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Abstract

In recent experiments, carried out at the University of Heidelberg, tunnel-
ing rates of ultracold distinguishable fermions out of an optomagnetical trap
have been measured. The fermions interact by a tunable short-ranged in-
teraction, and the trap is asymmetric making the trapped quantum system
effectively one-dimensional.

In this thesis, a method for calculating the energy levels and tunnel-
ing rates of one and two interacting particles out of a very general one-
dimensional potential well is devised. The method is based on expanding
the Schrödinger equation of the system in a complex-momentum basis. This
is done utilizing the so-called Berggren completeness relation. Ultimately,
the basis expansion leads to a complex symmetric non-Hermitian eigenvalue
problem for a large, dense matrix.

The general method is applied to a system of trapped, ultracold fermionic
atoms in a setup that closely resembles the Heidelberg experiments. The
short-ranged interaction is modeled as a point-interaction, and the trap po-
tential is regularized at large distances from the interesting region.

The obtained energies and decay rates are contrasted to results obtained
using the Wentzel–Kramers–Brillouin (WKB) approximation. Notable dif-
ferences can be observed, and these may be due to insufficiency of the WKB
approximation to accurately describe the system in question.
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Chapter 1

Introduction

For ultracold1 atoms, quantum mechanical properties become important.
Studying such atoms may therefore give insights into various highly inter-
esting phenomena. Of particular interest for this work are interacting, dis-
tinguishable fermions in one dimension. For a weak2 interaction between
such fermions, they will pair up in a way resembling the BCS theory of
superconductivity [1].

If instead the inter-fermion interaction is strongly repulsive, the fermions
will repel each other and behave like identical fermions, which obey the Pauli
principle. This phenomena is known as fermionization. For a strong attrac-
tive interaction between the fermions, the energy spectrum will be similar
to the strongly repulsive case, with a notable difference being an additional
state at the lower end of the spectrum. Using an interaction with a vari-
able strength, it is possible to study the crossover between these different
regimes of interaction strengths. This includes studying the crossover be-
tween strongly attractive and strongly repulsive attraction when the attrac-
tion strength passes through infinity [1, 2, 3].

In recent experiments at the University of Heidelberg [2, 3], a system con-
sisting of a few ultracold fermions in an asymmetric quasi one-dimensional
trap is studied. In particular, tunneling of the fermions out of the trap is
measured. The fermions interact with a short-ranged inter-particle force,
and the strength of the force is tunable by a so-called Feshbach resonance.
The short-range property of the inter-particle force allows it to be described
by a contact interaction. Using only a few fermions creates an opportunity
to understand how many-body properties of strongly interacting fermionic
systems arise from the more fundamental few-body properties. By adding
more and more fermions, it is possible to study the transition from few-body
systems to many-body systems [1].

1Atoms cooled to temperatures very close to the absolute zero, 0 K.
2Weak is here defined as a small interaction energy compared to the spacing between

the energy levels of non-interacting particles.
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1.1. PURPOSE AND SCOPE CHAPTER 1. INTRODUCTION

Theoretical modelling of systems like the Heidelberg one has already been
attempted using different methods, such as the Wentzel–Kramers–Brillouin
approximation [4, 5]. This work takes a different approach by using a basis
expansion of a many-particle wavefunction to solve the problem numerically.
This method has previously been applied to theoretical nuclear physics,
where it can used to compute energies and decay rates for bound and reso-
nant states in nuclear many-body systems [6, 7].

1.1 Purpose and Scope

The purpose of this Master’s thesis project can loosely be divided into two
parts:

1. Develop a method for finding energies and tunneling rates of bound and
resonant one- and two-particle states in a one-dimensional potential
well, under certain conditions3.

2. Apply this method to a system resembling the quantum system studied
experimentally by the Heidelberg group, and compare the results to
the experimental ones and to other theoretical results.

1.2 Outline

The thesis is structured as follows. First some units and conventions used
in the thesis are introduced, which is done in Section 1.3. After that follows
a brief overview of the experimental procedures (Chapter 2) for the main
experiment that the results of this thesis is compared to. This leads up to a
description of the relevant 1D quantum system. Thereafter, in Chapter 3, a
theoretical background with derivation of relevant equations is presented.

The theory is followed by details on how it was implemented in calcula-
tions (Chapter 4). After that, some benchmarking is presented in Chapter
5, where the results obtained by the basis expansion method are compared
to results obtained by other methods. Results of the comparison with the
Heidelberg system are presented and discussed in Chapter 6. The results
are also compared to experimental data and other theoretical papers.

Finally, the thesis is concluded by Chapter 7 where the future outlook
of the subject is studied.

A glossary, describing words and concepts occurring in the thesis, can
be found in Chapter 7. Some further additional details on certain specific
topics can be found in the appendices.

3The conditions include requiring the potential to be zero outside some finite region,
as well as assuming a specific form of the inter-particle interaction. These conditions will
be further elaborated in Chapter 3–4.
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1.3. UNITS AND CONVENTIONS CHAPTER 1. INTRODUCTION

Additional documentation and source code used in this project can be
downloaded from rikardlundmark.com/tunnelingtheory.

1.3 Units and Conventions

In this thesis, predominantly non-SI units are used. The dominating set
of units is molecular units, which is assumed if nothing else is stated. In
some cases, mainly when comparing with other experimental and theoretical
results, harmonic oscillator units are used.

Quantity Molecular Units HO Units

Value SI Value Value

Length L 1µm 10−6 m
√
~/(mω)

Mass M 1 Ω 1.782 661 8 ·10−30 kg m

Time T 1µs 10−6 s 1/ω

Energy E 1µK · kB 1.380 648 8 ·10−29 J ~ω

Table 1.1. Definitions of quantities in molecular units. The temperature
unit may be taken to be Kelvin. For the harmonic oscillator units, ω is
an angular frequency used to characterize the system.

1.3.1 Molecular Units

The definitions of some quantities in molecular units, expressed in SI units,
can be found in Table 1.1. They are obtained by choosing the quantities,
given in the first column, to be expressed in the units of the SI value, given
in the second column of the table. The mass unit, denoted by Ω, is uniquely
defined from the other three units in the table by the relationship

[E] = [M ] [L]2 [T ]−2

In this thesis, there are two main quantities that needs to be expressed
in these units. One is the Planck constant, ~ ≈ 7.638 233 0µK · kB · µs. The
other one is the mass of 6Li. In SI units the latter is 6.015 122 8u, which
becomes 723.453 025 1Ω in the molecular units.

These values are used in the majority of all numerical calculations in
this thesis. Another set of units would of course have produced the same
final result. The reason for choosing molecular units is that the available
experimental data, most importantly the shape of the potential, are given in
these units, which simplifies a comparison between this thesis and the work
of others.

3
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1.3. UNITS AND CONVENTIONS CHAPTER 1. INTRODUCTION

1.3.2 Harmonic Oscillator Units

Harmonic oscillator units are obtained by expressing energy and length using
a reference frequency ω. The relation between these units and molecular
units is described in Table 1.1.

1.3.3 Notation and Assumptions

Standard Dirac notation is used throughout the thesis. The inner product
between two states will be redefined in Section 3.3.1 to an inner product
without conjugation in order to make non-Hermitian quantum mechanics
possible.

This thesis exclusively deals with non-relativistic quantum mechanics.
Since the system under consideration consists of ultracold atoms, the energy
is low which motivates this approximation.
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Chapter 2

Experimental Background

Experiments with strongly interacting ultracold atoms have been carried out
at the University of Heidelberg [1, 2, 3]. Although the method developed
in this thesis applies to a general one-dimensional quantum system, a main
objective is to make comparisons with results from the Heidelberg exper-
iments. Therefore, a brief description of the quantum system that these
experiments probe is given in this Chapter. An analytic expression for the
trapping potential of the quantum system is introduced, and the different
channels for two atoms tunneling out of the trap are described.

2.1 The Heidelberg Quantum System

The quantum system under consideration consists of ultracold 6Li atoms
inside an optomagnetical trap, out of which the particles may tunnel in
essentially one direction. Since 6Li has spin 1/2, these atoms will act as
fermions. 6Li has different hyperfine states, and in this thesis the two lowest
(in terms of energy) will be considered. These are denoted by |↑〉 and |↓〉 to
distinguish between them. In a magnetic field the energy of the states will
differ, making them distinguishable.

In this thesis, both the case of one and the case of two particles inside
the trap are considered. With one particle, the state is of no other practical
importance than determining the potential shape, since particles in different
states may experience slightly different potentials.

If two particles are present in the trap, interaction between them occurs
if one particle is in state |↑〉 and one is in state |↓〉. The inter-particle
interaction can be tuned by means of a so-called Feshbach resonance. Some
more details on this topic can be found in Appendix C. Essentially, it means
that it is possible to experimentally alter the strength of the inter-particle
interaction by changing the magnetic field strength in the experiment.

The interaction between the particles is short-ranged, and therefore mod-
eled as a point interaction. This means that it can be written in a simple

5



2.2. TRAPPING POTENTIAL CHAPTER 2. EXPERIMENTAL BACKGROUND

form as a so-called coupling coefficient g times some delta functions, ex-
pressed by Equation (3.17). The value of the coupling coefficient g is the
quantity controlled by the Feshbach resonance.

It is then also clear why there is no interaction if both particles are in
state |↑〉 or |↓〉. Due to the Pauli principle the joint wavefunction must be
antisymmetric, and a contact interaction will then give zero contribution.

2.2 Trapping Potential

The optomagnetical trap potential is “cigar-shaped” [1] close to its bottom,
as illustrated by Figure 2.1. In its full three-dimensional form, it is given by

V (x, y, z) = Vx(x) + Vy(y) + Vz(z) (2.1)

where Vx(x) and Vy(y), denoted as the perpendicular components, are given
by

Vs(s) = pV0r(s)

(
1− e

− 2s2

w2
0s

)
(2.2)

with s ∈ {x, y} and the parameters are as in Table 2.1. The part of the
magnetic field parallel to the z-axis is given by

V (z) = pV0

1− 1

1 +
(
z
zr

)2
− cB|state〉µmB′z (2.3)

with parameters given by Table 2.2. It should be noted that the trap pa-
rameters are obtained from a combination of experimental results and WKB
theory [1, 2, 3].

The state dependence of the potential, mentioned above, is contained in
the factor cB|state〉. This one-dimensional potential is illustrated in Figure
2.2 for some choices of the constituting parameters. The second term in (2.3)
is due to an applied magnetic field gradient B′ with the purpose of causing
the trap asymmetry, with the intention of making unidirectional tunneling
possible.

