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Numerical model reduction for FE-analysis of the viscoplasticity problem
DANIEL HÅRD
HENRIK SVENSSON
Department of Industrial and Materials Science
Chalmers University of Technology

Abstract
Some numerical problems require, despite modern computational power, a lot of
time to solve. The nonlinear viscoplasticity model is one such problem, where the
plasticity in a material depends on the rate at which the load is applied. A method
for reducing the system and decreasing the simulation time would therefore be an
advantage.

This thesis aims to adopt one such method to reduce the computational cost for
the viscoplasticity problem and evaluate it for some test cases. A mixed weak form
together with the Finite Element Method (FEM) on monolithic form is established.
Thereby, displacements and viscoplastic strains are solved for simultaneously rather
than in the standard nested fashion. Proper Orthogonal Decomposition (POD) is
performed on snapshots of the viscoplastic strains from a set of finite element train-
ing simulations carried out in an offline phase. The Nonuniform Transformation
Field Analysis (NTFA) approach expresses the displacements in a corresponding
reduced basis. The numerical computations have been implemented in Julia and
tested in 2D for varying load combinations.

It was shown that it was possible to reduce the solve time and still obtain good
approximations of the solution. However, there is a crucial dependency on the
training, with higher accuracy for targeted simulations similar to the training. Still,
the robustness of the procedure was illustrated by near monotonic error conver-
gence. Although more research would be needed, the results show promise for the
development of highly efficient approximations of the viscoplasticity problem.

Keywords: viscoplasticity, finite element method, numerical model reduction, proper
orthogonal decomposition
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1
Introduction

1.1 Background

Modern computational power has meant that more complex problems can be invest-
igated numerically than was previously possible. Despite this, there is still a need
to speedup the numerical analyses for many problems in science and engineering
through model reduction, e.g., multi-query problems such as design and optimiz-
ation [1]. In these cases, a large number of solutions are traditionally needed for
varying the model parameters. Applying model reduction to design optimization
was done by, e.g, Amsallem et al. [2]. Another important application in numerical
analysis, where speedup is necessary, is microscale analysis. This is when the re-
sponse from Representative Volume Elements (RVE) on the microscale is sought for
varying macroscopic loading, see, e.g, Jänicke et al. [3] and Ekre et al. [4].

In linear structural dynamics, it is very common to adopt model reduction in terms
of modal superposition [5]. In its most standard format, the original finite element
problem is replaced by a small set of decoupled scalar equations for the predominant
displacement modes. For nonlinear problems, a similar approach can be adopted.
The degrees of freedom for the system can be reduced by considering only the most
important modes of the solution. However, for a nonlinear problem the procedure
for computing the mode shapes becomes more involved. Furthermore, the reduced
system will be of that of a fully coupled nonlinear set of equations that needs to be
solved iteratively.

Reducing a complicated model by introducing a reduced basis and solving for fewer
unknowns will in this thesis be called Numerical Model Reduction (NMR), in the
literature also called Reduced Order Modelling (ROM) and Model Order Reduction
(MOR). The reason for using the notation NMR is to highlight that numerical meth-
ods are used to obtain the reduced basis, instead of changing the underlying model.
A general method to obtain a reduced basis, applicable to nonlinear problems, is
Proper Orthogonal Decomposition (POD) and was used for elastic-viscoplastic com-
posites by Roussette et al. [6]. Materials consisting of one or multiple phases can
be assumed to have a uniform basis function in each phase, called Transformation
Field Analysis (TFA), a concept introduced by Dvorak and Benveniste [7]. A similar
approach, Nonuniform Transformation Field Analysis (NTFA), was introduced by
Michel and Suqet [8] as a more general approach to TFA, where the basis functions
can be nonuniform instead. Combining these two methods, NTFA and POD, was

1



1. Introduction

studied by Fritzen et al. [9] for viscoelasticity in composites and by Jänicke et al.
[3] for poroelasticity.

This thesis considers model reduction applied to viscoplasticity. Viscoplasticity is a
type of plasticity model that is rate-dependent, meaning the deformations depends
on the rate at which the loads are applied [10]. It can for example be applied to
metals, especially at higher temperatures [11]. This material model is highly non-
linear and solving for it can take a considerable time, therefore is reducing the solve
time of interest.

Some methods, not investigated in this thesis, but still of relevance in the broader
research into model reduction are Proper Generalized Decomposition (PGD), hy-
perreduction and error control. PGD is a related method to POD, but with some
big differences [12]. It decomposes a function as a sum of products between simpler
component functions. This allows, e.g., boundary conditions and material prop-
erties to be treated as coordinates in the problem and therefore accounted for in
the decomposition. Hyper-reduction reduces the solve time for the model reduction
further by only looking at a subset of the quadrature points when assembling the
reduced system, see Ryckelynck [13]. Finally, for a reduction method to be reliably
used, which would be necessary for industrial use, an error estimation needs to be
established for the model reduction of the problem, see Ekre et al. [4]. This would
then mean error control could be used in the solution procedure.

1.2 Aim and scope
The aim with this thesis is to apply Numerical Model Reduction (NMR) using
Proper Orthogonal Decomposition (POD) to viscoplasticity. The reduction method
will be evaluated for some numerical examples in terms of solve time, robustness,
and solution accuracy.

Specific goals are to:
• Formulate viscoplasticity in mixed weak form
• Establish NMR problem
• Implement the numerical procedure
• Design a test case for evaluating the performance
• Analyse the performance in terms of accuracy, robustness, and computational

cost.

The material is assumed to be isotropic and deformations limited to small strains in
a quasi-static process. Furthermore, the displacements are also assumed to be two
dimensional, using the plane strain condition.

2



2
FE-analysis of viscoplasticity

In this chapter, the theory for viscoplasticity is presented, specifically perfect vis-
coplasticity, meaning no hardening or softening. First the constitutive model for
viscoplasticity is presented. Then the equations on strong and mixed weak form.
Then the 2D model used and lastly the FE-format of the equations with a monolithic
approach. The assumptions made are small strain, plane strain, isotropic material
and a quasi-static process.

2.1 Viscoplasticity

A material exposed to loads will experience a certain stress level. If the stress is low
the response will be elastic, meaning that the material will revert back to it’s initial
state when the loads are removed. If the stress is high enough the material will start
to plasticly deform, meaning that when the loads are removed it will not revert back
to the initial state [11]. Instead it will end up in a new state, different from the initial.

In the viscoplastic model, the point at which the material starts to plasticly de-
form is when the effective stress σe is above the yield stress σy. Also important
with the viscoplastic model is that it is rate-dependent, as showed in Figure 2.1.
A very slow loading will closely follow the lower curve, which is the case of perfect
plasticity. Increasing the strain rate will increase the stress above the initial yield
stress σy. The higher the strain rate is, the higher the stress will be. A description
of viscoplasticity can be found in [10] and references therein. Viscoplasticity can
to some extent be applied for most metals, especially at temperatures higher than
about a third of the material’s melting point [11].

2.1.1 Yield function

The quasi-static yield function with no hardening in a multi-axial case is

Φ = σe − σy, with σe =
√

3
2 |σdev| (2.1)

where σe is the von Mises yield effective stress. Note that if Φ < 0, the material will
have an elastic response and if Φ > 0, the response will be plastic.

3
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ε

σ Strain rate

σy

Elastic Plastic

Figure 2.1: Illustrative example of the stress-strain curve for viscoplasticity. A
higher strain rate will, when in the plastic region, increase the stress level in the
material. A very slow loading will result in perfect plasticity, which is the lowest
curve.

2.1.2 Perzyna formulation
The Perzyna formulation of the evolution of the viscoplastic strain εvp is the flow
rule

ε̇vp = g = λ
∂Φ

∂σ
= λf

where the plastic multiplier λ in the Perzyna formulation is

λ = 1
t∗
η[Φ] ≥ 0

where t∗ is the natural relaxation time and η[Φ] a nondimensional overstress function.

η[Φ] =

0 if Φ < 0
> 0 if Φ > 0

If the yield function Φ is on the form as in Equation 2.1 then the flow direction f
becomes

f = 3
2
σdev

σe

which leads to εvp being deviatoric through the flow rule.

2.1.3 Norton model
The Norton model for the overstress function η[Φ] is

η[Φ] =
(
〈Φ〉
σc

)nc
≥ 0

4
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where nc and σc both are parameters. 〈〉 denotes the Macaulay brackets, which is
defined as

〈x〉 =

0 if x < 0
x if x ≥ 0

in the Perzyna formulation this leads to

g = 3
2t∗

(
〈σe − σy〉

σc

)ncσdev

σe
(2.2)

and

∂g

∂σ
=


0 σe ≤ σy

3(σe − σy)nc
2t∗σeσncc

[
Isym
dev + 3

2σ2
e

(
ncσe
σe − σy

− 1
)
σdev ⊗ σdev

]
σe > σy

(2.3)

where the derivation of ∂g
∂σ

can be found in Appendix A.1.

2.1.4 Bingham model
Setting nc = 1 and σc = 3G in the Norton model results in the simpler Bingham
model

η[Φ] = 〈Φ〉3G .

Inserting the values on nc and σc into Equations 2.2 and 2.3 results in the corres-
ponding g and ∂g

∂σ
respectively.

2.2 Strong form
Assuming a quasi-static process, the governing equations are [14]


−σ ·∇ = b in Ω
u = uP on ΓD

t = σ · n = tP on ΓN

(2.4)

where the loads and boundary conditions (BC) can be seen represented in Figure
2.2 on the so-called continuum potato. The stress σ depends on the elastic strain
εe, which in turn depends on the total strain ε[u] and the viscoplastic strain εvp

σ = E : εe = E : (ε[u]− εvp)

where the assumption of small strain has been made and E is the fourth order
isotropic symmetric elastic stiffness tensor defined by

E = 2GIsym
dev +KI ⊗ I

5
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where G is the shear modulus and K the bulk modulus. The 4th order deviatoric
minor-symmetric identity tensor Isym

dev , the 4th order minor-symmetric identity tensor
Isym, and the 2nd order identity tensor I are given by

Isym
dev := Isym − 1

3I ⊗ I

Isym := 1
2[δikδjl + δilδjk]ei ⊗ ej ⊗ ek ⊗ el

I := δijei ⊗ ej.

The viscoplastic strain is an effect of the material plasticly deforming for large
loading. For a viscoplastic model, the plastic deformation is rate-dependent and
can be described by the viscoplastic flow rule on the form

ε̇vp = g(σ(ε[u]− εvp)) in Ω (2.5)

where εvp = 0 in the initial state. See Section 2.1 for more details on g.

ΓD
u = uPb

ΓN
t = tP

Figure 2.2: The continuum potato with boundary conditions and loads.

2.3 Mixed weak form
The mixed weak form can be derived by multiplying the Equations 2.4 and 2.5 on
strong form with δu and δεvp respectively and integrating over the domain Ω. Then
applying Gauss theorem to the first equation resulting in [14]∫

Ω
ε[δu] : σ dΩ =

∫
Ω
δu · b dΩ +

∫
∂Ω
δu · t dΓ (2.6)∫

Ω
δεvp : ε̇vp dΩ =

∫
Ω
δεvp : g dΩ . (2.7)

2.3.1 Residual
The residual of the equations is the difference between the left- and right-hand sides.
This means that the residual is zero for a solution.

