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Abstract

Gravitational instability of galactic discs has been stddor several decades and is still of great
importance. It gives understanding of the physics of distaalyics, stellar formation rates and
most relevant today, understanding of formation and eiaiuif galactic discs. However, this is
avery complex theory to study in detail as there are plenpratesses available to consider. The
standard approach is to use the simple Toomre stabilitgrait ) > 1 where(Q is a parameter
depending on the surface density and velocity dispersidheofas disc.

In this thesis we study in detalil the gravitational stapitif galactic discs taking into account
both stars and interstellar gas. We also apply our stalaliglysis to the galaxy samples of
Leroy et al. (2008) to determine the importance of the stelfed gaseous components in the
gravitational instability of the galactic discs. In padiar we show that, in certain regimes of
surface densities and velocity dispersions, the two corapisbehave as if they are dynamically
decoupled in the instability process. Our analysis alstude the dynamical effects of disc
thickness.

Besides, we propose a new approximation of the effectiveligyaparameter for a two-
dimensional disc of stars and gas which is simple and aceurat






Acknowledgements

First of all I would like to thank my supervisor, Alessandror®o for suggesting this thesis,
for everything he has been able to teach me during this lastamed of course also for his good
support, extremely inspiring discussions and the manycadve has given. There is no way |
can show how grateful | really am for his help.

| am also grateful for the cooperation and friendship withke€o Hoffmann. It has been
appreciated and helpful to have someone available to disdess and brainstorm with when
trying a new angle on a problem or when just simply being stuck

Next | would like to thank Farhad Aslani in the Hilbert roomtbe Physics Department for
his many good advice with how to effectively use MATLAB. | ans@lextremely grateful for the
many years of friendship and strange discussions with alktbdents that also spends time in
the Hilbert room. These have been years | will always remembstalgically.

| also want to thank the staff at the Onsala Space Observéioiye relaxed and friendly
atmosphere during my stay there. Especially the other M&tests, the PhD-students and the
postdocs that have been around and willing to give advicenmeeded. And of course also the
fans of the coffee breaks.

Finally | especially want to thank my caring and supportiggemts, my older two brothers
and sister who always seems to be around and available whegtedeespecially everytime |
encounter a computer break-down.

Goteborg November, 2010
Joachim Wiegert

Nil volentibus arduum






Contents

Abstract [

Acknowledgements iii

1 Introduction 1

2 Classical disc instability 5
2.1 Localstabilitycriterion . . . . . . . ... ... e 5
2.2 The marginal stabilitycurve . . . . ... .. ... ... ... ... ..., 6

3 Gravitational instability of stellar and gaseous discs 9
3.1 Definitions. . . . . . . e e 9
3.2 Analysisof Bertin & Romeo (1988) . . . . .. .. .. ... ... ...... 10
3.3 The approximationof Wang & Silk (1994) . . . . . . . . . . ... ... ... 13
3.4 Anewapproximation . . . . . ... e e e 14
3.5 Summary ... e e 18

4  Application to observed galaxies 19
4.1 ReCentsurveyS . . . . . . i i e e e e 9 1
4.2 Twogalaxysamples. . . . . . . . .. 20
4.3 Derivingusefulquantities . . . . . . .. ... ... . . o 24
4.4 Resultsforthefirstsample . . .. .. .. ... ... o oL 25
45 Resultsforthesecondsample. . . . . . . . .. .. .. .. ... 27
4.6 Isthere athreshold for star formation? . . . . .. .. ... ... ... .. 31
4.7 SUMMAIY . . . o i e e e e e e e e 36

5 Dynamical effects of disc thickness 37
5.1 Relevant parameters for two-component thick discs . . . . . . .. ... .. 38
5.2 The marginal stabilitycurve . . . . ... ... ... ... ... .. ... 39
5.3 Thetwo-phaseregion . . . . . . . . . . . .. 40
5.4 The stability threshold . . . . . .. ... .. .. ... . ... .. . .. ... 42
5.5 Summary . ... 44

6 Conclusions a7



A Numerical methods: thin discs
A.1 Findingthetwo-phaseregion . . . . . . . . . . . . . . . e
A.2 Determining the stability threshold . . . . . . . .. .. ... ... ......

B Radial profiles of the stability quantities
B.1 Surface density and velocity dispersionratios . . . .. ...... . ... .. ..
B.2 Stability parameters . . . . . .. e e
B.3 Radialprofiles. . . . . . . . . .. . .

C Numerical methods: thick discs
C.1 Computing the marginal stabilitycurve . . . . . . . . .. ... . ... . ...
C.2 Finding the two-phaseregion . . . . . . . . . . . . . . .. ... e
C.3 Determining the stability threshold . . . . . . ... ... ... ... .....

References

Vi

49
49
50

55
55

58
95

71

71
73
74

79



Chapter 1

Introduction

Gravitational instabilities of stellar and fluid discs isadhrer old subject that has been studied ex-
tensively for almost 50 years since the foundation-layirmgks of Safronov (1960) and Toomre
(1964) who made their discoveries with two different apptes. As will be shown shortly is
this still an important field of study with much room for exsson.

However, what is the importance of understanding largeesgedvitational instabilities of
galactic discs? In the past this subject was studied madnlyriderstanding the dynamics of discs
as the formation of spiral arm structures. However, morermnomtoday is to try to understand
the connection between gravitational instability andlatdbrmation rate. Both these areas are
in turn important for understanding the formation and etioluof galactic discs.

We know from earlier work dating back to that of Schmidt (1p8at it is possible to ob-
serve an imperical relation between the gaseous massidsritgalactic discs and the stellar
formation rate. Different formulations of these have beeittgn where the most common one is
known as theschmidt lawand there exist others as one formulated by Kennicutt thastanto
account orbital time. The reader might be interested in ansairy written by Burkert (2009) on
modelling galactic discs that also mentions such stellan&tion laws.

Itis evident that gravitational stability must be used tplain the physics of stellar formation
(EImegreen 1999; McKee & Ostriker 2007; Leroy et al. 2008)véeer the phenomenom is
highly complex and not well understood yet. There are mawggsses involved here, many
not fully understood yet so those studying this must retsivitat processes they are taking into
account.

Another problem, perhaps the main problem of studies ofbibty is the complexity of
the models. Even previous theories are very complex to fatawas those from the 60s that
involves infinitesimally thin discs of one component, eithaseous or stellar. These approxima-
tions however gave very simple results that are easy to uséare been adequate for possible
observations so far.

Today are on the other hand new observational possibiétiesrging. We are today able to
get high resolution of local galaxies and will soon with doastion of observatories as ALMA
(the Atacama Large Millimeter Array)obtain higher resolutions of high-redshift galaxies. Al-

http://science.nrao.edu/alma/index.shtml



ready are studies conducted by e.g. Puech (2010); Burkdrt(2089) who are using previously
formulated thin disc approximations and available resofudf high-redshift galaxies and by
Leroy et al. (2008) who are using data from several largeeyisof local galaxies to conduct a
study of stellar formation rate and instability of a largenpée.

Figure 1.1 is an example of two plots by Leroy et al. (2008)haf stability of their sample
of spiral galaxies. These plots demonstrates the impagtah&nowing what aspects to take
into account as there is a huge difference in the stabilitppater when they only consider the
gas component and when they consider both the stellar amdgasomponents. The gas-only
case seems inconclusive while in the stars+gas case sefénalgalaxies are marginal stable at
several radii.

The problem comes with these new possibilities. The presljoused approximations will
not be sufficient anymore with the higher resolutions andenpoecise studies possible. However,
we are also posed with the problem that more exact modelsavftgtional instability that as
an example takes into account both gas and stars and useddthrensional discs with finite
thickness are very complicated to use. What is required isdy sif these models and an attempt
to formulate some analytical approximation with adequateieacy for the coming observational
possibilities.

Such studies have already been conducted by several authoexpansion of the field by
studying two-component infinitesimal thin discs have beamedby e.g. Jog & Solomon (1984);
Bertin & Romeo (1988); Wang & Silk (1994); Jog (1996); Rafikov @29 so there is alot of
foundation for a further study of the dynamics of these diséhat is required is an extensive
study of the numerical solutions of this model to formuladens simple analytical expression
that fit these.

Furthermore have also extensive analytical and numeriadies been done in the field of
discs with finite thickness by especially Vandervoort (9 Rbmeo (1990, 1992, 1994). These
studies opens up possibilities for extensions and are lpessi compare with previous approxi-
mations.

The outline of this thesis is as follows.

In Chapter 2 we revisit the works of Safronov (1960); Toomi@d) concerning one com-
ponent infinitesimal thin discs for an introduction into theories of this field. Thus we are also
able to define and explain important quantities that affleetstability and concepts as stability
threshold, marginal stability curve and what assumptidliesva this kind of approximation.

In Chapter 3 we will study the effects of taking into accountsta@onstising of two compo-
nents, namely stars and gas as previously done by alreadyomesh authors. Here we get the
opportunity to evolve a previously found approximation bay & Silk (1994) and formulate a
new almost as simple and more accurate one to meet the colmsegvational requirements.

In Chapter 4 we apply observational data of galaxies on theetnamidChapter 3. This is
possible due to the extensive data provided by the studyroilet al. (2008) and thus we in this
chapter conduct a similar gravitational stability studyreesm.

In Chapter 5 we finally study the effects of thickness as dongréyious mentioned authors.
We conduct a similar study as in Chapter 3 and study how therdift concepts that arises from
a two-component disc are affected by thickness.

This is followed by a short summary of the most important ¢asions we can draw in

2
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Figure 1.1: Two frames of Figure 9 from Leroy et al. (2008). &fpct example of how gravita-
tional instability is analysed in local galaxies. The leétrhe is with only taking gas into account
and the right frame takes both the stellar and gaseous canpoimto account for their sample
of spiral galaxies. In magenta points the gas componentrnsrdded by H, in blue points the
gas is dominated by Hand the black crosses are the median of the binned data. Eheagras
indicate conditions for instability.

Chapter 6 and in the specific appendices are details surmgitde numerical methods and
observational data used.






Chapter 2

Classical disc instability

Before we are able to consider stability of galactic discssiimg of both stellar and gaseous
material and taking into account disc thickness we shouldysthe classical cases. For this we
will consider a stability model of a galactic disc with nodkiness and constisting of only one
component, or one fluid. By doing so will the terminology ude@ughout this thesis be defined
and understood more easily.

2.1 Local stability criterion

The classical case considered in the 1960's by e.g. Safr(f60) assumes a disc with no
thickness as previously mentioned and consisting of ong, flisually gas which is collisional. It
needs to be differentially rotating with a non-zero radelbeity dispersion and have axisymmet-
ric perturbations. With these assumptions it is possiblgetave what is known as a dispersion
relation consisting of stabilising and destabilising term

In this case the dispersion relation is defined as

w? = k? — 21GXk + o2k? (2.1)

(Binney & Tremaine 2008, p. 495). Also see Fridman et al. (1984393), however they are
using an older notation. Theis the epicyclic frequency, i.e. the frequency of oscitiatof a
perturbed circular orbity is the surface density; is the wavenumber of the perturbation and
o is the velocity dispersion. The disc we are studying will mstable if the solution to this
is imaginary, i.e.w? < 0. However, to derive a stability criterion we first need to finat
wavenumber corresponds to when the minima a$ zero. As this is a quite simple quadratic
equation we can derive this to be when

TG

o2

k= (2.2)

Keepingw = 0 and using the minima we can derive the stability criterion.aiMlie end up
with is that the disc is locally stable for all wavenumbers if

5
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TG
usually written ag) > 1. This is commonly known as thEoomre stability criteriorwhere Q is
known as th@oomre parameterHowever, the more correct name is in fact Befronov-Toomre
criterion. Toomre derived a model of kinematic discs (stellar disas)aad of fluid discs. His
stability criterion is very similar to equation (2.3),

> 1, (2.3)

oK
3.36GY
(Binney & Tremaine 2008, p. 496). However, in this thesis wesoder only fluid discs.

> 1 (2.4)

2.2 The marginal stability curve

We have now been introduced to the concept of a stabilityrparar which shows us if the disc is
locally stable for all wavenumbers of the perturbation. tdwer it is also useful to study how the
stability depends on the wavenumber. For this we will deavfenction(A) which is known
as themarginal stability curve

We derived the stability criterion earlier directly fromethlispersion relation. This is not
always possible when we consider the more complex casesitiatieis thesis. The marginal
stability curve is on the other hand possible to derive baihhdically and numerically and a
stability criterion is in turn possible to derive either §nially or numerically from this curve.
The marginal stability curve is also very powerful when riyito understand how the special
conditions of the cases we study affect the behaviour ofttialgy criterion.

Previously we looked at the dispersion relation, equatibh)(at the minima and set = 0.
Now we instead study how the relation behaves along 0. The whole boundary of stability
commonly known as the line of neutral stability.

However, we first need to define a useful dimensionless wagtie

Al A
Atk
wherekr (A7) is a critical wavenumber (wavelength) womre wavenumbedefined by Toomre
(1964) as

(2.5)

2

K
br =g (2.6)
By settingw = 0 in equation (2.1) and dividing bk we obtain
2 2
K GX1 o _0 2.7)

B AR
where we insert equation (2.6) and rewrite in the form of tbenfire parametef) so that we
obtain the expression
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which is easily rearranged to our final goal,
Q=2-vA(1-A). (2.9)

This is the marginal stability curve of the classical Toorstigbility and it is plotted in figure
2.1. AQ anywhere above the curve means that the system is locdblie stéile anywhere under
the curve it is unstable.

In this classical case the peak of the curve is alway§ at 1. However this is not true
for more complex models, that is why we define a parameter kresvthestability threshold
denoted?). This determines how stable the system is (it is interestimgad Polyachenko et al.
1997 who expands this classic case and studies the stabikishold). We also have for the peak
of the curve a correspondingost unstable wavelengtenoted as\. Usually in the classical
one component case this is situated at one half of the Toorewelength\r. And again, in more
complex models the behaviour of this could be interestingudy.

It is Important here to remember that this classical Toortabilty criterion is reliable only
if the most unstable wavelength is much shorter than thestiate lengthR, and if kh < 1,
whereh is the disc scale height (Binney & Tremaine 2008, p. 496). $oriodel is just an
early approximation of a galactic disc. However, it is stiimmonly used when conducting
stability analyses and in studies of stellar formationsatét gives a general picture, though
rather inprecise and also a good understanding of the venplicated behaviour of gravitational
unstable discs.
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Figure 2.1: Marginal stability curve for tightly wound ayxmmmetric perturbations in a zero-
thickness one component fluid disc.



Chapter 3

Gravitational instability of stellar and
gaseous discs

The first more complex case we are going to study is a zerortegkgalactic disc consisting of
two components, i.e. stars and gas (the interstellar medilinis has been studied several times
before by e.g. Jog & Solomon (1984); Bertin & Romeo (1988); WarRijlk (1994); Jog (1996);
Rafikov (2001).

In this chapter | have studied the analysis carried out byiB&Romeo (1988). However,
the definitions have been adapted to a less theoretical anel madern parametrization. This
analysis has been compared to the approximation done by Weaitk (1994) which is very
commonly used today (Martin & Kennicutt 2001; Hitschfeldaét2009; Puech 2010; Burkert
et al. 2009; Krumholz & Burkert 2010). However Martin & Kenatit (2001) do not use the
approximation in their study, they only consider what cas@ns they could have drawn by
using it on their selection of galaxies. The Wang & Silk (1p@gproximation is unfortunetaly
not adequately accurate (see Jog 1996), a new approximsiizstead formulated with the help
of Alessandro Romeo that might be very useful.

3.1 Definitions

In the classical case we had a marginal stability curve asetifan of the fluid surface density,

the velocity dispersion and a dimensionless waveleAdthr axisymmetric perturbations. Obvi-

ously we need for a disc containing two fluids also two surtiersities and velocity dispersions.
Following what was done by Bertin & Romeo (1988) we define twapwaters,

5
A= E—g (3.1)
and
B="2¢ (3.2)
O



where theX’s are the surface densities for the gaseous (g) and ste)leofnponents respectively
and theo’s are the velocity dispersions. The dimensionless wagtlewas previously defined
in equations (2.5) and (2.6) and is similary defined here as

ks 1 K2
k k227G,
wherek; is the corresponding Toomre wavenumber for the stellar corapt.
We also need to define@-parameter that is adaptable for this more complicatecto.
We do this by introducing the stability threshotd, In analogy with the Toomre stability crite-

rion, equation (2.3) we rewrit® > 1to Q, > @ and introduce the effectivg@-parameter which
follows the classical criterion,

(3.3)

Qs
Qett o 1. (3.4)

The stability threshold) is a function of only our parameterd, and B defined in equations
(3.1) and (3.2) and thé, is the corresponding stellar Toomre parameter as in equéi@).
In this way we have reduced the equations so what we need t® tdaofind a physical correct
stability threshold and then derive the effectiyeparameter to define an expression for a two-
component stability criterion.

Finally we need to see the two-component dispersion reldiefore continuing. This was
derived by Jog & Solomon (1984) and can be written for a distsisting of gas and stars as

(W? — Q) (W? — Q) = 2nG gk - 2nG Lk (3.5)

where

O = k% — 220Gk + o7k? (3.6)

which we recognise from the classical one-component disperelation, equation (2.1).

