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Abstract

Gravitational instability of galactic discs has been studied for several decades and is still of great
importance. It gives understanding of the physics of disc dynamics, stellar formation rates and
most relevant today, understanding of formation and evolution of galactic discs. However, this is
a very complex theory to study in detail as there are plenty ofprocesses available to consider. The
standard approach is to use the simple Toomre stability criterionQ > 1 whereQ is a parameter
depending on the surface density and velocity dispersion ofthe gas disc.

In this thesis we study in detail the gravitational stability of galactic discs taking into account
both stars and interstellar gas. We also apply our stabilityanalysis to the galaxy samples of
Leroy et al. (2008) to determine the importance of the stellar and gaseous components in the
gravitational instability of the galactic discs. In particular we show that, in certain regimes of
surface densities and velocity dispersions, the two components behave as if they are dynamically
decoupled in the instability process. Our analysis also include the dynamical effects of disc
thickness.

Besides, we propose a new approximation of the effective stability parameter for a two-
dimensional disc of stars and gas which is simple and accurate.
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Chapter 1

Introduction

Gravitational instabilities of stellar and fluid discs is a rather old subject that has been studied ex-
tensively for almost 50 years since the foundation-laying works of Safronov (1960) and Toomre
(1964) who made their discoveries with two different approaches. As will be shown shortly is
this still an important field of study with much room for extension.

However, what is the importance of understanding large scale gravitational instabilities of
galactic discs? In the past this subject was studied mainly for understanding the dynamics of discs
as the formation of spiral arm structures. However, more common today is to try to understand
the connection between gravitational instability and stellar formation rate. Both these areas are
in turn important for understanding the formation and evolution of galactic discs.

We know from earlier work dating back to that of Schmidt (1959) that it is possible to ob-
serve an imperical relation between the gaseous mass densities of galactic discs and the stellar
formation rate. Different formulations of these have been written where the most common one is
known as theSchmidt lawand there exist others as one formulated by Kennicutt that takes into
account orbital time. The reader might be interested in a summary written by Burkert (2009) on
modelling galactic discs that also mentions such stellar formation laws.

It is evident that gravitational stability must be used to explain the physics of stellar formation
(Elmegreen 1999; McKee & Ostriker 2007; Leroy et al. 2008) however the phenomenom is
highly complex and not well understood yet. There are many processes involved here, many
not fully understood yet so those studying this must restrict what processes they are taking into
account.

Another problem, perhaps the main problem of studies of instability is the complexity of
the models. Even previous theories are very complex to formulate as those from the 60s that
involves infinitesimally thin discs of one component, either gaseous or stellar. These approxima-
tions however gave very simple results that are easy to use and have been adequate for possible
observations so far.

Today are on the other hand new observational possibilitiesemerging. We are today able to
get high resolution of local galaxies and will soon with construction of observatories as ALMA
(the Atacama Large Millimeter Array)1 obtain higher resolutions of high-redshift galaxies. Al-

1http://science.nrao.edu/alma/index.shtml
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ready are studies conducted by e.g. Puech (2010); Burkert et al. (2009) who are using previously
formulated thin disc approximations and available resolution of high-redshift galaxies and by
Leroy et al. (2008) who are using data from several large surveys of local galaxies to conduct a
study of stellar formation rate and instability of a large sample.

Figure 1.1 is an example of two plots by Leroy et al. (2008) of the stability of their sample
of spiral galaxies. These plots demonstrates the importance of knowing what aspects to take
into account as there is a huge difference in the stability parameter when they only consider the
gas component and when they consider both the stellar and gaseous components. The gas-only
case seems inconclusive while in the stars+gas case severalof the galaxies are marginal stable at
several radii.

The problem comes with these new possibilities. The previously used approximations will
not be sufficient anymore with the higher resolutions and more precise studies possible. However,
we are also posed with the problem that more exact models of gravitational instability that as
an example takes into account both gas and stars and uses three dimensional discs with finite
thickness are very complicated to use. What is required is a study of these models and an attempt
to formulate some analytical approximation with adequate accuracy for the coming observational
possibilities.

Such studies have already been conducted by several authors. An expansion of the field by
studying two-component infinitesimal thin discs have been done by e.g. Jog & Solomon (1984);
Bertin & Romeo (1988); Wang & Silk (1994); Jog (1996); Rafikov (2001) so there is alot of
foundation for a further study of the dynamics of these discs. What is required is an extensive
study of the numerical solutions of this model to formulate some simple analytical expression
that fit these.

Furthermore have also extensive analytical and numerical studies been done in the field of
discs with finite thickness by especially Vandervoort (1970); Romeo (1990, 1992, 1994). These
studies opens up possibilities for extensions and are possible to compare with previous approxi-
mations.

The outline of this thesis is as follows.
In Chapter 2 we revisit the works of Safronov (1960); Toomre (1964) concerning one com-

ponent infinitesimal thin discs for an introduction into thetheories of this field. Thus we are also
able to define and explain important quantities that affect the stability and concepts as stability
threshold, marginal stability curve and what assumptions allows this kind of approximation.

In Chapter 3 we will study the effects of taking into account a disc constising of two compo-
nents, namely stars and gas as previously done by already mentioned authors. Here we get the
opportunity to evolve a previously found approximation by Wang & Silk (1994) and formulate a
new almost as simple and more accurate one to meet the coming observational requirements.

In Chapter 4 we apply observational data of galaxies on the model of Chapter 3. This is
possible due to the extensive data provided by the study of Leroy et al. (2008) and thus we in this
chapter conduct a similar gravitational stability study asthem.

In Chapter 5 we finally study the effects of thickness as done byprevious mentioned authors.
We conduct a similar study as in Chapter 3 and study how the different concepts that arises from
a two-component disc are affected by thickness.

This is followed by a short summary of the most important conclusions we can draw in

2



Figure 1.1: Two frames of Figure 9 from Leroy et al. (2008). A perfect example of how gravita-
tional instability is analysed in local galaxies. The left frame is with only taking gas into account
and the right frame takes both the stellar and gaseous components into account for their sample
of spiral galaxies. In magenta points the gas component is dominated by H2, in blue points the
gas is dominated by HI and the black crosses are the median of the binned data. The grey areas
indicate conditions for instability.

Chapter 6 and in the specific appendices are details surrounding the numerical methods and
observational data used.
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Chapter 2

Classical disc instability

Before we are able to consider stability of galactic discs consisting of both stellar and gaseous
material and taking into account disc thickness we should study the classical cases. For this we
will consider a stability model of a galactic disc with no thickness and constisting of only one
component, or one fluid. By doing so will the terminology used throughout this thesis be defined
and understood more easily.

2.1 Local stability criterion

The classical case considered in the 1960’s by e.g. Safronov(1960) assumes a disc with no
thickness as previously mentioned and consisting of one fluid, usually gas which is collisional. It
needs to be differentially rotating with a non-zero radial velocity dispersion and have axisymmet-
ric perturbations. With these assumptions it is possible toderive what is known as a dispersion
relation consisting of stabilising and destabilising terms.

In this case the dispersion relation is defined as

ω2 = κ2 − 2πGΣk + σ2k2 (2.1)

(Binney & Tremaine 2008, p. 495). Also see Fridman et al. (1984, p. 393), however they are
using an older notation. Theκ is the epicyclic frequency, i.e. the frequency of oscillation of a
perturbed circular orbit,Σ is the surface density,k is the wavenumber of the perturbation and
σ is the velocity dispersion. The disc we are studying will be unstable if the solution to this
is imaginary, i.e.ω2 < 0. However, to derive a stability criterion we first need to findwhat
wavenumber corresponds to when the minima ofω is zero. As this is a quite simple quadratic
equation we can derive this to be when

k =
πGΣ

σ2
. (2.2)

Keepingω = 0 and using the minima we can derive the stability criterion. What we end up
with is that the disc is locally stable for all wavenumbers if

5



κσ

πGΣ
> 1, (2.3)

usually written asQ > 1. This is commonly known as theToomre stability criterionwhere Q is
known as theToomre parameter. However, the more correct name is in fact theSafronov-Toomre
criterion. Toomre derived a model of kinematic discs (stellar discs) instead of fluid discs. His
stability criterion is very similar to equation (2.3),

σκ

3.36GΣ
> 1 (2.4)

(Binney & Tremaine 2008, p. 496). However, in this thesis we consider only fluid discs.

2.2 The marginal stability curve

We have now been introduced to the concept of a stability parameter which shows us if the disc is
locally stable for all wavenumbers of the perturbation. However it is also useful to study how the
stability depends on the wavenumber. For this we will derivea functionQ(Λ) which is known
as themarginal stability curve.

We derived the stability criterion earlier directly from the dispersion relation. This is not
always possible when we consider the more complex cases later in this thesis. The marginal
stability curve is on the other hand possible to derive both analytically and numerically and a
stability criterion is in turn possible to derive either analytically or numerically from this curve.
The marginal stability curve is also very powerful when trying to understand how the special
conditions of the cases we study affect the behaviour of the stability criterion.

Previously we looked at the dispersion relation, equation (2.1) at the minima and setω = 0.
Now we instead study how the relation behaves alongω = 0. The whole boundary of stability
commonly known as the line of neutral stability.

However, we first need to define a useful dimensionless wavelength,

Λ =
λ

λT

=
kT

k
(2.5)

wherekT (λT) is a critical wavenumber (wavelength) orToomre wavenumber, defined by Toomre
(1964) as

kT =
κ2

2πGΣ
. (2.6)

By settingω = 0 in equation (2.1) and dividing byk2
T we obtain

κ2

k2
T

− 2
πGΣ

kT

1

Λ
+

σ2

Λ2
= 0 (2.7)

where we insert equation (2.6) and rewrite in the form of the Toomre parameterQ so that we
obtain the expression

6



4

Q2
− 4

Q2

1

Λ
+

1

Λ2
= 0 (2.8)

which is easily rearranged to our final goal,

Q = 2 ·
√

Λ(1− Λ). (2.9)

This is the marginal stability curve of the classical Toomrestability and it is plotted in figure
2.1. AQ anywhere above the curve means that the system is locally stable while anywhere under
the curve it is unstable.

In this classical case the peak of the curve is always atQ = 1. However this is not true
for more complex models, that is why we define a parameter known as thestability threshold,
denotedQ̄. This determines how stable the system is (it is interestingto read Polyachenko et al.
1997 who expands this classic case and studies the stabilitythreshold). We also have for the peak
of the curve a correspondingmost unstable wavelength, denoted as̄Λ. Usually in the classical
one component case this is situated at one half of the Toomre wavelengthλT. And again, in more
complex models the behaviour of this could be interesting tostudy.

It is Important here to remember that this classical Toomre stability criterion is reliable only
if the most unstable wavelength is much shorter than the discscale lengthRd and if kh ≪ 1,
whereh is the disc scale height (Binney & Tremaine 2008, p. 496). So this model is just an
early approximation of a galactic disc. However, it is stillcommonly used when conducting
stability analyses and in studies of stellar formation rates. It gives a general picture, though
rather inprecise and also a good understanding of the very complicated behaviour of gravitational
unstable discs.
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Figure 2.1: Marginal stability curve for tightly wound axisymmetric perturbations in a zero-
thickness one component fluid disc.
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Chapter 3

Gravitational instability of stellar and
gaseous discs

The first more complex case we are going to study is a zero thickness galactic disc consisting of
two components, i.e. stars and gas (the interstellar medium). This has been studied several times
before by e.g. Jog & Solomon (1984); Bertin & Romeo (1988); Wang& Silk (1994); Jog (1996);
Rafikov (2001).

In this chapter I have studied the analysis carried out by Bertin & Romeo (1988). However,
the definitions have been adapted to a less theoretical and more modern parametrization. This
analysis has been compared to the approximation done by Wang& Silk (1994) which is very
commonly used today (Martin & Kennicutt 2001; Hitschfeld etal. 2009; Puech 2010; Burkert
et al. 2009; Krumholz & Burkert 2010). However Martin & Kennicutt (2001) do not use the
approximation in their study, they only consider what conclusions they could have drawn by
using it on their selection of galaxies. The Wang & Silk (1994) approximation is unfortunetaly
not adequately accurate (see Jog 1996), a new approximationis instead formulated with the help
of Alessandro Romeo that might be very useful.

3.1 Definitions

In the classical case we had a marginal stability curve as a function of the fluid surface density,
the velocity dispersion and a dimensionless wavelengthΛ for axisymmetric perturbations. Obvi-
ously we need for a disc containing two fluids also two surfacedensities and velocity dispersions.
Following what was done by Bertin & Romeo (1988) we define two parameters,

A =
Σg

Σs

(3.1)

and

B =
σg

σs

(3.2)

9



where theΣ’s are the surface densities for the gaseous (g) and stellar (s) components respectively
and theσ’s are the velocity dispersions. The dimensionless wavelength was previously defined
in equations (2.5) and (2.6) and is similary defined here as

Λ =
ks

k
=

1

k
· κ2

2πGΣs

(3.3)

whereks is the corresponding Toomre wavenumber for the stellar component.
We also need to define aQ-parameter that is adaptable for this more complicated situation.

We do this by introducing the stability threshold,Q̄. In analogy with the Toomre stability crite-
rion, equation (2.3) we rewriteQ > 1 to Qs > Q̄ and introduce the effectiveQ-parameter which
follows the classical criterion,

Qeff ≡ Qs

Q̄
> 1. (3.4)

The stability threshold̄Q is a function of only our parameters,A andB defined in equations
(3.1) and (3.2) and theQs is the corresponding stellar Toomre parameter as in equation (2.3).
In this way we have reduced the equations so what we need to do is to find a physical correct
stability threshold and then derive the effectiveQ-parameter to define an expression for a two-
component stability criterion.

Finally we need to see the two-component dispersion relation before continuing. This was
derived by Jog & Solomon (1984) and can be written for a disc consisting of gas and stars as

(ω2 − Ω2
g)(ω

2 − Ω2
s ) = 2πGΣgk · 2πGΣsk (3.5)

where

Ω2
i = κ2 − 2πGΣik + σ2

i k
2 (3.6)

which we recognise from the classical one-component dispersion relation, equation (2.1).

3.2 Analysis of Bertin & Romeo (1988)

The study of the two component case mainly used in this chapter will be the previously mentioned
one done by Bertin & Romeo (1988). In the process of finding the stability threshold here we
first look at the neutral stability curveQ = Q(Λ) (see Section 2.2 for comparison). This is in
terms of our parameters given by

Q2 =
2Λ

B2

[A+ B2 − Λ(1 + B2)

+
√

Λ2(1− B2)2 − 2Λ(1− B2)(A− B2) + (A+ B2)2
] (3.7)

10
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Figure 3.1: Four cases of the marginal stability curve with constantB = 0.1 and from the below,
with A = 0.010, 0.073, 0.100 and 0.137.

in analogy with equation (2.9). This marginal stability curve is considered in the range0 ≤ Λ ≤
1+A and the stability threshold is, exactly as with the classical case defined by the peakQ-value
(in the classical case this is always1).

Four different cases of the marginal stability curve is shown in figure 3.1. We immediately
notice when studying the curves how there is a second peak occuring at low wavelengths when
we have a higher gas density (or smaller stellar density). This peak is an instability due to the
gaseous component while the wider peak at higher wavelengths is due to the stellar component.
The lower wavelength and prominent height of the gaseous peak indicate how powerful the
instability can be if the gaseous velocity dispersion is lowenough. We also see that there occurs
a transition to a lower most unstable wavelength when the gaseous peak is the global maxima.

This transition from high wavelengths (stellar-dominated) to lower (gas-dominated) occurs
along the lineA = B in our parameter space. Also the occurence and disappearence of the
gaseous and stellar peaks at specific densities and velocities create transitions between gas-
dominated and stellar-dominated peculiar zones in the parameter space, i.e. zones where the
marginal stability curve exhibit both peaks. These transitions form what is called thetwo-phase
regionand is presented in figure 3.2 in log-log scale.

The point where the transition lines converge is known as thetriple point. Here in the two-
component and zero-thickness case it is positioned at approximatelyA0 ≃ 0.17 andB0 ≃ 0.17
where the stability threshold is̄Q0 =

√
2 ≃ 1.41 and the most unstable wavelength isΛ0 ≃ 0.29

as analytically calculated by Bertin & Romeo (1988).
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Figure 3.3: Contour plot of the stability threshold̄Q of Bertin & Romeo (1988).

Figure 3.3 shows a selection of contour lines of the stability thresholdQ̄. In the contour
lines is the previously mentioned main transition between stellar-dominated and gas-dominated
instabilities alongA = B clearly visible.

3.3 The approximation of Wang & Silk (1994)

Wang & Silk (1994) attempted to derive a stability criteriondirectly from the dispersion relation
defined by Jog & Solomon (1984) for two weakly interacting fluids, equation (3.5). They used a
Taylor expansion around the wavenumber corresponding to the peaks for the stellar and gaseous
components respectively. What they got was a stability criterion for a two fluid disc defined as

Qeff ≡ κ

πG

(
Σs

σs

+
Σg

σg

)−1

=

(
1

Qs

+
1

Qg

)−1

> 1. (3.8)

This analytical expression is obviously simple and useful,unfortunetaly it lacks accuracy. As
stated by Jog (1996) the error is in the fact that they used neutral wavenumbers for each fluid
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respectively instead of a common two-fluid wavenumber and also that they used a wrong defi-
nition of Q as a function ofF . F is a function used by Jog & Solomon (1984) (their equation
21 and 22) from their dispersion relation which gives that there are instabilities ifF > 1. This
is problematic as this approximation, as mentioned earlieris still quite commonly used today
(Puech 2010; Hitschfeld et al. 2009; Martin & Kennicutt 2001).

To demonstrate this error we will make a short comparison between the corresponding sta-
bility threshold of the Wang & Silk (1994) approximation with the numerically derived stability
threshold of figure 3.3.

To derive the corresponding Wang & Silk (1994) stability threshold we use equation (3.4)
and obtain quite quickly that

Q̄WS =
Qs

Qeff

=

(
1 +

σs

σg

Σg

Σs

)
(3.9)

and using our parameters from equations (3.1) and (3.2) thisis

Q̄WS = 1 +
A
B . (3.10)

In figure 3.4 are the corresponding contour lines from the Wang & Silk (1994) approximation
plotted together with the contour lines from the study by Bertin & Romeo (1988) (figure 3.3). It
is quite clear that there is a huge discrepancy at low velocity dispersion ratios. However, whenB
goes to1 we notice how the model and approximation correspond quite well. This is simply due
to whenB = 1 the gas and stellar velocity dispersions are equal and the two component model
and approximation both collapses into a classical one component model containing the sum of
our densities. This is written as

Qeff =
κσ

πG(Σs + Σg)
(3.11)

whereσ is the velocity dispersion of either the gas or the stellar component.

3.4 A new approximation

We are now in a position where we have a quite inaccurate approximation and a model which
might not be straightforward to use effectively and very difficult to derive an analytical expression
of Q̄ from and thus also forQeff . Instead we need to find an analytical approximation of the study
by Bertin & Romeo (1988) that is easy to use and write it in the more practical parameters ofQs

andQg instead of our theoretically practical parametersA andB, inspired by the parametrization
of Wang & Silk (1994).

To start we must first consider the contour lines ofQ̄ in figure 3.3. The obvious challenge is to
consider the transition. Unfortunetaly to be able to have one analytical expression for the whole
B - A space that also takes into account the transition between stellar and gaseous dominated
instabilities we would need an expression equally complicated (and not very useful) as equation

14
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Figure 3.4: Contour plot of the stability threshold̄Q from the study by Bertin & Romeo (1988)
(thick lines) and the Wang & Silk (1994) approximation (thinlines).
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(3.7). Instead we will find two expressions, one approximation for the stellar regime and one for
the gaseous regime.