The residual Ru(u, εvp; δu) of Equation 2.6 is defined as

Ru(u, εvp; δu) := au(u; δu)− c(εvp; δu)− l(δu) (2.8)

6
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where

au(u; δu) =
∫

Ω
ε[δu] : E : ε[u] dΩ

c(εvp; δu) =
∫

Ω
ε[δu] : E : εvp dΩ

l(δu) =
∫

Ω
δu · b dΩ +

∫
∂Ω
δu · t dΓ

The residual for equation 2.7 can be written on a similar format, starting with first
rewriting the equations as

avp(ε̇vp; δεvp)− b(u, εvp; δεvp) = 0.

where

avp(ε̇vp; δεvp) :=
∫

Ω
δεvp : ε̇vp dΩ

b(u, εvp; δεvp) :=
∫

Ω
δεvp : g dΩ .

The time derivative is discretised according to the backward Euler method [15]

ε̇vp = εvp − (n)εvp

∆t
⇒ avp(ε̇vp; δεvp) = 1

∆t
(
avp(εvp; δεvp)− avp

(
(n)εvp; δεvp

))
where (n)εvp is the viscoplastic strain from the previous time step and εvp is the
viscoplastic strain in the current time step that is being solved for.

This leads then to

avp(εvp; δεvp)− avp
(

(n)εvp; δεvp
)
−∆t b(u, εvp; δεvp) = 0

and the residual is defined as

Rε
vp(u, εvp; δεvp) := avp(εvp; δεvp)− avp

(
(n)εvp; δεvp

)
−∆t b(u, εvp; δεvp) (2.9)

A solution for u and εvp satisfies the system

Ru(u, εvp; δu) = 0
Rε

vp(u, εvp; δεvp) = 0.

2.3.2 Linearisation
The linearisation of the the equations is done by taking the Gateaux derivatives
of the residuals with respect to the two fields u and εvp. The derivations of the
Gateaux derivative of the residuals is done in the Appendix A.2. The resulting de-
rivatives are presented after the Gateaux derivative is defined.

7



2. FE-analysis of viscoplasticity

The Gateaux derivative of a functional F w.r.t. u in the direction du is defined as

F ′(u, εvp; du) := dF (u+ γdu, εvp)
dγ

∣∣∣∣
γ=0

.

The Gateaux derivative of the residual Ru w.r.t u in the direction du is

Ru′

u (u, εvp; δu, du) = au(δu, du).

The Gateaux derivative of the residual Ru w.r.t εvp in the direction dεvp is

Ru′

εvp(u, εvp; δu, dεvp) = −c(δu, dεvp).

The Gateaux derivative of the residual Rεvp w.r.t u in the direction du is

Rε
vp′

u (u, εvp; δεvp, du) = −∆t
∫

Ω
δεvp : ∂g

∂σ
: E : ε[du] dΩ .

where ∂g
∂σ

can be seen in Equation 2.3.

The Gateaux derivative of the residual Rεvp w.r.t εvp in the direction dεvp is

Rε
vp′

εvp (u, εvp; δεvp, dεvp) =
∫

Ω
δεvp : dεvp dΩ + ∆t

∫
Ω
δεvp : ∂g

∂σ
: E : dεvp dΩ

2.3.3 Newton’s method
Newton’s method is used to iteratively solve equations [14]. For the viscoplastic
problem with the sought fields u and εvp, the updates to the solutions are

u(k+1) = u(k) + ∆u
εvp(k+1) = εvp(k) + ∆εvp

where ∆u and ∆εvp are obtained as solutions of the system

Ru′

u

(
u(k), εvp(k); δu,∆u

)
+Ru′

εvp

(
u(k), εvp(k); δu,∆εvp

)
= −Ru

(
u(k), εvp(k); δu

)
Rε

vp′

u

(
u(k), εvp(k); δεvp,∆u

)
+Rε

vp′

εvp

(
u(k), εvp(k); δεvp,∆εvp

)
= −Rεvp(

u(k), εvp(k); δεvp
)
.

(2.10)

2.4 2 dimensional analysis
The plane strain condition is one form of the 2D formulation of the governing equa-
tions [16]. A slice of a long beam with uniform cross section is extracted, as in Figure
2.3. Loading is only applied in the transverse direction and not in the lengthwise
direction. The two ends are also constrained in the lengthwise direction. This means
that the lengthwise direction is fixed, and the assumption is that displacements only
occur in the transverse directions. The displacements are then given by

u = u1e1 + u2e2.

8
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This leads to the out of plane components ε13 = ε23 = ε33 = 0. This also implies
that σ13 = σ23 = 0, but importantly is σ33 6= 0 [16]. This is because the constraint
ε33 = 0 needs to be maintained. Assuming isotropy leads to

ε =

ε11 ε12 0
ε12 ε22 0
0 0 0

 σ =

σ11 σ12 0
σ12 σ22 0
0 0 σ33



1

2

3

t1

t2

t1

t2

σ11

σ12

σ22

σ33

Figure 2.3: The plane strain condition is a 2D slice in a long beam with both short
sides constrained in the lengthwise direction. Three stress components will be in
the plane of the slice and one component orthogonal to the plane.

It is important to note that these assumptions are only valid for the total strain ε.
The viscoplasticity model described in Section 2.1 is deviatoric and therefore must
the trace of εvp be zero. This means that the viscoplastic strain is

εvp =

ε
vp
11 εvp

12 0
εvp

12 εvp
22 0

0 0 −(εvp
11 + εvp

22)


and, hence, the elastic strain component εe

33 6= 0.

2.5 FEM

The Finite Element Method (FEM) is a method for solving partial differential equa-
tions numerically. It is based on discretizing a complicated, continuous domain into
a mesh consisting of smaller, simpler parts, usually triangles or quadrilaterals. In
this thesis triangles are used.

9
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Geometry Discretization Refinement

Figure 2.4: A domain is discretized into triangles to approximate the geometry.
Smaller triangles means better capture of the geometry. A finer mesh will also give
a solution with a smaller error.

The elements from the discretization of the domain is described by a set of basis
functions. The simplest of which is linear basis functions. This results in a triangle
with constant strain and is called Constant Strain Triangle (CST) [16]. As depicted
in Figure 2.5a, the CST element only has nodes in the corners and straight edges.
This results in six degrees of freedom. This type of triangle usually is worse at
capturing the geometry and the solution will have a larger error.

Second order basis functions will result in the strain being linear and is called a
Linear Strain Triangle (LST). It is depicted in Figure 2.5b and has six nodes, three
at the corners and three along the edges [14]. This results in a total of 12 degrees
of freedom. This type of element is much better at capturing the geometry than
the CST element, because of the second order basis functions can allow the edges to
be curved. Because the strain in the LST element is linear it will also give a more
accurate solution than the CST.

1

2

3

u1,1

u2,1

u1,2

u2,2

u1,3

u2,3

(a) CST element.

1
4

2

5

3

6

u1,1

u2,1

u1,2

u2,2

u1,3

u2,3

u1,4

u2,4

u1,5

u2,5

u1,6

u2,6

(b) LST element.

Figure 2.5: Triangular element types. On the left triangle with linear basis func-
tions and on right with quadratic basis functions.
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The geometry of the elements shown in Figure 2.5 are not easy to integrate over.
Therefore a coordinate transformation can be used to formulate easier geometries,
which are called isoparametric elements. Triangular isoparametric elements are
shown in Figure 2.6.

ξ

η

1 2

3

×

(a) CST isoparametric element.

ξ

η

1 2

3

4

56

× ×

×

(b) LST isoparametric element.

Figure 2.6: Isoparametric elements with the quadrature points required for CST
and LST.

To approximate an integral over an isoparametric element, numerical integration
can be used through a quadrature formula on the form [15]∫

Ωξ
f(ξ) dΩξ ≈

n∑
k=1

ωkf(ξk)

where ξk are quadrature points in the element, ωk weights and n the number of
quadrature points. Quadrature points are also known as Gauss points. If f is a
polynomial, the approximation will be exact for a sufficiently high n. To integrate
the CST element, one quadrature point is needed. To integrate the LST element,
three quadrature points are needed instead. Coordinates and weights can be seen
in Table 2.1 [17].

Table 2.1: Quadrature points and weights.

CST LST
(1/6,1/6)

ξi (1/3,1/3) (2/3,1/6)
(1/6,2/3)

1/6
ωi 1/2 1/6

1/6

2.5.1 FEM-form of equations
The residuals and Jacobians from the weak form in Section 2.3 will be written on
FEM-form. The equation systems is written with matrices and the matrices will

11
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be constructed by adding the contribution from every element. The contribution is
written on tensor form, and because of that, the Julia-package Tensors.jl is used.
The Julia-package Ferrite is used to supply the code with shape functions, shape
gradient, etc. The system will be solved using a monolithic approach, meaning
that the fields u and εvp will be solved for directly. This is because snapshots
of the viscoplastic strains εvp are needed in the model reduction, see Section 3.
Therefore, they need to be accessible at each time step. This is not possible with
a conventional implementation, where only a solution for u is obtained and εvp is
stored as an internal variable.

2.5.2 Basis functions
The assumptions of small strain, plane strain and isotropy, see Section 2.4, will be
reflected on the basis function. The fields u and εvp will be approximated with basis
functions. The viscoplastic strain is deviatoric and can be expressed as

εvp =

ε
vp
11 εvp

12 0
εvp

12 εvp
22 0

0 0 −(εvp
11 + εvp

22)



=

1 0 0
0 0 0
0 0 −1

εvp
11 +

0 0 0
0 1 0
0 0 −1

εvp
22 +

0 1 0
1 0 0
0 0 0

εvp
12

= N vp
1 ε

vp
11 +N vp

2 ε
vp
22 +N vp

3 ε
vp
12 .

The tensors N vp
1 , N vp

2 , and N vp
3 forms the basis for the viscoplastic strain in each

Gauss point. This leads to the convention ε12 instead of 2ε12, which is the usual
convention when writing equations on Voigt form.

The viscoplatic strain in Gauss point qa for an element ε(vp,e) can be approxim-
ated as

ε(vp,e)
qa ≈

3·nGauss∑
j=1

N
(vp,e)
j

(
a(vp,e)

)
j

where nGauss is the number of Gauss points for the element, N (vp,e)
j are shape func-

tions and
(
a(vp,e)

)
j
is Gauss point values of the viscoplastic strain.

A CST element has one Gauss point, nGauss = 1, and therefore is a(vp,e)

a(vp,e) =

ε
vp
11,1
εvp

22,1
εvp

12,1


and the shape functions N (vp,e)

j are

N
(vp,e)
1 = δqa,q1N

vp
1 N

(vp,e)
2 = δqa,q1N

vp
2 N

(vp,e)
3 = δqa,q1N

vp
3

12
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where δqa,q1 is

δqa,q1 =

1, if qa = q1

0, otherwise.

qa is the current Gauss point and q1 is the Gauss point. A LST element has three
Gauss points, nGauss = 3, and will therefore have q1, q2, and q3. The shape functions
are then

N
(vp,e)
1 = δqa,q1N

vp
1 N

(vp,e)
2 = δqa,q1N

vp
2 N

(vp,e)
3 = δqa,q1N

vp
3

N
(vp,e)
4 = δqa,q2N

vp
1 N

(vp,e)
5 = δqa,q2N

vp
2 N

(vp,e)
6 = δqa,q2N

vp
3

N
(vp,e)
7 = δqa,q3N

vp
1 N

(vp,e)
8 = δqa,q3N

vp
2 N

(vp,e)
9 = δqa,q3N

vp
3 .