The aspect ratio1 of the perpendicular and parallel parts of the trapping
potential is 1:10 [1, p. 149]. This motivates the 1D simplification on which
this thesis is based. The particle is seen as fixed in the x- and y-directions,
and only the z-direction is considered.

1Defined as the ratio between the angular frequencies in the harmonic approximation
of the potential.
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2.2. TRAPPING POTENTIAL CHAPTER 2. EXPERIMENTAL BACKGROUND

Parameter Value Designation

V0r 4.120µK · kB Potential depth.

w0x 1.637µm Waist depth.

w0y 1.516µm Waist depth.

Table 2.1. Parameters for the potential in the perpendicular direction, as
given by Equation (2.3). In the equation, s is either the x or the
y-coordinate. p is a parameter also occurring in Equation (2.3), which
determines the potential depth.

Axial coordinate z /(µm)

R
ad
ia
l
co
or
d
in
at
e
r
/(
µ
m
)

 

 

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
−0.5

0

0.5

V (r, z) = Eresonance

Figure 2.1. Cross section of equipotential surface for the lowest resonant
state in the trapping potential (2.1). The radial coordinate r is
perpendicular to the z-axis.

Parameter Value Designation

V0r 3.326µK · kB Potential depth.

zR 9.975µm2 Rayleigh range of trapping beam.

µB 6.717 138 8 · 105 µK · kB/T Bohr magneton.

B′ 18.92 · 10−8 T/µm Magnetic field gradient.

cB|state〉 ≈ 1 See caption.

Table 2.2. Parameters for the potential in Equation (2.3). In the equation,
z is the position along the main axis, given in µm, and p is a
dimensionless parameter with a value depending on the number of
particles in the trap. For two particles, p = 0.63496 [3]. cB|state〉 is a
parameter approximately equal to one, and its value depends on both
the interaction strength and the state of the particle.
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-0.22

-0.21

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

2 4 6 8 10

V
(z

)

z

cB|↑〉 = 1.00311
cB|↓〉 = 0.98989

Figure 2.2. The trapping part of the potential (2.3) for two particles in
different hyperfine states in the same magnetic field, as described by [3].

2.3 Tunneling out of the Trap

An important observable measured in the Heidelberg experiment is the tun-
neling rate of the fermions out of the trap. A single particle in the potential
may tunnel out through the barrier to be detected. For two interacting par-
ticles, the tunneling process can be slightly more complicated. Tunneling
can then happen as a combination of two limiting cases. Either on parti-
cle tunnels out first, which can alter the energy of the other particle. The
other particle can subsequently tunnel out after that. Tunneling could also
happen by both interacting particles tunneling out together, so-called pair
tunneling. The different tunneling channels are illustrated in Figure 2.3. In
practice, both channels contribute.

Using the basis expansion method, which will be introduced in the next
section, it will be possible to calculate both the single-particle tunneling rate
and the total tunneling rate of two particles out of the trap.
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Ẽ
|↑
〉

E
|↓
〉

E
|↑
〉

Ẽ
|↓
〉

Ẽ
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Chapter 3

Theory

The main goal of this chapter is to derive methods for expanding the Schrö-
dinger equation in a complex momentum basis. This basis expansion will
then lead to an eigenvalue problem, from which the energies and tunneling
rates of particles out of a potential can be obtained. First, an introduction
to complex energy and momenta is given, and the important Berggren com-
pleteness relation is stated. Thereafter, a motivating example, a piecewise
constant potential that gives rise to resonances, is given. Following that,
the basis expansion is introduced, and a suitable momentum space basis
is chosen. A one-particle basis expansion is performed in detail using this
basis. We then introduce a harmonic oscillator basis, and use it to compute
the matrix elements of the inter-particle interaction for two particles. These
matrix elements are then used to construct a two-particle basis expansion.
Finally, some theory used for verification and approximation procedures is
briefly mentioned.

3.1 Introduction

By the postulates of quantum mechanics, a physical system is associated
with a Hilbert space H together with an inner product. The state of the
system is described by a one-dimensional subspace {|ψ〉} ∈ H.

A physical observable is described by a Hermitian operator acting on the
Hilbert space. In the Schrödinger picture, operators are taken as constant in
time while states are allowed to change under time evolution. The dynamics
of a system is then described by the Schrödinger equation

i~
∂

∂t
|ψ〉 = H |ψ〉 (3.1)

where H is the Hamiltonian (energy operator) of the system.
For a particle of mass m in one dimension, the time-independent Hamil-

10



3.2. COMPLEX ENERGY AND MOMENTA CHAPTER 3. THEORY

ton operator may be expressed in the position coordinate x as

H = − ~2

2m

∂2

∂x2
+ V (x)

where ~ is the Planck constant and V (x) is the potential that the particle
experiences.

For a stationary state1 |ψE〉 of H with energy E the temporal and
spatial dependence can be separated, 〈x, t|ψE〉 ≡ ψE(x, t) = ηE(t)χE(x).
Substituting this into the Schrödinger equation gives the temporal part as
ηE(t) = e−iEt/~. Thus the Schrödinger equation for an eigenstate reduces to
the so-called time-independent Schrödinger equation

H |χE〉 = E |χE〉 (3.2)

It can be shown that any solution |ψ〉 of the Schrödinger equation can
be written as a linear combination of the full set of eigenstates {|ψE〉}, and
this set therefore constitute a complete basis, the energy spectrum for the
Hilbert space. This means that we can write [8, p. 19, p. 41]

∑
n∈bound states

|ψEn〉 〈ψEn |+
∫ ∞
0

dk |ψEk
〉 〈ψEk

| = 1 (3.3)

where |ψEn〉 are bound states and |ψEk
〉 are continuum states.

A bound state |ψEn〉 can be normalized so that the norm becomes 1,

1 = 〈ψEn |ψEn〉 =

∫
dx |χEn(x)|2 (3.4)

where |χ(x)|2 may be interpreted as a probability density for the state. It
is obviously time-independent.

3.2 Complex Energy and Momenta

If the energy E is allowed to be a complex number,

E = E0 − i
Γ

2
(3.5)

the norm (3.4) instead would become

〈ψE0 |ψE0〉 =

∫
dx (ψE0(x, 0))2 e−

Γ
~ t

1A stationary state is a state with a single definite energy, and which has a time-
independent probability density.

11
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which describes exponential decay. An attentive reader may have noted that
the inner product used here was not the normal inner product, but rather a
non-conjugated one. This is intentional, and the reason for this will become
clear in the next section.

Using a complex energy is the basic idea behind describing tunneling in a
time-independent framework. In this framework, a decaying state is neither
bound nor unbound, and is called a resonance. In Section 3.4, we will see
an example of a simple system that can harbor these resonant states.

Non-relativistically, the kinetic energy T and momentum k of a one-
particle system are related by

T =
~2k2

2m

where ~ is the Planck constant and m is the particle mass.
In order to convert from E to k, it is necessary to take the fractional

power of an energy. By allowing E to be a complex number, k will be
complex valued as well. The fractional power is a multivalued function on
C. To resolve this issue and make k single-valued, a branch-cut is introduced
as in Figure 3.1. Using the branch cut in the figure (along the negative real
axis) the energy sheet will be transformed into the right half-plane. This
means that only k-values in the right half-plane are of physical interest.
By using another Riemann surface, it is possible to also obtain k-values in
the left half-plane. These are however not of any physical interest, and it
is therefore assumed that the real part of k is nonnegative in the rest of
this text. When later a choice of a momentum space basis is made, this
assumption will implicitly be taken into account.

Since an energy may be negative and real, it is convenient to choose a
branch cut slightly below the negative real axis. These values will then be
transformed onto the positive imaginary axis by the square root function.

Consider now a particle of mass m and energy E = 〈H〉 = 〈T 〉+ 〈V 〉 in
a system characterized by a potential V (x), where V (x) → 0 for x → ±∞.
There are three cases of interest here:

• The particle is not bound in the potential. This is a so-called contin-
uum state. Since limx→±∞ V (x) = 0, E0 > 0 in (3.5).

• The particle is bound inside the potential, a so-called bound state.
E0 < 0 and Γ = 0 in (3.5).

• The particle is neither bound nor unbound, and the probability of
finding it inside the potential decays exponentially. This is a resonant
state, with E0 > 0 and Γ > 0.

These three different types of energies will be translated into the points in
k-space indicated in Figure 3.2 by the z

1
2 map.

12
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P+ = a+ iε

z
1
2

Re

Im

P− = a− iε Re

Im

(P+)
1
2

(P−)
1
2

Figure 3.1. Mapping of the complex plane, minus the negative real axis,
onto itself, using one specific branch of the z1/2 function. The other
branch maps onto the left half plane.
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Resonant states

Continuum states

Bound states

Re(k)

Im(k)

Mirror states

(a)

��
��
��
��

��
��
��
��

Re(k)

S

L−

L+

Im(k)

(b)

Figure 3.2. Illustrations of different features in the complex momentum
plane. (a) The location of poles corresponding to bound (green
diamonds), resonance (red circles) and continuum (blue line) states in
the k-plane. Also shown are the mirror states in the left half plane
which are ignored. (b) The contour L+ used in the Berggren
completeness relation. The resonance state above the contour will be
included in the sum for the completeness relation. Also shown are the
contours L− and S, which are used in conjunction with the Residue
theorem to complete the proof of the Berggren completeness relation.
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A more thorough theoretical analysis would show that bound and res-
onant states would correspond to “poles” of the so-called S-matrix of the
system. The S-matrix is a matrix relating initial and final states in a scat-
tering process. For more details on this topic, see for example [9].

3.3 Berggren Completeness Relation

A key feature for this project is a complex-momentum single-particle basis
known as the Berggren basis. In a paper from 1968 [10], the Swedish math-
ematician Tore Berggren showed that a complete basis can be constructed
from the continuum states on the L+ contour in Figure 3.2b, together with
the resonant states above the contour and the bound states, using a non-
conjugated inner product. This can be stated as the so-called Berggren
Completeness Relation,

∑
bound states

resonant states

|ψEn〉 〈ψEn |+
∫
L+

dk |ψEk
〉 〈ψEk

| = 1

The proof uses scattering theory, and is done in three dimensions. In
the following, if nothing else is stated all momentum integrals are over the
contour L+.

3.3.1 Inner Product

In the rest of this work, all inner products are assumed to be without con-
jugation unless something else is stated. This means that the inner product
of two states ψA and ψB can be expressed in the position basis as

〈ψA|ψB〉 =

∫
dxψA(x)ψB(x)

in contrast to the usual definition,

〈ψA|ψB〉 =

∫
dxψ†A(x)ψB(x)

The underlying reason for this inner product is that a Hermitian oper-
ator only has real eigenvalues. In order to obtain complex energies, non-
Hermitian quantum mechanics must therefore be used, which motivates
changing the inner product.