Consider the stellar̄Q contour lines of figure 3.3. If we consider the contours as functions
A(B) then these can be expressed as quadratic expressions and even simpler if we express each
contour line as a functionA(Q̄,B2). Then it is possible to use straight lines that fulfil two
requirements. They should collapse to the one component case,A = Q̄ − 1 whenB = 1 and
when extending the line toB = 0 it should collapse toA = (Q̄ − 1)/2 so that the line crosses
approximately the right transition point along theA = B line. With this in mind it is possible to
express

A =
Q̄− 1

2
+

Q̄− 1

2
B2 =

1

2
(Q̄− 1)(B2 + 1) (3.12)

which we rearrange to

Q̄ =
2A
B2 + 1

+ 1 = 2 · Σg

Σs

· σ2
s

σ2
s + σ2

g

+ 1. (3.13)

Finally we apply equation (3.4) to obtain the stellar approximation ofQeff . We end up with

1

Qeff

= 2
σsσg

σ2
s + σ2

g

· πGΣg

κσg

+
πGΣs

κσs

(3.14)

that we can write in terms ofQs andQg so that

1

Qeff

=
1

Qs

+
CF

Qg

(star− dominated regime). (3.15)

This final equation, the stellar approximation of the effective stability parameter is obviously
very similar to the original Wang & Silk (1994) approximation, equation (3.8). Except that we
now have a simple correction-factor we denoteCF and define as

CF =
2σsσg

σ2
s + σ2

g

. (3.16)

This stellar regime approximation only applies within the limit of A < B or whenQs < Qg.
The gaseous regime is somewhat more complicated to describe. However, if we follow the

previous method of formulating a functionA(Q̄,B2), use the approximations formulated by
Bertin & Romeo (1988) and what we can learn from equation (3.13)we are able through some
trial and error to formulate

A = Q̄B − 2
B2

1 + B2
(3.17)

and by following the previous conduct we can write the stability threshold

Q̄ =
A
B +

2B
1 + B2

(3.18)
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which gives the effective stability parameter

1

Qeff

=
CF

Qs

+
1

Qg

(gas− dominated regime), (3.19)

where the correction factor,CF is exactly the same as in equation (3.16). This by construct also
collapses to the one component caseQ̄ = A + 1 whenB = 1 and approximately connects with
the right transition point whenA = B. This expression is instead valid whenA > B or when
Qs > Qg.

It is now that we see the power of this approximation. It is very similar to the Wang & Silk
(1994) approximation except that in the stellar regime we multiply the gas term with a simple
correction factor and in the gaseous regime instead we multiply the stellar term with the same
correction factor. In figure 3.5 we see how well the approximated stability threshold contours
correlates with the contours of the original model and also how well the two approximations
connect along theA = B line.
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Figure 3.5: Contour plot of the stability threshold̄Q from the study by Bertin & Romeo (1988)
(thick lines) and the approximations (thin lines) of the stellar and gaseous regimes with the
transition alongA = B.
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3.5 Summary

In this chapter we have studied the gravitational instability of galactic discs constisting of a stellar
and a gaseous component. For this endevour we defined the parametersA andB as in equations
(3.1) and (3.2). We also defined a stability thresholdQ̄ as a function ofA andB from which we
can derive an effective stability parameter, equation (3.4).

We continued to look at the study by Bertin & Romeo (1988) where we see both a power-
ful transition between stellar-dominated instability when A < B and gas-dominated instability
whenA > B. We also see that there is a two-phase region in theB - A parameter space where
the marginal stability curve (equation (3.7)) exhibits twomaximas, one stellar at larger wave-
lengths and one gasoues at lower wavelengths. The two-phaseregion has a triple point where
the transition curves converge atA0 ≃ 0.17 andB0 ≃ 0.17, where the stability threshold is
Q̄0 =

√
2 ≃ 1.41 and the most unstable wavelength isΛ0 ≃ 0.29. The question we ask ourselves

is how important the two-phase region and transition line are when considering observational
data and this we will study in Chapter 4.

We also made a comparison with the stability parameter derived by Wang & Silk (1994) and
verify the conclusion by Jog (1996) that this simple equation unfortunetaly is invalid. Instead we
formulate a new approximation of the stability parameter which takes into account the transition
between stellar and gaseous dominated regimes. This is a simple improvement of the previously
defined approximation and is defined as

Qeff =

(
1

Qs

+
CF

Qg

)−1

(3.20)

whenA < B (or Qs < Qg) and

Qeff =

(
CF

Qs

+
1

Qg

)−1

(3.21)

whenA > B (or Qs > Qg). The correction factorCF is defined as

CF =
2σsσg

σ2
s + σ2

g

. (3.22)
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Chapter 4

Application to observed galaxies

In the previous chapter we noticed discrepancies between the approximation of Wang & Silk
(1994) and the study by Bertin & Romeo (1988) and how there is a two-phase region for two-
component discs where both the gaseous and the stellar components gives rise to instabilities.
However, the question is how these facts relates to concretecases.

We will in this chapter look shortly at the different surveysdone and use data supplied by
one of the more extensive and recent surveys. This will be used to make a similar survey using
the analysis by Bertin & Romeo (1988).

I also mention an example of large discrepancies in the data of different surveys on the same
source. A reminder of the importance of caution when selecting sources of data.

4.1 Recent surveys

There are several observational articles written where stability of disc galaxies is analysed. Some
of these are done by Leroy et al. (2008) who looks at a large sample of nearby galaxies, Hitschfeld
et al. (2009) who studies NGC 5194 solely, Wong et al. (2009) who studies the Large Magellanic
cloud (LMC), Yang et al. (2007) who also studies the LMC and Martin & Kennicutt (2001) who
looks at star formation thresholds in observed disc galaxies.

The most extensive survey suitable for this chapter I found in my research was done by Leroy
et al. (2008). They have done a survey of 23 nearby galaxies with data from THINGS (The HI
Nearby Galaxy Survey), HERACLES (HERA CO-Lines Extragalactic Survey), BIMA SONG
(Berkeley-Illinois-Maryland Association Survey of NearbyGalaxies), SINGS (SpitzerInfrared
Nearby Galaxies Survey) and GALEX (Galaxy Evolution Explorer). Using the intensity maps
from these surveys they are able to calculate the surface densities of the gases and stars of each
galaxy and obtain radial profiles. Using both the classical Toomre stability criterion and the
two-fluid stability criterion as defined by Jog & Solomon (1984) and rewritten in new terms by
Rafikov (2001), they conduct a stability survey of these galaxies and derive the stellar formation
rates. For details surrounding the data and calculations done by Leroy et al. (2008), see Appendix
B. The complete radial profiles for each galaxy in the survey ofLeroy et al. (2008) is published
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publicly in an online version of their article.1

Leroy et al. (2008) states that they publish their data in tables online “to provide a database
that can be used to test theories of galaxy-wide star formation or to explore the effects of varying
our assumptions”. As this is a large collection of very detailed data I have decided to use a
sample of galaxies from it in my survey. In Appendix B there are tables (tables B.1 to B.11) with
the data used for each chosen galaxy combined with details I have derived from the given data.

In my search for relevant data I also studied the survey done by Hitschfeld et al. (2009).
They have done a surface density and gravitational stability analysis of only NGC 5194 (or
M 51). When comparing their data with the corresponding data on NGC 5194 in the survey by
Leroy et al. (2008) we notice large discrepancies. The stellar surface densities of Hitschfeld et al.
(2009) is on the order of 5 to 10 times smaller than those of Leroy et al. (2008). As an example
is the central stellar surface density of Hitschfeld et al. (2009) around810M⊙pc−2 while Leroy
et al. (2008) gives4910M⊙pc−2. The gas surface density of Hitschfeld et al. (2009) however, is
closer to that of Leroy et al. (2008), being only on the order of 3 to 1 times smaller.

I attempted to contact the main author, M. Hitschfeld as thisis the more recent article, asking
what he thinks could be the cause of this discrepancy. However, I was only able to get a response
from the second author, C. Kramer, who referred to section 4 and section 5 of their article where
they explain how they derived the stellar surface densitiesand the stellar velocity dispersions.
These sections however, does not explain any possible reasons for such large discrepancies.

I mention this here as a reminder of the importance of cautionwhen selecting, studying and
comparing sources of data.

The study made by Martin & Kennicutt (2001) is also importantto mention more closely.
They have studied the stellar formation efficiency of 32 galaxies and define a stellar formation
”threshold radius” denotedRHII . We will attempt to try and identify the threshold radius in our
sample of galaxies by studying the behaviour of our stability parameter in the sample chosen
from Leroy et al. (2008) later in this chapter.

4.2 Two galaxy samples

The data acquired from the article by Leroy et al. (2008) haveas mentioned radial profiles of
stellar densities, HI densities and H2 densities for 23 different galaxies from which I chose two
samples.

The first sample consists of six galaxies. The four spiral galaxies, NGC 3521, NGC 5055 (M
63, theSunflower galaxy), NGC 5194 (M 51, theWhirlpool galaxy) and NGC 6946 (Arp 29, the
Fireworks galaxy) and two irregular galaxies for comparison, HO II (Arp 268,Holmberg II) and
IC 2574 (Coddington’s nebula).

NGC 5194 is interacting with the galaxy NGC 5195 which affectits radial profile in an
interesting way shown later in this chapter. NGC 6946 is a peculiar galaxy with one heavy arm
(Arp 1966) and several supernovae have been observed there.The two other spiral galaxies, NGC
3521 and NGC 5055 seems to be without any heavy interaction orany other peculiar behaviour.

1Table 7 athttp://iopscience.iop.org/1538-3881/136/6/2782/fulltext.
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A trait that will here after be described as them being “normal galaxies”.
The second sample contains four normal galaxies, NGC 628 (M 74), NGC 3184, NGC 3198

and NGC 7331. These will be compared together with NGC 3521 and NGC 5055 from the first
sample. Thus we have a sample of ten galaxies in total to studywhere two are irregulars, two
have interaction or other peculiarities and six which seemsto be without interaction or any other
peculiarities.

Prada et al. (1996) suggests that the bulge of NGC 7331 is rotating retrograde and not co-
rotating with its disc. This however does not seem to affect the results in any way.

The criteria used when selecting galaxies were that they must first of all have many data
points, the data must contain some H2 data and many HI data to not be biased towards smallA.
However, none of the irregulars have H2 data so the two irregulars with most data available were
chosen.

In tables 4.1 and 4.2 there are some general information about the galaxy samples and figures
4.1 and 4.2 are photos of each galaxy. Tables with the complete data used are in Appendix B
(tables B.1 to B.11).

Table 4.1: General information on the first sample of galaxies.2

Galaxy Morph. Dist. Radius vflat lflat Rd R25

(Mpc) (kpc) (km/s) (kpc) (kpc) (kpc)

HO II Irr 3.4 4.4 36 0.6 1.2 3.7
IC 2574 Irr 4.0 8.8 134 12.9 2.1 7.5

NGC 3521 SBbc 10.7 15.3 227 1.4 2.9 12.9
NGC 5055 Sbc 10.1 20.8 192 0.7 3.2 17.4
NGC 5194 SBc 8.0 10.7 219 0.8 2.8 9.0
NGC 6946 SBc 5.9 11.6 186 1.4 2.5 9.8

Table 4.2: General information on the second sample of galaxies.2

Galaxy Morph. Dist. Radius vflat lflat Rd R25

(Mpc) (kpc) (km/s) (kpc) (kpc) (kpc)

NGC 628 Sc 7.3 12.2 217 0.8 2.3 10.4
NGC 3184 SBc 11.1 14.3 210 2.8 2.4 11.9
NGC 3198 SBc 13.8 15.1 150 2.8 3.2 13.0
NGC 7331 SAb 14.7 23.2 244 1.3 3.3 19.6

2All data are from Leroy et al. (2008), the radii mentioned is the largest radii with data.
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Figure 4.1: Photos of the first sample, fromNASA/IPAC Extragalactic Database(NED) which
is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration andNGC 5194 is from theHubble
Heritage project.
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Figure 4.2: Photos of the second sample, photos are again from NED and the NGC 7331 photo is
credited to Daniel Bramich (ING) and Nik Szymanek (The Isaac Newton Group of Telescopes,
La Palma).
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4.3 Deriving useful quantities

As we are using the same data as Leroy et al. (2008) we also needto use the same methods and
equations to adapt the data into the parameters we use to apply it to the study by Bertin & Romeo
(1988).

The density ratio parameterA is easy to derive from this data set. The stellar densities are
given directly in the data tables (Appendix B) and the gaseousdensities are simply the sum of
the HI and H2 densities also given directly in the same tables.

The second parameter, the velocity dispersion ratioB is a more complicated matter. Leroy
et al. (2008) never measured or used measurements of the velocity dispersions directly. Instead
the stellar velocities are derived from the stellar densities and the gaseous velocity dispersions
is assumed to have a constant value ofσgas = 11 km s−1. This is an unusually high value and
more commonly used is around 6 to 8 km s−1 as Martin & Kennicutt (2001) who usedσg = 6
km s−1 in their study. 11 km s−1 is however a typical value in the HI-dominated outer parts of
the THINGS-galaxies which is why Leroy et al. (2008) uses it.

To derive the radial stellar velocity dispersion needed (see Appendix B.3 of Leroy et al.
(2008) for further details if interested) we look at the vertical velocity dispersion given by

σzs(R) =
√

2πGΣshs (4.1)

whereΣs is the stellar surface density andhs is the stellar disc scale height. As the disc scale
height is assumed to be radially constant only the surface density gives a radial dependence for
the velocity dispersion.

The disc scale height is assumed to be related to the disc scale length withRd = (7.3±2.2)·hs

which is given for each galaxy in tables 4.1 and 4.2. The vertical velocity dispersion is assumed
to be related to the radial velocity dispersion byσzs = 0.6σrs. Disregarding the error of the scale
height we now have

σrs(R) =
1

0.6

√
2πGRd

7.3
Σ1/2

s (R). (4.2)

Now we have the required radial profiles of the densities and velocity dispersions that gives
us the radial profiles ofA(R) andB(R). However, we also need to calculate ourQ-parameters,
the stability threshold̄Q and the two component stability parameterQeff from equation (3.7). For
this we do not only need the densities and velocities but alsothe epicyclic frequencyκ of each
galaxy. This is derived theoretically by Leroy et al. (2008)and as usual we follow their example.

Normally when calculating the epicyclic frequency of a galaxy a flat rotation curve is as-
sumed so that

κ = 2π · Ω =
√

2
V (R)

R
(4.3)

whereΩ is the angular velocity and theV (R) is the linear velocity. Leroy et al. (2008) instead
defines the epicyclic frequency as
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κ = 1.41
V (R)

R

√
1 + β (4.4)

where

β =
d log V (R)

d log R
. (4.5)

This is a correction term that compensates for a non-flat rotation curve. Whenβ = 0 we have
a flat rotation curve (occurs in the disc) and whenβ = 1 we have solid body rotation (occurs in
the center of the disc).

The velocity curve,V (R) is derived from an analytical expression defined as

V (R) = vflat

(
1− exp

(
− R

lflat

))
(4.6)

where the parametersvflat andlflat are given in tables 4.1 and 4.2. This emulate a more natural
velocity curve.

For further details concerning the calculation of our parameters and corresponding error bars,
refer to Appendix B. In Appendix B are also the radial profiles given by Leroy et al. (2008)
presented together with the profiles I have derived for each chosen galaxy in tables B.1 to B.11.

4.4 Results for the first sample

The first sample is as previously mentioned HO II, IC 2574, NGC3521, NGC 5055, NGC 5194
and NGC 6946. This is a mix of two irregular galaxies, two normal disc galaxies and two
interacting or peculiar disc galaxies.

In figure 4.3 are the radial profiles of our parametersA andB of the first sample shown. The
optical radius (de Vaucouleur radius) R25, disc scale lengthRd and stellar disc scale heighths

are also designated as vertical lines for each galaxy.
We immediately notice the chaotic behaviour of the two irregulars (HO II and IC 2574). We

also see how our parameters are larger than unity for these which means that we have a higher
velocity dispersion for the gas than the stars. This is not physically possible as the gas component
forms the stellar component. However, these are not disc galaxies and a model for a thin disc is
not really applicable for these two. It is still quite interesting to compare these with the behaviour
of disc galaxies where instead both parameters in this sample are smaller than unity.

In the two normal galaxies, NGC 3521 and NGC 5055 we see a rather regular behaviour.
A rise in the velocity dispersion ratio (B) with the radius. The velocity dispersion of the gas is
constant so this is due to stellar velocity, which is dependent of the density and both goes down
with the radius.

In NGC 5194 there is a huge wave pattern visible in the profile of the density parameter (A).
This is probably due to how density profiles are usually derived. Using an intensity map to derive
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the mean of rings around the center can be heavily affected bythe arm structure of the disc and
seems to be the case here.3

We also see in NGC 5194 how the velocity dispersion ratio rises with the radius exactly as
in the other disc galaxies. However, at large radii there is asudden drop. This is probably due
to the neighbouring galaxy, NGC 5195 which gives a sudden increase of the mean of the stellar
density and of the stellar velocity dispersion. Perhaps it is also due to this neighbouring galaxy
that maybe induces the spiral structure of NGC 5194 that the spiral arm structure affects the
mean gas densities so greatly.

NGC 6946 also seems to behave a bit strangely. This is a peculiar galaxy with the designation
Arp 29. According to the original database article by Arp (1966) this galaxy have one heavy arm.
However, the velocity dispersion profile behaves very similar to the other disc galaxies. It is just
the density ratio that exhibits some strange behaviour around the galactic center.

In figure 4.4 are the stability threshold (Q̄) and the effective stability parameter (Qeff) defined
in equation (3.4) shown for each galaxy in this sample. Againare the optical radii (R25), disc
scale length (Rd) and stellar disc scale height (hs) designated, and also the stability criterion for
the effective stability parameterQeff = 1 is marked with a horisontal red line.

The shaded areas are the regions of each galaxy that are inside the two-phase region (see
figure 3.2). The lighter shades marks out where only the errorbars ofA andB are inside the
two-phase region while the darker shades are where the mean values are inside the region. Only
where two or more data points apply to these criteria are taken into account.

Again are the two irregular galaxies quite different than our disc galaxies of this sample and
show no correlation with the two-phase region. This is quiteobvious when considering the huge
values of the density and velocity dispersion ratios these galaxies have. However, again it is
interesting to see the huge difference compared with the disc galaxies.

We also see how both irregulars have rather high stability thresholds. This effect is visible in
the effective stability parameter that crosses the stability criterion line several times in these two.

All four disc galaxies of this sample have areas inside the two-phase region. The two more
peculiar only have some small irregular areas, this seems tobe due to the chaotic behaviour of
the density profiles. A gentler density variation would probably put a larger portion of the disc
inside the two-phase region like our two normal galaxies.

In any way we still see that a large portion the inner parts of the discs are inside the two-phase
region and that this area even extends beyond the disc scale length. So in conclusion does the
two-phase region play a significant role in the dynamics of the discs according to this data.

In this data sample the stability threshold seems to have a downward trend with higher radii
for all disc galaxies except NGC 3521 where it instead rise with radius. The effective stability
parameter seems very similar though, except in NGC 6946 where it instead of being very stable
in the center of the galaxy is heavily unstable. Otherwise, not considering the irregularities of the
data the effective stability parameter behaves quite similar for all the disc galaxies in this sample
and some even have some local instabilities in the disc.

Figure 4.5 is a plot of theA andB trails of all six galaxies of this sample in our parameter

3The gas density sometimes varies on the order of the mean density due to the spiral structure. This of course
affects ourA-parameter greatly.
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space. In the background are the two-phase region and main transition from figure 3.2 plotted as
a comparison in thin black lines.