With the previously mention assumptions in this section, the displacement for an
element u(e) can be approximated as

u(e) ≈
ndofs∑
i=1

N
(u,e)
i

(
a(u,e)

)
i

where ndofs is the number of degrees of freedom for the displacement in an element,
N

(u,e)
i are shape functions, and

(
a(u,e)

)
i
are nodal values of the displacement.

For a CST element ndofs = 6, and therefore is a(u,e)

a(u,e) =



u1,1
u2,1
u1,2
u2,2
u1,3
u2,3


and the shape functions N (u,e)

i are

N
(u,e)
1 = N1e1 N

(u,e)
2 = N1e2 N

(u,e)
3 = N2e1

N
(u,e)
4 = N2e2 N

(u,e)
5 = N3e1 N

(u,e)
6 = N3e2

where isoparametric scalar shape functions are

N1 = 1− ξ − η N2 = ξ N3 = η.

The displacement gradient can be approximated as

u(e) ⊗∇ ≈
(ndofs∑

i=1
N

(u,e)
i

(
a(u,e)

)
i

)
⊗∇

≈
ndofs∑
i=1

(
a(u,e)

)
i

(
N

(u,e)
i ⊗∇

)

≈
ndofs∑
i=1

(
a(u,e)

)
i

(
N

(u,e)
i ⊗∇ξ

)
· J−1

ξ

13
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where the Jacobian J ξ, is received from the transform to the isoparametric coordin-
ate system and is

J ξ =

ndofs
2∑
i=1

xi ⊗∇ξN
(u,e)
i

where xi is the coordinates for the nodes in the element.

From that, (ε[u])e can be calculated

(ε[u])e = 1
2
(
(u(e) ⊗∇) + (u(e) ⊗∇)T

)
≈ 1

2

ndofs∑
i=1

(
a(u,e)

)
i

(
N

(u,e)
i ⊗∇ξ

)
· J−1

ξ + 1
2

ndofs∑
i=1

(
a(u,e)

)
i

((
N

(u,e)
i ⊗∇ξ

)
· J−1

ξ

)T
≈

ndofs∑
i=1

1
2

[((
N

(u,e)
i ⊗∇ξ

)
· J−1

ξ

)
+
((
N

(u,e)
i ⊗∇ξ

)
· J−1

ξ

)T ](
a(u,e)

)
i

≈
ndofs∑
i=1

Bi

(
a(u,e)

)
i

2.5.3 Residual formulation
The residuals in Section 2.3 is written on tensor form and will be expressed in FEM-
form, which means using the approximations for u and εvp.

We recall the residual Ru in Equation 2.8,

Ru(u, εvp; δu) = au(u; δu)− c(εvp; δu)− l(δu)

=
∫

Ω
ε[δu] : E : ε[u] dΩ−

∫
Ω
ε[δu] : E : εvp dΩ−

∫
Ω
δu · b dΩ−

∫
∂Ω
δu · t dΓ

which on FEM-form can be written as

Ru = K a(u) −H a(vp) − f.

The matrices in respective element formulation is

(K)eij =
∫

Ωe
ξ

Bi : E : Bj dΩξ

(H)eij =
∫

Ωe
ξ

Bi : E : N (vp,e)
j dΩξ(

f
)e
i

=
∫

Ωe
ξ

N
(u,e)
i · b dΩξ +

∫
∂Ωe

ξ

N
(u,e)
i · t dΓξ

14
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a(u) and a(vp) are

a(u) =



u1,1
u2,1
u1,2
u2,2
...

u1,Ndofs
u2,Ndofs


a(vp) =



εvp
11,1
εvp

22,1
εvp

12,1
...

εvp
11,NGauss
εvp

22,NGauss
εvp

12,NGauss


where Ndofs is the total degrees of freedom in the system and NGauss the total num-
ber of Gauss points in the system. It is important to note that the convention ε12
is used instead of 2ε12. This is due to the use of the package Tensors.jl in Julia
to evaluate the elementwise contributions.

The residual Rεvp in Equation 2.9 is

Rε
vp(u, εvp; δεvp) = avp(εvp; δεvp)− avp

(
(n)εvp; δεvp

)
−∆t b(u, εvp; δεvp)

=
∫

Ω
δεvp : εvp dΩ−

∫
Ω
δεvp : (n)εvp dΩ−∆t

∫
Ω
δεvp : g dΩ

which on FEM-form can be written

Rε
vp = M (vp) a(vp) −M (vp) a(n) (vp) −∆t P .

The matrices in respective element formulation is
(
M (vp)

)e
ij

=
∫

Ωe
ξ

N
(vp,e)
i : N (vp,e)

j dΩξ

(P )ei =
∫

Ωe
ξ

N
(vp,e)
i : g dΩξ .

A solution satisfies the total residual if

RFEM =
[
Ru

Rε
vp

]
=
[
0
0

]
.

2.5.4 Linearisation
The Jacobians in Section 2.3 is written on tensor form and will be expressed in
FEM-form.

The Jacobian Ru′
u is

Ru′

u (u, εvp; δu, du) =
∫

Ω
ε[δu] : E : ε[du] dΩ
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which on FEM-form is

Ru′

u = K da(u).

The Jacobian Ru′
εvp is

Ru′

εvp = −
∫

Ω
ε[δu] : E : dεvp dΩ

which on FEM-form is

Ru′

εvp = −H da(vp).

The Jacobian Rεvp′
u is

Rε
vp′

u (u, εvp; δεvp, du) = −∆t
∫

Ω
δεvp : ∂g

∂σ
: E : ε[du] dΩ

which can be written on FEM-form as

Rε
vp′

u = −∆t S da(u).

The matrix S for an element is

(S)eij =
∫

Ωe
ξ

N
(vp,e)
i : ∂g

∂σ
: E : Bj dΩξ .

The Jacobian Rεvp′
εvp is

Rε
vp′

εvp (u, εvp; δεvp, dεvp) =
∫

Ω
δεvp : dεvp dΩ + ∆t

∫
Ω
δεvp : ∂g

∂σ
: E : dεvp dΩ

which on FEM-form is

Rε
vp′

εvp = M (vp) ∆a(vp) + ∆t U da(vp).

The matrix U for an element is

(U)eij =
∫

Ωe
ξ

N
(vp,e)
i : ∂g

∂σ
: E : N (vp,e)

j dΩξ .

2.5.5 Newton’s method
Inserting the FEM-approximations into Newton’s method on weak form in Equation
2.10 gives the equation system[

K −H
−∆tS

[
M (vp) + ∆tU

]][∆a(u)

∆a(vp)

]
= −

[
K a(u) −H a(vp) − f

M (vp)a(vp) −M (vp) a(n) (vp) −∆tP

]

which can be solved for the vector
[

∆a(u)

∆a(vp)

]
and then each of the vectors ∆a(u) and

∆a(vp) can be extracted.
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3
Numerical Model Reduction

A system with a large amount of degrees of freedom can be very computationally
heavy and take a long time to solve. Finding techniques for reducing the amount of
degrees of freedom can the have a huge advantage. This is called Numerical Model
Reduction (NMR), but in the literature also known as Model Order Reduction
(MOR) and Reduced Order Modelling (ROM). In this thesis, the notation NMR
is used to emphasize that numerical methods are used to reduce the system. An
overview of the methods used for the model reduction can be found [6, 3] and
it is specifically based on the Nonuniform Transformation Field Analysis (NTFA)
approach [8].

3.1 Reduced basis ansatz
The reduction technique used is based on separation of variables as

εvp(x, t) ≈
NR∑
a=1
ε̂vp
a (x)ξa(t) (3.1)

where the spatial and time domains are decomposed, ε̂vp
a (x) are the spatial mode

functions and ξa(t) are time dependent mode activity functions. NR is the number
of modes used and is usually much smaller than the total number of Gauss points
NR � NGauss.

The spatial modes are fixed functions in the spatial domain and the mode activity
functions controls which spatial modes are active for each time and can thus vary
over time. As a consequence of this, the variational form of εvp(x, t) is

δεvp(x, t) ≈
NR∑
a=1
ε̂vp
a (x)δξa(t). (3.2)

The approximations in Equations 3.1 and 3.2 inserted into the weak forms in Equa-
tions 2.6 and 2.7 leads to∫

Ω
ε[δu] : E : ε[u] dΩ−

NR∑
a=1

∫
Ω
ε[δu] : E : ε̂vp

a dΩ ξa =
∫

Ω
δu · b dΩ +

∫
∂Ω
δu · t dΓ

(3.3)
NR∑
a=1

δξa

∫
Ω
ε̂vp
a :

NR∑
b=1
ε̂vp
b ξ̇b

 dΩ−
∫

Ω
ε̂vp
a : g

σ
ε[u]−

NR∑
b=1
ε̂vp
b ξb

 dΩ
 = 0. (3.4)
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3. Numerical Model Reduction

In the NTFA approach, superposition of the displacements is

u(x, t) ≈ u0(x, t) +
NR∑
a=1
ûa(x)ξa(t)

where u0 is the elastic displacement, and the summation of ûa(x)ξa(t) is the con-
tribution to the displacements due to plasticity. Note that the same mode activity
functions ξa(t) as for ε̂vp are used. This is because ε[u] is linear, and therefore
can ξa(t) be factored out to describe both ûa and ε̂vp

a simultaneously. Inserting the
superposition in Equation 3.3 and assuming∫

Ω
ε[δu] : E : ε[u0] dΩ =

∫
Ω
δu · b dΩ +

∫
∂Ω
δu · t dΓ

NR∑
a=1

(∫
Ω
ε[δu] : E : ε[ûa] dΩ−

∫
Ω
ε[δu] : E : ε̂vp

a dΩ
)
ξa = 0

⇒
∫

Ω
ε[δu] : E : ε[ûa] dΩ =

∫
Ω
ε[δu] : E : ε̂vp

a dΩ , a = 1, ..., NR

(3.5)

means that Equation 3.3 is satisfied. This means that the elastic displacements u0
can be solved as a linear elastic problem, and each ûa is obtained exactly by solving
a system using ε̂vp

a .

Inserting the superposition of u in Equation 3.4 yields a system of ODEs in ξ
and time
NR∑
b=1

∫
Ω
ε̂vp
a : ε̂vp

b dΩ ξ̇b −
∫

Ω
ε̂vp
a : g

σ
ε
u0 +

NR∑
b=1
ûbξb

− NR∑
b=1
ε̂vp
b ξb

 dΩ = 0, a = 1, ..., NR

Mξ̇ − f(ξ) = 0

where

(M)ab =
∫

Ω
ε̂vp
a : ε̂vp

b dΩ

(
f
)
a

=
∫

Ω
ε̂vp
a : g

σ
ε[u0] +

NR∑
b=1

(ε[ûb]− ε̂vp
b )ξb

 dΩ

ξ =


ξ1
ξ2
...
ξNR

.

3.2 Newton’s method

The time derivative ξ̇ is discretized according to backward Euler method [15]

ξ̇ = ξ − (n)ξ

∆t

18



3. Numerical Model Reduction

where (n)ξ is the values of the mode activity functions from the previous time step
and ξ is the values in the current time step, which is what is solved for. This leads
to the residual

RNMR := Mξ −M (n)ξ −∆tf(ξ).