14
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x1

IV

x2 x3

x

x4

V (x)

I II V

V2

V3

V4

III

V (x) =



0 (x < x1)

V2 (x1 ≤ x < x2)

V3 (x2 ≤ x < x3)

V4 (x3 ≤ x < x4)

0 (x4 ≤ x)

Figure 3.3. An example of a piecewise constant potential, given by the
expression V (x).

3.4 Piecewise Constant Potential

In this project, bound and resonant states will be found by introducing
a basis expansion. However, for the case of a single particle in a piecewise
constant potential, like the one depicted in Figure 3.3, a good approximation
for the complex energy of both bound and resonant states can be obtained
by a more intuitive method. This is also an important example, since its
results can be used to verify the results obtained by means of the more
involved basis expansion method.

A piecewise constant potential, such as the one in Figure 3.3, is a poten-
tial divided into N regions, where the potential is constant in each region.
The leftmost and rightmost regions have the value zero and extends to pos-
itive and negative infinity, respectively. In the n:th region, corresponding
to a potential Vn, we make the assumption that the particle is described
by a plane wave with wavenumber given by kn = 1

~
√

2m (E − Vn). This is
certainly true, and a standard textbook example, for purely real or imagi-
nary kn. Here however kn is allowed to take almost any value in the right
complex half-plane.

If the particle starts out as a bound or resonant state in some inner
region of the potential, we make the ansatz wavefunction

Ψn(x) =
∑

σ∈{+,−}

Cnσe
σiknx

where C1+ = CN− = 0 since there is no incoming wave. At each intersection,
the ansatz wavefunction is splined together to make the wavefunction and

15
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its first derivative continuous. This amounts to 2N − 2 unknown variables,
and the same number of linear equations for the unknown coefficients C.
Therefore, a matrix equation Mc = 0 is obtained, and it will have nontrivial
solutions for c exactly when the matrix M is singular. Since the coefficient
matrix M is a function of the (possibly complex) energy E = x+ iy of the
particle, one can define a function

f(x, y) = |cond (M(x+ iy))|
R

2 → R

where cond is the condition number of the matrixM . Obviously, f(x, y) ≥
0, and per definition the condition number is infinite when M is singular.
The problem is thus reduced to finding the maxima of f , which can be
located using some optimization method such as steepest ascent.

Comparison between the condition number of M and the results obtained
by the basis expansion method can be found in Section 5.1.

3.5 Introducing a Basis Expansion

In order to transform the Schrödinger equation into an eigenvalue problem,
a basis expansion method is employed. First, the completeness relation (3.3)
is inserted into the time independent Schrödinger equation (3.2) for some
eigenstate |Ψ〉 of the Hamiltonian H expressed in an arbitrary basis to obtain∑

bound states

H |ψEn〉 〈ψEn |Ψ〉+

∫ ∞
0

dkH |ψEk
〉 〈ψEk

|Ψ〉 = E |Ψ〉 (3.6)

Projecting onto another energy eigenstate
∣∣ψEk′

〉
, which we for simplicity

assume to be a continuum state, gives∫ ∞
0

dk
〈
ψEk′

∣∣H∣∣ψEk

〉
〈ψEk

|Ψ〉 = E
〈
ψEk′

∣∣Ψ〉 (3.7)

Discretizing (3.7) will lead to a matrix equation, as we shall see.

3.6 Momentum Space Basis

In order to proceed from Equation (3.7) in momentum space, a suitable
choice of momentum space basis is made. The momentum space basis should
consist of eigenstates for the kinetic operator. Furthermore, any (orthonor-
mal) basis {a} must fullfill the condition〈

a
∣∣a′〉 = δ

(
a− a′

)
16
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using the appropriate inner product. Due to the non-conjugated inner prod-
uct, it is necessary to make sure that this condition is fulfilled.

The chosen basis is

〈
x
∣∣Bi

k

〉
=


√

2
π sin(kx) (i = 0)√
2
π cos(kx) (i = 1)

(3.8)

bearing in mind that Re (k) ≥ 0. In order to show the orthogonality prop-
erties, the inner product between the elements is computed. Expressing this
in the position basis, so that〈

Bi1
k1

∣∣∣Bi2
k2

〉
=

∫
dx
〈
Bi1
k1

∣∣∣x〉〈x∣∣∣Bi2
k2

〉
directly gives

2

π

∫ ∞
−∞

dx sin(kix) sin(kjx) = δ (ki − kj) + δ (ki + kj) = δ (ki − kj) (3.9a)

2

π

∫ ∞
−∞

dx cos(kix) cos(kjx) = δ (ki − kj) + δ (ki + kj) = δ (ki − kj) (3.9b)

2

π

∫ ∞
−∞

dx cos(kix) sin(kjx) = 0 (3.9c)

where the last equality on each line comes from Re (k) ≥ 0, observing that
no k-values will be on the negative imaginary axis due to the choice of branch
cut and also noting that the momentum is never zero, so k 6= 0.

Here it is also appropriate to note the resemblance between the choice
of basis and a common choice of plane wave basis, eikx. We are trying
to describe a one-dimensional decaying state, and intuitive choice would
therefore be a basis that consists of a sum of plane waves travelling to the left
and plane waves travelling to the right. Indeed, the trigonometric functions
cos and sin can be expressed as

cos(kx) =
eikx + e−ikx

2

sin(kx) =
eikx − e−ikx

2i

An important difference between the one-dimensional and three-dimen-
sional description of a quantum mechanical system, is that in three dimen-
sions, the radial coordinate is always positive. Here, x may take on any real
value.

The choice of basis made here is not the only possible choice. Since the
relevant potential (2.3) tends to ∞ fast when x → −∞, the wavefunction

17
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should tend to zero fast for decreasing x. This could be exploited by solving
the Schrödinger equation with an infinite “wall” to the left, which imposes a
condition that the wavefunction becomes zero there. Essentially, one could
then remove half the number of basis vectors. This has in fact been at-
tempted, but it turned out to require about twice the number of basis states
compared to the basis (3.8) in order to numerically stabilize the positions
of the resonances in the complex plane2. Therefore, the practical gain was
negligible.

For brevity we introduce the notation sin ≡ trig0 and cos ≡ trig1 which
will be used in the following sections.

3.7 One Particle Basis Expansion

In order to solve the Schrödinger equation for a single particle, we start from
the Hamiltonian for a particle in a one-dimensional potential,

H =
p2

2m
+ V

where p is the momentum operator, m is the mass and V is the potential
operator. This is inserted into Equation (3.6), using the basis (3.8), to obtain〈

Bi1
k1

∣∣∣V ∣∣∣Bi2
k2

〉
=

∫
dx1dx2

〈
Bi1
k1

∣∣∣x1〉 〈x1|V |x2〉〈x2∣∣∣Bi2
k2

〉
=

=

∫
dxV (x)trigi1(k1x)trigi2(k2x) ≡ V (k1, i1, k2, i2)

and〈
Bi1
k1

∣∣∣∣ p22m

∣∣∣∣Bi2
k2

〉
=

~2

2m

2

π

∫
dx1dx2trig

i1 (k1x1) δ (x1 − x2)
∂2

∂x22
trigi2 (k2x2) =

=− ~2k22
2m

2

π

∫
dx1dx2δ (x1 − x2) trigi1 (k1x1) trigi2 (k2x2) =

=− ~2k22
2m

∫
dx1dx2δ (x1 − x2)

〈
Bi1
k1

∣∣∣x1〉〈x2∣∣∣Bi2
k2

〉
=

=− ~2k22
2m

∫
dx1

〈
Bi1
k1

∣∣∣x1〉〈x1∣∣∣Bi2
k2

〉
= −~2k22

2m

〈
Bi1
k1

∣∣∣Bi2
k2

〉
=

=− ~2k22
2m

δ (k1 − k2) δi1,i2

where the position space representation of the momentum operator was used.
Inserting this into Equation (3.6) gives

2Since the resonances are physical, their position should be independent on the choice
of contour L+, if the number of basis states is large enough and the choice of contour is
“reasonable”. This is further discussed in Chapter 4.
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∑
i2∈{1,2}

∫
dk2

[
−~2k22

2m
δ (k1 − k2) + V (k1, i1, k2, i2)

]〈
Bi2
k2

∣∣∣Ψ〉 =

=E
〈
Bi1
k1

∣∣∣Ψ〉
or

−~2k21
2m

〈
Bi1
k1

∣∣∣Ψ〉+
∑

i2∈{1,2}

∫
dk2V (k1, i1, k2, i2)

〈
Bi2
k2

∣∣∣Ψ〉 =

=E
〈
Bi1
k1

∣∣∣Ψ〉
A so-called quadrature rule is now used to discretize the integral over k2.

A quadrature rule is essentially a rule that approximates a definite integral
by a weighted sum, so that∫ b

a
dxf(x) ≈

N−1∑
i=0

wif(xi)

where the wi:s are the weights for the sum. A more thorough explanation
of quadrature rules is given in Appendix A. Applying the rule gives

− ~2(km1 )2

2m

〈
Bi1
km1

∣∣∣Ψ〉+
∑

i2∈{1,2}

N/2−1∑
n=0

wnV (km1 , i1, k
n
2 , i2)

〈
Bi2
kn2

∣∣∣Ψ〉 =

=E
〈
Bi1
km1

∣∣∣Ψ〉 .
(3.10)

In order to further simplify, some new notation is handy. The k:s and
i:s are grouped together to pairs, (ka, ia), a ∈ {1, 2}. An ordering of the
pairs is then introduced, such that the pairs with lower i preceeds the pair
with higher i. A k corresponding to a smaller value of the parameter on
the contour along which we are integrating preceeds a k corresponding to a
larger parameter value if the i:s are equal. Since there are N/2 k:s and 2 i:s,
there will be N such pairs. By replacing the k:s and the i:s with an index
simply referring to the pair, we simplify the notation. If (k1, i1) corresponds

to the i:th pair and (k2, j2) to the j:th pair, we denote
〈
Bi1
km1

∣∣∣Ψ〉 ≡ φi and

V (km1 , i1, k
n
2 , i2) ≡ Vij . The above expression (3.10) then simplifies to

−~2(km1 )2

2m
φi +

N−1∑
j=0

wjVi,jφj = Eφi
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or

N−1∑
j=0

[
−~2k2i

2m
δij + wjVij

]
φj = Eφi (3.11)

Defining Hij as

Hij = −~2k2i
2m

δij + wjVij

transforms Equation (3.11) into

N−1∑
j=0

Hijφj = Eφi (3.12)

which can be recognized as an eigenvalue problem.
The matrix H is nonsymmetric due to the term wj in front of V . It can

be symmetrized by redefining φ̃(ki) =
√
wiφ(ki) and H̃ij =

√
wi
wj
Hij which

will give us the equation

N−1∑
j=0

H̃ijφ̃(kj) = Eφ̃(ki)

with

H̃ij =
~2k2i
2m

δij +
√
wiwjVij (3.13)

which is symmetric under the change i↔ j. Note however that H̃ is not in
general Hermitian, since Vij is a complex number.

