
Chiral effective field theory with
machine learning
Bachelor of Science Thesis for the Engineering Physics Program

JOHANNES ASPMAN, EMIL EJBYFELDT,
ANTON KOLLMATS, MAXIMILIAN LEYMAN

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

1

bachelor of science thesis for the engineering physics program

Chiral effective field theory with machine learning

Johannes Aspman
Emil Ejbyfeldt
Anton Kollmats

Maximilian Leyman

Department of Physics
Division of Subatomic and Plasma Physics

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Chiral effective field theory with machine learning
Johannes Aspmana, Emil Ejbyfeldtb, Anton Kollmatsc, Maximilian Leymand

Email:
aaspmanj@student.chalmers.se
bemilej@student.chalmers.se
ckollmats@student.chalmers.se
dgusleymma@student.gu.se

© Johannes Aspman, Emil Ejbyfeldt, Anton Kollmats, Maximilian Leyman, 2016

Bachelor thesis at the Department of Physics, Chalmers
Bachelor’s thesis TIFX04-16-04

Supervisor: Andreas Ekström, Christian Forssén
Examiner: Daniel Persson

Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 31-772 10 00

Cover:
Joint probability distribution of the binding energy of the alpha particle and the radius of the
deuteron, see Chapter 5.

Chalmers Reproservice
Gothenburg, Sweden 2016

mailto:aspmanj@student.chalmers.se
mailto:emilej@student.chalmers.se
mailto:kollmats@student.chalmers.se
mailto:gusleymma@student.gu.se

Abstract
Machine learning is a method to develop computational algorithms for making predictions based
on a limited set of observations or data. By training on a well selected set of data points it is in
principle possible to emulate the underlying processes and make reliable predictions.

In this thesis we explore the possibility of replacing computationally expensive solutions of the
Schrödinger equation for atomic nuclei with a so-called Gaussian process (GP) that we train on a
selected set of exact solutions. A GP represents a continuous distribution of functions defined by
a mean and a covariance function. These processes are often used in machine learning since they
can be made to emulate a wide range of data by choosing a suitable covariance function.

This thesis aims to present a pilot study on how to use GPs to emulate the calculation of
nuclear observables at low energies. The governing theory of the strong interaction, quantum chro-
modynamics, becomes non-perturbative at such energy-scales. Therefore an effective field theory,
called chiral effective field theory (χEFT), is used to describe the nucleon-nucleon interactions.

The training points are selected using different sampling methods and the exact solutions for
these points are calculated using the research code nsopt. After training at these points, GPs
are used to mimic the behavior of nsopt for a new set of points called prediction points. In this
way, results are generated for various cross sections for two-nucleon scattering and bound-state
observables for light nuclei.

We find that it is possible to reach a small relative error (sub-percent) between the simulator,
i.e. nsopt, and the emulator, i.e. the GP, using relatively few training points.

Although there seems to be no obvious problem for taking this method further, e.g. emulating
heavier nuclei, we discuss some areas that need more critical attention. For example some observ-
ables were difficult to emulate with the current choice of covariance function. Therefore a more
thorough study of different covariance functions is needed.

Sammandrag
Maskininlärning är en metod för att utveckla beräkningsalgoritmer som gör prediktioner från en
begränsad mängd observationer eller data. Genom att träna på en mängd väl valda datapunkter
är det möjligt att emulera de underliggande processerna och göra pålitliga prediktioner.

I denna rapport undersöker vi möjligheterna att ersätta beräkningstunga lösningar till Schrödin-
gerekvationen för atomkärnor med en så kallad gaussisk process (GP) som vi tränar på en vald
mängd exakta lösningar. En GP representerar en kontinuerlig distribution av funktioner som
definieras av ett medelvärde och en kovariansfunktion. Dessa processer används ofta inom mask-
ininlärning då de kan emulera en mängd olika typer av data genom att välja en passande kovari-
ansfunktion.

Denna rapport syftar till att vara en introduktionsstudie i användandet av GP:s för att emulera
beräkningar av observabler inom kärnfysiken. Den ledande teorin för den starka kraften, kvantkro-
modynamik, blir icke-perturbativ vid de låga energier som är relevanta för kärnfysiken, och därför
används istället en effektiv fältteori, kallad kiral effektiv fältteori (χEFT), för att beskriva nukleon-
nukleon växelverkan.

Träningspunkterna väljs med hjälp av olika metoder och de exakta lösningarna i dessa punkter
beräknas med forskningskoden nsopt. Efter att ha tränat på dessa punkter användes GP:s till
att emulera beteendet hos nsopt för en ny uppsättning punkter som kallas för prediktionspunkter.
Resultat tas sedan fram för olika tvärsnitt för tvånukleonspridning samt för bundna tillstånd för
lätta atomkärnor.

Vi finner att det är möjligt att nå små relativa fel (sub-procent) mellan simulatorn, dvs nsopt,
och emulatorn med relativt få träningspunkter.

Även om det inte finns några uppenbara hinder för att utnyttja denna metod för mer komplexa
system, som tyngre atomkärnor, diskuterar vi vissa områden som behöver mer uppmärksamhet.
Exempelvis var vissa observabler svåra att emulera med den använda kovariansfunktionen. En mer
genomgående studie av olika kovariansfunktioner skulle därför behövas.

Acknowledgements
We would like to thank our supervisors Christian Forssén and Andreas Ekström for their support
and guidance during this project. We would also like to express our appreciation to Boris Carlsson
for his support in questions regarding nsopt.

The Authors, Gothenburg, May 2016

Contents

1 Introduction 1
1.1 Purpose and aims . 1
1.2 Method and limitations . 2
1.3 Structure of the thesis . 2

2 Gaussian processes for machine learning 3
2.1 Gaussian process . 3
2.2 Regression analysis with Gaussian processes . 3
2.3 Covariance functions . 5
2.4 Optimization of the hyperparameters . 5
2.5 A basic example . 5

3 Underlying theory of the simulator 7
3.1 Effective theories . 7

3.1.1 Chiral effective field theory . 7
3.1.2 Low-energy parameters and their statistical errors 8

3.2 Scattering theory . 9
3.3 Bound-states and the many-body problem . 10

4 Statistical framework for sampling 12
4.1 Latin hypercube sampling . 12
4.2 Sampling the statistical error space of correlated parameters 13

4.2.1 The covariance of the low-energy constants in NLO 13
4.2.2 Sampling from covariance matrix . 13

5 Results 15
5.1 Calculating cross sections using Gaussian processes 15

5.1.1 The total cross section . 15
5.1.2 Differential cross sections and Azx . 16
5.1.3 Propagating statistical errors in LECs . 17

5.2 Bound-states . 19
5.2.1 Correlation between binding energy and point-proton radius 19
5.2.2 Relative errors and time-scales . 20

5.3 Calculation time for the algorithm . 21

6 Discussion 22
6.1 Predicting cross sections . 22

6.1.1 Difficulties in predicting some behaviours of the cross sections 22
6.2 Bound-state observables . 23
6.3 Systematic emulator uncertainties . 23
6.4 Hyperparameters . 23
6.5 Time and memory complexity . 23

v

7 Conclusions and recommendations 25
7.1 Covariance functions . 25
7.2 Scikit-learn 0.14.1 . 25
7.3 Time complexity . 25
7.4 Outlook . 26

Bibliography 27

vi

Chapter 1

Introduction

Modern day physics very often require large amounts of computational power. This is due to
the fact that you often want to solve equations depending on many parameters, resulting in large
systems of equations. Such calculations often become time-consuming despite the computational
capacity of modern computers.

One way to circumvent this problem is by using a method called machine learning. In the
machine learning process a computer is allowed to train on a limited amount of data points and
then use this training to predict the outcomes of similar processes. The goal is to replace the
original simulation of the process with an emulator with reduced computational complexity and
thereby drastically reduce the time of computation.

Machine learning is a vast scientific field with a wide range of applications. In this thesis, we
will focus on an aspect of machine learning called regression analysis, and more specifically on the
Gaussian process model of regression analysis. This model uses the mean and covariance between
the training points to estimate the targeted function, called the simulator.

Earlier studies have shown that machine learning can be used to increase the effectiveness of
calculations within fields such as cosmology, many-body physics as well as nuclear physics [1, 2, 3].
In this project, we will examine whether it is possible to utilize machine learning to predict cross
sections in nucleon-nucleon scattering, as well as propagating the statistical uncertainties in the
description of the nuclear interaction to bound-state energies of few-nucleon systems.