The variational formulation of f is needed for calculating the Jacobian. It is

df =
∫

Ω
ε̂vp
a : ∂g

∂σ
: E :

NR∑
b=1

(ε[ûb]− ε̂vp
b )∆ξb dΩ

= F∆ξ

where

(F )ab =
∫

Ω
ε̂vp
a : ∂g

∂σ
: E : (ε[ûb]− ε̂vp

b ) dΩ

note that here ε̂vp is a second order tensor, which need to be taken into account
when extracting the snapshots and constructing the mode functions. This means
that the factor 2 in 2ε12 in Voigt notation is not used in this formulation.
The Jacobian is

J = M −∆tF

and the Newton iterations

J∆ξ = −RNMR

ξ(k+1) = ξ(k) + ∆ξ

becomes [
M −∆tF

]
∆ξ = −

[
Mξ −M (n)ξ −∆tf(ξ)

]
ξ(k+1) = ξ(k) + ∆ξ.

3.3 Proper Orthogonal Decomposition
An orthogonal basis can be constructed by the method Proper Orthogonal Decom-
position (POD). An overview of the method used can be found in [6, 3]. From
the FEM-solution, εvp(x, t) is obtained. From it, NS snapshots can be extracted
and stored in ε̃vp, where each column represents values of the viscoplastic strains
at a specific time step. POD then takes the set of NS column vectors ε̃vp

s , where
s = 1, ..., NS, and extracts a new set of orthogonal basis vectors. The correlation
matrix is constructed as

gst = [ε̃vp
s ]T ε̃vp

t .

For g, the eigenvalue problem (gst − λδst)vt = 0 is solved for eigenvalues λ and ei-
genvectors v. The eigenvalues are sorted in decreasing order and values |λs| < β|λ1|

19



3. Numerical Model Reduction

are removed. This results in a reduced basis with NR eigenvalues.

The orthogonal basis ε̂vp is constructed by

ε̂vp
a =

NS∑
s=1

(va)sε̃vp
s , a = 1, 2, ..., NR (3.6)

where va is the eigenvector associated with eigenvalue λa. Because ε̂vp is an ortho-
gonal basis

[ε̂vp
a ]T ε̂vp

b =

λa, if a = b

0, else

where it is important to note that the basis is orthogonal, but not orthonormal.
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4
Implementation

Simulations were done on one or a couple training cases. From these, snapshots were
extracted to then perform POD and NMR. The same snapshots were then used to
simulate some test cases and compare the FEM-solution to the NMR-solution.

4.1 Program structure
The structure for the solving procedure for FEM and NMR can be seen in Figure
4.1. Both have a similar procedure and use the same settings. The settings include
choice of geometry, applied boundary conditions, loads and the material parameters.
One additional setting for NMR is the number of modes to solve with.

The procedure for FEM can be seen in Figure 4.1a. Some of the matrices don’t
depend on the solution and can therefore be assembled before the time stepping.
These are K, H and Mvp. In the beginning of each time step, the current BC is
applied and the constrained displacements uc and load vector f created. The vec-
tor P is assembled and the residual RFEM calculated. If the norm of the residual
show convergence, then the next time step is started. If it has not converged, the
matrices U and S are assembled. They are then used to calculate the Jacobian J ,
which is used to solve for the update ∆, which in turn leads to the updates ∆u and
∆εvp. If it is the last time step, a solution for u(x, t) and εvp(x, t) has been reached,
otherwise it continues with the next time step.

The procedure for NMR can be seen in Figure 4.1b and is similar to the procedure
for FEM. It requires both the same settings as for FEM, but also the number of
modes NR and the reduced basis ε̂vp. The procedure is split into two parts, one
”offline stage” and one ”online stage”. The offline stage includes things that can be
performed one time and then reused multiple times. For the current problem, this
is using POD on extracted snapshots to calculate ε̂vp, and solving for the modes
û using Equation 3.5. The online stage is the actual problem solving stage, and it
makes use of the precomputed mode functions calculated during the offline stage.
Because the actual problem can vary, calculating u0 and solving for ξ(t) are part
of the online stage, although u0 could be part of the offline stage for parameterized
loads b and tP. The matrix M doesn’t depend on ξ and can therefore be assembled
before the time stepping. In the beginning of each time step, f(ξ) and the residual
RNMR are calculated. If convergence, the next time step is started. If not, the
Jacobian is calculated to then get the updates ∆ξ. If it is the last time step, a
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4. Implementation

NMR-solution for u(x, t) and εvp(x, t) has been reached. Otherwise it continues
with the next time step.

Settings

Pre assemble matrices
K, H, Mvp

Update BC
uc and f

Assemble P
Calculate residual RFEM

∥∥∥RFEM
∥∥∥ < α ·

∥∥∥max(f)
∥∥∥

Assemble U , S
Calculate Jacobian J

Calculate ∆ = −J \RFEM

∆⇒ ∆u, ∆εvp

t = TMax

FEM-solution of u(x, t) and εvp(x, t)

t = 0

No

Yes

No

t = t+ ∆t

Yes

(a) Solving procedure for FEM.

Settings Reduced basis
ε̂vp

Calculate û

Calculate u0

Calculate f(ξ)

∥∥∥RNMR
∥∥∥ < α · ‖max(f(0))‖

Calculate Jacobian
J

Calculate update
∆ξ

t = Tmax

NMR-solution of u(x, t) and εvp(x, t)

t = 0

No

Yes

Yes

No

t = t+ ∆t

(b) Solving procedure for NMR.

Figure 4.1: The solving procedures for FEM and NMR. Both have a similar struc-
ture.

To obtain the basis functions ε̂vp needed for the NMR procedure, POD described in
Figure 4.2 was used. For snapshots ε̃vp, obtained from the FEM-solution, eigenvalues
λn can be calculated. Only eigenvalues with a relative size larger than the specified
cut-off β are chosen, and subsequently only the corresponding eigenvectors were
used. To construct the reduced basis ε̂vp, Equation 3.6 was used.
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4. Implementation

Snapshots
ε̃vp(x, t)

Cut-off β
e.g. β = 10−6

Calculate eigenvalues λn
and eigenvectors vn

Choose large eigenvalues
λn > β · λ1

Calculate the reduced basis

Reduced basis ε̂vp

Figure 4.2: General structure of the POD computation.

Case for training

FEM for training simulation

POD

NMR training simulation

Start test cases

FEM on a test case

NMR on a test case
For NR = 1, 2, ...

Training settings

FEM-solution, β

Training settings, reduced basis

Reduced basis

Test settings

Test settings, reduced basis Go to next variation
of the test case

Figure 4.3: General structure of the testing. For a specified training simulation a
FEM-solution is obtained. POD is performed and reduced basis extracted for the
NMR calculation. Then, for a set of test cases, FEM and NMR is repeated to test
how good the reduction is.

The total solving procedure can be seen in Figure 4.3. It starts with defining one
or a few training cases, which was solved using FEM. Snapshots from each solution
was saved for later use. Then, for each case respectively, POD and NMR were cal-
culated. This step is not necessary for the later steps, but can be important to see
how well NMR performs when directly decomposed.

One or more test cases are then solved with FEM, to obtain a comparative solution
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4. Implementation

in each case. These tests are generally more complicated than the training cases.
For each test case, POD is performed by combining the snapshots computed pre-
viously during the training, see Section 4.5 for more details. From POD a reduced
basis is obtained, for which NMR is solved. The FEM and NMR-solutions can then
be compared and evaluated, partly based on the methods described in Section 4.2.

4.2 Comparing results
To compare and evaluate the performance of NMR, some standard methods were
needed. One was the time to obtain a FEM-solution compared to the time for the
online stage in NMR.

The tip displacements over time were used to compare FEM and NMR. This was
done by integrating the displacements on the right edge. Also the relative displace-
ment error between FEM and NMR-solutions for the tip displacements were used.
These were calculated with

ureltip,1(t) =
uNMR
tip,1 (t)− uFEMtip,1 (t)
max
t

(∣∣∣uFEMtip,1 (t)
∣∣∣)

ureltip,2(t) =
uNMR
tip,2 (t)− uFEMtip,2 (t)
max
t

(∣∣∣uFEMtip,2 (t)
∣∣∣)

(4.1)

where the error could be both positive or negative and change over time.

For a loading ending with zero traction, some residual stresses would be left within
the material if it plasticised. To compare FEM and NMR a root mean square (RMS)
error was used

σRMS
e =

√
1
Ω

∫
Ω

(σNMR
e − σFEMe )2 dΩ (4.2)

this means that the error σRMS
e will always be positive.

4.3 Newton iterations
When solving the systems of equations for both FEM and NMR, the norm of the
residual was used to determine convergence. But due to FEM and NMR having very
different number of unknowns, only comparing the norm of the residual vector with
a fixed value is not appropriate. Instead a relative method was used. For FEM, the
convergence criteria was comparing the norm of the residual to the norm of the load
vector at the time step with the largest traction

‖RFEM‖ < α‖fmax‖

where the factor α was a small number, in this thesis it was set to α = 10−6.

For NMR a similar approach was used. Because the equivalent load vector f(ξ)
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depends on ξ, it is not possible beforehand to know what the maximum value of
f(ξ) is. Therefore the assumption ξ = 0 together with the u0 with largest summa-
tion of |u0| nodal values were used to construct f(0)max. The convergence criteria
was then

‖RNMR‖ < α‖f(0)max‖
were the same α as for FEM was used.

One way of reducing the number of Newton iterations is to try to guess the solution
of u and εvp in the next time step. This might create a better starting point, and
thus reducing the number of Newton iterations. The easiest method is to just use
the solution in current time step as the starting point. Another method is to use
the current solution and the previous solution as

(n+2)u = (n+1)u+
(

(n+1)u− (n)u
)

(n+2)εvp = (n+1)εvp +
(

(n+1)εvp − (n)εvp
)

where (n+1)u and (n+1)εvp are the current solutions, (n)u and (n)εvp the solutions
from the previous time step and (n+2)u and (n+2)εvp are the guessed starting points
for the next time step. It’s important to note that this is something performed
after Newton’s method arrived at a solution in the current time step, and not to be
confused with the iterative solutions during the Newton iterations, u(k) and εvp(k).
This method was not used to solve for u and εvp, because of numerical solving issues.
For them, just the current solutions were used as the starting points. In NMR, the
guessing method used was

(n+2)ξ = (n+1)ξ +
(

(n+1)ξ − (n)ξ
)

for which the same numerical difficulties were not observed. This difference in
method might have introduced a slight bias in solve time benefiting NMR over
FEM, due to reduced number of Newton iterations. Thus the time difference might
appear larger than with the same guessing method.

4.4 Implementation in code
The programming language used for the numerical implementations was Julia [18],
in which both FEM and NMR were coded. This allowed for efficient calculations
and using some Julia packages made the implementation easier. One of the main
packages used was Ferrite.jl [19], a finite element toolbox. This package handled
some of the important aspects of the program, such as interpolation between nodes,
quadrature points, evaluate shape functions and its derivatives, and generating the
simple meshes used. This made it possible to implement both CST and LST ele-
ments, although only CST was used in this thesis. This package was used for both
of the FEM and NMR implementations.

Another important package used was Tensors.jl [20]. It allowed for performing
actual tensor operations in Julia and not having to rewrite the equations on Voigt

25
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form using standard matrix multiplications. This meant less chance of error in de-
rivations, implementations, and more understandable code. This because equations
could be written on a form close to their mathematical formulations.

