
Parallel GPU-Based Fluid Animation
Master’s thesis in Interaction Design and Technologies

JAKOB SVENSSON

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016





Master’s thesis 2016:122

Parallel GPU-Based Fluid Animation

JAKOB SVENSSON

Department of Applied Information Technology
Chalmers University of Technology

Gothenburg, Sweden 2016



Parallel GPU-Based Fluid Animation
JAKOB SVENSSON

© JAKOB SVENSSON, 2016.

Supervisor: Marco Fratarcangeli
Examiner: Staffan Björk

Master’s Thesis 2016:122
Department of Applied Information Technology
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Flooding a model of Frihamnen with the fluid animation using 1 million
particles

iii



Parallel GPU-Based Fluid Animation
JAKOB SVENSSON
Department of Information Technology
Chalmers University of Technology

Abstract
In fluid animation today a choice has to be made between accuracy and speed.
Accuracy is chosen when animating fluids for special effects to achieve a believable
animation. Speed on the other hand is chosen for interactive applications where
a fast simulation is a must to keep the animation running in real-time. However,
with increases in computational power in computer hardware and as more efficient
simulation methods are developed a question arises. Is it possible to have both
an accurate and fast fluid animation? In this thesis this will be investigated by
looking at how the Jacobi method, which is used in real-time fluid simulation due
to its ability to run in parallel, can be accelerated to achieve a greater accuracy
in a real-time simulation. To try this an application for real-time fluid animation
was developed. The computation in the simulation was run in parallel on the GPU.
The results showed that the acceleration of the Jacobi method does increase the
accuracy, but not enough to achieve both accurate and fast animations. A method
for simulating viscoelastic fluids was also found when investigating techniques for
accelerating the Jacobi method.



Acknowledgements
I want to thank my supervisor Marco Fratarcangeli for all his support during the
project. Thank you for the great support and guidance during the implementation
of the project as well as all the help and feedback while writing the report.

Jakob Svensson, Gothenburg, June 2016

v





Contents

List of Figures ix

List of Abbrevations xi

1 Introduction 1
1.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Finding neighbours . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Solve the equation system . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4
2.1 Real-time animations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Offline simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Theory 12
3.1 Smoothed particle hydrodynamics . . . . . . . . . . . . . . . . . . . . 12
3.2 Parallel computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 CUDA and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Array of structures vs. structure of arrays . . . . . . . . . . . . . . . 14
3.5 Stationary linear iterative solvers . . . . . . . . . . . . . . . . . . . . 14

3.5.1 Jacobi method . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.2 Gauss-Seidel method . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.3 Successive over-relaxation (SOR) . . . . . . . . . . . . . . . . 16

3.6 Matrix splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Numerical integration of Newton’s equations . . . . . . . . . . . . . . 17
3.8 Position Based Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Position Based Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10 Collision handling with signed distance fields . . . . . . . . . . . . . . 19

4 Method 20
4.1 Algorithm overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Collision handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Smoothed particle hydrodynamics . . . . . . . . . . . . . . . . . . . . 23
4.5 Neighbour search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Constraint solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 Signed distance field . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8 Offline rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



Contents

5 Results 30

6 Discussion 38
6.1 Result discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 Real world scenarios . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Conclusion 41

Bibliography 42

A Appendix 1 I

viii



List of Figures

2.1 Water poured into a glass rendered at 5 frames per second [25] . . . . 6
2.2 The underlying particles in the Position based fluid simulation by

Macklin and Müller using 128k particles [22] . . . . . . . . . . . . . . 6
2.3 A comparison between water simulation using the traditional semi-

Lagrarian method (Left) and the method by Lentine et al. (Right)
[21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 An example of a typical simulation created with Hybrido [26] . . . . . 8
2.5 Different levels of surface tension showcased in a dam break scenario

with growing surface tension from left to right [4] . . . . . . . . . . . 9
2.6 A showcase of the method by Alduán et al. keeping a sand castle

intact until a ball tears it down. [3] . . . . . . . . . . . . . . . . . . . 9
2.7 Water erodes a column of sand [20] . . . . . . . . . . . . . . . . . . . 10
2.8 Water dropped into a filled container resulting in a realistic water

crown due to the surface tension produced by the method by Akinci
et al.[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 A simple overview of the architecture of the CPU and the GPU [27]. 13
3.2 A representation of a signed distance field for rendering text on a

screen [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 A cube of particles falling down to the ground with particle collision . 22
4.2 An example of the first 6 indexes of the cell array, with the particle

index on the left and the computed cell index on the right. . . . . . . 22
4.3 The application shown during a wave with SPH implemented with

vorticity and viscosity active . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 An example of the first 6 indexes of the cell array for the neighbour

search, with the cell index on the left and the particle indexes on the
right. The illustration is a simplified version of the array with a cell
size of 2 which results in 3 indexes being reserved for each cell. . . . . 26

4.5 The neighbours found from the neighbour search shown during a
wave, the white particles are neighbours to the green particle . . . . 27

5.1 An overview of the percentage of time spent on each kernel in the
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Number of particles [in thousands] animated at 60 fps varying the
amount of solver´s iterations. . . . . . . . . . . . . . . . . . . . . . . 31

ix



List of Figures

5.3 A graph of the density for different number of Jacobi iterations using
the same number of particles as in figure 5.2 . . . . . . . . . . . . . . 32

5.4 A graph of the density over time with 3 Jacobi iterations and an
acceleration factor of 1.0 to 1.5 . . . . . . . . . . . . . . . . . . . . . 33

5.5 A graph of the density over time with 1 to 20 Jacobi iterations and
an acceleration factor of 1.0 to 1.5 . . . . . . . . . . . . . . . . . . . . 34

5.6 A 3D graph of the density over time with 1 to 20 Jacobi iterations
and an acceleration factor of 1.0 to 1.5 . . . . . . . . . . . . . . . . . 34

5.7 The splash in the test scenario with 10 Jacobi iterations and an ac-
celeration factor set to 1.0 . . . . . . . . . . . . . . . . . . . . . . . . 35

5.8 The splash in the test scenario with 10 Jacobi iterations and an ac-
celeration factor set to 1.5 . . . . . . . . . . . . . . . . . . . . . . . . 36

5.9 Four frames from the simulation with 5 Jacobi iterations, and an
acceleration factor of 0.4 with the acceleration outlined in equation
4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.10 Four frames from the simulation flooding a model of Frihamnen with
sdf collision handling, using 5 Jacobi iterations, and an acceleration
factor of 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

x



List of Abbrevations

CPU Central processing unit
GPU Graphics processing unit
GPGPU General-purpose computing on graphics processing units
PDB Position Based Dynamics
SDF Signed distance fields
SOR Successive over-relaxation
SPH Smoothed particle hydrodynamics
TBB Thread Building Blocks
VFX Visual Effects

xi



1
Introduction

Computers have been used for simulating behaviours in the real world for almost as
long as they have been around. Going back as far as to the Manhattan Project during
World War 2 the process of nuclear detonation was simulated using a Monte Carlo
algorithm [13]. As the computational power of computers increased over time more
complex simulations are possible to run. This increase in complexity has allowed
for many behaviours of the real world to be simulated. One of these is simulation
of fluids.

Simulations to create 3D animations of fluids have been used for special effects in
movies for almost two decades. The first movie to simulate a fluid, in this case water,
using computer software was Dreamworks’ Antz which was released 1998 [15]. An
example of a commercial product for fluid simulation that has been used in movies
for more than 10 years is Realflow [26]. One of the methods used in Realflow is
called smoothed particle hydrodynamics (SPH), which is a well known method for
simulating fluids through the use of particles.

While fluid simulation as special effects in movies gives realistic results, it is not
interactive. An interactive simulation has the benefit of allowing the user to change
parameters while the simulation is running and observe the results without wait-
ing. In addition to changing parameters an interactive simulation allows for adding
boundary conditions such as a wall to the scene and instantly see how the fluid’s
behaviour changes as well as how it interacts with the new object. This means that
the user can try out many different scenarios very quickly in order to find the wanted
scenario.

If the fluid animation is to be interactive the simulation needs to be run in real-time.
This creates a problem where the simulation needs a lot of computation, but in a
real-time application time is limited. There needs to be a trade-off between time
and computation. In real-time games the animation is updated at least 30 times per
second and often 60 times per seconds. In this later case there is only just under 17
ms available to do computations between each frame. This is not much time when
tens- or hundreds of thousands particles are simulated.