3.2 Analysis of Bertin & Romeo (1988)

The study of the two component case mainly used in this chajiitdoe the previously mentioned
one done by Bertin & Romeo (1988). In the process of finding tabildtly threshold here we
first look at the neutral stability curv®@ = Q(A) (see Section 2.2 for comparison). This is in
terms of our parameters given by

2A
Q* —% [A+B*— A1+ B?) 67

+/A2(1 - B2)2 —2A(1 — B%)(A — B?) + (A + B2)?

10
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0 0.2 0.4 0.6 0.8 1 1.2
A

Figure 3.1: Four cases of the marginal stability curve wahstant3 = 0.1 and from the below,
with A = 0.010, 0.073, 0.100 and 0.137.

in analogy with equation (2.9). This marginal stability weiis considered in the ran@ge< A <
1+ A and the stability threshold is, exactly as with the clagsiaae defined by the peékvalue
(in the classical case this is always

Four different cases of the marginal stability curve is shawfigure 3.1. We immediately
notice when studying the curves how there is a second peakingat low wavelengths when
we have a higher gas density (or smaller stellar density)s peak is an instability due to the
gaseous component while the wider peak at higher wavelsngtue to the stellar component.
The lower wavelength and prominent height of the gaseouk pehcate how powerful the
instability can be if the gaseous velocity dispersion is @veugh. We also see that there occurs
a transition to a lower most unstable wavelength when the@aspeak is the global maxima.

This transition from high wavelengths (stellar-dominatexlower (gas-dominated) occurs
along the line4A = B in our parameter space. Also the occurence and disappeaoéribe
gaseous and stellar peaks at specific densities and vebciteate transitions between gas-
dominated and stellar-dominated peculiar zones in thenpetexr space, i.e. zones where the
marginal stability curve exhibit both peaks. These trams# form what is called thevo-phase
regionand is presented in figure 3.2 in log-log scale.

The point where the transition lines converge is known agrtpke point Here in the two-
component and zero-thickness case it is positioned at ajppately A, ~ 0.17 andB, ~ 0.17
where the stability threshold @, = v/2 ~ 1.41 and the most unstable wavelength\is~ 0.29
as analytically calculated by Bertin & Romeo (1988).

11
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Figure 3.2: two-phase region of thin discs. The region whieeemarginal stability curve ex-
hibits two peaks and transition between the stellar-dotath&elow the dashed line) and gas-
dominated instability (above the dashed line)
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Figure 3.3: Contour plot of the stability threshadof Bertin & Romeo (1988).

Figure 3.3 shows a selection of contour lines of the stahiliteshold®. In the contour
lines is the previously mentioned main transition betweetias-dominated and gas-dominated
instabilities along4 = B clearly visible.

3.3 The approximation of Wang & Silk (1994)

Wang & Silk (1994) attempted to derive a stability criterdinectly from the dispersion relation
defined by Jog & Solomon (1984) for two weakly interactingdijiequation (3.5). They used a
Taylor expansion around the wavenumber correspondingetpelaks for the stellar and gaseous
components respectively. What they got was a stabilityrooiefor a two fluid disc defined as

k(3 S\ 1 1\
Qeff:m<o__s+o_—gg) :<@+Q_g) > 1. (38)

This analytical expression is obviously simple and usafafortunetaly it lacks accuracy. As
stated by Jog (1996) the error is in the fact that they usettalenavenumbers for each fluid

13



respectively instead of a common two-fluid wavenumber asd Hiat they used a wrong defi-
nition of ) as a function off’. F'is a function used by Jog & Solomon (1984) (their equation
21 and 22) from their dispersion relation which gives thatr¢hare instabilities if” > 1. This
is problematic as this approximation, as mentioned eadistill quite commonly used today
(Puech 2010; Hitschfeld et al. 2009; Martin & Kennicutt 2D01

To demonstrate this error we will make a short comparisowden the corresponding sta-
bility threshold of the Wang & Silk (1994) approximation tithe numerically derived stability
threshold of figure 3.3.

To derive the corresponding Wang & Silk (1994) stabilityetsinold we use equation (3.4)
and obtain quite quickly that

E) (3.9)

Og 2

-~ Qs O
Qws—QeH—(l-F

and using our parameters from equations (3.1) and (3.2jsthis

Qws =1+ g (3.10)

In figure 3.4 are the corresponding contour lines from they\&a®ilk (1994) approximation
plotted together with the contour lines from the study by Be$t Romeo (1988) (figure 3.3). It
Is quite clear that there is a huge discrepancy at low vglalisipersion ratios. However, whéh
goes tal we notice how the model and approximation correspond quelé Whis is simply due
to whenB = 1 the gas and stellar velocity dispersions are equal and thedmponent model
and approximation both collapses into a classical one coentomodel containing the sum of
our densities. This is written as

RO

T AG(S + %)

whereo is the velocity dispersion of either the gas or the stellamgonent.

Qe (3.11)

3.4 A new approximation

We are now in a position where we have a quite inaccurate appation and a model which
might not be straightforward to use effectively and veryidifit to derive an analytical expression
of  from and thus also faf).s. Instead we need to find an analytical approximation of theyst
by Bertin & Romeo (1988) that is easy to use and write it in theenpyactical parameters of;
and@), instead of our theoretically practical parametdrandB, inspired by the parametrization
of Wang & Silk (1994).

To start we must first consider the contour lineg)dh figure 3.3. The obvious challenge is to
consider the transition. Unfortunetaly to be able to have amalytical expression for the whole
B - A space that also takes into account the transition betwedlarsand gaseous dominated
instabilities we would need an expression equally comfaitgand not very useful) as equation

14
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(3.7). Instead we will find two expressions, one approxiorafor the stellar regime and one for
the gaseous regime.

Consider the stellaf) contour lines of figure 3.3. If we consider the contours asfions
A(B) then these can be expressed as quadratic expressions arsirapéer if we express each
contour line as a functiotd(Q, B%). Then it is possible to use straight lines that fulfil two
requirements. They should collapse to the one componeat das- Q — 1 whenB = 1 and
when extending the line t8 = 0 it should collapse tod = (Q — 1)/2 so that the line crosses
approximately the right transition point along tle= B line. With this in mind it is possible to
express

Q-1 Q-1 1

_ 2 _ (N _ 2
A= 5 + 5 B* = 2(@ 1)(B*+1) (3.12)
which we rearrange to
_ 2A by o?
= 1=2-=5. = _ 11 1
@ ZS2+1+ PN a§+ag+ (3.13)

Finally we apply equation (3.4) to obtain the stellar apjpration of Q.. We end up with

1 . G, TGY.
—9 7% T2 T (3.14)

Qefr 0+ 07 KOg KO

that we can write in terms @, andQ), so that

1 1 CF
= — + — (star — dominated regime). (3.15)

Qeff B Qs Qg
This final equation, the stellar approximation of the efiexstability parameter is obviously
very similar to the original Wang & Silk (1994) approximaticequation (3.8). Except that we
now have a simple correction-factor we denGfe and define as

2050
2 2"
o5 + 0y

CF =

(3.16)

This stellar regime approximation only applies within thmit of A < 5 or when@, < Q.
The gaseous regime is somewhat more complicated to desttineever, if we follow the
previous method of formulating a functiad(Q, B2), use the approximations formulated by
Bertin & Romeo (1988) and what we can learn from equation (3n8are able through some

trial and error to formulate

_ B2
A:QB—21+B2 (3.17)
and by following the previous conduct we can write the sighihreshold
- A 2B
Q‘E+1+@ (3.18)

16



which gives the effective stability parameter

1 CF 1
= + — (gas — dominated regime), 3.19
Qeff Qs Qg (g g ) ( )

where the correction factofF is exactly the same as in equation (3.16). This by constigot a
collapses to the one component cgse- A + 1 whenB = 1 and approximately connects with
the right transition point wheml = B. This expression is instead valid whegh> B or when
Qs > Q.

It is now that we see the power of this approximation. It ispv@milar to the Wang & Silk
(1994) approximation except that in the stellar regime wdtipiy the gas term with a simple
correction factor and in the gaseous regime instead we phuttie stellar term with the same
correction factor. In figure 3.5 we see how well the approxedastability threshold contours
correlates with the contours of the original model and alsa vell the two approximations
connect along thel = B line.

10" [

Ao

Figure 3.5: Contour plot of the stability threshadfrom the study by Bertin & Romeo (1988)
(thick lines) and the approximations (thin lines) of thellateand gaseous regimes with the
transition along4 = B.
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3.5 Summary

In this chapter we have studied the gravitational institli galactic discs constisting of a stellar
and a gaseous component. For this endevour we defined thegtara4 andB as in equations
(3.1) and (3.2). We also defined a stability threshglds a function of4 and from which we
can derive an effective stability parameter, equation)(3.4

We continued to look at the study by Bertin & Romeo (1988) wheeesee both a power-
ful transition between stellar-dominated instability whé < B and gas-dominated instability
when.A > B. We also see that there is a two-phase region inhed parameter space where
the marginal stability curve (equation (3.7)) exhibits tmaximas, one stellar at larger wave-
lengths and one gasoues at lower wavelengths. The two-peges has a triple point where
the transition curves converge 4, ~ 0.17 and B, ~ 0.17, where the stability threshold is
Qo = V2 ~ 1.41 and the most unstable wavelengti\is~ 0.29. The question we ask ourselves
is how important the two-phase region and transition lireev@hen considering observational
data and this we will study in Chapter 4.

We also made a comparison with the stability parameter eéety Wang & Silk (1994) and
verify the conclusion by Jog (1996) that this simple equatinfortunetaly is invalid. Instead we
formulate a new approximation of the stability parameteicivtiakes into account the transition
between stellar and gaseous dominated regimes. This ispdesimprovement of the previously
defined approximation and is defined as

1 CF\ '
==+ — 3.20
o= (g +g) (3.20)
whenA < B (or Qs < Q,) and
CF 1\
off = + — 3.21
2= (G + ) (3.21)
whenA > B (or Qs > (),). The correction factoCF is defined as
20,0
F = —£_ 3.22
¢ 0Z + o0} ( )
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Chapter 4

Application to observed galaxies

In the previous chapter we noticed discrepancies betwezmproximation of Wang & Silk
(1994) and the study by Bertin & Romeo (1988) and how there iscapiaase region for two-
component discs where both the gaseous and the stellar c@misogives rise to instabilities.
However, the question is how these facts relates to concastes.

We will in this chapter look shortly at the different surveysne and use data supplied by
one of the more extensive and recent surveys. This will bd tsenake a similar survey using
the analysis by Bertin & Romeo (1988).

| also mention an example of large discrepancies in the datdferent surveys on the same
source. A reminder of the importance of caution when selg&ources of data.

4.1 Recent surveys

There are several observational articles written whetglgteof disc galaxies is analysed. Some
of these are done by Leroy et al. (2008) who looks at a larg@kanfinearby galaxies, Hitschfeld
et al. (2009) who studies NGC 5194 solely, Wong et al. (200%) studies the Large Magellanic
cloud (LMC), Yang et al. (2007) who also studies the LMC and twla& Kennicutt (2001) who
looks at star formation thresholds in observed disc gataxie

The most extensive survey suitable for this chapter | fourrdy research was done by Leroy
et al. (2008). They have done a survey of 23 nearby galaxigsdaita from THINGS (The Hi
Nearby Galaxy Survey), HERACLES (HERA CO-Lines ExtragalacticvBy), BIMA SONG
(Berkeley-lllinois-Maryland Association Survey of Near@alaxies), SINGSpitzerinfrared
Nearby Galaxies Survey) and GALEX (Galaxy Evolution Explr Using the intensity maps
from these surveys they are able to calculate the surfacgtmsnof the gases and stars of each
galaxy and obtain radial profiles. Using both the classicanire stability criterion and the
two-fluid stability criterion as defined by Jog & Solomon (#9&nd rewritten in new terms by
Rafikov (2001), they conduct a stability survey of these gakand derive the stellar formation
rates. For details surrounding the data and calculations dg Leroy et al. (2008), see Appendix
B. The complete radial profiles for each galaxy in the survelyesby et al. (2008) is published
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publicly in an online version of their articfe.

Leroy et al. (2008) states that they publish their data iteabnline “to provide a database
that can be used to test theories of galaxy-wide star foomati to explore the effects of varying
our assumptions”. As this is a large collection of very dethidata | have decided to use a
sample of galaxies from it in my survey. In Appendix B there tables (tables B.1 to B.11) with
the data used for each chosen galaxy combined with detagtgd derived from the given data.

In my search for relevant data | also studied the survey dgnEitschfeld et al. (2009).
They have done a surface density and gravitational stalahtlysis of only NGC 5194 (or
M 51). When comparing their data with the corresponding datdlGC 5194 in the survey by
Leroy et al. (2008) we notice large discrepancies. Thesstelirface densities of Hitschfeld et al.
(2009) is on the order of 5 to 10 times smaller than those oby.et al. (2008). As an example
is the central stellar surface density of Hitschfeld et 2000) aroun10Mpc—2 while Leroy
et al. (2008) gived910Mpc—2. The gas surface density of Hitschfeld et al. (2009) howeser
closer to that of Leroy et al. (2008), being only on the orde3 to 1 times smaller.

| attempted to contact the main author, M. Hitschfeld asithise more recent article, asking
what he thinks could be the cause of this discrepancy. Howkwas only able to get a response
from the second author, C. Kramer, who referred to sectiord4santion 5 of their article where
they explain how they derived the stellar surface denséresthe stellar velocity dispersions.
These sections however, does not explain any possiblene&siosuch large discrepancies.

I mention this here as a reminder of the importance of cawtiben selecting, studying and
comparing sources of data.

The study made by Martin & Kennicutt (2001) is also importeninention more closely.
They have studied the stellar formation efficiency of 32 gals and define a stellar formation
"threshold radius” denote®y,,. We will attempt to try and identify the threshold radius uro
sample of galaxies by studying the behaviour of our stgbyddrameter in the sample chosen
from Leroy et al. (2008) later in this chapter.

4.2 Two galaxy samples

The data acquired from the article by Leroy et al. (2008) hesvenentioned radial profiles of
stellar densities, Hdensities and KHdensities for 23 different galaxies from which | chose two
samples.

The first sample consists of six galaxies. The four spiraxjak, NGC 3521, NGC 5055 (M
63, theSunflower galay NGC 5194 (M 51, th&Vhirlpool galaxy and NGC 6946 (Arp 29, the
Fireworks galaxy and two irregular galaxies for comparison, HO Il (Arp 26&Imberg 1) and
IC 2574 Coddington’s nebula

NGC 5194 is interacting with the galaxy NGC 5195 which affgstradial profile in an
interesting way shown later in this chapter. NGC 6946 is alj@cgalaxy with one heavy arm
(Arp 1966) and several supernovae have been observed Tieréwo other spiral galaxies, NGC
3521 and NGC 5055 seems to be without any heavy interactianyother peculiar behaviour.

1Table 7 athttp://iopscience.iop.org/1538-3881/136/6/2782taxt
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A trait that will here after be described as them being “ndrgadaxies”.

The second sample contains four normal galaxies, NGC 62840MNGC 3184, NGC 3198
and NGC 7331. These will be compared together with NGC 3521INEBC 5055 from the first
sample. Thus we have a sample of ten galaxies in total to stindye two are irregulars, two
have interaction or other peculiarities and six which seentge without interaction or any other
peculiarities.

Prada et al. (1996) suggests that the bulge of NGC 7331 isngteetrograde and not co-
rotating with its disc. This however does not seem to affeetresults in any way.

The criteria used when selecting galaxies were that theyt firss of all have many data
points, the data must contain some dthta and many Hdata to not be biased towards small
However, none of the irregulars have #ata so the two irregulars with most data available were
chosen.

In tables 4.1 and 4.2 there are some general informationtéhegalaxy samples and figures
4.1 and 4.2 are photos of each galaxy. Tables with the compita used are in Appendix B
(tables B.1to B.11).

Table 4.1: General information on the first sample of gak4ie

Galaxy Morph. Dist. Radius wvga laat Ry Ros
(Mpc)  (kpc)  (km/s) (kpc) (kpc) (kpc)

HO II Irr 3.4 4.4 36 0.6 1.2 3.7
IC 2574 Irr 4.0 8.8 134 129 21 7.5
NGC 3521 SBbc  10.7 15.3 227 1.4 29 129
NGC 5055 Sbc 10.1 20.8 192 0.7 3.2 174
NGC 5194 SBc 8.0 10.7 219 0.8 2.8 9.0
NGC 6946  SBc 5.9 11.6 186 1.4 2.5 9.8

Table 4.2: General information on the second sample of gEdéx

Galaxy Morph. Dist. Radius vgga laat Ry Ros
(Mpc)  (kpc)  (km/s) (kpc) (kpc) (kpc)

NGC 628 Sc 7.3 12.2 217 0.8 23 104
NGC 3184 SBc 111 14.3 210 2.8 24 119
NGC 3198 SBc 13.8 15.1 150 2.8 3.2 130
NGC 7331  SAb 14.7 23.2 244 1.3 3.3 196

2All data are from Leroy et al. (2008), the radii mentionedhis largest radii with data.
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IC 2574

NGC 3521 NGC 5055

NGC 5194 NGC 6946

Figure 4.1: Photos of the first sample, froaddhSA/IPAC Extragalactic DatabagblED) which
is operated by the Jet Propulsion Laboratory, Californiditute of Technology, under contract
with the National Aeronautics and Space Administration &GIC 5194 is from theHubble
Heritage project
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NGC 628 NGC 3184

NGC 3198 NGC 7331

Figure 4.2: Photos of the second sample, photos are aganNED and the NGC 7331 photo is
credited to Daniel Bramich (ING) and Nik Szymanek (The Isaawidn Group of Telescopes,
La Palma).
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4.3 Deriving useful guantities

As we are using the same data as Leroy et al. (2008) we alsatoesé the same methods and
equations to adapt the data into the parameters we use tpitfapihe study by Bertin & Romeo
(1988).