3.8 Harmonic Oscillator Basis

A common basis in quantum mechanics is the harmonic oscillator basis.
In this thesis it is used both for purposes of introducing a suitable cutoff
for the interaction, but also for purposes of verifying the correctness of the
program code used in calculations. The harmonic oscillator basis states are
the eigenfunctions |n〉 of the Hamiltonian

H = − ~2

2m

∂2

∂x2
+

1

2
mω2x2

which in position space are given by

〈x|n〉 ≡ φn(x) =
1√

2nn!

(mω
π~

)1/4
· e−

mωx2

2~ ·Hn

(√
mω

~
x

)
where Hn is the n:th Hermite polynomial, defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
(3.14)
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3.9 Many-Body Basis Expansion

The Hilbert space for many particles can be generated as a tensor product
of the single-particle Hilbert spaces. For N particles with associated single-
particle Hilbert spaces H1, . . . ,HN , the total Hilbert space is given by

Htot = H1 ⊗H2 ⊗ · · · ⊗ HN

The many-body state is then given by a tensor product of the single-particle
states, that is,

|Ψtot〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉 ≡ |ψ1ψ2 . . . ψN 〉

In our case, all particles are distinguishable, which means that there is no
need for antisymmetrization.

One could now proceed to construct the many-body basis from the in-
dividual single-particle momentum basis states described above. This ap-
proach may however not be the best, in the sense that an unmanageable
number of basis elements must be included in order to get a good descrip-
tion of the many-body state.

Instead, as a basis for the single-particle Hilbert spaces a basis consti-
tuting of the solutions to the single-particle problems is chosen. It can be
shown [10] that this is indeed a complete basis. For a particle p, these basis

states will be labeled as
{
ψnp
}N−1
n=0

for the rest of this section.
In the context of this thesis, at most 2 particles are treated. The coupling

between particles is treated as a delta function interaction. The interaction
only affects the particles if they are in different states. The treatment is
thus restricted to the case of one particle in state |↑〉 and one in state |↓〉.
The common state of these is denoted |↑↓〉 = |↑〉 ⊗ |↓〉.

The Hamiltonian for the system can be written as the sum of the indi-
vidual one-particle Hamiltonians, plus an interaction term as described in
Section 3.10:

H↑↓ = H↑ +H↓ + V↑↓ (3.15)

Evaluating this in a two-particle basis gives〈
ψa1ψ

b
2

∣∣∣H12

∣∣∣ψc1ψd2〉 = 〈ψa1 |H1|ψc1〉 δbd +
〈
ψb1

∣∣∣H2

∣∣∣ψd1〉 δac〈
ψa1ψ

b
2

∣∣∣V↑↓∣∣∣ψc1ψd2〉 = δacδbd (Ea + Eb) + Vabcd ≡ Habcd

(3.16)

It will turn out that Vabcd is symmetric under a ↔ c and b ↔ d, and
therefore Habcd will also be symmetric under these changes. This does in
fact save much computational work.
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3.10 Two-Particle Contact Interaction

In order to model several particles, an interaction term will need to be
added to the Hamiltonian. This interaction term, written V↑↓, is modelled
as a contact interaction, which is defined in position space as〈

x′1x
′
2

∣∣V↑↓∣∣x1x2〉 = gδ (x1 − x2) δ
(
x′1 − x1

)
δ
(
x′2 − x2

)
(3.17)

where g is the coupling coefficient, determining the interaction strength.

If a basis
{
ψnp
}N−1
n=0

, where p denotes the particle species (p ∈ {1, 2}) is

expressible in coordinate space as ψnp (x) ≡
〈
x
∣∣ψnp 〉, this matrix element can

be written as

Vabcd ≡
〈
ψa1ψ

b
2

∣∣∣V↑↓∣∣∣ψc1ψd2〉 =

=g

∫ ∞
−∞

dxψa1(x)ψb2(x)ψc1(x)ψd2(x) (3.18)

Using a position space basis, this is however not guaranteed to converge,
due to the asymptotic behavior of the basis states. If the energy is complex,
these will blow up at infinity.

One could decide to substitute ±∞ in the integral for some cutoff value
xcut in order to obtain some number. Instead, another method is used
to make sure a finite value is obtained: the basis states and the matrix
elements are projected onto harmonic oscillator states. That is, complete
sets of two-body harmonic oscillator states are inserted in the expression for
the interaction:〈

ψa1ψ
b
2

∣∣∣V↑↓∣∣∣ψc1ψd2〉 =

=
∑
n1,n2
n3,n4

〈
ψa1ψ

b
2

∣∣∣n1n2〉 〈n1n2|V↑↓|n3n4〉〈n3n4∣∣∣ψc1ψd2〉 (3.19)

Thereafter, some cutoff nmax is imposed on the values of n1, n2, n3 and n4, so
that 0 ≤ n1, n2, n3, n4 ≤ nmax in the sum. This is a so-called regularization

method for the integral. It should be noted that if the basis states
{
ψnp
}N−1
n=0

are chosen as harmonic oscillator basis states, one would obtain the correct
bound states with this approach.

It should be noted that the summand in the expression above can be
factored as 〈

ψa1

∣∣∣n1〉〈ψb2∣∣∣n2〉〈ψc1∣∣∣n3〉〈ψd2∣∣∣n4〉 〈n1n2|V↑↓|n3n4〉 (3.20)

where a term 〈
ψkj

∣∣∣np〉 =

∫ ∞
−∞

dxψkj (x)φn(x) (3.21)
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3.11. ENUMERATING MANY-PARTICLE STATES CHAPTER 3. THEORY

and the interaction element in harmonic oscillator coordinates can be written

〈n1n2|V↑↓|n3n4〉 = g

∫ ∞
−∞

dxφn1(x)φn2(x)φn3(x)φn4(x) (3.22)

This factorization makes it possible to create lookup tables of elements,
and then compute the sum with only values from these tables. This vastly
improves the performance of computations, and brings the timescale down
to reasonable times.

Also notable is that Vabcd is symmetric under the index changes a ↔ c
and b↔ d, which can be seen from the definition above.

3.11 Enumerating Many-Particle States

In order to write (3.16) as an eigenvalue equation, the basis (and thereby
also Habcd) needs to be “flattened out”. This is done by introducing an
ordering of the eigenvectors. Each pair of basis states can be described by
two indices (a, b), a, b ∈ {0, · · · , N − 1}. These N2 pairs can be ordered in
any arbitrary well-defined way. For instance, we may choose to first order by
the first index, and then order by the second index, preserving the first-index
ordering. This can be done by taking i ∈

{
0, · · · , N2 − 1

}
, and

a ≡ i mod N

b ≡
⌊
i

N

⌋
This is convenient, since it makes it possible to describe any two-particle
state by a single index i. Denote such a state by φi. The enumeration also
allows describing any element of the Hamiltonian with two indices, which
can be denoted by i and j. The Hamiltonian thus has two-indices, and can
be represented by a matrix Hij . This matrix is symmetric, since i ↔ j
corresponds to a↔ c and b↔ d. The eigenvalue equation to solve is then

N2−1∑
j=0

Hijφj = Eφi (3.23)

which should be contrasted to Equation (3.12).

3.12 Harmonic Oscillator Potential

For two particles in a one-dimensional harmonic oscillator potential, inter-
acting with a delta function interaction, there is an analytical expression
for the energy spectrum of the particles. In absolute numbers, expressed in
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multiples ~ω of harmonic oscillator units, and with the interaction as above

with g in units of
√

~
ωm , this expression reads

Etotal = Eint + n+
1

2
(3.24)

where the relative energy Eint is given by [11]

Γ (−Eint/2 + 1/4)

Γ (−Eint/2 + 3/4)
= −2

g
(3.25)

for an interacting state, and Eint = 3
2 for a noninteracting state. n is any

integer, representing the center of mass excitations.
This relation is important for the purpose of verifying the correctness

of the computational routines for two interacting particles, as will be fur-
ther described in Section 5.3. The energy levels, both calculated from this
equation and by using the basis expansion method, can be found in Figure
5.4.

3.13 Perturbative Solutions

For a weak inter-particle interaction, the off-diagonal matrix elements of
the matrix corresponding to (3.15) may be small compared to the diagonal
elements. The energy and decay rate of a state consisting of two interacting
particles may then be approximated by means of perturbation theory. Let i
denote the diagonal the index of the two-particle state with both particles
in the resonant state, as described by Section 3.11. Viewing the off-diagonal
matrix elements in (3.23) as a perturbation, the energy Ei can then be
approximated to third order by [12]

Ei ≈ Hii︸︷︷︸
0th order

+
∑
j 6=i

H2
ij

Hii −Hjj
.

︸ ︷︷ ︸
2nd order

+
∑
j 6=i
k 6=i,j

HijHjkHki

(Hii −Hjj) (Hii −Hkk)︸ ︷︷ ︸
3rd order

. (3.26)
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Chapter 4

Implementation

In this chapter, details on how the theory is used for practical calculations
is discussed. First, the procedure for obtaining single- and two-particle en-
ergies and tunneling rates is described. Thereafter, the potential cutoff is
introduced. This is a crucial modification made to the potential (2.3) in
order for the basis expansion method to produce valid results. The chapter
is concluded by mentioning some other practical considerations taken into
account when realizing the procedures into software for actually performing
computations.

4.1 Single-Particle Solutions

To obtain the single-particle solution, there are four primary steps that
should be taken:

1. Construct a discretized momentum basis along the contour L+.

2. Construct the matrix representation of the Hamiltonian for the system
described in this basis.

3. Solve for the eigenvalues, and optionally eigenvectors, of the matrix.

4. Identify the resonance state(s) from the eigenvalues.

The first step is done using a Gauss-Legendre quadrature rule on each of
the segments of L+, and with a basis as described in Section 3.6. The
number of points on each segment, as well as the start- and endpoints of the
segments therefore needs to be determined. The shape of L+ (segment start-
and endpoints) can be roughly estimated using the expected energy range
for each particle, which can be done by hand using a harmonic oscillator
approximation. The number of points has to be determined using trial and
error, if enough points are chosen the value of any resonance should be stable
with respect to reasonable changes of the contour shape.
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4.2. TWO PARTICLE SOLUTIONS CHAPTER 4. IMPLEMENTATION

In the second step, Equation (3.13) is used for the construction of the
Hamiltonian.

