transform
(FFT), one obtains a fast evaluation of a circulant matrix-vector product.

The summary of ESPRIT via complete/partial SVD is as follows:
Input: Order d and data x of length N
o Form the rectangular hankel matrix using the input data.
o Compute the SVD of Hankel matrix.
o Compute the eigenvalues, A, and from these frequency estimates are calculated
as.

f= sort(;i‘) (3.40)

o Compute the steering matrix, S from f

ei2m f10 i27 f20 e ei2m fa0
ei2mhil ei2nfel L. pi2nfal
S = . . . . (3.41)
ei2nfi(N=-1)  i2nfa(N=1) .. cj2cfa(N-1)
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o Compute the complex amplitudes, .

&= (878) 18 g (3.42)
The amplitudes can also be estimated by solving the problem as LMMSE problem.
The benefit of using this approach is that it puts a bound on the amplitude errors and
does not let them overshoot if the matrix S is not well conditioned. The LMMSE
amplitude estimates can be calculated as:

9 \ -1

& = (SHS + “21> St (3.43)
O-CL

where:

0? = assumed amplitude variance

a
2 — assumed noise variance

The proof of (3.43) is attached in Appendix A.
In this thesis, o2 is assumed to be always 1. Therefore only o2 will be considered.
The hyper-parameters for ESPRIT are listed in table 3.4

g

H Parameter Description Range H
order Order of the algorithm {0,1,2,3,...}
q Number of rows in Hankel matrix <N
O, Noise std eR

Table 3.4: Hyper-parameters for ESPRIT Algorithm

Here, order of the algorithm should equal to total number of targets. In case of
data with clutter, this number needs to be greater than actual number of targets
present. Moreover, the default value for the parameter ¢ is set as %

3.2.4 fs-ESPRIT Algorithm

The fs-ESPRIT algorithm is derived for the scalar valued case y(n) € C. This
algorithm was first presented in [15] and further developments and applications are
reported in [16, 17, 18, 19, 20].

We assume the noise free signal is given by

y(n) = cA"b (3.44)
zn)=[1 1 -+ 1|¢"a=1¢"a (3.45)
where:
c =11 1
Q2
A= C
0 ce. @I2mfK
b =|a; --- aKT

K = Total number of targets
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The signal is hence a weighted sum of K complex exponentials. It is also assumed
that the frequencies f; € (—0.5,0.5] are distinct and a; # 0 for all i. This implies that
the signal y(n) cannot be described by another model with fewer than K complex
exponentials. In the following steps, it is assumed that we have access to N samples
y(0),y(1),--- ,y(IN — 1). If all samples are considered as a vector, then we can
describe the signal as

y(0)
1
T (3.46)
y(N —1)
where:
S = |s(f1) s(fs) --- s(fK)] is a Vandermonde matrix and
sT(f)y=1|1 e/ eitnl ... ej2”(N*1)f} is the Vandermonde vector

Since the frequencies are assumed distinct, the Vandermonde matrix S has full rank,
see e.g. [21].

We directly see that the rows in the Vandermonde matrix is the vectors which
generate the Krylov (row-)subspace associated with row vector ¢ and matrix A.

c
cA
S=| cA’ (3.47)
ch_l
3.2.4.1 DFT relations
The DFT of the N samples is
N-1 - nk N-1 - nk
Y(k)=> y(n)e "~ = C<Z A"e‘jQ’TN)b =cA(k)b (3.48)
n=0 n=0
where we have introduced
N-1 -
Ak)y= > Are ™% (3.49)
n=0

as the DFT of the lengkth N matrix valued signal A". To simplify notation below,
we introduce 2z, = e/*"~ and we have

N-1

A(k) =Y Anzm (3.50)

n=0
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A key algebraic relation is

N-1 N-1
ZkA(k‘) _ Z Anzkf(nfl) — A Z An—lzkf(nfl) + 2.0
n=0 n=1
N—-1
=AY A Y g T N AN
n=1
N-—1
= A Z A"z "+ g d — 2 AN
n=0

= AA(k) + z,(I — AY)

where we used the equality 2, N —=1. A repeated use of this relation yields

2 A(k) = ATA(k) + >z AT — AY) (3.51)
=1
Applying this to the DFT of y(n) results in
2 Y (k) = zjcA(k)b = cA"A(k)b+ > z,cA" (I — AM)b (3.52)

i=1

3.2.4.2 Subspace equations

With the definition b = (I — A™)b and (3.52), we can form the vector equality

C 1] T e ' 0 e cer 0]
Zk cA cb 0 R O I
. - z
A Y(k)=|cA |Akb+ | cAb b i || T (3.53)
:71 . 3 .l RS O~ Zq;l
2] [cAT] CATh cATh .. cb| i
NI L 7
Y I
With the introduced notation in (3.53), we have
Y,=SAk)b+TZ, (3.54)

Let ki, ko, ...,ky be M distinct integers such that 0 < k; < N. Then based on
(3.54), we have the matrix equality.

Y =8SX+IZ (3.55)
where:
Y =[Yy Y o Yy
X = [A(k)b A(k2)b - A(ka)b]
Z =2y, Zi - Z,
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If M > g—1 then the matrix Z has a nullspace of dimension d,, where d,, = M —qg+1
since Z is a Vandermonde matrix and has full rank. Let Z | € CM*% he a matrix
where the range space of Z, spane the nullspace of Z then, as ZZ |, =0

YZ =S8SXZ, (3.56)

which directly tells that the range space of Y Z | is a subspace of the range space
of S. If M > K + q — 1 it can be shown along the lines presented in [22] that the
range space of Y Z is equal to the range space of S. This, in turn, implies that if
q > K then rank(Y Z,) = K. Let Zy € C7*¥ be a matrix which span the range
space of Y Z . It then follows that there exists a non-singular matrix P € CK*K
such that

>

SyP =S (3.57)
From the structure of S we can see that
cP! cy
cP'PAP! cy Ay

Sy =SP ' = (3.58)

cP ' (PAP ) ! cy AL

and hence Ay = PAP ™! which tells us that Ay and A are similar and hence have
same set of eigenvalues. From the shift structure in (3.58), we see that

[Tt Og-1ya1| Sy Ay =010 T,1| Sy (3.59)

and if ¢ > K then {I(q_l)p S(q_l)pxp} Sy has full rank K and we have a unique
solution for Ay .

Ay = ([T 0 1)) 8v) " [0-1)x1 o] Sy (3.60)

where (.)* denotes the Moore-Penrose pseudo inverse. The eigenvalues of Ay is A,
which is the set {e/?"/i }szl The frequency estimates can then be calculated as.

f= sort(ﬂ) (3.61)
2
The steering matrix S and amplitude estimates & can be calculated in a similar
way shown in equations 3.41 and 3.43.
The hyper-parameters for fs-ESPRIT are listed in table 3.5.
In this thesis, 02 is assumed to be always 1. Therefore only o2 will be considered.

Here, order of the algorithm should equal to total number of targets. Moreover, the

default value for the parameter ¢ is set as %
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H Parameter Description Range H
order Order of the algorithm {0,1,2,3,...}
q Number of rows in Hankel matrix <N
kset vector with set of integers for 1 <kset<N
frequencies to include in the estimation
Oy Noise std eR

Table 3.5: Hyper-parameters for fs-ESPRIT Algorithm

3.3 Frequency Mapping

The frequencies and amplitudes reported from these estimation algorithms are not
necessarily in same order as the original frequencies. There is a need of establishing
a mechanism through which the estimated frequencies can be mapped onto the true
frequencies. The amplitudes will be automatically mapped in the same order. This
step is essential to compute true errors.

