
Efficient communication using reinforce-
ment learning in a cooperative naviga-
tion game

Master’s thesis in Computer science and engineering

Erik Bohman & Simon Rogmalm Hornestedt

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Efficient communication using reinforcement
learning in a cooperative navigation game

Erik Bohman & Simon Rogmalm Hornestedt

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Efficient communication using reinforcement learning in a cooperative navigation
game

Erik Bohman & Simon Rogmalm Hornestedt

© Erik Bohman & Simon Rogmalm Hornestedt, 2022.

Supervisor: Moa Johansson & Emil Carlsson, Department of Computer Science and
Engineering
Examiner: Devdatt Dubhashi, Department of Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A multi-agent system, including the two agents: traveler and guide, and
their communication channel.

Typeset in LATEX
Gothenburg, Sweden 2022

iv

Efficient communication using reinforcement learning in a cooperative navigation
game

Erik Bohman & Simon Rogmalm Hornestedt
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The thesis aims to investigate if agents are able to develop an efficient communica-
tion, with semantic meanings, and solve a navigation problem, using reinforcement
learning. Additionally, it aims to evaluate the relevancy and benefit of one and
two-way communication in comparison to each other and no communication.

The problem is tackled in a multi-agent system (two agents), using a cooperative
navigation game. The agents possess different privately held information, they are
hence equipped with a communication channel and a language with no initial seman-
tic meaning to convey the information to each other and solve the task of finding a
target inside an environment with distracting obstacles. The experiments take place
in both a discrete and a continuous setting with a varying number of communication
ways and are evaluated based on the average time to complete the navigation.

It is shown in the thesis that the agents can develop a language with a semantic
meaning, which contributes to an efficient communication when set in a discrete
environment and in a continuous static environment. However, it is inconclusive
whether there are any significant benefits to be gained from a two-way communica-
tion compared to a one-way communication and whether the task can be solved in
a continuous non-static environment.

Keywords: machine learning, reinforcement learning, efficient communication, multi-
agent system

v

Acknowledgements
We would like to thank the Department of Computer Science and Engineering at
Chalmers for the education provided over the years. A special thank you goes out
to our supervisors: Moa Johansson and Emil Carlsson, for all the help and insights
over the duration of the thesis, without your guidance we would have been stuck for
a long time.

Finally, we would also like to thank our examiner Devdatt Dubhashi for the helpful
ideas given at half-time, that ultimately lead to the grid world from which some
conclusive results were extracted.

Erik Bohman & Simon Rogmalm Hornestedt, Gothenburg, June 2022

vii

Contents

List of Figures xi

List of Tables xv

Acronyms xvii

1 Introduction 1
1.1 Goal . 2
1.2 Research questions . 2
1.3 Hypothesis . 2
1.4 Related work . 3

2 Theory 5
2.1 Reinforcement learning . 5

2.1.1 Deep reinforcement learning 6
2.1.2 REINFORCE algorithm - with baseline augmentation 6
2.1.3 Proximal Policy Optimization 8

2.2 Unity . 9
2.2.1 Unity Machine Learning Agents toolkit 10

2.3 Linguistics - efficient communication 10

3 Method 11
3.1 Environment . 12
3.2 Language . 12

3.2.1 Communication channel . 12
3.3 Agents . 12

3.3.1 Guide . 12
3.3.2 Traveler . 13

3.4 Grid World . 13
3.4.1 Observations . 14
3.4.2 Neural Network . 15
3.4.3 No communication experiment 15
3.4.4 One-way communication experiment 18
3.4.5 Two-way communication experiment 20

3.5 Continuous World . 22

ix

Contents

3.5.1 Observation . 23
3.5.2 Trainer- and Network settings 24
3.5.3 Continuous world experiments 24

3.5.3.1 Static environment 25
3.5.3.2 Non-static environment 25

4 Results 27
4.1 Grid World . 27

4.1.1 No communication experiment 27
4.1.2 One-way communication experiment 28
4.1.3 Two-way communication experiment 30

4.2 Continuous World . 33
4.2.1 Continuous world experiments 34

4.2.1.1 Static environment 34
4.2.1.2 Non-static environment 35

5 Discussion 37
5.1 Language . 38
5.2 Two-way communication . 39
5.3 Algorithms and Policy Gradient Optimization 40

6 Conclusion 41

Bibliography 43

x

List of Figures

1.1 An example environment of the navigation game, the green tile is the
target of the episode. The guide is able to observe the entirety of the
white, yellow and green tiles. Meanwhile the traveler, located and
the central tile of the environment, can only observes the yellow tiles,
and move around the environment. 2

2.1 The architecture of a reinforcement learning system. 5
2.2 The architecture of a neural network with two hidden layers. 6

3.1 An abstraction of the described multi-agent system. 11
3.2 A grid world with the size 9× 9. The green tile is the target and the

red tiles are distractors. 14
3.3 The architecture of the neural network that is used for both the trav-

eler and the guide. 15
3.4 The traveler in an environment with no distractors and one randomly

spawned target, that is colored green. The traveler’s field of view is
colored in yellow. The traveler can not see the target. 16

3.5 The traveler in an environment with no distractors and one randomly
spawned target, that is colored green. The traveler’s field of view is
colored in yellow. The traveler can see the target. 16

3.6 A theoretical optimal search path for an empty 9×9 grid world, where
the target can spawn at any position, except the traveler’s starting
position. 17

3.7 The guide’s observation of an environment with no distractors and
one randomly spawned target, colored green. 18

3.8 The Manhattan distance from each tile to the traveler’s starting po-
sition. 20

3.9 A generated environment of the grid world in the two-way communi-
cation experiment. The target can spawn on any of the green tiles.
The red tiles are distractors. 21

3.10 An example of the described static environment. The Orange cube
is the traveler at its starting position for each episode. The four
obstacles are the red and blue spheres, as well as the red and blue
cubes. 22

xi

List of Figures

3.11 An example of the difference between episodes in the non-static en-
vironment. The Orange cube is the traveler at its starting position
for each episode. The four color and shape combinations spawn at
different positions in each episode . 22

3.12 The observation for the guide, including four unique obstacles that is
colored in red, green, blue and yellow. 24

3.13 The traveler’s field of view, a 3× 3 square colored in yellow, in com-
parison to the entire environment. 24

4.1 The average episode length over 100 episodes, for a total of 500 000
episodes. Using the setup with hidden size 10 in the no communica-
tion experiment. 28

4.2 The average entropy over 100 episodes, for a total of 500 000 episodes.
Using the setup with hidden size 10 in the no communication exper-
iment. 28

4.3 The average episode length over 100 episodes, for a total of 500 000
episodes. Using the setup with hidden size 16 in the no communica-
tion experiment. 28

4.4 The average entropy, for the traveler, over 100 episodes for a total
of 500 000 episodes. Using the setup with hidden size 16 in the no
communication experiment. 28

4.5 The average episode length over 100 episodes, for a total of 250 000
episodes. Using the setup in one-way communication experiments. . . 29

4.6 The average entropy, for the traveler, over 100 episodes, for a to-
tal of 250 000 episodes. Using the setup in one-way communication
experiments. 29

4.7 The average entropy, for the guide, over 100 episodes, for a total of 250
000 episodes. Using the setup in one-way communication experiments. 29

4.8 The partitioning of the discrete space into sectors, where each color
represents the distinct word that the guide is most likely to send given
the target has spawned at that tile. 30

4.9 The partitioning of the discrete space into sectors, where each color
represents the distinct word that the guide is most likely to send
given the target has spawned at that tile. Excluding the tiles that
the traveler can see directly when spawning. 30

4.10 The average episode length over 100 episodes, for a total of 600 000
episodes. Using the setup with one-way communication in two-way
communication experiments. 31

4.11 The average entropy, for the traveler, over 100 episodes, for a total
of 600 000 episodes. Using the setup with one-way communication in
two-way communication experiments. 31

4.12 The average entropy, for the guide, over 100 episodes, for a total of
600 000 episodes. Using the setup with one-way communication in
two-way communication experiments. 31

xii

List of Figures

4.13 The average episode length over 100 episodes, for a total of 600 000
episodes. Using the setup with two-way communication in two-way
communication experiments. 32

4.14 The average entropy, for the traveler’s communication, over 100 episodes,
for a total of 600 000 episodes. Using the setup with two-way com-
munication in two-way communication experiments. 32

4.15 The average entropy, for the traveler, over 100 episodes, for a total
of 600 000 episodes. Using the setup with two-way communication in
two-way communication experiments. 32

4.16 The average entropy, for the guide, over 100 episodes, for a total of
600 000 episodes. Using the setup with two-way communication in
two-way communication experiments. 32

4.17 The traveler’s most probable communication standing at each posi-
tion in the environment. The red tiles represent the wall configuration
of the environment. 33

4.18 The guide’s most probable communication standing at each position
in the environment. The red tiles represent the wall configuration of
the environment. 33