As the stellar density is in every disc galaxy very high in thecenter and the stellar velocity
dispersion is proportional to the density the center of eachdisc galaxy is always in the lower left
corner of theB−A space. This makes it possible to follow the radius outwards by following each
data point from the lower left. And most of the two irregular galaxies are outside the considered
range.

In figure 4.5 it is much easier to see how the data points are in relation to the two-phase region
than in figure 4.4. We quickly notice that all four disc galaxies are quite “crowded” around the
triple point. We are also able to see that if NGC 5194 had not had its wave behaviour in its
density profile a larger portion of the disc would probably have been inside the region. It is also
interesting to see how the outer parts of NGC 5194 behaves very differently to the other galaxies
which tend to go to the top right of the range and instead this goes back down to the low values
again. Similar as how the central parts of each galaxy behaves. This is probably again just an
effect of the neighboring galaxy and we are seeing the edges of the central parts of that galaxy in
the data.

Furthermore we also see much more clearly that the two-phaseregion in fact plays a signifi-
cant role. Considering how we use the fairly high constant gasvelocity dispersion of 11 km s−1

we can similar as Leroy et al. (2008) did imagine the effects of a lower gas velocity dispersion
of perhaps the more usual 6 km s−1. Such a change would move all the data points to a lowerB
which would probably put several more data points, thus larger portions of the discs inside the
two-phase region, further strengthening our argument.

4.5 Results for the second sample

The second sample of four normal galaxies, NGC 628, NGC 3184,NGC 3198 and NGC 7331
are presented together with the two previously presented normal galaxies, NGC 3521 and NGC
5055. Thus are all our normal galaxies grouped together and compared.

Figure 4.6 depicts the radial profiles of the density ratioA and the velocity dispersion ratio
B. Again is the optical radius (R25), the disc scale length (Rd) and the stellar disc scale height
(hs) marked for each galaxy.

Three of our galaxies have been measured to haveB just larger than unity in the outer parts of
the disc, though not as large as the irregulars of the first sample. Again, this is not really physical
as this would mean that the gaseous velocity dispersion is higher than the stellar. The error could
be either in the fact that we are using a higher than normal constant gaseous velocity dispersion
or that the measured stellar density which is used to derive the stellar velocity dispersion is too
low.

However, we still see large similarities in the density profiles. All with smallA andB-
parameters in the center which then grows larger with the radius. Except for NGC 5055 where
theA-parameter (density ratio) grows rather small in the outer parts of the disc. This means
that there is a small increase of the stellar density in the these parts. It is unknown to me why,
however NGC 5055 is part of the M 51 group, so it is probably notwithout any interactions.
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Figure 4.7 depicts the effective stability parameterQeff with its corresponding stability cri-
terion alongQ = 1, the stability threshold̄Q, the areas of the discs inside the two-phase region
and again the different radii of interest.

In contrast to the first sample there are disc galaxies in thissample with no parts inside the
two-phase region, NGC 628, NGC 3184 and NGC 3198. However, wewill see that theB − A
tracks of these galaxies are in the very near vicinity of the region in the parameter space.

Otherwise we see many similarities again. The center of eachgalaxy is more stable while the
discs grow more unstable with some local instabilities at some radii for some galaxies. At the
outer parts the effective stability parameter grows slightly and the stability threshold decreases
slightly, depicting more stable outer parts of the discs.

Figure 4.8 presents theB − A tracks of each galaxy of this sample in our parameter space
against the two-phase region. Here we clearly see that our three galaxies without any part in
the two-phase region, NGC 628, NGC 3184 and NGC 3198 are all inthe vicinity just below the
region. NGC 3198 even have the error bar of its central data point in the stellar peculiar regime.
However, as before I only take into account when two or more data points are inside the region.

Again we can remind ourselves that a smaller gaseous velocity dispersion would move all
the data points of figure 4.8 to smallerB, thus moving the inner parts of the three galaxies in the
vicinity into the two-phase region. So we can draw the conclusion that the two-phase region is
probably of importance even for these three galaxies.

4.6 Is there a threshold for star formation?

The study by Martin & Kennicutt (2001) was previously mentioned. They have done a very
extensive survey on 32 different galaxies where they deriveradial profiles of stellar formation
efficiency. What they found was a powerful break in stellar formation rates in almost all of their
galaxies at specific radii. This is known as the stellar formation threshold radius and is denoted
asRHII .

Leroy et al. (2008) attempted to find this break in their sample of galaxies by searching for
a drastic increase of stability of the gas disc at some radii and were unsuccessful. Their results
seem to contradict that of Martin & Kennicutt (2001), however this is not the case.

The reason stated by Leroy et al. (2008) as to why they were notsuccessful in locating this
threshold radius is mainly due to the gaseous velocity dispersion and the estimated amount of
H2. A lower velocity dispersion would drastically destabilise the discs and they also estimated
less amount of H2.

We are using a different stability criterion on these galaxies from Leroy et al. (2008) which
made it interesting to search for this threshold radius again. In figure 4.9 the radial profiles of our
Qeff for all ten galaxies in our sample are plotted, normalised tothe optical radiusR25. A stellar
formation threshold should be visible as a sudden drastic increase of the stability parameter
around a specific radius.

However, even when not considering the two irregular galaxies in the plot are the data in-
conclusive. There is no clear regular increase of the stability parameter either around the optical
radius nor beyond it. A result that is similar to that of Leroyet al. (2008). However we suggest
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Figure 4.6: Radial profiles ofA andB for the second sample of galaxies.
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Figure 4.9: Radial profiles ofQeff normalised to the optical radiusR25 for all ten galaxies in our
sample.

two different possible explanations as to why the results seems to contradict that of Martin &
Kennicutt (2001).

One reason might simply be that theRHII defined by Martin & Kennicutt (2001) is located at
a higher radius than what the data of Leroy et al. (2008) encompasses. The Leroy et al. (2008)
data only extends out to 1.2 of the optical radius. In the whole set there is still a significant stellar
density at these radii. This should mean that there is still asignificant stellar formation rate at
these radii and that we have not yet reached the stellar formation threshold radius. However, the
median ofRHII from Martin & Kennicutt (2001) is roughly 0.8R25 in the study of Leroy et al.
(2008) so this might not be the case.

Another possibility is that newer studies with ultravioletmeasurements suggest that there
is no sudden powerful increase of the stability parameter and instead a slow increase with the
radius in the outer parts of the disc (John S. Gallagher, private communication). Which would
also explain the lack of observed threshold radius by both Leroy et al. (2008) and this study. It
exists however, just not as powerful as previously observed.
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4.7 Summary

To see the possible importance of taking into account two components in a disc of no thickness
and if the peculiar two-phase region at density ratios and velocity dispersion ratios smaller than
0.17 is of any relevance we need to apply the model on observational data.

The survey best suited for these needs is the one done by Leroyet al. (2008) where a similar
survey of 23 different galaxies is done. However, they are using the classical Toomre criterion
and the two component stability formulated by Rafikov (2001).Leroy et al. (2008) have also
been kind enough to present their derived radial density profiles of each galaxy in an online
version of the article for others to use which further simplified this work.

From the set of data of Leroy et al. (2008) we choose ten galaxies for two samples presented
in tables 4.1 and 4.2. These are of six normal, not heavily interacting or peculiar disc galaxies
(normal), two peculiar galaxies and two irregulars to see similarities and differences, chosen
according to the quality of the data.

We can immediately see how the irregular galaxies do not fit with the thin disc model at all
and behave quite chaotic. The two peculiar disc galaxies behave quite chaotic also, however they
also show some similarities with the other disc galaxies. These have regions inside the two-phase
region and some instabilities. The six normal galaxies all behave more or less regular with many
similarities in their radial profiles. Stable centers are found and the discs are also quite stable
with a few local instabilities.

All eight disc galaxies have considerable parts either inside or in the vicinity of the two-
phase region in theB−A parameter space. This indicates that this is in fact of importance when
studying disc dynamics. Facts as the high gaseous velocity dispersion used in this set of data
strengthens my argument as a lower velocity dispersion would have moved more data points of
the center of each galaxy into the two-phase region.

We also attempted to find any signs of the stellar formation threshold radius observed by
Martin & Kennicutt (2001). However we were, exactly as Leroyet al. (2008) not successful at
this. A few possible reasons were suggested, one simply being that the threshold radius should
be at a higher radius than the data of Leroy et al. (2008) encompasses.

Furthermore, we have yet to study the effects of thickness ona two component disc. This is
a much more complicated case than the thin two component caseand took much effort on my
behalf. The question is how taking into account disc thickness might affect the two component
disc behaviour of two-phase region, transition line and thestability threshold.
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Chapter 5

Dynamical effects of disc thickness

We have so far studied discs with a stellar and gaseous component with no thickness. This is of
course a serious approximation. A normal disc galaxy, such as the Milky Way is usually roughly
10 kpc in diameter and on the order of 1 kpc in thickness (Binney& Tremaine 2008). This is a
fact we can not easily discard. To demonstrate the importance of disc thickness we will begin by
looking at a one-component thick fluid disc.

In a disc of finite thickness we must obviously have a volume density. This is defined by
using the scale heighth. The stellar disc usually has a constant scale height so the thickness of a
disc is defined as2h and the volume density is normally given by (Binney & Tremaine2008, p.
390; Romeo 1990)

ρ(z) = ρ0 sech2
(z

h

)
(5.1)

whereρ0 is the volume density in the center of the disc, wherez = 0. And by integrating overz
from−∞ to∞, we obtain the surface density

Σ = ρ0 · 2h. (5.2)

Note that sometimes, as by Binney & Tremaine (2008, p. 324) is instead a Gaussian law to
describe the volume density used. This gives a similar vertical dependence however not as exact
as the sech2 law we are using.

The dispersion relation for a one component thin disc was defined in Chapter 2, equation
(2.1) as

ω2 = κ2 − 2πGΣk + σ2k2. (5.3)

The thick one component dispersion relation can by using a reduction factor be written as (Romeo
1990, 1992, 1994; Vandervoort 1970)

ω2 = κ2 − 2πG
Σ

1 + kh
k + σ2k2. (5.4)
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To demonstrate the importance of thickness we will considerthe wavenumber where the
dispersion relation in the thin case defined above (or equation (2.1)) has a minima. This was
found in Chapter 2 to be

kmin =
πGΣ

σ2
. (5.5)

The disc scale height is possible to write as (Binney & Tremaine 2008, p. 324)

h =
σ2

z

πGΣ
(5.6)

whereσz is the vertical velocity dispersion. This gives that

kmin · h =
(σz

σ

)2

. (5.7)

From the study of the classical Toomre criterion in Chapter 2 we learn that the criterion is
only reliable ifkminh ≪ 1. This is visible in equation (5.4) as this limit reduces the relation to
the classical dispersion relation, equation (2.1). However, we will see later that the ratio between
the radial and vertical velocity dispersions for the stellar component is most commonly around
0.5 and 0.6.0.52 = 0.25 is smaller than unity, however not much smaller than unity. This small
relation shows us that thickness indeed plays a significant role in the stability of discs.

To study discs of two components and finite thickness we will follow the method and equa-
tions described by Romeo (1992, 1994) and study the model he described in more detail. In
analogy with the zero-thickness case we will look at stability threshold contours, two-phase re-
gion and the effects on these. For further details concerning the numerical calculations used,
refer to Appendix C.

5.1 Relevant parameters for two-component thick discs

When considering two-component discs with thickness we firstneed to discuss what kind of
parameters might be useful. The obvious is to just use the scale height for each component. This
is problematic though as we can only directly measure the thickness of galaxies that are edge-
on. Also it is difficult to know the shape of the gaseous disc asthis is difficult to measure. It
is simpler to consider the velocity ellipsoid and look at thevertical velocity dispersion for each
component, following the study by Romeo (1992, 1994). The advantages of using the velocity
ellipsoid is that the vertical stellar velocity dispersionis possible to measure along the line of
sight and it is possible to make good assumptions around the gaseous velocity dispersion.

Thus we define the following parameter

Di ≡ σzi

σi

, (5.8)

the ratio between the vertical velocity dispersion and the radial velocity dispersion where the
index “i” is as usual either “g” for gas or “s” for stars.
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The stellar velocity dispersion ratio has been measured several times. In the literature I was
able to find that it is for the Milky Way around 0.5 (Binney & Tremaine 2008, p. 18) or between
0.5 and 0.6 (van der Kruit & de Grijs 1999). NGC 488 seems to have a stellar velocity ratio of
0.7 (van der Kruit & de Grijs 1999; Gerssen et al. 1997). Gerssen et al. (1997) also mentions
that the solar neighbourhood has a ratio of 0.52. van der Kruit & de Grijs (1999) also tabulates
measurements of the stellar velocity ratio for a number of galaxies and found values ranging
from 0.49 to 0.71.

The stellar disc thickness parameter we are going to consider in this chapter areDs = 0.5, 0.7
and 1.Ds = 1 is for comparison, an isotropic disc (equal radial and vertical velocity dispersions).
Ds = Dg = 0 does of course represent the infinitesimal thin case of Chapter 3.

The gaseous velocity dispersion ratio can not be measured, however as we can assume that
the gas is collisionalDg should realistically be unity. However, for comparison we are also going
to consider a case withDg = 0.5.

The case withDs = 0.5 andDg = 1 should then represent the most realistic case (and the
solar neighbourhood). This case will be studied in more detail than the others and also used to,
in a similar fashion as in Chapter 3, try to formulate a simple and useful approximation.

In summary are the considered thick cases

• Ds = 0.5 andDg = 0.5, the thinnest case.

• Ds = 0.5 andDg = 1, the most realistic case, “the solar neighbourhood”.

• Ds = 0.7 andDg = 1, the thickest realistic case.

• Ds = 1 andDg = 1, the thickest case.

5.2 The marginal stability curve

As with the thin two component case of Chapter 3 we start by considering the marginal stability
curve, as derived in the study by Romeo (1992). He derived two different marginal stability
curves using two different parametrizations, with the vertical velocity dispersion parameters al-
ready defined and one parametrization using the scale heights for each component and the stellar
wavenumber. However, visible in his results the velocity dispersion parametrization is more pre-
cise, though also more complicated to handle while the wavenumber parametrization gives some
unphysical results.

The marginal stability curve as a function of the velocity dispersion parameters is given by
a polynomial of the 8th degree. For more details concerning the polynomial, the constants and
how they were all solved numerically, refer to Appendix C. Thepolynomial has the form of

A ·Q8 + B ·Q6 + C ·Q4 + D ·Q2 + E = 0 (5.9)

which has to be solved numerically for each point ofΛ in our range of0 ≤ Λ ≤ 1 +A to obtain
the wanted marginal stability curve,
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Q(A,B,Ds,Dg, Λ). (5.10)

Figure 5.1 are a few examples of how the marginal stability curves behave in the considered
thick cases, using the sameA andB examples as in figure 3.1 of the thin case. The first plot of
the figure is in fact the same as figure 3.1 as it shows the thin cases.

We notice how the curves are quite similar to the thin cases asthey also exhibits two peaks
for certain densities and velocity dispersions. This obviously again gives us a two-phase region
and transitions between stellar and gas-dominated regimesfor each thick case.

However, when comparing with the zero-thickness case we seethat for thicker discs the
marginal stability curve exhibit lower values. Thus the stability threshold evidently grows smaller.
Already we can see that the thickness has a stabilising effect on the disc.

Furthermore, we see when studying the curves more closely that not only does the stability
threshold change but also the shape of the curves. The transitions between stellar and gaseous
regimes apparently also changes with the thickness. We evidently need to study the two-phase
region of each case in more detail.

5.3 The two-phase region

The two-phase regions of all our cases are plotted in figure 5.2. The general shape of the regions
seem to be conserved, however the size and transition lines are affected by the thickness. The
first point to note is how the regions grow larger due to the thickness. This is interesting as it
further strengthens the earlier arguments of the region’s importance. In Chapter 4 we saw how
observations indicate that large portions of the discs of galaxies are in fact inside the two-phase
region of the zero-thickness case. Taking into account the thickness may increase the portions of
the discs that are inside the region.

It is also visible here that the triple point of the regions are affected by the thickness, though
we now encounter problems. The triple point and the size of the two-phase regions are affected
by the thickness in a quite irregular manner. The hope was that we could construct a simple
and powerful approximation for the two-phase region depending on the thickness parameters. In
table 5.1 the effects on the triple point is presented together with the zero-thickness values from
Chapter 3 so that it is easier to see the unpredictable behaviour of it.

Instead of formulating an exact approximation I suggest some constant values that envelopes
all the regions. As an example we may useA < 0.25 andB < 0.2. This forms a square around
the two-phase region and the proximity at low stellar densities for all cases. This is obviously
larger than even the two-phase region corresponding to the isotropic disc. However, this is just
an approximation and any values are possible to use. As another example we may use theA and
B triple point values for the Milky Way-like disc,A < 0.22 andB < 0.16 which may be a more
realistic constraint.

Furthermore it is possible, if one need to be more exact, to take advantage of the triangle-like
shape of the two-phase region and construct an approximation for the necessary thickness of the
disc by just postulating some straight lines in theB −A parameter space.
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Table 5.1: Effects of thickness on the triple point.

Thickness A0 B0 Q̄0 Λ̄0

Ds = 0,Dg = 0 0.17 0.17 1.41 0.29
Ds = 0.5,Dg = 0.5 0.21 0.18 1.26 0.23
Ds = 0.5,Dg = 1 0.22 0.16 1.27 0.21
Ds = 0.7,Dg = 1 0.24 0.18 1.76 0.25
Ds = 1,Dg = 1 0.22 0.19 0.99 0.36

For the Milky Way the region could perhaps be approximated with a lower transition line
fromA = 0.01 andB = 0.04 to the triple point and an upper line fromA = 0.01 andB = 0.15
to the same point. Note that as we do not consider anything withA andB lower than 0.01 here
as this example uses the lowest values available for the two-phase region. This would give the
simple linesAhigh = 0.47B + 0.15 andAlow = 1.75B − 0.06. This is of course highly affected
by the resolution we are using for the triple point and lower values. It would be advisable to be
more precise than this example and perhaps use a higher accuracy on the coordinate of the triple
point and to extend the two-phase region down toA = B = 0 prior to defining the lines.

5.4 The stability threshold

In figure 5.3 we compare the stability threshold contour lines of the discs with different thickness.
The thin black lines in the background are the same contour lines as in figure 3.3, the zero-
thickness contour lines of Chapter 3, while the coloured lines are the different thick cases with
the stability threshold beinḡQ = 1. In the thin case this contour line only exists alongA = 0 as
it is the classical one-component Toomre case we find there. However, when taking into account
the thickness this contour line is quite prominent due to thestabilising effect we obtain which is
clearly visible in this plot. The thicker discs have theQ̄ = 1 contour line at very highA-values,
so that a much larger area of the parameter space has the threshold Q̄ < 1.

We can also notice both in figure 5.2 and 5.3 how the main transition line is affected by the
thickness. However, this is as the two-phase region, also behaving quite unpredictable.

We should also pay extra attention to the Milky Way-like case, whenDs = 0.5 andDg = 1.
In figure 5.4 several more contour lines of the stability threshold is plotted for further study. The
intention was to use a more detailed analyses of this case to formulate an approximation of the
effective stability parameter in a similar fashion as for the thin case in Chapter 3. It seemed quite
probable that this would be possible as the behaviour is verysimilar and it seemed to be a ques-
tion of correcting the shift of the contour lines. However, to formulate an approximation of the
effective stability parameter when not neglecting thickness proved to be much more complex. It
is possible to formulate an approximation for the stellar regime. However, connecting this with
the transition between stellar and gaseous dominated regimes and formulating a useful approx-
imation of the gaseous regime proved too complex. Details concerning this may be presented
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elsewhere.