Generalized optimal sub-pattern assignment metric (GOSPA) [29] metric is used for
this purpose. It is a very robust method that can even help to map the frequencies
which are very closely placed.

3.3.1 GOSPA Metric
The GOSPA parameters are set as following:

p:

The parameter ¢ does not need to be assigned as there is no cardinality mismatch.
The sets of true and detected frequencies are given as input to GOSPA. The matrix
IT contains all the permutations of vector vec = 1 : length(y), where y is set of
estimated frequencies. So basically, Il contains all the possible orders of indices,
and its each row is 7 which is a sequence (m(1),,,,m(n), where n is number of
total estimated frequencies. The metric d is computed for true frequencies x (i) and
estimated frequencies y(I1(7,4)), where i = length(x) and j = length(IT). The sum
in (2.7) is calculated for all combinations and are stored in 1-D array of length equal
to number of rows in II. The minima of this array then gives the loss and the set
of indices that yield the least error. The estimated frequencies and amplitudes are
then re-arranged according to these new indices.

The metric d could be any metric that determines the closeness of two numbers
and the Euclidean distance can be used, however in our case the OMP and CLEAN
algorithms return frequencies mapped between [0,1) whilst the ESPRIT and fs-
ESPRIT algorithms return frequencies between [—0.5,0.5). Therefore, angle based
distance is used, which can compute distance between two frequencies regardless of
their mapping.
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The [—0.5,0.5) frequencies can be mapped later onto the [0, 1) range by:
1+f f<0
-

3.62
f otherwise ( )

3.3.1.1 Angle based distance

The angle is computed between two vectors where each vector is represented by a
complex scalar in the form of the complex exponential.
4€j277ftrue€j2ﬂ'fest

d= .
o (3.63)

where:

ftrue;fest = C [0, 1) or [-05,05)

3.4 Clutter

One of the most challenging problem in radar detection and estimation is posed by
the presence of clutter in data. It can be ground clutter, clutter due to rain, sea
clutter and so on. Each type of clutter has distinct characteristics with different
frequency spreads and clutter power. Here, a simple example of clutter is incorpo-
rated with clutter spread close to zero frequency and clutter amplitude comparable
to target’s amplitude.

3.4.1 Clutter generation

The clutter is generated using similar equation as (3.1). But this time a number
of frequencies are added which are closely spaced and very close to zero frequency.
A clutter range is defined to determine clutter spread in normalized frequency. For
example clutter range of 0.05 means the normalized frequency ranges from -0.05 to
0.05. Several exponentials with uniformly spaced frequencies in this range are added
together to form clutter. The magnitude of clutter is then adjusted to scale it down
in order to get it comparable to target strength.

ej27ffc0
C €j27rfc1
Csig = Z (0% . (364)
c=0 .
pi2m fe(N=1)
€j27rf00 ej27rf10 €j27rf00
ej27rf01 ej27rf11 ejQchl
Csig = Qo : + a; : +--rac : (3.65)
ei2mfo(N—1) ed2rfi(N-1) ei2mfc(N-1)
2
\/O¢ Csig
Lclutter = |C ] | (366)
sig

29



3. Methods

where:

C = total number of clutter frequencies.

fe = clutter frequency.

a. = complex amplitude of clutter for a frequency f..
02 = clutter power which is user configurable.

In simulation total of 40 exponentials are added symmetrically around the zero
frequency. An example of FFT of signal before and after clutter are shown in
Figure 3.1

Signal without Clutter
T T T

1 T T T

T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f
Signal with Clutter

il 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f

Figure 3.1: Signal with and without clutter

3.4.2 Clutter removal techniques

Some clutter removal techniques are implemented for all estimation algorithms, to
remove the clutter from the data.

3.4.2.1 Clutter removal in OMP and CLEAN

For CLEAN and OMP, the frequencies in which clutter is present are truncated
before finding the first maxima. The truncation depends upon the assumed clutter
spread. For example, the FFT of signal with clutter spread of 5 percent is shown
in Figure 3.2. From the figure it can be seen that it is good to start truncation
before 0.1 frequency and end it before 0.9. The current implementation sets the
truncation frequencies as 1.5 of the clutter spread from both sides. So, for 10 %
spread the frequencies used for detection will be 0.15 to 0.85. This can be done by
setting hyper-parameters f; and f, in table 3.3.
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Signal in Frequnecy Domain with Clutter Spread 5%

Signal FFT

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency

Figure 3.2: Signal with single frequency and clutter spread 5 %

3.4.2.2 Clutter removal in ESPRIT

In ESPRIT, it is not possible to select a range of frequencies to detect targets.
Therefore, it is necessary to increase the order of the algorithm by some amount.
If, for example, it is required to detect one target in a signal which is corrupted
by clutter, then more than one target should be demanded from the algorithm,
otherwise it will most probably return a frequency in clutter area. Hence in this case,
the order is increased i.e., additional frequencies are demanded from the algorithm
and later these frequencies can be removed in post processing. This is done by
changing the hyper-parameter order mentioned in table 3.4. In post processing it
is detected if any of the detected frequency is present in clutter area, and then it is
removed.

3.4.2.3 Clutter removal in fs-ESPRIT

In fs-ESPRIT, it is easier to reject clutter based on clutter spread. The algorithm
accepts the frequency range in which we need to detect targets. Thus, a set of
frequencies based on clutter spread is given to the algorithm and clutter is naturally
attenuated. Only those frequencies are returned that lie outside the clutter region.
This is done by setting the value of parameter kset mentioned in table 3.5.

3.5 Evaluation Methodology

The following section explains the methodology of different types of test performed
and their evaluation criteria. It explicitly states how the tests are carried out and
how their respective performance metrics are calculated.
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3.5.1 Error Computation

In simulation, two parameters for the evaluation of estimation algorithms are used:
o target frequency
o target amplitude
The frequency mapping returns the errors in frequency and amplitude for each target
for a single Monte Carlo iteration. These errors are simple difference between ground
truth and re-ordered target frequencies and amplitudes (after applying GOSPA).
And the root mean square error is the performance metric for the estimation of
these parameters.

Nyo

RMSEy =$ Z If = F1I?

(3.67)

Nye
RMSE, = \| — Z o — &l|?
where:
Nyre = Number of Monte Carlo iterations performed.

For the test cases that involve multiple frequencies, the RMS error is again computed
for total number of targets to give a single error value.

K
RMSE; = \ ? Z |RMSE;(k)|?
= (3.68)
K
RMSFE;, = E Z |RMSE, (k)|
where:
K = Number of Targets

RMSE; = Target Frequency RMSE error for single target
RMSE, = Target Amplitude RMSE error for single target

3.5.2 Noise threshold for Frequency Estimation

In frequency estimation, it is good to have high SNR to pick out the required signal
from the noise floor. Figure 3.3 shows the signal peaks are identified easily because

the SNR is high.

The threshold above which the signal peaks remain distinguishable from the noise
floor depends on the number of data samples N and the SNR. [24] gives a relation
to calculate threshold for single complex sinusoid in white gaussian noise.