4.19 Training results in a static world. The upper graph depicts the smart
traveler experiments, and the lower graph shows the smart guide ex-
periments. 34

4.20 Training results from experiments in a static environment. Experi-
ments made with both agents blank, no prior knowledge of the envi-
ronment nor the task. 35

4.21 Result of the no communication and one-way communication exper-
iments, average episode lengths over time, in a non-static environment 35

5.1 A 9× 9 grid world, divided into 8 sectors. 38
5.2 A 9 × 9 grid world, divided into 8 sectors. The arrow represent an

optimal path towards the dark green sector, starting from the midpoint. 38

xiii

List of Figures

xiv

List of Tables

3.1 Values and probabilities for the random variable X, used for calculat-
ing the expected Manhattan distance to the target, in the one-way
communication experiments. 19

xv

List of Tables

xvi

Acronyms

DRL Deep Reinforcement Learning. 5, 6

LogSoftmax Logarithmic Softmax. 15

MAS Multi-Agent System. 1–3, 6, 11, 12, 39, 40

MDP Markov decision process. 5, 6

PPO Proximal Policy Optimization. 5, 8, 9, 24, 33, 40

ReLU Rectified Linear Unit. 15

RL Reinforcement Learning. 1–3, 5, 6, 8

SGD Stochastic Gradient Descent. 9, 24

TRPO Trust Region Policy Optimization. 8

xvii

Acronyms

xviii

1
Introduction

When solving a real-world task, including communication, humans tend to use prag-
matic and abstract concepts to facilitate and expedite arriving at the solution. The
human language is one of the main reasons for our success throughout history. W. P.
McCarthy et al. [15], describe how humans invent and learn to use abstract concepts
for collaborating in a cooperative referential building game, where one agent gives
instructions and the other acts as a builder. By forming concepts, humans increase
information density while decreasing the length of each utterance.

Different cooperative reference games have been used in Multi-Agent System (MAS)
machine learning [2, 6, 17], both games including and excluding communication.
These games build on a setting where there are at least two or more agents, one acts
as a sender of information and the other(s) as a listener.

This presents a setting: what if all agents in a MAS act as both sender and listener
with different private information about the task, we framed this as a navigation
game where two agents interact with each other. This poses a coordination task of
communicating privately held information by the agents from one to the other, to
efficiently solve a navigation game. Our study aims to investigate whether agents
in a Reinforcement Learning (RL) system can develop a mutual language for a
cooperative navigation referential game using two-way communication.

In this paper, we use a system with two agents: a guide and a traveler. The
traveler interacts with the environment and has the ability to observe a limited
field of view of its surroundings, meanwhile the guide possesses all information in
the environment except the traveler’s position. They are together given the task of
making the traveler reach a target in the environment, and sometimes to also avoid
distracting obstacles. The agents are equipped with a language that has no initial
semantic meaning, and in order to be efficient, the agents need to agree on some
semantics. An example of what the setting looks like can be seen in figure 1.1.

1

1. Introduction

Figure 1.1: An example environment of the navigation game, the green tile is
the target of the episode. The guide is able to observe the entirety of the white,
yellow and green tiles. Meanwhile the traveler, located and the central tile of the
environment, can only observes the yellow tiles, and move around the environment.

1.1 Goal
The goal of the thesis is to investigate if it is possible for agents in a multi-agent RL
setting to develop a mutual language that will be used to communicate efficiently
in a navigation task. The agents will be provided with a language that has a set of
words. These words on the other hand have no semantic meaning. This is something
the agents have to figure out on their own. In extension, a minor objective of
this goal is to evaluate whether a two-way communication outperforms a one-way
communication.

1.2 Research questions
• Given a language where words have no initial semantic meaning, is it possible

for agents to develop a mutual language with semantic meaning in a MAS
using RL in a cooperative navigation game?

• Does a two-way communication facilitate or expedite the solution of the task,
or does a one-way communication achieve similar results? How does the one-
way communication compare to no communication?

1.3 Hypothesis
We hypothesize that the agents will form a language that facilitates finding the solu-
tion to the task at hand. We also believe that, in contrast to human communication,
the semantics of a word can differ when "speaking" or "listening", since the agents
attempt to convey different information to each other, and do not require having a

2

1. Introduction

mutual understanding of the word. They will form their definition of the language
that is suited for their task.

Also, we hypothesize that, in a simpler environment (few distracting obstacles), the
two-way communication is going to slow down the training but not affect the fi-
nal result. Furthermore, in an increasingly complex environment (more distracting
obstacles), two-way communication will be of increasing importance, since the task
might not even be solvable without exchanging information held by both the agents.
In environments where the task is solvable with both one-way and two-way commu-
nication, we hypothesize that the two-way communication speeds up the training.

1.4 Related work
In a paper from 2020, M.Kågebäck et al. show that RL can be used as an approach
to successfully reach an agreement on a partitioning of a semantic space [11]. In their
work, they have a two agents playing a color game, with the goal of partitioning the
color space efficiently, in which the agents utilize speaker-listener communication
over a noisy channel. Additionally, an approach taken by I.Kajic et al. [12], were
successful in partitioning the space of a grid world, when attempting to solve a sim-
ilar task as the one in this work, using a sender-listener communication. Although
the work in this paper differentiate from these two mentioned, in its attempt to
discover efficiency benefits from a second way of communication where both agents
act as both sender and listener.

Adding a communication channel between agents in a MAS, where they solve tasks
that requires coordination, enables the agents to develop communication [4, 12, 13].
Although, measuring and evaluating the communication that has emerged, is not a
trivial task. R. Lowe et al. [14] survey the existing metrics proposes, they show that
agents tend to send messages with a "meaning" (positive signaling), but refuse to
listen to them (negative listening), which as a negative impact on the performance.
However, they also propose a new metric, the causal influence of communication,
where it’s shown that agents that are trained with a causal influence as an additional
reward performed better.

3

1. Introduction

4

2
Theory

Throughout the work, Deep Reinforcement Learning (DRL) (see section 2.1.1), is
used as a computational tool to allow the agents a trial and error style of learning.
In section 2.1.2, we outline the algorithm that is used for policy optimization in
the discrete world of section 3.4. An explanation to the theory of the Proximal
Policy Optimization (PPO) trainer used in section 3.5, is given in section 2.1.3, this
continuous world is built in the game engine Unity (see section 2.2).

2.1 Reinforcement learning
A Reinforcement Learning (RL) system has two main components, an environment
and an agent [10]. The most typical form of the environment is a Markov decision
process (MDP) [3], which is defined by the 4-tuple: (S, A, Pa, Ra). S is the state
space (the different visible states in the environment). A is the action space (the
available actions). Pa(st+1, st) = Pr(st+1|st, at), the probability that action a in
state s at time step t, will lead to state st+1. Ra(st, st+1) is the immediate reward
of transitioning from state st (old state) to state st+1 (new state).

The goal of the agent is to maximize its total reward (return/gain). The agent
learns by collecting experience (rewards) in the environment. It observes its current
state and makes an action, for then getting a reward and possibly ends up in a new
state. The agent’s experience could be gained by either exploration, making random
actions to possibly gain total new experience, or by exploitation, taking an action
based on its experience. Instead of using Pa, the agent uses the policy π, which
decides how the agent exploits and/or explores its observed state and is a mapping
from S to A. The described system is found in figure 2.1.

Figure 2.1: The architecture of a reinforcement learning system.

5

2. Theory

If there are multiple agents in a RL system, it is called a MAS. The agents in this
system are not forced to have the same policy or the same problem to solve. However,
in this thesis, the two agents have the same problem, a cooperative navigation
problem, to solve, but they don’t share the same policy. Additionally, the agents’
perception of the environment in this thesis, takes the form of a Partially Observed
MDP [22] since the traveler has a limited view, and the guide has no view of the
traveler.

2.1.1 Deep reinforcement learning
Deep Reinforcement Learning (DRL) [8] is the area where deep learning is applied in
reinforcement learning. Deep learning makes use of neural networks, multiple layers
of neurons succeeding each other. The layers themselves can be thought of as a non-
linear transformation in the form of weights, the weights are updated throughout
training to allow the network to learn how to represent different abstractions. By
using the network’s transformations, the network maps an input to an output.

When using DRL the input of the network is the observations that the agents make
at each time step, and the output at the last layer is a probability distribution of
the action space, which in turn is sampled to get a single action. An example of this
network architecture is found in the following figure 2.2, where one input layer is
mapped using two consecutive fully connected layers to an output layer, this network
architecture is the one used throughout this work.

Figure 2.2: The architecture of a neural network with two hidden layers.

Powerful tools such as Tensorflow [1] and PyTorch [19] have been developed to enable
programmers to easily create and train neural networks.

2.1.2 REINFORCE algorithm - with baseline augmentation
REINFORCE [21] is a policy-gradient algorithm, which makes use of gradient ascent
when updating the policy πθ, where θ is the weights of the neural network. The
neural network, is the policy that the agent follows, the neural network takes a
state as input and outputs a probability distribution of taking the different possible
actions. At each time step of an episode, we collect the state, action and reward to

6

2. Theory

be able to define the trajectory τ , which is found in equation 2.1. The horizon of an
episode is defined as H.