We will use an effective description of the strong force for nuclear physics, called chiral effective
field theory (χEFT), to describe the nucleon-nucleon interaction. χEFT uses an expansion of
terms proportional to (Q/Λ)ν to describe the force between the nucleons, where Q and Λ are
parameters representing the soft and the hard energy scales of the effective theory. The number
ν = 0, 1, 2 . . . determines the size of the term and is called the chiral order. Since the expansion
contains an infinite number of terms a truncation is made whereby the higher order terms are
omitted. The most important terms in χEFT have ν = 0 and are labeled the leading order (LO).
The next-to-leading order (NLO) have ν = 2, since ν = 1 is forbidden for symmetry reasons, and
so on [4].

1.1 Purpose and aims
This thesis is an introductory study on the effects of using Gaussian processes to emulate observ-
ables of nuclear physics. The aim is to give an overview of both the benefits and the costs of this
model, as well as to present some possible directions for further studies.

The present study is guided by the following three research questions:

• Is it possible to implement an emulator capable of learning from the exact solutions of the
nuclear Schrödinger equation and from this make reliable predictions for the nuclear many-
body problem?

• For which levels of complexity does this emulator maintain its effectiveness?

• What are the limitations of using machine learning to predict physical systems?

1

1.2 Method and limitations
Our initial studies were mainly directed towards reading literature about practical examples of the
use of machine learning in physics as well as on the underlying theory of Gaussian processes. The
theory behind χEFT was only given minor attention. Most of the work was carried out in Python,
using Scikit-learn 0.14.1, where the code for our emulator was written [5]. To gather training data
for our emulator we used the simulator nsopt. This is a research code for obtaining numerically
exact solutions of the few-nucleon Schrödinger equation.

We focus on calculating observables at NLO in the expansion of χEFT. The machine learning
implemented in the emulator is limited to regression by Gaussian processes, with only the squared
exponential used as covariance function. As for the physics, we will restrain ourselves to training
our emulator to extrapolate observables associated with bound-states for less than four nucleons
and nucleon-nucleon scattering cross sections, with the ability to propagate errors.

1.3 Structure of the thesis
Chapters 2 to 4 present the theoretical basis of the thesis. The Gaussian processes which make
up the foundation for this thesis are given a basic description in Chapter 2. Chapter 3 presents
an introduction to effective theories in general and outlines the χEFT and the physical equations
relevant to our computational models. In Chapter 4 we present the sampling methods used to
generate relevant data points for the Gaussian processes.

Our results for the emulation of scattering and bound-state observables are presented in Chap-
ter 5, and these are given a more general discussion in Chapter 6. The thesis is concluded in
Chapter 7 with a summary and an outlook for further research.

2

Chapter 2

Gaussian processes for machine
learning

In this chapter a short introduction to the theory of Gaussian processes is presented, and a dis-
cussion is given on how these are implemented in machine learning. The statistical formulation
of regression analysis is presented, along with a discussion regarding the role of the covariance
function. The chapter is concluded with an example where a Gaussian process is used in regression
analysis of a simple mathematical function.

2.1 Gaussian process
A collection of normally distributed random variables is known as a Gaussian process (GP) [6].
There exist several equivalent interpretations of the GP, of which we shall adapt the so called
function-space-view.

In the function-space-view, the GP represents a distribution over functions, which is denoted
as

f(x) ∼ GP(m(x), k(x,x′)), (2.1)

where the function f is a random variable specified by an argument x. In general, a GP is defined
by its mean- and covariance functions, which are denoted as m(x) and k(x,x′), respectively.
Thus, the above distribution is effectively a distribution over random functions compliant with the
specified correlations.

In machine learning, the GP is used as a tool for regression analysis by eliminating functions
not coherent with observed data, which for a GP is known as the training data. The method by
which non-interesting distributions are removed is probabilistic conditioning [6].

2.2 Regression analysis with Gaussian processes
Suppose F is a function of x whose explicit evaluation is computationally cumbersome, making
direct evaluation on its entire domain highly inefficient. By evaluating the function on a small,
but carefully selected, subset of its domain one can try to reduce the computational complexity by
emulating F with a GP thus hopefully enabling more efficient, but less accurate, predictions to be
made on its entire domain.

These predictions are made by extrapolating the values assumed by F in the vicinity of a few
sampled points, referred to as training points. There is no general method for choosing the best
training points, it is an optimization problem of its own [6]. The points for which F is to be
predicted are henceforth referred to as the prediction points, which represent another subset of the
domain of F . The set of x-values specifying the prediction- and training points shall be denoted D,
for reference in this chapter.

3

0 2 4 6 8 10

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5
G

P
(x

)

(a)

0 2 4 6 8 10

x

−5

0

5

10

15

20

(b)

Figure 2.1: Black lines represent samples drawn from the prior distribution (a) and from the posterior
distribution with 5 training points, marked by × (b) of a Gaussian process with a squared exponential
covariance function.

As mentioned in the beginning of this chapter, a GP is specified by its mean- and covariance
functions, m(x) and k(x,x′). One general property that these functions share is that they must be
defined for all values of D. While it is often the case that the mean can be set identically to zero,
the choice of covariance function is not as straight forward. As the purpose of the sought GP is to
replicate the behavior of the real function, F , it is necessary to select a covariance function that
has characteristics similar to those of the original function. For this reason, as was the case with
the selection of training points, the procedure of finding a suitable covariance function is heavily
dependent on the nature of F (see Section 2.3 for a more elaborate description).

The specified mean- and covariance functions span a distribution of functions (called the prior
distribution), as in Equation (2.1) and it is the aim of GP modeling to use the training points
to extract the set of functions that are most similar to F (called the posterior distribution). A
schematic picture of such a process is shown in Figure 2.1. Every function specified by the GP
represents a particular joint event of a random variable that corresponds to a point x in D. It is
then a matter of probabilistic conditioning to single out the functions coherent with the training
points. This results in a set of Gaussian distributions for to every x in D [6].

It is convenient to arrange the arguments and the function values of the training points in
matrices, such that

Xt =


x1

x2

...
xnt

 , Yt =


F (x1)
F (x2)

...
F (xnt)

 , (2.2)

where nt is the number of training points.
Similarly, we arrange the points xnt+1,xnt+2, . . .xnt+np for which the function will be predicted

in a matrixXp, where np denotes the number of prediction points. Finally, we introduce the correla-
tion matrix, K, defined such that its matrix element Kij = k(xi,xj) where i, j ∈ {1, 2, . . . , nt+np}.
The correlation matrix becomes

K =

[
KXt,Xt KXt,Xp

KXp,Xt KXp,Xp

]
, (2.3)

where, for instance, KXpXt defines a submatrix of K whose entries corresponds to the points
defined by the elements of Xp and Xt. Defining two column vectors, M and Σ2, to contain the
mean and variances for each x in the posterior distribution in D, it can be shown that [6]

M = KXp,XtK
−1
Xt,Xt

Yt (2.4)

Σ2 = KXp,Xp −KXp,XtK
−1
Xt,Xt

KXt,Xp . (2.5)

4

The value of F (x), where x is in Xp, is then estimated by the predicted mean value with its
corresponding variances, extracted from the matrices as

µ(x) =Mx (2.6)

σ2
std(x) =

(
Σ2

)
x
. (2.7)

2.3 Covariance functions
When modeling a function, F , that can be quite complicated, the objective is to capture its features
as well as possible, using a minimal amount of training data extracted from the function itself. The
manner in which a GP model accomplishes this is by assuming that adjacent training points exhibit
similar behavior, and then extrapolate accordingly. In modeling arbitrary functions, this opens up
the freedom to define adjacency by means of a covariance function. As previously established in
this chapter, the adjacency measure is a function of the form k(x,x′).

In theory, any function that is positive semidefinite can be used as a covariance function. In
practice, the covariance function is best chosen ad hoc to fit a particular problem at hand. Often,
this choice is partially done by means of optimizing a set of so-called hyperparameters included
in the function. For some problems, one may wish to combine behaviors of several previously
known covariance functions. It can be shown that the addition or multiplication of two covariance
functions yield another valid covariance function. Similarly, one can produce a new function by
taking the convolution of two covariance functions [6].