However, if the particles can be kept independent the problem is possible to solve
in parallel which can be done on the graphics processing unit (GPU). The parallel

1



1. Introduction

task of drawing pixels on the screen has led the GPU to be designed to be good at
parallel calculations [1]. There are examples of algorithms that simulates fluids with
particles in parallel today, but the number of particles simulated has to be limited
for the simulation to be done in real-time.

With this in mind there is still another problem to solve. The computation power of
the GPU is mostly exploited for rendering 3D graphics. Usually only 2 or 3 ms for
each frame are reserved for physics simulation on the GPU. This leads to the focus
and goal of this thesis.

The purpose and overall objective of this thesis is to investigate novel iterative strate-
gies for solving the constraints governing the motion of the fluid. More specifically
the iterative Jacobi method will be investigated. The Jacobi method is used right
now in real-time fluid animation since it is easy to parallelize making it suitable for
simulation on the GPU. However, the Jacobi method is slow at converging. This
thesis will therefore focus on accelerating the Jacobi method to achieve faster con-
vergence while still solving the constraints in parallel. With this purpose in mind
the research question that will be investigated in this thesis is:

Can we accelerate the Jacobi method in order to increase the number of particles
simulated, without degrading the accuracy, in the short time available for physics
simulation on the GPU?

With this question in mind, the goal of this project is to develop an interactive
application that simulates fluids in real-time. The performance of the application
and the accuracy of the simulation will be evaluated in order to answer the research
question.

1.1 Problem Overview

In particle-based fluid animation the particles move in relation to their neighbors
in a way that keeps the volume of the fluid the same over the course of the anima-
tion. Other properties of fluids such as surface tension also needs to be represented.
In SPH these properties are represented by relationships between particles. Two
problems then needs to be solved.

Find the neighbors for each particle. Solve an equation system based on the rela-
tionship between the neighbouring particles.

To make the fluid simulation interactive and in real-time these steps needs to be
done at every frame update of the animation, which must update at 60 frames per
second. It is therefore important that these steps are done fast enough to make sure
that the simulation is not stuttering or unresponsive, while respecting the properties
of the fluid.

2



1. Introduction

1.1.1 Finding neighbours

A simple approach to solve the first problem is to choose one particle and compare
the distance between it and all the other particles. If the distance is short enough
the particles are neighbours. Then it is repeated for all particles. The problem
with this approach is that as the number of particles is increased the computation
time scales exponentially since all particles will have to be checked against all other
particles.

A smarter approach is to divide the simulation space of the particles into a uniform
grid. Then the search space for neighbours for each particle can be limited to a
number of grid cells around the particle. In [14] this method is used to handle
collisions between particles. In this case the 27 neighbouring grid cells (3x3x3 cells)
of a particle is used to check for collisions.

1.1.2 Solve the equation system

The second problem is the main focus in the thesis. The problem consists of both
setting up the constraints for all particles as well as solving the equation system of
all the constraints. Solving of these equations makes sure that the particles move
together as a single fluid.

In order to utilise the parallel performance available on a GPU this must be done
in a way that is possible to do in parallel. A method achieving this which will be
used in this thesis is the Jacobi method, which is an algorithm for solving a linear
system of equations. However, solving the equations through the Jacobi method
could take several iterations which is time consuming. In order to reduce the time
consumption and thereby increase the performance of the simulation a method for
accelerating the Jacobi method will be used. If successful the equation system will
be solved faster achieving the same result with fewer Jacobi iterations. This would
allow for either increasing the speed or the accuracy of the simulation.

3



2
Related Work

This chapter presents previous work in the area. Earlier attempts at solving the
problem of particle-based fluid animation have mostly not had the purpose of run-
ning the simulation in real-time. The reason is that the computer hardware and
the efficiency of the algorithms involved in the simulation did not allow for a lot
of particles simulated in real-time. Therefore most papers have had the purpose of
simulating fluids for offline rendering to use in for example visual effects in movies.
There are still examples of real-time particle-based fluid simulations and increases
in power of computer hardware and improvements of algorithms has started to al-
low for real-time simulations with a higher number of particles. Table 2.1 shows an
overview of different methods for fluid animation from related works.

2.1 Real-time animations

In Particle-Based Fluid Simulation for Interactive Applications [25], Müller et al.
introduce an interactive method to simulate fluids with free surfaces. Their method
is an extension of an SPH-based method by Desbrun [11] that animates highly
deformable bodies but they focus on simulating fluids instead. This is achieved by
deriving the force density fields from the Navier-Stokes equation. They also added
a term to model surface tension.

When rendering the fluid they show three versions. One where the particles are
rendered as particles, one where point splatting is used to render a surface and in
the third method an iso surface of the colour field is rendered. The first two versions
was able to run in 20 frames per second when simulating water in a glass using 2200
particles. Using the third render version the frame rate dropped to 5 frames per
second and can be seen in figure 2.1. Worth noting is that the paper was published
in 2003 so the hardware used in the test is significantly less powerful than the typical
computer hardware today.

In 2013 Macklin and Müller presented a position based fluid animation [22] based
on the Position Based Dynamics framework described by Bender et al [8] and parts
of the previous mentioned paper. An image of their method can be seen in figure 2.2

4



2. Related Work

Method Accuracy Interactive Real-
time

Computation
platform

Particle-based

Particle-Based Fluid
Simulation for Interac-
tive Applications

Focus on real-time over
accuracy Yes Yes CPU Yes

Position Based Fluids Focus on real-time over
accuracy Yes Yes GPU Yes

Mass and momentum
conservation for fluid
simulation

Accurate representation
of momentum conserva-
tion

No focus
on direct
interac-
tivity

Yes Unknown No

Smoothed Particle Hy-
drodynamics on GPUs

Similar accuracy as other
real-time methods Yes Yes GPU Yes

Realflow
High accuracy for realis-
tic animations and ren-
ders

No No CPU and
GPU

SPH version is,
Hybrido is not

Efficient and Robust
Position-Based Fluids for
VFX

High accuracy with focus
on robustness and surface
tension effects

No No GPU Yes

SPH Granular Flow with
Friction and Cohesion

Accurate method for sim-
ulating granular materi-
als

No No CPU Yes

A parallel SPH imple-
mentation on multi-core
CPUs

Focus was on perfor-
mance rather than accu-
racy

No No CPU Yes

Mixing Fluids and Gran-
ular Materials

Accurate interaction be-
tween sand and water No No CPU Yes

Versatile Surface Tension
and Adhesion for SPH
Fluids

Accurate method with
more accurate surface
tension than other
methods

No No CPU Yes

The method presented in
this thesis

Focus on real-time
with increased accu-
racy through Jacobi
acceleration

Yes Yes GPU Yes

Table 2.1: An overview of different methods for fluid animation

They formulate and solve a set of positional constraints that enforce constant density
in the fluid which allows for similar incompressibility and convergence to modern
smoothed particle hydrodynamic (SPH) solvers. The main difference from SPH
however, is that it inherits the stability of the geometric position based dynamics
method which allows for large time steps that are suitable for real-time applications.

Their method while running in real-time is too slow for a typical real-time sce-
nario like a game. It needs a whole GPU for only the simulation and therefore an
additional GPU needs to be used for rendering. This is acceptable in a research
demonstration, but in order to use it in practice in a commercial game it needs
to be able to run on a typical computer where usually only one GPU is available.
Therefore the method needs to be faster so the simulation can run on the same GPU
as the rendering.

The method presented in this thesis is based on the Position Based Fluids method
so it is very similar. The main differences are the neighbour search which is im-
plemented differently but still uses a uniform grid structure like in Position Based

5



2. Related Work

Figure 2.1: Water poured into a glass rendered at 5 frames per second [25]

Figure 2.2: The underlying particles in the Position based fluid simulation by
Macklin and Müller using 128k particles [22]

Fluids. Another difference is that a method to increase the convergence rate of
the Jacobi method is tried in order to simulate more particles and to run both the
simulation and the rendering on the same GPU.