τ = (s0, a0, r1, s1, a1, ..., aH , rH+1, sH+1) (2.1)

We define Gt as the return at time step t, by the following equation:

Gt =
H+1∑

k=t+1
γk−t−1rt (2.2)

The goal of REINFORCE is to maximize the expected return over trajectories. The
return R for the trajectory τ is defined as:

R(τ) = (G0, G1, ..., Gt) (2.3)

We define the expected return, U(θ), as:

U(θ) =
∑

τ

P(τ ; θ)(R(τ)− β(τ)) (2.4)

where we augment it with a baseline, denoted β(τ) = (β0, β1, ..., βt), where βt is
the averaged return at time step t of the last 1000 episodes. P is the probability
distribution of each possible trajectory. The probability relies on the neural network
that is used. The update step used in backpropagation is defined as:

θ ← α▽θU(θ) (2.5)

where α is the learning rate and ▽ is the gradient.

With these notations, the algorithm is formalized as 1.

Algorithm 1 REINFORCE
while not converge do

Collect τ using policy πθ

Estimate R for τ
Use τ to estimate ▽θU(θ)
Update weights θ for the policy πθ

end while

The REINFORCE algorithm is used for policy optimization throughout the training
of the grid world.

7

2. Theory

2.1.3 Proximal Policy Optimization
There is a multitude of approaches to policy optimization that have been proposed
when it comes to RL with neural network function approximation, e.g. we have
Deep Q-learning, trust region / neutral policy gradient methods and also "vanilla"
policy gradient methods [20].

In Trust Region Policy Optimization (TRPO), one utilizes an objective function
(referred to as "surrogate" objective) that is maximized under a constraint.

max
θ

Ê
[

πθ(at|st)
πθold(at|st)

Ât

]
(2.6)

constraint: Êt

[
KL[πθold

(·|st), πθ(·|st)]
]
≤ δ (2.7)

where πθ is a stochastic policy and Ât is an estimator of the advantage function
at time t, Êt[...] and δ is a bound on the size of the policy update. While the
TRPO approach is widely adapted, it does have some shortcomings when it comes
to scalability and robustness due to being complicated.

To reduce the complexity of the implementation, J. Schulman et al. [20] introduce
a different surrogate objective, namely a clipped penalty based approach:

πθ(at|st)
πθold

(at|st)
= rt(θ) such that rt(θ) = 1 when πθ(at|st) = πθold

(at|st)

and define the objective as:

LCLIP (θ) = Êt

min
(

rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

) (2.8)

by removing the constraint on the size of the policy update and instead penalizing
the changes that move rt(θ) away from 1 [20], where epsilon is a hyperparameter
that is tuned to the task and environment.

In the same study in 2017, J. Schulman et al. [20] formalized an algorithm that
alternates between sampling a policy and optimizing based on the samples. The
algorithm is called Proximal Policy Optimization (PPO) and is a family of policy
optimization methods that benefit from the stability and reliability of trust region
methods but are simpler to implement. When used in neural networks, one makes
use of the learned state-value function V (s) and computes a loss function constructed
from a combination of the surrogate policy and value function error term. The
objective for this approach is ultimately constructed as:

LV F
t = (Vθ(st)− V target

t)2 (2.9)

LCLIP +V F +S
t (θ) = Êt

[
LCLIP

t (θ)− c1L
V F
t + c2S[πθ](st)

]
(2.10)

8

2. Theory

Where LV F
t is the squared value function loss, S an entropy bonus used to augment

the objective further and c1, c2 are coefficients.

Algorithm 2 uses a fixed-length trajectory segment where in each iteration N parallel
actors collect T samples of data. This creates the requirement of an advantage esti-
mator that does not consider time-steps beyond T . In [20] a generalized advantage
estimation is used that satisfies the requirement and generalizes a previous estimator
that was suggested by V. Mnih [16] in 2016.

Ât = δt + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T −t+1δT −1,

where δt = rt + γV (st+1)− V (st)
(2.11)

The surrogate loss is then constructed and optimized using a gradient descent opti-
mizer like Stochastic Gradient Descent (SGD) or Adam for K epochs.

Algorithm 2 Proximal Policy Optimization (PPO)
1: for iteration = 1, 2, ... do
2: for actor = 1,2,...,N do
3: Run policy πθold

in environment for T time steps
4: compute advantage estimates Â1, ..., Ât

5: end for
6: Optimize surrogate L w.r.t. θ with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

The PPO algorithm implemented in the toolkit (see section 2.2.1) using the clipped
version, and is utilized in this works continuous world.

2.2 Unity
Unity1 is a game engine used for real-time game development for 2D, 3D, VR, and
AR games. This game engine was developed by Unity Technologies and was released
in 2005. The game engine includes both a rendering and physics engine. For the
engine to be user-friendly, Unity Technologies has developed a user interface that
is called the Unity Editor. Unity was initially released for MAC OS X users only.
Nowadays, Unity editor is supported on Windows, macOS and Linux. The engine,
on the other hand, has more than 19 different supported platforms.

Unity uses an implementation of Mono2 for scripting. Every Unity script derives
from the base class MonoBehaviour, this class includes some event functions that are
executed depending on the trigger event, these can be found in the documentation3.

1https://unity.com/
2https://www.mono-project.com/docs/advanced/embedding/scripting/
3https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

9

https://unity.com/
https://www.mono-project.com/docs/advanced/embedding/scripting/
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

2. Theory

2.2.1 Unity Machine Learning Agents toolkit
The Unity Machine Learning Agents Toolkit 4 (ML-Agents toolkit) [9] is a package
for Unity. This package is an open-source project that enables games and simulations
to serve as environments for training intelligent agents. The implementations, which
are based on PyTorch [18], offer state-of-the-art algorithms to enable us as developers
to easily train intelligent agents.

The behavior of the agents, is implemented by making use of the class Agent, which
is an extension of the MonoBehaviour class. An important function in this class is
the CollectObservations function, this function collects observations that will be the
input to the neural network that is trained. However, it is the programmer’s task
to decide what observations that should be added. This function, how the agent is
rewarded, and many more can be found in the documentation5.

2.3 Linguistics - efficient communication
We use the term efficient communication in the sense that it is a communication
which uses a language (with no initial semantic meaning) that has emerged to con-
tain semantic meaning for each agent. For the communication to be efficient, it also
has to significantly improve or expediate the agents’ solution in comparison to no
communication.

According to K. Cao et al. [4], a necessary prerequisite for communication to emerge,
is that a task is needed that requires coordination between multiple agents. Where
none of the agents possess all the information to solve the task individually, and
also a communication channel where the agents can communicate with messages.

4https://github.com/Unity-Technologies/ml-agents
5https://docs.unity3d.com/Packages/com.unity.ml-agents@2.3/api/Unity.MLAgents.

Agent.html

10

https://github.com/Unity-Technologies/ml-agents
https://docs.unity3d.com/Packages/com.unity.ml-agents@2.3/api/Unity.MLAgents.Agent.html
https://docs.unity3d.com/Packages/com.unity.ml-agents@2.3/api/Unity.MLAgents.Agent.html

3
Method

The problem is tackled in an MAS in the setting of a cooperative navigation game.
This particular system consists of two agents, one named the guide (see 3.3.1) and
the other the traveler (see 3.3.2). The traveler’s task is to navigate in an environment
and reach the target (see 3.1), although there are obstacles out in the environment
to make this harder, known as distractors (see 3.1). The traveler has a limited
vision, which is where the guide comes to the rescue; the guide resides outside the
environment, but possesses a map of the environment. The guide’s task is to help
the traveler reach the target. To be able to do this, the agents are equipped with a
language (see 3.2) and a communication channel (see 3.2.1). With this setup, they
attempt to convey the information, held privately by the agents, to each other in
order to solve the navigation task and find the target as efficiently as possible.

Figure 3.1: An abstraction of the described multi-agent system.

The experiments done in this thesis are performed in two different settings. The first
setting is a grid world developed in Python 1, and the second setting is a continuous
world developed in Unity (see 2.2) and the toolkit ML-Agents (see 2.2.1).

1https://www.python.org/

11

https://www.python.org/

3. Method

3.1 Environment
The environment is a flat surface, like a floor, where different objects can spawn
at the start of each episode. The objects in the environment are referred to as
obstacles. Obstacles have one property, it is either a target, which yields a positive
reward when moving into it and terminates the episode, or a distractor, on which
the traveler gets a possible negative reward and bumps back to its previous position
when colliding with it, although the episode is not terminated upon contact with a
distractor.

3.2 Language
The language L consists of distinct words w. The words in the language are mapped
to one-hot encoded |L| or |L|− 1 sized vectors, depending on if we include the zero-
vector w0 = [0, ..., 0] or not. Initially, the words have no semantic meaning before
the training is commenced, meaning that the agents have to collectively decide on
the semantic of each word. Additionally, the size of language |L| can be varied in
different training settings and environment.