The third step is typically performed by using an eigenvalue solver, such
as LAPACK (see Appendix B). Since the number of rows and columns in the
matrix is typically in the order of a few hundred, this tends to be fast.

The fourth step is carried out visually. The eigenvalues are first converted
to the corresponding momentum values. The resonance states can then
easily be identified by inspection, since their position in the k-plane are in
the 4:th quadrant and a bit off from the contour. Also, a simple heuristic
algorithm was developed to allow for automatic detection of resonances from
the spectra.

Since a resonant state is physical, it should also be independent of the
shape of the contour, which can be used to verify that a point in the complex
plane indeed corresponds to a resonance. This clearly distinguishes the state
from other solutions, which will follow the contour closely. These so-called
scattering states correspond to free-particle solutions (particles never bound
by the trap) of the Schrödinger equation.

4.2 Two Particle Solutions

For two (or more) particles, one first finds the one-particle solutions men-
tioned above for each particle, including finding the eigenvectors. In this
thesis, many particles means that two particles are considered.

After finding the single-particle eigenvalues and eigenvectors, the follow-
ing four steps are performed:

1. Calculate the interaction for the basis states in the many-particle basis.

2. Construct the matrix for the many-particle Hamiltonian expressed in
this basis.

3. Solve for the eigenvalues, and optionally eigenvectors, of the matrix.

4. Identify the resonance state.

In the first step, the interaction element is computed from Equation
(3.19), using equations (3.20) to (3.22). After that, the many-particle Hamil-
tonian is constructed from Equation 3.16.

The matrix size is the square of the matrix size used for the single-
particle cases. This poses a problem, since this means a very large matrix.
Therefore, one may need to resort to iterative algorithms for finding single
eigenvalues. This is further described in Appendix B.

The resonance states may be identified in the k-plane, in a similar fashion
as the one-particle case. However, it is not so obvious which k-value corre-
sponds to a two-particle resonance, an issue illustrated by Figure 4.1. This

26



4.2. TWO PARTICLE SOLUTIONS CHAPTER 4. IMPLEMENTATION

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0 1 2 3 4 5 6

I
m

[k
]/

(µ
m
−
1
)

Re [k] /(µm−1)

Figure 4.1. Location of solutions to the two-particle Schrödinger equation in
the complex k-plane.

figure shows the solutions to the Schrödinger equation for two interacting
particles.

A method that can be used to identify the resonance is to overlay the
spectra from the solution with multiple different contours. Since the reso-
nance is physical, it should be independent on the choice of contour.

Another approach is to use the zero-interaction two-particle wavefunc-
tion corresponding to both particles in the resonant state as a starting vector
in an interative eigenvalue algorithm. For a small coupling coefficient, the
algorithm may then converge towards the eigenvalue of the interacting sys-
tem. The convergence is under the condition of using a moderate number of
iterations and restarting the algorithm with the vector giving most overlap
with the previous one, after finding only a few eigenvectors. The value found
by this method can then be used as input for a more exact shift-inverted
Arnoldi algorithm (see Appendix B).

A found eigenstate may also be checked by observing its overlap with
the zero-interaction wavefunction. For a weak coupling, the resonance wave-
function should be dominated by the component with both particles in the
single-particle resonant state.

In practice, all these methods are used in conjunction to achieve greater
certainty considering which of the solutions to the eigenvalue problem cor-
responds to the physical resonance.
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4.3 Potential Cutoff

The value of the potential described in (2.3) tends to ±∞ when z → ±∞.
This poses a problem in the numerical calculations since this would make
all integrals undefined. The solution to this problem is to introduce a cutoff
at both the left and the right side. In practice, this means that we define a
new potential Ṽ (z) by

Ṽ (z) ≡

V (z) +R0 (a ≤ z ≤ b)

0 (otherwise)
(4.1)

where R0 is a constant energy shift, b is chosen in such a way that when the
value of the potential becomes zero, it stays zero thereafter. R0 is chosen
such that this point is relatively far to the right, typically 15− 20µm. a is
chosen to an arbitrary negative value, typically about −2µm. In order to
make sure that the values of a, b and R0 did not influence the final result,
different choices of these were tried, and if a is far enough to the left and b
far enough to the right, the result seems to be largely independent on this
choice, see Section 6.3.

4.4 Practical Considerations

There are several practical considerations taken into account when writing
software to implement the methods described in Section 4.1 and 4.2, some
of which are mentioned here.

4.4.1 Software Verification

The software for the numerical calculations was written in a modular fashion
in order to make unit testing of its individual components possible. These
tests were typically implemented at an early stage and executed automat-
ically each time the program compiled, to verify the consistency of any
changes with the expected behavior.

Furthermore, verification was carried out by comparing results obtained
by the basis expansion method with results obtained by other means, and
by other authors. These comparisons are further described in Chapter 5.
The comparative verification is important, since it strongly suggests that
the Berggren basis does indeed work in one dimension and that the results
are reliable.

4.5 Finding Eigenvalues

Much literature is availiable on how to numerically find eigenvalues and
eigenvectors. In this project, two different approaches were used: shifted

28



4.5. FINDING EIGENVALUES CHAPTER 4. IMPLEMENTATION

QR iteration (provided by LAPACK) and restarted Krylov subspace methods
(mainly Arnoldi iteration provided by ARPACK). More details on these al-
gorithms, as well as further references on them, can be found in Appendix
B.

4.5.1 Memory

When solving for energies and eigenvalues for more than one particle, mem-
ory becomes an issue. Since the many-particle basis contains all possible
combinations of the single-particle basis states, the number of elements in
the two-particle matrix will be equal to the number of elements in the single-
particle matrix to the power of two. For a modest number of 200 single-
particle basis states, this equals to 1.6 · 109 matrix elements. Representing
each element as a complex number with double precision equals to 16 bytes
per element, which yields almost 24 Gb (plus any overhead) when represent-
ing the matrix in the computer’s memory. Furthermore, in order to compute
eigenvalues and eigenvectors of the matrix, even more space is required, typ-
ically two to three times this space extra is required during the computation
process in order to store intermediate factorizations and output values. This
ultimately puts an upper limit on the amount of basis states that can be
used, imposed by the available hardware. These limitations will be further
discussed in Chapter 7.
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Chapter 5

Benchmarking

In this section, some benchmarks are presented. The main purpose of these
is to verify the correctness of the program code used in the computations.

5.1 Piecewise Constant Potential

The method described in Section 3.4 was applied to different piecewise con-
stant potentials, and the result was compared to the result obtained by a
basis expansion method. An example of this comparison is shown in Figure
5.1, where the potential in Figure 5.2a was used. As can be seen from the
figure, the result obtained by maximizing a matrix condition number is in
strong agreement with the result obtained by means of our basis expansion
method. Applying a steepest-ascent approach in the neighborhood of the
poles in this case gives results differing less than 0.1% for the bound states
and less than 1% for both the real and imaginary part of the resonant state.

Figure 5.2b shows the wavefunctions corresponding to the two bound
and deepest resonance state in the potential in Figure 5.2a. The bound-
state solutions, corresponding to purely imaginary k, have an increasing
number of nodes. The resonance at a first glance looks like a bound state
with an additional node, but its wavefunction does not go to zero outside
the potential (|z| > 1).

5.2 Single Particle in a Similar Potential

An important verification of the software used for the computations is com-
parision with other known results. In a paper by Hazi and Taylor [13], the
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Figure 5.1. Location of poles for a potential like in Figure 3.3, with
(x1, x2, x3, x4) = (−1.0,−0.6, 0.6, 1.0)µm and
(V1, V2, V3) = (2.2,−1.5, 2.2)µK · kB. The potential and pole
wavefunctions are shown in Figure 5.2.
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Figure 5.2. (a) Potential to which the poles in Figure 5.1 correspond. (b)
Modulus square of the wavefunctions for the poles in Figure 5.1.

32



5.2. SINGLE PARTICLE IN A SIMILAR POTENTIAL CHAPTER 5. BENCHMARKING

energies and line widths for resonances in the potential

V (x) =


1
2x

2 (x < 0)

1
2x

2e−λx
2

(x ≥ 0)
(5.1)

where λ > 0 (see Figure 5.3) are computed and discussed in detail. This
potential shares some main features with the trap potential (2.3) of the
Heidelberg experiment.

0
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-3 -2 -1 0 1 2 3 4 5 6

V
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)

x

λ = 0.150
λ = 0.190
λ = 0.255

Figure 5.3. Potential from the Hazi paper, for some different values of the
parameter λ.

By using the basis expansion method for the problem defined by the
potential (5.1), one can directly compare the decay rates to the published
results [13]. A comparison can be found in Table 5.1. As can be seen from
the table, the results are the same to a high precision. It should be noted
that our given values are stable with respect to changes of the contour, as
long as the contour is never too close to the resonance pole and also not too
far. They are also stable with respect to changing the point density on the
contour.

The Hazi paper [13] also gives other data than the one shown in Table
5.1, and it has been verified that much of this data can be reproduced by
using a harmonic oscillator basis and the same methodology as described in
this thesis. The accuracy with which the results obtained using the complex
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λ Parameter Hazi [13] Basis Expansion

0.125
Er 0.472 940 0.472 940

Γ 3.607 ·10−5 3.649 860 ·10−5

0.15
Er 0.466 105 0.466 105

Γ 3.210 ·10−4 3.210 816 ·10−4

0.19
Er 0.453 54 0.453 533

Γ 2.805 ·10−3 2.804 222 ·10−3

0.225
Er 0.441 33 0.441 333

Γ 8.996 ·10−3 9.002 093 ·10−3

0.26
Er 0.429 03 0.429 033

Γ 1.976 ·10−2 1.977 600 ·10−2

Table 5.1. Comparision between the exact values of Table IV of [13] and the
values obtained by the basis expansion method employed in this project.

momentum basis concurs with the literature results is a verification of the
validity of this approach in one dimension.

5.3 Two Particles in a Harmonic Oscillator Poten-
tial

The energy levels for two interacting particles in an infinite-well harmonic-
oscillator potential were described in Section 3.12. These were also calcu-
lated using the computation routines in this project, as a means of verifi-
cation. The complex-momentum basis was then replaced by a harmonic-
oscillator basis.