One of the most frequently used covariance functions, and also the covariance function used
throughout this thesis, is the squared exponential, defined as

k(x,x′) = e−
|x−x′|2

2l2 . (2.8)

This function has the hyperparameter l, which can be interpreted as a characteristic length scale
of the function F . When modeling smooth functions the squared exponential covariance function
is suitable, since functions drawn from a GP with it are infinitely differentiable.

2.4 Optimization of the hyperparameters
The likelihood is the probability density of the observations given the parameters [6]. The marginal
likelihood p(Yt|Xt) is defined as the integral of the likelihood times the prior, where the prior is a
probability distribution answering to our prior knowledge of the parameters. If this knowledge is
weak the prior distribution is broad and vice versa.

Using that Yt is normally distributed, with a zero-mean and a covarianceKXtXt , and performing
the integration it can be shown that the log marginal likelihood can be calculated as [6]

log p(Yt|Xt) = −1

2
Y ⊤
t K

−1
XtXt

Yt −
1

2
log |KXtXt | −

nt
2

log 2π. (2.9)

The log marginal likelihood is used to give a measure of how good the model fits the training
points. Since the log marginal gives a value of how good a covariance function is it can be used
to compare different models. But given a covariance function that is dependant on one or more
hyperparameters you can formulate a maximization problem of the log marginal likelihood. Solving
this problem should give you the best hyperparameters for the given training points.

2.5 A basic example
For demonstration purposes we will emulate a known one-dimensional target function, which has
been chosen arbitrarily as

F (x) = x+ x(sinx− cosx). (2.10)

5

The training data consists of five points, nt = 5, whose x-values are uniformly sampled from the
interval x ∈ [0, 10]. Let, as in (2.2), Xt and Yt denote column vectors whose coordinates are
specified by the values of x and their corresponding samples F and we get

Xt =


1
3
5
7
9

 , Yt =


1.30
6.39
−1.21
6.32
20.91

 . (2.11)

Inferring from these training points, we will predict the values of F corresponding to 100
uniformly spaced x-values in the same interval as above, similarly arranged in a column vector Xp.

The x-values are used for calculation of the correlation matrix, specified by the squared expo-
nential covariance function of Equation (2.8). For the one-dimensional case, with l = 0.5 to help
illustrate how the hyperparameters affects the prediction, the covariance function is

k(x, x′) = e−2(x−x′)2 . (2.12)

Using the covariance function the correlation matrix of the training points is calculated

KXt,Xt =


1 1.06e − 1 1.26e−4 1.68e−9 2.51e−16

1.06e−1 1 1.06e−1 1.26e−4 1.68e−9
1.26e−4 1.06e−1 1 1.06e−1 1.26e−4
1.68e−9 1.26e−4 1.06e−1 1 1.06e−1
2.51e−16 1.67e−9 1.26e−4 1.06e−1 1

 . (2.13)

The hyperparameter l is now optimized by maximizing the log marginal likelihood in Equa-
tion (2.9). A maximum is found for l = 1.75, which will be considered the optimal value of l.

Now the full correlation matrix is calculated using the optimal l. The matrix is then decomposed
into submatrices according to (2.3), and the mean and variances for the posterior distribution are
derived from (2.4) and (2.5), finally µ(x) and σ2

std(x) are calculated according to (2.6) and (2.7).
The standard deviation function σstd(x) has been obtained by taking the positive square root of the
variance function. Figure 2.2 illustrates the prediction for both the initial value of l = 0.5 and the
optimal l = 1.75. The dashed green curve is µ(x), the blue curve is the true target function, F (x),
and the shaded area indicates the 2σstd (95%) confidence interval as deduced from the standard
deviation.

0 2 4 6 8 10
−10

−5

0

5

10

15

20

25

30

F
(x

)

l = 0.50 (a)

F (x) = x+ x(sin x− cos x)

Prediction

95% confidence interval

Training points

0 2 4 6 8 10
−10

−5

0

5

10

15

20

25

30

l = 1.75 (b)

Figure 2.2: Example of a Gaussian process used in predicting the function (2.10). Panel (a) shows the
prediction with a guessed value of the hyperparameter l = 0.5 and panel (b) shows the prediction for the
optimal value of l = 1.75.

6

Chapter 3

Underlying theory of the simulator

This chapter serves to give an introduction to the physical theories that make up the backbone
of this thesis. A brief introduction to effective theories is given and the usefulness of χEFT is
established. Next, its connection to scattering theory is made. Finally, an introduction to bound
states is provided.

3.1 Effective theories
It is widely known that the physical phenomena present at the various scales of the universe appear
quite distinct from each other. While, in principle, a theory of everything would be sufficient to
make predictions on any scale, in practice it is often necessary to isolate a set of phenomena and
study them without considering the effects of irrelevant physics. By diverting attention only to
the relevant degrees of freedom of a physical system, calculations can often be made significantly
simpler, increasing the ability to make predictions. The practice of isolating certain parts of
physics, relevant only at certain scales, has resulted in so-called effective theories, as shall be
further illustrated below.

The principle of an effective theory can be illustrated by the familiar correspondence of relativistic-
and Newtonian mechanics. In inertial frames moving with constant velocities relative to one an-
other the relationship between momentum and velocity of an object is a non-linear one. If one
assumes that the object is moving slowly in comparison to the speed of light, one may expand
its momentum in terms of a power series with rapidly vanishing terms. For many practical ap-
plications, this assumption is plausible and one may simply truncate the series, for reasons of
computational simplicity, and yet retain a valid description of the physics observed at this par-
ticular velocity scale. By discarding all but the leading-order term (LO), one obtains the classic
expression for momentum, for which only the first power of velocity is a relevant degree of freedom.
Naturally, this introduces a systematic error of the model. However, while a more accurate descrip-
tion of the physics is obtained by the inclusion of higher order terms (referred to as expansions of
next-to-leading-order (NLO), next-to-next-to-leading-order (NNLO), and so on) they are generally
not needed when dealing with classical mechanics [7].

Similarly, one may obtain a relatively simple description of low-energy nuclear forces by means
of a series expansion.

3.1.1 Chiral effective field theory
Strong nuclear forces are described by the theory of quantum chromodynamics (QCD). By means
of a series expansion, low-energy nuclear forces can be given a relatively simple description in terms
of an expansion parameter, Q/Λ. The quantities Q and Λ are energies whose magnitudes are of
the same order as the rest energies of the pion and rho meson, respectively. Thus, Λ defines the
energy scale for which the expansion is valid. This limiting case of QCD is called chiral effective
field theory, χEFT, and is the physical theory underlying this thesis [4, 8].

In the same manner as with the case of classical- and relativistic mechanics, one obtains an
infinite sum of terms proportional to (Q/Λ)ν , where ν is referred to as the chiral order of the term.

7

Figure 3.1: Schematic figure showing Feynman diagrams representing nucleon-nucleon interactions. The
horizontal orientation classify the diagrams by the number of nucleons involved, while the vertical direction
specify the order of the term. Solid lines represent nucleons and dashed lines pions. Circles, diamonds
and squares represent the chiral order of the interaction. The order ν = 1 does not contain any new
diagrams because of parity- and time-symmetries. At the order ν = 3 (NNLO), diagrams for three-nucleon
interactions (NNN) are also present.

Each term can be interpreted to represent a finite set of interaction diagrams, known as Feynman
diagrams. Shown in Figure 3.1 are Feynman diagrams representing nucleon-nucleon interactions.
The diagrams are arranged schematically with the vertical orientation representing the order of
the term associated with the diagrams, while the horizontal orientation classify the diagrams by
the number of nucleons involved. Two-nucleon interactions are denoted as NN and three-nucleon
interactions by NNN. As for the diagrams themselves, the lines represent particles propagating
through space-time, with solid lines for nucleons and dashed lines for pions. Circles, diamonds and
squares represent the chiral order of the interactions and their corresponding coupling constants,
a measure of the relative strengths among the interactions [9, 10].

As seen in Figure 3.1, several diagrams correspond to a single term in the expansion, where
each term itself is given by the sum of the contributions from short-range interactions as well as
the exchange of a number of pions. For reasons of parity- and time-symmetry terms with powers
ν = 1 vanish, resulting in the inclusion of terms with ν ≤ 2 in the NLO-expansion. As also
indicated in Figure 3.1, diagrams corresponding to three-nucleon interactions are not present until
an expansion up until NNLO, which is to be expected as three-nucleon interactions are significantly
weaker than that of two-nucleons. The effective field theory is obtained by discarding the weak,
higher order terms, completely analogous to the truncation of the relativistic momentum expansion
in the example above.