The density ratio parametet is easy to derive from this data set. The stellar densities ar
given directly in the data tables (Appendix B) and the gaselmmnsities are simply the sum of
the H and H, densities also given directly in the same tables.

The second parameter, the velocity dispersion rtie a more complicated matter. Leroy
et al. (2008) never measured or used measurements of thetyelspersions directly. Instead
the stellar velocities are derived from the stellar deesiand the gaseous velocity dispersions
is assumed to have a constant valuergf = 11 km s™'. This is an unusually high value and
more commonly used is around 6 to 8 km' s Martin & Kennicutt (2001) who used, = 6
km st in their study. 11 km s! is however a typical value in theiHlominated outer parts of
the THINGS-galaxies which is why Leroy et al. (2008) uses it.

To derive the radial stellar velocity dispersion needed (&ppendix B.3 of Leroy et al.
(2008) for further detalils if interested) we look at the ieat velocity dispersion given by

05(R) = \/21GEshs (4.1)

whereY is the stellar surface density ang is the stellar disc scale height. As the disc scale
height is assumed to be radially constant only the surfansityegives a radial dependence for
the velocity dispersion.

The disc scale height is assumed to be related to the discleogth withRy = (7.3+£2.2)-h,
which is given for each galaxy in tables 4.1 and 4.2. The e&lrirelocity dispersion is assumed
to be related to the radial velocity dispersiondyy = 0.60,. Disregarding the error of the scale

height we now have
N 1 27TGRd 1/2
os(R) = 0.6\/ -5 (R). (4.2)

Now we have the required radial profiles of the densities atdcity dispersions that gives
us the radial profiles ofl(R) and B(R). However, we also need to calculate dpaparameters,
the stability threshold) and the two component stability paramefgy; from equation (3.7). For
this we do not only need the densities and velocities but this@picyclic frequency of each
galaxy. This is derived theoretically by Leroy et al. (20@8y as usual we follow their example.

Normally when calculating the epicyclic frequency of a gala flat rotation curve is as-
sumed so that

szW-Q:\/E@ (4.3)

where(2 is the angular velocity and thé(R) is the linear velocity. Leroy et al. (2008) instead
defines the epicyclic frequency as
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K = 1.41@\/1+5 (4.4)

where

dlog V(R)
= —— 4.5
g dlog R (4.5)
This is a correction term that compensates for a non-flatioot@urve. Whens = 0 we have
a flat rotation curve (occurs in the disc) and whee= 1 we have solid body rotation (occurs in
the center of the disc).

The velocity curve)/(R) is derived from an analytical expression defined as

V(R) = vgur (1 ~ exp (— li)) (4.6)

where the parametersg,; andly,; are given in tables 4.1 and 4.2. This emulate a more natural
velocity curve.

For further details concerning the calculation of our paeters and corresponding error bars,
refer to Appendix B. In Appendix B are also the radial profileégeg by Leroy et al. (2008)
presented together with the profiles | have derived for eadsen galaxy in tables B.1 to B.11.

4.4 Results for the first sample

The first sample is as previously mentioned HO II, IC 2574, N§521, NGC 5055, NGC 5194
and NGC 6946. This is a mix of two irregular galaxies, two nakrmisc galaxies and two
interacting or peculiar disc galaxies.

In figure 4.3 are the radial profiles of our parametdrand3 of the first sample shown. The
optical radius e Vaucouleur radidsR,s;, disc scale lengtlz, and stellar disc scale height
are also designated as vertical lines for each galaxy.

We immediately notice the chaotic behaviour of the two iatags (HO 1l and IC 2574). We
also see how our parameters are larger than unity for thegdwieans that we have a higher
velocity dispersion for the gas than the stars. This is ngsigially possible as the gas component
forms the stellar component. However, these are not disxga and a model for a thin disc is
not really applicable for these two. Itis still quite intstieag to compare these with the behaviour
of disc galaxies where instead both parameters in this saarplsmaller than unity.

In the two normal galaxies, NGC 3521 and NGC 5055 we see arreggealar behaviour.
A rise in the velocity dispersion ratids) with the radius. The velocity dispersion of the gas is
constant so this is due to stellar velocity, which is depanhdéthe density and both goes down
with the radius.

In NGC 5194 there is a huge wave pattern visible in the profita@density parameterA).
This is probably due to how density profiles are usually é&tivJsing an intensity map to derive
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the mean of rings around the center can be heavily affectedeogirm structure of the disc and
seems to be the case hére.

We also see in NGC 5194 how the velocity dispersion raticsngih the radius exactly as
in the other disc galaxies. However, at large radii theressdden drop. This is probably due
to the neighbouring galaxy, NGC 5195 which gives a sudderease of the mean of the stellar
density and of the stellar velocity dispersion. Perhaps @$o due to this neighbouring galaxy
that maybe induces the spiral structure of NGC 5194 that pivalsarm structure affects the
mean gas densities so greatly.

NGC 6946 also seems to behave a bit strangely. This is a pegaliaxy with the designation
Arp 29. According to the original database article by Arpg@pthis galaxy have one heavy arm.
However, the velocity dispersion profile behaves very sinti the other disc galaxies. It is just
the density ratio that exhibits some strange behavioumatthe galactic center.

In figure 4.4 are the stability threshol@) and the effective stability paramet&p ) defined
in equation (3.4) shown for each galaxy in this sample. Aga@the optical radiiR,5), disc
scale length Ry) and stellar disc scale heiglit,j designated, and also the stability criterion for
the effective stability parametél.¢ = 1 is marked with a horisontal red line.

The shaded areas are the regions of each galaxy that are th&dwo-phase region (see
figure 3.2). The lighter shades marks out where only the draos of 4 and 5 are inside the
two-phase region while the darker shades are where the nadaes\are inside the region. Only
where two or more data points apply to these criteria arentake account.

Again are the two irregular galaxies quite different thandisc galaxies of this sample and
show no correlation with the two-phase region. This is qaieious when considering the huge
values of the density and velocity dispersion ratios thedaexies have. However, again it is
interesting to see the huge difference compared with thegiitaxies.

We also see how both irregulars have rather high stabiligstiolds. This effect is visible in
the effective stability parameter that crosses the stglgititerion line several times in these two.

All four disc galaxies of this sample have areas inside thevase region. The two more
peculiar only have some small irregular areas, this seerhs tlue to the chaotic behaviour of
the density profiles. A gentler density variation would @bly put a larger portion of the disc
inside the two-phase region like our two normal galaxies.

In any way we still see that a large portion the inner parthefdiscs are inside the two-phase
region and that this area even extends beyond the disc scajthl So in conclusion does the
two-phase region play a significant role in the dynamics efdiscs according to this data.

In this data sample the stability threshold seems to havevanatard trend with higher radii
for all disc galaxies except NGC 3521 where it instead righ wadius. The effective stability
parameter seems very similar though, except in NGC 6946enharstead of being very stable
in the center of the galaxy is heavily unstable. Otherwiséconsidering the irregularities of the
data the effective stability parameter behaves quite airfolr all the disc galaxies in this sample
and some even have some local instabilities in the disc.

Figure 4.5 is a plot of thed and B trails of all six galaxies of this sample in our parameter

3The gas density sometimes varies on the order of the meaityddne to the spiral structure. This of course
affects ourA-parameter greatly.
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space. In the background are the two-phase region and raagition from figure 3.2 plotted as
a comparison in thin black lines.

As the stellar density is in every disc galaxy very high in teater and the stellar velocity
dispersion is proportional to the density the center of eist galaxy is always in the lower left
corner of the3— A space. This makes it possible to follow the radius outwaydslowing each
data point from the lower left. And most of the two irregulalaxies are outside the considered
range.

In figure 4.5 itis much easier to see how the data points aedation to the two-phase region
than in figure 4.4. We quickly notice that all four disc gatscare quite “crowded” around the
triple point. We are also able to see that if NGC 5194 had ndtitseawave behaviour in its
density profile a larger portion of the disc would probablyénaeen inside the region. Itis also
interesting to see how the outer parts of NGC 5194 behavgdifégrently to the other galaxies
which tend to go to the top right of the range and instead thesdack down to the low values
again. Similar as how the central parts of each galaxy behalkis is probably again just an
effect of the neighboring galaxy and we are seeing the edgés aentral parts of that galaxy in
the data.

Furthermore we also see much more clearly that the two-pleggen in fact plays a signifi-
cant role. Considering how we use the fairly high constantvgéscity dispersion of 11 km's
we can similar as Leroy et al. (2008) did imagine the effetts lower gas velocity dispersion
of perhaps the more usual 6 km's Such a change would move all the data points to a Idsver
which would probably put several more data points, thuselapgprtions of the discs inside the
two-phase region, further strengthening our argument.

4.5 Results for the second sample

The second sample of four normal galaxies, NGC 628, NGC 34&4; 3198 and NGC 7331
are presented together with the two previously presentedalayalaxies, NGC 3521 and NGC
5055. Thus are all our normal galaxies grouped together amgbared.

Figure 4.6 depicts the radial profiles of the density ratiand the velocity dispersion ratio
B. Again is the optical radiusHys), the disc scale lengthi;) and the stellar disc scale height
(hs) marked for each galaxy.

Three of our galaxies have been measured to Bgust larger than unity in the outer parts of
the disc, though not as large as the irregulars of the firspamgain, this is not really physical
as this would mean that the gaseous velocity dispersiomgigehithan the stellar. The error could
be either in the fact that we are using a higher than normaiteoh gaseous velocity dispersion
or that the measured stellar density which is used to dem@estellar velocity dispersion is too
low.

However, we still see large similarities in the density pesfi All with small A and B-
parameters in the center which then grows larger with theisadExcept for NGC 5055 where
the A-parameter (density ratio) grows rather small in the outetspof the disc. This means
that there is a small increase of the stellar density in teedtparts. It is unknown to me why,
however NGC 5055 is part of the M 51 group, so it is probablywitiiout any interactions.
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Figure 4.5: 4 andZB trails against the two-phase region for the first sample zbges.
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Figure 4.7 depicts the effective stability paramefgr with its corresponding stability cri-
terion alongQ = 1, the stability threshold), the areas of the discs inside the two-phase region
and again the different radii of interest.

In contrast to the first sample there are disc galaxies inséusple with no parts inside the
two-phase region, NGC 628, NGC 3184 and NGC 3198. Howevewilsee that thel3 — A
tracks of these galaxies are in the very near vicinity of #ggan in the parameter space.

Otherwise we see many similarities again. The center of galetxy is more stable while the
discs grow more unstable with some local instabilities aeaeadii for some galaxies. At the
outer parts the effective stability parameter grows shgand the stability threshold decreases
slightly, depicting more stable outer parts of the discs.

Figure 4.8 presents the — A tracks of each galaxy of this sample in our parameter space
against the two-phase region. Here we clearly see that oee thalaxies without any part in
the two-phase region, NGC 628, NGC 3184 and NGC 3198 are #ikinicinity just below the
region. NGC 3198 even have the error bar of its central data pothe stellar peculiar regime.
However, as before | only take into account when two or mota gaints are inside the region.

Again we can remind ourselves that a smaller gaseous weldisipersion would move all
the data points of figure 4.8 to smallgy thus moving the inner parts of the three galaxies in the
vicinity into the two-phase region. So we can draw the cosiolu that the two-phase region is
probably of importance even for these three galaxies.

4.6 Isthere athreshold for star formation?

The study by Martin & Kennicutt (2001) was previously mengd. They have done a very
extensive survey on 32 different galaxies where they deadal profiles of stellar formation
efficiency. What they found was a powerful break in stellanfation rates in almost all of their
galaxies at specific radii. This is known as the stellar faromethreshold radius and is denoted
asRy .

Leroy et al. (2008) attempted to find this break in their sangilgalaxies by searching for
a drastic increase of stability of the gas disc at some raudiivéere unsuccessful. Their results
seem to contradict that of Martin & Kennicutt (2001), howetres is not the case.

The reason stated by Leroy et al. (2008) as to why they wersuamtessful in locating this
threshold radius is mainly due to the gaseous velocity dispe and the estimated amount of
H,. A lower velocity dispersion would drastically destalglige discs and they also estimated
less amount of Kl

We are using a different stability criterion on these gadaxrom Leroy et al. (2008) which
made it interesting to search for this threshold radiusradaifigure 4.9 the radial profiles of our
Qg for all ten galaxies in our sample are plotted, normalisetthécoptical radiugdiy;. A stellar
formation threshold should be visible as a sudden drastiease of the stability parameter
around a specific radius.

However, even when not considering the two irregular gatsxn the plot are the data in-
conclusive. There is no clear regular increase of the dyapérameter either around the optical
radius nor beyond it. A result that is similar to that of Leetyal. (2008). However we suggest
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Figure 4.6: Radial profiles ofl and5 for the second sample of galaxies.
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Figure 4.9: Radial profiles d@p.¢ hormalised to the optical radius,; for all ten galaxies in our
sample.

two different possible explanations as to why the resulésrseto contradict that of Martin &
Kennicutt (2001).

One reason might simply be that tRe,, defined by Martin & Kennicutt (2001) is located at
a higher radius than what the data of Leroy et al. (2008) epesses. The Leroy et al. (2008)
data only extends out to 1.2 of the optical radius. In the wisek there is still a significant stellar
density at these radii. This should mean that there is ssilgaificant stellar formation rate at
these radii and that we have not yet reached the stellar fmmthreshold radius. However, the
median of Ry, from Martin & Kennicutt (2001) is roughly 08,5 in the study of Leroy et al.
(2008) so this might not be the case.

Another possibility is that newer studies with ultravioleeasurements suggest that there
is no sudden powerful increase of the stability parametdriastead a slow increase with the
radius in the outer parts of the disc (John S. Gallagheraf@iecommunication). Which would
also explain the lack of observed threshold radius by botioy et al. (2008) and this study. It
exists however, just not as powerful as previously observed
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4.7 Summary

To see the possible importance of taking into account twopmmants in a disc of no thickness
and if the peculiar two-phase region at density ratios amaolcity dispersion ratios smaller than
0.17 is of any relevance we need to apply the model on obsenehtlata.

The survey best suited for these needs is the one done by eeaby(2008) where a similar
survey of 23 different galaxies is done. However, they areguthe classical Toomre criterion
and the two component stability formulated by Rafikov (2001&roy et al. (2008) have also
been kind enough to present their derived radial densitfilpsoof each galaxy in an online
version of the article for others to use which further sirfigdi this work.

From the set of data of Leroy et al. (2008) we choose ten gaddnr two samples presented
in tables 4.1 and 4.2. These are of six normal, not heavirauting or peculiar disc galaxies
(normal), two peculiar galaxies and two irregulars to seeilarities and differences, chosen
according to the quality of the data.

We can immediately see how the irregular galaxies do not th thie thin disc model at all
and behave quite chaotic. The two peculiar disc galaxieaumfuite chaotic also, however they
also show some similarities with the other disc galaxiegesErhave regions inside the two-phase
region and some instabilities. The six normal galaxieseitldve more or less regular with many
similarities in their radial profiles. Stable centers arenfd and the discs are also quite stable
with a few local instabilities.

All eight disc galaxies have considerable parts eithedmgr in the vicinity of the two-
phase region in thB — A parameter space. This indicates that this is in fact of ingmme when
studying disc dynamics. Facts as the high gaseous velosipeigion used in this set of data
strengthens my argument as a lower velocity dispersiondavbale moved more data points of
the center of each galaxy into the two-phase region.

We also attempted to find any signs of the stellar formatioasiiold radius observed by
Martin & Kennicutt (2001). However we were, exactly as Lestyal. (2008) not successful at
this. A few possible reasons were suggested, one simplyltkeat the threshold radius should
be at a higher radius than the data of Leroy et al. (2008) epasses.

Furthermore, we have yet to study the effects of thickness twvo component disc. This is
a much more complicated case than the thin two componentacaeb&ook much effort on my
behalf. The question is how taking into account disc thissnmight affect the two component
disc behaviour of two-phase region, transition line andstidility threshold.
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Chapter 5

Dynamical effects of disc thickness

We have so far studied discs with a stellar and gaseous canpuwith no thickness. This is of
course a serious approximation. A normal disc galaxy, sa¢he@Milky Way is usually roughly
10 kpc in diameter and on the order of 1 kpc in thickness (Birfadyemaine 2008). This is a
fact we can not easily discard. To demonstrate the impoetahdisc thickness we will begin by
looking at a one-component thick fluid disc.

In a disc of finite thickness we must obviously have a volumesdg. This is defined by
using the scale heiglit The stellar disc usually has a constant scale height sditieess of a
disc is defined ag8h and the volume density is normally given by (Binney & Trema2@€8, p.
390; Romeo 1990)

p(z) = posech? (%) (5.1)

wherep, is the volume density in the center of the disc, where 0. And by integrating ovet
from —oo to oo, we obtain the surface density

Note that sometimes, as by Binney & Tremaine (2008, p. 324nstead a Gaussian law to
describe the volume density used. This gives a similarcadrtiependence however not as exact
as the sechlaw we are using.