N
NR——>1 .
S RlnN > (3.69)

As a rule of thumb, the factor on left is 70 in practical applications. Furthermore,
the presence of multiple sinusoids will increase the threshold.
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- FFT of Signal with high SNR

09 r
0.8
0.7
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05
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freq

Figure 3.3: Signal with high SNR

3.5.3 Calculation and Usage of Cramer Rao Bound

The theory of Cramer Rao Lower bound is discussed in section 2.6. The usage is
described here.
For the signal of the form:

r=s(fla+v (3.70)
x ~ CN(s(f)a,o>I) (3.71)
where:

s = steering matrix composed of complex exponentials with frequencies f
a = corresponding complex amplitude vector
v = complex white Gaussian noise.

The PDF of @ is given by:

f(x,0) = CN(s(f)a,o>I) (3.72)
where 0 = [ﬂ (3.73)
p=s(f)a (3.74)

C =01 (3.75)

The Fisher Information matrix, F', can be calculated using (2.12) and the CRLB
matrix can then be calculated using (2.10).

The lower bounds for the variance of # are obtained from diagonal values of CRLB
matrix.
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For the case where signal is embedded in White Gaussian noise only and there is
no other disturbance like clutter, Cramer Rao Lower Bound is calculated for single
and dual frequency cases.

For our case, the first term in (2.12) is zero as the covariance matrix C doesn’t
depend upon frequency vector f and amplitude vector a. And in order to calculate
the second term, it is needed to compute all partial derivatives of u. In this case, @
is column vector obtained by concatenating the frequency vector f and amplitude
vector a. Note that the a is a complex vector. And taking partial derivative with
respect to a complex value can be a complicated process. So, the derivative is taken
for real and imaginary parts separately and the parameter vector is denoted by &
instead, as discussed earlier in section 2.6

In the following sections, the calculations for partial derivatives are shown for single
and dual frequency case:

3.5.3.1 CRLB for Single Frequency

For single frequency case, the & is defined as:

f
¢ =|a, (3.76)
a;
The equation (3.74) for this case will be:
€j27rf0
pi2nf1
p=(a, +ja)
€j27rf(N—1)

and the covariance matrix C' is defined by (3.75). As we have discussed earlier that
first term in (2.12) is zero. There will be three partial derivatives in this case:

06j27rf0
, a“ . 16]27rf1
= 67 = ja2m .
(N _ 1)€j27rf(N—1)
ej27rfO
Hz = da,
e]QWf(N_l)
€j27rf0
l’l’S - aa' = j :
ej27rf(N—1)

These derivatives are used to calculate Fisher Information Matrix using (2.12). And
CRLB matrix and bounds are calculated for frequency and amplitude estimates.
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3.5.3.2 CRLB for Dual Frequencies

For dual frequency case, the parameter vector £ is defined as:

T
fo
£ = Zi (3.77)
(2
A2y
[ A2i |
The equation (3.74) for this case will be:
eJ2mf10 27 f20
eJ2mfil ei2mf2l
P = a1 ) + as
ej27rf1.(N—1) ej27rf2.(N—1)
eJ2mf10 eI27 20
ed2mfil ei2m f21
p = (ai, + jay) : + (agr + jaz)
pi2m fL(N—1) 0i2m f2(N—1)

and the covariance matrix C'is defined by (3.75). There will be six partial derivatives
in this case:

r 02710 7
12w f11
M/ — 87” — ja/lzﬂ- 16] fl
GY :
(N _ 1)ej27rf1(N—1)
r 0ed2mf20 7
op 1e2mf2l
L= = jay2w
(N _ 1)€j27rf2(N—1)
eJ2mf10
, 8“ ed2mfil
M3 aalr .
ei2mf1(N=1)
eJ2mf10
u/ _ 8“ _; ed2mfil
4 8a1i

ejQﬂ-fl.(N_l)
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ej27rf20
127 fal
H’/ _ 8“ B el=mJ2
> aaQr .
ei2r f2(N—1)
€j27rf20
27 fal
H,/ _ 8[_1, :j el<mJ2
6 Oay;

i2mfa(N=1)

These derivatives are used to calculate Fisher Information Matrix using (2.12). And
CRLB matrix and bounds are calculated for frequency and amplitude estimates.
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Testing and Results

In this chapter all the test cases and their results are discussed in detail. The chap-
ter discusses the comparison between different estimation algorithms mentioned in
section 3.2 under different conditions. The comparison is based on performance
evaluation metrics discussed in section 2.4.6.

There are several factors which can affect an estimation algorithm performance.
The test cases in order to evaluate the estimation algorithms are explained. The
test cases are built in corresponding to following factors:

o target proximity

e noise variance

 signal length

o clutter strength

o clutter spread

4.1 Test Scenario 1: Target Proximity

This test can be performed using Data Scenario 1 (3.1.2.2), where two frequencies
are generated with one frequency fixed and the other frequency is given a sweep.
The errors can be observed for a given noise variance, o2. For each frequency pair,
200 Monte Carlo iterations are performed.

The RMS errors for Ny, Monte Carlo iterations for one frequency pair can be
computed by using (3.67). These Monte Carlo simulations are repeated for all
frequency pairs and the errors are plotted against Af for each target and each
algorithm. This type of analysis can be performed for different noise variance levels
and different signal lengths. The purpose of this test is to evaluate the performance
of different estimation algorithms especially when two targets are placed very close
to each other in frequency i.e. Af — 0. The test does not include the data points
where Af = 0 or it is very close to zero, as in that case two targets are perceived as
one and errors are inevitably increased. The plots are not readable in this case or
may mislead the reader, especially when there is a singularity at A f = 0. Therefore,
the point where Af = 0 is removed along with some other closer points to zero.

In this case, the signal length is 64, the frequency of target 1 is set as 0.5, while other
target is given a sweep from 0.3 to 0.7 corresponding to Af of -0.2 to 0.2. Total of
100 frequency pairs are used and 8 points are removed from the graph. Table 4.2
shows the parameters of two targets.
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H Target Frequency Amplitude H

1 0.5 0.7071 4 0.7071i
2 0.3-0.7 0.0000 + 0.7500i

Table 4.1: Target Parameters for Data Scenario 1

4.1.1 Discussion: Effect of target proximity on different al-
gorithms

Before testing, it is important to analyze the Af = 0 scenario in detail for each
algorithm. This analysis will help to detect and fix any anomaly present. A test
was conducted with noise variance, 02 = 0.1, and RMS alpha errors are recorded
for all values of Af, including zero value. These errors are plotted for CLEAN and
OMP in figures 4.1 and 4.2.