3.1.2 Low-energy parameters and their statistical errors
Effective field theories are governed by certain parameters, referred to as low-energy constants
(LECs) in the case of χEFT for nuclear physics. The dimension of the parameter space is dictated
by the chiral order of the expansion. For instance at LO and NLO there are 2 and 9 LECs respec-
tively. The parameters are determined by means of fitting model predictions to experimental data.
Effectively, this amounts to determination of the coupling coefficients mentioned in Section 3.1.1.
In our case, the data stem from experiments in nucleon-nucleon scattering, where the measured
observable is scattering cross sections (see Section 3.2 for details) [9].

Since the LECs are determined from experimental data, which always exhibit a certain uncer-
tainty, the LECs themselves inherit some flexibility in their determined values. This uncertainty
is referred to as the statistical error of the model.

The LECs also exhibit a certain dependence on each other due to the fact that they describe
the same physics. So if the value of one is changed the others will also be changed. This results in
the need to use their covariance matrix when propagating the statistical errors (for further details

8

see Section 4.2).

3.2 Scattering theory
Most of this thesis revolves around the computation of one specific type of observable: nuclear
cross sections, denoted σ. It is a measure of how many of the incident particles of a beam are
scattered from a target particle, and experimental measurements of the cross section have been
used to determine the size and shape of the atomic nucleus [11]. For convenience we will neglect
the spin-dependence of the nuclear force in this section.

If you know the flux of incoming particles and measure the amount of outgoing scattered
particles you can calculate the probability scattering. That probability corresponds to the cross
section, σ. The rate at which a reaction takes place, Wr, is proportional to the flux of incoming
particles, J , and the number of particles in the target, N , hit by the beam.

Wr = JNσ (3.1)

Usually what is measured is just a differential reaction rate, dWr, since the detectors commonly
used do not measure all the scattered particles,

dWr = JN
dσ

dΩ
dΩ (3.2)

where dσ
dΩ is the differential cross section and dΩ = sin θ dθ dϕ is the differential solid angle sub-

tended by the detector as shown in 3.2. In order to obtain the total cross section you have to
integrate the differential cross section over all angles [11],

σtot =

∫ 2π

0

dϕ

∫ π

0

sin θ dθ
dσ

dΩ
. (3.3)

If one would use a beam of polarized particles and/or a polarized target particle the situation
becomes more complex. The polarization is given as the expectation value of the spins of all
particles in the target or beam and can be changed by rotating the spins of the particles using a
magnet.

The cross section of this scattering will show azimuthal asymmetry from which the transverse
component of the polarization can be determined. By rotating the spin it is also possible to
determine the longitudinal part of the polarization [12]. Due to the combinations of polarized,
unpolarized beams and targets there are many different types of cross sections, for some examples
of this see Figure 3.3. In this thesis we will focus on calculating only three different cross sections,
selected because of their varying degrees of complexity. These are the total cross section, σtot,
a differential cross section where both target and beam are unpolarized, dσ

dΩ , and a cross section
where the beam and target are polarized in the x-z plane, Azx, as shown in Figure 3.3 [12].

Figure 3.2: An illustration of a differential cross section that possess rotational symmetry about the
incoming axis. The differential cross section is often represented in spherical coordinates with the origin
in the scattering center.

9

Figure 3.3: Scattering experiments with different combinations of polarizations for beam and target.
Polarization is represented with an arrow and ⊙ is an arrow out of the page.

The total cross section depends on the energy of the incoming beam, while being independent
of the angle, θ, between the beam and target, while the differential cross sections, dσ

dΩ and Azx,
are dependent on both energy and θ. Figure 3.4 shows these cross sections calculated with nsopt

in NLO. Azx assumes negative values in Figure 3.4 for some values of the energy and θ. This is
because it is normalized against the unpolarized differential cross section.

0 50 100 150 200 250 300

Lab energy [MeV]

101

102

103

104

T
o
ta

l
cr

o
ss

se
ct

io
n

[m
b
]

0 50 100 150 200 250 300

Lab energy [MeV]

0

20

40

60

80

100

120

140

160

180

θ
[d

eg
re

es
]

0

2

4

6

8

10

12

14

16

18

20

d
σ

d
Ω

[m
b
]

0 50 100 150 200 250 300

Lab energy [MeV]

0

20

40

60

80

100

120

140

160

180

θ
[d

eg
re

es
]

−0.45

−0.30

−0.15

0.00

0.15

0.30

0.45

0.60

A
z
x

Figure 3.4: The three different cross sections studied in this thesis, calculated with nsopt for the LEC
values given in Table 4.1 for NLO. The reasons for the chosen intervals of θ and energy are that for angles
greater than 180◦ you only receive a mirroring of the cross section, and the 300MeV limit is set because
of the limits of χEFT.

3.3 Bound-states and the many-body problem
One important and often occurring task in nuclear physics is the calculation of properties for
bound-states in the nucleus. For nuclei consisting of more than one nucleon this requires solving
the many-body Schrödinger equation. One model often used for computing few-nucleon states is
known as NCSM, or the no-core-shell-model. Here the problem is to find the eigenvalues given by
the many-body Hamiltonian [13]

H =
A∑

j=1

tj +
A∑

j<k=1

v2,jk +
A∑

j<k<l=1

v3,jkl + . . . (3.4)

where tj represents the kinetic energies of the different nucleons and v2,jk and v3,jkl represents the
two- and three-nucleon interactions respectively.

If |ψ⟩ is an eigenstate of this Hamiltonian

H |ψ⟩ = E |ψ⟩ (3.5)

you can express |ψ⟩ in an orthonormal complete harmonic oscillator basis |ϕi⟩ as

|ψ⟩ =
∑
i

ci |ϕi⟩ . (3.6)

which turns the Schrödinger equation into

H
N∑
i

ci |ϕi⟩ = E
N∑
i

ci |ϕi⟩ . (3.7)

10

Since the sum is infinite you need to truncate it at some finite N .
If we now multiply the equation by ⟨ϕj | we get

N∑
i

ci ⟨ϕj |H |ϕi⟩ = E
N∑
i

ci⟨ϕj |ϕi⟩, (3.8)

but since the basis is orthonormal the right-hand side becomes Ecj and on the left-hand side
you have ⟨ϕj |H |ϕi⟩ which corresponds to the matrix element Hji of the Hamiltonian, and the
many-body Schrödinger equation results in an eigenvalue problem

Hjici = Ecj (3.9)

which is solved by diagonalizing the matrix of the Hamiltonian. The lowest eigenvalue Ei gives
the ground state energy of the system represented by the Hamiltonian. The eigenvector c provides
the amplitudes of the corresponding wave function |ψ⟩ in the basis |ϕi⟩. For a more thorough
description of this see [13].

One of the quantities that we will be working with is the theoretically calculated point-proton
radius which is related to electric charge radius measured in experiments. This can be calculated
using the eigenvectors obtained in the diagonalization of the Hamiltonian [10].

11

Chapter 4

Statistical framework for sampling

An important aspect to consider when creating an efficient machine learning emulator is how to
select your training data. This chapter serves to present the different sampling techniques used
in this thesis. The latin hypercube sampling is introduced as an effective way of sampling, and a
discussion on how to sample from a correlated set of parameters concludes the chapter.

4.1 Latin hypercube sampling
The latin hypercube sampling (LHS) was introduced by Mackay et al. in 1979 [14], and has been
used extensively in fields where an efficient sampling method is needed [15, 16]. Earlier studies
have shown that LHS is preferable in Gaussian process modeling [1, 16].

LHS is generated by dividing every axis of the sample space into a number of intervals, N , with
equal marginal probability, 1/N . For every axis and every interval, one, and only one, coordinate
is picked randomly, and together these coordinates define the N sample points [14].

Figure 4.1 demonstrates LHS used on a two dimensional sample space and five sample points,
where the dots are the different sample points and the grid outlines the five sampling intervals for
every axis.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.1: Latin hypercube sampling (LHS) performed for two dimensions with five sample points. In
two-dimensional LHS, the points are distributed in a manner that ensures the presence of only one point
per row and column.