Lentine et al. [21] propose a modification to the semi-Lagrangian method often
used in fluid animation. The purpose of it is to make the fluid simulation conserve
momentum, something that is not done otherwise in the semi-Lagrangian method.
Their method is demonstrated in several demos simulating smoke in which it is
compared to the standard semi-Lagrangian method. Their results show both that
mass lost in the semi-Lagrangian method is still present in their method as well as
artifacts that are present in the standard method does not appear in their method.
In another demo the effect of mass conservation is also shown in an simulation of
a splash in water where the splash is significantly larger in their method than the
standard one, this is shown in figure 2.3. The method presented in this thesis uses
a similar way of conserving momentum.

Harada et al. [16] presents an implementation of the SPH algorithm on GPUs. They

6



2. Related Work

Figure 2.3: A comparison between water simulation using the traditional semi-
Lagrarian method (Left) and the method by Lentine et al. (Right) [21]

achieved this by developing a method that searches for neighbouring particles on
GPUs by dividing the simulation space into a three-dimensional grid. This reduces
the computational cost since there is no need to search through the entire simulation
space for each particle. Instead it is enough to search the grid boxes surrounding each
particle since there is where the neighbouring particles can be found. To compute
the rest of the SPH algorithm on GPUs they store physical values of the particles
as textures on the video memory.

In their results they show real-time simulation consisting of approximately 60 000
particles running at 17 frames per second. Their method could also accelerate offline
simulation. It is worth noting that the paper was published in 2007 and even though
they used what was top hardware at the time, hardware today is significantly more
powerful. In this thesis a similar grid is used to find the neighbours.

2.2 Offline simulations

Realflow is a product for fluid simulation that has been used in many movies. It
features two main parts used for simulations of different scale [26].

The first one is a particle based fluid simulation which is based on SPH. It is used
for smaller and mid range simulations and shows a very high level of detail. Since
its main purpose is to be used in special effects it is not suitable to run in real-time.

The other one, called Hybrido, is used for larger scale simulations such as an ocean.
It is a grid fluid solver in which the behaviour and the motion of the fluid is calculated
from the interaction between neighbouring cells. In order to simulate wave splashes
and foam, the grid solver is combined with particles, an example of a simulation of a
large amount of water created with Hybrido is shown in figure 2.4. Similar scenarios
are possible to simulate with the method presented in this thesis, even though it is

7



2. Related Work

a particle-based method. However, similar to Hybrido a scene of this scale would
not be able to run in real-time.

Figure 2.4: An example of a typical simulation created with Hybrido [26]

Alduán et al. [4] present a fluid simulation framework based on the previously
mentioned Position based fluids work by Macklin et al. They focus on increasing
the robustness of the simulation by implementing a different version of viscosity. It
is designed to address VFX production demands and therefore not to be used in
real-time. Instead they prioritised robustness and fluid properties that make the
behaviour more detailed and realistic. The viscosity of the fluid and surface tension
was improved at the cost of performance. With timesteps ranging from 600 ms to
4000 ms in the scenes tested it is far from running in real-time, but fast enough for
artists to continuously review the resulting animation regularly while working.

In the paper they show how their method allow them to control the level of surface
tension which can be seen in figure 2.5. The method in this thesis also includes
the possibility to control the surface tension to a certain degree. However it is not
as detailed and more approximated to keep the method fast. This means that if
it is increased too much the simulation becomes unstable. Since performance was
more important this was a needed trade off. It might be possible to implement
the more detailed version of viscosity and surface tension without giving up much
performance, but it is not investigated in this project.

In an earlier work by Alduán et al. [3] they presented an extension to the SPH
algorithm that models the behaviour of granular materials such as sand. The pur-
pose of their project was to simulate features such as flow which is closely related to
fluids as well as more rigid body related features such as piles. Their results were
successful in both areas. One demo shows an avalanche of sand flooding a city and
another demo shows granular piles. There is also a demo that shows a sand castle

8



2. Related Work

Figure 2.5: Different levels of surface tension showcased in a dam break scenario
with growing surface tension from left to right [4]

stay completely intact until a couple of balls tear it down which can be seen in figure
2.6.

Figure 2.6: A showcase of the method by Alduán et al. keeping a sand castle
intact until a ball tears it down. [3]

Ihmsen et al. [17] presents a parallel framework for simulating fluids on multi-
core CPUs using the SPH method. They present and compare different ways of
searching for neighbouring particles to find a way to lower the computational costs
of the simulation. The methods they present and compare are, basic uniform grid,
index sort, Z-index sort, spatial hashing and compact hashing. Their results shows
that compact hashing and Z-index sort are the most efficient methods and that they
were almost equally efficient. It was also concluded that one method is preferred
over the other in different scenarios since the memory consumption of the methods
scaled differently. In Z-index sort the memory consumption scaled with the domain
while in compact hashing it scaled with the number of particles.

9



2. Related Work

A similar method of searching for neighbours with the use of a uniform grid is
used in this thesis as well, but instead the simulation runs on the GPU. The other
methods presented in the paper could be interesting to try to see if they would help
the neighbour search perform better. However, since the focus of the project is on
accelerating the Jacobi method it is out the scope of the project.

In fluid simulation there is often interaction with other objects, both static and
dynamic, but not with another fluid-like material. Lenaerts and Dutré [20] present a
simulation of fine granular materials interacting with fluids. This is implemented as a
unified framework based on the SPH method including simulation of both fluids and
granular materials. In their demos they mix water and sand and the water interacts
with the sand grains and changes their behaviour. The results demonstrates different
scenarios, one being rain falling onto sand and transforming it into mud pools. In
another scenario water is percolating into a rigid sand structure eroding pieces of it
until it collapses completely which can be seen in figure 2.7.

Figure 2.7: Water erodes a column of sand [20]

Akinci et al. [2] present a surface tension force and an adhesion force for SPH fluid
simulation. With the help of these forces the simulation can handle large surface
tensions in a realistic way. Water crown formation is an example of a behavior that
previously had not been simulated realistically that is possible with these forces.
This can be seen in figure 2.8. Simulation of droplets is also made possible. In
their results they compare the simulation against other simulation methods in a
water crown experiment. Their solution delivers a more convincing result without
unnatural artifacts. The simulation for the demonstrated scenes took between 0.1
to 15 seconds per frame so it is not a real-time simulation.

If this could be implemented in the method of this thesis without a significant
performance hit, which might be possible, it would increase the realism of the simu-
lation significantly. However, it falls outside the scope of the project, but might be
something for future work.

10



2. Related Work

Figure 2.8: Water dropped into a filled container resulting in a realistic water
crown due to the surface tension produced by the method by Akinci et al.[2]

11



3
Theory

In this chapter different methods and algorithms are presented that either are im-
portant for understanding the project or are going to be directly used in the imple-
mentation.

3.1 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (SPH) [24] is a well known computational method
for simulating fluids. As the name of the method reveals it is based on particles that
are used to represent the fluid. Each particle represents a mathematical interpolation
where the fluid properties are known. More precisely the equation for any quantity
A at any point r is given by the equation:

A(r) =
∑

j

mj
Aj

ρj

W (|r− rj|, h) (3.1)

where j represents a particle, mj is the mass of the particle, r is the position, Aj

is the value of any quantity A at rj, ρj is the density of the particle and W is the
kernel function. The kernel function is used to weight the contributions of each
particle according to the distance from the other particle. The advantage of this is
that computational effort is saved by excluding the relatively small contributions of
distant particles. The Gaussian function and the cubic spline are commonly used
as kernel functions.

To get the density of a particle used in equation 3.1, the following equation is used:

ρi =
∑

j

mjW (|r− rj|, h) (3.2)

12



3. Theory

3.2 Parallel computing

Parallel computing is a type of computation in which many calculations are car-
ried out simultaneously. Here two versions of parallel computing will be presented,
Multi-core computing and General-purpose computing on graphics processing units
(GPGPU).

A multicore CPU can issue multiple instructions each clock cycle which allows for an
algorithm that is possible to run in parallel to perform up to as many times faster as
there are cores on the CPU. In order to simplify the process of parallel development
there are frameworks that can be used, one being TBB (Thread Building Blocks)
by Intel [18]. TBB is a framework for C++ that simplifies the process of parallel
development on the CPU. This is achieved by an abstraction level that removes the
tedious and error prone task of working with native threads in C++.

In GPGPU on the other hand the large number of cores available on a GPU is used
to do other calculations than graphics rendering. A single core of a GPU is not
as powerful as a CPU core so in many cases a problem is solved faster when using
the CPU. The exception is if the problem is solvable in parallel and thereby can be
divided into a large number of parallel tasks. Then the GPU has a large advantage
due to its architecture.