Amplitude Est Error for Algo: CLEAN Amplitude Est Error for Algo: OMP
0 Target1 NoiseLevel,0.1 or Target1 NoiseLevel,0.1
Target2 NoiseLevel,0.1 Target2 NoiseLevel,0.1
5t 5L
g g
‘§’ A0 b g -10
] i
(%] 1%
Z5F 215
g g
=3 =3
< 20 <20
25t -25
-0.‘15 -0‘.1 -0.‘05 (; 0465 0.‘1 0.‘15 O.‘2 -0.2 -0.‘15 -0‘41 -0.‘05 (; 0.65 0.‘1 0.‘15
Af Af
Figure 4.1: RMS alpha Errors Figure 4.2: RMS alpha Errors
CLEAN OMP

It can be seen that even when two targets are placed very close to each other or even

of the same frequency, the alpha errors are contained. Similar test is conducted for
ESPRIT and fs-ESPRIT while calculating & using (3.42).
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25 Amplitude Est Error for Algo: ESPRIT 15 Amplitude Est Error for Algo: fs-ESPRIT
Target1 NoiseLevel,0.1 Target1 NoiseLevel,0.1
20 Target2 NoiseLevel,0.1 10 F Target2 NoiseLevel,0.1
151
5L
& 10f )
R Ko
5 5f 5
i w
(%) (%]
= =
o o
© ©
= < -
= =3
< - <

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Af Af
Figure 4.3: RMS alpha Errors Figure 4.4: RMS alpha Errors
ESPRIT fs-ESPRIT

The errors are not contained when targets have same frequency. This problem
can be fixed by solving for & as an LMMSE problem using (3.43). After some
experimentation, the hyper-parameters for LMMSE in ESPRIT and fs-ESPRIT are
set as below:

H Parameter Value H

Ovesprit 1

Oufsesprit 8

Table 4.2: Parameters for LMMSE in ESPRIT & fs-ESPRIT

The test is repeated and the RMS alpha errors are shown in figures 4.5 and 4.6

o Amplitude Est Error for Algo: ESPRIT o Amplitude Est Error for Algo: fs-ESPRIT
Target1 NoiseLevel,0.1 Target1 NoiseLevel,0.1
Target2 NoiseLevel,0.1 Target2 NoiseLevel,0.1
5 5
o o
= -
g-or 5-10f
v i
[2] 9]
= £
© -15 © -15 1
< <
o =3
< <
-20 - -20

25 I I I I I I I ] 25 I I I I I I I ]
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Af Af
Figure 4.5: RMS alpha Errors Figure 4.6: RMS alpha Errors
ESPRIT after LMMSE fs-ESPRIT after LMMSE

After this modification of these algorithms and selecting appropriate parameters, the
proximity test can finally be conducted. This test is performed for three different
noise levels, 0.1, 0.5 and 1.
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4.1.2 Test Case: Noise Level 0.1
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Figure 4.7: Amplitude and Frequency error CLEAN: Noise Level 0.1
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Figure 4.8: Amplitude and Frequency error OMP: Noise Level 0.1
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Amplitude Est Error for Algo: ESPRIT
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Figure 4.9: Amplitude and Frequency error ESPRIT: Noise Level 0.1
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Figure 4.10: Amplitude and Frequency error fs-ESPRIT: Noise Level 0.1

It can be seen that as Af — 0, the RMS errors increase for CLEAN and OMP,
but the errors for ESPRIT and fs-ESPRIT don’t increase at the same rate. In fact,
these two algorithms prove to have a better performance under high target proximity
conditions over classical greedy algorithms.
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4.1.3 Test Case: Noise Level 0.5
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Figure 4.11: Amplitude and Frequency error CLEAN: Noise Level 0.5
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Figure 4.12: Amplitude and Frequency error OMP: Noise Level 0.5
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Amplitude Est Error for Algo: ESPRIT
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Figure 4.13: Amplitude and Frequency error ESPRIT: Noise Level 0.5
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Figure 4.14: Amplitude and Frequency error fs-ESPRIT: Noise Level 0.5
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4.1.4 Test Case: Noise Level 1
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Figure 4.16: Amplitude and Frequency error OMP: Noise Level 1
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4.17: Amplitude and Frequency error ESPRIT: Noise Level 1
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Figure 4.18: Amplitude and Frequency error fs-ESPRIT: Noise Level 1

With the increase in noise variance in signal, the errors for all algorithms are bound
to increase too. But it can be concluded that especially under a situation where
two targets are very close to each other, the amplitude errors for ESPRIT and fs-
ESPRIT are minimum. While under normal conditions, the errors of all algorithms
are comparable.
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4.2 Test Scenario 2: Noise Variance

This test can be performed with any of the Data Scenarios mentioned in section
3.1.2.1 to 3.1.2.4. The noise variance, o2 is given in logspace from 1073 to 10°.
Total of 25 noise level points are given in this simulation. Naturally, with increase
in noise levels, the errors are expected to increase too. But the purpose of this test
is to determine:

o Which algorithm is more sensitive to noise?

o Which algorithm performs best at lower noise levels?
This test is conducted for data scenario 0,2 and 3. Data scenarios 2 and 3 comprise
of multiple targets. So, the RMS errors for each target are computed for given
noise variance for 200 Monte Carlo simulations using (3.67) and (3.68) (for multiple
targets).
These errors are then calculated and plotted for all 25 noise variance levels. The
RMS erros in amplitude and frequency in dB scale for different algorithms are plotted
on y axis and the logspace of noise levels in dB is plotted on x axis. The acceptable
noise threshold (See Section 3.5.2) is also indicated on plots.

4.2.1 Test Case: Data Scenario 0

This test is performed on data corresponding to data scenario 0 (3.1.2.1), with a
single target. The Cramer Rao lower bound is calculated according to 3.5.3.1 for
single frequency. This test provides a simplistic platform to assess the performance
of various algorithms. Therefore, ideal target parameters are chosen for this test,
so that there is no effect on errors due to these factors. The target frequency is
chosen to be on-grid (discussion in section 3.2.1.1). The target amplitude is 1 with
zero phase. Tables 4.3, 4.4, 4.5 and 4.6 lists the parameters of test case and hyper-
parameters of estimation algorithms selected for this test.

H Parameter Symbol Value H
Number of Targets K 1
Target Frequency f 0.6250
Target Amplitude Q@ 1410
Signal Length N 64
Monte Carlo Iterations Nye 200
Noise Variance o? 1073 — 10V

Table 4.3: Parameters for Test Case
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H Parameter Range H

K 1
fs 0
Je 1

Table 4.4: Selected Hyper-parameters for CLEAN & OMP

H Parameter Range H

order 1
q 32
Oy 1

Table 4.5: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order 1
q 32
kset [1:64]
O, 1

Table 4.6: Selected Hyper-parameters for fs-ESPRIT

For each noise variance, 200 Monte Carlo iterations are performed and results are

recorded in figure 4.19
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Figure 4.19: RMS Errors: DS0, frequency on-grid
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4.2.1.1 Discussion: Effect of Target Frequency being on FFT grid

It is evident from these results that the RMS errors of CLEAN and OMP are lower
than ESPRIT and fs-ESPRIT. The reason behind lower errors for OMP and CLEAN
is that the target frequency is on the grid,i.e.

f* Npppr = 0.6250 % 1024 = 640 € Z

These FFT based algorithms give very low errors if this is the case. It is already
discussed in section 3.2.1.1, that increasing the zero-padding improves the algorithm
efficiency, as the distance between target frequency and grid point decreases. So, in
this case when target is already on the grid, both of these algorithms produce lower
eITors.

The test case is repeated for the frequency that is off the grid in order to verify this.
The target frequency is now selected as 0.6 instead of 0.6250, which is not on the
gl"ld of NFFT = 1024:

f* Npppr =06%1024 =614.4 ¢ Z

The results for this test are shown in figure 4.20.
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Figure 4.20: RMS Errors: DS0, frequency off-grid

The errors for ESPRIT and fs-ESPRIT remain the same, but errors for OMP and

CLEAN have increased significantly.

Similarly, another simulation is performed, in which data is generated with single
frequency which is randomly selected between [0, 1) for each Monte Carlo iteration.