3.2.1 Communication channel
To allow the agents to communicate with each other, they utilize a communication
channel. The agents can interact with the communication channel in two ways.
They could either add a message to the communication channel (with a receiver),
or they can collect messages that they are supposed to receive. The messages that
the guide is supposed to receive in the communication channel are denoted mg, and
the traveler’s messages are denoted mt. The motivation for using a communication
channel and not sending the message directly to the receiver is that the receiver
could now read the message when it wanted to.

3.3 Agents
In the MAS, there are two different agents. The first one is the guide, which resides
outside the environment, and the second one is the traveler, which resides inside
the environment. The following two sections are going to describe these two agents
more in detail.

3.3.1 Guide
The guide is an agent that possesses a complete map of the environment, but not
the position of the traveler. With this setting, the guide’s task translates to learning
how to interpret the location of the target based on the map, and further to convey
this information to the traveler, using the language and the communication channel
given.

12

3. Method

At each time-step, the guide polls the channel, and reads all the messages that are
present in the channel at that time-step. Using two-way communication adds an
extra layer to the observations for the guide. Since the traveler conveys information
to the guide, this becomes part of the state observations. At each time-step, the
guide polls the communication channel, and reads all the messages that are present
in the channel at that time. With this additional information, the guide can attempt
to interpret the location of the traveler, and therefore convey more useful information
to the traveler.

3.3.2 Traveler

The traveler interacts with the environment, and can only observe what is closest
to it. With each episode, it has no prior knowledge of the target nor the layout of
the environment it is currently in.

With each time step, it takes an action that decides its next movement. This
movement can be one of 5 different values, either go up, down, left, right, or do
nothing. The traveler’s task is to locate and interact with the target, to be able to
terminate the episode and get a positive reward. Since the traveler can only observe
its surroundings, the communication from the guide will be crucial for the traveler,
for it to be able to grasp the entire environment efficiently during an episode. In
extension, this also requires the traveler to interpret the sentiment of the guide.

Alongside interacting in the environment, and depending on the experiments, the
traveler can communicate with the guide, using the same language as the guide.
This will extend the guide’s knowledge, and therefore the traveler might get better
instructions from the guide in return.

3.4 Grid World

Several experiments were made in a discrete environment, a grid world with the size
9 × 9, an example of this environment can be found in figure 3.2. The width and
height of the grid world remained the same throughout the experiments. However,
what was inside the grid world varied, it started from a very simple setting, and
gradually moved towards an increasingly complex world. The distractors in this grid
world give no negative reward. Although, the traveler gets a small negative reward
at each time step, and therefore the traveler wants to reach the target as fast as
possible, and avoid the obstacles.

13

3. Method

Figure 3.2: A grid world with the size 9× 9. The green tile is the target and the
red tiles are distractors.

The experiments in the grid world used the language L = w0, w1, w2, w3, w4, w5, w6, w7,
where w0 is the zero-vector. Therefore, each vector has a size of |L| − 1 = 7.

The proposed idea of this project is to use a two-way communication, this might be
hard to implement directly, and an approach where we gradually moved towards a
two-way communication were used.

In the following sections, we start with explaining the observations for the guide and
traveler, then dig deeper into the neural network that is used for these agents, and
finally, three different experiments are described.

3.4.1 Observations
Both the guide and traveler utilize observations that are fed through their neural
networks (see 3.4.2) to decide upon the next action. The guide is using one neural
network for communicating, while the traveler is using two neural networks, one
for communicating and one for moving in the environment. Therefore, the traveler
utilizes two slightly different observations in each time-step when deciding between
the two actions that it takes: communication and movement.

The guide’s observation, Og, consists of every tile in the environment, and a message,
mg, from the traveler (if the setting of the experiment allows this). The guide utilizes
a neural network, NNg, to choose an action, Ag, which is mapped to a word w in
the language L.

Moving to the traveler’s first observation, Otc , used by the neural network, NNtc , to
choose an action, Atc , which is mapped to a word w in the language L. The traveler
observes a 360◦ field of view that reaches one grid away from itself, including the
grid that it is standing on at the moment. It can also observe its own x- and
y-coordinates in the environment.

14

3. Method

The second observation, Ota , is the one that is used for interacting with the environ-
ment. Here, the traveler has the exact same observations as for NNtc , additionally
it also observers one message, mt, from the guide (if the setting of the experiment
allows this). The traveler uses the neural network, NNta , to choose an action, Ata ,
which corresponds to a movement in the environment.

3.4.2 Neural Network
The observations explained in the previous section are fed into the input layer i. The
neural network consists of two hidden layers, h1 and h2, both with the same size
(denoted hidden size). Between the hidden layers, the activation function Rectified
Linear Unit (ReLU) is used. The last layer is the output layer o, where the activation
function Logarithmic Softmax (LogSoftmax) is used. The following figure 3.3 shows
the described architecture. This architecture is used by all neural networks, although
the size of the layers might vary between the experiments.

Figure 3.3: The architecture of the neural network that is used for both the
traveler and the guide.

3.4.3 No communication experiment
First, we conducted an experiment to verify that our setup worked, and to verify that
the traveler was able to navigate and search smartly. Therefore, no communication
was used in this approach.

An environment as simple as possible was chosen here. In this environment, no dis-
tractors spawn. Although, one target spawns on any of the tiles in the environment,
except on the traveler’s starting position. An example of the environment, and a
depiction of when the traveler can see the target and not, is found in figures 3.4
and 3.5. The idea behind using a simple environment is that there is no need to use
a complex one when attempting to verify that the traveler can navigate smartly, a
more complex environment would simply just slow down the training.

In algorithm 3, we find the training loop used in the experiment. At the start of an
episode, a new environment is generated with a randomized target position. The

15

3. Method

traveler is initialized to start at the midpoint of the environment. Lines 5-6 shows
a step of an episode. With each step the traveler collects Ota and feeds it through
NNta , to choose Ata , this action is mapped to a movement in the environment using
the deterministic function move(Ata), if the goal is reached or the maximum amount
of steps for an episode has passed, after the step, the episode is terminated. In this
experiment, the REINFORCE algorithm from section 2.1.2 is used and the collected
steps of each episode function as the trajectory τ in algorithm 1.

This experiment was run twice with two different network settings to find a param-
eter tuning that could smartly and close to optimally solve the task. These settings
differed only in the hidden sizes of the networks: the first test was run with a hidden
size of 10 neurons, and the second with a hidden size of 16 neurons.

Figure 3.4: The traveler in an
environment with no distractors and
one randomly spawned target, that is
colored green. The traveler’s field of

view is colored in yellow. The traveler
can not see the target.

Figure 3.5: The traveler in an
environment with no distractors and
one randomly spawned target, that is
colored green. The traveler’s field of

view is colored in yellow. The traveler
can see the target.

Algorithm 3 Training Loop – No communication
1: for episode e = 1,2,...,N do
2: Generate new environment for the episode
3: Reset traveler to starting position
4: for step t = 1,2,...,T do
5: Collect Ota feed to NNta , choose Ata

6: Step in environment move(Ata) and end episode if goal is reached
7: end for
8: Update weights of NNta using REINFORCE, with episode τ
9: end for

This setting allowed us to estimate the number of steps needed to reach the target

16

3. Method

(expected episode length), by simply traversing an optimal path (found in figure 3.6)
without the given communication, with this we can formulate a benchmark for when
the communication is beneficial to the solution of the problem.

Figure 3.6: A theoretical optimal search path for an empty 9× 9 grid world,
where the target can spawn at any position, except the traveler’s starting position.

We can formulate a random variable X, the probability that the target is spawned
in one of the visited squares at time t given that we walk an optimal path, and a
random variable Y, the number of optimal steps to the target after finding it.

To concretize X. we know that there are 8 ways to move optimal in the environment
(each optimal search path, isomorphic to the next with only directional change), with
each step 3 more squares are visited, except for the first where the 8 surrounding
squares of the traveler starting position are visited. This means the number of
visited squares is equal to, 8 + 3x if x is the number of steps taken on an optimal
path. Since the target can spawn in 1 out of 80 squares each episode, all squares
are visited in 24 steps, and hence, we estimate the expected length of this to be.

E[X] =
24∑

x=0

1
80(8 + 3x) = 13.75 (3.1)

For Y we know that the traveler can only move in cardinal directions (vertical or
horizontal) and the target will always be discovered in either a diagonal or a cardinal
square. Therefore, we estimate the expected length of Y by the following.

E[Y] = 2
3 · 2 + 1

3 · 1 = 1.67 (3.2)

Since the two events are independent, we can simply just add the two values together,
therefore the final expected episode length is

E[X] + E[Y] = 15.42 (3.3)

17

3. Method

3.4.4 One-way communication experiment

In this experiment, only one alteration was made: one-way communication was
introduced. The guide was made able to send one word as a message at every
time step, to the traveler via the communication channel. This experiment was
done to verify if introducing a one-way communication would improve the traveler’s
efficiency of finding the target. In this setting, the guide observes the environment
as described in section 3.4.1, although no communication from the traveler. This
observation is found in figure 3.7.