In Figure 5.4 the theoretical values (solid lines) as given by (3.25) are
compared to the values calculated using a basis expansion of n = 30 harmonic-
oscillator basis states. Following the convention by [1], the horizontal axis is
given not in terms of the coupling coefficient g, but rather in terms of −1/g.

As can be seen from the figure, the calculated values closely resembles the
theoretical ones, even for strong interaction. For the small deviations of the
calculated values using strong interaction, the deviation is always towards
larger energies. This is expected, since one can prove that for any trial
wavefunction, a variational method will never underestimate the energy.
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Chapter 6

Results

The main results of this work are described in this section. First, results and
discussions pertaining to one particle in the potential (2.3) are introduced,
and some modifications of the fitted potential parameters in this potential
are suggested and tested. Thereafter results for two interacting particles are
discussed.

6.1 Single-Particle Tunneling

Initially, the potential (2.3) with the parameters from Table 2.2 was used to
calculate tunneling rates and energies. The resulting energies and tunneling
rates can be found in Table 6.1 for some different values of cB|state〉. The
results are stable with respect to reasonable changes in the contour L+ and
changes in number of basis states, as long as the number of basis states is
large enough.

As can be seen from the table, the calculated energy is within 4 % from
a WKB calculation. The tunneling rates however deviate quite a bit from
the experimental values. Looking closer at the discussion of the potential
in references [2, 3], one can note that some of the parameters, in particular
B′ and p, are fitted using a WKB calculation together with experimentally
measured tunneling rates, rather than measured directly. Since a WKB
calculation only yields an approximation, and the outcome of the calculation
is very sensitive to those parameters, this may be the reason for the apparent
large deviation in tunneling rates.

It should be noted that these tunneling rates correspond to a very small
Γ (see Equation (3.5)). The imaginary part of the energy is typically several
orders of magnitude smaller than the real part. This requires many basis
states on L+ in order to get the desired accuracy in the results.

The probability densities |Ψ(z)|2 for some resonant states are illustrated
in Figure 6.1. Note that the wavefunctions does not quite go to zero at
the right limit, since they are not normalizable. If the horizontal axis in
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the figure is continued to the right, the wavefunctions would be observed
to diverge and behave like eikz for a complex value of k. The probability
densities for the refined potential (see Section 6.2) are very similar to these.
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Figure 6.1. The single-particle probability density |Ψ(z)|2 for a particle in
the deepest resonant state of the potential, 2.3 with the parameters
from Table 2.2, and for some different values of cB|state〉.

Figure 6.2 shows a representative example of the eigenstates of the ki-
netic operator along the contour L+, and the eigenstates of the full Hamil-
tonian. From the figure it is clear that the resonance is located away from
the contour, distinguishing it from the continuum states.

6.2 Refitting the Trap Potential

The trap parameters B′ and p from Table 2.2 were originally fitted to repro-
duce experimental tunneling rates using a WKB approximation [2]. These
parameters may just as well be obtained using our basis expansion method.
We fix the other potential parameters in the table except for B′ and p, ignor-
ing experimental uncertainties. In particular, any uncertainties in cB|state〉
are ignored. The four measured single-particle tunneling rates, including
error bars, from Table 6.1 are utilized. We can then define a chi-squared
statistic

χ2(B′, p) ≡
∑

B|state〉

(
γcalcB|state〉 − γ

exp
B|state〉

σγB|state〉

)2

(6.1)
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Figure 6.2. A representative example of the location in momentum space of
the basis states and single-particle eigenstates. The area around the
most interesting part, the resonance, is magnified.

and try to minimize its value. Figure 6.3 shows how the value of (6.1) varies
over the B′-p parameter plane.

From the figure, it is clear that the local minima form a straight line.
In order to choose some potential parameters that fits the data, a point on
this straight line must be chosen. Arbitrarily the closest point to [3], which
is given by the orthogonal projection of that point onto the straight line, is
chosen. This new point, denoted by λnew, is given by the parametersB′ = 18.92 · 10−8T/µm

p = 0.638 83

and the function value at this point is χ2(B′, p) ≈ 0.384. The values for the
energies and tunneling rates with the modified version of the potential are
shown in Table 6.1. As can be seen, the calculated tunneling rates are all
well within the errors of the experimentally measured values.

6.3 Approximations and Errors

Since the potential used in our calculations is not exactly the one described
by [3] (see Section 4.3), it is important to analyze how the choice of cutoff
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Figure 6.3. The 10-logarithm of χ2(B′, p) as defined by Equation (6.1).
(B′, p) given by [3], as described in Section 2.2, is marked by λlit. in
the Figure. Also marked are local minima, which form a straight line.
The orthogonal projection of λlit. onto this line, denoted λnew, is also
marked. This λnew was used in the refined potential.

parameters a and R0 in Equation (4.1) affects the result. For changes in a,
essentially no change in the resulting complex energies was observed. For
changes in R0, there were small but noticeable fluctuations in the energies
and tunneling rates. A small dependence on R0 is expected, since the po-
tential is indeed modified when R0 is changed. The relative deviation from
the mean value for different values of R0 is shown in Figure 6.4.

As can be seen from the figure, the fluctuations when lifting the bottom
of the potential (increasing R0) seems to be periodical in R0. Furthermore,
the relative fluctuations for the energy are much smaller than the relative
fluctuations for the tunneling rates. Both of them decrease with the lifting
of the potential.

Notable is also that the relative magnitude of the fluctuations in the tun-
neling rates seems to be largely independent on the trap parameter cB|state〉.

6.4 Two-Particle Tunneling

If the two particles in the trap would populate the same hyperfine state, they
would behave like identical fermions and follow the Pauli principle. Since
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Figure 6.4. Relative difference in (a) energies and (b) tunneling rates for
different values of the offset R0 in the regularized potential (4.1) using
the parameters from Table 2.2.
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the trap is only deep enough to harbor the lowest resonant state of a particle
species, this is not the relevant situation for our studies. Furthermore, if the
trap was deeper, identical particles would still not interact with each other
through a Feshbach resonance. Focus will therefore exclusively be on the
case where the two particles are in different hyperfine states and therefore
behave like distinguishable particles.

For a given value of the perpendicular magnetic field, the coupling co-
efficient g as well as cB|↑〉 and cB|↓〉 take on well-defined values. Therefore,
there is a relation between cB|↑〉 and cB|↓〉, which is given by [3]. This is
shown in Table 6.2.

g −0.703 85 −30.969 33 −41.527 05 −45.046 30 other 1

cB|↑〉 1.00457 1.00407 1.00356 1.00311 1.00457 1

cB|↓〉 0.99968 0.99806 0.99512 0.98989 1.004571

Table 6.2. Relation between g, cB|↑〉 and cB|↓〉 values, as given by [3]. g is
given in units of nK · kB · µm.

A choice of corresponding g and cB|state〉-values is made, and the modified
potential parameters from Section 6.2 are used. Thereafter, the two-particle
problem is constructed and solved using the choice of potential parameters
from Section 6.2.

Resulting tunneling rates and energies of the two-particle states |↑↓〉 are
shown in Table 6.3. The interaction energies, defined as the difference in
energy between the interacting and corresponding non-interacting system,
are also shown in Figure 6.5. The tunneling rates are available in Figure
6.6. For these calculations, nmax was taken to be 30, with 200 single-particle
basis states on a contour L+. The accuracy of the calculated results will be
discussed in the next section.

From the table one can observe a pattern of increasingly negative in-
teraction energies and, to some extent, tunneling rates with an increasingly
attractive interaction. This is also what is expected since the effective tun-
neling barrier is larger. However, for stronger interactions this pattern is not
so clear for tunneling rates. In the next section the error in the tunneling
rate will be estimated to be in the order of at least a few seconds, and these
small tunneling rates are therefore too small to have any significance. That
a stronger interaction gives more interaction energy is however clear, and
expected.

The tunneling rates and energies differ quite a bit from the values given
by [3]. A possible explanation for this is that the WKB approximation

1For strong enough magnetic fields, given by [3] as > 850 G, both cB|state〉 are assumed
to be the same and equal to 1.00457.
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(see Appendix D) used to derive potential parameters may be insufficient
to describe tunneling in this case. Furthermore, the choice of new potential
parameters in Section 6.2 was not unique, and it is possible that another
choice would have given results that more closely resembles the values in
reference [3].
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Figure 6.5. Interaction energies calculated by the basis expansion method,
and the interaction energies given by [3].

An attentive reader may have noted that the tunneling rate for the cou-
pling coefficient g = −45.046 30nK · kB · µm in Table 6.3 is higher than for
the coupling coefficients closer to zero. This is likely due to the fact that
slightly different single-particle potentials were used, as discussed above. For
an example on how the shape of the potential affects the results, assume that
the potential corresponding to g = −30.969 33nK · kB · µm were to be used in
conjunction with the coupling coefficient g = −45.046 30nK · kB · µm. The
calculated interaction energy then becomes −13.21nK · kB, with a tunneling
rate 14.51s−1. Thus, given the same single-particle potentials, the tunneling
rate is decreasing with increasing interaction strength, as expected.

6.4.1 Stability of Results

The stability of the value of the energy with respect to different parameters
may be investigated in order to assess the accuracy of the results.

Figure 6.7 shows the interaction energy and tunneling rate as a function
of the cutoff level nmax for a given contour L+ in Equation (3.19). As can
be seen, the relative changes in energy when increasing the number of points
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Figure 6.6. Tunneling rates calculated by the basis expansion method, and
experimental values given by [3].

on the contour is small. The relative change in tunneling rate is larger, but
still (for the larger values of nmax) more than an order of magnitude smaller
than unity. Also, the energy is decreasing with increasing nmax, which is
intuitively expected for a variational-calculation theory. Using more states
on the contour L+, which is discussed below, might increase the convergence
rate with respect to nmax.

Figure 6.8 shows the interaction energy and tunneling rate as a function
of the number of basis states on a specific contour L+. As is clear from the
figure, the relative difference in energy when increasing the number of states
is not very large. However, the difference in tunneling rate is for this case
larger than 1 s−1. The order of magnitude for the differences is the same as
for the nmax-dependence in Figure 6.7.

Figure 6.9 shows the interaction energy and tunneling rate for different
contours L+. Since the resonance is physical, it is expected to be indepen-
dent on the choice of contour. However, from the figure it is clear that
the contour-dependence is of the same order of magnitude as the nmax and
basis-size dependence shown in Figure 6.7 and 6.8. A reasonable explana-
tion for this contour dependence is that the number of basis states along
the contour needs to be larger to achieve a more stable resonance, as was
concluded above.