4.5 Extracting snapshots
Performing a FEM-solution results in two fields, u and εvp. These can be obtained
and stored for every time step, thus creating snapshots over time. To construct the
reduced basis ε̂vp, the snapshots of εvp were needed. One efficient, but complicated,
method could be to ignore snapshots from before the material plasticised, when
εvp would be zeros, and only using snapshots at specified time steps. This would
decrease the matrix used for POD, and thus decrease the computational cost. In
the current work, all of the snapshots were used. This reduced the implementation
complexity and therefore less chance of error.

If two or more training simulations were used, a method of combining them was
needed. If snapshots are stored in matrices S1, S2, ... Sn for n training simulations,
where each column corresponds to εvp at a specific time step, then the combined
snapshot matrix was

S = [S1 S2 . . . Sn]

on which POD then was performed.
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5
Numerical investigations

This chapter presents the numerical investigations made to test the performance of
NMR described in Chapter 3. First, an illustrative example of the method applied
to a simple cantilever beam is presented. Then a case with training simulations and
test simulations to test how well the training simulations could predict the behaviour
in a new situation.

5.1 Cantilever beam

A simple cantilever beam with vertical traction applied on the right edge is depicted
in Figure 5.1. This was used to illustrate the decomposition into modes and the
solution’s dependency on the number of modes. The maximum traction t2 = −30e2
MPa was uniformly applied and increased from zero to the maximum following a
sinusoidal function.

1

2

3
l = 4 m

h = 1 m t2

Figure 5.1: A simple cantilever beam.

The material properties are shown in Table 5.1. The properties for G, K, and
σy was based on structural steel [21, 22, 23]. The properties t∗, nc and σc was
chosen arbitrarily to introduce viscoplasticity to the material. It does therefore not
necessarily reflect the true plasticity behaviour of structural steel.

Table 5.1: Material properties for the cantilever beam.

G K σy t∗ nc σc
160 GPa 79.3 GPa 250 MPa 10 s 1 3G
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5. Numerical investigations

5.1.1 FEM

The FEM-solution of the problem can be seen in Figure 5.2. The maximum displace-
ment magnitude is 3.9 cm at the right edge. The viscoplastic strains are concentrated
in the upper and lower left corners, because that’s where the stress concentrations
are for a cantilever beam. Thus more plasticity occur in those regions.

(a) Displacement u magnitude (b) ε11 component

(c) 2ε12 component (d) ε22 component

Figure 5.2: FEM-solution at t = Tmax.

5.1.2 POD

Figure 5.3 shows the first 15 normalized eigenvalues calculated during POD. They
are plotted relative to the first, and the cut-off of β = 10−6 resulted in six extracted
modes.
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5. Numerical investigations
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Figure 5.3: Relative eigenvalues from snapshots in POD method.

The extracted modes can be seen in Figure 5.4 for each component εvp
11 , εvp

22 and
εvp

12 . The components for the first mode are similar to respective component in the
finite element solution in Figure 5.2. They show about the same behaviour in the
distribution of the viscoplastic strains, but not the same magnitude. This is because
each mode ε̂vp

a is scaled with a mode activity function ξa(t). It also indicates, as
predicted by the eigenvalues, that the most important mode to capture the physical
behaviour is the first one.

It is also clear from Figure 5.4 that the range of values for each mode approaches
zero for higher modes. This is expected due to a mode scalar multiplied with itself
results in it’s corresponding eigenvalue, which is smaller for higher modes. Thus is
it expected that most values in the higher modes are smaller than in the lower modes.

The modes also show an increase in the frequency of the features for higher modes.
The first modes have one feature in each corner, the second mode two features and
this pattern continues for the higher modes.
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5. Numerical investigations

(a) Mode 1, εvp
11 . (b) Mode 1, εvp

22 (c) Mode 1, εvp
12

(d) Mode 2, εvp
11 (e) Mode 2, εvp

22 (f) Mode 2, εvp
12

(g) Mode 3, εvp
11 (h) Mode 3, εvp

22 (i) Mode 3, εvp
12

(j) Mode 4, εvp
11 (k) Mode 4, εvp

22 (l) Mode 4, εvp
12

(m) Mode 5, εvp
11 (n) Mode 5, εvp

22 (o) Mode 5, εvp
12

(p) Mode 6, εvp
11 (q) Mode 6, εvp

22 (r) Mode 6, εvp
12

Figure 5.4: Modes for the different components.

30



5. Numerical investigations

5.1.3 NMR

The convergence of average tip displacement for NMR can be seen in Figure 5.5.
It converges fast for increasing number of modes, which means that NMR gives an
accurate description of the FEM-solution.

1 2 3 4 5 6
38.40

38.42

38.44

38.46

38.48

Number of modes [-]

Av
er
ag
e
di
sp
la
ce
m
en
t
[m

m
]

FE-solution
NMR-solution

Figure 5.5: Convergence of average tip displacement for increasing number of
modes.

Figure 5.6 shows the mode activity functions ξ(t) for solving the cantilever beam
problem for different number of modes. Modes 1 in Figure 5.4 are multiplied with
ξ1(t), modes 2 with ξ2(t), and similarly for higher modes. Mode 1 is the most im-
portant and therefore follows ξ1(t) what would be expected for the plasticity, zeros
in the beginning and then growing in magnitude monotonically. The rest of the
modes show an oscillation over time. This is because they only add a slight change
on top of the main behaviour captured by mode 1. To prohibit the summation of
modes and mode activity functions to grow in magnitude for increased number of
modes, the average of ξn(t) for n ≥ 2 must be low. These modes oscillate, ensuring
that the average is low.

During approximately the first 2 s in all subfigures in Figure 5.6, all ξn(t) = 0. This
is because in the beginning of the loading, the strain in the beam is in the elastic
region, thus is ξn(t) = 0.
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(e) NR = 5
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(f) NR = 6

Figure 5.6: The mode activity functions ξ(t) for different number of modes. The
flat regions in the first 2 s are when the beam is in elastic bending and therefore no
plasticity, thus must all ξn = 0.
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5.2 Bending over edge
One test case that also was investigated is shown in Figure 5.7. A slender beam is on
the left side constrained to only moving in the vertical direction. On the bottom left
half is constrained to only moving in the horizontal direction. Traction was applied
on the right tip. This was meant to simulate how a beam is bending over an edge.

1

2

3
l1 = 2 l2 = 2

h = 0.5 t2 t1

Figure 5.7: Beam hanging over an edge where the loading is applied on the outer
edge.

The material properties were the same as in Section 5.1 and are shown in Table 5.2.
The properties for G, K, and σy was based on structural steel [21, 22, 23]. The
properties t∗, nc and σc was chosen arbitrarily to introduce viscoplasticity to the
material. It does therefore not necessarily reflect the true plasticity behaviour of
structural steel.

Table 5.2: Material properties for the case bending over edge

G K σy t∗ nc σc
160 GPa 79.3 GPa 250 MPa 10 s 1 3G

On the specified case, first two training simulations were performed to obtain snap-
shots. Then, for the test simulations, a new loading situation was applied. The
snapshots from the the training were used to construct the reduced basis ε̂vp. This
to test how well NMR performed based on simpler simulations in a new situation.

Training simulations:
1. Simulation for linear ramp to t = t2 = −40e2 MPa in 2.5 s with ∆t = 0.05 s

• t = t2
t

Tmax
, t ∈ [0, Tmax], Tmax = 2.5 s

• FEM-solution
• POD
• NMR to see convergence

2. Simulation for linear ramp to t = t1 = −1000e1 MPa in 2.5 s with ∆t = 0.05 s
• t = t1

t
Tmax

, t ∈ [0, Tmax], Tmax = 2.5 s
• FEM-solution
• POD
• NMR to see convergence
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Test simulations based on training simulations:
1. Out of phase loading - Full training

• t1 = −1000e1 MPa, t2 = −40e2 MPa
• t = t1 sin

(
2π t

Tmax

)
+ t2 sin

(
2 · 2π t

Tmax

)
, t ∈ [0, Tmax], Tmax = 10 s with

∆t = 0.1 s
• One cycle in 1-direction and two in 2-direction.
• FEM-solution
• POD on combined snapshots from training cases 1 and 2
• NMR and check convergence for increasing NR

2. Out of phase loading - Incomplete training
• t1 = −1000e1 MPa, t2 = −40e2 MPa
• t = t1 sin

(
2π t

Tmax

)
+ t2 sin

(
2 · 2π t

Tmax

)
, t ∈ [0, Tmax], Tmax = 10 s with

∆t = 0.1 s
• Reduced basis only using snapshots from vertical training
• FEM-solution
• POD on snapshots from training case 1, only vertical snapshots
• NMR and check convergence for increasing NR

3. Larger vertical amplitude and longer time
• t1 = −1000e1 MPa, t2 = −80e2 MPa
• t = t1 sin

(
2π t

Tmax

)
+ t2 sin

(
2 · 2π t

Tmax

)
, t ∈ [0, Tmax], Tmax = 100 s with

∆t = 1.0 s
• Doubled vertical amplitude and ten times the loading time
• FEM-solution
• POD on combined snapshots from training cases 1 and 2
• NMR and check convergence for increasing NR

5.2.1 Training: Vertical load

This section presents the FEM-solution from training case 1 in Section 5.2. The
presented NMR-simulation aims to re-identify the training simulation based directly
on the snapshots from the FEM-solution.

5.2.1.1 FEM

Convergence of tip displacements for increasing number of elements can be seen
in Figure 5.8. As can be seen, the number of elements needed to converge varies
between directions. With horizontal load, the 1-direction, the average tip displace-
ment is almost constant independent of number of elements. For a vertical load,
in 2-direction, it is a more distinct convergence curve. At about 19600 elements it
seems to converge, but already at 6400 elements it was assumed to be sufficiently
converged for use in the following simulations. Some of the meshes used can be seen
in Figure 5.9.

34



5. Numerical investigations

0 0.5 1 1.5 2
·104

−40.00

−30.00

−20.00

−10.00

Number of elements [-]

Av
er
ag
e
di
sp
la
ce
m
en
t
[m

m
] 1-displacements

2-displacements

Figure 5.8: Average tip displacements for linear ramp in each direction separately
for increasing number of elements in the FEM-solution using CST elements.

(a) Mesh with 400 elements.

(b) Mesh with 1600 elements.

(c) Mesh with 6400 elements.

Figure 5.9: Meshes used for refinement.

The FEM-solution of the problem can be viewed in figure 5.15 with linear loading
to t = t2. Note the stress concentration at the middle of the lower edge, which is
from a singularity due to the boundary conditions.
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5. Numerical investigations

5.2.1.2 POD

The first 20 normalized eigenvalues of the correlation matrix g, obtained from POD
in the vertical training case, can be seen in figure 5.10. With the cut-off β = 10−6,
7 modes were extracted.
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Figure 5.10: The first 20 normalized eigenvalues of the correlation matrix g, ob-
tained from the snapshots for the vertical training using POD. 7 values above the
cut-off.

5.2.1.3 NMR
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(a) Vertical average tip displacements
u2.
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(b) Relative displacement error
between NMR and FEM in vertical
displacement u2.

Figure 5.11: NMR-solution over time for vertical training using 6400 elements.
The relative difference decreases fast with increased number of modes. The higher
amount of modes are so close to zero that they are hardly visible on the current axis.
The relative displacement error is small, which mean that solution is very close to
the FEM-solution. That is to be expected since POD was performed on snapshots
from the FEM-solution.
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The NMR-solution for vertical direction can be seen in Figure 5.11. The relative
displacement error is very small, especially when using many modes. Therefore is
the NMR-solution very close to the FEM-solution in Figure 5.15.