5.5 Summary

We had not yet discussed the effects of disc thickness on the stability in this thesis. These can be
proven to be quite important by finding out ifkminh ≪ 1 is really true. By calculating equation
(5.7) we however see thatkminh = (σz/σ)2 which is commonly measured to be roughly 0.25 to
0.3.

There are different ways to formulate good parameters that describe disc thickness. However,
the most useful is to describe it with the help of the velocityellipsoid. More specifically we
use parameters defined by the ratio between the radial and vertical velocity dispersions of our
specific components. Such parametrization was used by Romeo (1992, 1994) and we followed
his conduct in this study.
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Romeo (1992) derived how the marginal stability curve can be derived numerically from an
polynomial of the 8th order, equation (5.9). As in Chapter 3 weknow that it is possible to derive
the stability threshold and the two-phase region from the marginal stability curves. Furthermore,
we know it is possible to study the stability threshold to attempt to find an approximation of the
effective stability parameter. This however, proved more complex than first expected when we
are not neglecting disc thickness and this is left for later.

However, it is possible to draw several conclusions from this study. First of all we find that
the thick cases that are more realistic according to the literature greatly affects the stability. The
thickness strongly stabilises the discs and we see that the two-phase region, which unfortunately
behaves rather irregular depending on the thickness, growslarger. This strengthens the arguments
of Chapter 4 where we conclude that the two-phase region playsa significant role in a large
portion of many disc galaxies.

Even though the two-phase region behaves irregular when using thickness it is still possible
to use the general shape of each case to formulate an approximation of it. Either using the triple
point of each case (see table 5.1) to form a square around the two-phase region and its vicinity
or we can formulate a triangle from the lowerB - A values to the triple point to obtain a more
exact result.
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Chapter 6

Conclusions

By revisiting the study of gravitational instability in thintwo-component discs as studied by Jog
& Solomon (1984); Bertin & Romeo (1988); Wang & Silk (1994); Jog(1996) we are able to
formulate a new approximation of a stability criterion similar to that formulated by Wang & Silk
(1994). With this approximation however, we are able to takeinto account previously found
behaviours of a two-component disc. The most important for the approximation is the transition
between stellar and gaseous dominated instabilities.

What we obtain are two Toomre-like effective stability criterions (see Chapter 3), one for
the stellar dominated instability, equation (3.15) and onefor the gaseous dominated instability,
equation (3.19).

These expressions are with purpose formulated in a similar fashion as how Wang & Silk
(1994) formulated theirs. This makes it easy to adapt this quite complex case for application
with observations because it just involves using a correction factor, equation (3.16) and taking
into account what kind of instability is dominating for the specific data point.

The two-component case exhibits other interesting behaviours also found by previous men-
tioned authors. There is not only a transition between stellar and gaseous dominated instabilities,
however there are also situations where we obtain instabilities from both components at two
different wavelengths of perturbation, or at two differentscale lengths. The stellar and gaseous
components are in a way decoupled. This is usually known as a region of peculiar instability (see
the two-phase region, Section 3.2).

To find how important this behaviour may be, we applied the data from ten different galaxies
(eight disc galaxies and two dwarf galaxies) from the study by Leroy et al. (2008) and conducted
a similar stability analyses as them. We applied the data in exactly the same way as Leroy et al.
(2008) though on this model instead and can conclude that theregions of peculiarity appears to
be of importance. This is due to that considerable portions of the inner parts of five of the eight
considered disc galaxies were measured to have the requireddensities and velocity dispersions.
The other three disc galaxies had densities had velocity dispersions in the vicinity of the required
range so other assumptions as a lower gaseous velocity dispersion could have strengthened this
result.

Furthermore when taking into account the thickness of discsby following the conduct of
Vandervoort (1970); Romeo (1990, 1992, 1994) we can see that the importance of the peculiar
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two-component instabilities are strengthened. This is dueto the fact that disc thickness widens
the ranges of densities and velocity dispersions that givesrise to the peculiar instabilities by a
significant amount.

The widened ranges of densities and velocity dispersions are possible to approximate with
simple constraints depending on the disc thickness even though the ranges are affected in an
irregular manner. This can be done by either using constant densities and velocities for each
component or by using simple linear functions, i.e. the velocity dispersions as functions of
the densities. Which conduct is favoured depends on what degree of accuracy is required (see
Section 5.3 for further details).

Finally we have to note that when applying the data of Leroy etal. (2008) it is important
to remember the importance of the conversion factor used forfinding the gaseous densities,
especially for the densities of molecular hydrogen. This isdue to the fact that the existing H2-data
affects the gas density much more than the HI-data near the centre in spiral galaxies while at the
same time are the H2-data the most unreliable data as they are found purely by observing tracers.
Leroy et al. (2008) discusses this problem and concludes that there exists no reliable conversion
factor which takes into account the different aspects that affects the connection between the tracer
intensity and the H2-density. This fact can however affect our conclusion of howimportant the
two-component effect of having instabilities from both thegaseous and stellar components really
is.

For the future it could be interesting to study the disc thickness effects further. However, the
question is how useful this would be as it is very difficult to formulate some useful simplification
of this quite complex case. We should also note that the main topic in this field these days is the
study of the role of turbulence. This on the other hand complicates matters again as the common
conduct these days when doing stability analysis of observed galaxies is to adopt one constant
velocity dispersion for the gaseous component.

These comments again remind us of how complex these studies can be and the importance
of finding simple useful methods of applying these on observations with adequate accuracy, i.e.
adequate enough to cover what is possible to measure. This iswhat our approximation of the
infinitesimal thin two-component disc stability criterionprovides.
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Appendix A

Numerical methods: thin discs

MATLAB was used for all the numerical computations of this thesis.
The problem described in Chapter 3 consists of (1) deriving the marginal stability curve for

given values of the relevant parametersA andB; (2) extracting useful information from these
curves to find the two-phase region and transitions; and (3) determing the stability threshold.

A.1 Finding the two-phase region

As the expression describing the marginal stability curve was already given by Bertin & Romeo
(1988) it was only a simple matter of plotting the curve to be able to study it. To derive the two-
phase region is another matter however as it demands that I amable to derive when the curve
exhibits two peaks and also which peak is the global maxima inthe wholeB − A space. This
can of course be done in several ways and I have mainly been using two methods.

For the predefined parameters was a resolution of 1000 pointsused, i.e. forA, B andΛ. The
Λ was defined from 0 to 1.2 when finding the two-phase region in constrast as when plotting the
curve from0 to 1 + A, as the two-phase region does not exist atA > 0.2 as already found by
Bertin & Romeo (1988). In this way was not a newΛ range required to be defined for eachA
value, perhaps saving a bit of time.

TheA andB parameters were first defined in linear scale from 0 to 1, however when the
thesis progressed it was noticed that it would be better to define them in logarithmic scale from
0.01 to 1, still with a resolution of 1000 points each. In thisway was only one range needed for
the large scale plots instead of the two ranges used by Bertin &Romeo (1988), one small scale
for the transitions and two-phase region and one large scale.

The method finally used to find the two-phase region of this thin two-component case was
based on one of the earlier codes I wrote for this problem. Thus it is a bit manual and perhaps
ineffective. See figure A.1 for a flowchart of the following description.

The routine consists of a double for-loop where the computer, for each definedA andB point
derive the marginal stability curve. TheB range was confined toB ≤ √

0.0294 (≈ 0.1715) to
save time. This is the theoretical derivedB for the triple point found by Bertin & Romeo (1988).

Each marginal stability curve is sampled by the computer foreachΛ, first from the lowestΛ
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(blue parts figure A.1) in an attempt to find the gaseous peak asthis is always at a wavelength
smaller than the stellar peak (see figure A.2). The computer searches for whenQ(Λ1)−Q(Λ2) ≤
0.00001 whereΛ1 < Λ2, and saves theΛ1 in a matrix denotedl1. 0.00001 is an arbitary number
used to counter numerical errors.

To find the stellar peak was a similar method used, however I instead let the computer sam-
ple the curve from the highΛ (green parts of figure A.1), looking for whenQ(Λ1) − Q(Λ2) ≤
0.00001. The number 0.00001 is again used to counter numerical errors. It is of greater impor-
tance here when searching for the stellar peak as this is muchflatter than the gaseous peak (see
figure 3.1). TheΛ1 corresponding to the stellar peak was saved in a matrix denoted l2.

Furthermore was a third matrix,ltrans created, where all theΛ corresponding to the global
maxima of the marginal stability curve was saved (yellow part in figure A.1) with the help of the
MATLAB-function max. In this way we have three different matrices with theΛ of each local
maxima (gaseous and stellar peaks) and for the global maximafor eachA andB in the chosen
range saved.

To find the lower curve of the two-phase region (see figure A.2)the l1 matrix is sampled
from highA and lowB until theΛ is larger than 0.293. A value theoretically derived by Bertin
& Romeo (1988) to be the wavelength of the single flat maxima of the triple point. The higher
transition curve of the two-phase region is found in exactlythe same way, however by sampling
the l2 matrix instead which has theΛ for the stellar peaks. And finally is the main transition line
between the gaseous and stellar regimes found by the same method, however by sampling the
ltrans matrix containing theΛ for the global maxima.

The specificA values for each transition toΛ > 0.293 for each matrix are saved in vectors
and simply plotted against theB axis. Thus is the two-phase region plotted.

A second method to find the two-phase region was also used. However this was mainly
for the thick two-component disc case and it involved using the predefined MATLAB-function
denotedfindpeaks. That is explained in Appendix C.

A.2 Determining the stability threshold

The contours of the stability threshold̄Q are easily determined by finding theQ value of the
global maxima of the marginal stability curve. Again was this done by calculating the marginal
stability curve for everyA andB in the same range used for finding the two-phase region, how-
ever theB was not confined to be≤ √

0.0294 here. The predefined MATLAB-functionmax
was used to find the global maxima. This command returns both the maximalQ value and the
correspondingΛ. However, I was only interested in the stability threshold and thus only saved a
matrix with the derived̄Q for everyA andB.

For the plotting of the stability threshold was thecontour function for contour plots in MAT-
LAB used. There is not much to write about this except that there are other methods possible
to find the contours of the stability threshold that are not equally exact however more effective.
These were used in the two-component thick cases and not required in this thin disc-case.

Exactly the same conduct was used for the contour lines of theWang & Silk (1994) stability
threshold approximation. However, for the Romeo and Wiegertapproximation (Section 3.4) was
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Figure A.1: Flowchart describing the routine used to find thetwo-phase region. More details are
found in the text of Appendix A.1.
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Figure A.2: The two-phase region and the wanted characteristics of the marginal stability curve
in the transition lines.
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the contour lines plotted as several functionsA(Q̄,B) instead with the corresponding constant
Q̄ chosen for each contour line without using thecontour function. This was due to how the
approximation was derived and that we for simplicity lookedat these kinds of functions instead
of a Q̄(A,B) for the stellar and gaseous regimes.
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Appendix B

Radial profiles of the stability quantities

In the online version of Leroy et al. (2008) all the derived radial density profiles from the galaxies
of their survey were presented in their table 7. They also linked to a machine-readable file of the
table that was allowed to download. The data were all very extensive so it was only a matter of
deriving the wanted quantities, parameters and corresponding error bars when conducting this
study. The only troubles were the choices of galaxies and theamount of data to handle. In this
appendix are details surrounding how the data was derived byLeroy et al. (2008) and how their
data in turn was handled by me. The radial profiles of the chosen galaxies are also presented in
tables B.1 to B.11.

B.1 Surface density and velocity dispersion ratios

In Section 4.3 I explained how the mean density ratio and velocity dispersion ratio profiles were
derived. However, the densities and velocity dispersions were first derived by Leroy et al. (2008).
As mentioned in Chapter 4 were they using intensity maps of galaxies at different wavelengths
to derive the densities. The appendices by Leroy et al. (2008) are very extensive on how they
derived the density profiles, however I write here a summary of their work and how I used their
derived quantities in more detail.

The stellar surface density profiles were derived by Leroy etal. (2008) by using infrared
pictures from SINGS (Kennicutt et al. 2003) taken in the 3.6µm band for most of their galaxies.
They gathered intensity profiles denotedI3.6 from the median of10′′ wide tilted rings with the
help of earlier derived parameters for each galaxy. From theprofiles from the 2MASS (Jarrett
et al. 2003) they acquired the ratio betweenI3.6 and theK-band intensity which was found to
beI3.6 = 0.55IK . With this they can use theK-band mass-to-light ratio ofΥK

s = 0.5M⊙/L⊙,K

which they approximate to be constant for all their galaxiesat all radii to derive the wanted
densities. This gives that the stellar surface densities can be derived from

Σs = ΥK
s

IK

I3.6

cos iI3.6 = 280 cos iI3.6 (B.1)

wherei accounts for the inclination given by Leroy et al. (2008),I3.6 is in MJy ster−1 andΣs is
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in M⊙ pc−2.
The choice of mass-to-light ratio is a major uncertainty as this depends on the star formation

history, metallicity and initial mass function. It varies less in the near infrared than the optical
however it still varies. Leroy et al. (2008) discusses differences in derived densities by different
authors due to this.

To derive the gas density profiles Leroy et al. (2008) used THINGS (Walter et al. 2008) maps
for HI densities and HERACLES maps for H2. From THINGS they obtain 21 cm line emissions
with a mean angular resolution of11′′ and mean velocity resolution of 5 km s−1 from which they
could convert from integrated intensity to surface densitywith

ΣHI = 0.020 cos iI21cm (B.2)

whereΣHI is given inM⊙ pc−2 and the intensityI21cm in K km s−1. This conversion also takes
into account the presence of helium with a factor of 1.36.

The molecular hydrogen, H2 is estimated by measurements of CO emission. This was done
with results from HERACLES, with intensity maps of COJ = 2 → 1 emission for most of the
galaxies in their study. These data have an angular resolution of11′′ and a velocity resolution of
2.6 km s−1.

Such intensity maps from HERA were not available for the galaxies NGC 3627 and NGC
5194 of the study which is important to mention as data on NGC 5194 were used in this thesis.
Instead were COJ = 1 → 0 emission maps from BIMA SONG (Helfer et al. 2003) used for
these with an angular resolution of7′′.

The surface density,ΣH2 is derived from theJ = 1 → 0 emissions with the conversion

ΣH2 = 4.4 cos iICO(1 → 0) (B.3)

where again the density is given inM⊙ pc−2 and the intensity is in K km s−1.
The COJ = 2 → 1 emissions are related to theJ = 1 → 0 emissions. Based on HERA-

CLES and other surveys Leroy et al. (2008) assumes the ratioICO(2 → 1) = 0.8ICO(1 → 0)
which is a typical value in their sample. Thus is the H2 surface density given by

ΣH2 = 5.5 cos iICO(2 → 1). (B.4)

The errors for the radial profiles of gaseous and stellar densities were derived by Leroy et al.
(2008) from

∆ =
∆rms√

Npix,ring/Npix,beam

(B.5)

for each quantity. The∆rms is the rms scatter within the tilted ring, theNpix,ring is the number
of pixels in the ring andNpix,beam is the number of pixels per resolution element. This captures
both random scatter in the data and variations due to the azimuthal structure in the ring. It does
not however capture systematic errors, as choices of light-to-mass ratios and tracers.

The total gas density is just simply the sum of the HI and H2 densities. And the total gas
error margins are derived from the sum of the given error margins derived by Leroy et al. (2008).
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So theA-parameter was simply derived as it is defined, with the ratiobetween the gaseous
and stellar densities. TheA-error however were derived so that the highest (and lowest)values
possible would be obtained, i.e. with

∆A+ =
Σg + ∆g

Σs −∆s

−A (B.6)

for the length of the top error bar where the different∆’s denotes the corresponding density error
bars. Similar is the length of the lower error given by

∆A− = −
(

Σg −∆g

Σs + ∆s

−A
)

. (B.7)

For the gaseous velocity dispersion is a constantσg = 11km s−1 adopted by Leroy et al.
(2008). This is due to the fact thatσg = 11± 3km s−1 agrees well with the outer (HI dominated)
parts of the galaxies of THINGS. The error is not taken into account here as this was not done
by Leroy et al. (2008).

The derivation of the mean stellar velocity dispersions used by Leroy et al. (2008) were
explained in Section 4.3 and are given by

σrs =
1

0.6

√
2πGRd

7.3
Σ1/2

s . (B.8)

To obtain this equation was a relation between the disc scalelength and disc scale height
used,Rd = 7.3± 2.2hs. However, in the derivation we stated that we disregarded the margin of
error to obtain the mean velocity dispersion. This was done also when deriving the errors of the
velocity dispersion as this seems to have been the case in thestudy by Leroy et al. (2008). Thus
the error for theB parameter is only due to the error of the measured stellar densities as we have
a constant gaseous velocity dispersions and disregard the errors of the relations used to find the
stellar velocity dispersions.

The top stellar velocity dispersion error was thus given by

∆σ s+ =
1

0.6

√
2πGRd

7.3
(Σs + ∆s)

1/2 (B.9)

and the lower error was given by

∆σ s− =
1

0.6

√
2πGRd

7.3
(Σs −∆s)

1/2 (B.10)

so that theB top error is

∆B+ =
σg

σs −∆σ s−
− B (B.11)

and the lower error is

∆B+ = −
(

σg

σs + ∆σ s+

− B
)

. (B.12)
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As theB error is only dependant of the error of the stellar densitiesthis gives much smaller
margins of error in this range than for theA. This is quite visible in the data plots of Chapter
4, especially theB − A tracks of figures 4.5 and 4.8. Considering how the gaseous velocity
dispersions are set to a constant value and the stellar velocity dispersions are theoretically derived
this is not so strange.

B.2 Stability parameters

For the stability threshold̄Q was the thin two-component case studied by Bertin & Romeo (1988)
used. As described in Chapter 3 and in Appendix A must the marginal stability curve for eachA
andB used be derived and from these curves are the global maximas taken numerically to find
the stability threshold.

As shown in this thesis is the marginal stability curve for a thin two-component disc given by
equation (3.7),

Q2 =
2Λ

B2

[A+ B2 − Λ(1 + B2)

+
√

Λ2(1− B2)2 − 2Λ(1− B2)(A− B2) + (A+ B2)2
]
.

(B.13)

By simply using the meanA andB values derived for each galaxy are the mean stability
threshold values derived. The margins of error for the stability threshold are given by deriving
the marginal stability curves

Q = Q(A+ ∆A+,B + ∆B+, Λ) (B.14)

for the top error and

Q = Q(A−∆A−,B −∆B−, Λ) (B.15)

for the lower error. The stability threshold errors are again found from the global maximas of
these curves and denoted∆Q̄+ and∆Q̄− respectively.

The second important stability parameter applied on the data is the effective stability param-
eter defined in equation (3.4) to be

Qeff ≡ Qs

Q̄
(B.16)

where

Qs =
κσs

πGΣs

(B.17)

andκ is the epicyclic frequency for each galaxy of the chosen sample. This is derived theo-
retically by Leroy et al. (2008) and most details were explained in Section 4.3. They used an
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adaptation of how the epicyclic frequency for a flat rotationcurve is formulated with the help of
the term

β =
d log V (R)

d log R
(B.18)

whereR is the galactocentric radius andV (R) is the linear velocity. Thisβ we in turn derived nu-
merically in MATLAB by using the simple commanddiff on both the velocity and radius terms.
The following output is a vector one element shorter than theinput-vectors, where the output-
vector elements are the difference in value of each element of the input-vectors. To counter the
problem that theβ is now one element shorter than the rest of the input-vectorsI simply create
one more element inβ that is equal the the previously last element. These two elements corre-
spond to the absolutely last data points of each galaxy, i.e.the outer parts of each galaxy and
thus also where the rotation curve is normally flatter.