The results are recorded in figure 4.21.
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RMS Amplitude Errors
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Figure 4.21: RMS Errors: DS0O, Random frequency in each MC iteration

The errors for OMP and CLEAN are slightly reduced from the case when the fre-
quency was always off the grid (4.20), but are still larger then ESPRIT and fs-
ESPRIT.

This leads to important conclusions:
o The accuracy of OMP and CLEAN is highly dependent upon zero-padding or
whether the target frequency is close to the FFT grid point or not.
e The performance of ESPRIT and fs-ESPRIT is independent of the frequency
placement on grid.

4.2.2 Test Case: Data Scenario 2

In this test case Data scenario 2 is used (3.1.2.3). There are 5 frequencies that are
not necessarily on-grid. The Cramer Rao lower bound is not calculated for this test
case as the thesis only discusses the single and dual frequency case. The target
frequencies are not closely placed on the grid and have decreasing amplitudes from
first to last target. This scenario can be interpreted as a special case where fre-
quency corresponds to target range and further the target is, lower is its amplitude
in received signal. Tables 4.7, 4.8, 4.9 and 4.10 lists the parameters of test case and
hyper-parameters of estimation algorithms selected for this test.
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H Parameter

Symbol

Value

Number of Targets

5

Target Frequency

0.1,0.2,0.5,0.6,0.8

Target Amplitude

0.7071 + 0.7071i,
0.0000 + 0.75001,
0.3400 + 0.5889i,
0.0000 + 0.5200i,
0.3182 + 0.3182i

Signal Length 64
Monte Carlo Iterations Nye 200
Noise Variance 1073 — 10

Table 4.7: Parameters for Test Case

H Parameter Range H

K

5

NFFT

1024

fs

0

Je

1

Table 4.8: Selected Hyper-parameters for CLEAN & OMP

H Parameter Range H

order

5

q

32

Oy

1

Table 4.9: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order

5

q

32

kset

[1:64]

Oy

1

Table 4.10: Selected Hyper-parameters for fs-ESPRIT

The results are shown in figure 4.23.
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RMS Amplitude Errors
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Figure 4.22: RMS Errors: DS2

From the results, it can be seen that both ESPRIT and fs-ESPRIT give better
performance than OMP and CLEAN in this case. However, the errors for ESPRIT
and fs-ESPRIT slightly increase above the acceptable noise level.

4.2.3 Test Case: Data Scenario 3

In this test case Data scenario 3 is used (3.1.2.4). In this scenario, there are 5 fre-
quencies that are not necessarily on-grid but are placed very close to each other.
This scenario can be interpreted as a special case where multiple targets are flying
in formation. They might be located very close to each other in range and Doppler.
This is a very difficult but a practical scenario. All the estimation algorithms are
expected to deviate from their ideal performance. There might be misdetections or
two targets might be detected as one. The test doesn’t evaluate the details of each
Monte Carlo iteration to check which of five targets were detected correctly, but pro-
vides an overall picture of how these algorithms perform in such a tough scenario.
The RMS errors for each noise variance is calculated using the same technique as
in Data Scenario 2, using (3.67) and (3.68). Moreover, the hyperparameter o, in
fs-ESPRIT is changed to 8 in order to reduce errors for closely spaced targets as
discussed in 4.1.1. Tables 4.11, 4.12, 4.13 and 4.14 lists the parameters of test case
and hyper-parameters of estimation algorithms selected for this test.
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H Parameter Symbol Value H
Number of Targets K 5
Target Frequency f 0.1,0.11,0.131,0.170,0.2
Target Amplitude ! 0.7071 + 0.7071i,
0.0000 + 0.7500i,
0.3400 + 0.5889i,
0.0000 4 0.52001,
0.3182 4 0.3182i
Signal Length N 64
Monte Carlo Iterations Nuyo 200
Noise Variance o’ 1073 —10°

Table 4.11: Parameters for Test Case

H Parameter Range H

K 5
Nppr 1024
/s 0
fe 1

Table 4.12: Selected Hyper-parameters for CLEAN & OMP

H Parameter Range H

order 5)
q 32
Oy 1

Table 4.13: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order 5
q 32
kset [1:64]
Oy 8

Table 4.14: Selected Hyper-parameters for fs-ESPRIT

The results are shown in figure 4.23.
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RMS Amplitude Errors
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Figure 4.23: RMS Errors: DS3

The errors of OMP and CLEAN are comparable and similarly the errors of ESPRIT
and fs-ESPRIT are comparable to each other, but below the acceptable noise level,
fs-ESPRIT and ESPRIT have much better performance than OMP and CLEAN.

However, for noise variance above the acceptable noise level, errors of ESPRIT and
fs-ESPRIT increase.

4.3 Test Scenario 3: Signal Length

One of the most contributing factors affecting the algorithm’s performance is the
signal length. The error is expected to decrease with longer signal lengths. This is
because when signal length increases, resolution also increases which in turn results
in better detection of two closely spaced targets.

The errors are calculated in a similar fashion as described in section 4.2. The only
difference is that for this test case, noise level, o2, is fixed and sweep is given along
the increasing signal length. Total of 10 signal lengths are used increasing linearly
from 64 to 1000. The zero padding for DFT is 2000 instead of 1024. The reason
for increasing the zero padding is explained in section 3.2.1.1. As the signal length
increases, a higher resolution will be needed on DFT grid to minimize errors due to
grid in case of OMP and CLEAN.

Moreover, each test case will be tested for at least two different noise variance levels,
o2, one preferably close to zero and other some higher value. The RMS errors for
frequency and amplitudes for different algorithms are plotted on y axis in dB scale
while signal length is plotted on x-axis.
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4.3.1 Test Case: Data Scenario 0

This test is performed on data corresponding to data scenario 0 (3.1.2.1), with a
single target. The Cramer Rao lower bound is calculated according to 3.5.3.1 for
single frequency. This is the most simple test case with a single target of frequency
on DFT grid, amplitude of maximum value, and phase of zero. Tables 4.15, 4.16,
4.17 and 4.18 lists the parameters of test case and hyper-parameters of estimation

algorithms selected for this test.

H Parameter Symbol Value H
Number of Targets K 1
Target Frequency f 0.6250
Target Amplitude o} 1+ 10
Signal Length N € [64, 168,272, 376, 480, 584, 688, 792, 896, 1000]
Monte Carlo Iterations Nuyc 200
Noise Variance ol € [1073,0.5]

Table 4.15: Parameters for Test Case

H Parameter Range H

K 1
Nrpr 2000
fs 0
fe 1

Table 4.16: Selected Hyper-parameters for CLEAN & OMP

H Parameter Range H

order 1
q N
Oy 1

Table 4.17: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order 1

q 7
kset [1:N]

Oy 1

Table 4.18: Selected Hyper-parameters for fs-ESPRIT
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For each noise variance, o2 = 10~

results are recorded in figure 4.24

3200 Monte Carlo iterations are performed and
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Similarly, the results for 02 = 0.5, are presented in figure 4.25
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Figure 4.25:

Signal Length

RMS Errors: DS0, 02 = 0.5

The results show that for noise variance close to zero, fs-ESPRIT has lower errors as
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compared to ESPRIT. But OMP and CLEAN produce the lowest errors, the reason
behind this is increased zero-padding (2000 instead of 1024). The frequency, 0.6250,
is still on the DFT grid (0.6250 % 2000 = 1250 € Z). Therefore, the RMS errors are
minimal, and the RMS frequency errors are so low that they are not even plotted
on the dB scale. For higher noise variance, the overall errors for each algorithm is
definitely increased, but OMP and CLEAN still prodcue lowest errors, whilst the
errors of ESPRIT and fs-ESPRIT are comparable.