Figure 5.12 shows convergence of the average vertical tip displacement. It converges
fast for increasing number of modes, which means that the model reduction gives
an accurate description of the FEM-solution. Though, a small difference to the
FEM-solution was obtained. The error for NR = 7 is about 3 · 10−3 %, which might
be caused by using to few modes or due to numerical errors in the solving process.
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Figure 5.12: Convergence of average vertical tip displacement for increasing num-
ber of modes at t = Tmax for linear ramp with traction in vertical direction. A mesh
with 6400 elements was used. Note that a small difference to the FEM-solution was
obtained.

The RMS error calculated according to Equation 4.2 can be seen in Figure 5.13 for
different number of elements. The error converges to zero for increased number of
elements, meaning a more accurate solution. Figure 5.13 also shows the difference
in effective stress, σNMR

e − σFEMe . The difference is smaller for more modes, and
this is the reason for the RMS error converging to zero. Note that at the stress
concentration at the middle lower edge, the difference is usually the highest. In the
rest of the domain, the difference in stress is more uniform, but with an oscillating
pattern, possibly due to the higher modes.
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(d) Difference in effective stress for
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Figure 5.13: RMS error σRMS
e for vertical training case and the difference between

effective stress in NMR and FEM for 6400 elements. The RMS error converges and
the range in effective stress in the difference plots also gets smaller.
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The time to solve FEM and NMR is presented in Table 5.3.

Table 5.3: Solve time in seconds for FEM and NMR for different number of ele-
ments. Only the online stage was timed for NMR.

NMR
Elements FEM NR = 1 NR = 2 NR = 3 NR = 4 NR = 5 NR = 6 NR = 7

400 8.1 2.6 4.3 8.9 13.5 24.0 38.3 58.5
1600 31.0 6.0 13.6 29.7 55.1 93.1 140.6 208.8
6400 155.5 23.7 52.4 107.4 198.6 342.1 528.2 730.3

Figure 5.14a shows the solve time for NMR as a percentage of corresponding time
for FEM for increasing number of modes. Clearly, more modes takes longer time
to solve. This is to be expected because more modes means more unknowns ξa,
and more complicated assembly of matrices. It is also obvious that an increase in
number of elements also results in a bigger advantage of using NMR over FEM.

Figure 5.14b shows the solve time for FEM and NMR relative to the time for the
coarsest mesh, in this case the one with 400 elements. Note that the graphs for
NMR roughly cluster together, meaning the increase in relative solve time is similar
regardless of the number of modes. The behaviour of FEM is also slightly different
from NMR. It increases a bit faster for increased number of elements than NMR.
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Figure 5.14: Solve time for NMR as a percentage of corresponding time for FEM
for increasing number of modes. Increasing number of elements clearly also increases
the advantage of NMR.
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(a) Displacement magnitude at t =
Tmax and outline of undeformed geo-
metry with scale factor 5.

(b) Effective stress σe at t = Tmax.

Figure 5.15: FEM-solution at t = Tmax for vertical training.

(a) Displacement magnitude at t =
Tmax and outline of undeformed geo-
metry with scale factor 5.

(b) Effective stress σe at t = Tmax.

Figure 5.16: FEM-solution at t = Tmax for horizontal training. Note that the
range in effective stress is almost the same, meaning the effective stress is almost
uniform throughout the geometry.

Figure 5.17: Difference in effective stress between NMR and FEM for horizontal
training. Note that the range is almost the same, meaning that the difference is
almost uniform around −21 kPa.
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5.2.2 Training: Horizontal load
This section presents the FEM-solution from training case 2 in Section 5.2. The
presented NMR-simulation aims to re-identify the training simulation based directly
on the snapshots from the FEM-solution.

5.2.2.1 FEM

The FEM-soluton at t = Tmax can be seen in Figure 5.16 with the displacement
magnitude and effective stress. Almost all of the displacement occurred in the hori-
zontal direction, expected due to an axial loading. The final horizontal displacement
was −18.8599 mm. Note that the number of decimals given does not indicate the
level of accuracy, it’s only for comparing the displacements to NMR. The effective
stress in Figure 5.16 is almost uniform in the domain, which is also expected due to
axial loading and the left edge being simply supported, allowing expansion in the
vertical direction.

5.2.2.2 NMR

The NMR-solution for horizontal displacements and relative displacement error can
be seen in Figure 5.18. Only one mode was extracted and the final horizontal
displacement was −18.8612 mm, very close to the FEM-solution with a difference
of 0.0013 mm. The relative displacement error was very low, at a maximum about
7 · 10−2 ‰. The solution using NMR is therefore very close to to the solution using
FEM in Figure 5.16. That is to be expected, since POD was directly applied on the
snapshots from the FEM-solution.
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(b) Relative displacement error
between NMR and FEM in vertical
displacement u1.

Figure 5.18: NMR-solution over time for horizontal training using 6400 elements.
The relative displacement error is small for the only mode. Therefore, the solution
is very close to the FEM-solution in Figure 5.16. That is to be expected since POD
was directly performed on snapshots from the FEM-solution.
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In the horizontal training case, the only mode had a RMS error in effective stress
of about 21 kPa, much smaller than for one mode in the vertical training in Figure
5.13. Figure 5.17 shows the difference in effective stress, σNMR

e − σFEMe with an al-
most uniform distribution around −21 kPa, which is the reason for the similar RMS
value.

The solve time using FEM and NMR can be seen in Table 5.4 and the relative solve
time to respective coarsest mesh can be seen in Figure 5.19. The time to solve FEM
increases faster than NMR for increased number of elements. This means that the
advantage of NMR increases with the number of elements.

Table 5.4: Solve time in seconds for horizontal training. Only the online stage was
timed for NMR.

NMR
Elements FEM NR = 1

400 13.6 3.5
1600 63.4 9.0
6400 509.4 36.0
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Figure 5.19: Relative solve time vs. elements scaled with time for coarsest mesh
for horizontal training.

5.2.3 Test: Out of phase loading - Full training
This section presents the results for test case 1 in Section 5.2. The training for NMR
is based on the two training cases, both vertical and horizontal loads.

5.2.3.1 FEM

The FEM-solution of the tip displacement over time are shown in Figure 5.20. As
expected from the loading, one cycle in horizontal direction and two in the vertical
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direction. The amplitudes of the displacements are roughly the same, about 20 mm
and 40 mm respectively. The displacement magnitude and residual effective stress
at t = Tmax can also be seen in Figure 5.20. The displacements are plotted with an
outline of the undeformed geometry and with a scale factor of 1000. No traction
was applied in this time step, so this is the final plastic deformation. The residual
effective stress is the stress left in the material after the deformation. At the middle
of the lower edge, a stress concentration was formed.
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(a) Horizontal displacements u1.
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(b) Vertical displacements u2.

(c) Displacement magnitude at t =
Tmax and outline of undeformed geo-
metry with scale factor 1000.

(d) Residual effective stress σe at t =
Tmax.

Figure 5.20: FEM-solution over time for multiple loads. In the Horizontal direction
one cycle, and in the vertical direction two cycles. A mesh with 6400 elements was
used.

5.2.3.2 NMR

Snapshots from the two training simulations were used to construct a reduced basis
for NMR using POD by putting the matrices containing the snapshots side by side
in a new matrix, as described in Section 4.5. The average tip displacements vs. time
can be seen in Figure 5.21 together with the relative displacement error to the FEM-
solution calculated with Equation 4.1. In the horizontal direction, there were little
change in solution for increased number of modes, because the first mode was the
one describing horizontal movements. As was seen in the horizontal training case,
only one mode was extracted. Therefore adding more modes does not change the
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solution substantially. This probably also explains why the error is very small, only
about 0.4 ‰ at most. Interestingly, at about 5 s the relative displacement error
sharply dips. This is at a point in the loading when both loading directions are
close to zero, which means that the displacements also are close to zero. The small
displacements might then be slightly more difficult to resolve, but it’s important to
note that the error is still very small.
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(a) Horizontal displacements u1.
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(b) Vertical displacements u2.
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(d) Relative displacement error
between NMR and FEM in vertical
displacement u2.

Figure 5.21: NMR-solution over time for out of phase test case with 6400 elements.
Overall very similar to the FEM-solution in Figure 5.20. Note that the relative
difference in the horizontal direction is in per mille, ‰, and in the vertical direction
percent, %. The error is much larger in the vertical direction than in the horizontal
direction.

In the vertical direction in Figure 5.21, the differences are much more noticeable.
For one mode the error is at most more than 8 %, and then decreases for more
modes. This is an expected behaviour, because the first mode mostly describes the
horizontal displacements, and the rest of the modes mostly describe the vertical dis-
placements. Therefore more modes should mean more accurate capture of the real
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behaviour. It is also important to note that the training cases both used a linear
ramp, and the current test case a cyclic sine function. This will change the loading
rate, and thus might not be represented in the training snapshots.

The time to solve the problem using using FEM and NMR can be seen in Table
5.5. NMR is clearly much faster for fewer modes.

Table 5.5: Time in seconds to solve with FEM and NMR. For NMR only the online
stage was timed.

NMR
Elements FEM NR = 1 NR = 2 NR = 3 NR = 4 NR = 5

400 29.5 5.7 16.1 36.2 70.8 -
1600 158.9 17.8 60.8 140.6 250.3 -
6400 1265.2 74.4 241.5 537.0 944.0 1613.0

Figure 5.22a shows the solve time for the online phase of NMR relative to FEM vs.
number of modes. Increasing the number of elements clearly increases the advantage
of NMR. As expected, more modes take longer time to solve for, and thus the time
advantage of NMR decreases. Note that the advantage fully disappear if NMR
relative to FEM is above 100 %.
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Figure 5.22: Solve time for online NMR-solution as a percentage of corresponding
FEM-solution for increasing number of modes, and solve time for FEM and NMR
as a percentage of solve time for respective coarsest mesh. Increasing the amount
of elements clearly also increases the advantage of NMR. The solve time for FEM
increases faster for increased number of elements than NMR.

The relative solve time vs. elements can be seen in Figure 5.22b. The solve time
is compared to the coarsest mesh for FEM and NMR for each NR. Increasing
the number of elements increases, as expected, the solve time, but faster for FEM
than for NMR. This also shows why the advantage of NMR increases for increased
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number of elements. The lines for NMR cluster around each other, and therefore is
the increase in relative solve time similar, regardless of number of modes.
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Figure 5.23: RMS error σRMS
e at t = Tmax for out of phase test case together

with the difference between effective stress in NMR and FEM. The RMS error only
decreases by a small amount and the differences in effective stress is similar for
all values on NR. The singularity at the bottom edge has the largest difference in
effective stress.

The RMS error σRMS
e of the effective stress at t = Tmax is shown in figure 5.23. As

can be seen, it is much larger and only gets slightly better for increased number of
modes compared to the convergence in the vertical training case in Figure 5.13. The
differences in effective stress σNMR

e − σFEMe at t = Tmax can also be seen in Figure
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5.23. The differences are about the same for increased number of modes. The dif-
ferences are also biggest in the middle of the lower edge, at the stress concentration.
This means that it is more difficult for NMR to capture the stress concentration,
possibly due to it being a singularity. Most of the domain, though, is dominated by
values much smaller, about −5 MPa, which is similar to the RMS error value. The
differences are consistently negative across all of the plots, meaning that the NMR-
solution σNMR

e is always smaller than the FEM-solution σFEMe . This contributes
heavily to the RMS error.