Thus is the margin of error for theQs given by the errors of the stellar densities and stellar
velocity dispersions as

∆Qs+ =
κ(σs + ∆σs+)

πG(Σs −∆s)
−Qs (B.19)

for the upper error and

∆Qs− = −
(

κ(σs −∆σs−)

πG(Σs + ∆s)
−Qs

)
(B.20)

for the lower error.
This in turn gives the margin of error of the effective stability parameter,

∆Qeff+ =
Qs + ∆Qs+

Q̄−∆Q̄−
−Qeff (B.21)

for the upper error and

∆Qeff− = −
(

Qs −∆Qs−
Q̄ + ∆Q̄+

−Qeff

)
(B.22)

for the lower error.
There are other methods for deriving margins of error, deviation and propagation of error.

However, the method described above is the more rigorous wayof doing it. Also were the
differences between length of error bars using different methods found to be much smaller than
unity.

B.3 Radial profiles

In this section are the radial profiles for all the galaxies inthe chosen samples presented. The
columns withR, ΣHI , ΣH2 andΣs are directly from the electronic version of table 7 of the article
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Table B.1: Radial profiles for the galaxy HO II (R25 = 3.7 kpc).

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.1 7.3± 2.9 < 1.0 25.6± 0.8 0.285+0.126
−0.118 0.619+0.010

−0.009 3.86+0.76
−0.60 1.43+0.19

−0.18

0.2 8.2± 3.3 < 1.0 24.8± 0.7 0.331+0.147
−0.138 0.629+0.009

−0.009 3.36+0.71
−0.55 1.49+0.22

−0.21

0.4 8.9± 3.0 < 1.0 19.7± 0.3 0.452+0.162
−0.157 0.706+0.005

−0.005 2.87+0.51
−0.40 1.62+0.22

−0.21

0.6 9.4± 2.2 < 1.0 19.5± 0.2 0.482+0.119
−0.117 0.709+0.004

−0.004 2.37+0.29
−0.24 1.66+0.16

−0.16

0.7 9.6± 1.5 < 1.0 21.4± 0.9 0.449+0.093
−0.085 0.677+0.015

−0.014 2.09+0.30
−0.26 1.63+0.12

−0.11

0.9 9.0± 1.8 < 1.0 19.1± 0.7 0.471+0.116
−0.108 0.717+0.014

−0.013 1.88+0.29
−0.25 1.64+0.15

−0.14

1.1 8.3± 2.3 < 1.0 20.4± 1.3 0.407+0.148
−0.130 0.693+0.023

−0.021 1.65+0.39
−0.31 1.56+0.19

−0.17

1.2 7.5± 2.5 < 1.0 53.5± 7.8 0.140+0.079
−0.059 0.428+0.035

−0.028 1.18+0.43
−0.32 1.25+0.14

−0.10

1.4 7.0± 2.4 < 1.0 13.0± 0.2 0.538+0.196
−0.190 0.869+0.007

−0.007 1.62+0.29
−0.23 1.62+0.22

−0.22

1.6 6.7± 2.3 < 1.0 8.4± 0.1 0.798+0.287
−0.280 1.081+0.006

−0.006 1.66+0.32
−0.24 1.74+0.26

−0.26

1.7 6.6± 2.1 < 1.0 7.4± 0.1 0.892+0.300
−0.292 1.151+0.008

−0.008 1.63+0.31
−0.23 1.77+0.25

−0.25

1.9 6.9± 2.1 < 1.0 8.1± 0.5 0.852+0.332
−0.294 1.100+0.036

−0.032 1.40+0.39
−0.29 1.77+0.27

−0.25

2.1 7.5± 2.2 < 1.0 12.0± 1.5 0.625+0.299
−0.232 0.904+0.062

−0.052 1.09+0.44
−0.31 1.69+0.27

−0.23

2.2 8.0± 2.2 < 1.0 5.3± 0.1 1.509+0.452
−0.435 1.360+0.013

−0.013 1.27+0.26
−0.18 2.08+0.28

−0.31

2.4 8.5± 2.1 < 1.0 9.8± 0.8 0.867+0.310
−0.264 1.000+0.044

−0.038 0.95+0.29
−0.21 1.87+0.26

−0.24

2.6 8.9± 1.8 < 1.0 7.6± 0.6 1.171+0.358
−0.305 1.136+0.048

−0.042 0.92+0.25
−0.19 2.03+0.25

−0.24

2.7 9.4± 1.5 < 1.0 4.7± 0.2 2.000+0.422
−0.388 1.445+0.032

−0.030 0.99+0.17
−0.13 2.31+0.19

−0.21

2.9 10.1± 1.3 < 1.0 23.8± 4.3 0.424+0.160
−0.111 0.642+0.067

−0.051 0.58+0.26
−0.18 1.62+0.18

−0.14

3.0 10.8± 1.3 < 1.0 5.8± 0.3 1.862+0.338
−0.305 1.300+0.035

−0.032 0.77+0.13
−0.10 2.39+0.16

−0.18

3.2 10.6± 1.3 < 1.0 4.5± 0.3 2.356+0.478
−0.418 1.476+0.052

−0.047 0.79+0.15
−0.12 2.47+0.16

−0.17

3.4 9.7± 1.2 < 1.0 3.0± 0.2 3.233+0.660
−0.577 1.808+0.063

−0.057 0.91+0.17
−0.13 2.49+0.15

−0.16

3.5 8.6± 1.0 < 1.0 2.6± 0.1 3.308+0.532
−0.493 1.942+0.038

−0.036 0.98+0.12
−0.10 2.39+0.13

−0.13

3.7 7.5± 0.8 < 1.0 2.7± 0.1 2.778+0.415
−0.385 1.906+0.036

−0.034 0.97+0.11
−0.10 2.24+0.11

−0.12

3.9 6.6± 0.7 < 1.0 2.2± 0.1 3.000+0.476
−0.435 2.111+0.050

−0.046 1.06+0.14
−0.11 2.16+0.10

−0.11

4.0 5.8± 0.7 < 1.0 1.9± 0.1 3.053+0.558
−0.503 2.272+0.062

−0.058 1.16+0.17
−0.14 2.08+0.11

−0.12

4.2 5.4± 0.6 < 1.0 3.3± 0.2 1.636+0.299
−0.265 1.724+0.055

−0.050 0.92+0.16
−0.13 1.88+0.11

−0.12

4.4 5.1± 0.6 < 1.0 3.7± 0.3 1.378+0.298
−0.253 1.628+0.070

−0.062 0.87+0.18
−0.15 1.79+0.12

−0.12

by Leroy et al. (2008). The columns withA, B, Qeff andQ̄ were derived in this thesis from the
data provided by Leroy et al. (2008) with their methods and the methods described previously in
this appendix and in Chapter 4.

The data from Leroy et al. (2008) had been approximated down to one decimal and were
used like so to derive the parameters used in this thesis. TheB andA parameters and corre-
sponding errors were approximated to three decimals and thestability parameters with errors
were approximated to two decimals as this was the resolutionused in this thesis.
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Table B.2: Radial profiles for the galaxy IC 2574 (R25 = 7.5 kpc).1

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.1 10.3± 2.5 < 1.0 23.5± 0.8 0.438+0.126
−0.117 0.488+0.009

−0.008 0.82+0.16
−0.13 1.78+0.23

−0.22

0.3 10.7± 2.3 < 1.0 19.1± 0.3 0.560+0.131
−0.127 0.542+0.004

−0.004 0.83+0.13
−0.10 1.94+0.23

−0.22

0.5 10.7± 1.6 < 1.0 18.2± 0.2 0.588+0.095
−0.093 0.555+0.003

−0.003 0.83+0.09
−0.07 1.97+0.16

−0.16

0.7 9.6± 1.3 < 1.0 16.4± 0.2 0.585+0.087
−0.085 0.585+0.004

−0.004 0.88+0.08
−0.07 1.93+0.14

−0.14

0.9 8.2± 1.4 < 1.0 16.1± 0.2 0.509+0.094
−0.092 0.590+0.004

−0.004 0.94+0.10
−0.09 1.80+0.15

−0.15

1.1 7.7± 1.6 < 1.0 14.2± 0.1 0.542+0.117
−0.116 0.628+0.002

−0.002 0.99+0.12
−0.10 1.81+0.18

−0.18

1.3 8.0± 1.7 < 1.0 13.0± 0.1 0.615+0.137
−0.134 0.657+0.003

−0.003 0.98+0.13
−0.10 1.90+0.20

−0.20

1.5 8.5± 1.7 < 1.0 13.0± 0.2 0.654+0.143
−0.139 0.657+0.005

−0.005 0.94+0.13
−0.11 1.95+0.21

−0.20

1.6 9.0± 1.4 < 1.0 11.0± 0.1 0.818+0.136
−0.133 0.714+0.003

−0.003 0.94+0.10
−0.09 2.12+0.18

−0.18

1.8 9.3± 1.1 < 1.0 9.6± 0.1 0.969+0.126
−0.123 0.764+0.004

−0.004 0.94+0.09
−0.07 2.25+0.16

−0.16

2.0 9.2± 1.2 < 1.0 8.2± 0.1 1.122+0.162
−0.158 0.827+0.005

−0.005 0.96+0.10
−0.09 2.35+0.19

−0.18

2.2 8.8± 1.2 < 1.0 8.3± 0.1 1.060+0.159
−0.155 0.822+0.005

−0.005 0.98+0.10
−0.09 2.28+0.18

−0.18

2.4 7.9± 1.1 < 1.0 8.0± 0.1 0.988+0.152
−0.148 0.837+0.005

−0.005 1.03+0.11
−0.09 2.17+0.17

−0.17

2.6 7.2± 1.1 < 1.0 9.5± 0.5 0.758+0.164
−0.148 0.768+0.021

−0.019 1.04+0.19
−0.16 1.97+0.18

−0.17

2.8 7.2± 1.2 < 1.0 7.0± 0.1 1.029+0.189
−0.184 0.895+0.006

−0.006 1.10+0.14
−0.12 2.15+0.20

−0.20

3.0 7.5± 1.3 < 1.0 6.8± 0.1 1.103+0.210
−0.204 0.908+0.007

−0.007 1.07+0.14
−0.12 2.21+0.22

−0.22

3.2 7.9± 1.3 < 1.0 5.2± 0.1 1.519+0.285
−0.274 1.038+0.010

−0.010 1.09+0.16
−0.12 2.46+0.23

−0.25

3.4 8.3± 1.3 < 1.0 6.9± 0.4 1.203+0.274
−0.244 0.901+0.027

−0.025 0.99+0.22
−0.17 2.33+0.26

−0.24

3.6 8.5± 1.1 < 1.0 4.5± 0.1 1.889+0.293
−0.280 1.116+0.013

−0.012 1.07+0.13
−0.10 2.65+0.19

−0.20

3.8 8.7± 1.1 < 1.0 4.8± 0.1 1.813+0.273
−0.261 1.081+0.011

−0.011 1.03+0.12
−0.10 2.65+0.19

−0.20

4.0 9.0± 1.0 < 1.0 3.9± 0.1 2.308+0.324
−0.308 1.199+0.016

−0.015 1.06+0.12
−0.10 2.81+0.17

−0.18

4.2 9.2± 0.9 < 1.0 4.1± 0.1 2.244+0.281
−0.268 1.169+0.015

−0.014 1.02+0.10
−0.09 2.81+0.15

−0.16

4.4 9.3± 0.9 < 1.0 3.6± 0.1 2.583+0.331
−0.313 1.248+0.018

−0.017 1.05+0.11
−0.09 2.89+0.15

−0.16

1This table continues in table B.3.
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Table B.3: Radial profiles for the galaxy IC 2574 (R25 = 7.5 kpc).2

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

4.6 9.4± 0.9 < 1.0 3.5± 0.0 2.686+0.257
−0.257 1.265+0.000

−0.000 1.05+0.05
−0.05 2.92+0.14

−0.14

4.8 9.5± 0.9 < 1.0 4.9± 0.1 1.939+0.228
−0.219 1.069+0.011

−0.011 0.93+0.09
−0.07 2.76+0.15

−0.16

4.9 9.7± 0.9 < 1.0 11.0± 1.6 0.882+0.246
−0.183 0.714+0.058

−0.047 0.77+0.29
−0.21 2.20+0.24

−0.20

5.1 10.1± 1.0 < 1.0 3.8± 0.1 2.658+0.342
−0.325 1.214+0.016

−0.016 0.96+0.10
−0.08 2.99+0.16

−0.17

5.3 10.4± 1.0 < 1.0 3.6± 0.1 2.889+0.368
−0.348 1.248+0.018

−0.017 0.96+0.10
−0.08 3.06+0.15

−0.16

5.5 10.4± 1.0 < 1.0 5.1± 0.4 2.039+0.386
−0.330 1.048+0.044

−0.039 0.85+0.18
−0.14 2.88+0.19

−0.20

5.7 10.2± 1.0 < 1.0 3.3± 0.1 3.091+0.409
−0.385 1.303+0.020

−0.019 0.98+0.10
−0.09 3.06+0.15

−0.16

5.9 9.6± 0.9 < 1.0 2.7± 0.0 3.556+0.333
−0.333 1.441+0.000

−0.000 1.08+0.05
−0.04 3.05+0.13

−0.14

6.1 8.6± 0.7 < 1.0 2.6± 0.1 3.308+0.412
−0.382 1.468+0.029

−0.027 1.14+0.12
−0.11 2.91+0.12

−0.13

6.3 8.0± 0.7 < 1.0 2.0± 0.0 4.000+0.350
−0.350 1.674+0.000

−0.000 1.30+0.05
−0.05 2.89+0.11

−0.12

6.5 7.7± 0.8 < 1.0 2.8± 0.1 2.750+0.398
−0.371 1.415+0.026

−0.025 1.15+0.14
−0.11 2.73+0.14

−0.15

6.7 7.5± 0.8 < 1.0 2.2± 0.1 3.409+0.543
−0.496 1.596+0.038

−0.035 1.27+0.17
−0.14 2.78+0.14

−0.15

6.9 7.3± 0.8 < 1.0 2.3± 0.2 3.174+0.683
−0.574 1.561+0.073

−0.064 1.25+0.27
−0.21 2.73+0.16

−0.17

7.1 6.9± 0.7 < 1.0 1.8± 0.0 3.833+0.389
−0.389 1.765+0.000

−0.000 1.40+0.07
−0.06 2.73+0.12

−0.13

7.3 6.5± 0.6 < 1.0 2.2± 0.1 2.955+0.426
−0.389 1.596+0.038

−0.035 1.32+0.17
−0.14 2.60+0.12

−0.13

7.5 6.0± 0.5 < 1.0 3.9± 0.5 1.538+0.373
−0.288 1.199+0.085

−0.070 1.12+0.35
−0.26 2.27+0.17

−0.17

7.7 5.7± 0.5 < 1.0 1.9± 0.1 3.000+0.444
−0.400 1.718+0.047

−0.043 1.45+0.20
−0.17 2.49+0.11

−0.12

7.9 5.6± 0.5 < 1.0 1.0± 0.0 5.600+0.500
−0.500 2.367+0.000

−0.000 1.90+0.08
−0.07 2.60+0.09

−0.10

8.0 5.4± 0.5 < 1.0 2.4± 0.2 2.250+0.432
−0.365 1.528+0.068

−0.060 1.35+0.28
−0.22 2.36+0.13

−0.14

8.2 5.2± 0.5 < 1.0 1.4± 0.1 3.714+0.670
−0.581 2.001+0.076

−0.068 1.68+0.29
−0.23 2.46+0.11

−0.12

8.4 4.9± 0.6 < 1.0 1.4± 0.0 3.500+0.429
−0.429 2.001+0.000

−0.000 1.70+0.10
−0.08 2.40+0.12

−0.13

8.6 4.5± 0.6 < 1.0 1.4± 0.0 3.214+0.429
−0.429 2.001+0.000

−0.000 1.75+0.11
−0.09 2.31+0.13

−0.14

8.8 4.0± 0.5 < 1.0 1.0± 0.1 4.000+1.000
−0.818 2.367+0.128

−0.110 2.11+0.51
−0.39 2.26+0.13

−0.14

2Continued from table B.2.
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Table B.4: Radial profiles for the galaxy NGC 628 (R25 = 10.4 kpc).

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.2 1.6± 0.3 22.7± 1.2 1209.4± 18.3 0.020+0.002
−0.002 0.065+0.000