Figure 3.1: A simple overview of the architecture of the CPU and the GPU [27].

The GPU is specialised for problems which require a high arithmetic intensity, the
ratio of floating point operations to data movement, that are highly parallel. This is
what graphics rendering is about which the GPU has been designed for. The result
of this design choice is seen in the design of the GPU compared to the design of
the CPU. As figure 3.1 shows the CPU has more control units and memory for the
arithmetic logic units (ALU) than the GPU [27]. This architecture allows the CPU
to perform advanced computations fast due to the high resources available to each
ALU. The GPU on the other hand is not as good at advanced computations but has
a lot more ALUs. This gives the GPU an advantage in performance over the CPU
in highly parallel problems.

13



3. Theory

3.3 CUDA and kernels

The CUDA platform by Nvidia is a tool for using CUDA-enabled GPUs for general
purpose processing. As a software layer it gives direct access to the GPU’s virtual
instruction set and parallel computation elements which is done through execution
of compute kernels.

A compute kernel or just kernel in this is a routine compiled for the GPU which is
separated from the main program. In CUDA the kernels are defined as functions
written in Cuda C which is an extension of C. The difference between a CUDA
kernel and a C function is that a CUDA kernel is executed N times in parallel by N
different CUDA threads. In order to run in parallel the threads are divided on the
physical CUDA cores on the GPU.

3.4 Array of structures vs. structure of arrays

Usually when structuring data representing objects they are represented as a collec-
tion of structures. Taking particle simulation as an example, every particle will be
represented as a structure of values such as velocity, position and mass describing
the state of the particle. The particles are then held in a collection to allow for
looping through the particles and updating their states when needed. The problem
with this way of structuring data known as array of structures is that it does not
align data well for vectorisation or caching which is important in parallel problems
such as particle simulation.

The alternative approach is to instead use one collection for each of the values de-
scribing the objects. In the example of particle simulation this means one collection
for the velocity of all particles, one for the position and one for the mass. This
approach known as structure of arrays makes vectorisation easier [23].

3.5 Stationary linear iterative solvers

Stationary iterative methods are a class of solvers for linear systems like the following

Ax = b (3.3)

where A is a given matrix and b is a vector [5]. Examples of stationary iterative
methods that can be used to solve this equation include the Jacobi method and the
Gauss-Seidel method as well as the SOR method.

14



3. Theory

3.5.1 Jacobi method

The Jacobi method is an algorithm in numerical algebra for solving a linear system
of equations in the form of a matrix equation on a matrix that has no zeros along
its main diagonal. By examining each of the equations in the linear system Ax = b
in isolation the ith equation can be expressed as the following [5]

n∑
j=1

aijxj = bi (3.4)

Where a, b and x are elements of the matrix and vectors A,b and x, n is the length
of x and i and j represents the current row and column in matrix A. Then by
solving for the value of xi the following is obtained.

xi =
bi + ∑

i 6=j aijxj

aii

(3.5)

This leads to the iterative Jacobi method.

x
(k)
i =

bi + ∑
i 6=j aijx

(k−1)
j

aii

(3.6)

Where k is the current iteration and k − 1 the previous iteration.

3.5.2 Gauss-Seidel method

The Gauss-Seidel method is similar to the Jacobi method and can be used to solve
the same type of equation. The equation for the Gauss-Seidel method is the following
[5].

x
(k)
i =

bi + ∑
j<i aijx

(k)
j −

∑
j>i aijx

(k−1)
j

aii

(3.7)

The biggest difference with the Jacobi method is that in Gauss-Seidel each iteration
is computed serially, because each component of the new iterate depends on all
components previously computed. With each computed component used as soon
as it is computed the Gauss-Seidel method is faster at converging than the Jacobi
method. The downside is that the computations in an iteration cannot be computed
in parallel.

15



3. Theory

3.5.3 Successive over-relaxation (SOR)

SOR is a variant of the Gauss-Seidel method with a faster convergence. With some
modification the SOR method can also be used to accelerate other iterative methods
such as the Jacobi method. The equation of the SOR method is very similar to the
Gauss-Seidel equation and is the following:

x
(k+1)
i = (1− ω)x(k)

i

ω

aii

bi +
∑

j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

 (3.8)

Where ω is called the relaxation factor and is a constant usually larger than 1. If ω
is equalt to 1 the method simplifies to the Gauss-Seidel method and for 0 < ω < 1
it becomes a matter of under-relaxation resulting in slower convergence. Choosing
the relaxation factor is not easy and it depends on the properties of the coefficient
matrix. However, if the matrix is symmetric and positive definite the method is
guaranteed to reach convergence for any value of ω between 0 and 2. Therefore, in
order to achieve a faster convergence rate a value of ω between 1 and 2 is a good
start [5].

3.6 Matrix splitting

Matrix Splitting is a method used for expressing a given matrix as a sum or a
difference of matrices. An example can be seen in the following equation [30]

A = M−N (3.9)

Where A is a given nxn matrix and is non-singular ie., has an inverse. It is used to
set up a matrix in a matrix equation to be easier and more efficiently solved through
the use of iterative methods as the Jacobi method and Gauss-seidel method which
both can be represented in matrix form.

The Jacobi method can be written in matrix form by splitting A in Ax = b into
D −U − L where D is the diagonal part of A, −L is the strictly lower triangular
part of A and U the strictly upper triangular part of A. If D has an inverse the
Jacobi method can be written as in equation 3.10 [9]

x(k) = D−1(L + U)x(k−1) + D−1b (3.10)

With the same definitions of D, L and U the Gauss-Seidel method can be expressed
in matrix form as shown in equation 3.11 [9]

16



3. Theory

x(k) = (D− L)−1Ux(k−1) + (D− L)−1b (3.11)

3.7 Numerical integration of Newton’s equations

When simulating physics on computers the physics equations needs to be described
in discrete steps in order to model continuous physics equations on the computer
hardware which work in discrete time steps. When working with moving objects such
as particles Newton’s equations of motion are often used as to model the movement
and need to be integrated numerically.

A simple approach to solve this is the Euler method. In the case with a moving
object affected by an acceleration the new position of the object is calculated at
each time step through the following formulas:

xt+1 = xt + v ·∆t (3.12)

vt+1 = vt + a ·∆t (3.13)

Where xt+1 is the updated position, xt is the current position, v is the velocity, a
is the acceleration and ∆t is the timestep. However this method is quite unstable
especially at larger time steps [19].

Another method of integrating Newton’s equations of motion is Verlet integration.
In this method instead of storing the current position and the velocity, the current
and the previous position is stored. The next position is then calculated through
the following formula:

xt+1 = 2xt − xt−1 + a ·∆t2 (3.14)

This means that the velocity is calculated each time step based on the previous
(xt−1) and the current (xt) position. This method is more stable than the Euler
method. It is also still a fast method and there is no extra memory needed since
instead of storing the velocity and the current position the previous and the current
position is stored.

3.8 Position Based Dynamics

Position Based Dynamics (PBD) is an animation method described by Bender et
al [8]. It is used to simulate elastic bodies such as hair, cloth, deformable objects,

17



3. Theory

rigid body systems and fluids. Objects are represented by a set of particles and
a set of positional constraints. Each constraint is assigned a stiffness parameter
which defines the strength of the constraint in a range from zero to one. When the
particles are moved by outer forces such as gravity or collisions their positions are
set as a prediction. The predicted positions are then adjusted to make sure that
all the constraints are satisfied which is achieved by solving an equation system of
the constraints using the Gauss-Seidel method or the Jacobi method. The following
function is an example of a positional constraint

Ci(xi1 ,qi1 , ...,xinj
,qinj

) = 0 (3.15)

where x is the position, q is the orientation represented as a quaternion, i1, ...inj
is

a set of body indices and nj the cardinality of the constraint.