The larger deviations in the tunneling rates compared to the interac-
tion energies shown in this section are most likely due to the fact that the
imaginary part of the energy is several orders of magnitude smaller than the
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Figure 6.9. Interaction energy and tunneling rate for six different contours
L+, each with 200 single-particle basis states, using the same coupling
coefficient and a cutoff level nmax = 30.

real part. This means that in order to get accurate results for the tunneling
rates, an even more accurate result for the modulus of the energy is needed.

This is also the reason that perturbation theory as mentioned in Section
3.13 is not relied upon to obtain the energies and tunneling rates. A pertur-
bative expansion was done to the third order as in Equation (3.26), for the
same contour L+ as in Figure 6.7, with nmax = 25 and 160 points on the
contour. This gave the correct first four significant digits of the modulus of
the energy. However, the error in the tunneling rate compared to the value
obtained by exact diagonalization was about 50%. Finding the eigenvalues
requires less computational work than evaluating the perturbative expansion
further than the third order.

It is hard to make any conclusive error estimates based on the results
in this section. The tunneling rates are observed to vary by a few inverse
seconds for different choices of parameters, and the interaction energies by
one or a few tenths of a nK. These estimates can therefore be taken as a
lower bound on the error.
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Conclusion and Outlook

In this work, tunneling of one and two interacting distinguishable fermions
out of a one-dimensional trap has been studied using a basis-expansion
method. The method was verified by comparing it to results obtained by
other methods and studies.

The general method for a one-dimensional potential was applied to a
specific trapped atomic system, which has been studied both experimen-
tally [1, 2, 3] and theoretically [4, 5]. The energies and tunneling rates
calculated by the basis expansion method were compared to the results of
these previous studies, and discrepancies were found. These discrepancies
could possibly be explained by experimental error margin and/or the WKB
approximation used to supplement the experimental data in deriving the
potential parameters.

An issue, especially in the two-fermion case, has been the large com-
putational resources required to perform the calculations, both in terms of
memory and CPU time. The practical consequence of this has been limited
statistics in terms of different parameters such as the path of the contour L+

in the complex plane, the interaction cutoff nmax and the number of basis
states on L+.

Interesting physics can be investigated in future projects by adding more
particles to the trap. In particular, it may be possible to study correlations
and shell effects can be in a high-fidelity environment. Such systems have
already been studied experimentally [1] and so a theoretical explanation
of these results, built on the same principles as this work, may be of much
interest. This will lead to much larger, but sparse, matrices. Practically this
means that many eigenvalue algorithms would be problematic to use. For
example, both QR iteration and a shift-inverted Arnoldi algorithm would
destroy the sparsity of the matrix. A method that might resolve this issue
is Jacobi rotations [14, p. 192].

It would also be interesting to use the basis expansion method for stronger
interactions than covered here. This might require some way of handling
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strong correlations, in particular to reduce the number of basis states re-
quired to reach convergence. For instance, one may use a unitary transfor-
mation to accomplish this [15, 16]. It is also possible that such a transforma-
tion would increase the accuracy for very small tunneling rates encountered
with attractive interactions.

Furthermore, it would likely be possible to demonstrate fermonization in
a similar (but deeper) trap using the methods described in this thesis. This
is the limit of strong repulsive interaction between distinguishable fermions,
and can be seen as an “effective” Pauli principle. The fermions then tend to
avoid each other [17], just as two identical fermions would do. The energy
and modulus square of the wavefunction will then be similar to the case of
two identical fermions in the trap.

Making the inter-particle interaction repulsive should move the states
closer to the trap barrier and increase the tunneling rate, which would in-
crease the relative accuracy in the calculations since it would mean that the
imaginary part of the energy becomes larger. Future experiments may also
provide data to compare with such theoretical results.
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Glossary

Attractive interaction In this thesis, a point-interaction with a coupling
coefficient g < 0.

BCS Theory of superconductivity in which electrons pair up to so-called
Cooper pairs.

Condition number Given a square matrix A, the condition number is
defined as cond(A) ≡ ||A|| ·

∣∣∣∣A−1∣∣∣∣ if A is nonsingular, and cond(A) ≡
∞ if A is singular.

Coupling coefficient The quantity g in Equation (3.17), which is con-
trolled by a Feshbach resonance.

Decay rate Same thing as tunneling rate in the context of this thesis.

Harmonic oscillator units Units in which length and energy are expressed
using a reference frequency, see Section 1.3.2.

Feshbach resonance Feature of many-body system with which the inter-
action strength between atoms can be controlled by changing a mag-
netic field, see Appendix C.

Interaction energy The difference in energy between an interacting and
a non-interacting system of particles.

Interaction strength Strength of inter-particle interaction, characterized
by the modulus of the coupling coefficient.

Matrix size The number of rows or columns of a square matrix.

Molecular units Unit system with the energy expressed in µK · kB, the
time in µs and length in µm. See Section 1.3.1.

Pole In this thesis, pole refers to a pole of the S-matrix if nothing else is
stated.

Repulsive interaction In this thesis, a point-interaction with a coupling
coefficient g > 0.
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S-matrix A matrix relating initial and final states in a scattering process.

Stationary state A state with a single definite energy, where the proba-
bility density is independent of time.

Tunneling rate In this thesis, the rate by which atom(s) tunnel out of a
certain region in a trap.

Ultracold atom Atom at a temperature close to 0 K, typically in the order
of µK or nK.

Weak interaction Interaction in which the interaction energy is small
compared to the spacing of the single-particle energy levels.

WKB approximation Popular approximation method in quantum me-
chanics, see Appendix D.
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Appendix A

Numerical Quadrature

A so-called quadrature rule is an approximation of the definite integral of a
function. Consider the integral

I [f ] =

∫ b

a
dxω(x)f(x) (A.1)

where ω is a weight on [a, b], such that
∫ b
a dxxkω(x) exists and is finite,

∀k ∈ Z+, and for all polynomials p(x) which are nonnegative on [a, b],∫ b

a
dxω(x)p(x) = 0 =⇒ p(x) = 0.

Also, a and/or b may be infinite.
This integral (A.1) can then be approximated by a sum,

I(f) ≈
N∑
i=1

wif(xi) (A.2)

where {wi}Ni=1 are weights for the corresponding points {xi}Ni=1.
The order of a quadrature rule rule is defined as the maximum degree

of polynomials such that all polynomials with this degree are integrated
exactly. For a given weight function w(x), interval [a, b] and number of
points N it can be shown that there is a unique way of choosing the points
and weights such that the order becomes maximal, and that this maximal
order is 2N−1. Furthermore, for this optimal choice, wi > 0 and a < xi < b.
Such a quadrature rule is called a gaussian quadrature [18, p. 171-181].

In this thesis, two specializations of the gaussian quadrature are used,
Gauss-Legendre quadrature and Gauss-Hermite quadrature.

A.1 Gauss-Legendre quadrature

For the case of ω(x) = 1 and [a, b] = [−1, 1], the optimal quadrature rule
(A.2) is known as a Gauss-Legendre quadrature. The xi’s are chosen as zeros

55



APPENDIX A. NUMERICAL QUADRATURE

for the N :th order Legendre polynomials Pn(x) and the wi’s are chosen as
[19, p. 887]

wi =
2(

1− x2i
)

[P ′n(xi)]
2

For an integral over an interval [a, b] 6= [−1, 1] (but still finite) with and
ω(x) = 1 it is easy to see that the rule can be rescaled by a simple change
of variables.

A.2 Gauss-Hermite Quadrature

For the case of ω(x) = e−β(x−α)
2

with a = −∞ and b = ∞, the optimal
quadrature rule is called a Gauss-Hermite rule, and another choice of coef-
ficients and weights than for the Gauss-Legendre rule is made. It is easy
to see that the weight function can be rewritten on so-called standard form
ω(x) = e−x

2
by a change of variables.

Using the standard form of the weight function, the xi:s are chosen as
zeroes for the N :th order Physicist’s Hermite polynomials (3.14), and the
weights wi are chosen as [19, p. 890]

wi =
2n−1n!

√
π

n2 [Hn−1(xi)]
2 .

In some calculations in this thesis, the weight function is on the form
ω(x) = e−β1(x−α1)2e−β2(x−α2)2 . This can be rewritten by expansion and
square completion in the exponent. We then get

β1(x− α1)
2 − β2(x− α2)

2 = b̃ (x− ã)2 −R

where 
b̃ ≡ β1 + β2

ã ≡ β1α1+β2α2

β1+β2

R ≡ β1β2

β1+β2
(α1 − α2)

2

and thus the weight function can be written as e−Re−b̃(x−ã)
2

which en-
ables us to use the Gauss-Hermite quadrature rule.
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Numerical Eigenvalue
Methods

An essential computational problem in this project is to find eigenvalues
of large, dense matrices. There are several different approaches in doing
this, and two different concepts have been employed: QR iteration and
Krylov subspace methods. The Krylov subspace methods frequently use
QR iteration as a part of the algorithm.

In this appendix a brief overview of these two methods is presented, in
large based on [14, 20] where a more thorough description can be found.

B.1 QR Iteration

QR iteration is a process that can reduce a general matrix A to a triangular
matrix T , the so-called Schur form of A, through similarity transforms.
Since two similar matrices have the same eigenvalues, the diagonal entries
in T must be the eigenvalues of A.

If A is an n × n matrix, then it can be factored as a product of two
matrices, A = QR where Q is a unitary matrix and R is an upper triangular
matrix. This is the so-called QR factorization of A.

The main idea used to accomplish the similarity transform from A to T
is to employ repeated QR factorization and multiplying the matrices Q and
R back together in the reverse order. To see this, let Ak = QkRk be a QR-
factorization of the matrix Ak, and let Ak+1 = RkQk. Then Rk = Q−1k Ak
and thus

Ak+1 = Q−1k AkQk

which is a similarity transformation. Also, since Qk is unitary, Q−1k = Q†k.
A proof that the general QR algorithm with shifts converge to a triangular
matrix can be very complicated [21] and will not be covered here.
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In practice, there are multiple other considerations that needs to be taken
into account. For example, the matrix may converge towards the eigenvalues
faster if it is shifted by a multiple of the identity matrix before computing
the QR factorization. Also, the algorithm can be made much more efficient
by initially performing a similarity tranform to an upper Heisenberg matrix
(a matrix with zeroes below the first subdiagonal). An interested reader
may find more information on improving the QR iteration efficiency in [22,
pp. 159-173].

For a general purpose QR algorithm, the LAPACK routine ZGEEV (see
Appendix E) has been used.