The dispersion relation for a one component thin disc waséeéfin Chapter 2, equation
(2.1) as

w? = K2 = 21GYk + ok (5.3)

The thick one component dispersion relation can by usingaatéon factor be written as (Romeo
1990, 1992, 1994; Vandervoort 1970)

W =k: - 271G

1+khk+a2k2. (5.4)
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To demonstrate the importance of thickness we will considerwavenumber where the
dispersion relation in the thin case defined above (or egugf.1)) has a minima. This was
found in Chapter 2 to be

TG
ki = — (5.5)
The disc scale height is possible to write as (Binney & Trem&008, p. 324)
2
g,
h=—= 5.6
TG (5.6)
whereo, is the vertical velocity dispersion. This gives that
O\ 2
ki - h = (;> . (5.7)

From the study of the classical Toomre criterion in Chaptere2l@arn that the criterion is
only reliable ifk,,;,h < 1. This is visible in equation (5.4) as this limit reduces thation to
the classical dispersion relation, equation (2.1). Howeve will see later that the ratio between
the radial and vertical velocity dispersions for the stetlamponent is most commonly around
0.5 and 0.60.5% = 0.25 is smaller than unity, however not much smaller than unityisEmall
relation shows us that thickness indeed plays a significd@tim the stability of discs.

To study discs of two components and finite thickness we wilbv the method and equa-
tions described by Romeo (1992, 1994) and study the model $mided in more detail. In
analogy with the zero-thickness case we will look at stgbihireshold contours, two-phase re-
gion and the effects on these. For further details concgrtiie numerical calculations used,
refer to Appendix C.

5.1 Relevant parameters for two-component thick discs

When considering two-component discs with thickness we fiegid to discuss what kind of
parameters might be useful. The obvious is to just use tHe be#ght for each component. This
is problematic though as we can only directly measure thekiigiss of galaxies that are edge-
on. Also it is difficult to know the shape of the gaseous disthésis difficult to measure. It
is simpler to consider the velocity ellipsoid and look at #egtical velocity dispersion for each
component, following the study by Romeo (1992, 1994). Theaathges of using the velocity
ellipsoid is that the vertical stellar velocity dispersisnpossible to measure along the line of
sight and it is possible to make good assumptions aroundabeogls velocity dispersion.
Thus we define the following parameter

D=2 (5.8)

the ratio between the vertical velocity dispersion and @mial velocity dispersion where the
index “i” is as usual either “g” for gas or “s” for stars.
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The stellar velocity dispersion ratio has been measuregraktimes. In the literature | was
able to find that it is for the Milky Way around 0.5 (Binney & Trame 2008, p. 18) or between
0.5 and 0.6 (van der Kruit & de Grijs 1999). NGC 488 seems teelastellar velocity ratio of
0.7 (van der Kruit & de Grijs 1999; Gerssen et al. 1997). Garsst al. (1997) also mentions
that the solar neighbourhood has a ratio of 0.52. van dertkrdie Grijs (1999) also tabulates
measurements of the stellar velocity ratio for a number ¢dvges and found values ranging
from 0.491t0 0.71.

The stellar disc thickness parameter we are going to conisidleis chapter ar®, = 0.5, 0.7
and 1.D; = 1is for comparison, an isotropic disc (equal radial and gattrelocity dispersions).
D, = D, = 0 does of course represent the infinitesimal thin case of Chapte

The gaseous velocity dispersion ratio can not be measuogeeMer as we can assume that
the gas is collisionaD, should realistically be unity. However, for comparison we @lso going
to consider a case witR, = 0.5.

The case wittD; = 0.5 andD, = 1 should then represent the most realistic case (and the
solar neighbourhood). This case will be studied in moreiditan the others and also used to,
in a similar fashion as in Chapter 3, try to formulate a simpie aseful approximation.

In summary are the considered thick cases

e D, = 0.5 andD, = 0.5, the thinnest case.
e D, = 0.5 andD, = 1, the most realistic case, “the solar neighbourhood”.
e D, = 0.7 andD, = 1, the thickest realistic case.

e D, =1andD, = 1, the thickest case.

5.2 The marginal stability curve

As with the thin two component case of Chapter 3 we start byidensag the marginal stability
curve, as derived in the study by Romeo (1992). He derived tifferent marginal stability
curves using two different parametrizations, with the ieattvelocity dispersion parameters al-
ready defined and one parametrization using the scale kdmtgach component and the stellar
wavenumber. However, visible in his results the velocigpéirsion parametrization is more pre-
cise, though also more complicated to handle while the wawvdrer parametrization gives some
unphysical results.

The marginal stability curve as a function of the velocitgmirsion parameters is given by
a polynomial of the 8th degree. For more details concerrtiegoblynomial, the constants and
how they were all solved numerically, refer to Appendix C. Pagynomial has the form of

A-Q*+B-Q°+C-Q*"+D-Q*+E=0 (5.9)

which has to be solved numerically for each point\ah our range of) < A < 1 + 4 to obtain
the wanted marginal stability curve,
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Q(A, B, Ds, Dy, N). (5.10)

Figure 5.1 are a few examples of how the marginal stabilityesibehave in the considered
thick cases, using the sameand B examples as in figure 3.1 of the thin case. The first plot of
the figure is in fact the same as figure 3.1 as it shows the tlsesca

We notice how the curves are quite similar to the thin caseébesalso exhibits two peaks
for certain densities and velocity dispersions. This obslp again gives us a two-phase region
and transitions between stellar and gas-dominated regonesch thick case.

However, when comparing with the zero-thickness case welssefor thicker discs the
marginal stability curve exhibit lower values. Thus thebdity threshold evidently grows smaller.
Already we can see that the thickness has a stabilisingteffethe disc.

Furthermore, we see when studying the curves more closatyntit only does the stability
threshold change but also the shape of the curves. Thettomssbetween stellar and gaseous
regimes apparently also changes with the thickness. Wertlydneed to study the two-phase
region of each case in more detail.

5.3 The two-phase region

The two-phase regions of all our cases are plotted in fig@eThe general shape of the regions
seem to be conserved, however the size and transition Ineegffected by the thickness. The

first point to note is how the regions grow larger due to thekihess. This is interesting as it

further strengthens the earlier arguments of the regionfsortance. In Chapter 4 we saw how
observations indicate that large portions of the discs bges are in fact inside the two-phase
region of the zero-thickness case. Taking into accounttic&riess may increase the portions of
the discs that are inside the region.

It is also visible here that the triple point of the regions affected by the thickness, though
we now encounter problems. The triple point and the size®two-phase regions are affected
by the thickness in a quite irregular manner. The hope waswbacould construct a simple
and powerful approximation for the two-phase region dependn the thickness parameters. In
table 5.1 the effects on the triple point is presented tagetlith the zero-thickness values from
Chapter 3 so that it is easier to see the unpredictable balravid.

Instead of formulating an exact approximation | suggestesoamstant values that envelopes
all the regions. As an example we may uée< 0.25 andB < 0.2. This forms a square around
the two-phase region and the proximity at low stellar dégsitor all cases. This is obviously
larger than even the two-phase region corresponding tcstteopic disc. However, this is just
an approximation and any values are possible to use. Asanatample we may use théand
B triple point values for the Milky Way-like disc4d < 0.22 andB < 0.16 which may be a more
realistic constraint.

Furthermore it is possible, if one need to be more exactkmdavantage of the triangle-like
shape of the two-phase region and construct an approximftidhe necessary thickness of the
disc by just postulating some straight lines in the- A parameter space.
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Figure 5.1: The marginal stability curves for differentckmesses, with constafit = 0.1 and
A =0.01,0.073, 0.1 and 0.137 (lower to uppwer curves) for each plot.
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Table 5.1: Effects of thickness on the triple point.

Thickness Ay By Qo Ao
Dy=0,Dy =0 0.17 0.17 1.41 0.29
Ds=05"D, =05 021 0.18 1.26 0.23
0.22 0.16 1.27 0.21
0.24 0.18 1.76 0.25
Ds=1,D, =1 0.22 0.19 0.99 0.36

For the Milky Way the region could perhaps be approximateith \&ilower transition line
from A = 0.01 andB = 0.04 to the triple point and an upper line fro = 0.01 andB = 0.15
to the same point. Note that as we do not consider anythirfgx@&nd B lower than 0.01 here
as this example uses the lowest values available for theptvase region. This would give the
simple linesApi,, = 0.478 + 0.15 and Ay, = 1.758 — 0.06. This is of course highly affected
by the resolution we are using for the triple point and lonaues. It would be advisable to be
more precise than this example and perhaps use a higheaagaur the coordinate of the triple
point and to extend the two-phase region downite- B = 0 prior to defining the lines.

5.4 The stability threshold

In figure 5.3 we compare the stability threshold contourdiokthe discs with different thickness.
The thin black lines in the background are the same contoeslas in figure 3.3, the zero-
thickness contour lines of Chapter 3, while the colouredsliaee the different thick cases with
the stability threshold bein@ = 1. In the thin case this contour line only exists alodg= 0 as
it is the classical one-component Toomre case we find theseeler, when taking into account
the thickness this contour line is quite prominent due tostabilising effect we obtain which is
clearly visible in this plot. The thicker discs have #Qe= 1 contour line at very highd-values,
so that a much larger area of the parameter space has thiedltr€s< 1.

We can also notice both in figure 5.2 and 5.3 how the main tiiandine is affected by the
thickness. However, this is as the two-phase region, alsaudeg quite unpredictable.

We should also pay extra attention to the Milky Way-like cageenD; = 0.5 andD, = 1.
In figure 5.4 several more contour lines of the stability shw@d is plotted for further study. The
intention was to use a more detailed analyses of this casgnwfate an approximation of the
effective stability parameter in a similar fashion as fa thin case in Chapter 3. It seemed quite
probable that this would be possible as the behaviour is siemjar and it seemed to be a ques-
tion of correcting the shift of the contour lines. Howeverformulate an approximation of the
effective stability parameter when not neglecting thidsproved to be much more complex. It
is possible to formulate an approximation for the stellgime. However, connecting this with
the transition between stellar and gaseous dominated esgamd formulating a useful approx-
imation of the gaseous regime proved too complex. Detaiteeming this may be presented
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Figure 5.2: Effects of thickness on the two-phase regiome®r zero thickness, blu@&, = 0.5
andD, = 0.5, thick black: Dy = 0.5 andD, = 1 (Milky Way-like), red: Dy = 0.7 andD, = 1
and cyanD, = 1 andD, = 1.
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Figure 5.3: Contour lines of the stability threshe)d= 1 for discs with thickness. Black: zero
thickness contour lines as comparison, bl@: = 0.5 andD, = 0.5, green:Ds; = 0.5 and
D, =1,red:Ds, = 0.7 andD, = 1 and cyanD; = 1 andD, = 1.

elsewhere.

5.5 Summary

We had not yet discussed the effects of disc thickness ortdbéity in this thesis. These can be
proven to be quite important by finding outkf,;,» < 1 is really true. By calculating equation
(5.7) we however see that,;,h = (0,/0)? which is commonly measured to be roughly 0.25 to
0.3.

There are different ways to formulate good parameters #srtbe disc thickness. However,
the most useful is to describe it with the help of the velo@lypsoid. More specifically we
use parameters defined by the ratio between the radial atidalerelocity dispersions of our
specific components. Such parametrization was used by Rat88@,(1994) and we followed
his conduct in this study.
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Figure 5.4: Contour lines of the stability threshe)dfor a disc withD, = 0.5 andD, = 1, the
Milky Way-like case.
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Romeo (1992) derived how the marginal stability curve candaésed numerically from an
polynomial of the 8th order, equation (5.9). As in Chapter &wew that it is possible to derive
the stability threshold and the two-phase region from thegmal stability curves. Furthermore,
we know it is possible to study the stability threshold t@atpt to find an approximation of the
effective stability parameter. This however, proved maymplex than first expected when we
are not neglecting disc thickness and this is left for later.

However, it is possible to draw several conclusions froma #tudy. First of all we find that
the thick cases that are more realistic according to theatitee greatly affects the stability. The
thickness strongly stabilises the discs and we see thawvthwphase region, which unfortunately
behaves rather irregular depending on the thickness, dasger. This strengthens the arguments
of Chapter 4 where we conclude that the two-phase region plagignificant role in a large
portion of many disc galaxies.

Even though the two-phase region behaves irregular wheg tisickness it is still possible
to use the general shape of each case to formulate an ap@itmmnof it. Either using the triple
point of each case (see table 5.1) to form a square arounavtiiphiase region and its vicinity
or we can formulate a triangle from the lowsr- A values to the triple point to obtain a more
exact result.
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Chapter 6

Conclusions

By revisiting the study of gravitational instability in thimo-component discs as studied by Jog
& Solomon (1984); Bertin & Romeo (1988); Wang & Silk (1994); JA®96) we are able to
formulate a new approximation of a stability criterion danito that formulated by Wang & Silk
(1994). With this approximation however, we are able to take account previously found
behaviours of a two-component disc. The most importantferapproximation is the transition
between stellar and gaseous dominated instabilities.

What we obtain are two Toomre-like effective stability crivds (see Chapter 3), one for
the stellar dominated instability, equation (3.15) and fureéhe gaseous dominated instability,
equation (3.19).

These expressions are with purpose formulated in a simalsttiéon as how Wang & Silk
(1994) formulated theirs. This makes it easy to adapt thikequomplex case for application
with observations because it just involves using a comwedctor, equation (3.16) and taking
into account what kind of instability is dominating for theesific data point.

The two-component case exhibits other interesting bebavialso found by previous men-
tioned authors. There is not only a transition betweenastald gaseous dominated instabilities,
however there are also situations where we obtain ingtigsilfrom both components at two
different wavelengths of perturbation, or at two differenale lengths. The stellar and gaseous
components are in a way decoupled. This is usually known egiarr of peculiar instability (see
the two-phase region, Section 3.2).

To find how important this behaviour may be, we applied tha flaim ten different galaxies
(eight disc galaxies and two dwarf galaxies) from the stugi.droy et al. (2008) and conducted
a similar stability analyses as them. We applied the dataactyy the same way as Leroy et al.
(2008) though on this model instead and can conclude thaetiiens of peculiarity appears to
be of importance. This is due to that considerable portidriseinner parts of five of the eight
considered disc galaxies were measured to have the regléresities and velocity dispersions.
The other three disc galaxies had densities had velocipedssons in the vicinity of the required
range so other assumptions as a lower gaseous velocitysimpeould have strengthened this
result.

Furthermore when taking into account the thickness of digc#ollowing the conduct of
Vandervoort (1970); Romeo (1990, 1992, 1994) we can seehbatrtportance of the peculiar
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two-component instabilities are strengthened. This istdube fact that disc thickness widens
the ranges of densities and velocity dispersions that gigesto the peculiar instabilities by a
significant amount.

The widened ranges of densities and velocity dispersiompassible to approximate with
simple constraints depending on the disc thickness evamgththe ranges are affected in an
irregular manner. This can be done by either using constamsities and velocities for each
component or by using simple linear functions, i.e. the e#jodispersions as functions of
the densities. Which conduct is favoured depends on whatdegfraccuracy is required (see
Section 5.3 for further details).

Finally we have to note that when applying the data of Lerogle{2008) it is important
to remember the importance of the conversion factor usediriding the gaseous densities,
especially for the densities of molecular hydrogen. Thiklis to the fact that the existing,Hlata
affects the gas density much more than theddta near the centre in spiral galaxies while at the
same time are the4-data the most unreliable data as they are found purely bgroeiog tracers.
Leroy et al. (2008) discusses this problem and concludeghbee exists no reliable conversion
factor which takes into account the different aspects et the connection between the tracer
intensity and the ktdensity. This fact can however affect our conclusion of himportant the
two-component effect of having instabilities from both geseous and stellar components really
is.

For the future it could be interesting to study the disc thess effects further. However, the
question is how useful this would be as it is very difficult torhulate some useful simplification
of this quite complex case. We should also note that the nogii tn this field these days is the
study of the role of turbulence. This on the other hand corapdis matters again as the common
conduct these days when doing stability analysis of obsegataxies is to adopt one constant
velocity dispersion for the gaseous component.

These comments again remind us of how complex these stualieBecand the importance
of finding simple useful methods of applying these on obgema with adequate accuracy, i.e.
adequate enough to cover what is possible to measure. TWisasour approximation of the
infinitesimal thin two-component disc stability criteripnovides.
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Appendix A

Numerical methods: thin discs

MATLAB was used for all the numerical computations of thisgfs.

The problem described in Chapter 3 consists of (1) derivieghtlrginal stability curve for
given values of the relevant parametetsand 5; (2) extracting useful information from these
curves to find the two-phase region and transitions; and€®rohing the stability threshold.

A.1 Finding the two-phase region

As the expression describing the marginal stability cures already given by Bertin & Romeo
(1988) it was only a simple matter of plotting the curve to bkedo study it. To derive the two-
phase region is another matter however as it demands thatab#to derive when the curve
exhibits two peaks and also which peak is the global maxintaenvholeB — A space. This
can of course be done in several ways and | have mainly beeg tvg0 methods.