The RMS errors for each case and all algorithms decrease as signal length increases,
as expected.

4.3.2 Test Case: Data Scenario 2

This test is performed on data corresponding to data scenario 2 (3.1.2.3), with a
five targets. This is the test case with a multiple frequencies placed well apart on
the DFT grid. Tables 4.19, 4.20, 4.21 and 4.22 lists the parameters of test case and
hyper-parameters of estimation algorithms selected for this test.

H Parameter Symbol Value H
Number of Targets K 5
Target Frequency f 0.1,0.2,0.5,0.6,0.8
Target Amplitude o} 0.7071 + 0.7071i,

0.0000 + 0.7500i,
0.3400 + 0.5889i,
0.0000 + 0.5200i,
0.3182 + 0.3182i

v

Signal Length N € [64, 168,272, 376, 480, 584, 688, 792, 896, 1000]
Monte Carlo Iterations Nyro 200
Noise Variance ol € [1073,0.5]

Table 4.19: Parameters for Test Case

H Parameter Range H

K 1
Nrprr 2000
fs 0
Je 1

Table 4.20: Selected Hyper-parameters for CLEAN & OMP
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H Parameter Range H

order 1
q 7
o 1

Table 4.21: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order 1

q 5
kset [1:N]

o 1

Table 4.22: Selected Hyper-parameters for fs-ESPRIT

For each noise variance, o2 = 1073, 200 Monte Carlo iterations are performed and

results are recorded in figure 4.26

RMS Amplitude Errors

2L 30
£ CLEAN
<} - = OMP
(i -40 ESPRIT
o | el N e fs-ESPRIT
©
2
S .50k
g 50
<
1%
Z -60
0 100 200 300 400 500 600 700 800 900 1000
Signal Length
RMS Freq Errors
s “
T 90 ™,
< '.,“ OMP
S 100t ESPRIT
& e e fs-ESPRIT
S 410l OMP&CLEAN "
- having very low
2 100l €OrS, hence not
o visible inplots T
1 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900
Signal Length

Figure 4.26: RMS Errors: DS2, 02 = 1073

Similarly, the results for o = 0.5, are presented in figure 4.27
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RMS Amplitude Errors
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Figure 4.27: RMS Errors: DS2, 02 = 0.5

The RMS errors for all algorithms decrease as signal length increases. For noise
variance close to zero, this test case has almost similar response as with data scenario
0. The RMS amplitude errors for fs-ESPRIT are lower then that of ESPRIT, and
OMP has lowest errors but here it can be seen that CLEAN produce higher errors

then that of OMP. For higher noise variance, RMS errors of fs-ESPRIT and ESPRIT
are higher and similar, whilst the errors of OMP and CLEAN are lower and similar.

4.3.3 Test Case: Data Scenario 3

This test is performed on data corresponding to data scenario 3 (3.1.2.4), with five
targets. This is the test case with multiple frequencies placed very close to each
other on the DFT grid. The purpose of this test is to observe the difference in
errors when signal length is increased. The errors are expected to decrease as the
distance between two close frequencies increases as the signal length increases. Now,
the probability of detecting two targets as one also decreases. Moreover, for this
particular case, o, in fs-ESPRIT needs to be increased to 8 in order to reduce errors
for closely spaced targets as discussed in 4.1.1. Tables 4.23, 4.24, 4.25 and 4.26 lists
the parameters of test case and hyper-parameters of estimation algorithms selected
for this test.
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H Parameter Symbol Value H
Number of Targets K 5
Target Frequency f 0.1,0.11,0.131,0.170,0.2
Target Amplitude e} 0.7071 + 0.7071i,

0.0000 + 0.7500i,
0.3400 + 0.5889i,
0.0000 + 0.5200i,
0.3182 + 0.3182i

Signal Length

N € [64, 168, 272, 376, 480, 584, 688, 792, 896, 1000]

Monte Carlo Iterations

Ny

200

Noise Variance

2

Oy

€ [107%,0.5]

Table 4.23: Parameters for Test Case

H Parameter Range H

K 1
Nppr 2000
fs 0
fe 1

Table 4.24: Selected Hyper-parameters for CLEAN & OMP

H Parameter Range H

order 1
q N
o 1

Table 4.25: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order 1
q N
kset [1:N]
Oy 8

Table 4.26: Selected Hyper-parameters for fs-ESPRIT

2

For each noise variance, o;

= 1073, 200 Monte Carlo iterations are performed and
results are recorded in figure 4.28
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RMS Amplitude Errors

S or

° CLEAN

§ = == OMP

2 ol ESPRIT

o 1 L ANU e fs-ESPRIT
S \

840t

€ )

< | TTTeenEEITEe

< DN b e
0 R g iapinpiian

0 100 200 300 400 500 600 700 800 900 1000
Signal Length
RMS Freq Errors

9 6ot CLEAN
= - = OMP
o ESPRIT
R N e fs-ESPRIT
ol .
o \
L100F e,
o | T
E ......................
120 - | 1 1 1 | ] ....; ........ feerauaas Fessupna, J
0 100 200 300 400 500 600 700 800 900 1000

Signal Length

Figure 4.28: RMS Errors: DS3, 02 = 1073

It is evident from results that for lower noise variance, there is a significant differ-
ence in errors for CLEAN and OMP, with OMP producing the lowest Amplitude
RMS errors for longer signal lengths. For smaller signal lengths, however, the RMS
amplitude and frequency errors for ESPRIT and fs-ESPRIT are much lower then
that of OMP and CLEAN. This means, that for lower noise levels, and for a case
where targets are placed very close to each other, ESPRIT and fs-ESPRIT can give
much better performance for smaller signal lengths. On the other hand, much higher
signal lengths and therefore more computing power is needed for OMP and CLEAN
to give similar results.

The results for 02 = 0.5, are presented in figure 4.29
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RMS Amplitude Errors
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Figure 4.29: RMS Errors: DS3, 02 = 0.5

For higher noise levels, the amplitude RMS errors for ESPRIT and fs-ESPRIT are
again lower for smaller signal lengths, and the RMS errors for CLEAN and OMP are
reduced after N crosses 350. This again leads to same conclusion that it is better
to use ESPRIT and fs-ESPRIT if the signal length is limited due to constraints on
computation power available.

4.4 Test Scenario 4: Clutter

As already discussed in chapter 2, clutter poses a significant effect on a radar system
overall performance. In this section several test cases will be formulated to rigor-
ously test estimation algorithms under mild and heavy clutter. The clutter assumed
in these test cases can be linked to ground/surface clutter in practical scenarios.
Volume and point clutters are not discussed here. The Cramer Rao Lower Bound
for this case is more involved and is not considered.
The clutter range and power is user-configurable. Different data scenarios can be
tested under different clutter spreads and strengths. The RMS errors are calculated
in the same way as mentioned in (3.67). The purpose of these tests is to evaluate the
performance of estimation algorithms under mild and severe clutter. The following
three tests will be conducted in this experiment:
1. Single frequency (Data Scenario 0) Clutter spread 5 %, clutter to signal ratio
is 1
2. Single frequency (Data Scenario 0) Clutter spread 10 %, clutter to signal ratio
is 3
3. Single frequency (Data Scenario 0) Clutter spread 15 %, clutter to signal ratio
is 6
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4. Multiple frequencies (Data Scenario 2) Clutter spread 5 %, clutter to signal
ratio is 1. One of the target lies close to clutter.