3.9 Position Based Fluids

Position Based Fluid is an algorithm introduced by Macklin and Müller [22] and
is based on the previously mentioned Position Based Dynamics method and uses
aspects of smoothed particle hydrodynamics. Since it is based on the PBD method
the fluid is represented by particles and constraints. Each particle has one constraint
that is a function of the particle’s position and the position of its neighbours. In the
same way as in PBD when the particles are moved by external factors their positions
are predicted. In the next step the neighbours of all the particles are found using
the grid-based method explained earlier. Then the constraints can be set for all
the particles using the neighbours and the constraints are solved using the Jacobi
method to correct the predictions. The basic formula, without extra corrections for
properties such as viscosity, used for correcting the prediction is the following

∆pi = 1
ρ0

∑
j

(λi + λj)∆W (|pi − pj|, h) (3.16)

where λi is the particle’s density constraint and λj is the density constraint from
neighboring particles. λi is calculated using the following formula

λi = −Ci(p1, ...,pn)∑
k |∇pk

Ci|2
(3.17)

18



3. Theory

3.10 Collision handling with signed distance fields

A signed distance field is defined by a signed distance function of a set in metric
space, often defined as ω. The function determines the distance of a given point x
from the boundary of ω. The sign of the distance determines if the point is in ω or
not with a positive value for points inside ω, decreasing values towards the boundary
and negative outside. The signed distance function can be defined as the following:

f(x) =
{

d(x, ∂ω) if x ∈ ω
−d(x, ∂ω) if x ∈ ωc

}
(3.18)

Where ∂ω denotes the boundary of ω and d the distance function [28].

An example of a simple signed distance field used for drawing text with pixels is
shown in figure 3.2. In this example everything considered inside the field is painted
black and everything outside white.

Figure 3.2: A representation of a signed distance field for rendering text on a
screen [10]

19



4
Method

This chapter describes how the simulation was implemented. The implementation
process was carried out iteratively and consisted of seven main steps, verlet inte-
grator, particle collision with uniform grid, neighbour search, SPH, SOR, SDF and
offline rendering. These steps were chosen to fit the iterative working process since
they easily build upon each other.

4.1 Algorithm overview

The algorithm of the simulation is outlined in Algorithm 1 and is an implementation
of the method described in [22]. The for loops in the algorithm are in the actual
implementation implemented as CUDA kernels and are therefore run in parallel.
This means that each particle is updated through its own thread in a kernel.

4.2 Numerical integration

The updating of the particles position each frame was chosen to be implemented
through verlet integration as opposed to Euler due to its better stability. It was
implemented as its own kernel in Cuda. The kernel calculates the next position of
a particle using a velocity, which is based on the previous positions of the particles,
the gravity and the timestep.

In this step the rendering of the particles was also implemented. The particles
positions are saved in a vertex buffer through a kernel. The buffer is then used to
render points in opengl and through the use of a shader these points are made to look
like spheres. This way the positions of the particles never have to be downloaded to
the system memory which is slow, instead it is kept in the graphics memory.

20



4. Method

Algorithm 1 The Simulation Algorithm
1: for all particles i do

apply gravity vi ⇐ vi + a∆t;
predict position p∗i ⇐ pi + vi∆t;

2: end for
3: for all particles i do

Find neighbouring particles Ni(p∗i )
4: end for
5: while iter < maxIterations do
6: for all particles i do

Calculate λi

7: end for
8: for all particles i do

Calculate ∆pi

9: end for
10: for all particles i do

perform collision detection and response
11: end for
12: for all particles i do

p·i ⇐ p∗i
update position p∗i ⇐ p∗i + ∆pi;
apply SOR p∗i ⇐ ωp∗i + (1− ω)p·i

13: end for
14: end while
15: for all particles i do

Update velocity vi ⇐ p∗
i−pi

∆t

apply vorticity and viscosity
update position pi ⇐ p∗i

16: end for

4.3 Collision handling

The next step in the process consisted of implementing collision detection and re-
sponse between particles through the use of a uniform grid. Even though the collision
between particles is not a part needed for the fluid simulation it was an easy way
to test the grid which is needed for the neighbour search. The code for the collision
handling belongs to a code base written by Marco Fratarcangeli, the supervisor of
this project, so this part of the implementation was mostly about integrating the
code into the project. A picture of how the application looked like at this stage of
development can be seen in figure 4.1.

The grid is generated to cover the world of the simulation. The size of the cells
is set in such a way as only one particle fits in one cell. Then each particle is set
to belong to a cell based on the particles position in the world. This is saved in
an array with the length of the total number of particles in the simulation which

21



4. Method

Figure 4.1: A cube of particles falling down to the ground with particle collision

holds the coordinate of the cell for each particle. The cell coordinate is saved in the
format of an integer which is computed through the following formula:

i+ j · gridSize.x+ k · gridSize.x · gridSize.y (4.1)

Where gridSize stores the number of cells in the grid in each dimension and i, j
and k represents the particle’s position in the grid. This makes it possible to save
a three-dimensional position in a one-dimensional format. The coordinate is saved
into the array in the way illustrated in figure 4.2.

Figure 4.2: An example of the first 6 indexes of the cell array, with the particle
index on the left and the computed cell index on the right.

In order to detect collisions between particles the 3x3x3 area of cells with the par-
ticle’s cell in the middle are checked for other particles. If any other particle is
found the distance between the particles are calculated and if it is smaller than the
diameter of a particle a collision is found and collision handling is applied to the
particles.

22



4. Method

4.4 Smoothed particle hydrodynamics

The implementation of the SPH was carried out in parts. First the base foundation
of the SPH simulation was implemented and then an artificial pressure, vorticity and
viscosity was added which increased both stability and accuracy of the simulation.
A picture of the SPH simulation with vorticity and viscosity active can be seen in
figure 4.3.

Figure 4.3: The application shown during a wave with SPH implemented with
vorticity and viscosity active

The simulation consists of setting up and solving a system of positional constraint.
These constraints enforces a constant density for the fluid which makes sure the
particles moves together as a single fluid. In practice this is done by first calculating
the density ρi for all particles in the following way:

ρi =
∑

j

mjW (|pi − pj|, h) (4.2)

Where m is the mass of the particle, pi is the position of particle i, pj is the position
of the jth neighbour to particle i, and W is the poly6 kernel defined by the following
formula:

Wpoly6 = 315
64πh9

{
(h2 − r2)3 0 ≤ r ≤ h

0 otherwise

}
(4.3)

where r is the length of the vector pi − pj and h is the smoothing length. The
smoothing length is the maximum distance particles can be from eachother and still
be neighbours.

23



4. Method

The density value is then used together with the rest density to set up a constraint
for each particle that should be fulfilled. The constraint is a function of the particle’s
position in relation to the position of its neighbours, denoted as (p1, ...,pn), where
n is the number of neighbours. The constraint is defined by the following equation:

Ci(p1, ...,pn) = ρi

ρ0
− 1 (4.4)

where ρ0 is the rest density which is a constant set at the start of the simulation.

To solve the constraints a lambda value is calculated for each particle which is based
on the constraint gradient and the constraint like the following:

λi = − Ci(p1, ...,pn)∑
k
|∇pk

Ci|2 + ε
, (4.5)

where ε is a relaxation parameter that is constant over the simulation.

The gradient of the constraint function with respect to particle k has two cases
depending on if particle k is a neighbouring particle (j) or the current particle (i).
It is defined by the following formula:

∇pkCi = 1
ρ0


∑
j
∇W (|pi − pj|, h) if k = i

∇W (|pi − pj|, h) if k = j

 (4.6)

where ∇W is the gradient of the Spiky kernel which is defined by the following
formula:

Wspiky = −45
πh6

{
(h−r)2

r
0 ≤ r ≤ h

0 otherwise

}
(4.7)

Next the correction for the positions of the particles are computed through the
following formula:

∆pi = 1
ρ0

∑
j

(λi + λj + Scorr)∆W (|pi − pj|, h) (4.8)

The Scorr value is the previously mentioned artificial pressure.

In order to make the simulation both more stable and more realistic viscosity and
vorticity was added. Both were added as an addition to the velocity calculated from
the old position and the corrected position of the particles.

24



4. Method

The vorticity was added to replace lost energy due to the position based simulation.
It is calculated using the estimator given in [24]. The calculated vorticity is then
used to calculate a correcting force which is multiplied with the timestep so it can
be applied as a velocity.

The viscosity is important for the fluid to have a coherent motion. It is implemented
as the XSPH viscosity introduced by Schechter and Bridson in [29]:

vnew
i = vi + c

∑
j

vijW (|pi − pj|, h) (4.9)

where vi is the velocity of particle i, vij is the difference of the velocities of particle i
and j, pi and pj are the positions of particle i and j, W is the poly6 kernel showed
in equation 4.7 and c is a user specified parameter.