For the predefined parameters was a resolution of 1000 pasets i.e. fotd, B andA. The
A was defined from 0 to 1.2 when finding the two-phase region msitast as when plotting the
curve from0 to 1 + A, as the two-phase region does not existlat- 0.2 as already found by
Bertin & Romeo (1988). In this way was not a néwrange required to be defined for eadh
value, perhaps saving a bit of time.

The A and B parameters were first defined in linear scale from 0 to 1, hewethen the
thesis progressed it was noticed that it would be better fio&l¢hem in logarithmic scale from
0.01 to 1, still with a resolution of 1000 points each. In thiesy was only one range needed for
the large scale plots instead of the two ranges used by BerRo&eo (1988), one small scale
for the transitions and two-phase region and one large .scale

The method finally used to find the two-phase region of this thio-component case was
based on one of the earlier codes | wrote for this problem.sThis a bit manual and perhaps
ineffective. See figure A.1 for a flowchart of the followingsdeiption.

The routine consists of a double for-loop where the comptdeeach definedd andB point
derive the marginal stability curve. THgrange was confined t8 < 1/0.0294 (~ 0.1715) to
save time. This is the theoretical derivBdor the triple point found by Bertin & Romeo (1988).

Each marginal stability curve is sampled by the computee&mhA, first from the lowest\
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(blue parts figure A.1) in an attempt to find the gaseous pedkisiss always at a wavelength
smaller than the stellar peak (see figure A.2). The competeches for whe®(A;) — Q(Az) <
0.00001 whereA; < A,, and saves th&; in a matrix denotedlL. 0.00001 is an arbitary number
used to counter numerical errors.

To find the stellar peak was a similar method used, howevestéad let the computer sam-
ple the curve from the high (green parts of figure A.1), looking for whep(A;) — Q(Ay) <
0.00001. The number 0.00001 is again used to counter numericalsertois of greater impor-
tance here when searching for the stellar peak as this is frattér than the gaseous peak (see
figure 3.1). The\, corresponding to the stellar peak was saved in a matrix ddit

Furthermore was a third matrikrans created, where all th& corresponding to the global
maxima of the marginal stability curve was saved (yellowt pafigure A.1) with the help of the
MATLAB-function max. In this way we have three different matrices with thef each local
maxima (gaseous and stellar peaks) and for the global makinmeach.A and 5 in the chosen
range saved.

To find the lower curve of the two-phase region (see figure &)1 matrix is sampled
from high.A and lowB until the A is larger than 0.293. A value theoretically derived by Bertin
& Romeo (1988) to be the wavelength of the single flat maximdefttiple point. The higher
transition curve of the two-phase region is found in exattteysame way, however by sampling
thel2 matrix instead which has thefor the stellar peaks. And finally is the main transition line
between the gaseous and stellar regimes found by the sarhednébwever by sampling the
ltrans matrix containing thé\ for the global maxima.

The specificA values for each transition th > 0.293 for each matrix are saved in vectors
and simply plotted against thgaxis. Thus is the two-phase region plotted.

A second method to find the two-phase region was also used.ev#ovthis was mainly
for the thick two-component disc case and it involved ushg predefined MATLAB-function
denotedindpeaks. That is explained in Appendix C.

A.2 Determining the stability threshold

The contours of the stability threshofgl are easily determined by finding tlig value of the
global maxima of the marginal stability curve. Again wasttione by calculating the marginal
stability curve for every4 andB in the same range used for finding the two-phase region, how-
ever theBB was not confined to b& 1/0.0294 here. The predefined MATLAB-functiomax
was used to find the global maxima. This command returns etimaximal) value and the
corresponding\. However, | was only interested in the stability threshaid éhus only saved a
matrix with the derived) for every.4 andB.

For the plotting of the stability threshold was tb@ntour function for contour plots in MAT-
LAB used. There is not much to write about this except thatettzge other methods possible
to find the contours of the stability threshold that are natadlg exact however more effective.
These were used in the two-component thick cases and nateddu this thin disc-case.

Exactly the same conduct was used for the contour lines oMidreg & Silk (1994) stability
threshold approximation. However, for the Romeo and Wiegggptoximation (Section 3.4) was
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Define parameters - e Used parameters are
4, Band A
) J
Loop through 2 and 8
|
v
Compute MSC, Q(4,B,N)
Sample from | Sample from
A =0.0001 N=1.2
5 — '
Find the first Find the second Find global
peak and save A | peak and save A maxima and
in matrix 11 in matrix 12 save A in Itrans
| | |
L/
Loop from 2= 1 and B =0.01
) J
Sample each matrix

—

When A > 0.293
Save that 4 value in one vector for each matrix

If 38>0.1715

%

Stop and plot the three
respective vectors

Figure A.1: Flowchart describing the routine used to findtthe-phase region. More details are
found in the text of Appendix A.1.

51



Figure A.2: The two-phase region and the wanted charatitsrisf the marginal stability curve
in the transition lines.
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the contour lines plotted as several function&), B) instead with the corresponding constant
@ chosen for each contour line without using gentour function. This was due to how the
approximation was derived and that we for simplicity lookedhese kinds of functions instead

of aQ(A, B) for the stellar and gaseous regimes.
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Appendix B

Radial profiles of the stability quantities

In the online version of Leroy et al. (2008) all the derivedighdensity profiles from the galaxies
of their survey were presented in their table 7. They aldceelinto a machine-readable file of the
table that was allowed to download. The data were all vergresite so it was only a matter of
deriving the wanted quantities, parameters and correspgrairor bars when conducting this
study. The only troubles were the choices of galaxies andtheunt of data to handle. In this
appendix are details surrounding how the data was derivdcthyy et al. (2008) and how their

data in turn was handled by me. The radial profiles of the ahgséaxies are also presented in
tables B.1to B.11.

B.1 Surface density and velocity dispersion ratios

In Section 4.3 | explained how the mean density ratio andoigialispersion ratio profiles were
derived. However, the densities and velocity dispersiom®wirst derived by Leroy et al. (2008).
As mentioned in Chapter 4 were they using intensity maps @ixigs at different wavelengths
to derive the densities. The appendices by Leroy et al. (RaB8Bvery extensive on how they
derived the density profiles, however | write here a summétiar work and how | used their
derived quantities in more detail.

The stellar surface density profiles were derived by Lerogle{2008) by using infrared
pictures from SINGS (Kennicutt et al. 2003) taken in the @ band for most of their galaxies.
They gathered intensity profiles denoteg from the median ofil0” wide tilted rings with the
help of earlier derived parameters for each galaxy. Fronptbéles from the 2MASS (Jarrett
et al. 2003) they acquired the ratio betwelgg and the/K-band intensity which was found to
be I 5 = 0.551. With this they can use th&-band mass-to-light ratio 6f X = 0.5My /Lo k
which they approximate to be constant for all their galaxaesll radii to derive the wanted
densities. This gives that the stellar surface densitia$eaderived from

I
Y = TfI—K costlzg = 280 cosilsg (B.1)
3.6

wherei accounts for the inclination given by Leroy et al. (200B); is in MJy ster! andX, is
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in M., pc 2.

The choice of mass-to-light ratio is a major uncertaintyhes depends on the star formation
history, metallicity and initial mass function. It variessk in the near infrared than the optical
however it still varies. Leroy et al. (2008) discusses défees in derived densities by different
authors due to this.

To derive the gas density profiles Leroy et al. (2008) used\IB® (Walter et al. 2008) maps
for Hi densities and HERACLES maps fop HFrom THINGS they obtain 21 cm line emissions
with a mean angular resolution tf” and mean velocity resolution of 5 km'sfrom which they
could convert from integrated intensity to surface densiti

Y = 0.020 cos ily1em (B.2)

whereXy, is given in M, pc~? and the intensitys;.,, in K km s71. This conversion also takes
into account the presence of helium with a factor of 1.36.

The molecular hydrogen, Hs estimated by measurements of CO emission. This was done
with results from HERACLES, with intensity maps of CO= 2 — 1 emission for most of the
galaxies in their study. These data have an angular regolafil1” and a velocity resolution of
2.6 kmst.

Such intensity maps from HERA were not available for the gamNGC 3627 and NGC
5194 of the study which is important to mention as data on NG€45vere used in this thesis.
Instead were COJY = 1 — 0 emission maps from BIMA SONG (Helfer et al. 2003) used for
these with an angular resolution of.

The surface density,y, is derived from the/ = 1 — 0 emissions with the conversion

EHQ = 4.4 cos Zlco(l — 0) (BB)

where again the density is given M., pc~2 and the intensity is in K kms.

The COJ = 2 — 1 emissions are related to the= 1 — 0 emissions. Based on HERA-
CLES and other surveys Leroy et al. (2008) assumes the fai® — 1) = 0.8/¢o(1 — 0)
which is a typical value in their sample. Thus is theddirface density given by

ZHQ = 5.5 cos 1100(2 — 1) (B4)

The errors for the radial profiles of gaseous and stellariltessvere derived by Leroy et al.
(2008) from

A
A — rms (BS)

\/Npix,ring/Npix,beam
for each quantity. The\,, is the rms scatter within the tilted ring, thé, ,i,, iS the number
of pixels in the ring andV,x Leam IS the number of pixels per resolution element. This cagture
both random scatter in the data and variations due to theuglzahstructure in the ring. It does
not however capture systematic errors, as choices of {@htass ratios and tracers.
The total gas density is just simply the sum of theatd H, densities. And the total gas
error margins are derived from the sum of the given error marderived by Leroy et al. (2008).
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So the A-parameter was simply derived as it is defined, with the regtween the gaseous
and stellar densities. Thd-error however were derived so that the highest (and lowedties
possible would be obtained, i.e. with

Y.+ A
A —-1 g _
At S — A,
for the length of the top error bar where the differéris denotes the corresponding density error
bars. Similar is the length of the lower error given by

_ Eg_Ag_
Ay = <—ES+AS A). (B.7)

For the gaseous velocity dispersion is a constant= 11km s ' adopted by Leroy et al.
(2008). This is due to the fact that = 11 & 3km s~ agrees well with the outer (Hlominated)
parts of the galaxies of THINGS. The error is not taken intooat here as this was not done
by Leroy et al. (2008).

The derivation of the mean stellar velocity dispersionsdulsg Leroy et al. (2008) were
explained in Section 4.3 and are given by

A (B.6)

_ L 27TGRd 21/2.
0.6 73

To obtain this equation was a relation between the disc deabtgh and disc scale height
used,Ry = 7.3 + 2.2hs. However, in the derivation we stated that we disregardedhtargin of
error to obtain the mean velocity dispersion. This was dds®\@hen deriving the errors of the
velocity dispersion as this seems to have been the case siuthg by Leroy et al. (2008). Thus
the error for the3 parameter is only due to the error of the measured stellagitienas we have
a constant gaseous velocity dispersions and disregardritrs ef the relations used to find the
stellar velocity dispersions.

The top stellar velocity dispersion error was thus given by

1 [27rGRy
A, = — Y4+ A2 B.
7506 7.3 (B + 4s) (8.9)

and the lower error was given by

1 217G Ry
Apo = —1/ Y. — A)Y? B.1
s 0.6 7.3 (% <) (B.10)

(B.8)

Urs

so that the3 top error is

a,
AB+ - ﬁ - B (Bll)
and the lower error is
Apyp=——75 _B). (B.12)
Os + Aa s+



As the B error is only dependant of the error of the stellar densttiesgives much smaller
margins of error in this range than for tte This is quite visible in the data plots of Chapter
4, especially thes — A tracks of figures 4.5 and 4.8. Considering how the gaseousitselo
dispersions are set to a constant value and the stellantyettigpersions are theoretically derived
this is not so strange.

B.2 Stability parameters

For the stability threshol@ was the thin two-component case studied by Bertin & Romeo (1988
used. As described in Chapter 3 and in Appendix A must the malrgtability curve for eachl
andB used be derived and from these curves are the global maxakes humerically to find
the stability threshold.

As shown in this thesis is the marginal stability curve fohia two-component disc given by
equation (3.7),

o 2A 2 2
Q =— |A+B"—A(1+B
B2 [ ( ) (B.13)

+/A2(1 - B2)2 —2A(1 — B?)(A — B?) + (A + B2)?| .

By simply using the meam and B values derived for each galaxy are the mean stability
threshold values derived. The margins of error for the Btalthreshold are given by deriving
the marginal stability curves

Q=Q(A+Au, B+ Api, A) (B.14)

for the top error and

Q = Q(A - A.A—v B — AB—: A) (815)

for the lower error. The stability threshold errors are agaund from the global maximas of
these curves and denoted,;, andAg_ respectively.

The second important stability parameter applied on tha idahe effective stability param-
eter defined in equation (3.4) to be

Qur = % (B.16)
where
KOy
Q= o (8.17)

and x is the epicyclic frequency for each galaxy of the chosen $amphis is derived theo-
retically by Leroy et al. (2008) and most details were expdiin Section 4.3. They used an
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adaptation of how the epicyclic frequency for a flat rotatboinve is formulated with the help of
the term

dlog V(R)
dlog R

whereR is the galactocentric radius aid R) is the linear velocity. Thig we in turn derived nu-
merically in MATLAB by using the simple commardiff on both the velocity and radius terms.
The following output is a vector one element shorter thanitipet-vectors, where the output-
vector elements are the difference in value of each elenfeheanput-vectors. To counter the
problem that the? is now one element shorter than the rest of the input-vettsiraply create
one more element i that is equal the the previously last element. These twoakscorre-
spond to the absolutely last data points of each galaxythe.outer parts of each galaxy and
thus also where the rotation curve is normally flatter.

Thus is the margin of error for th@, given by the errors of the stellar densities and stellar
velocity dispersions as

8= (B.18)

K(0s + Agst)

Ags+ = TGO A Qs (B.19)
for the upper error and
B K(os — Dps—)
so-=- (G an ) (5:20)

for the lower error.
This in turn gives the margin of error of the effective stapiparameter,

Qs + AQer
A == B.21
Qeft+ = "5 Ao Qe ( )
for the upper error and
Qs - AQs— )
Apefi- = — | =——2 — Q. B.22
o=~ (B3~ 0a ®22)

for the lower error.

There are other methods for deriving margins of error, dmnaand propagation of error.
However, the method described above is the more rigorousoia@ping it. Also were the
differences between length of error bars using differerthioas found to be much smaller than
unity.

B.3 Radial profiles

In this section are the radial profiles for all the galaxieshia chosen samples presented. The
columns withR, ¥y, Xy, and> are directly from the electronic version of table 7 of thechet
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Table B.1: Radial profiles for the galaxy HO IR{; = 3.7 kpc).
From Leroy et al. (2008)

Our stability quantities

R EHI ZHQ Es A B Qe{‘f Q
(kpe) | (Mope™?)  (Mope™?)  (Mope?)
01 | 73429 <10  256+0.8]02857912¢ 06197090 3.86707¢ 1.43%01
02 | 82+33 <10  248+0.7 | 033170117 0.62970000 3.3670C1 1.49%02
0.4 | 89430 <1.0 19.7+0.3 | 0.452101%2 0.70610 00 2.87105) 1.6210%7
06 | 94422 <10  195+0.2| 0.482*)11% 07007000 2.3710% 1.661010
0.7 | 9.6+15 <1.0 21.44+ 0.9 | 0.449700%%  0.677100;5 20970358 1.637017
09 | 9.0£18 <10  19.1+0.7| 047110116 071710011 1 gg+029 1 gq+0.1>
1.1 | 83+23 <10  204+13 04075555 0.69350057 1657030 1.56%07
1.2 | 75425  <1.0  535+7.8|0.140%5070 0.428100% 118703 1.25%0M
14 | 70424  <1.0  13.0+0.2 | 0.538F(150 0.8697000 1.62702) 1.62702
16 | 6.74+2.3 < 1.0 8.4+0.1 | 0.798103% 1.0817000¢ 1.667057 1.7410-28
1.7 | 6.6+21 <1.0 7.4+0.1 | 089270300 1.151+0-00% 1637031 177702
19 | 6.9+21 <1.0 8.1+ 0.5 | 0.852105%7 1.10070035 1.40%055 1.771031
21 | 75422 <10 120415 0.625%029 090470092 1.00%04 1.691)2]
22 | 8.0+22 <1.0 53+0.1 | 150970135  1.360%07015 1271048 208703
24 | 85+21 <10 9.84+0.8 | 0.86779510 1.000t004 0.95702 1.87+0%
26 | 89+18 <10 7.64+0.6 | 11717038 1.13610055  0.92702  2.03102%
27 | 94415 < 1.0 47402 | 200010328 1.445700%%  0.997017 2311517
29 [ 101413 <10  23.8+4.3| 0424701 06424057 058020 1627018
30 [ 108+13 <10 5.8+0.3 | 1.86210358 1.300%00% 0.77f013  2.397048
32 | 106+13 <10 45+0.3 | 23567048 1.476700:2 079101 2471010
34 | 97+12 <10 3.0£0.2 | 3.233%0%7  1.808%00er  0.91%015  2.49T0,
35 | 86+1.0 <10 2.64+0.1 | 3.30870032 1.942%0-05%  0.9g*+012 239401
37 | 75408 <10 27401 | 2778704 1.9061005¢ 0.97101  2.24+011
39 | 6.6+0.7 <10 2240.1 | 3.00070:9%  2.111785:0%0  1.067511  2.167019
40 | 58+0.7 <1.0 1.94 0.1 | 3.0537025 2.272+00%2 1.16%917 2.08*011
42 | 54+06 < 1.0 3.3+0.2 | 1.63670532 1.724700%  0.927015 1.8870-1)
44 | 51+0.6 <1.0 3.7+03 | 1.378702%  1.628*0110 0.87F0 1 1797012

by Leroy et al. (2008). The columns with, B, Q. and(Q were derived in this thesis from the
data provided by Leroy et al. (2008) with their methods amdnttethods described previously in
this appendix and in Chapter 4.