Theoretically, the guide could now divide the area of the environment into |L| sec-
tors, to be able to tell the traveler where to go, and therefore the traveler does not
have to search through the whole environment to find the target. This has been
shown in [12], although in their approach they send a one-hot encoded vector to
the traveler at the start of the episode, and therefore do not have any continuous
communication.

The training loop of the one-way communication is specified in algorithm 4. The
additional communication that is added in this experiment is seen in lines 5-6.
with each step of the episode, the guide collects Og and selects Ag using NNg,
Ag is mapped to a word w of the language L, which is passed as a message mt

to the traveler. In lines 7 through 12 the system proceeds as the system of the no
communication experiments, although in line 10, we also see that the neural network
NNg is updated alongside NNta .

Figure 3.7: The guide’s observation of an environment with no distractors and
one randomly spawned target, colored green.

18

3. Method

Algorithm 4 Training Loop – One-way communication
1: for episode e = 1,2,...,N do
2: Generate new environment for the episode
3: Reset traveler to starting position
4: for step t = 1,2,...,T do
5: Collect Og feed to NNg, choose Ag

6: Send L(Ag) = w to traveler
7: Collect Ota feed to NNta , choose Ata

8: Step in environment move(Ata) and end episode if goal is reached
9: end for

10: Update weights of NNg, NNta using REINFORCE, with episode τ
11: end for

This setting also allowed us to evaluate the performance by a calculated expected
episode length. We formulate the random variable X, such that it is the Manhattan
distance to the target from the traveler’s starting position, this is further referred
to as, the distance. X takes the value i when the target is spawned at a tile that
is located at i. Although the target’s spawning position is uniformly distributed as
p = 1

80 , there are a varying amount of squares at each distance. We denote the event
that the target spawns at the distance of i steps by:

Pr(Ei) := pi = pki (3.4)

where ki is the number of tiles at distance ki, calculations of each of these expecta-
tions can be seen in 3.1.

Table 3.1: Values and probabilities for the random variable X, used for
calculating the expected Manhattan distance to the target, in the one-way

communication experiments.

i #Tiles at distance i, ki Pr(EXi
) = pi

1 4 4
80

2 8 8
80

3 12 12
80

4 16 16
80

5 16 16
80

6 12 12
80

7 8 8
80

8 4 4
80

Since we now have the expected value that the target spawns at a distance i for all

19

3. Method

possible distances i. By linearity of expectation, we know that

E[X] =
8∑

i=1
pii = 4.5 (3.5)

The following figure 3.8 gives a visual representation of the Manhattan distance
from each tile to the traveler’s starting position.

Figure 3.8: The Manhattan distance from each tile to the traveler’s starting
position.

3.4.5 Two-way communication experiment
In the third, and final experiment in the grid world, it was time to introduce the two-
way communication. By introducing this, we needed a more complex environment,
otherwise, the traveler would not have anything more to talk about, than when it
sees the target; when the traveler sees the target, it would not make much sense to
talk about it since the traveler could just go directly by itself to the target.

To make the environment more complex, we introduced distractors, in the form of
walls, in the third and seventh rows of the grid world. At the start of every episode,
three adjacent squares were selected in each wall of distractors to create a hole that
the traveler could pass through. The target’s position was randomized at the start
of every episode, although it could not spawn at the position of a distractor or in
the adjacent tiles of the traveler’s starting position. An example of this grid world
can be found in figure 3.9.

The training loop of the experiment is specified in algorithm 5. The difference from
the previous experiments is seen in lines 5-6. With each step of the episode, the
traveler starts by collecting Otc and selecting Atc using NNtc . Atc is then mapped
to a word w of the language L, which is passed as a message mg to the guide. From
line 7-12, the system behaves as a one-way communication experiment, with the

20

3. Method

addition that the second network of the traveler NNtc is also updated using the
same trainer as previously.

Algorithm 5 Training Loop — Two-way communication
1: for episode e = 1,2,...,N do
2: Generate new environment for the episode
3: Reset traveler to starting position
4: for step t = 1,2,...,T do
5: Collect Otc feed to NNtc , choose Atc

6: Send L(Atc) = mg to guide
7: Collect Og feed through NNg, choose Ag

8: Send L(Ag) = mt to traveler
9: Feed Ota to NNta , choose Ata

10: Step in environment move(Ata) and end episode if goal is reached
11: end for
12: Update weights of NNtc , NNg, NNta using REINFORCE, with episode τ
13: end for

Figure 3.9: A generated environment of the grid world in the two-way
communication experiment. The target can spawn on any of the green tiles. The

red tiles are distractors.

Since an optimal path in such an environment was too hard to find, by theoretical
means, we needed some kind of comparable baseline. To find this comparable, we
chose to compare this approach to a one-way communication system trained in this
more complex environment. By comparing these two approaches, we can see how
beneficial the two-way communication is to the efficiency of the system. Both in
terms of training time and average final episode length.

21

3. Method

3.5 Continuous World
In the continuous world experiments, we chose to use an environment with four
unique (and to the agents distinguishable) obstacles placed in perpendicular posi-
tions to the traveler’s starting position at the midpoint.

The environment has two versions, it is either static or non-static. In the static
version, the obstacle at each position have the same shape and color in every episode,
although which one of the obstacles that are selected as the episode’s target is
randomized. An instance of a static environment, is found in figure 3.10. In the
non-static version, the obstacle at each position can alter color and shape between
the episodes, although all shape and color combinations are present in every episode
and the target selection is made randomly. Figure 3.11 depicts the difference between
two episodes in the non-static world.

Figure 3.10: An example of the described static environment. The Orange cube
is the traveler at its starting position for each episode. The four obstacles are the

red and blue spheres, as well as the red and blue cubes.

Figure 3.11: An example of the difference between episodes in the non-static
environment. The Orange cube is the traveler at its starting position for each
episode. The four color and shape combinations spawn at different positions in

each episode

22

3. Method

The obstacles have the same property as previously, either it is a target or a dis-
tractor. In this continuous world, both the agents are rewarded unanimously. The
reward is given if the traveler collides with an obstacle: if the obstacle is the target,
the agents are given a positive reward and the episode is ended, if the obstacle is a
distractor, the agents are given a punishment (negative reward) and the episode con-
tinues. The size of the reward from finding the target was scaled linearly decreasing
with episode length, to give the incentive of finding a quick solution.

The language that the agents are using to communicate their observations, in the
continuous world, consists of only five words L = w0, w1, w2, w3, w4. As mentioned
in section 3.2 the vectors are one-hot encoded, with the size |L| − 1 = 4, with w0
being a zero-vector. The communication channel is used to pass the information to
the peer agent within every fifth time step, due to the simulation speed of Unity.
Each agent can send a maximum of one message per time step, hence each agent can
receive a maximum of 5 messages every fifth time step. When the agents are reading
their inbox, the agents will always read the latest message first. Each message mj

consists of one word w from the language L, where j denotes the time-step that
the message was sent. Since this environment is more asynchronous than the grid
world, some safety precautions were implemented. The agents maintain a memory
of the last 5 messages read, to not lose information passed between the agents.

To evaluate this world, we consider the episode length. Since there are only two
ways to reset/end an episode: reaching the target or reaching the maximum number
of steps allowed in an episode, one can consider the following relation: the shorter
the episode length, the better the solution to the task. This world is also visually
simulated, which can help understand the behavior of the traveler to assess whether
it seems to behave somewhat deterministic or completely guessing.

3.5.1 Observation

The traveler observes its surroundings in the environment via a snapshot around
itself at every time step, its field of view covers a space equal to a 3 × 3 grid.
Figure 3.13 shows the disparity between the view for the traveler, which is colored
in yellow, and the entire environment. In total, the traveler observes the two last
snapshots, the messages in the communication channel, and a local two-dimensional
vector of its position, this observation is denoted Ot.

The guide observes a snapshot, of size 9 × 9, that covers the entire environment,
an example of this snapshot can be seen in figure 3.12. It also observes the integer
value representing the target of the given episode. The entire observation is denoted
with Og

23

3. Method

Figure 3.12: The observation for the
guide, including four unique obstacles
that is colored in red, green, blue and

yellow.

Figure 3.13: The traveler’s field of
view, a 3× 3 square colored in yellow, in

comparison to the entire environment.

3.5.2 Trainer- and Network settings
The Unity toolkit uses the PPO algorithm described in algorithm 2 to train the
neural networks, the two neural networks are denoted NNt and NNg. The hyper-
parameters and network settings are chosen separately for each experiment. These
networks are quite similar to the ones used in the grid world. They consist of two
linear layers alike the previous ones, although the size of these layers are signifi-
cantly larger than the one in the grid world, with a hidden size of 48 neurons. An
argument was made that these networks needed increased size due to the continuous
movement in the environment.