4.5 Neighbour search

Finding the neighbours for each particle is an important step for the fluid simulation.
It is similar to the collision detection and therefore the same grid implementation
could be used with some modifications. However, since there is no collision between
particles in the fluid simulation several particles can sometimes end up at the same
position. Therefore the grid had to be modified to allow for several particles in the
same cell. This meant that the implementation of how the cells each particle belongs
to had to be modified. Instead of the previous array which held the cell coordinate
for each particle, the array holds the particles that is inside each cell. An illustration
of the new array can be seen in figure 4.4.

In order to keep track on how many particles there are in one cell the array is
constructed so each cell uses several indexes to store the needed data. The first
index stores the number of particles that currently are inside the cell. The next
indexes stores the indexes of the particles that are inside the cell. The number of
indexes reserved for each cell is determined by the cell capacity, which is a constant
set to 8 in my simulation, plus one extra index to store the current number of
particles in the cell. In order to store this information in a one-dimensional array
the cell index is calculated like the following:

cellIndex · (cellCapacity + 1) + count, (4.10)

where cellIndex is computed the same way as in equation 4.1, cellCapacity is the
previously mentioned cell capacity and count is the current number of particles in
the cell.

25



4. Method

Figure 4.4: An example of the first 6 indexes of the cell array for the neighbour
search, with the cell index on the left and the particle indexes on the right. The
illustration is a simplified version of the array with a cell size of 2 which results in
3 indexes being reserved for each cell.

The count value is increased whenever a particle is added to the cell. However,
since each kernel thread operates around one particle this could cause data to be
overwritten if two particles is added to the same cell at the same time. In order to
solve this a CUDA function called atomicAdd is used when the number of particles
in a cell is updated. This function makes sure that only one thread edits the value
at the same time. This breaks the parallelism at this part but since there usually
are not that many particles in the same cell it does not have any noticeable effect
on the performance.

In the neighbour search there was also a need to search a larger area for other
particles than in the collision detection. Therefore the cell size was doubled which
was now possible since they can hold several particles. The alternative would be to
increase the number of cells to search through, but as the search distance is increased
the number of cells needed to search through increases exponentially. Increasing the
cell size was therefore the better option.

In order to find the neighbours for a particle the cells are searched through in the
same way as in the collision detection, but for each cell there is a list of particles that
are looked at. For each particle found the distance between the current particle and
the particles found are calculated and if it is smaller than a threshold the particle is
saved as a neighbour. The neighbours are saved by storing their particle index in a
one-dimensional array with a number of indexes reserved for each particle, similar
to how the cells are stored. The max number of neighbours stored for each particle
is set to 60 and the index of a neighbour in the array is computed the following way:

particleIndex ·maxNeighbours+ neighboursCounter, (4.11)

26



4. Method

where particleIndex is the index of the particle, maxNeighbours is the maximum
number of neighbours allowed and neighboursCounter is the index of the neighbour
in the local list, meaning the list of neighbours for the current particle. A picture
showing the result of a neighbour search for one particle is shown in figure 4.5.

Figure 4.5: The neighbours found from the neighbour search shown during a wave,
the white particles are neighbours to the green particle

4.6 Constraint solving

The constraints set up by the SPH part are solved independently with the Jacobi
method. The process is outlined in algorithm 1 at row 5 to 14. The constraint
is embedded in the λ value and is used to compute the ∆p which is added to
the position of the particle. The process is repeated a fixed number of iterations
for the solution to move towards convergence. This means it will most likely not
reach convergence, but hopefully get close enough. The reason behind using a fixed
number of Jacobi iterations instead of running the Jacobi method until the solution
converges is to have a constant performance suitable for a real-time application.
Otherwise each update step of the simulation could take a different amount of time
which would lead to the frame rate going up and down. Each update step would also
take much more time since the number of iterations needed to reach convergence
is large. The number of iterations can however be modified during run time with
higher number of iterations resulting in a more accurate but slower simulation.

The final addition to the simulation was a variant of SOR for the Jacobi method.
This was added with the hope of increasing the convergence of solution. SOR was

27



4. Method

implemented using an acceleration factor denoted as ω and applied like the following
formula:

p∗i ⇐ p∗i + ∆pi (4.12)

p∗i ⇐ ωp∗i + (1− ω)p·i (4.13)

where p·i is the position of particle i before ∆p was added.

The acceleration factor is implemented so it is possible to change during run time in
the same sense as the number of Jacobi iterations. This allows for quick testing of
different combinations of values on the acceleration factor and number of iterations.

An implementation of the method described in [31] was tried using equation 4.12
followed by the following formula:

p∗i ⇐ (1− ω)p∗i + ω

N

N∑
j

p∗j (4.14)

where N is the number of neighbours for particle i and p∗j the position of neighbour
j. Worth noting is that equation 4.12 is run for all particles before equation 4.14 so
the positions of the neighbours are updated before they are used in the formula.

This version of SOR did however not have the expected result. For values of ω
larger than 1 the simulation became completely unstable, but for omega values
smaller than 1 something interesting happened. Then the fluid started behave like
a viscoelastic fluid which can be seen in figure 5.9.

4.7 Signed distance field

To be able to create more interesting scenarios showing the true potential of the
simulation collision handling against objects was implemented. This is handled
with the use of signed distance fields. The code used for this in the project belongs
to the code-base made by my supervisor Marco so this part of the implementation
consisted mostly of integrating his code with my project.

In order to use a 3D model with the SDF to detect collision the SDF has to gen-
erated for the model. This is done by using a program called SDFGen written by
Christopher Batty [6]. The SDF of the model is then loaded into the simulation
and saved as a texture in the texture memory. The texture memory is cached which

28



4. Method

means that a fetch from texture memory is faster than from the device memory if
the data is present in the cache, and otherwise it is just as fast as the device memory.

When checking for collision the SDF value is fetched from the texture by inserting
the position of a particle. If the returned value is less than zero, a collision is found.
Then the appropriate collision response is applied by changing the position of the
particle.

With the addition of collision handling against objects it was possible to create a
scenario that pushed the simulation to its limit, flooding a 3D model of Frihamnen.
This scenario was done with 1 million particles flowing towards and colliding against
the 3D model. A picture of the scenario can be seen in fig 5.10.

4.8 Offline rendering

Due to the large number of particles in the Frihamnen scenario the simulation did
not run fast enough for a real-time application any more. In order to get a smooth
animation of the scenario a method of offline rendering was implemented. The
implementation was done with the help of a library called FreeImage [12] which
takes raw pixels from the graphics renderer and saves them as a bitmap which is
saved to the hard drive as a png image. With the help of the tool FFmpeg [7] these
images can then be used to create a video which shows the simulation as a smooth
animation.

29



5
Results

To see how well the simulation performed and how accurate it was different tests
were carried out. This chapter will present the results from those tests which consists
of trying different values of Jacobi accelerator and number of iterations as well as a
test consisting of flooding a model of Frihamnen. A link to videos of the tests can
be found in Appendix A.

Using the Visual Profiler from Nvidia the time spent on the different kernels were
measured. This was done by running only the particle simulation with 100k par-
ticles and with 5 Jacobi iterations in the Visual Profiler. The results can be seen
in figure 5.1. The figure show the percentage of time spent on each kernel each
update of the simulation. Two of the most time consuming kernels, calcLambda
and solveConstraints are used for solving the constraints. The main reason for them
taking so much time is that they are run 5 times each update since they are run
once for each Jacobi iteration. If the number of Jacobi iterations could be lowered,
by increasing the convergence without affecting the simulation, the performance of
the simulation could be increased.

Figure 5.1: An overview of the percentage of time spent on each kernel in the
simulation

30



5. Results

In order to get a better understanding on how much the performance could be
increased by lowering the number of iterations another test was done. The test con-
sisted of measuring how many particles could be simulated at 60 frames per second
with different number of Jacobi iterations. In order to be able to ensure a stable
number of frames per second the test was carried out with the particle in a resting
state after stabilising. In addition to measure the maximum number of particles
the density was also measured for different values of the Jacobi accelerator. This
makes it possible to see how much better the simulation becomes with an increased
number of Jacobi iterations together with the cost it has on the performance. The
goal for the solver is to reach the rest density which is set at 2000. The test starts
with 2 Jacobi iterations due to the simulation not being stable enough to reach a
resting state with only 1 Jacobi iteration. The results can be seen in figure 5.2 and
5.3.