The data from Leroy et al. (2008) had been approximated dowsmé decimal and were
used like so to derive the parameters used in this thesis. BTéwed .4 parameters and corre-
sponding errors were approximated to three decimals andtéimlity parameters with errors
were approximated to two decimals as this was the resolused in this thesis.
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Table B.2: Radial profiles for the galaxy IC 257&.§ = 7.5 kpc)!

From Leroy et al. (2008)

Our stability quantities

(kpc)

XHi
(Mgpe™2)

X,
(Mope=?)

5,
(Mope™2)

A

B

Qeff

Qi

0.1
0.3
0.5
0.7
0.9
1.1
1.3
15
1.6
1.8
20
2.2
24
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

10.3+ 2.5
10.7£ 2.3
10.7£ 1.6
9.6+1.3
8.2+ 14
77+16
8.0+ 1.7
8.5+1.7
9.0+ 14
93+11
92+1.2
8.8+1.2
79+1.1
7.2+ 1.1
72+1.2
7.5+ 13
79+13
8.3+1.3
85+1.1
87+11
9.0+ 1.0
9.2+ 0.9
9.3£0.9

< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0
< 1.0

23.5+0.8
19.1+£0.3
18.2+0.2
16.4+0.2
16.1£0.2
142+0.1
13.0£0.1
13.0+ 0.2
11.0£0.1
9.6+0.1
8.2+0.1
8.3£0.1
8.0+0.1
9.5+ 0.5
7.0+0.1
6.8+ 0.1
52+0.1
6.9+ 04
454+ 0.1
48+0.1
3.9+0.1
41+0.1
3.6£0.1

0.43810115
0.5601) 15+
0_588+8:(1J§g
0.585+0.087
0.509+0:0%4
0.542+0-117
0.615+ 137
0.65410:113
0.81810-13¢
0.9690-126
1.12210.162
1.06010:%59
0.988+ 0173
0.75810 164
1.02915-1%9
1_5191—8%%%
1'20318:5;4
1 8890293
18130213
230810324
2.24415-38L
2 583+0:331

. —0.313

0.4887000%
0.54270-50
0.585+0.001
0.590—7-0100?11
0,628+ 102
0.657+0-003
0.657+0-005
0.714+0:003
0.764;0:003
0.827+0.005
0.822+0:005
0.837+0:005
0.768100%1
0.8950-006
09080007
1.038;0:()%0
0.901+0.027
11165013
1.081+0011
1.199+0-016
1.169 001>
1 24810:018

. —0.017

0.82%01
aaridE
0 94;8%3
0'94;8:88
103;8(1%1)

. —0.09
1.0410-12
11070,
1o |
10318%8
1.02;8:%8

. —0.09

+0.23
Loarls
1977016
1.93%01;
181018
190020
1.95%02)
2.12701%
225701
2.35%0 15
2.2870 1%
217017
1.971017
2.15%05
2211022
2.46102
2.33702%¢
2.657030
2.6570 10
2.817011
2.817018
. —0.16

1This table continues in table B.3.
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Table B.3: Radial profiles for the galaxy IC 257R&.{ = 7.5 kpc)2

From Leroy et al. (2008)

Our stability quantities

R ZHI ZHQ Zs -A B Qeff Q
(kpe) | (Mope™®)  (Mope™?)  (Mope™?)

46 | 9.4+0.9 <1.0 3.5+ 0.0 | 268670237 1.265%0-509 1.05700% 2927014
48 | 95409 <10 49+0.1 | 1.93970228 10690011 0931009 2.76%015
49 | 9.7+09 <1.0 11.0+ 1.6 | 0.882103%°  0.714150%  0.77103)  2.2010-2
51 | 10.1+10 <10 3.8+0.1 | 2.658%0352 1.2147001% 0.9670 08 2.997018
53 | 104+1.0 <10 3.6+ 0.1 | 2.889702% 1.2480015 0.96701 3.061012
55 | 104+1.0 <10 5.1+ 0.4 | 2.0397935 1.048t0.011  0.85+018 2 gg+0-19
57 | 102410 <10 3.3+0.1 | 3.0917035  1.303%0020  0.98*005 3.0670 1
59 | 9.6+0.9 <10 2.7+0.0 | 3.55610%% 1.441700%  1.087007 3.05%01%
6.1 | 86+0.7 <10 26+0.1 | 330870352 1.468t00 1147012 291+012
6.3 | 8.0+0.7 <1.0 2.0+ 0.0 | 400010330 1.6747000 1.307002 2.8910-1)
6.5 | 7.7+0.8 <1.0 28401 | 2.7501059%  1.415%00%¢ 1157011 2737042
6.7 | 75+08  <1.0 224 0.1 | 3.409705¢%  1.5061002%  1.271017  2.78+011
6.9 | 7.3+0.8 <1.0 23+0.2 | 317470550 15617000  1.25%0357 2731018
71 | 69407 <1.0 1.84+0.0 | 3.833705% 176570000 1.40t9:00  2.73+0:12
73 | 65+06  <1.0 22401 | 295570320  1.5967005%  1.327017 2.607013
75 | 6.0+0.5 <10 3.9+ 05 | 1.5387050  1.19910-05> 1127055 2.27F0-17
7.7 | 57405 <1.0 1.9+£0.1 | 3.00010908 1.718%5017  1.45%03%  2.4910-10
79 | 56+05 <10 1.0+ 0.0 | 5.60075:200 236710000 1.90700%  2.6010%
80 | 54+05 <10 2.440.2 | 22507052 1.52810068  1.35702%  2.3610-1%
82 | 524+05 <1.0 1.4+£0.1 | 3.71410810  2.001150%8  1.68%037 2.46701)
84 | 49+0.6 <1.0 1.440.0 | 3.5007032% 2.00110000 1.70*8:10  2.40%0:12
8.6 | 45+06 <1.0 1.4+£0.0 | 3.21410955  2.001100%0  1.75%00  2.31700%
88 | 40+05 <1.0 1.0+ 0.1 | 40007199 236710125 211703 2267013

2Continued from table B.2.
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Table B.4: Radial profiles for the galaxy NGC 628,§ = 10.4 kpc).

From Leroy et al. (2008)

Our stability quantities

R 2HI EHQ Es A B Qeff Q
(kpe) | (Mope™®)  (Mope™?)  (Mope™?)
0.2 | 1.6+£0.3 227+1.2 1209.4+18.3| 0.02070002 0.065100% 4531513  1.047000
05 | 21403 202+1.3 557.8+4.8 | 0.040705% 0.09670000 5.121010  1.0810¢!
09 | 26+04 16.1+1.2 313.6£1.0 | 0.0607000 0.128150% 5.061508 1.127001
1.2 | 31404 127408 231.9+05 | 0.068t55%° 0.149700%0 4807007 1,140
16 | 3.74£03 114411 194.3+0.5 | 0.07870007 0.16215000 4157008 1167003
19 | 46403 11.1+12 1635:£0.7 | 0.09670010 0.17770500 3.757000 1.20%002
23 | 53404 11.1+17 143.9+0.8 | 0114700 0.189+0:001 323*013  1.25+004
27 | 58+05 10.6+1.9 123505 | 0.13370050 0.204700% 2.89101% 1.297000
30 | 61405 89+15 107504 | 0.1407001% 0.218*0:000 2757012 130002
34 | 65+05 7.2+12 151.0+10.5 | 0.0917)0:2 0.18410000 2241035 1.19%007
37 | 73407 62415  81.6+04 |0.1657002% 0.250*0000 245+015 1364007
41 | 79408 59+17  68.0£04 | 0.2037)03% 02747000 2271018 1.441049
44 | 81+08 54+15  61.6+£04 | 0.21970030 0.28810001 2171010 1.487010
48 | 79409 43+11  483+0.2 |0.253"005 032570000 2.16*01f 154101
51 | 82+10 31+0.8  41.8+0.2 |0.2707)0% 0.3507000; 2157047 1.5670 )
55 | 85+1.0 21+07  37.0+£0.2 | 02867003 0.372+5000 2.09F01t 1.58*0 1
58 | 86+08 12405  33.2+04 |029570012 0.393+0002 2.09t01T  1.58+0-49
6.2 | 86+07  <1.0 37.0+2.3 | 023210036 37210012 5 og+0:30 1 461007
6.5 | 8.84+0.6 <1.0 52.9+6.1 | 0.1661003 0.311700:% 1747033 1.34100¢
6.9 | 8.8+05 <1.0 19.5+0.1 | 0.451%5:0%% 0.51270%01 2.03*007  1.7870-03
73 | 86+05 <10 189+ 0.1 | 045570092 052070001 1.95+0-07 1 7g+005
76 | 82+06 <1.0 18.7+0.7 | 0.439700°0 0.523%0010  1.92103%  1.75700%
8.0 | 7.6+06 <1.0 129+ 0.1 | 0.589+0%21 063070002 2,03+011 1884008
83 | 71406  <1.0 17.6+ 1.3 | 0.403700% 053970021 1.89+0-% 1.6770:10
87 | 67405  <1.0 17.0+1.6 | 0.39410078 054910028 1 g7+0-41 9 g5+0-10
9.0 | 65+0.4 <1.0 10.8+ 0.4 | 0.602700%2 0.68810 015 2.02103%  1.847007
9.4 | 6.0+05 <1.0 8.0+0.1 | 0.7507057% 0.8001(0% 2.15%1%  1.93F048
9.7 | 52404 <10 75402 | 0.693t097  0.8267001  226%0:19 1831008
10.1 | 45+04 <10 5.0+0.1 | 0.9007( 50 1.01270-01% 2581020 1.8970-07
10.4 | 4.1+0.3 <1.0 41400 | 1.0007907  1.217+0:900 2 76+0:10 1 89+007
10.8 | 3.9+0.3 <1.0 3.6+0.0 | 1.0837058% 1.192+0-0%0 283101l 1.90T04¢
111 | 39404 <10 3.940.1 | 1.000t0132 1.145+0015 2 gg+0-20 1 g7+0.10
11.5 | 4.0+0.4 <1.0 44+0.2 | 09097075 1.078T002% 2.48703 1.841010
11.9 | 43+05 <1.0 9.5+0.9 | 04537010 0.734+:0%7  1.88tar  1.607010
122 | 46+05 <1.0 58+0.2 | 0.793*0-118 093970017 203%0:21 1.84+011
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Table B.5: Radial profiles for the galaxy NGC 3184, = 11.9 kpc).

From Leroy et al. (2008)

Our stability quantities

R EHI EHQ Es -A B Qeff Q
(kpe) | (Mope™)  (Mope™?)  (Mope™?)
0.3 | 3.7+05 442+9.6 701.8+22.8|0.068%00;7 0.08415001 1.68751% 1.15%005]
0.8 | 32403 208+3.3 2705+1.1 | 0089700 0.135F0000 2337008 1197003
1.3 | 3.3+£0.3 145+20 200.3:0.6 | 0.08970012 0.15670000 2.44%5:07  1.19%0:0
19 | 3.8+03 11.9+1.6 146.5:1.0 | 0.107150;; 0.18370001 2457009 1.23150
24 | 47405 126+20 121.1+0.5 | 014375921 0.201+(:000 2.28F011  1.32+0:%0
30 | 55+04 12.6£21 113.0:0.4 | 0.160700>% 0.20870000 2.047010  1.36700¢
35 | 57+04 11.0421 100.2+ 0.4 | 0.16775:02 0.221+0-900  1.96+0-11 1374007
40 | 59+05 96+19 94.2+05 |0.165%50%¢ 0.22870%0 1.8670 7 1.367007
46 | 65+04 7.4+1.0 836+03 |0.166700517 0.242700%  1.79100T  1.36700,
51 | 7.3+03 62406 74.6+03 | 018170012 0.256100%00 171002 1.40100°
57 | 75+05 55+09  96.2£6.1 | 01357002 0.2267000°7 1.49707  1.29100°
62 | 78406 4.3+08 61.2+0.3 |0.1987002 0.283*001 1577005 14300
6.7 | 81+0.6 27+05 46.3:£0.2 | 023370020 0.3257000) 1.617007 1.49100°
73 | 80+05 13403  346+01 | 026975520 03761000 1677007 154100
78 | 73403 <1.0 27501 | 0.265500,5 0.422%0700, 1.81700, 150500
83 | 7.0+03 <10 22.44+0.1 | 0.3137001%  0.468%500 1.811001 1.5670-03
89 | 720+03 <10 19.3+0.2 | 0.363709% 050470003 1.74+0-%6 1637003
94 | 6.74+0.3 < 1.0 14.94 0.1 | 0.45070 055 0.57470-000  1.7870-0¢  1.727007
10.0 | 6.1+0.2 <1.0 12.9+0.3 | 0.473+0927 061779007 1.80+010 1724001
105 | 5.4+0.2 <10 9.5+0.1 | 0.5687)05 0.71870001 1.9470-07  1.77F008
11.0 | 5.0+0.3 <1.0 7.9+01 | 0.633t):010 078810002 2.0010:10  1.79+0:0
11.6 | 4.64+0.3 <1.0 6.6+0.1 | 0.6975007 0.862Fy00¢  2.05%07  1.80%010
12.1 | 4.04+0.2 <1.0 51401 |0.784705% 0.98110000 2241015 1.80700°
126 | 33402 <10 47+01 | 07020020 1.0217001  2.39701° 1,690
13.2 | 2.9+0.2 <10 3.7+01 | 0.78470577 115170018 2587020  1.68700°
13.7 | 2.8+0.2 <1.0 3.0+ 0.0 | 0.933F5:007 127910000 2. 70+0:08  1.72+0:0
143 | 2.74+0.2 <1.0 3.8+01 | 07117057 1.13670015 2431015 1.62700°
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Table B.6: Radial profiles for the galaxy NGC 3198, = 13.0 kpc).

From Leroy et al. (2008)

Our stability quantities

R EHI ZHQ Es A B Qeﬁ Q
(kpe) | (Mope™®)  (Mope™®)  (Mepe™?)
03 | 40+0.6 20.4+9.1 503.1+35.7|0.0487592 0.086%5:90% 1.707927 1.1079%
1.0 | 33+£0.3 7.0+31 164.2£2.4 | 0.06379022 0.15070% 2.49+016 1 134005
1.7 | 36+03 25+09 105.0+41.0 | 0.05870012 0.187+0:001  2.73+0-10 9 10+0.08
23 | 41+02 1.7+0.6 84.6+0.7 | 0.069750 0.20970501  2.64T058 114150
30 | 49405 26407 77.2£0.4 | 0.0977501% 0.218+0-%01 230%0:09  1.20%0:04
37 | 59405 3.7+0.8  71.8+0.4 | 0.13470019 0.22615001 1.971505  1.29705%
43 | 6.2+04 3.9+09 62.7+0.4 | 0.161750% 0.24270500 1.811505 1.3570%¢
50 | 63+0.3 3.1+06 542+0.3 | 01737008 0.2611000! 1.707507  1.37700%
57 | 654+0.3 21+04  450+0.2 | 01917008 0.28675 051  1.64T006  1.4115:07
6.4 | 6.6+£04 12403  34.8+02 | 022470522 0.32570001 1627007 1.47+0%°
70 | 6.6+04 <1.0 28.3+0.2 | 0.2337001%  0.36110500  1.66708%  1.47F003
77 | 6.7+05 <1.0 21.44+0.1 | 03131092 0.41570001 160109 160700
84 | 6.8+£05 < 1.0 17.74£0.1 | 0384703, 0.4567 07001 1517006 1.71% 008
9.0 | 7.0£05 < 1.0 14.84+ 0.1 | 0.47370-057  0.49915:002  1.441507  1.841007
9.7 | 6.9+05 <10 12.2+£0.1 | 0.566 7010 0.549T0105  1.39T0p7  1.94% 510
104 | 6.4+0.4 <1.0 10.3+ 0.1 | 0.6211)0% 059870003 1.39+0-07 1 97+0-07
11.0 | 6.0+£0.3 <10 8.2+£0.0 | 0732745 0.67070h0 14170 2.05%0
11.7 | 6.3+0.4 <1.0 7.3+0.1 | 08637 0c: 0.7107000>  1.32%00¢  2.18%000
124 | 6.4+0.4 <10 59+00 | 1.085t9:9% 079070090 1.28+0-05 2 36+0-09
13.0 | 59403 <1.0 45+0.0 | 1.3117095T  0.90410600 1.34i3;8§ 2.4510-07
13.7 | 5.1+0.3 < 1.0 3.3+0.0 | 154575090 1.05675000 1.481005 2.46T0%%
14.4 | 46+0.4 <10 35+0.1 | 1.314151¢ 102500010 1474016 2 og+0-13
15.1 | 4.24+0.4 <1.0 25+0.1 | 1.680753%7 1.213%002% 1.61t07 2.36701]
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Table B.7: Radial profiles for the galaxy NGC 3522, = 12.9 kpc).