There are several different categories of LHS, stemming from different constraints put on how
the samples are selected inside the intervals. For instance they can be chosen randomly inside
the given intervals, or with the criteria that they should be picked so to maximize the minimum
distance between sampling points, LHSmm [15].

12

We will use a package for Python called pyDOE that generates a latin hypercube sample for any
number of dimensions and sample points [17]. This package also allows you to put different criteria
on how to sample the points inside the given intervals, where we will examine both the criteria of
maximizing the minimum distance between points as well as to select them randomly.

4.2 Sampling the statistical error space of correlated param-
eters

The parameters, i.e. the so-called LECs, we use have been obtained from separate fits to ex-
perimental data, and as such they exhibit a certain statistical error. The parameters with their
statistical errors, taken from [9], are shown in Table 4.1.

Table 4.1: The LECs from NLO with their 1σ uncertainty (given in the parenthesis) taken from [9].

LECs from NLO

C̃
(np)
1S0

−0.150623(79)

C̃
(pp)
1S0

−0.14891(11)

C̃
(nn)
1S0

−0.14991(27)

C1S0
+1.6935(83)

C̃3S1
−0.1843(16)

C3S1
−0.218(14)

CE1 +0.263(16)
C3P0

+1.2998(85)
C1P1

+1.025(59)
C3P1

−0.336(10)
C3P2

−0.2029(15)

4.2.1 The covariance of the low-energy constants in NLO
The LECs of χEFT hold a dependency on each other which has to be accounted for when sampling
over their error space [9]. The correlation matrix of the LECs in NLO is presented in Figure 4.2.
This is a symmetric matrix with element

Cij = corr(ci, cj) =
cov(ci, cj)
σciσcj

(4.1)

where ci are the different LECs and cov(ci, cj) is the covariance between LECs ci and cj , a result
of the statistical fit of the LECs in [9]. A value of Cij = −1 means that parameters ci, cj are fully
anti-correlated, and a value of +1 means that they are fully correlated.

4.2.2 Sampling from covariance matrix
Since the parameters have a certain dependence on each other, a correlation matrix must be used
to form orthogonal vectors with corresponding error estimates and a normally distributed sample
is taken over the variance of these vectors. To capture the properties of this distribution, sampling
will be done from a multivariate Gaussian distribution [18].

More explicitly, this is done via a linear transformation of the parameters with the eigenvectors
of the correlation matrix as the coefficients of the transformation matrix. If α̃i is our transformed
parameter with index i and αi the original, we get

α̃i = vi,1α1 + vi,2α2 + · · ·+ vi,11α11 (4.2)

with the different v’s being the different eigenvectors of the correlation matrix. For the whole
vector of parameters we get

13

C̃
(
n
p
)

1
S
0

C̃
(
p
p
)

1
S
0

C
1
S
0

C̃
3
S
1

C
3
S
1

C
E

1

C
3
P
0

C
1
P
1

C
3
P
1

C
3
P
2

C̃
(
n
n
)

1
S
0

C̃
(np)
1S0

C̃
(pp)
1S0

C1S0

C̃3S1

C3S1

CE1

C3P0

C1P1

C3P1

C3P2

C̃
(nn)
1S0

−1

0

1

Figure 4.2: Correlation matrix of LECs in NLO constructed using data from [9]. The eccentricity of the
ellipses correspond to the value of the correlation while the slope of the major axis determines whether the
LECs are correlated or anti-correlated. The squares describes the correlation according to the colorbar.
−1 means fully anti-correlated and +1 means fully correlated.

α̃ = V α =⇒ α = V −1α̃ (4.3)

where V is the matrix of eigenvectors received from the diagonalization of the covariance matrix.
The eigenvector of the correlation matrix corresponding to the largest eigenvalue represents the

direction in which the sample varies the most, and so on. The corresponding eigenvalues represents
the magnitudes of these variances [19]. By multiplying the eigenvectors with the LECs, the sample
space is rotated and it is then possible to sample independent vectors along the rotated interval.
Finally, the matrix of eigenvectors is inverted and multiplied with the rotated parameters as in
Equation (4.3).

It is still important to recognize that the uncertainties given in Table 4.1 are the 1σ deviation
when assuming that the parameters are normally distributed. In this thesis, in order to account
for this, we do the LHS over the previously mentioned multivariate Gaussian distribution.

14

Chapter 5

Results

This chapter presents the results of using Gaussian processes to emulate certain observables in
nuclear physics. We first present the results from predicting different cross sections. After that we
present some introductory results from predicting bound-states of nuclear physics. The chapter
ends with results concerning the time efficiency of the Gaussian processes.

5.1 Calculating cross sections using Gaussian processes
The cross sections that we study in this thesis are from neutron-proton scattering. The results
in Sections 5.1.1 and 5.1.2 are based on a set of LECs according to the mean values given in
Table 4.1. In Section 5.1.3 however, we perform and present the results from an error propagation
of the statistical uncertainties given in the same table.

The emulator was trained using differently sized training data sets and the predicted values
were compared to exact data computed with nsopt.

Figure 5.1 shows the relative error of the emulator, compared to the data from nsopt, from
the prediction of Azx with 10, 100 and 1000 training points. It shows that the relative errors
are symmetrically distributed around zero, and we use the standard deviation as a measure of
the quality of the emulator. Similar results were found for the distribution of the errors of all
emulations done in this thesis.

−0.6 −0.3 0.0 0.3 0.6

Relative error

0

2000

4000

6000

8000

10000

12000

C
o
u
n
ts

10 tr. points

−0.03 0.00 0.03

Relative error

0

5000

10000

15000

20000

100 tr. points

−0.0001 0.0000 0.0001

Relative error

0

5000

10000

15000

20000

25000

30000

35000

1000 tr. points

Figure 5.1: The distribution of the relative error of the emulator against data from the simulator, nsopt,
for Azx predictions using 10, 100 and 1000 randomly sampled training points.

5.1.1 The total cross section
For a given set of fixed LECs, the total cross section depends only on the energy of the incoming
beam.

15

The blue line in Figure 5.2(a) shows the standard deviation of the relative error between our
emulator and nsopt for different sizes of the training data set. We used 10, 100, 500 and 1000
training points selected with equal spacing on the energy interval, and the predictions were cross-
validated against a set of 2000 calculations with nsopt.

One problem with predicting the total cross section was its great variance between high and
low energies. In order to flatten out this variance, and then see if the precision of the predictions
could be increased, we also trained the emulator using the logarithm of the total cross section.
This corresponds to the green dashed line in Figure 5.2(a).

To further illustrate the difference between training with the logarithm of the total cross section,
Figure 5.2(b) shows the different results for predicting the total cross section. The blue line
corresponds to using the regular data when training and the green dashed line corresponds to
training on the logarithm of the training points.

200 400 600 800 1000

Number of training points

10−5

10−4

10−3

10−2

10−1

100

101

S
td

o
f

re
la

ti
v
e

er
ro

r

(a)

Emulator

Emulator(log)

0 50 100 150 200 250 300

Lab energy [MeV]

101

102

103

104

T
o
ta

l
cr

o
ss

se
ct

io
n

[m
b
]

(b)

Emulator

Emulator(log)

Simulator (nsopt)

Training points

Figure 5.2: (a) The standard deviation, std, of the relative error when the total cross section was predicted
for various amounts of training points, both with the logarithm of the total cross section and the regular
values of the total cross section. (b) the total cross section trained with regular data and logarithm taken
before training for 30 training points.

5.1.2 Differential cross sections and Azx

With fixed LECs, both the unpolarized differential cross section and the polarized Azx depend only
on the energy of the incoming beam and the scattering angle, θ. Because of the inefficiency of the
equal-spacing sampling method in sampling functions of several variables, the training points for
the differential cross section and Azx were sampled using both random sampling and the LHSmm
method. Both methods were used to obtain training sets with 10, 100, 500 and 1000 points.

The sampling was performed 20 times for every size of the training set. In Figure 5.3 we show
the mean standard deviation of these sets for different number of training points. The width of
the bands represents the 1σ interval of the standard deviations of the twenty different groups of
sampling points.

Before training the emulator to predict the differential cross section, the logarithm of the
training data was taken to even out the steepness of the curve for low-energies, as in the above
case of the total cross section.