Figure 5.2: Number of particles [in thousands] animated at 60 fps varying the
amount of solver´s iterations.

As can be seen in the graphs the performance drops the most from 2-5 iterations
and then not as much. It is quite expected since the fewer Jacobi iterations that
are used the larger performance impact it will have when the number of iterations
is increased. The graph in figure 5.3 showing the density looks quite similar, as the
number of iterations is increased the density gets closer to the rest density, but as in
the other graph the difference between each added iteration get smaller. The density
graph also show the effect of different values of the Jacobi accelerator. The same
pattern is seen for all values of the accelerator, but the actual density measured
gets lower as the value of the accelerator is increased. The effect of this is further
investigated in the next tests.

Next the Jacobi accelerator was was investigated further to find out if it is possible
to reduce the number of iterations while keeping the accuracy of the simulation.
To test this SOR was used to see if different values of the Jacobi accelerator and
number of iterations affected the convergence rate of the simulation. The test was

31



5. Results

Figure 5.3: A graph of the density for different number of Jacobi iterations using
the same number of particles as in figure 5.2

carried out in two ways. First the average density of all particles was measured at
each 10th of a second over 10 seconds of simulation time. This was done with 3
Jacobi iterations and with the Jacobi accelerator set to values from 1 to 1.5. The
results can be seen in fig 5.4. As can be seen in the graph, the density gets lower
when the acceleration factor increases, but it does not converge faster.

Therefore, the density was monitored in a second way in order to see if the con-
vergence would increase with a higher number of iterations combined with a higher
acceleration factor. This time the average density over 10 seconds of simulation of
the average density of all the particles was measured. The test was carried out with
acceleration factors from 1 to 1.5 and with 1 to 20 Jacobi iterations. The results
can be seen in figure 5.5. As can be seen in the figure the results are similar to the
previous test, the density gets closer to the rest density with a higher acceleration
factor and a higher number of iterations. However, it does not converge faster as the
number of iterations is increased together with the acceleration factor. The same
data can also be seen as a 3D surface graph in figure 5.6 for a better overview. In
figure 5.7 and 5.8 the difference between an acceleration factor of 1.0 and 1.5 with 10
Jacobi iterations in the test scenario is shown. The difference is small as suggested
by the graph, but it is noticeable that the particles sticks together better with the
higher acceleration factor.

Next the convergence rate when using the Jacobi acceleration method outlined in
equation 4.14 were to be tested. However as mentioned before this version did not
result in a stable simulation, except when ω < 1. Then the particles stuck together
much more resulting in the fluid behaving more like a viscoelastic fluid. Therefore
it was not possible to compare the convergence rate of this method with the other
acceleration method. Images showing how the fluid behaved with an ω less than 1

32



5. Results

Figure 5.4: A graph of the density over time with 3 Jacobi iterations and an
acceleration factor of 1.0 to 1.5

can be seen in figure 5.9.

The SDF collision handling was tested through the scenario of flooding Frihamnen.
In order to make the scenario more believable 1000000 particles were simulated to
create a large amount of water with small particles to achieve a high resolution. This
caused the simulation to run much slower than a real-time application should, at
around 2 fps which is understandable with the huge amount of particles simulated.
In figure 5.10 the flooding scenario can be seen over four frames.

33



5. Results

Figure 5.5: A graph of the density over time with 1 to 20 Jacobi iterations and an
acceleration factor of 1.0 to 1.5

Figure 5.6: A 3D graph of the density over time with 1 to 20 Jacobi iterations and
an acceleration factor of 1.0 to 1.5

34



5. Results

Figure 5.7: The splash in the test scenario with 10 Jacobi iterations and an accel-
eration factor set to 1.0

35



5. Results

Figure 5.8: The splash in the test scenario with 10 Jacobi iterations and an accel-
eration factor set to 1.5

36



5. Results

Figure 5.9: Four frames from the simulation with 5 Jacobi iterations, and an
acceleration factor of 0.4 with the acceleration outlined in equation 4.14

Figure 5.10: Four frames from the simulation flooding a model of Frihamnen with
sdf collision handling, using 5 Jacobi iterations, and an acceleration factor of 1.2

37



6
Discussion

This chapter will take a look at the results and how well they fulfilled the goal of
the project. Future work will also be brought up with possible improvements to the
simulation or other areas of interest to investigate.

6.1 Result discussion

The results from the Jacobi acceleration did not reach the expected levels of im-
provement. The goal was to greatly increase the convergence rate with a higher
acceleration value in order to either increase performance or accuracy or both. In-
stead the results show only a minor improvement in density of the particles which
only had a small effect on the simulation by slightly improving the particles ability
to stick together.

It is hard to say why it did not give the increase in convergence rate as was expected.
One reason could be the complexity of the simulation due to the huge number of
particles that keeps moving around all the time. Which could mean that moving a
particle a bit more towards the suggested position to fulfill a constraint might have
an almost as high negative effect on another constraint as it had a positive effect on
the first constraint.

The other version of the Jacobi acceleration is easier to figure out why it did not
work. Taking a look at equation 4.14, if ω is set to 1 the only thing left is the
average positions of the neighbours since the term with the particles own position
disappears. This is probably the reason why the simulation was completely unstable
for ω = 1 since the position of the particle is not taken into account at all. For ω > 1
the position of the particle is starting to be taken into account, but multiplied with
a negative factor. Perhaps this version of Jacobi acceleration is not suitable for this
type of simulation or it was not translated correctly.

However, the result when using ω < 1 is interesting and could be useful. The
behaviour similar to a viscoelastic fluid is understandable when looking at the equa-
tion. With ω < 1 the position of the particle is starting to be taken into account
again while the neighbours effect starts to decrease, and when ω = 0.5 the position

38



6. Discussion

of the particle and the average position of its neighbours has equal effect on the next
position. This balance between the two parts in the equation makes the particle go
towards the suggested position to fulfill the constraint while at the same time move
towards its neighbours. This is probably what causes the particles to stay together
much more than in the normal fluid simulation resulting in the new behavior.

6.1.1 Real world scenarios

In one of the demos the water floods a model of Frihamnen which raises the question
if the simulation model is realistic enough to simulate a real world event in an
accurate way. The first thing that comes to mind while trying to answer this question
is what scale the simulation represents. The simulation being based on particles
is only an approximation of how a fluid behaves. In the real world it is much
more complicated as well as much more detailed. If the particles are considered
to represent small water droplets then perhaps it would be possible to determine
a scale for the simulation. In that case, the scenario of flooding Frihamnen would
require a huge increase in the number of particles which would take a huge amount
of computing power with no guarantee that it would be close enough to reality to
be useful for real world simulation.

Perhaps this type of simulation is more suitable for visual effects and interactive
applications than for real world simulation. In these areas it is not very important
that the simulation behaves exactly as a fluid does in the real world. What matters is
that is looks and feels believable enough to be recognized as a fluid without breaking
the immersion.

6.2 Future work

The viscoelastic fluid behaviour was an interesting discovery in the project. It was
found as a coincidence when trying to achieve a faster convergence of the Jacobi
method. Therefore, not much time have been put into testing and figuring out what
it could be used for. With some more research on the topic and experimenting with
the equation it could perhaps result in a good way of simulating viscoelastic fluids.

There are also other types of fluids that could be represented by the application with
some more work. The fact that the simulation is about fluids and not just liquids
opens up for possibilities of generalization of the simulation. With some changes in
parameters and some other additions it would be possible to simulate other fluids
like gases. It is also possible to simulate granular materials as for example sand
using SPH which was brought up in the related works chapter. This could be done
as future work, but it has mostly been done already so it may not be that interesting.

The methods tried in this project did not achieve the increased convergence rate that

39



6. Discussion

was hoped for. However there are other options that could be tried in future work.
One way would be to use the Gauss-Seidel method instead of the Jacobi method
which would increase the convergence rate since the Gauss-Seidel method is much
faster at converging than the Jacobi method. However, in order to do this and still
use the GPU as the computation platform, the Gauss-Seidel method would have
to be parallelised. This would be possible to do since each particle only depends
on a small number of neighbours and therefore all particles that do not depend on
each other could be updated in parallel. The problem would be to figure out which
particles that are independent from each other.