B.2 Krylov Subspace Methods

Two similar so-called Krylov subspace methods have been used in this
project, the Arnoldi algorithm and the Lanczos algorithm. The general idea
is to find a few of the largest eigenvalues of a matrix, without having to com-
pute all eigenvalues and without having to perform other matrix operations
than a matrix-vector product.

For a general n × n matrix A and an arbitrary starting vector x0, the

sequence
{
Akx0

}m−1
k=0

is called a Krylov sequence, and we can define a Krylov
matrix with the elements of this sequence as columns:

Km =
[
x0 Ax0 · · · Am−1x0

]
(B.1)

The columns can be shown to be linearly independent if m is less than or
equal to the number of distinct eigenvalues of A. Km has a corresponding
so-called Krylov subspace κm = span(Km), which gives the name to this
class of eigenvalue methods.

Looking at the case m = n and assuming that Kn is nonsingular, A is
similar to an upper Hessenberg matrix Cn by AKn = KnCn, which can be
seen by computing the right hand side (using (B.1)) and left-multiplying the
result by the identity KnK

−1
n .

The basis of the Krylov subspace κm consisting of the columns of Km be-
comes increasingly ill-conditioned with increasing m, since the matrix-vector
product Ajx0 will grow more in the direction of the dominant eigenvector
of A. To fix this, Kn is QR-factorized, Kn = QnRn, which enables us to
rewrite the similarity relation for A to

AQn = QnH (B.2)

withH as another upper Hessenberg matrix similar to Cn byH ≡ RnCnR−1n .
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If Qn =
[
q1 q2 · · · qn

]
, and the elements of H are denoted {hij}ni,j=1,

then looking at the k:th column of the similarity equation (B.2) gives

Aqk =

k+1∑
i=1

hikqi (B.3)

and due to orthogonality this means that

q†jAqk = hjk

which means that qk+1 can be obtained from the first k qi-vectors through
one matrix-vector multiplication by using (B.3).

Now partition Qn =
[
Qk Uk

]
where Qk contains the first k columns of

Qn and Uk the remaining (n − k) columns. Assume that Qk is calculated
using the method above, while Uk is unknown. The similarity relation (B.2)
can then be written

H = Q†nAQn =

[
Q†k

U †k

]
A
[
Qk Uk

]
=

[
Q†kAQk Q†kAUk

U †kAQk U †kAUk

]
=

[
Hk M

H̃k N

]

Obviously, Hk can then be calculated, while M and N can not. H̃k only
contains one nonzero element, since H is upper Hessenberg. The eigenval-
ues of Hk are so-called Ritz values, and the vectors Qky (where y is an
eigenvector of Hk) are called Ritz vectors. It can be shown that the Ritz
values and Ritz vectors converge towards eigenvalues and eigenvectors of
A, respectively, with increasing k. The eigenvalues and eigenvectors of Hk

can be calculated using QR iteration, as described above, which hopefully
requires much less work than performing QR iteration on A if k � n.

The method described for finding eigenvalues is the essence of the Arnoldi
algorithm.

For the case of a real symmetric or complex Hermitian matrix A, severe
simplifications can be made, in particular, H becomes tridiagonal. Both
computational work and required storage drops significantly. Doing these
simplifications leads to the Lanczos algorithm.

For practical purposes, one may be interested in finding not the largest
eigenvalues, but some eigenvalues close to some arbitrary value ζ. One then
instead solves for the eigenvalues of the matrix (A− ζI)−1.

In this project, a Lanczos algorithm was used to find approximations to
eigenvalues and eigenvectors. In order to be able to handle complex numbers
and the so-called pole approximation, a custom written[25] algorithm was
used rather than a standard one. The pole approximation in essence means
that the eigenvector corresponding to both particles in the resonant state
without interaction is chosen as a starting vector for the iteration.
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The value obtained by the custom written software was unstable, and
rather gave a hint of the region in which to find the actual eigenvalue. After
that, an Arnoldi method in ARPACK (see Appendix E) was used.
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Feshbach Resonances

The interaction strength between atoms in the trap, manifested in Equation
(3.17), is controllable by changing the external magnetic field applied to the
system. This dependence is due to a so-called Feshbach resonance. Here, a
brief and somewhat simplified summary is provided. The underlying theory
is involved, and is explained more thoroughly in other literature [16, 23].

Consider a low-energy scattering event of two particles in a spherically
symmetric relative-particle potential that goes to zero outside some finite
radius. A partial-wave expansion can be performed both on the potential
and the particle wavefunction, which essentially means expressing them as a
sum of spherical harmonics times radial parts. If the energy in a scattering
event is low enough, the particle de Broglie wavelength will be too long for
it to resolve all the details of the scattering potential. The contribution
from the lowest angular momentum state, the so-called s-wave, will then
dominate the expansion.

We define a scattering channel as a set of quantum numbers. For exam-
ple, this can be different spin configurations. Consider such a two-particle
system consisting of two scattering channels, which we denote as the open
channel and the closed channel. The open channel has only scattering states,
while the closed channel has a bound state. See Figure C.1. The resonance
occurs when the bound state in the closed channel energetically approaches
the zero-energy scattering state in the open channel. This leads to strong
mixing of the states.

Since the magnetic moment for different spin configurations may differ,
the energy levels can be shifted by changing an external magnetic field.
Thereby, the energy of the bound state relative to the scattering state can
be changed, to bring them closer or further apart. This amounts to changing
the inter-particle interaction. It can be shown that the coupling coefficient
g in (3.17) is proportional to the inverse of the difference in energy between
the bound and resonant states.
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Closed channel

Eb

0

Atomic separation

Open channel

Energy

Figure C.1. Illustration of two potentials corresponding to open and closed
channels, respectively. Eb is the energy of the bound state in the closed
channel.
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Appendix D

Wentzel–Kramers–Brillouin
Approximation

This appendix contains a short overview of the WKB approximation. A
more complete coverage, including derivations of relevant equations, is given
by for example [24, pp. 315-339].

The time-independent Schrödinger equation in one dimension can be
rewritten as

d2ψ

dx2
= −p

2

~2
ψ (D.1)

with p(x) =
√

2m [E − V (x)]. Rewriting the wavefunction as its amplitude
A(x) times its phase eiφ(x), where both A(x) and φ(x) are real, we get
Ψ(x) = A(x)eiφ(x). Inserting this into the Schrödinger equation gives us two
equations equivalent to (D.1), one for the real part and one for the imaginary
part: A

′′ = A
[
(φ′)2 − p2

~2

]
(A2φ′)′ = 0

Solving the second of these equations yields

A =
C√
φ′

while the first equation is not in general solvable. One then makes a crucial
approximation: The amplitude of A varies slowly, so that A′′/A� (φ′)2 and
A′′/A� p2/~2. The A′′ term can then be dropped, resulting in the solution

φ(x) = ±1

~

∫
p(x)dx
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which gives the total wavefunction as

ψ(x) =
C√
p(x)

e±
i
~
∫
p(x)dx (D.2)

and the general solution is a linear combination of two of these, with different
signs. For the potential in our problem, we can divide it into three regions,
as in Figure D.1, where region I and III are classically allowed and region
II is classically forbidden. Region I is the trap region for our particle. Note
that p(x) is imaginary in the classically forbidden regions.

II IIII

ER

V (z)

z
xa xb xc

Figure D.1. Illustration of a trap with a resonant state, partitioned into
three different regions. These regions are used in the WKB
approximation described in the text.

This approximation obviously breaks down at the so-called classical turn-
ing points xa, xb and xc, where p(x) = 0. In order to remedy this, the
potential is linearized in the vicinity of these points, and the Schrödinger
equation is solved for the linearized potential. Thereafter, the equation (D.2)
is patched together around the turning point by using the linearized solu-
tion, which turns out to be a so-called Airy function. This patching gives
rise to conditions on the momentum. For our trap region, this implies that

∫ xb

xa

dxp(x) =

(
n− 1

2

)
π~

with n a positive integer, from which one can find the energy levels inside
the trap.
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If one now looks at transmission through a barrier, assuming a broad
and high barrier, only the exponentially decaying solution will be physical.
One can then show that the transmission factor is

T = e−2ξ

where ξ ≡
∫ xc
xb

dx |p(x)|. Assuming that the particle “bounces” between the
walls with a frequency obtained from a harmonic oscillator approximation,

ν =
E

2π~
,

the probability of tunneling is then γ ≡ νf for every time unit.

D.1 Validity of the WKB Approximation

Some remarks on the validity of the WKB approximation in our specific po-
tential can be made, using the shape of the wavefunction obtained from
a basis expansion. For instance, the assumptions |A′′/A| �

∣∣φ′2∣∣ and
|A′′/A| �

∣∣p2/~2∣∣ may easily be checked. These are shown in Figure D.2,
and as can be seen, these assumptions are not even close to fulfilled inside
the trap.
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∣

∣

∣p2/h̄2
∣

∣

Figure D.2. Values of three quantities relevant for one of the approximations
made in a WKB calculation, as described by the text. The trap is given
by (4.1) using c|↑〉 = 1.00457 and the regions are defined as above.
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Software Libraries

This project has utilized a number of external software libraries, some of
which are described below. Note that many of the libraries are available as
Debian packages.

Library: LAPACK – Linear Algebra PACKage

Description: Library with linear algebra routines, such as QR iteration
for finding eigenvalues.

Download: http://www.netlib.org/lapack

License: Modified BSD, http: // www. netlib. org/ lapack/ LICENSE. txt

Library: ARPACK – ARnoldi PACKage

Description: Library with the restarted Arnoldi method for finding
eigenvalues

Download: http://www.caam.rice.edu/software/ARPACK/

License: Modified BSD, http: // www. caam. rice. edu/ software/ ARPACK/ RiceBSD.

txt

Library: BLAS – Basic Linear Algebra Subprograms

Description: Routines that provide standard building blocks for per-
forming basic vector and matrix operations. Used by LAPACK and ARPACK.

Download: http://www.netlib.org/blas/

License: Modified BSD, http: // www. netlib. org/ lapack
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Library: Libconfig

Description: Library used to read configuration files.

Download: http://www.hyperrealm.com/libconfig/

License: LGPL, http: // www. gnu. org/ licenses/ lgpl. html

Library: RLlib

Description: Standard routines for C++ code.

Download: urlhttps://github.com/riklund/rllib

License: GPL, http: // www. gnu. org/ licenses/ gpl. html

Library: Function Parser

Description: Library to parse mathematical expressions.

Download: http://warp.povusers.org/FunctionParse

License: LGPL, http: // www. gnu. org/ copyleft/ lesser. html

Library: Intel Math Kernel Library

Description: Library containing optimized version of LAPACK.

Download: http://software.intel.com/en-us/intel-mkl

License: Proprietary
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