−0.000 4.53+0.12
−0.12 1.04+0.00

−0.00

0.5 2.1± 0.3 20.2± 1.3 557.8± 4.8 0.040+0.003
−0.003 0.096+0.000

−0.000 5.12+0.10
−0.10 1.08+0.01

−0.01

0.9 2.6± 0.4 16.1± 1.2 313.6± 1.0 0.060+0.005
−0.005 0.128+0.000

−0.000 5.06+0.08
−0.08 1.12+0.01

−0.01

1.2 3.1± 0.4 12.7± 0.8 231.9± 0.5 0.068+0.005
−0.005 0.149+0.000

−0.000 4.80+0.07
−0.07 1.14+0.01

−0.01

1.6 3.7± 0.3 11.4± 1.1 194.3± 0.5 0.078+0.007
−0.007 0.162+0.000

−0.000 4.15+0.08
−0.08 1.16+0.02

−0.02

1.9 4.6± 0.3 11.1± 1.2 163.5± 0.7 0.096+0.010
−0.010 0.177+0.000

−0.000 3.75+0.10
−0.09 1.20+0.02

−0.02

2.3 5.3± 0.4 11.1± 1.7 143.9± 0.8 0.114+0.015
−0.015 0.189+0.001

−0.001 3.23+0.13
−0.12 1.25+0.04

−0.04

2.7 5.8± 0.5 10.6± 1.9 123.5± 0.5 0.133+0.020
−0.020 0.204+0.000

−0.000 2.89+0.13
−0.13 1.29+0.05

−0.05

3.0 6.1± 0.5 8.9± 1.5 107.5± 0.4 0.140+0.019
−0.019 0.218+0.000

−0.000 2.75+0.12
−0.12 1.30+0.05

−0.05

3.4 6.5± 0.5 7.2± 1.2 151.0± 10.5 0.091+0.019
−0.016 0.184+0.007

−0.006 2.24+0.33
−0.29 1.19+0.04

−0.04

3.7 7.3± 0.7 6.2± 1.5 81.6± 0.4 0.165+0.028
−0.028 0.250+0.001

−0.001 2.45+0.15
−0.14 1.36+0.07

−0.07

4.1 7.9± 0.8 5.9± 1.7 68.0± 0.4 0.203+0.038
−0.038 0.274+0.001

−0.001 2.27+0.18
−0.17 1.44+0.10

−0.09

4.4 8.1± 0.8 5.4± 1.5 61.6± 0.4 0.219+0.039
−0.039 0.288+0.001

−0.001 2.17+0.17
−0.16 1.48+0.10

−0.10

4.8 7.9± 0.9 4.3± 1.1 48.3± 0.2 0.253+0.043
−0.042 0.325+0.001

−0.001 2.16+0.17
−0.15 1.54+0.11

−0.10

5.1 8.2± 1.0 3.1± 0.8 41.8± 0.2 0.270+0.045
−0.044 0.350+0.001

−0.001 2.15+0.17
−0.15 1.56+0.11

−0.10

5.5 8.5± 1.0 2.1± 0.7 37.0± 0.2 0.286+0.048
−0.047 0.372+0.001

−0.001 2.09+0.17
−0.15 1.58+0.11

−0.11

5.8 8.6± 0.8 1.2± 0.5 33.2± 0.4 0.295+0.043
−0.042 0.393+0.002

−0.002 2.09+0.17
−0.15 1.58+0.09

−0.09

6.2 8.6± 0.7 < 1.0 37.0± 2.3 0.232+0.036
−0.031 0.372+0.012

−0.011 2.00+0.30
−0.26 1.46+0.07

−0.06

6.5 8.8± 0.6 < 1.0 52.9± 6.1 0.166+0.035
−0.027 0.311+0.020

−0.017 1.74+0.43
−0.35 1.34+0.07

−0.06

6.9 8.8± 0.5 < 1.0 19.5± 0.1 0.451+0.028
−0.028 0.512+0.001

−0.001 2.03+0.07
−0.07 1.78+0.05

−0.05

7.3 8.6± 0.5 < 1.0 18.9± 0.1 0.455+0.029
−0.029 0.520+0.001

−0.001 1.95+0.07
−0.07 1.78+0.05

−0.05

7.6 8.2± 0.6 < 1.0 18.7± 0.7 0.439+0.050
−0.047 0.523+0.010

−0.010 1.92+0.20
−0.18 1.75+0.08

−0.08

8.0 7.6± 0.6 < 1.0 12.9± 0.1 0.589+0.051
−0.051 0.630+0.002

−0.002 2.03+0.11
−0.10 1.88+0.08

−0.08

8.3 7.1± 0.6 < 1.0 17.6± 1.3 0.403+0.069
−0.059 0.539+0.021

−0.019 1.89+0.35
−0.29 1.67+0.10

−0.09

8.7 6.7± 0.5 < 1.0 17.0± 1.6 0.394+0.073
−0.061 0.549+0.028

−0.024 1.87+0.41
−0.34 1.65+0.10

−0.09

9.0 6.5± 0.4 < 1.0 10.8± 0.4 0.602+0.062
−0.057 0.688+0.013

−0.012 2.02+0.20
−0.18 1.84+0.07

−0.07

9.4 6.0± 0.5 < 1.0 8.0± 0.1 0.750+0.073
−0.071 0.800+0.005

−0.005 2.15+0.14
−0.13 1.93+0.08

−0.08

9.7 5.2± 0.4 < 1.0 7.5± 0.2 0.693+0.074
−0.070 0.826+0.011

−0.011 2.26+0.19
−0.18 1.83+0.08

−0.08

10.1 4.5± 0.4 < 1.0 5.0± 0.1 0.900+0.100
−0.096 1.012+0.010

−0.010 2.58+0.21
−0.19 1.89+0.09

−0.09

10.4 4.1± 0.3 < 1.0 4.1± 0.0 1.000+0.073
−0.073 1.117+0.000

−0.000 2.76+0.10
−0.09 1.89+0.07

−0.07

10.8 3.9± 0.3 < 1.0 3.6± 0.0 1.083+0.083
−0.083 1.192+0.000

−0.000 2.83+0.11
−0.10 1.90+0.07

−0.07

11.1 3.9± 0.4 < 1.0 3.9± 0.1 1.000+0.132
−0.125 1.145+0.015

−0.014 2.69+0.26
−0.23 1.87+0.10

−0.10

11.5 4.0± 0.4 < 1.0 4.4± 0.2 0.909+0.139
−0.126 1.078+0.025

−0.024 2.48+0.33
−0.29 1.84+0.11

−0.10

11.9 4.3± 0.5 < 1.0 9.5± 0.9 0.453+0.106
−0.087 0.734+0.037

−0.032 1.88+0.44
−0.35 1.60+0.11

−0.10

12.2 4.6± 0.5 < 1.0 5.8± 0.2 0.793+0.118
−0.110 0.939+0.017

−0.016 2.03+0.24
−0.21 1.84+0.11

−0.10
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Table B.5: Radial profiles for the galaxy NGC 3184 (R25 = 11.9 kpc).

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.3 3.7± 0.5 44.2± 9.6 701.8± 22.8 0.068+0.017
−0.016 0.084+0.001

−0.001 1.68+0.14
−0.14 1.15+0.04

−0.04

0.8 3.2± 0.3 20.8± 3.3 270.5± 1.1 0.089+0.014
−0.014 0.135+0.000

−0.000 2.33+0.08
−0.08 1.19+0.03

−0.03

1.3 3.3± 0.3 14.5± 2.0 200.3± 0.6 0.089+0.012
−0.012 0.156+0.000

−0.000 2.44+0.07
−0.07 1.19+0.03

−0.03

1.9 3.8± 0.3 11.9± 1.6 146.5± 1.0 0.107+0.014
−0.014 0.183+0.001

−0.001 2.45+0.09
−0.09 1.23+0.03

−0.03

2.4 4.7± 0.5 12.6± 2.0 121.1± 0.5 0.143+0.021
−0.021 0.201+0.000

−0.000 2.28+0.11
−0.11 1.32+0.06

−0.05

3.0 5.5± 0.4 12.6± 2.1 113.0± 0.4 0.160+0.023
−0.023 0.208+0.000

−0.000 2.04+0.11
−0.10 1.36+0.07

−0.06

3.5 5.7± 0.4 11.0± 2.1 100.2± 0.4 0.167+0.026
−0.026 0.221+0.000

−0.000 1.96+0.11
−0.11 1.37+0.07

−0.07

4.0 5.9± 0.5 9.6± 1.9 94.2± 0.5 0.165+0.026
−0.026 0.228+0.001

−0.001 1.86+0.11
−0.11 1.36+0.07

−0.07

4.6 6.5± 0.4 7.4± 1.0 83.6± 0.3 0.166+0.017
−0.017 0.242+0.000

−0.000 1.79+0.07
−0.07 1.36+0.05

−0.04

5.1 7.3± 0.3 6.2± 0.6 74.6± 0.3 0.181+0.013
−0.013 0.256+0.001

−0.001 1.71+0.05
−0.05 1.40+0.03

−0.03

5.7 7.5± 0.5 5.5± 0.9 96.2± 6.1 0.135+0.025
−0.022 0.226+0.008

−0.007 1.49+0.22
−0.19 1.29+0.06

−0.05

6.2 7.8± 0.6 4.3± 0.8 61.2± 0.3 0.198+0.024
−0.024 0.283+0.001

−0.001 1.57+0.08
−0.08 1.43+0.06

−0.06

6.7 8.1± 0.6 2.7± 0.5 46.3± 0.2 0.233+0.025
−0.025 0.325+0.001

−0.001 1.61+0.08
−0.07 1.49+0.06

−0.06

7.3 8.0± 0.5 1.3± 0.3 34.6± 0.1 0.269+0.024
−0.024 0.376+0.001

−0.001 1.67+0.07
−0.06 1.54+0.05

−0.05

7.8 7.3± 0.3 < 1.0 27.5± 0.1 0.265+0.012
−0.012 0.422+0.001

−0.001 1.81+0.04
−0.04 1.50+0.02

−0.02

8.3 7.0± 0.3 < 1.0 22.4± 0.1 0.313+0.015
−0.015 0.468+0.001

−0.001 1.81+0.04
−0.04 1.56+0.03

−0.03

8.9 7.0± 0.3 < 1.0 19.3± 0.2 0.363+0.020
−0.019 0.504+0.003

−0.003 1.74+0.06
−0.06 1.63+0.03

−0.03

9.4 6.7± 0.3 < 1.0 14.9± 0.1 0.450+0.023
−0.023 0.574+0.002

−0.002 1.78+0.06
−0.05 1.72+0.04

−0.04

10.0 6.1± 0.2 < 1.0 12.9± 0.3 0.473+0.027
−0.026 0.617+0.007

−0.007 1.80+0.10
−0.10 1.72+0.04

−0.03

10.5 5.4± 0.2 < 1.0 9.5± 0.1 0.568+0.027
−0.027 0.718+0.004

−0.004 1.94+0.07
−0.07 1.77+0.03

−0.03

11.0 5.0± 0.3 < 1.0 7.9± 0.1 0.633+0.047
−0.045 0.788+0.005

−0.005 2.00+0.10
−0.09 1.79+0.05

−0.05

11.6 4.6± 0.3 < 1.0 6.6± 0.1 0.697+0.057
−0.055 0.862+0.007

−0.006 2.05+0.12
−0.11 1.80+0.06

−0.06

12.1 4.0± 0.2 < 1.0 5.1± 0.1 0.784+0.056
−0.054 0.981+0.010

−0.009 2.24+0.13
−0.12 1.80+0.05

−0.05

12.6 3.3± 0.2 < 1.0 4.7± 0.1 0.702+0.059
−0.056 1.021+0.011

−0.011 2.39+0.15
−0.14 1.69+0.05

−0.05

13.2 2.9± 0.2 < 1.0 3.7± 0.1 0.784+0.077
−0.073 1.151+0.016

−0.015 2.58+0.20
−0.18 1.68+0.06

−0.05

13.7 2.8± 0.2 < 1.0 3.0± 0.0 0.933+0.067
−0.067 1.279+0.000

−0.000 2.70+0.08
−0.08 1.72+0.05

−0.05

14.3 2.7± 0.2 < 1.0 3.8± 0.1 0.711+0.073
−0.070 1.136+0.015

−0.015 2.43+0.18
−0.17 1.62+0.05

−0.05
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Table B.6: Radial profiles for the galaxy NGC 3198 (R25 = 13.0 kpc).

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.3 4.0± 0.6 20.4± 9.1 503.1± 35.7 0.048+0.024
−0.021 0.086+0.003

−0.003 1.70+0.27
−0.24 1.10+0.06

−0.05

1.0 3.3± 0.3 7.0± 3.1 164.2± 2.4 0.063+0.022
−0.021 0.150+0.001

−0.001 2.49+0.16
−0.16 1.13+0.05

−0.05

1.7 3.6± 0.3 2.5± 0.9 105.0± 1.0 0.058+0.012
−0.012 0.187+0.001

−0.001 2.73+0.10
−0.10 1.12+0.03

−0.03

2.3 4.1± 0.2 1.7± 0.6 84.6± 0.7 0.069+0.010
−0.010 0.209+0.001

−0.001 2.64+0.08
−0.08 1.14+0.02

−0.02

3.0 4.9± 0.5 2.6± 0.7 77.2± 0.4 0.097+0.016
−0.016 0.218+0.001

−0.001 2.30+0.09
−0.09 1.20+0.04

−0.04

3.7 5.9± 0.5 3.7± 0.8 71.8± 0.4 0.134+0.019
−0.019 0.226+0.001

−0.001 1.97+0.09
−0.09 1.29+0.05

−0.04

4.3 6.2± 0.4 3.9± 0.9 62.7± 0.4 0.161+0.022
−0.022 0.242+0.001

−0.001 1.81+0.09
−0.09 1.35+0.06

−0.05

5.0 6.3± 0.3 3.1± 0.6 54.2± 0.3 0.173+0.018
−0.017 0.261+0.001

−0.001 1.70+0.07
−0.07 1.37+0.05

−0.04

5.7 6.5± 0.3 2.1± 0.4 45.0± 0.2 0.191+0.016
−0.016 0.286+0.001

−0.001 1.64+0.06
−0.06 1.41+0.04

−0.04

6.4 6.6± 0.4 1.2± 0.3 34.8± 0.2 0.224+0.022
−0.021 0.325+0.001

−0.001 1.62+0.07
−0.07 1.47+0.05

−0.05

7.0 6.6± 0.4 < 1.0 28.3± 0.2 0.233+0.016
−0.016 0.361+0.001

−0.001 1.66+0.06
−0.06 1.47+0.03

−0.03

7.7 6.7± 0.5 < 1.0 21.4± 0.1 0.313+0.025
−0.025 0.415+0.001

−0.001 1.60+0.06
−0.06 1.60+0.05

−0.05

8.4 6.8± 0.5 < 1.0 17.7± 0.1 0.384+0.031
−0.030 0.456+0.001

−0.001 1.51+0.07
−0.06 1.71+0.06

−0.06

9.0 7.0± 0.5 < 1.0 14.8± 0.1 0.473+0.037
−0.037 0.499+0.002

−0.002 1.44+0.07
−0.07 1.84+0.07

−0.07

9.7 6.9± 0.5 < 1.0 12.2± 0.1 0.566+0.046
−0.045 0.549+0.002

−0.002 1.39+0.07
−0.07 1.94+0.08

−0.08

10.4 6.4± 0.4 < 1.0 10.3± 0.1 0.621+0.045
−0.044 0.598+0.003

−0.003 1.39+0.07
−0.07 1.97+0.07

−0.07

11.0 6.0± 0.3 < 1.0 8.2± 0.0 0.732+0.037
−0.037 0.670+0.000

−0.000 1.41+0.04
−0.04 2.05+0.05

−0.05

11.7 6.3± 0.4 < 1.0 7.3± 0.1 0.863+0.068
−0.066 0.710+0.005

−0.005 1.32+0.08
−0.08 2.18+0.09

−0.09

12.4 6.4± 0.4 < 1.0 5.9± 0.0 1.085+0.068
−0.068 0.790+0.000

−0.000 1.28+0.05
−0.04 2.36+0.09

−0.09

13.0 5.9± 0.3 < 1.0 4.5± 0.0 1.311+0.067
−0.067 0.904+0.000

−0.000 1.34+0.04
−0.04 2.45+0.07

−0.07

13.7 5.1± 0.3 < 1.0 3.3± 0.0 1.545+0.091
−0.091 1.056+0.000

−0.000 1.48+0.05
−0.05 2.46+0.08

−0.08

14.4 4.6± 0.4 < 1.0 3.5± 0.1 1.314+0.156
−0.148 1.025+0.015

−0.014 1.47+0.16
−0.14 2.28+0.13

−0.13

15.1 4.2± 0.4 < 1.0 2.5± 0.1 1.680+0.237
−0.218 1.213+0.025

−0.024 1.61+0.21
−0.17 2.36+0.14

−0.14
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Table B.7: Radial profiles for the galaxy NGC 3521 (R25 = 12.9 kpc).

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.3 4.5± 0.2 25.7± 4.7 4545.9± 287.3 0.007+0.002
−0.001 0.030+0.001

−0.001 1.65+0.17
−0.15 1.01+0.00

−0.00

0.8 4.8± 0.3 35.4± 5.5 1442.2± 23.0 0.028+0.005
−0.004 0.053+0.000

−0.000 2.27+0.08
−0.07 1.06+0.01

−0.01

1.3 5.7± 0.6 43.4± 3.0 929.8± 8.9 0.053+0.004
−0.004 0.066+0.000

−0.000 2.21+0.05
−0.05 1.11+0.01

−0.01

1.8 7.1± 0.7 44.6± 1.5 589.1± 5.4 0.088+0.005
−0.004 0.083+0.000

−0.000 2.08+0.12
−0.11 1.24+0.05

−0.05

2.3 8.3± 0.8 41.5± 2.1 462.9± 2.9 0.108+0.007
−0.007 0.094+0.000

−0.000 1.81+0.12
−0.11 1.35+0.07

−0.07

2.9 8.7± 0.8 36.8± 2.7 381.3± 2.0 0.119+0.010
−0.010 0.103+0.000

−0.000 1.63+0.13
−0.11 1.38+0.09

−0.09

3.4 8.7± 0.6 30.6± 2.6 322.9± 1.9 0.122+0.011
−0.011 0.112+0.000

−0.000 1.59+0.12
−0.11 1.33+0.09

−0.08

3.9 8.9± 0.8 24.6± 2.3 250.8± 1.8 0.134+0.013
−0.013 0.127+0.000

−0.000 1.58+0.10
−0.12 1.34+0.10

−0.07

4.4 9.9± 0.9 22.2± 2.0 212.3± 1.4 0.151+0.015
−0.015 0.138+0.000

−0.000 1.45+0.12
−0.11 1.41+0.10

−0.09

4.9 10.6± 0.6 21.0± 2.1 192.2± 1.3 0.164+0.015
−0.015 0.145+0.000

−0.000 1.32+0.11
−0.09 1.46+0.10

−0.09

5.4 10.5± 0.5 17.5± 2.4 169.7± 1.1 0.165+0.018
−0.018 0.155+0.001

−0.000 1.31+0.09
−0.10 1.43+0.11

−0.08

6.0 10.2± 0.4 12.5± 2.5 134.7± 1.0 0.169+0.023
−0.023 0.174+0.001

−0.001 1.34+0.08
−0.11 1.40+0.10

−0.07

6.5 10.2± 0.5 8.4± 2.0 106.7± 0.8 0.174+0.025
−0.025 0.195+0.001

−0.001 1.38+0.09
−0.09 1.41+0.09

−0.07

7.0 9.4± 0.3 5.2± 1.4 82.4± 0.7 0.177+0.022
−0.022 0.222+0.001

−0.001 1.46+0.08
−0.08 1.40+0.07

−0.06

7.5 8.6± 0.4 3.2± 0.9 66.1± 0.6 0.179+0.021
−0.021 0.248+0.001

−0.001 1.53+0.08
−0.08 1.39+0.06

−0.05

8.0 8.4± 0.5 2.1± 0.6 55.4± 0.5 0.190+0.022
−0.021 0.271+0.001

−0.001 1.55+0.08
−0.08 1.41+0.06

−0.05

8.6 8.5± 0.5 1.7± 0.5 47.7± 0.4 0.214+0.023
−0.023 0.292+0.001

−0.001 1.50+0.08
−0.08 1.46+0.06

−0.06

9.1 8.6± 0.5 1.6± 0.5 41.7± 0.3 0.245+0.026
−0.026 0.312+0.001

−0.001 1.45+0.08
−0.07 1.53+0.07

−0.06

9.6 8.5± 0.6 1.2± 0.4 35.8± 0.3 0.271+0.030
−0.030 0.337+0.001

−0.001 1.44+0.09
−0.08 1.57+0.07

−0.07

10.1 8.2± 0.6 < 1.0 30.5± 0.2 0.269+0.022
−0.021 0.365+0.001

−0.001 1.50+0.06
−0.06 1.54+0.05

−0.05

10.6 8.1± 0.7 < 1.0 27.1± 0.2 0.299+0.028
−0.028 0.387+0.001

−0.001 1.47+0.07
−0.07 1.59+0.06

−0.06

11.2 8.1± 0.8 < 1.0 25.4± 0.2 0.319+0.034
−0.034 0.400+0.002

−0.002 1.41+0.08
−0.08 1.63+0.07

−0.07

11.7 8.2± 0.9 < 1.0 22.9± 0.2 0.358+0.043
−0.042 0.421+0.002

−0.002 1.37+0.09
−0.09 1.69+0.09

−0.09

12.2 8.3± 0.9 < 1.0 20.0± 0.2 0.415+0.050
−0.049 0.450+0.002

−0.002 1.33+0.10
−0.09 1.78+0.10

−0.10

12.7 8.2± 0.9 < 1.0 17.4± 0.1 0.471+0.055
−0.054 0.483+0.001

−0.001 1.32+0.09
−0.08 1.85+0.10

−0.10

13.2 8.0± 0.9 < 1.0 15.7± 0.1 0.510+0.061
−0.060 0.508+0.002

−0.002 1.31+0.09
−0.08 1.89+0.11

−0.11

13.7 7.9± 1.0 < 1.0 14.4± 0.1 0.549+0.074
−0.073 0.531+0.002

−0.002 1.29+0.11
−0.09 1.94+0.13

−0.13

14.3 7.7± 0.9 < 1.0 13.3± 0.1 0.579+0.073
−0.071 0.552+0.002

−0.002 1.27+0.10
−0.09 1.96+0.12

−0.12

14.8 7.1± 0.8 < 1.0 12.0± 0.1 0.592+0.072
−0.071 0.582+0.002

−0.002 1.30+0.10
−0.09 1.95+0.12

−0.11

15.3 6.5± 0.6 < 1.0 10.9± 0.1 0.596+0.061
−0.060 0.610+0.003

−0.003 1.34+0.09
−0.08 1.92+0.09

−0.09
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Table B.8: Radial profiles for the galaxy NGC 5055 (R25 = 17.4 kpc).