For the tuning of the PPO algorithm, the hyperparameter θ = (ϵ = 0.1, c2 =
0.01, α = 0.001) is used in all the settings of the continuous. When running the
policies in algorithm 2 (line 3), the agents collect their respective observations Og,
Ot and choose their actions using their neural networks, the PPO trainer collects
the rewards over the time horizon T = 512 and computes the advantage Ât for all
t, the optimization is then run with a batch size of 64 over 10 epochs, using SGD.
Since the maximum episode length of the system is set to 1500 time steps, at least
one full episode is collected in a time horizon.2

3.5.3 Continuous world experiments
The experiments were commenced using one-way communication. To make sure
that the information in the environment was sufficient to solve the task at hand,
an approach was taken where a series of tests were performed. First, the system
was trained in a static environment (see section 3.5.3.1) to establish whether the
information held by the agents was sufficient to solve the task, this was done via three
experiments: the smart traveler, the smart guide, and the unbiased experiment.

2The system did not show many variations when using different tuning, hence the same was
kept throughout all experiments

24

3. Method

Then the environment was altered into a non-static environment (see section 3.5.3.2).

3.5.3.1 Static environment

At first, we considered a “smart” or fully developed traveler (further referred to as
the smart traveler experiment) and only trained the guide to solve the problem given
that the traveler had a set of known instructions it could do pre-determined on only
the message sent by the guide. The deterministic mapping is what we refer to as
smart in this sense, no training is needed to understand the guide’s instructions.

Given the language L in this setting, there are only four possible messages m, these
four messages are, from the traveler’s perspective, mapped to one unique action (up,
left, down, and right). The deterministic movement of the traveler introduces a bias
to the system, which is removed in a later experiment.

Secondly, the reverse was done where the traveler was trained on solving the task
given that the guide was “smart” (this is further referred to as the smart guide
experiment). Since the two agents attempt to convey different forms of information
in their communication, a different interpretation of "smart" had to be made; given
that the guide was successfully trained in the smart traveler experiment, the guide’s
developed network from that experiment was utilized to simulate a smart guide.
Hence, the deterministic movement of the traveler from the previous experiment
produces some bias in this system as well. Although in this experiment, the traveler
would be allowed to reinterpret the messages and map them to different actions than
the deterministic ones, reducing some but not all bias.

To remove the bias, training was made on the system as a whole, starting with two
untrained agents (further referred to as the unbiased experiment). Hence, both of
the agents were reinitialized with no knowledge from prior training.

3.5.3.2 Non-static environment

Keeping the same agent settings as in the unbiased experiment, the environment
shifted to the non-static version. This increases the complexity of the environment
significantly and requires the guide to start comprehending the connection between
the target value, and the location of the corresponding obstacles shape and color
combinations. With the three variables: color and shape combination, target value,
and position, the environment has a total of 96 different combinations.

Additionally, to compare if the system made use of the communication in this envi-
ronment, the communication was completely removed and an experiment was made
without the guide. This became a comparable baseline, similar to the one used in
section 3.4.5, to distinguish whether the system was successful or not.

25

3. Method

26

4
Results

This chapter presents the results of the experiments, starting with and emphasiz-
ing the better results of the discrete environment and later moving into the less
prominent and somewhat inconclusive experiments of the continuous world.

4.1 Grid World

The following three sections will present the results of the experiments in section 3.4.
For all the following grid world results, the maximum length of an episode was set to
100 time steps. Additionally, the entropy graphs in this chapter, show how certain
the agent is of its action, a value closer to zero equals a decision that is certain (low
randomness), and the higher the value, the more uncertainty (high randomness).

Clarification: the episode length graphs, in this section, are scaled to an average
result of 100 episodes on the x-axis. The graphs are also plotted using a weighted
average over an additional 100 values to smooth the curve and make it more readable.

4.1.1 No communication experiment

In the no communication experiment of section 3.4.3, the first run had a hidden size
of 10 neurons. With this tuning, the traveler’s policy converges at about an average
episode length of 23 time steps, as seen in figure 4.1. We see by comparing this
value to the expected value of equation 3.3 in section 3.4.3 that this setup does not
find an optimal search path. When studying figure 4.2, we see that the entropy of
the policy is converging to roughly 0 at about x = 3 200 (after 320 000 episodes),
which shows that the traveler is almost exclusively exploiting the policy that has
been learned at that point, and is very certain that its actions are the correct ones
to take at each state.

27

4. Results

Figure 4.1: The average episode length
over 100 episodes, for a total of 500 000
episodes. Using the setup with hidden

size 10 in the no communication
experiment.

Figure 4.2: The average entropy over
100 episodes, for a total of 500 000

episodes. Using the setup with hidden
size 10 in the no communication

experiment.

Due to the previous two observations of the converging episode lengths and the
exploitation of the policy, the second run had an increased hidden size to a total of
16 neurons in each hidden layer to allow for a more expressive representation of the
observations. As seen in figure 4.3 this tuning has significantly better result, the
curve starts to flatten out at x = 4000 (400 000 episodes), and also the entropy is
close to 0 from that point forward (seen in figure 4.4). Hence, when the agent has
become certain of its actions, we see that it reaches a final solution at the end of
training that takes only about 15 time steps, which is approximately the same and
even slightly better than the expected theoretical value of an optimal search path.

Figure 4.3: The average episode length
over 100 episodes, for a total of 500 000
episodes. Using the setup with hidden

size 16 in the no communication
experiment.

Figure 4.4: The average entropy, for
the traveler, over 100 episodes for a total
of 500 000 episodes. Using the setup with
hidden size 16 in the no communication

experiment.

4.1.2 One-way communication experiment
The network settings and tuning from the no communication experiment with hid-
den size 16, were kept for the traveler going into one-way communication experiment.

28

4. Results

When adding the communication from the guide the performance increased signifi-
cantly, as seen in figure 4.5, at about x = 500 (50 000 episodes) the system reached
a solution that performed equal to the converged policy of the no communication
experiment which took about 8 times as many episodes until it reached a solution
of such performance. Meaning, both the training time and the final policy could
be considered improved for the one-way communication when compared to no com-
munication. At the end of training, the agents achieved a solution to the problem
approximately at an average episode length of 4.5. Although, when looking at fig-
ure 4.6 we see that the traveler still has some randomness in its policy at later stages
of training, and does not fully exploit its current policy. Meanwhile, the guide, who
has a more static observation space than the traveler, has converged to almost no
randomness in its actions.

Figure 4.5: The average episode length over 100 episodes, for a total of 250 000
episodes. Using the setup in one-way communication experiments.

Figure 4.6: The average entropy, for
the traveler, over 100 episodes, for a total
of 250 000 episodes. Using the setup in
one-way communication experiments.

Figure 4.7: The average entropy, for
the guide, over 100 episodes, for a total
of 250 000 episodes. Using the setup in
one-way communication experiments.

The guide can make 80 possible observations, since there is only one target (and no
distractors), that can spawn at 80 possible positions. In the following two figures 4.8
and 4.9, the color of each tile represents the word that the guide is most likely to
send as a message to the traveler, if the target spawned in that tile. Hence, tiles
with the same colors are mapped to the same word, and the space is divided into

29

4. Results

sectors of the most likely word to be sent. This figure is generated by taking the
trained guide of the one-way communication experiment and feeding it every single
one of the possible 80 observations. The central white square of the figures is never
colored due to the target being unable to spawn at that position. In figure 4.9 the
tiles that the traveler can see without moving from its starting position are removed.
Since these theoretically need no communication to reach optimally, given that the
traveler understands its task. In these figures, we see a very prominent pattern
of the agents partitioning the space outside the traveler’s initial field of view into
different words.

Figure 4.8: The partitioning of the
discrete space into sectors, where each
color represents the distinct word that
the guide is most likely to send given
the target has spawned at that tile.

Figure 4.9: The partitioning of the
discrete space into sectors, where each
color represents the distinct word that

the guide is most likely to send given the
target has spawned at that tile.

Excluding the tiles that the traveler can
see directly when spawning.

4.1.3 Two-way communication experiment

As described in section 3.4.5, we trained the system with one-way communication
to act as a comparable baseline. We see in figure 4.10 that the system converge to
an average episode length of about 13, at x = 4500 (450 000 episodes). We also see
that the entropy graphs in figures 4.11, and 4.12 quite accurately resembles the ones
from the previous one-way communication experiments. Despite the fact that this
environment is far more complex, than the previous one.

30

4. Results

Figure 4.10: The average episode length over 100 episodes, for a total of 600 000
episodes. Using the setup with one-way communication in two-way communication

experiments.

Figure 4.11: The average entropy, for
the traveler, over 100 episodes, for a total

of 600 000 episodes. Using the setup
with one-way communication in

two-way communication experiments.

Figure 4.12: The average entropy, for
the guide, over 100 episodes, for a total

of 600 000 episodes. Using the setup
with one-way communication in

two-way communication experiments.