There are other ways to increase the performance of the simulation. One way could
be to look at how well the algorithm utilizes the GPU. This has been done during
the project and the factor that holds back the simulation the most is memory depen-
dency. The problem is that each particle needs access to neighbours and cells from
the grid. These are not necessarily aligned well in memory which results in time
spent waiting for memory transfers. A way to solve this could be to rethink some
parts of the implementation in order to align the memory better between threads and
thereby be able to increase the performance by sharing memory between threads.

40



7
Conclusion

This project resulted in a position-based fluid simulation with a solver based on the
Jacobi method. It was used to answer the following question:

Can we accelerate the Jacobi method in order to increase the number of particles
simulated, without degrading the accuracy, in the short time available for physics
simulation on the GPU?

Accelerating the Jacobi method was tried through two different ways of using SOR
with the Jacobi method. The result for the first method was a small increase in
accuracy, but not large enough to achieve a accurate and fast simulation. The
other method did instead not work at all when using over-relaxation resulting in a
completely unstable simulation. However, when under-relaxation was used it ended
up being a way to simulate viscoelastic fluids.

The simulation was also used to simulate flooding of Frihamnen with 1000000 par-
ticles. This showed that the simulation can be used for large scale simulations if it
does not have to be real-time. It is however hard to say if it could actually represent
a real world scenario of that scale and perhaps the simulation is more suited for
simulation with entertainment purposes.

41



Bibliography

[1] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time Rendering, Third
Edition. CRC Press, 2008. isbn: 9781439865293.

[2] N. Akinci, G. Akinci, and M. Teschner. “Versatile surface tension and
adhesion for SPH fluids”. In: ACM Transactions on Graphics (TOG) 32.6
(2013), p. 182.

[3] I. Alduán and M. A. Otaduy. “SPH granular flow with friction and
cohesion”. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics
symposium on computer animation. ACM. 2011, pp. 25–32.

[4] I. Alduán, A. Tena, and M. A. Otaduy. “Efficient and Robust Position-Based
Fluids for VFX”. In: CEIG - Spanish Computer Graphics Conference (2015),
pp. 1–9.

[5] R. Barrett et al. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. Philadelphia, PA: SIAM, 1994.

[6] C. Batty. SDFGen. https://github.com/christopherbatty/SDFGen. 2015.
[7] F. Bellard. FFmpeg - A complete, cross-platform solution to record, convert

and stream audio and video. https://ffmpeg.org/. 2016.
[8] J. Bender, M. Müller, and M. Macklin. “Position-based simulation methods

in computer graphics”. In: EUROGRAPHICS Tutorial Notes (2015).
[9] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks Cole, 2010. isbn:

0538733519.
[10] I. Crawford. Text Rendering using a Signed Distance Field in OpenGL.

http://chikin.net/pages/blog/signed-distance-field-text-
rendering.html. 2015.

[11] M. Desbrun and M.-P. Gascuel. Smoothed particles: A new paradigm for
animating highly deformable bodies. Springer, 1996.

[12] H. Drolon. The Freeimage Project.
http://freeimage.sourceforge.net/intro.html. 2015.

[13] A. H. Foundation. Computing and the Manhattan Project.
http://www.atomicheritage.org/history/computing-and-manhattan-
project. Accessed: 2016-02-21.

[14] S. Green. “Cuda particles”. In: nVidia Whitepaper 2.3.2 (2008), p. 1.
[15] Guinness World Records. First film with digital water.

http://www.guinnessworldrecords.com/world-records/first-film-
with-digital-water. Accessed: 2016-02-25.

42

https://github.com/christopherbatty/SDFGen
https://ffmpeg.org/
http://chikin.net/pages/blog/signed-distance-field-text-rendering.html
http://chikin.net/pages/blog/signed-distance-field-text-rendering.html
http://freeimage.sourceforge.net/intro.html
http://www.atomicheritage.org/history/computing-and-manhattan-project
http://www.atomicheritage.org/history/computing-and-manhattan-project
http://www.guinnessworldrecords.com/world-records/first-film-with-digital-water
http://www.guinnessworldrecords.com/world-records/first-film-with-digital-water


Bibliography

[16] T. Harada, S. Koshizuka, and Y. Kawaguchi. “Smoothed particle
hydrodynamics on GPUs”. In: Computer Graphics International. SBC
Petropolis. 2007, pp. 63–70.

[17] M. Ihmsen et al. “A Parallel SPH Implementation on Multi-Core CPUs”. In:
Computer Graphics Forum. Vol. 30. 1. Wiley Online Library. 2011,
pp. 99–112.

[18] Intel Corporation. General Questions about TBB.
https://www.threadingbuildingblocks.org/faq. Accessed: 2016-02-21.

[19] T. Jakobsen. “Advanced character physics”. In: Game Developers
Conference. 2001, pp. 383–401.

[20] T. Lenaerts and P. Dutré. “Mixing fluids and granular materials”. In:
Computer Graphics Forum. Vol. 28. 2. Wiley Online Library. 2009,
pp. 213–218.

[21] M. Lentine, M. Aanjaneya, and R. Fedkiw. “Mass and momentum
conservation for fluid simulation”. In: Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. ACM. 2011,
pp. 91–100.

[22] M. Macklin and M. Müller. “Position Based Fluids”. In: ACM Trans. Graph.
32.4 (July 2013), 104:1–104:12. issn: 0730-0301.

[23] M. McCool, J. Reinders, and A. Robison. Structured Parallel Programming:
Patterns for Efficient Computation. 1st. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2012. isbn: 9780123914439, 9780124159938.

[24] J. J. Monaghan. “Smoothed particle hydrodynamics”. In: Annual review of
astronomy and astrophysics 30 (1992), pp. 543–574.

[25] M. Müller, D. Charypar, and M. Gross. “Particle-based fluid simulation for
interactive applications”. In: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation. Eurographics
Association. 2003, pp. 154–159.

[26] Next Limit Technologies. RealFlow. http://www.realflow.com. Accessed:
2016-02-21.

[27] NVIDIA Corporation. CUDA C Programming Guide.
https://docs.nvidia.com/cuda/cuda-c-programming-guide. Accessed:
2016-03-03.

[28] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Applied Mathematical Sciences. Springer New York, 2006. isbn:
9780387227467.

[29] H. Schechter and R. Bridson. “Ghost SPH for Animating Water”. In: ACM
Trans. Graph. 31.4 (July 2012), 61:1–61:8. issn: 0730-0301.

[30] Z. I. Woźnicki. “Matrix splitting principles”. In: International Journal of
Mathematics and Mathematical Sciences 28.5 (2001), pp. 251–284.

[31] X. I. A. Yang and R. Mittal. “Acceleration of the Jacobi Iterative Method by
Factors Exceeding 100 Using Scheduled Relaxation”. In: J. Comput. Phys.
274 (Oct. 2014), pp. 695–708. issn: 0021-9991.

43

https://www.threadingbuildingblocks.org/faq
http://www.realflow.com
https://docs.nvidia.com/cuda/cuda-c-programming-guide


A
Appendix 1

A playlist showing videos of the fluid animation can be found on the following link:
https://www.youtube.com/playlist?list=PL128kqvaz4PeAKsBqt9JBvUvHvmVcqB8f

I

https://www.youtube.com/playlist?list=PL128kqvaz4PeAKsBqt9JBvUvHvmVcqB8f

	List of Figures
	List of Abbrevations
	Introduction
	Problem Overview
	Finding neighbours
	Solve the equation system


	Related Work
	Real-time animations
	Offline simulations

	Theory
	Smoothed particle hydrodynamics
	Parallel computing
	CUDA and kernels
	Array of structures vs. structure of arrays
	Stationary linear iterative solvers
	Jacobi method
	Gauss-Seidel method
	Successive over-relaxation (SOR)

	Matrix splitting
	Numerical integration of Newton's equations
	Position Based Dynamics
	Position Based Fluids
	Collision handling with signed distance fields

	Method
	Algorithm overview
	Numerical integration
	Collision handling
	Smoothed particle hydrodynamics
	Neighbour search
	Constraint solving
	Signed distance field
	Offline rendering

	Results
	Discussion
	Result discussion
	Real world scenarios

	Future work

	Conclusion
	Bibliography
	Appendix 1