16

200 400 600 800 1000

Number of training points

10−4

10−3

10−2

10−1

100

Azx

200 400 600 800 1000

Number of training points

10−3

10−2

10−1

100
S
td

o
f

re
la

ti
v
e

er
ro

r

dσ
dΩ

Mean std, random

Mean std, LHS

Figure 5.3: The mean of the standard deviation of the relative error when predicting for differently sized
training sets from random sampling and LHSmm for the differential cross section and Azx.

5.1.3 Propagating statistical errors in LECs
At NLO we have a set of 11 LECs. Two of them are only relevant for proton-proton and neutron-
neutron interactions. Since we only study the neutron-proton interaction in this thesis, we will
only have to consider a set of 9 LECs, selected from the distribution according to Section 4.2.2.

As a primary implementation, we explored the error propagation abilities of the emulator by
varying the LECs for the total cross section at a single energy, namely Tlab = 19.665MeV. Figure
5.4 shows the total cross section values predicted by nsopt (the emulator) on the left (right) hand
side. The nsopt values have been generated for 100,000 parameter samples. Predictions were
then made with the emulator for the same sets of parameters based on 50 training points. In both
graphs, a normal distribution specified by the mean value of the total cross section and its standard
deviation is shown in red. The standard deviation of the values predicted by the emulator differs
on the third decimal from that of nsopt, i.e. a relative uncertainty of order 10−5.

492.0 492.2 492.4 492.6 492.8 493.0 493.2

Total cross section [mb]

0

500

1000

1500

2000

2500

3000

3500

4000

C
o
u
n
ts

µ = 492.51
σstd = 0.125

492.0 492.2 492.4 492.6 492.8 493.0 493.2

Total cross section [mb]

0

500

1000

1500

2000

2500

3000

3500

µ = 492.52
σstd = 0.121

Figure 5.4: The left panel shows the distribution of values calculated for 100,000 parameter samples by
nsopt. The right panel instead shows the predictions of the emulator for the same sets of parameters after
training on 50 sets. The red curve is the same in both panels and it shows a normal distribution specified
by the mean and standard deviation of the nsopt distribution.

Additionally, the emulator was used to perform error propagation throughout the entire energy
range. Treating the energy as another parameter, 10 parameters had to be varied simultaneously
(9 LECs, 1 energy). The energies were uniformly sampled from the interval 0.5 to 290 MeV. The
LECs were randomly sampled from a normal distribution specified by the mean and standard
deviation of Table 4.1 and covariances as explained in Section 4.2.2.

17

Figure 5.5 show energy on the horizontal axis and the total cross section on the vertical axis
for two different configurations of 100 and 1000 training points respectively. In both cases, the
emulator was trained on the logarithm of the total cross section values from nsopt, in the same
manner as in Section 5.1.1. In total, 20 curves were generated from non-identical, but equally
sized, training sets for each of the two size configurations. The total cross section values were then
predicted by the emulator for 1000 points with the LECs held constant, as opposed to the training,
throughout the entire energy range.

The precision of the emulator was tested against nsopt. Figure 5.6 shows the mean standard
deviation of the error of the emulator relative to nsopt for various sizes of the training set. The
predictions were made by the emulator for energies in the 0-290 MeV interval. For every energy,
a distinct set of randomly sampled LECs were used. The predictions were made using constant
LECs, i.e one set of LECs were used throughout the entire spectrum of energy. Predictions were
made 20 times for training sets of varying sizes (10, 100 and 1000 points).

0 50 100 150 200 250 300

Lab energy [MeV]

101

102

103

104

T
o
ta

l
cr

o
ss

se
ct

io
n

[m
b
]

0 50 100 150 200 250 300

Lab energy [MeV]

101

102

103

104

Figure 5.5: 20 total cross section curves as predicted by the emulator for energies in the 0-290 MeV
interval. For every energy, a distinct set of randomly sampled LECs were used. On the left (right) a
training set with a total number of 100 (1000) points were used. The subsequent predictions were made
using non-varying LECs, i.e one set of LECs were used throughout the entire energy range. As can be seen
in the left panel, two significant outliers indicate the low precision of the predictions.

0 200 400 600 800 1000

Number of training points

10−2

10−1

100

101

S
td

o
f

re
la

ti
v
e

er
ro

r

Figure 5.6: The solid line shows the standard deviation of the relative error when the total cross section
was predicted for various amounts of training points. The relative error has been computed as the mean
value of 20 different sets of parameters for three different set sizes (10, 100 and 1000). Each set of parameters
consists of a number of energies evenly distributed in the interval 0-290MeV, with each energy associated
with a set of randomly sampled LECs. The predictions that were compared to nsopt were made using
constant LECs throughout the entire energy range.

18

5.2 Bound-states
So far we have only looked at scattering observables. However the emulator was also used to
predict bound-state observables for systems with up to four nucleons.

To measure the emulator’s efficiency we performed an error propagation for different LEC values
similar to the one performed for the cross sections. Training points were sampled from a random
multivariate Gaussian distribution of LECs using the previously mentioned covariance matrix.

The simulator, nsopt, calculates a set of 9 bound-state observables for each set of LECs and
correlation between these observables has been documented [9].

5.2.1 Correlation between binding energy and point-proton radius
At N2LO the correlation between the binding energy of the alpha particle E(4He) and the point-
proton radius of the deuteron Rpt−p(2H) had previously been plotted as a joint probability distri-
bution [9]. That, however, was never done for bound-state observables at the NLO-level which is
the focus of this thesis. Plotting the joint probability distribution of the above named observables
for this level was therefore the first task in this area. Also the contour lines corresponding to the
1σ and 2σ intervals were to be generated in order to better visualize the limits of the distribution.

12,000 sets of LECs were sampled and observables were calculated for each set with nsopt. This
is the distribution shown in Figure 5.7. The contour lines corresponding to 1σ and 2σ confidence
intervals were then generated and are used as a reference (solid black line) in both Figure 5.7 and
Figure 5.8 to show the accuracy of the emulator.

Earlier predictions made for respective observable at NLO had set the limits at 1.970 and
1.972 fm for the point-proton radius and −27.3 and −27.6MeV for the binding energy using sta-
tistica l analysis[9]. As seen in Figure 5.7 most of the points calculated by nsopt stay within these
intervals.

To test the accuracy of the emulator, two training sets consisting of 50 and 100 training points
were used to predict the observables of all 12,000 points. The contour lines of these predicted
distributions were also generated, also shown in Figure 5.7.

The dotted blue (dashed red) lines correspond to the 1σ and 2σ intervals of the distribution
predicted by utilizing 50 (100) training points. At 100 training points, the relative error between
the predicted data and nsopt are on the order of 10−6 for both observables. A remarkably small
number with so few training points.

Figure 5.8 was made in order to get a picture of what the joint probability distribution would
look like for a larger number of points. The emulator was provided a set of 100 training points and
was then set to predict the observables for 100,000 new sets of LECs. Contour lines corresponding
to 1σ and 2σ were generated to show the confidence intervals for the predicted points, and these
are shown together with the confidence intervals of the 12,000 points from nsopt.

These contours coincide to a great degree and the distribution in Figure 5.8 is very similar to
the one in Figure 5.7. This shows that a valid distribution is obtained even when predicting for
new LEC values. Since so many points are plotted one can assume that the distribution shown in
Figure 5.8 is representative of what the real distribution would look like.

19

−28.0 −27.8 −27.6 −27.4 −27.2 −27.0

E(4He) [MeV]

1.966

1.967

1.968

1.969

1.970

1.971

1.972

1.973

1.974

R
p
t−
p
(2

H
)

[f
m

]

1σ
2σ

Figure 5.7: Joint probability distribution of the radius of the deuteron, Rpt−p(2H), and the binding energy
of the alpha particle, E(4He) at NLO. The black line is from 12,000 calculations with nsopt, dotted blue
lines are from a prediction of 12,000 points using 50 training points and the dashed red line corresponds
to a prediction of 12,000 points using 100 training points.

−28.0 −27.8 −27.6 −27.4 −27.2 −27.0

E(4He) [MeV]

1.966

1.967

1.968

1.969

1.970

1.971

1.972

1.973

1.974

R
p
t−
p
(2

H
)

[f
m

]

1σ
2σ

Figure 5.8: Joint probability distribution of the radius of the deuteron, Rpt−p(2H), and the binding energy
of the alpha particle, E(4He) for NLO. The black line is from 12,000 calculations with nsopt, dashed red
lines are from 100,000 points predicted using 100 training points.