When studying the two-way communication results, we noticed some completely
new characteristics in comparison to what was seen before. We see that the curve in
figure 4.13 depicting the episode length is less steep than in previous experiments,
meaning that the system converge to an efficient solution later in the training. We
also notice the sort of levels of improvement as the training progresses, a repetitive
pattern with about every other 100 000 episodes is noticeable, where the first 100
000 episodes contribute to significant improvement and then the second 100 000
episodes have only a slight improvement. This pattern continues throughout the
training, with roughly every 100 000 episodes. The final average episode length of
the two-way communication is only slightly better than the one-way communication,
it converges to an average episode length of 11.

31

4. Results

Figure 4.13: The average episode
length over 100 episodes, for a total of
600 000 episodes. Using the setup with

two-way communication in two-way
communication experiments.

Figure 4.14: The average entropy, for
the traveler’s communication, over 100

episodes, for a total of 600 000 episodes.
Using the setup with two-way

communication in two-way
communication experiments.

Figure 4.15: The average entropy, for
the traveler, over 100 episodes, for a total

of 600 000 episodes. Using the setup
with two-way communication in

two-way communication experiments.

Figure 4.16: The average entropy, for
the guide, over 100 episodes, for a total

of 600 000 episodes. Using the setup
with two-way communication in

two-way communication experiments.

We also notice a very different characteristic in figure 4.16, where the guide’s entropy
quickly spikes from almost 0 up to about 1.5, the interpretation of this is that the
guide starts “exploring” more of its action space, and is not as certain of its actions
anymore. We also notice that this is at about the same time as we see the second
improvement in episode length starting to happen, at about x = 2000 (200 000
episodes).

When looking at a representation of partitioning of the space, we compared 3 dif-
ferent configurations of walls. For the traveler, we made the traveler visit every
available tile and extracted its most probable communication. As seen in figure 4.17,
depicting the traveler’s most likely message, it is most likely to send the same word
no matter where in the environment it is, and no matter which configuration of walls
it appears to be in.

32

4. Results

Figure 4.17: The traveler’s most probable communication standing at each
position in the environment. The red tiles represent the wall configuration of the

environment.

The guide’s partitioning shows some varying communication, since the traveler seem-
ingly communicates the same message at every tile, this message was used to retrieve
the partitioning of the traveler. Every possible target spawn location was generated
in the three wall configurations, and the most probable word to be sent was ex-
tracted. In figure 4.18 we see the partitioning of the three different configurations.
We notice that the area in between the red walls maintains the same partitioning
over the different configuration, although the space outside the walls varies from
configuration to configuration. Especially the top left corner that switches between
yellow and blue.

Figure 4.18: The guide’s most probable communication standing at each position
in the environment. The red tiles represent the wall configuration of the

environment.

4.2 Continuous World
Clarification: The graphs in this section show the training progress of the experiments
in the continuous world, where the x-axis shows how many decisions have been made
(recall that this is done every fifth time step) and the y-axis on shows the episode
length scaled one to one of the time step. To find the number of past episodes in
the graph, one needs to multiply the x-value by 5 and divide by the average episode
length up until that point. Although, since the exact episode of the system is less
important when using the PPO trainer, one can simply interpret the x-axis as linear
progress of the training.

33

4. Results

4.2.1 Continuous world experiments
During the experiments in the static world, it was clear that the system managed
to find smart behaviors for both the guide and the traveler. The agents did indeed
collectively possess sufficient information to solve the task in the static world, al-
though in the non-static world, the system was not successful in reaching a efficient
solution. The following two subsections outline the results of each environment and
experiment.

4.2.1.1 Static environment

In the smart traveler experiment experiment, which progress is shown by the upper
graph in figure 4.19, the guide finds an optimal behavior that allows the traveler to
walk straight to the target with each episode (confirmed visually in the simulation),
although we see in the figure that this takes about 4 million time steps to achieve.

When switching to the smart guide experiments, the system converge to an equally
good solution as the smart traveler experiments, ≈ 3 times as fast (at about 1.4
million steps). The average episode length, over the progress of the experiment,
is shown in the lower graph of figure 4.19. This expediated solution was to be
expected since in this test, the guide’s "smartness" is a prior mapping to the states
of the environment and utilizes a pretrained network, as opposed to in the smart
traveler experiment where the "smartness" comes from just a deterministic function
of the words sent and is not trained by the agents.

Figure 4.19: Training results in a static world. The upper graph depicts the
smart traveler experiments, and the lower graph shows the smart guide

experiments.

In figure 4.20, the results of the unbiased experiment, is shown. This training takes
about ten times as many steps as the setting with the smart guide, although this is a
system without the bias of deterministic movement. This experiment shows that the
two agents collectively maintain enough information to solve a static environment
in a continuous space.

34

4. Results

Figure 4.20: Training results from experiments in a static environment.
Experiments made with both agents blank, no prior knowledge of the environment

nor the task.

4.2.1.2 Non-static environment

When moving into the non-static environment, the results became harder to inter-
pret and less conclusive. Visually, the traveler started acting less certain of the
communication provided by the guide. It simply appeared to be guessing, trying
to hit all the distractors until it found the correct one. This is also reflected in
the graph, where we in figure 4.21 see that both the graphs converge at about an
episode length of 200, which is roughly 180 steps longer than the solutions to the
static environment.

Both the no communication baseline and the one-way communication converged to
a similar result at the end of training. Although, as can be seen in the figure, one-
way communication, represented by the orange curve, has a slightly shorter time
to reach an average of 300 steps per episode, than the no communication baseline,
represented by the blue curve. Whether this is a result of the communication or
some other coincidence is too hard to tell from the experiments that have been done,
hence this experiment is considered being too inconclusive to show anything useful.

Figure 4.21: Result of the no communication and one-way communication
experiments, average episode lengths over time, in a non-static environment

35

4. Results

36

5
Discussion

At first, we aimed to solve the problem in the continuous space, as seen this proved
to be far too difficult. In the first approach where we tackled the static continuous
environment (found in section 3.5), ultimately the only main goal became to estab-
lish whether the traveler could understand the guide’s instructions or not. As seen
in the results, this proved true, although this environment gave little to no results
as a system that could attempt to solve a non-static version of the world.

A seemingly random guessing behavior of the traveler appeared as soon as we moved
into the non-static environment, this might have been a result of the reward signal
being tuned and/or designed wrongly. We speculate that, if the punishments were
large (about the same magnitude as the positive reward) then the traveler would
avoid interacting with the obstacles, and if the punishment were smaller (in the
range of 2-5 times smaller than the positive reward) the behavior seemed increasingly
random, relative to the difference between the two values. We interpret this behavior
to stem from the fact that the lower punishment gives to low incentive to avoid them.
Finding the balance in the relation between reward and punishment was a difficult
challenge, with this design. This also drove a redesign of this relation in the grid
world, which gave the reward signal mentioned in section 3.4.1

Due to the difficulties in the continuous environment, we moved to the discrete
environment about halfway through the work, since continuous movement made
the problem unnecessarily difficult to solve. As we have shown, the results of this
world were much more conclusive and helped show that the agents are able to solve
the problem and develop a mutual language. At this point, we were also more
considerate of the complexity of the environment when starting to develop it, and
then increased the complexity of the environment as we got some results. Although,
this forced us to constrict the research more and not reach what was the initial idea,
hence there are no two-way communication results in the continuous world and less
effort was put into attempting to solve that world, shifting focus into the grid world
instead. We consider this to be the correct choice due to the time span of the work
and the difficulty of the continuous world.

1As a side-note: In some additional tests done in the continuous space, that are not included
in this work, the reward signal of the grid world did not yield any better results than previously
seen in the continuous world.

37

5. Discussion

5.1 Language
The language size was something that we discussed a lot at the start of the project,
but as soon as we started to get some results in the grid world, we noticed, in the
experiments that were successful, that as long as there were at least 4 words in the
language, system was able to achieve a result near-optimal. We believe that this
number is only for the given environments that were used in this work, and due to
their small size and simple complexity. This is coherent to the results of M.Kågebäck
et al. [11], where they use a language vector of size 50 and the agents partitioned
the color space into fewer words than the size of the vector.

The results in section 4.1.2 show that the agents omit the unnecessary words when
making an optimal solution since the number of sectors (4) is less than the size of
the language (8). We know from the theoretical optimal search path in section 3.4.4
that dividing the environment into 4 sectors would be enough for this environment,
such that the traveler can choose an optimal path toward the target.

However, if the guide had chosen to use the whole language (8 words), the same final
average episode length had been reached. Assume that the target spawns somewhere
in the upper right corner (dark green sector in figure 5.1). One optimal path toward
this sector is shown in figure 5.2, when taking this path, the traveler also passes
the light green sector. Therefore, you can merge these two sectors into one sector
(seen in figure 4.9), which implies using a smaller language. We also believe that
discarding the unnecessary words shortens the training time until convergence.

Figure 5.1: A 9× 9 grid world, divided
into 8 sectors.