From Leroy et al. (2008)

Our stability quantities

R Yh EHQ X A B Qeﬁ Q
(kpe) | (Mope™®)  (Mope™®)  (Mepe™?)
03 | 45+0.2 257+4.7 4545.9+287.3] 0.00779:992 0.0307099! 1.657017 1.0170%
0.8 | 48+0.3 354+55 1442.2+23.0 | 0.02875007 0.05370:000 2.27709%  1.06700;
1.3 | 57+06 434+3.0 929.8+89 |0.053+0:001 0.066700% 221F0% 111001
1.8 | 7.1+0.7 446+15 589.1+54 | 0.088700% 0.0837005% 2.08T01% 1.24%0:0°
23 | 83408 415£21 462929 | 0.108*0%97 009470000 181+0-12 1.35+0-07
29 | 87+0.8 36.8+27 381320 | 011970015 0.103700% 1.637017 1.381009
34 | 87+0.6 30.6+26 3229+19 | 012270017 0.112750%0 159701 1.33%5-09
39 | 89408 246+23 250.8+1.8 | 0.134%001 01277000 1581010 1.34+0-10
44 | 99409 222+20 212.3+14 |0.15175012 0.138%5000 1.45%517  1.4170.10
49 | 106406 21.0+21  192.2+1.3 | 016470012 0.145+0:000 1324011 7 46+0-10
5.4 | 105405 17.5+24  169.7+1.1 | 0.16570% 0.1557000 1.3170Y0  1.43*0-1L
6.0 | 102404 125+25 1347+1.0 | 0.1697092 0.17470:001 1.34+008 7 40+0.10
6.5 | 102+ 0.5 8.4+2.0 106.7+0.8 | 0.174700552 0.19570001  1.38T00s  1.417500
70 | 94+03 52+14 82.4+ 0.7 | 017770532 0.22270001  1.46705%  1.4070-0¢
75 | 86+04 3.2+0.9 66.14 0.6 | 0.179%0:021  0.24810001 1537008 1 39+0.00
80 | 84+05 21+0.6 55.4+ 0.5 | 0.19070557 0.27170001 1557058 1.4170-0¢
86 | 85+05 1.7+05 47.7+0.4 | 02147902 0.202+0-001 1 501008 1 46+0.00
9.1 | 86+05 1.6+05 41.7+£0.3 | 0.24570026  0.31270000  1.4510-08  1.5310-07
96 | 85+0.6 1.2+0.4 35.8+:0.3 | 0.27110930 033710001 1 444009 1 574007
10.1 | 8.2+0.6 < 1.0 30.5£0.2 | 0.26970027 0.36570097 1.50700% 1.54100°
10.6 | 8.1+0.7 <10 27.1+£0.2 | 029970028 0.387+0:001  1.47+0:07 1 59+0-0¢
11.2 | 8.1+0.8 <1.0 254402 | 0.319*091 0.40070092 1.41%9:%%  1.637007
11.7 | 8.24+0.9 <1.0 22.94+0.2 | 0.358%5015 0.42170902  1.377000  1.69150
12.2 | 83+0.9 <1.0 20.0+ 0.2 | 041579050 045010002 1 33+0-10 1 78+0-10
12.7 | 8.24+0.9 <1.0 17.4+ 0.1 | 047170055 0.48370001 1.32705% 1.857019
13.2 | 8.0+£0.9 <1.0 15.7+0.1 | 0.510%99%0 050870092 1.31+0%9 1.89+0-1!
13.7 | 7.9+£1.0 < 1.0 14.4+0.1 | 054970072 053170002 1.29700s  1.941013
143 | 7.7+0.9 < 1.0 13.3+0.1 | 05797097 055270502 12770 L0 1.967012
14.8 | 7.1+£0.8 <1.0 12.040.1 | 0.592+0072 058279002 1 30+0-10 1 95+0-12
153 | 6.5+0.6 <1.0 10.94+0.1 | 0.5967091  0.61070:003  1.34+0-99 1 92+0-09

66




Table B.8: Radial profiles for the galaxy NGC 509%,{ = 17.4 kpc).
From Leroy et al. (2008)

Our stability quantities

R Shi Y H, Y A B Qeft Q
(kpe) | (Mope™®)  (Mope™?) (Mope?)
02 | 56407 142.7+19.4 4742.4+251.1| 0.031%9:9% 0,0281099! 2.32+0-50 1 18+0-19
0.7 | 58405 98.8+16.1 1627.7+11.4 | 0.0645:011  0.04810000 2.16+04l 1.45%0:22
1.2 | 59+04 62.2+85 987.4+ 4.6 | 0.069150%9 0.06170000 2.2770%  1.261513
1.7 | 59402  43.7+3.9 758.0£ 2.2 | 0.06579:0% 0.07070990  2.14+0-03 1 14+0.03
22 | 62403 36.6+23 569.7+ 1.7 | 0.075+3:%9°  0.080100% 1.9079:03  1.16+00!
27 | 66+04 32.1+25 417.9£1.1 | 0.09379007  0,004+0-000 1 75005 1 20+0.00
32 | 6.4+£04 253+2.7 325.4£ 0.9 | 0.09775:01%  0.10670550 1.65%4:01  1.22+0:03
37 | 62405 20.3+23 264.3+0.8 | 0.10010911 011810000 1 57+0.04 1 2p+0.03
42 | 65+05 19.1+2.1 230.7+ 0.7 | 0.111+9912  0.126700%0  1.45%0:01 1 25+0.03
47 | 724+0.6  186+2.1 194.9+ 0.5 | 013270911 0.1377000  1.35705%  1.30700%
5.1 | 82+0.7 18.8+2.1 169.5+ 0.4 | 0.159%9:017 014710000 1 pp+0-09 4 g4p+0.11
56 | 8.7+05 17.3+1.8 150.6+ 0.4 | 0.173*0016  0.156% 0000 1147002 1.46%000
6.1 | 87+05 13.4+1.1 133.4+ 0.4 | 0.166%9912  0.166700%0 1.17+0-01  1.40+0-0¢
6.6 | 85+0.6 10.9+1.0 109.1+ 0.3 | 0.1787) 012 0.18470000 1177052  1.43*10-08
71 | 85+05 10.3+1.0 94.0+40.2 | 0.200t9916  0,19810000 7 12+0:05 1 49+0.07
76 | 86+05  10.0+1.2 84.5+ 0.3 | 0.220%9921  0.209709%  1.0679:0¢ 1,550
8.1 | 85+0.5 8.7+ 1.3 75.3+0.3 | 0.22870023  0.22170600  1.04T057  1.5710-09
86 | 79404  6.2+1.0 62.6+ 0.1 | 0.225%0:92% 024270000 1 10+0-05 1 53+0.07
91 | 75+04 4.3+ 0.8 52.0+0.1 | 022770553 0.2667000% 1.167002 1.51150%
95 | 7.4+05  3.1+0.6 445+0.1 | 02367902 0.287+0-900 1197000 1 524007
10.0 | 7.2+0.7 2.1+ 0.5 40.8+0.1 | 0.22870030  0.300100%  1.21700T  1.4915-08
105 | 73408  15+04 36.8-0.1 | 0.239+0%3 03161009 1.20*907 157+008
11.0 | 75+09  1.1+04 33.4+0.1 | 0.257+0910  0.332+0000  1.17+0:08  1.54+0.10
11.5 | 7.3+0.7 <1.0 60.4+54 | 0.121705% 0.24770512  1.037017 1.2570-0¢
12.0 | 6.7+£0.5 <10 59.2+5.7 | 0.11379:02L  0.249+0013 1 014020 1 p3+0.05
125 | 6.4+0.5 <10 248+01 | 0.25879021 038510001 123+0:05 1514005
13.0 | 6.2+0.5 <10 21.2401 | 0.29279:02  0417+0001 1 234005 1 56+0-05
135 | 5.7+05 <10 18.7+0.1 | 0.30570020  0.443+0:001 1 26+0-06 1 56+0.00
140 | 51404 <1.0 17.3+0.1 | 0.2951092  0.46170001 1294005 7 53+0.05
144 | 45+0.4 <1.0 18.0+ 0.5 | 0.2507) 050 0.4527000¢  1.3070 74 1.4570-0%
149 | 42405 <1.0 13.8+0.0 | 0.3047003¢ 051670000 1.37705¢ 1.5170-06
15.4 | 3.9+0.6 <10 1324 0.1 | 0.29570%% 052870002 1.38+0-10 1 49+0-08
15.9 | 3.7+05 <1.0 11.8+0.0 | 0.314%5972 0.5587050° 1.407007  1.50*0-07
16.4 | 3.2+0.4 <10 10.7+0.0 | 0.299%9-957 058670090 1.46+0-00 1 46+0-00
16.9 | 2.8+0.4 <10 9.8+00 | 0286700y 06137000 1.527000 1437000
174 | 26+04 <1.0 9.240.0 | 0.283t0013  0.63210000 1544007 1 4p+007
17.9 | 25+0.3 <1.0 8.4+ 0.0 0.29815:03¢  0.66210 000 1.561005  1.427000
18.4 | 2.4+0.3 <1.0 8.4+ 0.1 0.28670040  0.66270-001  1.5370-0%  1.417008
18.9 | 21+0.2 <10 77401 | 0.273*0950  0,6911000° 1.59%0-05 1 3g+004
19.3 | 1.7+0.2 <1.0 74+0.2 o.230£§;§§‘§ 0.705$§;§§§ 1.67%&2 1.31£§;§§
19.8 | 1.4+0.2 <1.0 7.1+02 | 0.19790% 072010010 1.73+0-11 1 og+0.04
20.3 | 1.34+0.2 <1.0 132+ 1.0 | 0.09810%921 052870021 135+021 1 16+001
20.8 | 1.2+0.2 <10 124+ 1.4 | 009710030 0545+003 1 36+0-31 1 15+0.04
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Table B.9: Radial profiles for the galaxy NGC 5194, = 9.0 kpc).
From Leroy et al. (2008)

Our stability quantities

R 2HI ZHQ Zs -A B Qeff Q
(kpe) | (Mope™?)  (Mope™?) (Mepe™?)
0.2 | 45+04 197.4£35.0 4912.2f111.6| 0.0417000% 0.02970000  1.777025  1.46703%
0.6 | 55404 207.7+335 23525+15.3 | 0.0919012  0.04210000 1.26%02> 2.23%030
1.0 | 6.1+£0.4 181.6+30.5 1251.146.5 | 0.150700%5 0.05815000 1.10704% 271108
14 | 6.1+0.6 1345+412 703.1+3.8 | 020079560 0.077+0050 1.15%049¢ 2744078
1.7 | 6.7+0.6 106.8+33.8 471.8-1.3 | 024170078 0.00410000  1.19*097  2.74+0-78
21 | 79406 94.8+192  417.5£1.6 | 02467001 0.10070000 1.087077 2.667073
25 | 85409 726+157  394.9-1.9 | 0.205%05% 01037000 1.13102% 22104
29 | 75+09 409+122 3341+ 15 | 0.145%0010 0.11270000 1537035 1541030
33 | 62+£07 191456  286.9:13 | 0.08810022 (12110000 1 gg+0.10 1 19+000
37 | 6.1+05 14.6+33 2532420 | 0.082%p0e 0.1297000; 1797008 1.18¥00)
41 | 72+07 226+75 2367417 | 01267003 013379000 152013 1 09+0-22
45 | 91+09 336+£103  2242£12 | 0.19070021 01370000 1.087030 1.69F0:50
48 | 11.2+09 359+9.6 227.8+ 1.4 | 020715012 0.13670000 0.947072 1.821533
52 | 12.840.8 28.0+7.0 206.0+ 1.1 | 0.19879:039  0.143+0.000 g g7+0-18 1 70+0.20
56 | 12.7+0.8 14.9+4.7 176.5£ 0.9 | 0.1567005> 0.154100%0 1.20%019  1.3870-10
6.0 | 11.1+0.8  4.3+2.8 148.9+ 0.8 | 0.103*9:92> 016810000 1.37+0-08 1 2p+0.00
6.4 | 9.4+0.9 1.0+ 1.1 106.3+ 0.4 | 0.098%0010  0.199%0000  1.64T00¢  1.21+0:08
6.8 | 8.440.9 <1.0 775+0.3 | 0.108+0912  0.233+0000 1 g7+0.05 1 23+0.03
7.2 | 7.840.9 <1.0 64.3+0.6 | 0.121+9015  0.25670001  1,70*0:07  1.25+0.04
76 | 7.8+1.0 <1.0 50.2+0.3 | 0.15570021 0.28970001 1.72700%  1.321002
80 | 7.84+1.1 <1.0 45.0+0.3 | 01737992 0.306+9-991 1687009 136700
83 | 7.8+1.2 <1.0 46.4+0.3 | 016870027 0.3017000) 1.61700) 1.35%00¢
87 | 78412 <1.0 53.2+0.6 | 014779024 0.281+9-902 1 48+009 1.30+0.00
9.1 | 7.3+1.1 <1.0 69.2+ 1.8 | 0.105%5012 0.2467000% 1.337000  1.221501
9.5 | 6.4+ 1.0 <1.0 7124+ 1.3 | 0.090t0916 0.243+0002 9 og+0.07 1 1g+0.04
9.9 | 58+1.0 <1.0 86.5+ 1.7 | 0.06710013 0.2207000> 1177000 114150
10.3 | 5.14+0.9 < 1.0 210.3+11.3 | 0.0247090¢ 0.14170007  0.781007  1.05700
10.7 | 45+0.9 <1.0 102.7+3.1 | 0.04479:010  0.202+0095 1 04+9-07 1 09+0-02
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Table B.10: Radial profiles for the galaxy NGC 6946,{ = 9.8 kpc).
From Leroy et al. (2008)

Our stability quantities

R 2:HI EHQ Zs -A B Qeﬁ Q
(kpe) | (Mope™®)  (Mope™) (Mepe?)
0.1 | 6.1+1.1 548.6+68.4 5937.7t348.7| 0.09370018 0.02875:501  0.36701% 3.3710%8
04 | 6.4+11 390.7+81.2 11259 7.7 | 0.3537007C 0.065%000 0.44112 558+11
07 | 6.44+1.0 2142+549 708.0+45 | 03120050 0.08210000 0.69102% 3.9910-98
1.0 | 59407 1104+31.1  496.6:2.6 | 0.234700% 0.097100%0 1.11103% 2.6110-08
1.3 | 55+0.6 642+17.4  405.6+1.8 | 0.1727007> 0.1087000 1567030 1.82+04
16 | 55+05 46.4+10.6  390.4-4.7 | 0.133700% 0.11075057 1.797035 1.45%030
19 | 58404 39.9+7.0  356.3+1.9 | 012879522 0.115%00% 1797021 137018
21 | 6.4+04 37.9+54  313.6£09 |0.14170015 012370000 1711020 1.43+0-12
24 | 6.9+04  36.9+49 287.1+ 1.0 | 0.153%5019 0.12870%00 156707 1.4810 11
27 | 74404 352+43 258.4+ 1.0 | 016579019 0.135+0000 1 46+0-15 1 524013
30 | 7.8+04  324+35 236.2+ 1.5 | 017010017 0.14170900  1.397017  1.521017
33 | 82405 29.7+33 212.1£0.9 | 017979019 0.149+0.000 1 34+0-12 1 53+0.12
36 | 87+0.6 28.1+3.9 200.8+ 1.5 | 0.1837)05: 0.15370-000 1.267015 1.54751%
39 | 93+08 275+49  276.6+£12.8 | 0.1337002% 0.1309:00 117017 1324018
41 | 95+1.0 259+57 187.3+1.8 | 0.1897093% 0.15970001 1.15+0-18 9 55+0.22
44 | 95+11 228+5.6 159.7+ 1.3 | 0.20270-0%3  0.172%0000 1157018 1.5710-2
47 | 9.6+1.1 19.2+51 146.3+ 1.0 | 0.197+9:04 017910001 1 16+0-15 1 5p+0-22
50 | 9.6+1.1 15.6+4.4 127.2+0.7 | 01987007 0.19270000  1.197012  1.497029
53 | 95411 122437 110.4+ 0.6 | 0.197+9:91% 020770001 1 20+0-15 1 47+0.17
56 | 9.3+£09  94+27 97.4+ 0.4 | 019270155 0.220%01000  1.25%07; 14570+
59 | 93+08  7.5£19 184.5+10.5 | 0.09110%21  0.160790% 1.04%014 1.19+00>
6.1 | 93+08  6.3+15 105.3+2.0 | 0.148%092 021170002 1.20+9-09 1.33+0.07
6.4 | 9.1+08  51+1.4 99.9+ 4.4 | 0.142100%0 021770002 1197015 1.31700°
6.7 | 88+08  41+1.4 85.8+ 3.8 | 0.15079:03 023410905 1 214016 9 33+0.09
70 | 84+08  32+14 711+ 1.1 | 0.16370033  0.2571000  1.25%010  1.3570-09
73 | 81+£09  23+15 59.1+ 0.5 | 017679012 0.282+0001 1 pg+0-12 4 37+0.11
76 | 80410 1.6+1.3 49.0+£ 0.4 | 019670012 0.310700%1 1.32*709%  1.41%0 17
7.9 | 8.0+1.1 <1.0 40.7+0.3 | 019719929 0.34010001 1.41+0:05 1 39+0.06
82 | 7.9+1.0 <1.0 43.0+1.0 | 018479928 (.331+0004 9 34+0.11 1 37+0.00
84 | 74409 <1.0 352409 | 021070032 0.3667505 1.407017 1.41%0%¢
87 | 6.94+0.8 <1.0 32.4+0.9 |02137901 038140000 1.41+013 7 47+0.00
9.0 | 6.3+0.7 <1.0 304+1.1 | 020770052 0.39470057  1.43*t01%  1.39100¢
9.3 | 58+06 <1.0 226405 | 025779033 045610000 153+0-12 1 46+0.00
9.6 | 5.3+0.6 <1.0 26.8+0.8 | 0.198100%0 0.4197000% 1.467075 1.361502
9.9 | 48405 <1.0 36.6+1.9 | 013119922 (35910010 7 3o+0.15 1 55+0.04
10.2 | 45405 <1.0 86.9+ 6.3 | 0.05279-010 0.233+0.009  0.94+0-13 1 10+0.02
10.4 | 41405 < 1.0 20.4+0.5 | 02017055 0.480705% 1567017 1.357003
10.7 | 39405 <1.0 17.3+ 0.4 | 0.225%9:93% 052210006 1 g1 +0-13 1 37+0-00
11.0 | 3.7+04 <1.0 17.2+05 | 0.21570050 052310007 1591015 1.3510-03
11.3 | 3.6+0.4 <1.0 17.840.7 | 020210032 51410010 9 55+0.15 9 344005
11.6 | 3.6+04 <1.0 12.940.3 | 0.27970033  0.60410057 1.661015 1.421008
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Table B.11: Radial profiles for the galaxy NGC 7331,{ = 19.6 kpc).