5.2.2 Relative errors and time-scales
In this section we will give a more rigorous account of how the errors generated by the emulator
were reduced and show how the processor time scales with the number of training points used.

For a given amount of training points, the procedure of training and predicting was repeated
50 times with different training sets. The relative error was taken between the simulator, nsopt,
and the emulator for every iteration. The processor time for initialization and predicting were also
measured respectively.

The mean of the values generated by the iterations was taken for each number of training points
in order to eliminate statistical fluctuations.

In Table 5.1 the relative errors as well as the time it took to train and predict for a set number
of training points for the point-proton radius are given. Since the errors and the times were very
similar for both observables we show only the results for the radius.

It takes approximately 46 seconds for nsopt to calculate one set of observables from a set
of LECs on a computer with a quad core CPU clocked at 3.4GHz. Thus, it took 153 hours to
calculate the 12 000 points used as a reference in Figure 5.7 and Figure 5.8. In order to reduce time
the training sets were calculated on separate computers in groups of 1000. If one were to use the
emulator instead, time could be drastically reduced as seen in Table 5.1. 40 or 80 minutes would

20

be needed to calculate the number of training points necessary to get an accurate distribution.
After that, only seconds would be needed to generate a distribution of 12,000 points.

The relative speedup, defined as the quotient between execution times for nsopt and for the
emulator with the same number of prediction points, is also given in Table 5.1. For 50 (100)
training points and 12,000 prediction points a remarkable speedup of 240 (120) is obtained while
retaining a relative error on the order of 10−5 (10−6). When we go from 100 to 500 training points
the relative speedup is reduced by 80% while the relative error decreases by 89%. However for
most tasks a relative error of 10−6 would probably be acceptable.

Table 5.1: Overview of the calculation time and relative error for different number of training points.
Training data generation is the approximate time it takes to calculate the training points with nsopt,
initialization is the time it takes to prepare the emulator, prediction is the time it takes to calculate 12,000
points with the emulator. The relative speedup, compared with the time it would take to calculate 12,000
simulations, is shown in the last column.

Number of
training points

Relative
error

Training data
generation time [s]

Initialization
time [s]

Prediction
time [s]

Relative
speedup

50 4.82e-5 2300 0.15 0.52 240
100 3.86e-6 4600 0.28 0.68 120
500 4.32e-7 23,000 4.27 1.14 24
1000 2.32e-7 46,000 15.20 1.68 12

5.3 Calculation time for the algorithm
The time analysis of the algorithm was divided into three different steps, (a) optimization of the
hyperparameters, (b) decomposition of the covariance matrix and (c) predicting new data points.
Figure 5.9 shows the calculation time as a function of both the number of training points and
dimension of the training space. It can be seen that the prediction step depends linearly on the
number of training points, while optimization and decomposition exhibit at least a polynomial
dependency. It was also shown that the calculation time for the prediction was linearly dependant
on the number of prediction points.

0 200 400 600 800 1000

Number of training points

0

1

2

3

4

5

C
a
lc
u
la
ti
o
n
ti
m
e
[s
]

(a)

1 pars

5 pars

9 pars

0 200 400 600 800 1000

Number of training points

0.0

0.2

0.4

0.6

(b)

0 200 400 600 800 1000

Number of training points

0.0

0.5

1.0

1.5

2.0

(c)

Figure 5.9: The calculation time for differently dimensioned training sets and for three different steps
of the algorithm, (a) optimization, (b) decomposition of the covariance matrix and (c) prediction. (a) the
calculation time for one run of the optimization with a random starting position. (b) the calculation time
for decomposition of the matrices needed in the prediction. (c) calculation time for predicting the value
for 10,000 points.

21

Chapter 6

Discussion

This chapter includes a discussion and an interpretation of the results from the previous chapter in
a broader sense, including the difficulties and uncertainties found in the method. First, a discussion
is presented on the prediction of different cross sections and the difficulties therein. The subject
of emulating bound-states is then examined. The chapter ends with a more general discussion on
the benefits and drawbacks of the method.

6.1 Predicting cross sections
In predicting the different cross sections we found that the emulator can be quite successful even
with relatively small amounts of training points. For the total cross section and Azx we get to the
sub-percent level of errors for just above 100 training points, see Figures 5.2 and 5.3, while the
differential cross section reaches a few-percent level around the same amount of training points,
Figure 5.3.

6.1.1 Difficulties in predicting some behaviours of the cross sections
A problem we found with the chosen method was in predicting functions that have a large variance
in their values, like the total- and differential cross sections for low versus high energies. This is
probably due to the fact that the covariance function wants to correlate the low-energy points with
the high-energy points where the function takes an almost constant value, much lower than for the
low-energies. Because of this it overfits the data in the transition between slopes, see blue curve
in Figure 5.2(b).

One way to circumvent this overfitting is by doing a transformation of the training data to
decrease its variance [20]. The green dashed curve in Figure 5.2 shows the improvement in the
predictions when the logarithm of the function used for training. This is a fairly easy transfor-
mation, and the prediction could probably be improved even more if a more advanced method of
transformation were to be used. This is left as an outlook for further research.

In the case of error propagation for the energy-dependence of the total cross section, additional
difficulties appeared. As shown in Figure 5.4, there were no problems in replicating the errors
predicted by nsopt with the emulator for a single energy (with a relative uncertainty of order 10−5).
However, when using the energy as a 10th parameter alongside the LECs in training the emulator,
the errors became significantly larger, as can be seen in Figure 5.6. This is further demonstrated
in Figure 5.5 where several outlier curves are observed. These curves unexpectedly deviate from
the others with significant magnitudes, indicating large variations in the predictions. We believe
that this problem is similar to the problem of capturing the behavior of functions with large
variations in their values, i.e., observables with significant dependence on individual parameters,
as discussed in the beginning of this subsection. With this behavior in mind, one may expect
additional difficulties when training on the full space of the LECs and energy. Since LECs vary
by similar orders of magnitude among themselves, causing only slight variations of the total cross
section as compared to the variations related to the energy, the emulator may encounter difficulties
in simultaneously capturing the distinct behaviors of both energy and the LEC variations. Despite

22

using the previously discussed logarithm transformations prior to training, these errors remained
significant.

6.2 Bound-state observables
As seen in Section 5.2 the joint probability distribution of E(4He) and Rpt−p(2H) could be emulated
with great accuracy while only using relatively few training points. Figure 5.7 shows that the
distribution becomes very similar to the one from nsopt with only 100 training points. As seen in
Table 5.1 the relative error is also remarkably low for as few as 50 training points. As expected
it is reduced somewhat when the number of training points is increased, however, the reduction
slows down for larger numbers of training points.

Since a calculation of 100,000 points of the joint probability distribution does not exist at the
NLO-level a full evaluation of the predicted results was not possible. We could, however, compare
the distribution with one generated from 12,000 points calculated with nsopt and see that they
still show a similar behaviour, see Figure 5.8.

Regarding the computation time, Table 5.1 shows that it increases with a rising number of
training points. This is particularly evident with the time spent on training. For larger numbers
of training points, initializing the emulator takes more time than predicting new points but in
relation to the time it takes to generate the training points with nsopt it is still negligible. The
time it takes to generate a certain amount of points for the distribution is foremost dependent
on the calculation time of nsopt. This means that a great deal of time can be saved by using
the emulator in this case. Instead of calculating 100,000 points with nsopt we could get a fairly
good distribution by only calculating 100 points to use for training, as shown in Figure 5.8. If
the calculation of one point takes roughly one minute it means that we save around 1665hours of
calculation time.

6.3 Systematic emulator uncertainties
When we set up an emulator and choose a covariance function we also make an assumption on the
given data. With this model it is possible to calculate the uncertainty according to Equation 2.5.
Given that the model was chosen correctly this would describe the uncertainty of the emulator.

In this project, however, the squared exponential covariance functions was used for all cal-
culations. Even though this covariance function works well for making predictions, we have no
statistical reason for assuming the data points are correlated in this way. Therefore it is possible
and even likely that this introduces a systematic error to the predictions.

6.4 Hyperparameters
An important aspect of the GP model lies in the optimization of the hyperparameters of the
covariance function (see Section 2.4 for a formulation of this problem). Using starting points
selected from a large interval, we found that, for some cases, the accuracy of the emulator decreased
when the number of optimizations performed was increased. One possible explanation could be
that the function maximized by the likelihood estimation has some maxima far away from the
optimum value for the target function. However, this is just one possible explanation and more
research would be needed to understand this.