5.2.4 Test: Out of phase loading - Incomplete training
This section presents the results for test case 2 in Section 5.2. The training for NMR
is only based on the first training case, vertical load.

5.2.4.1 FEM
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(a) Horizontal displacements u1.
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(b) Vertical displacements u2.

(c) Displacement magnitude at t =
Tmax and outline of undeformed geo-
metry with scale factor 1000.

(d) Residual effective stress σe at t =
Tmax.

Figure 5.24: FEM-solution over time, same as in out of phase loading. In the
horizontal direction one cycle, and in the vertical direction two cycles. A mesh with
6400 elements was used.
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Because the only thing changed to the previous test case, out of phase loading, is
which snapshots that were used, the FEM-solution will be the same in the current
test case as in the previous. The solution can be seen in Figure 5.24.

5.2.4.2 NMR
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(a) Horizontal displacements u1.
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(b) Vertical displacements u2.
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(c) Relative displacement error between
NMR and FEM in horizontal displace-
ment u1.
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(d) Relative displacement error
between NMR and FEM in vertical
displacement u2.

Figure 5.25: NMR-solution over time when only using vertical snapshots. The
mesh had 6400 elements. A similar behaviour to the NMR-solution for out of phase
loading test case in Figure 5.21, but with a larger error in the horizontal direction.
Note that the relative displacement error in the horizontal direction is in per mille,
‰, and in the vertical direction percent, %.

The NMR-solution can be seen in Figure 5.25. Because only the snapshots from the
vertical training case were used, the same number of modes was extracted, NR = 7.
This also meant that the mode from the horizontal training case was excluded, which
is reflected by an increased error in the horizontal direction as compared to the out
of phase loading test case in Figure 5.21. Similar to the previous test case is that all
of the modes have almost the same error in the horizontal direction. In the vertical
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direction they are also similar, but slightly lower due to NR = 1 in the previous case
only contained the horizontal mode. Increasing the number of modes also decreases
the error, as in the previous test case.

The solve time for only using vertical snapshots can be seen in Table 5.6. NMR
is clearly faster when using few modes. Using many modes can take longer time to
solve than for FEM.

Table 5.6: Time in seconds to solve with FEM and NMR. For NMR only the online
stage was timed.

NMR
Elements FEM NR = 1 NR = 2 NR = 3 NR = 4 NR = 5 NR = 6 NR = 7

400 26.8 5.9 16.7 35.5 64.9 104.2 154.6 221.8
1600 170.6 18.5 61.3 138.6 254.6 412.7 635.0 884.6
6400 1148.6 72.4 249.6 533.0 966.0 1667.5 2452.1 3482.8

Figure 5.26 shows the solve time for the online phase of NMR relative to FEM vs.
number of modes. Increasing the number of elements also increases the advantage of
NMR over FEM. More modes also take longer time to solve and if the solve time for
NMR relative to FEM is larger than 100 %, the advantage of NMR fully disappear.
Using many modes can in some cases take much longer time to solve than using
FEM. This is a similar result to the previous test case in Figure 5.22.
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Figure 5.26: Solve time for online NMR-solution when using only vertical snap-
shots as a percentage of corresponding FEM-solution for increasing number of
modes, and solve time for FEM and NMR as a percentage of respective coarsest
mesh. Increasing the amount of elements clearly also increases the advantage of
NMR. These results are similar to Figure 5.22.

Figure 5.26 also shows the solve time for FEM and NMR as compared to respective
coarsest mesh vs. number of elements. The solve time for FEM increases faster
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for FEM than NMR and this is why the advantage of NMR increases for increased
number of elements. Also this result is similar to the previous test case in Figure
5.22.

The RMS error σe and difference in effective stress σNMR
e − σFEMe can be seen

in Figure 5.27 and behaves in a similar way to the previous test case in Figure 5.23.
There might be a slightly better convergence than previously, but difficult to say
anything conclusive about it. The differences in effective stress are also similar. In
all but one case are they strictly negative, meaning σNMR

e < σFEMe , and the biggest
difference in effective stress is at the middle of the lower side, the stress concen-
tration. This means that also for this case is it difficult for NMR to capture the
behaviour.
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Figure 5.27: RMS error σRMS
e at t = Tmax for only vertical snapshots test case, to-

gether with with the difference between effective stress in NMR and FEM-solutions.
The RMS error only decreased by a small amount and is similar to the out of phase
test case, see Figure 5.23. Also the differences are similar, they are almost always
negative and the biggest difference is located at the middle of the lower edge.

51



5. Numerical investigations

5.2.5 Test: Larger vertical amplitude and longer time

This section presents the results for test case 3 in Section 5.2. The training for NMR
is based on the two training cases, both vertical and horizontal loads.

5.2.5.1 FEM

Figure 5.28 shows the horizontal and vertical displacements over time for a mesh
with 6400 elements in the larger amplitude and longer time test case. Both of the
amplitudes are larger as compared with the similar test case out of phase loading
in Figure 5.20, out of phase loading. There is a much more pronounced difference
in displacements between positive and negative directions, especially in horizontal
direction. The final deformation is much larger, at most 3.4 mm as compared to
0.043 mm in Figure 5.20. Also the residual stresses are much larger, about one order
of magnitude larger.
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Figure 5.28: FEM-solution over time for larger vertical amplitude and longer
loading time. In the horizontal direction one cycle, and in the vertical direction two
cycles. A mesh with 6400 elements was used. Note the large difference in amplitude
in positive and negative directions, especially in in the horizontal direction.

52



5. Numerical investigations

5.2.5.2 NMR

The NMR-solution for the test case larger amplitude and longer time can be seen
in Figure 5.29. Because this case had double the vertical amplitude and ten times
the loading time, the cut-off for POD was lowered to β = 10−7 resulting in NR = 7,
two more modes than in the test case out of phase loading.

The relative displacement error in the horizontal direction in Figure 5.29 is sim-
ilar to the corresponding error in Figure 5.21, but is much larger, almost 100 ‰,
as compared to 0.4 ‰. However, for NR = 6 and NR = 7 the error is much smal-
ler and clearly much closer to the FEM-solution, as would be expected when using
more modes. Also in the vertical direction is the error larger, about 60 % and 8 %
respectively for NR = 1.
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Figure 5.29: NMR-solution over time for the case with larger amplitude and longer
loading time. The mesh had 6400 elements. Note that the relative difference in the
horizontal direction is in per mille, ‰, and in the vertical direction percent, %.

The vertical displacements in Figure 5.29 for different number of modes NR, are
noticeably different, more than corresponding displacements in Figure 5.21.
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All of these much larger differences can be explained by a larger difference from
the training cases. Doubled the vertical traction amplitude and ten times the load-
ing time are big differences to the training and should therefore mean less accurate
solutions. This is precisely what has been shown.

The solve time for the test case with larger vertical amplitude and longer load-
ing time can be seen in Table 5.7. For fewer modes, NMR clearly has an advantage
over FEM.

Table 5.7: Time in seconds to solve with FEM and NMR. For NMR only the online
stage was timed.

NMR
Elements FEM NR = 1 NR = 2 NR = 3 NR = 4 NR = 5 NR = 6 NR = 7

400 26.4 6.6 18.7 41.9 72.7 114.1 168.8 244.0
1600 171.7 19.8 72.0 166.0 300.7 498.4 716.7 886.9
6400 1790.1 92.0 275.6 591.7 1032.3 1660.8 2626.2 3640.5

The solve time for the online phase of NMR relative to FEM vs. number of modes
can be seen in Figure 5.30. As previously established in Figures 5.22 and 5.26,
increasing the number of elements also increases the advantage of NMR over FEM.
The same for more modes, and if the solve time for NMR relative to FEM is larger
than 100 %, the advantage of NMR fully disappear. Using many modes can in some
cases take much longer time to solve than using FEM.
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Figure 5.30: Solve time for online NMR-solution for the test case larger vertical
amplitude and longer loading time, as a percentage of corresponding FEM-solution
for increasing number of modes. The solve time for FEM and NMR as a percentage
of respective coarsest mesh vs. number of elements are also shown. Increasing the
amount of elements clearly also increases the advantage of NMR. These results are
similar to the previous test cases in Figures 5.22 and 5.26.
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The solve time for FEM and NMR as compared to respective coarsest mesh vs.
number of elements can be seen in Figure 5.30 and behaves similarly to the previous
cases. The solve time for FEM increases faster for FEM than NMR and is part
of the explanation why the advantage of NMR increases for increased number of
elements.

The RMS error σRMS
e can be seen i Figure 5.31 together with the difference in

effective stress between NMR- and FEM-solutions, σNMR
e − σFEMe . These result

differ from the previous test cases in Figures 5.23 and 5.27, the RMS error is much
larger and decreases more. This can be because a lower cut-off was used and there-
fore more modes extracted, meaning a better NMR-solution. This is also a favorable
result showing that NMR is generally more accurate for more modes.

Another difference between the current test case in Figure 5.31 and the previous
test cases in Figures 5.23 and 5.27, is that the difference in effective stress is both
positive and negative for all NR. Previously it was almost always negative. How-
ever, it is also important to point out that the differences can be much larger in
magnitude.
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Figure 5.31: RMS error σRMS
e at t = Tmax for test case larger vertical amplitude

and longer loading time, together with the difference in effective stress between
NMR- and FEM-solutions. The RMS error is much larger compared to Figures 5.23
and 5.27, but decreases more thanks to more modes used. Another big difference to
the previous test cases is that the differences in effective stress is both negative and
positive.
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6.1 Conclusions

This thesis has shown that it is possible to apply numerical model reduction to the
viscoplasticity problem. The theoretical framework has been presented and imple-
mented in the programming language Julia. The methodology has been assessed
for a sequence of test cases with varying complexity of the load, richness of training
simulations and discretization, both in number of POD-modes and the underlying
FE-discretization.

It has been demonstrated that the computational cost can be severely reduced by
using NMR. The time advantage of NMR over FEM increased for more elements in
the mesh, but decreased for increased number of modes. If a too high number of
modes were used, the time advantage completely disappeared, and NMR took longer
time than FEM. It is here important to note that what has been demonstrated is
not the best possible speedups of the calculations. The calculation off the elastic
displacements u0 was included in the online stage and therefore added to the meas-
ured time. One alternative strategy would be to parameterize the loads b and tP
and then scale according to the load amplitudes in the current test case. This would
allow for precomputation of the elastic displacements and could further reduce the
solve time for the online stage.

It was shown that the best accuracy of the model reduction was obtained when
the targeted simulation is similar to the training used to develop the POD-basis.
The extreme case, when the NMR-simulation aims to re-identify the training sim-
ulation, shows excellent accuracy. Test cases with big differences as compared to
the training cases produced lower accuracy. However, the robustness of the proced-
ure has been illustrated in terms of near monotonic error convergence, even for bad
training data. That is, adding poor modes does not pollute the approximation. Still,
correct training is crucial. Adding more variation among the training cases could
help with more accurately capturing the test cases. Though, adding more training
cases could also increase the number of modes, which would mean longer solve time
and the advantage of NMR over FEM would decrease.

The RMS error in effective stress was shown to be smaller for a coarser mesh and
higher for a finer mesh. In this comparison, the effective stress for each NMR-
solution was compared to the effective stress for FEM using the corresponding mesh.
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This does not mean that the error for NMR in the coarse mesh is lower than to the
error for NMR in the fine mesh, if both are compared to FEM in the fine mesh.
A finer mesh means that the FEM-approximation error is lower. Therefore, NMR
based on a finer mesh should mean that the error is lower than the error for NMR
based on a coarser mesh.