From Leroy et al. (2008)

Our stability quantities

R ZH| EHZ Es A B Qeﬁ Q
(kpe) | (Mope™®)  (Mope™®)  (Mope™?)
04 | 36+13 15.6+39 3990.1+206.5| 0.00579:992 0.0307399! 2.04+017 1.0173%9
1.1 | 3.1407 17.7+53 1558.3+38.7 | 0.0137) 057 0.04870501 2.377011  1.03750
1.8 | 33+0.6 24.7+54 860.5:10.8 | 0.0337507 006410900 233008 1 07+002
25 | 45408 33.3+39 6552+52 | 0.0587000% 0.074700% 1.9970-03  1.12+0-02
32 | 56+0.8 33.8+42 538.0+39 |0.07370015 0.081F000 1.72%800 1.167003
39 | 59405 287+4.4  3958+3.7 |0.087105 009570000 1.627007  1.19+047
46 | 65+04 253+38  307.5+3.1 | 010379012 0.108T000] 1.517097 1231010
53 | 65+0.3 18.6+36 231923 | 0.1087001% 0.12470501 1507008 1.24F00¢
6.1 | 6.6+05 11.4+27  161.9+15 | 01117055 0.1487000 1557060 1.2570-0¢
6.8 | 7.3£0.6 6.8+13  121.2£1.0 | 0.1167J07 0.172+9-901 159007 1 25+0.04
75 | 81+£0.7 58+1.0 98.5+0.8 | 0.14170051% 0.1907000 1527057  1.32*0-02
82 | 85405 4.8+0.9 83.8-0.8 | 0.159*0V18  0.20610001 1.46%0:05 136100
89 | 82+06 35+05 66.6+ 0.5 | 0.176%001% 0.231+0001  1.47+0:07  1.39+0.0°
96 | 83+0.7 24+05 54.8+ 0.4 | 0.195%0:923 0.255+0001 7 46+0-08 1 43+0.00
10.3 | 8.8+0.7 1.6+05 47.4+ 0.4 | 021979020 027410901 1 414009 1 49+0.07
11.0 | 86+0.6 1.1+04 40.4+ 0.3 | 0.24070055  0.29710-000  1.39700%  1.5315-07
11.8 | 8.1+£06 <1.0 34.3+0.3 | 023610920 (0.322+0001 7 43+0.06 1 5o+0.05
125 | 74406 < 1.0 29.3+0.4 | 025370057 0.3497000°  1.447068  1.5210-06
13.2 | 6.9+05 <1.0 249+0.2 | 02777052 0.37870502 1.45705¢ 1557003
13.9 | 7.2+£05 <1.0 226+0.2 | 0.319%0920 0.397+0002 1.38*0:07 1,63+0%
146 | 7.1+0.4 < 1.0 22.0+0.2 | 032310921 0.403+0992 133+0:0¢ 1 3+0.04
153 | 7.1+0.4 <1.0 20.1+0.2 | 0.35379:021  0401+0.002 1 pg+0.00 1 gg+0-05
16.0 | 7.24+05 <1.0 18.5+ 0.2 | 0.38970037 0.43910002  1.24+0:0T  1.74+0-0¢
16.7 | 7.3+£0.6 <1.0 16.74+0.1 | 0.43710039  0.462+0001 1.20+0-06 1 .81+008
175 | 6.9+0.6 < 1.0 15.3+ 0.1 | 045170072 0.4837000> 1.2070057 1.8110-08
18.2 | 6.5+0.6 < 1.0 15.4+ 0.4 | 0.422700°0  0.4817050¢  1.187011  1.7670-09
189 | 6.4+0.7 <1.0 19.4+ 1.4 | 0.330709% 0.42970018  1.10%92L 1637012
19.6 | 6.1+0.7 <1.0 13.14+ 0.4 | 0.4667007  0.52210:0% 11671513 1.80701%
20.3 | 55+0.7 <1.0 9.4+01 | 058579082 061670093 1.26+0-11 1g9+012
21.0 | 45+0.6 < 1.0 9.04£0.3 | 0.500%9%%¢ 06301001l 135%017 1 75+0.12
21.7 | 3.6+0.5 <1.0 7.2+01 | 050079977 070410995 1514015 1 69+0-10
224 | 31404 <1.0 6.4+ 0.1 0.4841501  0.7471000¢ 1601515 1.637000
232 | 27+0.3 <1.0 6.24+0.1 | 0.435t0050 75810000 1 g5+0-12 1 5007
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Appendix C

Numerical methods: thick discs

As mentioned in Appendix A, MATLAB was used for the numericamputations done in this
thesis.

The problem described in Chapter 5 consists of: (1) compdh@gnarginal stability curves
for discs of different thickness for given values of our paeters.A and B; (2) finding the
two-phase region and studying how the thickness affecss #md (3) determining the stability
threshold and again study how the thickness affects this.

C.1 Computing the marginal stability curve

Romeo (1992) had derived a polyonomial in the fourth orderdovd the marginal stability
curve for a two-component thick disc numerically. Howevete that it was more convient at
that time to computé€)? instead of() for reasons as there would not appear any imaginary roots
to the polynomial. Today it is more convenient to deriyalirectly instead as it is more helpful
in simulations and observations. For simplicity was theypomial again handled in the fourth
order and the square root of the solutions were then pretente

The marginal stability curve is thus given by

A-Q*+B-Q°+C-Q*"+D-Q*+E=0 (C.1)

where the coefficients are

A =B U, (C.2)

B =2\ [2A(1 + B)UUy + B> (Us + Uy)] (C.3)

C = 4N {ANUU, + 2M(1 + B*) (Us + Uy) + B> — 2(AUs + BUy)] } (C.4)
D = 16A° {20°(Us + Uy) + A[(1 + B?) — 2(AU + Uy)] — (A+ B?)} (C.5)
E=064A[A— (A+1)]. (C.6)

The parameters denotétlare in turn given by
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Ds2 heffs

T 1+ A2hg, (C.7)
and
B2D? hg
= & 8 c.8
1+ A2hg, (C-8)

whereh.g is the effective scale height aigl; is the exponential scale height of each fluid disc.
These are studied quite extensively in Chapter 8 of Romeo j18&fvever, here we are content
with knowing that they are given by computing for the stelamponent

eﬂs du
T = «/1+782 / — (C.9)

(1 —w) +yB2(1 — ub")]

and for the gaseous component

effg . dv
Dy \/ / TR (C.10)

(1 —vB2) +vB2(1 —
where theu andv are integration factors. Tt'léz is a vertical velocity dispersion ratio parameter
defined as

o D
B,=-—">2=B= C.11
UZS DS ( )
because we can remember from Chapter 5 that
D =74 (C.12)

Oi
the ratio between the vertical and radial velocity dispersifor each component.
TheJ, is possible to relate numerically with our density paramgtéRomeo 1992) by using
the~ seen in equations (C.9) and (C.10) which is defined to be
N = Poe (C.13)
Pos
wherepy; is the volume density for each component.
It is then possible to find when < 1 andB, > 2.5 - 1073 that

A =B (C.14)

which is denoted as thig approximationby Romeo (1992). This approximation was used to
derive~y for the integrals (C.9) and (C.10).

Finally, to derive the marginal stability curve is the pabynial (5.9) solved for every in our
range, again + .A. The integrals were solved only once for each marginal aburve as they
do not depend on. This was done by using the predefined MATLAB-functaumad which uses
recursive adaptive Simpson quadrature to approximatentegrial of a given function within an
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error of 107, This is usually the most efficient integral solving functio MATLAB and as alll
the predefined functions gave the same solution within sonadl €rror this was chosen for the
thesis.

The polynomial was solved by using the predefined functammo. This functions uses a
user-defined “guess” to try and find a zero of the polynomigkinicinity by searching for when
the polynomial changes sign. Our polynomial has four sohgitoQ? for each value of our
parameters and only one of them is physically correct. Timgtion only gives out one answer
so the choice of guess-value is quite important. Our obvatwsce here was the corresponding
zero-thicknesg)? solution och Chapter 3, this is closest to the physical cotheck disc-value
of Q2.

Worth mentioning is that MATLAB had at the time this thesissmaritten two predefined
functions for solving polynomialspots andfzero. Roots seems simpler and uses a polynomial
solving routine where it defines a matrix containing the ioeihts of the polynomial where the
eigenvalues of the matrix is, due to how the matrix is defitleel yoots of the polynomial. Thus
giving all four solutions to eac)?. This however, gave complicated solutions as the routine
does not understand what is physical and not physical wieistilted in the curves being a mix
of solutions. Thus wasoots never used for this thesis.

As thefzero gave? of the polyonomial for each in the wanted3 — A range and we want
Q(A) was just the square root applied to each solution. These theresaved in a vector that
could easily be plotted againstand the marginal stability curve was obtained.

C.2 Finding the two-phase region

In the two-component thin case it was a simple matter of degithe marginal stability curve
and having a routine that could study how the curve behaveddoh.A and5 and finding the
two-phase region that way. However, in the thick disc casketive that many marginal stability
curves in the whol& — A space with the same resolution would take days of computabo
normal computers. In the thin case | used 1000 points ofuésalfor A, B and inA. That would
require that the computer solves the polynomial one biltiores to find three transition lines.
To effectivise this several solutions were attempted. Shatkgood resolution and acceptable
amount of computation time, usually in the range of 30 to 6autas for the whole region.
However, the solution | ended up with only requires five masuor each transition line.

The obvious way of shortening the calculation time is to lothe resolution. This however
will make it very difficult for the routine to find the gaseousgk of the marginal stability curve
at the lowest definedl’s and3’s. In the thick cases considered this peak can be extremeyl s
and not finding it will result in the two-phase region to betgu to higherA in those parts of the
parameter space. The simple solution that was used is julgfiioe theA to be logarithmic in
the rangel0~* to 1.2 (actuallyl0°%) with one hundred points instead of the linear one thousand
points used earlier. One hundred points to a logarithmileddagave sufficient resolution so the
routine is both better at finding the low valued gaseous padlgaicker. It was also discovered
that using only one hundred points on a logarithmic sc&d&etweeni 02 to 1 gave a sufficient
resolution.
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However, it is still not possible (with realistic amount ohe) to compute the marginal stabil-
ity curve in the whole3— A plane. This still requires ten million computations of tleymomial.
Instead | defined three different scenarios so that themeutnly derives the marginal stability
curve in the vicinity of each transition line. See figure C.1 #flowchart of the following
description.

Fortunetaly there is a predefined function in MATLAB denofedipeaks which returns a
vector containing the values for each peak of the functiaimples. So in this case it gives
either a vector containing one or two elements as the curll@mly have one peak outside the
region and two inside it.

To find the lower transition of the two-phase region, i.e. giamg from low A to find where
the gaseous peak first appears | simply let the routine stgp@s as the vector given iynd-
peaks contains two elements (the blue parts of figure C.1). Themeutien continues on the
next defineds value and sample from fivd elements below the previous stop, iie-5 in figure
C.1. All the A values where the routine is stopped are saved in a vectocdh@sponds to the
lowest transition line.

The main transition line, i.e. the transition between atetlominated instabilities and gas
dominated instabilities, or just simply where the two peeksibited by the marginal stability
curve is of equal) is found in a similar fashion (the yellow parts of figure C.1heTroutine
samples the parameter space from ldwuntil it finds with the help offindpeaks two peaks
and that the difference in height between the peaks areHassx0001. This is just an arbitary
number to counter any numerical errors, e.g. using O rebsuitao transition found at all. The
A value is again saved in a vector and the next point is foundabypting on the nex value
from just five A elements below the previously found point.

The upper transition is when the marginal stability curviileits one peak, only the gaseous
peak. This is easiest to find when samplitgrom large values instead (the green parts of figure
C.1). This is exactly the same manner as with the low tramgisampling the curves until the
routine finds that it exhibits two peaks. Then it continuesi@next defined value and samples
from just five A values above the previously found point. The found poingscdircourse saved
in a third vector.

What we obtain are three vectors for each chosen thicknesarahe different transition
lines of the two-phase region.

C.3 Determining the stability threshold

To find the different two-phase regions we were only requitrederive the marginal stability
curves for the different thick cases in the proximity of tipesific transition curves in thB — A
space. However, to compute the stability threshold in tineesiashion as with the thin discs we
again need to compute the marginal stability curve for theleparameter space for all four
chosen thick cases.

For the thin case we used 1000 elements for each parametewamstead only have 1000
A elements and 108 elements. Unfortunetaly it would still take an unrealistroount of time
to derive the marginal stability curve for all and3 values and for all the four thick cases we
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Define all parameters |- Used parameters are

v 4, B, N\, Dsand Dy

Loop through 2 and B
7 When searching for the
lower and main transition,
we start at 2= 0.01,
for the higher transition

v we startat 2=1

For all A, define and

solve the polynomial
to obtain MSC

—

Use findpeaks to obtain
number of peaks of MSC
and the Q-values of these

Compute integrals
and Us, Ug

Lower curve | Upper curve | Main transition

Y Y
— No | Are there two peaks? o wn
If the peaks have
Yes ™ equal O-value
y
Save 4-value -
' Set 4(j-5) [Set 4(j+5) | Set A(i-5) § A(i) is the sqved vg!ue
e where the index i is
‘ ‘ ‘ the element

When 8 > 0.2 the loop is stopped
and the transition curves can be plotted.

Figure C.1: Flowchart describing the routine used to find wWeephase region of the thick discs.
More details are found in the text of Appendix C.2.
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are considering on a normal computer. Constraints were negjaind so only a few specific
contour-lines were computed instead so that the margiahbllgy curve could be computed in
the vicinity of these.

Again are there several ways of deriving the specific conlioes in an effective way. How-
ever, | decided to use the one | found most effective, which m@ exactly as precise as some
other methods that were tried. The other methods that hdhjgrecision in finding the spe-
cific contour-lines had however very cumbersome codes aulraljuired at least four to five
times longer time to find each line while this method | decittedse only required around five
minutes.

The same method for deriving the marginal stability curvéoaghe two-phase region was
used again, i.e. using a logarithmic scale for the wavelenffom10—* to 1.2. However, this
time the routine was devised so that it would find only the globaxima of the marginal stability
curve from the lowest definedl and B with the commandmnax until it reaches a) larger
than the predefined contour-line value (see figure C.2). Tee@irthat is found to be larger
than the wanted predefined value is saved in a vector and thieeacontinues to compute the
marginal stability curves from the next predefirgédnd only five (as with the two-phase region)
predefined4 elements (again denoted by the inder figure C.2) below the saved one.

What we obtain is one vector in MATLAB for each contour-linehe€lproblem is that this
method does not use the predefined MATLAB-commandtour as it instead derives an ap-
proximate contour-line. To be able to use tdwtour command the routine has to compute the
marginal stability curves in a wider range above and beloswtianted() so that there are no
empty regions or discontinuities in the contour-lines.sldives a higher precision and also took
much more time. And it required alot of code to optimise thecpss.
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Define all parameters |- Used parameters are
A, Q;, /\l Q)‘f! Q)ﬂ
y S and a constant

Loop through 4 and 3 Contour used to find one
specific contour line

Y
Compute integrals
and Us, Ug

A

h J

For all A, define and
solve the polynomial
to obtain MSC

) J
Apply max on the MSC

) J
See if the global peak
is larger than the
wanted Contour

h J

If that is true then A(I) is the saved value
stop, save the a-value WheLe thle index i is
and set 4(j-5) the element

—

When 8=1, the loop is stopped and the vector
containing the saved 4 values can be plotted

Figure C.2: Flowchart describing the routine used to find teé&wminine contour lines of the
stability threshold for thick discs as described in Apperdi3.
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