Figure 5.2: A 9× 9 grid world, divided
into 8 sectors. The arrow represent an
optimal path towards the dark green
sector, starting from the midpoint.

When comparing figures 4.8 and 4.9 we see that it is only the squares adjacent to
the traveler’s starting position that do not have a prominent pattern. This is most
likely since there is no need to listen to the guide’s information once the traveler
sees the target and knows it is looking for it.

It is way more difficult to interpret any patterns in the resulting partitioning of

38

5. Discussion

the space in two-way communication, seen in figures 4.17 and 4.18, some sectors
maintain their partitioning over configurations, e.g. the space in between the walls,
the general disparity between the upper right and the lower left, as well as the lower
right corner. It’s shown in [14], that when removing one of the agents messages from
the observation, it does not significantly reduce the performance. When looking in
figure 4.17, we can see such a pattern, the traveler learns to send the same message,
which is equivalent to not sending any message. We speculate that the guide has a
behavior of negative listening [14], it discards the traveler’s message, regardless of
whether the signaling is positive or not.

Although we see in the results of the experiment, the system reaches at least an equal
result as the one-way communication, meaning that this partitioning, that seems less
prominent to us, still allows the agents to solve the task efficiently. Whether this
stems from another relation than the partitioning of the space or not, needs to be
evaluated further in order to establish some concrete proofs.

5.2 Two-way communication
A simple environment, made the problem much easier to solve. However, with two-
way communication, it did not make much sense to have a simple environment. The
traveler would not have enough information to convey to the guide. That is why
the trade-off between a simple vs complex environment became highly important
and a big challenge for us. We wanted an environment as complex as possible such
that the traveler had more things to convey, while still keeping it simple enough to
be solvable for the MAS. It seems unclear whether two-way communication gives
any significant benefit in this size and complexity of an environment. The final
average episode lengths are simply too close to each other to tell, even though
the two-way communication converges to about 2 time steps less than the one-way
communication.

On the other hand, the behavior mentioned in section 4.1.3 where the guide seem-
ingly leaves its local optima and then finds a more optimal solution, at this point
we speculate that the guide explored a new semantic meaning of the word(s) that
improved the agent’s performance. Also, the entropy spike entails that the guide
starts exploring the states more than the previous episodes (i.e. when the entropy is
at zero), leaving a local optima. What is interesting about the spike is the discrep-
ancy between one-way communication, where such a spike is nowhere to be found,
and two-way communication, where it helps the system find a better optima.

We theorize that this behavior might have two explanations. Firstly and foremost,
the traveler’s communication with the guide, since this gives the guide some dynamic
information with each step. This allows the guide to end up in some different
state than it thought it expected, which eventually proves to be a better solution.
Secondly, the system could be sensitive to hyperparameter tuning and a slight change
to the learning rate could make the policy "step out" of a local optima every time,
to find the better global optima. Although the latter explanation seems less likely
to, on its own, enable such behavior, since the learning rate remained the same for

39

5. Discussion

the one-way and two-way communication in this environment.

Hence, we think that this communication setting could possibly be more beneficial
in environments with bumpier loss landscapes, than the ones used here.

5.3 Algorithms and Policy Gradient Optimization
The two kinds of trainers that have been used in the work: PPO and REINFORCE
with a baseline augmentation, are algorithms designed with single-agent systems
in mind, and were hence used with decentralized training and execution. This
choice was motivated by the scale of the work and the low system requirements to
train/evaluate an experiment.

For future work, it would be a sound idea to compare these algorithms to oth-
ers that are designed specifically for MASs, especially algorithms with centralized
training in mind since they can establish a global hierarchy for the entire MAS
during training. For example, Reinforced Inter-Agent Learning (RAIL) and Differ-
entiable Inter-Agent Learning (DIAL) proposed and used by J.Forester et al. [7], or
Multi-Agent POsthumous Credit Assignment (MA-POCA) explained by A. Cohen
et al. [5], which in turn, is also a multi-agent trainer that can be used in the Unity
ML-Agents toolkit.

40

6
Conclusion

It is shown throughout the work that the agents can indeed collaborate and solve
the navigation task efficiently by developing a language that had no prior meaning
in a discrete setting. We see that the space of the discrete world becomes partitioned
into sectors represented by distinct words. The sectors resemble an optimal search
path, in the cases where we have been able to establish/find such a path.

We can also conclude that in a continuous world the collaboration becomes much
more difficult and different models and environments than the ones used in this work
need to be experimented with to see the benefits in such a setting.

Additionally, we also found that the two-way communication was not expediting
the training time of the grid world, but rather extending it. It is also unclear
whether it changes the outcome in any significant way, given that the system is
allowed to train for an unlimited time. Although, as discussed, this might be because
the environments used to evaluate this method were simply not complex nor big
enough to benefit from two-way communication, and hence the method should not
be dismissed in the future but rather elaborated upon in a larger and more complex
environment as it did show some interesting behaviors.

41

6. Conclusion

42

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
{TensorFlow}: A system for {Large-Scale} machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16), pages
265–283, 2016.

[2] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob
McGrew, and Igor Mordatch. Emergent tool use from multi-agent autocurric-
ula. arXiv preprint arXiv:1909.07528, 2019.

[3] Richard Bellman. A markovian decision process. Indiana University Mathe-
matics Journal, 6:679–684, 1957.

[4] Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z Leibo, Karl Tuyls, and
Stephen Clark. Emergent communication through negotiation. arXiv preprint
arXiv:1804.03980, 2018.

[5] Andrew Cohen, Ervin Teng, Vincent-Pierre Berges, Ruo-Ping Dong, Hunter
Henry, Marwan Mattar, Alexander Zook, and Sujoy Ganguly. On the use and
misuse of absorbing states in multi-agent reinforcement learning. arXiv preprint
arXiv:2111.05992, 2021.

[6] Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Co-evolution of language and
agents in referential games. CoRR, abs/2001.03361, 2020.

[7] Jakob N Foerster, Yannis M Assael, Nando De Freitas, and Shimon Whiteson.
Learning to communicate with deep multi-agent reinforcement learning. arXiv
preprint arXiv:1605.06676, 2016.

[8] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare,
and Joelle Pineau. An introduction to deep reinforcement learning. arXiv
preprint arXiv:1811.12560, 2018.

[9] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan
Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mat-
tar, et al. Unity: A general platform for intelligent agents. arXiv preprint
arXiv:1809.02627, 2018.

43

Bibliography

[10] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-
ment learning: A survey. CoRR, cs.AI/9605103, 1996.

[11] Mikael Kågebäck, Emil Carlsson, Devdatt Dubhashi, and Asad Sayeed.
A reinforcement-learning approach to efficient communication. Plos one,
15(7):e0234894, 2020.

[12] Ivana Kajić, Eser Aygün, and Doina Precup. Learning to cooperate: Emergent
communication in multi-agent navigation. arXiv preprint arXiv:2004.01097,
2020.

[13] Angeliki Lazaridou and Marco Baroni. Emergent multi-agent communication
in the deep learning era. arXiv preprint arXiv:2006.02419, 2020.

[14] Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and Yann
Dauphin. On the pitfalls of measuring emergent communication. arXiv preprint
arXiv:1903.05168, 2019.

[15] William P McCarthy, Robert D Hawkins, Haoliang Wang, Cameron Holdaway,
and Judith E Fan. Learning to communicate about shared procedural abstrac-
tions. arXiv preprint arXiv:2107.00077, 2021.

[16] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim-
othy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. CoRR, abs/1602.01783,
2016.

[17] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional lan-
guage in multi-agent populations. In Thirty-second AAAI conference on artifi-
cial intelligence, 2018.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32, 2019.

[20] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. CoRR, abs/1707.06347,
2017.

[21] Ronald J. Williams. Simple statistical gradient-following algorithms for con-

44

Bibliography

nectionist reinforcement learning. Mach. Learn., 8(3–4):229–256, may 1992.

[22] Karl Johan Åström. Optimal control of markov processes with incomplete state
information i. 10:174–205, 1965.

45

Bibliography

46

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Goal
	Research questions
	Hypothesis
	Related work

	Theory
	Reinforcement learning
	Deep reinforcement learning
	REINFORCE algorithm - with baseline augmentation
	Proximal Policy Optimization

	Unity
	Unity Machine Learning Agents toolkit

	Linguistics - efficient communication

	Method
	Environment
	Language
	Communication channel

	Agents
	Guide
	Traveler

	Grid World
	Observations
	Neural Network
	No communication experiment
	One-way communication experiment
	Two-way communication experiment

	Continuous World
	Observation
	Trainer- and Network settings
	Continuous world experiments
	Static environment
	Non-static environment

	Results
	Grid World
	No communication experiment
	One-way communication experiment
	Two-way communication experiment

	Continuous World
	Continuous world experiments
	Static environment
	Non-static environment

	Discussion
	Language
	Two-way communication
	Algorithms and Policy Gradient Optimization

	Conclusion
	Bibliography