4.4.1 Test Case: Single Frequency, clutter Spread 5%, clut-
ter to signal ratio 1

For this test case, Data Scenario 0 (3.1.2.1) is used. The purpose of using this simple
data is to observe the effects of clutter on an otherwise perfectly placed single target,
with frequency in almost middle of DFT grid and maximum amplitude. In this way
it is easier to single out changes in errors caused by clutter alone with no other
contributing factors in errors. The clutter is generated as discussed in 3.4.1. The
parameters used for clutter generation are mentioned in table 4.27.

H Parameter Range H
C 40
fe € [0,0.05] U [0.95, 1]
ac € CN(0,1)
o’ 200

Table 4.27: Parameters for clutter generation

Here the clutter power, o2 = 200 corresponds to the clutter to signal ratio of 1. This
can be seen in the figure 4.30.

Signal in Frequnecy Domain with Clutter Spread 5%
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Figure 4.30: Signal in Clutter with 5% spread

The parameters of the test case and that of all the algorithms are listed in tables
4.28,4.29, 4.30 and 4.31. The hyper-parameters f,, f. for CLEAN and OMP, order
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(ESPRIT) and kset (fs-ESPRIT) are set according to the clutter range, f. mentioned
in table 4.27.

H Parameter Symbol Value H
Number of Targets K 1
Target Frequency f 0.625
Target Amplitude Q@ 1+ 0i,
Signal Length N 64
Monte Carlo Iterations Nye 200
Noise Variance o2 1073 — 10V

Table 4.28: Parameters for Test Case

H Parameter Range H

K 1
Nerr 1024

7, 0.0752

7, 0.9248

Table 4.29: Selected Hyper-parameters for CLEAN & OMP

H Parameter Range H

order 5
q 32
Oy 1

Table 4.30: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order 1
q 32
kset [5 : 60]
Oy 1

Table 4.31: Selected Hyper-parameters for fs-ESPRIT

The results for 200 Monte Carlo iterations is shown in figure 4.31.
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The results indicate that OMP and CLEAN perform better in this scenario as this
was the case in 4.2.1. But the errors when compared to that test case (figure 4.19)
are higher and more wobbly. By making this comparison the errors due to clutter
can be singled out. When compared to results (4.19) of test case 4.2.1, it can
be seen that RMS errors for ESPRIT and fs-ESPRIT have also increased. The
noticeable difference here is, however, that RMS frequency errors for fs-ESPRIT are
now lower compared to that for ESPRIT. The test is also repeated for 500 Monte
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Figure 4.31: RMS Errors Clutter Test Case 1

Carlo iterations in order to get rid of wobbly errors as in 4.31.
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RMS Amplitude Errors
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Figure 4.32: RMS Errors Clutter Test Case 1: Ny = 500

4.4.2 Test Case: Single Frequency, clutter Spread 10%, clut-
ter to signal ratio 3

Data Scenario 0 (3.1.2.1) is used for this test case too. This is the case of slightly
stronger clutter with a large spread. It is indeed quite challenging to recover ac-
tual targets in presence of this much clutter. As the clutter spread increases, the
probability of it masking the valid targets also increases. In this test case, however,
the single target is still in a clutter free frequency zone. The clutter is generated
as discussed in 3.4.1. The parameters used for clutter generation are mentioned in
table 4.32.

H Parameter Range H
C 40
Je € [0,0.10] U [0.9,1]
ac € CN(0,1)
o2 3500

Table 4.32: Parameters for clutter generation

Here the clutter power, o2 = 3500 corresponds to the clutter to signal ratio of 3.
This can be seen in the figure 4.33.
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Signal in Frequnecy Domain with Clutter Spread 10%
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35 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency

Figure 4.33: Signal in Clutter with 10% spread

The parameters of the test case and that of all the algorithms are listed in tables
4.33, 4.34, 4.35 and 4.36.

H Parameter Symbol Value H
Number of Targets K 1
Target Frequency f 0.625
Target Amplitude Q@ 1+ 0i,
Signal Length N 64
Monte Carlo Iterations Nyc 200
Noise Variance o? 1073 —10°

Table 4.33: Parameters for Test Case

H Parameter Range H

K 1
Nrpr 1024

2 0.1504

7, 0.8496

Table 4.34: Selected Hyper-parameters for CLEAN & OMP

The results for 200 Monte Carlo iterations is shown in figure 4.34.
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H Parameter Range H

order 5)
q 32
Oy 1

Table 4.35: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order 1
q 32
kset [10 : 55]
Oy 1

Table 4.36: Selected Hyper-parameters for fs-ESPRIT
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Figure 4.34: RMS Errors Clutter Test Case 2

These results indicate that ESPRIT produces highest RMS errors while fs-ESPRIT
produces the lowest. The effect of parameter order on performance of ESPRIT is

discussed in section 4.4.2.1.

4.4.2.1 Discussion: Effect of order on ESPRIT

For ideal cases, with no clutter, the parameter order should be set equal to total
number of targets, K. But in case of cluttered signal, the order of this algorithm
needs to be increased, so that additional targets can be detected in clutter zone, and
later can be removed by post processing. But increasing the order too much might
also lead to larger errors. So, an exact number is needed to be determined for which
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the RMS errors are the lowest.

In order to determine correct order, a separate simulation was developed where
RMS frequency error and RMS amplitude error for ESPRIT were plotted against
the order of the algorithm. The order of the algorithms was increased from 1 to 20.
The result is shown in figure 4.35
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Figure 4.35: Effect of order on RMS Errors

It means that for this particular test case, the order needs to be 9, i.e. eight
additional frequencies should be demanded from the algorithm. It can also be noted
that errors increase again for values greater than 9. The test case is repeated with
following parameters for ESPRIT.

H Parameter Range H

order 9
q 32
Oy 1

Table 4.37: Revised Hyper-parameters for ESPRIT

And the results are shown in figure 4.36.
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RMS Amplitude Errors
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Figure 4.36: RMS Errors Clutter Test Case 2 (Revised)

4.4.3 Test Case: Single Frequency, clutter Spread 15%, clut-

ter to signal ratio 6

This test case involves very high power clutter with huge spread. The Data Scenario
0 (3.1.2.1) is used for this test case too. The clutter is generated as discussed in
3.4.1. The parameters used for clutter generation are mentioned in table 4.38.

H Parameter

Range H

C

40

fe

€ [0,0.15] U[0.85, 1]

Q¢

€ CN(0,1)

2

O¢

15000

Table 4.38: Parameters for clutter generation

Here the clutter power, o> = 15000 corresponds to the clutter to signal ratio of 6.

This can be seen in the figure 4.37.
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Signal in Frequnecy Domain with Clutter Spread 15%

Signal FFT
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Figure 4.37: Signal in Clutter with 15% spread

The parameters of the test case and that of all the algorithms are listed in tables

4.39, 4.40, 4.41 and 4.42. As discussed in previous section, the order of ESPRIT is
set to be 9.