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.2 5.6± 0.7 142.7± 19.4 4742.4± 251.1 0.031+0.006
−0.006 0.028+0.001

−0.001 2.32+0.50
−0.47 1.18+0.19

−0.13

0.7 5.8± 0.5 98.8± 16.1 1627.7± 11.4 0.064+0.011
−0.011 0.048+0.000

−0.000 2.16+0.41
−0.30 1.45+0.22

−0.22

1.2 5.9± 0.4 62.2± 8.5 987.4± 4.6 0.069+0.009
−0.009 0.061+0.000

−0.000 2.27+0.28
−0.26 1.26+0.15

−0.13

1.7 5.9± 0.2 43.7± 3.9 758.0± 2.2 0.065+0.006
−0.006 0.070+0.000

−0.000 2.14+0.03
−0.06 1.14+0.03

−0.01

2.2 6.2± 0.3 36.6± 2.3 569.7± 1.7 0.075+0.005
−0.005 0.080+0.000

−0.000 1.90+0.03
−0.03 1.16+0.01

−0.01

2.7 6.6± 0.4 32.1± 2.5 417.9± 1.1 0.093+0.007
−0.007 0.094+0.000

−0.000 1.75+0.03
−0.09 1.20+0.06

−0.02

3.2 6.4± 0.4 25.3± 2.7 325.4± 0.9 0.097+0.010
−0.010 0.106+0.000

−0.000 1.65+0.04
−0.05 1.22+0.03

−0.02

3.7 6.2± 0.5 20.3± 2.3 264.3± 0.8 0.100+0.011
−0.011 0.118+0.000

−0.000 1.57+0.04
−0.04 1.22+0.03

−0.03

4.2 6.5± 0.5 19.1± 2.1 230.7± 0.7 0.111+0.012
−0.012 0.126+0.000

−0.000 1.45+0.04
−0.04 1.25+0.03

−0.03

4.7 7.2± 0.6 18.6± 2.1 194.9± 0.5 0.132+0.014
−0.014 0.137+0.000

−0.000 1.35+0.05
−0.08 1.30+0.08

−0.04

5.1 8.2± 0.7 18.8± 2.1 169.5± 0.4 0.159+0.017
−0.017 0.147+0.000

−0.000 1.22+0.09
−0.09 1.42+0.11

−0.09

5.6 8.7± 0.5 17.3± 1.8 150.6± 0.4 0.173+0.016
−0.016 0.156+0.000

−0.000 1.14+0.08
−0.07 1.46+0.09

−0.09

6.1 8.7± 0.5 13.4± 1.1 133.4± 0.4 0.166+0.013
−0.012 0.166+0.000

−0.000 1.17+0.04
−0.06 1.40+0.06

−0.04

6.6 8.5± 0.6 10.9± 1.0 109.1± 0.3 0.178+0.015
−0.015 0.184+0.000

−0.000 1.17+0.05
−0.05 1.43+0.06

−0.05

7.1 8.5± 0.5 10.3± 1.0 94.0± 0.2 0.200+0.016
−0.016 0.198+0.000

−0.000 1.12+0.05
−0.05 1.49+0.07

−0.06

7.6 8.6± 0.5 10.0± 1.2 84.5± 0.3 0.220+0.021
−0.021 0.209+0.000

−0.000 1.06+0.06
−0.06 1.55+0.08

−0.08

8.1 8.5± 0.5 8.7± 1.3 75.3± 0.3 0.228+0.025
−0.025 0.221+0.000

−0.000 1.04+0.07
−0.06 1.57+0.09

−0.08

8.6 7.9± 0.4 6.2± 1.0 62.6± 0.1 0.225+0.023
−0.023 0.242+0.000

−0.000 1.10+0.05
−0.05 1.53+0.07

−0.07

9.1 7.5± 0.4 4.3± 0.8 52.0± 0.1 0.227+0.024
−0.023 0.266+0.000

−0.000 1.16+0.05
−0.05 1.51+0.07

−0.06

9.5 7.4± 0.5 3.1± 0.6 44.5± 0.1 0.236+0.025
−0.025 0.287+0.000

−0.000 1.19+0.06
−0.06 1.52+0.07

−0.07

10.0 7.2± 0.7 2.1± 0.5 40.8± 0.1 0.228+0.030
−0.030 0.300+0.000

−0.000 1.21+0.07
−0.06 1.49+0.08

−0.07

10.5 7.3± 0.8 1.5± 0.4 36.8± 0.1 0.239+0.033
−0.033 0.316+0.000

−0.000 1.20+0.07
−0.07 1.51+0.08

−0.08

11.0 7.5± 0.9 1.1± 0.4 33.4± 0.1 0.257+0.040
−0.040 0.332+0.000

−0.000 1.17+0.08
−0.08 1.54+0.10

−0.09

11.5 7.3± 0.7 < 1.0 60.4± 5.4 0.121+0.025
−0.021 0.247+0.012

−0.010 1.03+0.19
−0.17 1.25+0.06

−0.05

12.0 6.7± 0.5 < 1.0 59.2± 5.7 0.113+0.021
−0.018 0.249+0.013

−0.011 1.01+0.20
−0.17 1.23+0.05

−0.04

12.5 6.4± 0.5 < 1.0 24.8± 0.1 0.258+0.021
−0.021 0.385+0.001

−0.001 1.23+0.05
−0.04 1.51+0.05

−0.05

13.0 6.2± 0.5 < 1.0 21.2± 0.1 0.292+0.025
−0.025 0.417+0.001

−0.001 1.23+0.05
−0.05 1.56+0.05

−0.05

13.5 5.7± 0.5 < 1.0 18.7± 0.1 0.305+0.029
−0.028 0.443+0.001

−0.001 1.26+0.06
−0.05 1.56+0.06

−0.06

14.0 5.1± 0.4 < 1.0 17.3± 0.1 0.295+0.025
−0.025 0.461+0.001

−0.001 1.29+0.05
−0.05 1.53+0.05

−0.05

14.4 4.5± 0.4 < 1.0 18.0± 0.5 0.250+0.030
−0.028 0.452+0.006

−0.006 1.30+0.11
−0.10 1.45+0.05

−0.05

14.9 4.2± 0.5 < 1.0 13.8± 0.0 0.304+0.036
−0.036 0.516+0.000

−0.000 1.37+0.06
−0.06 1.51+0.06

−0.06

15.4 3.9± 0.6 < 1.0 13.2± 0.1 0.295+0.048
−0.047 0.528+0.002

−0.002 1.38+0.10
−0.09 1.49+0.08

−0.08

15.9 3.7± 0.5 < 1.0 11.8± 0.0 0.314+0.042
−0.042 0.558+0.000

−0.000 1.40+0.07
−0.06 1.50+0.07

−0.07

16.4 3.2± 0.4 < 1.0 10.7± 0.0 0.299+0.037
−0.037 0.586+0.000

−0.000 1.46+0.06
−0.06 1.46+0.06

−0.06

16.9 2.8± 0.4 < 1.0 9.8± 0.0 0.286+0.041
−0.041 0.613+0.000

−0.000 1.52+0.07
−0.06 1.43+0.06

−0.06

17.4 2.6± 0.4 < 1.0 9.2± 0.0 0.283+0.043
−0.043 0.632+0.000

−0.000 1.54+0.07
−0.07 1.42+0.07

−0.07

17.9 2.5± 0.3 < 1.0 8.4± 0.0 0.298+0.036
−0.036 0.662+0.000

−0.000 1.56+0.06
−0.05 1.42+0.05

−0.05

18.4 2.4± 0.3 < 1.0 8.4± 0.1 0.286+0.040
−0.039 0.662+0.004

−0.004 1.53+0.09
−0.08 1.41+0.06

−0.05

18.9 2.1± 0.2 < 1.0 7.7± 0.1 0.273+0.030
−0.029 0.691+0.005

−0.004 1.59+0.08
−0.07 1.38+0.04

−0.04

19.3 1.7± 0.2 < 1.0 7.4± 0.2 0.230+0.034
−0.032 0.705+0.010

−0.009 1.67+0.13
−0.12 1.31+0.04

−0.04

19.8 1.4± 0.2 < 1.0 7.1± 0.2 0.197+0.035
−0.033 0.720+0.010

−0.010 1.73+0.14
−0.13 1.26+0.04

−0.04

20.3 1.3± 0.2 < 1.0 13.2± 1.0 0.098+0.024
−0.021 0.528+0.021

−0.019 1.35+0.21
−0.18 1.16+0.04

−0.03

20.8 1.2± 0.2 < 1.0 12.4± 1.4 0.097+0.030
−0.024 0.545+0.034

−0.028 1.36+0.31
−0.25 1.15+0.04

−0.04
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Table B.9: Radial profiles for the galaxy NGC 5194 (R25 = 9.0 kpc).

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.2 4.5± 0.4 197.4± 35.0 4912.2± 111.6 0.041+0.008
−0.008 0.029+0.000

−0.000 1.77+0.46
−0.32 1.46+0.27

−0.26

0.6 5.5± 0.4 207.7± 33.5 2352.5± 15.3 0.091+0.015
−0.015 0.042+0.000

−0.000 1.26+0.25
−0.18 2.23+0.35

−0.35

1.0 6.1± 0.4 181.6± 30.5 1251.1± 6.5 0.150+0.026
−0.025 0.058+0.000

−0.000 1.10+0.22
−0.16 2.71+0.43

−0.43

1.4 6.1± 0.6 134.5± 41.2 703.1± 3.8 0.200+0.061
−0.060 0.077+0.000

−0.000 1.15+0.46
−0.26 2.74+0.78

−0.77

1.7 6.7± 0.6 106.8± 33.8 471.8± 1.3 0.241+0.074
−0.073 0.094+0.000

−0.000 1.19+0.47
−0.27 2.74+0.78

−0.77

2.1 7.9± 0.6 94.8± 19.2 417.5± 1.6 0.246+0.049
−0.048 0.100+0.000

−0.000 1.08+0.24
−0.17 2.66+0.48

−0.47

2.5 8.5± 0.9 72.6± 15.7 394.9± 1.9 0.205+0.043
−0.043 0.103+0.000

−0.000 1.13+0.27
−0.18 2.21+0.41

−0.41

2.9 7.5± 0.9 40.9± 12.2 334.1± 1.5 0.145+0.040
−0.040 0.112+0.000

−0.000 1.53+0.38
−0.29 1.54+0.35

−0.30

3.3 6.2± 0.7 19.1± 5.6 286.9± 1.3 0.088+0.022
−0.022 0.121+0.000

−0.000 1.86+0.10
−0.10 1.19+0.06

−0.05

3.7 6.1± 0.5 14.6± 3.3 253.2± 2.0 0.082+0.016
−0.016 0.129+0.001

−0.001 1.79+0.08
−0.08 1.18+0.04

−0.04

4.1 7.2± 0.7 22.6± 7.5 236.7± 1.7 0.126+0.036
−0.035 0.133+0.000

−0.000 1.52+0.13
−0.24 1.29+0.22

−0.09

4.5 9.1± 0.9 33.6± 10.3 224.2± 1.2 0.190+0.051
−0.051 0.137+0.000

−0.000 1.08+0.30
−0.20 1.69+0.36

−0.35

4.8 11.2± 0.9 35.9± 9.6 227.8± 1.4 0.207+0.048
−0.047 0.136+0.000

−0.000 0.94+0.22
−0.15 1.82+0.34

−0.33

5.2 12.8± 0.8 28.0± 7.0 206.0± 1.1 0.198+0.039
−0.039 0.143+0.000

−0.000 0.97+0.18
−0.14 1.70+0.26

−0.26

5.6 12.7± 0.8 14.9± 4.7 176.5± 0.9 0.156+0.032
−0.032 0.154+0.000

−0.000 1.20+0.10
−0.15 1.38+0.19

−0.10

6.0 11.1± 0.8 4.3± 2.8 148.9± 0.8 0.103+0.025
−0.025 0.168+0.000

−0.000 1.37+0.08
−0.08 1.22+0.06

−0.06

6.4 9.4± 0.9 1.0± 1.1 106.3± 0.4 0.098+0.019
−0.019 0.199+0.000

−0.000 1.54+0.07
−0.06 1.21+0.05

−0.04

6.8 8.4± 0.9 < 1.0 77.5± 0.3 0.108+0.012
−0.012 0.233+0.000

−0.000 1.67+0.05
−0.05 1.23+0.03

−0.03

7.2 7.8± 0.9 < 1.0 64.3± 0.6 0.121+0.015
−0.015 0.256+0.001

−0.001 1.70+0.07
−0.07 1.25+0.04

−0.03

7.6 7.8± 1.0 < 1.0 50.2± 0.3 0.155+0.021
−0.021 0.289+0.001

−0.001 1.72+0.08
−0.08 1.32+0.05

−0.05

8.0 7.8± 1.1 < 1.0 45.0± 0.3 0.173+0.026
−0.025 0.306+0.001

−0.001 1.68+0.09
−0.09 1.36+0.06

−0.06

8.3 7.8± 1.2 < 1.0 46.4± 0.3 0.168+0.027
−0.027 0.301+0.001

−0.001 1.61+0.09
−0.09 1.35+0.06

−0.06

8.7 7.8± 1.2 < 1.0 53.2± 0.6 0.147+0.024
−0.024 0.281+0.002

−0.002 1.48+0.09
−0.09 1.30+0.06

−0.05

9.1 7.3± 1.1 < 1.0 69.2± 1.8 0.105+0.019
−0.018 0.246+0.003

−0.003 1.33+0.10
−0.09 1.22+0.04

−0.04

9.5 6.4± 1.0 < 1.0 71.2± 1.3 0.090+0.016
−0.015 0.243+0.002

−0.002 1.29+0.07
−0.07 1.18+0.04

−0.03

9.9 5.8± 1.0 < 1.0 86.5± 1.7 0.067+0.013
−0.013 0.220+0.002

−0.002 1.17+0.06
−0.06 1.14+0.03

−0.03

10.3 5.1± 0.9 < 1.0 210.3± 11.3 0.024+0.006
−0.005 0.141+0.004

−0.004 0.78+0.08
−0.07 1.05+0.01

−0.01

10.7 4.5± 0.9 < 1.0 102.7± 3.1 0.044+0.010
−0.010 0.202+0.003

−0.003 1.04+0.07
−0.07 1.09+0.02

−0.02
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Table B.10: Radial profiles for the galaxy NGC 6946 (R25 = 9.8 kpc).

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.1 6.1± 1.1 548.6± 68.4 5937.7± 348.7 0.093+0.018
−0.016 0.028+0.001

−0.001 0.36+0.10
−0.08 3.37+0.53

−0.50

0.4 6.4± 1.1 390.7± 81.2 1125.9± 7.7 0.353+0.076
−0.075 0.065+0.000

−0.000 0.44+0.12
−0.08 5.58+1.15

−1.15

0.7 6.4± 1.0 214.2± 54.9 708.0± 4.5 0.312+0.081
−0.080 0.082+0.000

−0.000 0.69+0.23
−0.14 3.99+0.98

−0.98

1.0 5.9± 0.7 110.4± 31.1 496.6± 2.6 0.234+0.066
−0.065 0.097+0.000

−0.000 1.11+0.39
−0.23 2.61+0.66

−0.66

1.3 5.5± 0.6 64.2± 17.4 405.6± 1.8 0.172+0.045
−0.045 0.108+0.000

−0.000 1.56+0.46
−0.30 1.82+0.41

−0.41

1.6 5.5± 0.5 46.4± 10.6 390.4± 4.7 0.133+0.030
−0.030 0.110+0.001

−0.001 1.79+0.36
−0.30 1.45+0.26

−0.22

1.9 5.8± 0.4 39.9± 7.0 356.3± 1.9 0.128+0.022
−0.021 0.115+0.000

−0.000 1.79+0.21
−0.22 1.37+0.18

−0.13

2.1 6.4± 0.4 37.9± 5.4 313.6± 0.9 0.141+0.019
−0.019 0.123+0.000

−0.000 1.71+0.20
−0.17 1.43+0.15

−0.15

2.4 6.9± 0.4 36.9± 4.9 287.1± 1.0 0.153+0.019
−0.019 0.128+0.000

−0.000 1.56+0.17
−0.15 1.48+0.14

−0.14

2.7 7.4± 0.4 35.2± 4.3 258.4± 1.0 0.165+0.019
−0.019 0.135+0.000

−0.000 1.46+0.15
−0.13 1.52+0.13

−0.13

3.0 7.8± 0.4 32.4± 3.5 236.2± 1.5 0.170+0.018
−0.017 0.141+0.000

−0.000 1.39+0.13
−0.11 1.52+0.12

−0.11

3.3 8.2± 0.5 29.7± 3.3 212.1± 0.9 0.179+0.019
−0.019 0.149+0.000

−0.000 1.34+0.12
−0.10 1.53+0.12

−0.12

3.6 8.7± 0.6 28.1± 3.9 200.8± 1.5 0.183+0.024
−0.024 0.153+0.001

−0.001 1.26+0.14
−0.12 1.54+0.15

−0.14

3.9 9.3± 0.8 27.5± 4.9 276.6± 12.8 0.133+0.028
−0.026 0.130+0.003

−0.003 1.17+0.17
−0.21 1.32+0.18

−0.08

4.1 9.5± 1.0 25.9± 5.7 187.3± 1.8 0.189+0.038
−0.037 0.159+0.001

−0.001 1.15+0.18
−0.16 1.55+0.22

−0.20

4.4 9.5± 1.1 22.8± 5.6 159.7± 1.3 0.202+0.044
−0.043 0.172+0.001

−0.001 1.15+0.18
−0.16 1.57+0.24

−0.20

4.7 9.6± 1.1 19.2± 5.1 146.3± 1.0 0.197+0.044
−0.043 0.179+0.001

−0.001 1.16+0.15
−0.16 1.52+0.22

−0.16

5.0 9.6± 1.1 15.6± 4.4 127.2± 0.7 0.198+0.045
−0.044 0.192+0.001

−0.001 1.19+0.14
−0.15 1.49+0.20

−0.14

5.3 9.5± 1.1 12.2± 3.7 110.4± 0.6 0.197+0.045
−0.044 0.207+0.001

−0.001 1.22+0.13
−0.14 1.47+0.17

−0.13

5.6 9.3± 0.9 9.4± 2.7 97.4± 0.4 0.192+0.038
−0.038 0.220+0.000

−0.000 1.25+0.11
−0.11 1.45+0.13

−0.11

5.9 9.3± 0.8 7.5± 1.9 184.5± 10.5 0.091+0.021
−0.019 0.160+0.005

−0.004 1.04+0.14
−0.12 1.19+0.05

−0.04

6.1 9.3± 0.8 6.3± 1.5 105.3± 2.0 0.148+0.025
−0.024 0.211+0.002

−0.002 1.20+0.09
−0.09 1.33+0.07

−0.06

6.4 9.1± 0.8 5.1± 1.4 99.9± 4.4 0.142+0.030
−0.027 0.217+0.005

−0.005 1.19+0.15
−0.14 1.31+0.08

−0.07

6.7 8.8± 0.8 4.1± 1.4 85.8± 3.8 0.150+0.034
−0.031 0.234+0.005

−0.005 1.21+0.16
−0.15 1.33+0.09

−0.07

7.0 8.4± 0.8 3.2± 1.4 71.1± 1.1 0.163+0.034
−0.033 0.257+0.002

−0.002 1.25+0.11
−0.10 1.35+0.09

−0.08

7.3 8.1± 0.9 2.3± 1.5 59.1± 0.5 0.176+0.042
−0.042 0.282+0.001

−0.001 1.29+0.12
−0.11 1.37+0.11

−0.10

7.6 8.0± 1.0 1.6± 1.3 49.0± 0.4 0.196+0.049
−0.048 0.310+0.001

−0.001 1.32+0.13
−0.12 1.41+0.12

−0.11

7.9 8.0± 1.1 < 1.0 40.7± 0.3 0.197+0.029
−0.028 0.340+0.001

−0.001 1.41+0.08
−0.08 1.39+0.06

−0.06

8.2 7.9± 1.0 < 1.0 43.0± 1.0 0.184+0.028
−0.027 0.331+0.004

−0.004 1.34+0.11
−0.10 1.37+0.06

−0.06

8.4 7.4± 0.9 < 1.0 35.2± 0.9 0.210+0.032
−0.030 0.366+0.005

−0.005 1.40+0.12
−0.11 1.41+0.07

−0.06

8.7 6.9± 0.8 < 1.0 32.4± 0.9 0.213+0.031
−0.030 0.381+0.005

−0.005 1.41+0.13
−0.12 1.41+0.06

−0.06

9.0 6.3± 0.7 < 1.0 30.4± 1.1 0.207+0.032
−0.029 0.394+0.007

−0.007 1.43+0.15
−0.13 1.39+0.06

−0.06

9.3 5.8± 0.6 < 1.0 22.6± 0.5 0.257+0.033
−0.032 0.456+0.005

−0.005 1.53+0.12
−0.11 1.46+0.06

−0.06

9.6 5.3± 0.6 < 1.0 26.8± 0.8 0.198+0.029
−0.027 0.419+0.006

−0.006 1.46+0.13
−0.12 1.36+0.05

−0.05

9.9 4.8± 0.5 < 1.0 36.6± 1.9 0.131+0.022
−0.019 0.359+0.010

−0.009 1.32+0.15
−0.14 1.25+0.04

−0.04

10.2 4.5± 0.5 < 1.0 86.9± 6.3 0.052+0.010
−0.009 0.233+0.009

−0.008 0.94+0.13
−0.11 1.10+0.02

−0.02

10.4 4.1± 0.5 < 1.0 20.4± 0.5 0.201+0.030
−0.029 0.480+0.006

−0.006 1.56+0.12
−0.11 1.35+0.05

−0.05

10.7 3.9± 0.5 < 1.0 17.3± 0.4 0.225+0.035
−0.033 0.522+0.006

−0.006 1.61+0.13
−0.12 1.37+0.06

−0.06

11.0 3.7± 0.4 < 1.0 17.2± 0.5 0.215+0.030
−0.029 0.523+0.008

−0.007 1.59+0.13
−0.12 1.35+0.05

−0.05

11.3 3.6± 0.4 < 1.0 17.8± 0.7 0.202+0.032
−0.029 0.514+0.010

−0.010 1.55+0.15
−0.14 1.34+0.05

−0.05

11.6 3.6± 0.4 < 1.0 12.9± 0.3 0.279+0.038
−0.037 0.604+0.007

−0.007 1.66+0.13
−0.12 1.42+0.06

−0.05
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Table B.11: Radial profiles for the galaxy NGC 7331 (R25 = 19.6 kpc).