6.5 Time and memory complexity
When calculating the mean according to Equation (2.4), and the log marginal likelihood (2.9)
that is used for the objective function, a solution to a linear system of equations is needed. In
order to solve the linear system a Cholesky decomposition is used on the matrix, an algorithm
that scales with the number of training points as O(n3t) in time complexity. After the matrix is
decomposed, we obtain a triangular system that can be solved with an algorithm that is O(n2t).

23

This is confirmed in Figure 5.9 where it can be seen that the calculation time scales polynomially
with the number of training points.

For making predictions the only step left in Equation (2.4) is the multiplication of a matrix
with size np × nt multiplied with the solution of the linear system, which is a vector of length
nt. The multiplication has time complexity O(ntnp), which means that making the predictions is
linear in both number of training points nt and prediction points np. The predictive variances in
Equation (2.5) can also be calculated if needed but since it requires additional matrix multiplication
it has the higher time complexity O(n2tnp).

Storage of the Cholesky decomposition is needed for calculation of the predictive variances,
which is O(n2t) in memory complexity. If just the mean will be calculated then only one solution
to the matrix equation needs to be stored, which is O(nt). The calculation of the predictive mean
requires O(ntnp) memory, but since it is linear in time it can be divided into smaller parts and
therefore only requires the memory for storing the results.

24

Chapter 7

Conclusions and recommendations

The conclusions of this thesis are summarized in this chapter. For a more detailed discussion see
Chapters 5 and 6. The chapter ends with an outlook on recommendations for directions of future
research.

The great potential of using Gaussian process modeling when emulating nuclear observables
has been shown in this thesis. We have demonstrated the possibility of saving thousands of hours
in calculation time without adding too much uncertainty to the produced results.

This thesis was done as a pilot study on the possibilities of using Gaussian processes in nuclear
physics, and as such it is limited regarding the depth of analysis in every facet of the method.
Therefore we present a short description of areas where we consider further research to be needed.

7.1 Covariance functions
Since this was an introductory study we limited the covariance function of use to the squared
exponential. Although this is a fairly general covariance function with a broad usability, it would
probably be worth studying other functions specifically designed for the problem at hand. If the
behavior of the target function is known this could be done by simply choosing a function more
resemblant of the target. If instead, as is often the case, the distribution of the target function is
unknown, a covariance function can be assembled from the training data.

The Fourier transform of the covariance function, known as its spectral density, provides in-
formation about the smoothness of the covariance function. It can be interpreted as a measure
of the decay of the eigenfunctions in a spectral decomposition of the covariance function k(x,x′).
Smooth processes usually have a higher spectral density for lower frequencies, while processes with
rapid fluctuations tend to have a higher density for higher frequencies [6].

7.2 Scikit-learn 0.14.1
For this project the implementation of Gaussian processes for regression in Scikit-learn 0.14.1 was
used [5]. Using an already existing implementation of the algorithm made it faster and easier to
get started, but it also came with some limitations. Version 0.14.1 of Scikit-learn made it harder
to make compound covariance functions, while some were even impossible to implement. These
deficits in the implementation could be a problem for future work. But since Scikit-learn is an
active and still growing project the implementation might be improved in the future.

7.3 Time complexity
When working with large datasets there exist several approximation methods for decreasing the
computational complexity of the algorithm. It is also possible to make approximations for the log
marginal likelihood function (2.9) and its derivatives. The derivative of the log marginal likelihood
function was not used for optimization during this project and would most likely speed up the
optimization [6]. This could make Gaussian process more applicable to large datasets.

25

7.4 Outlook
• It should be possible to calculate more complex observables, e.g. for heavier nuclei or higher

chiral orders, where exact calculations are very costly.

• A more effective way to implement suitable covariance functions should be investigated.

• It would be desirable to have a more capable implementation of the Gaussian process, and
therefore Scikit-learn should not be considered the default choice for future work.

26

Bibliography

[1] Salman Habib, Katrin Heitmann, David Higdon, Charles Nakhleh, and Brian Williams. Cos-
mic calibration: Constraints from the matter power spectrum and the cosmic microwave
background. Phys. Rev. D, 76:083503, Oct 2007.

[2] Louis-Fran çois Arsenault, Alejandro Lopez-Bezanilla, O. Anatole von Lilienfeld, and An-
drew J. Millis. Machine learning for many-body physics: The case of the anderson impurity
model. Phys. Rev. B, 90:155136, Oct 2014.

[3] J. D. McDonnell, N. Schunck, D. Higdon, J. Sarich, S. M. Wild, and W. Nazarewicz. Un-
certainty quantification for nuclear density functional theory and information content of new
measurements. Phys. Rev. Lett., 114:122501, Mar 2015.

[4] R. Machleidt and D. R. Entem. Chiral effective field theory and nuclear forces. Phys. Rept.,
503:1–75, 2011.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[6] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[7] H. Georgi. Effective-field theory. Annual review of nuclear and particle science, 43:209–252,
1993.

[8] R. Machleidt. High-precision, charge-dependent bonn nucleon-nucleon potential. Physical
Review C, 63, 2001.

[9] Boris Carlsson, A. Ekstrom, Christian Forssén, Dag Fahlin Strömberg, G. R. Jansen, Oskar
Lilja, Mattias Lindby, Björn Mattsson, and K. A. Wendt. Uncertainty analysis and order-by-
order optimization of chiral nuclear interactions. Physical Review X, 6, 2016.

[10] Boris Carlsson. Making predictions using χEFT. Institutionen för fundamental fysik, Chalmers
tekniska högskola„ 2015. 89.

[11] Brian R Martin. Nuclear and Particle Physics. John Wiley & Sons, Ltd., 2006.

[12] Norio Hoshizaki. Formalism of nucleon-nucleon scattering. Supplement of the Progress of
Theoretical Physics, 42, 1968.

[13] P. J. Brusaard and I. Glaudemans. Shell-model applications in nuclear spectroscopy. North-
Holland publishing company, 1977.

[14] W. J. Conover M. D. McKay, R. J. Beckman. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics,
21(2):239–245, 1979.

[15] Jared L. Deutsch and Clayton V. Deutsch. Latin hypercube sampling with multidimensional
uniformity. Journal of Statistical Planning and Inference, 142(3):763 – 772, 2012.

27

[16] Kenny Q. Ye, William Li, and Agus Sudjianto. Algorithmic construction of optimal symmetric
latin hypercube designs. Journal of statistical planning and inferences, 90:145–159, 2000.

[17] pydoe: The experimental design package for python. https://pythonhosted.org/pyDOE/.
Accessed: 2016-03-08.

[18] J Dobaczewski, W Nazarewicz, and P-G Reinhard. Error estimates of theoretical models: a
guide. Journal of Physics G: Nuclear and Particle Physics, 41(7):074001, 2014.

[19] Benno List. Decomposition of a covariance matrix into uncorrelated and correlated errors.

[20] M. N. Gibbs. Bayesian Gaussian processes for regression and classification. University of
Cambridge, 1997.

28

https://pythonhosted.org/pyDOE/

	Introduction
	Purpose and aims
	Method and limitations
	Structure of the thesis

	Gaussian processes for machine learning
	Gaussian process
	Regression analysis with Gaussian processes
	Covariance functions
	Optimization of the hyperparameters
	A basic example

	Underlying theory of the simulator
	Effective theories
	Chiral effective field theory
	Low-energy parameters and their statistical errors

	Scattering theory
	Bound-states and the many-body problem

	Statistical framework for sampling
	Latin hypercube sampling
	Sampling the statistical error space of correlated parameters
	The covariance of the low-energy constants in NLO
	Sampling from covariance matrix

	Results
	Calculating cross sections using Gaussian processes
	The total cross section
	Differential cross sections and Azx
	Propagating statistical errors in LECs

	Bound-states
	Correlation between binding energy and point-proton radius
	Relative errors and time-scales

	Calculation time for the algorithm

	Discussion
	Predicting cross sections
	Difficulties in predicting some behaviours of the cross sections

	Bound-state observables
	Systematic emulator uncertainties
	Hyperparameters
	Time and memory complexity

	Conclusions and recommendations
	Covariance functions
	Scikit-learn 0.14.1
	Time complexity
	Outlook

	Bibliography