6.2 Future work and outlook
The finite element formulation used in this thesis used a monolithic formulation,
meaning both displacements u and viscoplastic strains εvp were solved for simultan-
eously. This method, however, is a nonstandard way of solving the viscoplasticity
problem. What is usually done is to just solve for u using a tangent stiffness matrix
and store the values of εvp as internal variables. This could affect the solve time for
FEM, and then also affect the advantage of NMR over FEM. One possible extension
of this work would then be to train using the established method to obtain modes
for εvp. Then, they would be used to solve the NMR-problem, where it would be
compared to FEM using εvp as internal variables.

Only a handful test cases were used in this thesis, so a natural extension of the
work would be to test more cases. Since the Julia code already exists, it would be
a straight forward continuation of this work.

This thesis has used CST elements but has also presented the theory necessary
for LST elements. One possible continuation for future work would be to test the
model reduction also for this kind of element. LST elements usually gives a better
approximation of the solution with the same number of elements, as compared to
CST elements.

Another possible extensions would be to continue with a full 3D-problem. This
would not require much additional theoretical work, only removing the plain strain
condition. The finite element formulation would require some more work, but since
the Julia package Tensors.jl was used, it would be similar to the formulation
already derived.

A time consuming part of the model reduction is to calculate for all of the quad-
rature points. Therefore could hyperreduction be used to reduce the number of
quadrature points used to assemble the reduced system. This could then speed
up the calculations even more. How this compares to FEM in terms of solve time
and accuracy for the problem explored in this thesis could be a possible continuation.

Finally, having demonstrated the variability of the accuracy for different factors,
e.g, training, an estimate of the approximation error would allow for error control.
This is something crucial for reliable NMR-simulations, and therefore also for NMR
being useful.
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A
Appendix 1

A.1 Differential of Perzyna formulation
In this section the Perzyna formulation is first presented, see equation down below.
∂g
∂σ

is then derived for the Perzyna formulation and this is called the general deriva-
tion. After that ∂g

∂σ
is derived for Perzyna with the von Mises yield criterion. After

that ∂g
∂σ

is derived for Perzyna, von Mises yield criterion and Norton model.

ε̇vp = λ
∂Φ

∂σ
= η[Φ]

t∗
∂Φ

∂σ
= λf = g(σ)

A.1.1 General

To derive ∂g
∂σ

the differential dg is expanded

dg = d
(
η[Φ]
t∗

)
∂Φ

∂σ
+ η[Φ]

t∗
d
(
∂Φ

∂σ

)

= 1
t∗
∂η[Φ]
∂Φ

∂Φ

∂σ
: dσ ⊗ ∂Φ

∂σ
+ η[Φ]

t∗
∂2Φ

∂σ ⊗ ∂σ
: dσ

=
(

1
t∗
∂η[Φ]
∂Φ

∂Φ

∂σ
⊗ ∂Φ

∂σ
+ η[Φ]

t∗
∂2Φ

∂σ ⊗ ∂σ

)
: dσ

This result and using the chain rule leads to

∂g

∂σ
= 1
t∗
∂η[Φ]
∂Φ

∂Φ

∂σ
⊗ ∂Φ

∂σ
+ η[Φ]

t∗
∂2Φ

∂σ ⊗ ∂σ
(A.1)

A.1.2 Von Mises yield criterion
The Von Mises yield criterion is

Φ = σe − σy, with σe =
√

3
2 |σdev|

Differentiation of ∂Φ
∂σ

to later insert in Equation A.1
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∂Φ

∂σ
= ∂Φ

∂σe︸︷︷︸
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= 3

2
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: ∂σdev
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=Isym
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2
σdev
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To derive ∂2Φ
∂σ⊗∂σ the differential d

(
∂Φ
∂σ

)
is expanded

d
(
∂Φ

∂σ

)
= d

(3
2
σdev

σe

)
= 3

2σe
dσdev + 3

2σdev d
( 1
σe

)
= 3

2σe
dσdev −

3
2σ2

e

σdev dσe

= 3
2σe

∂σdev

∂σ
: dσ − 3

2σ2
e

σdev ⊗
∂σe
∂σdev

: ∂σdev

∂σ
: dσ

= 3
2σe

Isym
dev : dσ − 3

2σ2
e

σdev ⊗
3
2
σdev

σe
: Isym

dev : dσ

=
(

3
2σe

Isym
dev −

9
4σ3

e

σdev ⊗ σdev

)
: dσ

This result and using the chain rule leads to

∂2Φ

∂σ ⊗ ∂σ
= 3

2σe
Isym
dev −

9
4σ3

e

σdev ⊗ σdev

Inserting the result from ∂Φ
∂σ

and ∂2Φ
∂σ⊗∂σ for von Mises yield criterion into Equation

A.1

∂g

∂σ
= 1
t∗
∂η[Φ]
∂Φ

3
2
σdev

σe
⊗ 3

2
σdev

σe
+ η[Φ]

t∗

(
3

2σe
Isym
dev −

9
4σ3

e

σdev ⊗ σdev

)

= 3η[Φ]
2σet∗

Isym
dev + 9

4t∗σe

(
∂η[Φ]
∂Φ

σe − η[Φ]
)
σdev ⊗ σdev

This result in that ∂g
∂σ

is then

∂g

∂σ
= 3η[Φ]

2σet∗
Isym
dev + 9

4t∗σe

(
∂η[Φ]
∂Φ

σe − η[Φ]
)
σdev ⊗ σdev (A.2)

A.1.3 Norton model
The Norton model for the overstress function η[Φ] is

η[Φ] =
(
〈Φ〉
σc

)nc
=
(
〈σe − σy〉

σc

)nc
≥ 0

Then the derivative ∂η[Φ]
∂Φ] is
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∂η[Φ]
∂Φ

= nc
〈σe − σy〉nc−1

σncc

Insert ∂η[Φ]
∂Φ] into Equation A.2

∂g

∂σ
= 3

2σet∗

(
〈σe − σy〉

σc

)nc
Isym
dev + 9

4t∗σe

(
nc
〈σe − σy〉nc−1

σncc
σe −

(
〈σe − σy〉

σc

)nc)
σdev ⊗ σdev

= 3(σe − σy)nc
2t∗σeσncc

[
Isym
dev + 3

2σ2
e

(
ncσe
σe − σy

− 1
)
σdev ⊗ σdev

]

This result in ∂g
∂σ

is

∂g

∂σ
=


0 σe ≤ σy

3(σe − σy)nc
2t∗σeσncc

[
Isym
dev + 3

2σ2
e

(
ncσe
σe − σy

− 1
)
σdev ⊗ σdev

]
σe > σy

(A.3)

A.2 Linearisation of weak residual
In this section the Gateaux derivative of residuals of the mixed weak form is derived.

The Gateaux derivatives of the residual Ru in the direction du is

Ru′

u (u, εvp; δu, du) = au(u; δu, du))− 0− 0

=
∫

Ω
ε[δu] : E :

(
∂

∂γ
(ε[u+ γdu])

)∣∣∣∣∣
γ=0

dΩ

where the derivative with respect to γ is

∂

∂γ
(ε[u+ γdu]) = ∂

∂γ

(1
2
(
((u+ γdu)⊗∇) + ((u+ γdu)⊗∇)T

))

= 1
2

(∂(u+ γdu)
∂γ

⊗∇
)

+
(
∂(u+ γdu)

∂γ
⊗∇

)T


= 1
2
(
(du⊗∇) + (du⊗∇)T

)
= ε[du]

which leads to

Ru′

u (u, εvp; δu, du) =
∫

Ω
ε[δu] : E : ε[du] dΩ

= au(δu, du).
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The Gateaux derivative of residual Ru in the direction dεvp is

Ru′

εvp(u, εvp; δu, dεvp) = 0− c(εvp; δu, dεvp)− 0

= −
∫

Ω
ε[δu] : E :

(
∂(εvp + γdεvp)

∂γ

)∣∣∣∣∣
γ=0

dΩ

= −
∫

Ω
ε[δu] : E : dεvp dΩ

= −c(δu, dεvp)

The Gateaux derivative of residual Rεvp in the direction du is

Rε
vp′

u (u, εvp; δεvp, du) = ∂

∂γ
Rε

vp(u+ γdu, εvp; δεvp)
∣∣∣∣
γ=0

= 0− 0−∆t ∂
∂γ

b(u+ γdu, εvp; δεvp)
∣∣∣∣
γ=0

= −∆t ∂
∂γ

b(u+ γdu, εvp; δεvp)
∣∣∣∣
γ=0

= −∆t ∂
∂γ

∫
Ω
δεvp : g dΩ

∣∣∣∣
γ=0

= −∆t
∫

Ω
δεvp : ∂g

∂σ
: ∂σ(ε[u+ γdu]− εvp)

∂γ

∣∣∣∣∣
γ=0

dΩ

where ∂g
∂σ

is derived in Appendix A.1 for the used visco-plastic model. The derivative
of σ is

∂σ(ε[u+ γdu]− εvp)
∂γ

∣∣∣∣∣
γ=0

= ∂

∂γ
(E : (ε[u+ γdu]− εvp))

∣∣∣∣∣
γ=0

= E : ε[du].

This means that the Gateaux derivative in du direction is

Rε
vp′

u (u, εvp; δεvp, du) = −∆t
∫

Ω
δεvp : ∂g

∂σ
: E : ε[du] dΩ

The Gateaux derivative of residual Rεvp in the direction dεvp

Rε
vp′

εvp (u, εvp; δεvp, dεvp) = ∂

∂γ
Rε

vp(u, εvp + γdεvp; δεvp)
∣∣∣∣
γ=0

= ∂

∂γ

(
avp(εvp + γdεvp; δεvp)− avp

(
(n)εvp; δεvp

)
−∆t b(u, εvp + γdεvp; δεvp)

)∣∣∣∣
γ=0

= ∂

∂γ
avp(εvp + γdεvp; δεvp)

∣∣∣∣
γ=0
− 0−∆t ∂

∂γ
b(u, εvp + γdεvp; δεvp)

∣∣∣∣
γ=0

where it is obvious that
∂

∂γ
avp(εvp + γdεvp; δεvp)

∣∣∣∣
γ=0

= ∂

∂γ
avp(εvp; δεvp)

∣∣∣∣
γ=0

+ ∂

∂γ
γavp(dεvp; δεvp)

∣∣∣∣
γ=0

= avp(dεvp; δεvp)

=
∫

Ω
δεvp : dεvp dΩ
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and for b it is similar as in the du direction

∂

∂γ
b(u, εvp + γdεvp; δεvp)

∣∣∣∣
γ=0

= ∂

∂γ

∫
Ω
δεvp : g dΩ

∣∣∣∣∣
γ=0

=
∫

Ω
δεvp : ∂g

∂σ
: ∂σ(ε[u]− εvp − γdεvp)

∂γ

∣∣∣∣∣
γ=0

dΩ

= −
∫

Ω
δεvp : ∂g

∂σ
: E : dεvp dΩ .

where ∂g
∂σ

is derived in Appendix A.1 for the used visco-plastic model.

The Gateaux derivative in dεvp direction is thus

Rε
vp′

εvp (u, εvp; δεvp, dεvp) =
∫

Ω
δεvp : dεvp dΩ + ∆t

∫
Ω
δεvp : ∂g

∂σ
: E : dεvp dΩ
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