From Leroy et al. (2008) Our stability quantities

R ΣHI ΣH2 Σs A B Qeff Q̄
(kpc) (M⊙pc−2) (M⊙pc−2) (M⊙pc−2)

0.4 3.6± 1.3 15.6± 3.9 3990.1± 206.5 0.005+0.002
−0.001 0.030+0.001

−0.001 2.04+0.17
−0.16 1.01+0.00

−0.00

1.1 3.1± 0.7 17.7± 5.3 1558.3± 38.7 0.013+0.004
−0.004 0.048+0.001

−0.001 2.37+0.11
−0.11 1.03+0.01

−0.01

1.8 3.3± 0.6 24.7± 5.4 860.5± 10.8 0.033+0.007
−0.007 0.064+0.000

−0.000 2.33+0.08
−0.08 1.07+0.02

−0.02

2.5 4.5± 0.8 33.3± 3.9 655.2± 5.2 0.058+0.008
−0.008 0.074+0.000

−0.000 1.99+0.05
−0.05 1.12+0.02

−0.02

3.2 5.6± 0.8 33.8± 4.2 538.0± 3.9 0.073+0.010
−0.010 0.081+0.000

−0.000 1.72+0.05
−0.07 1.16+0.04

−0.02

3.9 5.9± 0.5 28.7± 4.4 395.8± 3.7 0.087+0.013
−0.013 0.095+0.000

−0.000 1.62+0.07
−0.12 1.19+0.07

−0.03

4.6 6.5± 0.4 25.3± 3.8 307.5± 3.1 0.103+0.015
−0.015 0.108+0.001

−0.001 1.51+0.07
−0.14 1.23+0.10

−0.04

5.3 6.5± 0.3 18.6± 3.6 231.9± 2.3 0.108+0.018
−0.018 0.124+0.001

−0.001 1.50+0.08
−0.09 1.24+0.06

−0.04

6.1 6.6± 0.5 11.4± 2.7 161.9± 1.5 0.111+0.021
−0.021 0.148+0.001

−0.001 1.55+0.09
−0.09 1.25+0.06

−0.05

6.8 7.3± 0.6 6.8± 1.3 121.2± 1.0 0.116+0.017
−0.017 0.172+0.001

−0.001 1.59+0.07
−0.07 1.25+0.04

−0.04

7.5 8.1± 0.7 5.8± 1.0 98.5± 0.8 0.141+0.019
−0.018 0.190+0.001

−0.001 1.52+0.08
−0.07 1.32+0.05

−0.05

8.2 8.5± 0.5 4.8± 0.9 83.8± 0.8 0.159+0.018
−0.018 0.206+0.001

−0.001 1.46+0.08
−0.07 1.36+0.05

−0.05

8.9 8.2± 0.6 3.5± 0.5 66.6± 0.5 0.176+0.018
−0.018 0.231+0.001

−0.001 1.47+0.07
−0.07 1.39+0.05

−0.05

9.6 8.3± 0.7 2.4± 0.5 54.8± 0.4 0.195+0.023
−0.023 0.255+0.001

−0.001 1.46+0.08
−0.08 1.43+0.06

−0.06

10.3 8.8± 0.7 1.6± 0.5 47.4± 0.4 0.219+0.027
−0.027 0.274+0.001

−0.001 1.41+0.09
−0.08 1.49+0.07

−0.07

11.0 8.6± 0.6 1.1± 0.4 40.4± 0.3 0.240+0.027
−0.026 0.297+0.001

−0.001 1.39+0.08
−0.08 1.53+0.07

−0.07

11.8 8.1± 0.6 < 1.0 34.3± 0.3 0.236+0.020
−0.019 0.322+0.001

−0.001 1.43+0.06
−0.06 1.50+0.05

−0.05

12.5 7.4± 0.6 < 1.0 29.3± 0.4 0.253+0.024
−0.024 0.349+0.002

−0.002 1.44+0.08
−0.08 1.52+0.06

−0.05

13.2 6.9± 0.5 < 1.0 24.9± 0.2 0.277+0.022
−0.022 0.378+0.002

−0.002 1.45+0.06
−0.06 1.55+0.05

−0.05

13.9 7.2± 0.5 < 1.0 22.6± 0.2 0.319+0.025
−0.025 0.397+0.002

−0.002 1.38+0.07
−0.06 1.63+0.05

−0.05

14.6 7.1± 0.4 < 1.0 22.0± 0.2 0.323+0.021
−0.021 0.403+0.002

−0.002 1.33+0.06
−0.05 1.63+0.04

−0.04

15.3 7.1± 0.4 < 1.0 20.1± 0.2 0.353+0.024
−0.023 0.421+0.002

−0.002 1.29+0.06
−0.05 1.68+0.05

−0.05

16.0 7.2± 0.5 < 1.0 18.5± 0.2 0.389+0.032
−0.031 0.439+0.002

−0.002 1.24+0.07
−0.06 1.74+0.06

−0.06

16.7 7.3± 0.6 < 1.0 16.7± 0.1 0.437+0.039
−0.038 0.462+0.001

−0.001 1.20+0.06
−0.06 1.81+0.08

−0.07

17.5 6.9± 0.6 < 1.0 15.3± 0.1 0.451+0.042
−0.042 0.483+0.002

−0.002 1.20+0.07
−0.06 1.81+0.08

−0.08

18.2 6.5± 0.6 < 1.0 15.4± 0.4 0.422+0.051
−0.049 0.481+0.006

−0.006 1.18+0.11
−0.10 1.76+0.09

−0.09

18.9 6.4± 0.7 < 1.0 19.4± 1.4 0.330+0.065
−0.056 0.429+0.016

−0.015 1.10+0.21
−0.18 1.63+0.12

−0.10

19.6 6.1± 0.7 < 1.0 13.1± 0.4 0.466+0.070
−0.066 0.522+0.008

−0.008 1.16+0.14
−0.12 1.80+0.12

−0.11

20.3 5.5± 0.7 < 1.0 9.4± 0.1 0.585+0.082
−0.080 0.616+0.003

−0.003 1.26+0.11
−0.10 1.89+0.12

−0.12

21.0 4.5± 0.6 < 1.0 9.0± 0.3 0.500+0.086
−0.081 0.630+0.011

−0.010 1.35+0.17
−0.15 1.75+0.12

−0.12

21.7 3.6± 0.5 < 1.0 7.2± 0.1 0.500+0.077
−0.075 0.704+0.005

−0.005 1.51+0.13
−0.12 1.69+0.10

−0.10

22.4 3.1± 0.4 < 1.0 6.4± 0.1 0.484+0.071
−0.069 0.747+0.006

−0.006 1.60+0.13
−0.12 1.63+0.09

−0.09

23.2 2.7± 0.3 < 1.0 6.2± 0.1 0.435+0.056
−0.055 0.758+0.006

−0.006 1.65+0.12
−0.11 1.56+0.07

−0.07
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Appendix C

Numerical methods: thick discs

As mentioned in Appendix A, MATLAB was used for the numericalcomputations done in this
thesis.

The problem described in Chapter 5 consists of: (1) comparingthe marginal stability curves
for discs of different thickness for given values of our parametersA andB; (2) finding the
two-phase region and studying how the thickness affects this; and (3) determining the stability
threshold and again study how the thickness affects this.

C.1 Computing the marginal stability curve

Romeo (1992) had derived a polyonomial in the fourth order to derive the marginal stability
curve for a two-component thick disc numerically. However,note that it was more convient at
that time to computeQ2 instead ofQ for reasons as there would not appear any imaginary roots
to the polynomial. Today it is more convenient to deriveQ directly instead as it is more helpful
in simulations and observations. For simplicity was the polynomial again handled in the fourth
order and the square root of the solutions were then presented.

The marginal stability curve is thus given by

A ·Q8 + B ·Q6 + C ·Q4 + D ·Q2 + E = 0 (C.1)

where the coefficients are

A = B2 · UsUg (C.2)

B = 2Λ
[
2Λ(1 + B2)UsUg + B2(Us + Ug)

]
(C.3)

C = 4Λ2
{
4Λ2UsUg + 2Λ(1 + B2)(Us + Ug) + [B2 − 2(AUs + B2Ug)]

}
(C.4)

D = 16Λ3
{
2Λ2(Us + Ug) + Λ[(1 + B2)− 2(AUs + Ug)]− (A+ B2)

}
(C.5)

E = 64Λ5 [Λ− (A+ 1)] . (C.6)

The parameters denotedUi are in turn given by
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Us =
D2

s

1 +A
heffs

2hEs

(C.7)

and

Ug =
B2D2

g

1 +A
heffg

2hEg

(C.8)

whereheffi is the effective scale height andhEi is the exponential scale height of each fluid disc.
These are studied quite extensively in Chapter 8 of Romeo (1990). However, here we are content
with knowing that they are given by computing for the stellarcomponent

heffs

2hEs

=
1

2

√
1 + γB2

z

∫ 1

0

du[
(1− u) + γB2

z(1− uB
−2
z )

]1/2
(C.9)

and for the gaseous component

heffg

2hEg

=
1

2

√
1 + γB2

z

∫ 1

0

dv

[(1− vB2
z ) + γB2

z(1− v)]
1/2

(C.10)

where theu andv are integration factors. TheBz is a vertical velocity dispersion ratio parameter
defined as

Bz ≡ σzg

σzs

= BDg

Ds

(C.11)

because we can remember from Chapter 5 that

Di =
σzi

σi

, (C.12)

the ratio between the vertical and radial velocity dispersions for each component.
TheBz is possible to relate numerically with our density parameterA (Romeo 1992) by using

theγ seen in equations (C.9) and (C.10) which is defined to be

γ ≡ ρ0g

ρ0s

(C.13)

whereρ0i is the volume density for each component.
It is then possible to find whenγ < 1 andBz > 2.5 · 10−3 that

A = γB6/5
z (C.14)

which is denoted as thefit approximationby Romeo (1992). This approximation was used to
deriveγ for the integrals (C.9) and (C.10).

Finally, to derive the marginal stability curve is the polynomial (5.9) solved for everyΛ in our
range, again1+A. The integrals were solved only once for each marginal stability curve as they
do not depend onΛ. This was done by using the predefined MATLAB-functionquad which uses
recursive adaptive Simpson quadrature to approximate the integral of a given function within an
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error of10−6. This is usually the most efficient integral solving function in MATLAB and as all
the predefined functions gave the same solution within some small error this was chosen for the
thesis.

The polynomial was solved by using the predefined functionfzero. This functions uses a
user-defined “guess” to try and find a zero of the polynomial inits vicinity by searching for when
the polynomial changes sign. Our polynomial has four solutions toQ2 for each value of our
parameters and only one of them is physically correct. This function only gives out one answer
so the choice of guess-value is quite important. Our obviouschoice here was the corresponding
zero-thicknessQ2 solution och Chapter 3, this is closest to the physical correct thick disc-value
of Q2.

Worth mentioning is that MATLAB had at the time this thesis was written two predefined
functions for solving polynomials,roots andfzero. Roots seems simpler and uses a polynomial
solving routine where it defines a matrix containing the coefficients of the polynomial where the
eigenvalues of the matrix is, due to how the matrix is defined,the roots of the polynomial. Thus
giving all four solutions to eachQ2. This however, gave complicated solutions as the routine
does not understand what is physical and not physical which resulted in the curves being a mix
of solutions. Thus wasroots never used for this thesis.

As thefzero gaveQ2 of the polyonomial for eachΛ in the wantedB−A range and we want
Q(Λ) was just the square root applied to each solution. These werethen saved in a vector that
could easily be plotted againstΛ and the marginal stability curve was obtained.

C.2 Finding the two-phase region

In the two-component thin case it was a simple matter of deriving the marginal stability curve
and having a routine that could study how the curve behaved for eachA andB and finding the
two-phase region that way. However, in the thick disc case toderive that many marginal stability
curves in the wholeB − A space with the same resolution would take days of computations on
normal computers. In the thin case I used 1000 points of resolution forA,B and inΛ. That would
require that the computer solves the polynomial one billiontimes to find three transition lines.
To effectivise this several solutions were attempted. Somehad good resolution and acceptable
amount of computation time, usually in the range of 30 to 60 minutes for the whole region.
However, the solution I ended up with only requires five minutes for each transition line.

The obvious way of shortening the calculation time is to lower the resolution. This however
will make it very difficult for the routine to find the gaseous peak of the marginal stability curve
at the lowest definedA’s andB’s. In the thick cases considered this peak can be extremely small
and not finding it will result in the two-phase region to be shifted to higherA in those parts of the
parameter space. The simple solution that was used is just todefine theΛ to be logarithmic in
the range10−4 to 1.2 (actually100.08) with one hundred points instead of the linear one thousand
points used earlier. One hundred points to a logarithmic scaledΛ gave sufficient resolution so the
routine is both better at finding the low valued gaseous peak and quicker. It was also discovered
that using only one hundred points on a logarithmic scaledB between10−2 to 1 gave a sufficient
resolution.
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However, it is still not possible (with realistic amount of time) to compute the marginal stabil-
ity curve in the wholeB−A plane. This still requires ten million computations of the polynomial.
Instead I defined three different scenarios so that the routine only derives the marginal stability
curve in the vicinity of each transition line. See figure C.1 for a flowchart of the following
description.

Fortunetaly there is a predefined function in MATLAB denotedfindpeaks which returns a
vector containing the values for each peak of the function itsamples. So in this case it gives
either a vector containing one or two elements as the curve will only have one peak outside the
region and two inside it.

To find the lower transition of the two-phase region, i.e. sampling from lowA to find where
the gaseous peak first appears I simply let the routine stop assoon as the vector given byfind-
peaks contains two elements (the blue parts of figure C.1). The routine then continues on the
next definedB value and sample from fiveA elements below the previous stop, i.e.i−5 in figure
C.1. All theA values where the routine is stopped are saved in a vector thatcorresponds to the
lowest transition line.

The main transition line, i.e. the transition between stellar dominated instabilities and gas
dominated instabilities, or just simply where the two peaksexhibited by the marginal stability
curve is of equalQ is found in a similar fashion (the yellow parts of figure C.1). The routine
samples the parameter space from lowA until it finds with the help offindpeaks two peaks
and that the difference in height between the peaks are less than 0.0001. This is just an arbitary
number to counter any numerical errors, e.g. using 0 resulted in no transition found at all. The
A value is again saved in a vector and the next point is found by sampling on the nextB value
from just fiveA elements below the previously found point.

The upper transition is when the marginal stability curve exhibits one peak, only the gaseous
peak. This is easiest to find when samplingA from large values instead (the green parts of figure
C.1). This is exactly the same manner as with the low transition, sampling the curves until the
routine finds that it exhibits two peaks. Then it continues onthe next definedB value and samples
from just fiveA values above the previously found point. The found points are of course saved
in a third vector.

What we obtain are three vectors for each chosen thickness that are the different transition
lines of the two-phase region.

C.3 Determining the stability threshold

To find the different two-phase regions we were only requiredto derive the marginal stability
curves for the different thick cases in the proximity of the specific transition curves in theB−A
space. However, to compute the stability threshold in the same fashion as with the thin discs we
again need to compute the marginal stability curve for the whole parameter space for all four
chosen thick cases.

For the thin case we used 1000 elements for each parameter, now we instead only have 1000
A elements and 100B elements. Unfortunetaly it would still take an unrealisticamount of time
to derive the marginal stability curve for allA andB values and for all the four thick cases we
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Figure C.1: Flowchart describing the routine used to find the two-phase region of the thick discs.
More details are found in the text of Appendix C.2.
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are considering on a normal computer. Constraints were required and so only a few specific
contour-lines were computed instead so that the marginal stability curve could be computed in
the vicinity of these.

Again are there several ways of deriving the specific contour-lines in an effective way. How-
ever, I decided to use the one I found most effective, which was not exactly as precise as some
other methods that were tried. The other methods that had higher precision in finding the spe-
cific contour-lines had however very cumbersome codes and also required at least four to five
times longer time to find each line while this method I decidedto use only required around five
minutes.

The same method for deriving the marginal stability curve asfor the two-phase region was
used again, i.e. using a logarithmic scale for the wavelengths from10−4 to 1.2. However, this
time the routine was devised so that it would find only the global maxima of the marginal stability
curve from the lowest definedA andB with the commandmax until it reaches aQ̄ larger
than the predefined contour-line value (see figure C.2). The first Q̄ that is found to be larger
than the wanted predefined value is saved in a vector and the routine continues to compute the
marginal stability curves from the next predefinedB and only five (as with the two-phase region)
predefinedA elements (again denoted by the indexi in figure C.2) below the saved one.

What we obtain is one vector in MATLAB for each contour-line. The problem is that this
method does not use the predefined MATLAB-commandcontour as it instead derives an ap-
proximate contour-line. To be able to use thecontour command the routine has to compute the
marginal stability curves in a wider range above and below the wantedQ̄ so that there are no
empty regions or discontinuities in the contour-lines. This gives a higher precision and also took
much more time. And it required alot of code to optimise the process.
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Figure C.2: Flowchart describing the routine used to find the determine contour lines of the
stability threshold for thick discs as described in Appendix C.3.
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