H Parameter Symbol Value H
Number of Targets K 1
Target Frequency f 0.625
Target Amplitude Q@ 1+ 0i,
Signal Length N 64
Monte Carlo Iterations Nuyc 200
Noise Variance o2 1073 —10°

Table 4.39: Parameters for Test Case

H Parameter Range H

K 1
7, 0.2246
7. 0.7754

Table 4.40: Selected Hyper-parameters for CLEAN & OMP

The results for 200 Monte Carlo iterations is shown in figure 4.38.
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H Parameter Range H

order 9
q 32
Oy 1

Table 4.41: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order 1
q 32
kset [15 : 50]
Oy 1

Table 4.42: Selected Hyper-parameters for fs-ESPRIT
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Figure 4.38: RMS Errors Clutter Test Case 3

These test results indicate that ESPRIT produces highest RMS errors, while OMP
and CLEAN produce lowest. The errors for fs-ESPRIT increase as length of kset

decreases.

The parameter order for ESPRIT can be determined by repeating the simulation
mentioned in 4.4.2.1. The results of this simulation are shown in figure 4.39.
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Effect of Order on RMS errors
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Figure 4.39: RMS Errors Clutter Test Case 3

By setting the hyper-parameter order = 13 for ESPRIT in this test case, following
RMS errors are recorded.
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Figure 4.40: RMS Errors Clutter Test Case 3 (Revised)

The errors for ESPRIT are significantly reduced in this case. On the other hand, the
RMS errors for fs-ESPRIT are still higher than all algorithms. Another simulation
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was done, where the hyper-parameter kset was optimized. The results for this
simulation are shown in figure 4.41.

kset Optimization

0.5 T T T 6
0.45
5 .
0.4Ff
0.35F =
S4r
S) L0
£ 03r
w S
g 0.25 2 3
L £
<) <
= 0.2r »
T =
T2
0.15
0.1 : 1 |
X 48
0.05¢ X 48 Y 0.246807
Y 0.000649965 °
0 I 0 I I I
30 40 50 60 70 30 40 50 60 70
kset Size kset Size

Figure 4.41: kset Optimization

The RMS amplitude and frequency errors for fs-ESPRIT are plotted against the
size of kset. It can be seen that for the kset size between 42 and 48, the errors are
lowest. The vector kset can then be set according to this size. The results after the

optimization are shown in figure 4.42
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RMS Amplitude Errors
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Figure 4.42: RMS Errors Clutter Test Case 3 (with Kset optimization)

It can be seen that now the errors for fs-ESPRIT are significantly reduced.

Some important conclusions can be drawn from these test cases:
o fs-ESPRIT is the most reliable for clutter spreads covering up to 10% of the
frequency bandwidth.
o ESPRIT can give good results, but the shortcoming is that exact value of
order is required. And as in practical scenarios, clutter doesn’t necessarily
have a consistent spread, this could be a problem.

4.4.4 Test Case: Multiple Frequencies, clutter Spread 5%,
clutter to signal ratio 1

For this test case, Data Scenario 2 (3.1.2.3) is used. The purpose of using this simple
data is to observe the effects of clutter on a multiple targets signal. And one of the
targets lies very close to the clutter region in frequency. This is a highly practical
scenario, where slow moving targets may appear in the same Doppler region as
clutter, or in the same range bin as clutter. The clutter is generated as discussed in
3.4.1. The parameters used for clutter generation are mentioned in table 4.43.
Here the clutter power, o2 = 200 corresponds to the clutter to signal ratio of 1. This
can be seen in the figure 4.43.
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H Parameter Range H
C 40
fe € [0,0.05] U [0.95, 1]
ac € CN(0,1)
o’ 200

Table 4.43: Parameters for clutter generation

Signal in Frequnecy Domain with Clutter Spread 5%
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Figure 4.43: Signal in Clutter with 5% spread
The parameters of the test case and that of all the algorithms are listed in tables 4.44,
4.45, 4.46 and 4.47. The hyper-parameter order in ESPRIT is set as 9 corresponding

to 4 additional frequencies demanded from algorithm.
The results for 200 Monte Carlo iterations is shown in figure 4.44.
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H Parameter Symbol Value H
Number of Targets K 5
Target Frequency f 0.1,0.2,0.5,0.6,0.8
Target Amplitude o 0.7071 + 0.7071i,
0.0000 + 0.75001,
0.3400 + 0.58894i,
0.0000 4 0.52001,
0.3182 + 0.3182i
Signal Length N 64
Monte Carlo Iterations Nuye 200
Noise Variance o’ 1072 — 109

v

Table 4.44: Parameters for Test Case

H Parameter Range H

K 1
7, 0.0752
7. 0.0248

Table 4.45: Selected Hyper-parameters for CLEAN & OMP

H Parameter Range H

order 9
q 32
Oy 1

Table 4.46: Selected Hyper-parameters for ESPRIT

H Parameter Range H

order 5
q 32
kset [5: 60]
o 1

Table 4.47: Selected Hyper-parameters for fs-ESPRIT
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4. Testing and Results

The results indicate in case of multiple frequencies, the performance of fs-ESPRIT
is the best.
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Conclusion

The purpose of this thesis is to build a platform where different grid-less target esti-
mation algorithms can be evaluated and compared. Therefore, a detailed simulation
is developed with various data scenarios i.e. variable noise levels, signal lengths and
clutter. The simulation includes the single and multiple targets cases, targets very
close to each other on DFT grid and targets with different amplitudes. A robust
evaluation methodology is devised to suit all these different test cases and to com-
pare the errors, GOSPA metric is effectively used. Lastly, Cramer Rao Lower Bound
is also used to establish a benchmark against which all estimators can be measured.
The platform is capable of evaluating any estimation algorithm that estimates target
frequency and amplitude. However, our work primarily compares two novel algo-
rithms, ESPRIT and fs-ESPRIT with each other and with classic greedy algorithms
like OMP and CLEAN. The main conclusion points are listed below:

o ESPRIT and fs-ESPRIT perform better under high target proximity condi-
tions, i.e., when two targets are placed very close to each other on the DFT
grid.

o Unlike CLEAN and OMP, ESPRIT and fs-ESPRIT are independent of the
zero padding. This property makes them a better choice over classic greedy
algorithms especially when computational cost is a limitation.

o ESPRIT and fs-ESPRIT have overall better performance than CLEAN and
OMP when the noise in data signal is below acceptable noise level (3.5.2).
However, the performance of CLEAN and OMP improves a lot with increase
in signal length and zero padding.

o If computational power is not a constraint, OMP and CLEAN can be used
with larger signal lengths. But for smaller signal lengths, noise variance below
acceptable noise level and in high target proximity conditions, ESPRIT and
fs-ESPRIT are better choice.

o For clutter spread up to 10%, fs-ESPRIT is the most reliable estimation algo-
rithm to use.

o The performance of ESPRIT is better for clutter spread higher than 10%, but
there is a limitation that exact value of the algorithm’s parameter order is
required, which is not possible in practical scenarios.

o In the presence of clutter, the frequency selective property of fs-ESPRIT makes
it easier to use as compared to ESPRIT.

To conclude, the right choice of target estimation algorithm highly depends upon
the radar environment. And this thesis provides the necessary tools to ease the
process of this decision making.
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Appendix 1

The signal model is:

r=Sa-+v

And:
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The LMMSE is calculated as:

QLMMSE = Ma + Q12Q2_21(:c — M)
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