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Testing infrastructure for experimental chips
SINAN DING
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
As transistor sizes shrink and performance requirements of experi-mental chips in-
crease, verifying and testing the chips becomes more and more complex. One tra-
ditional way of testing is generating external input signals to test the chip and
evaluating the testing results outside the chip but this is a costly approach. A
on-chip testing approach, in which the generation of input signals and evaluation
of output signals are integrated with the chip, would be an interesting alternative.
This low-cost approach has been used in testing a recent Forward-Error-Correction
chip (FEC-chip). The aim of this thesis project is to generalize the testing evalua-
tion setup used in testing experimental chips to make it more effective and efficient.
In this project, a testing system, in which an MCU can read/write data to/from
experimental chips via an SPI interface and a CRC error detection scheme was used
to improve the data transaction reliability of the testing system, was designed and
implemented. A PCB supporting the new testing system was designed. The results
of the thesis project can be used to testing other designed chips with its low-cost
and fast data transmission speed features.
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1
Introduction

As a result of technology scaling, component densities of Very Large Scale Integrated
(VLSI) circuits and printed circuit board (PCB) have increased significantly [1], and
the operating frequencies of the chip can now reach several GHz [2]. As a conse-
quence of that, verifying and testing experimental chips becomes as complicated
as developing them. The huge amount of test data should be transferred reliably
with high frequencies to the chip. Usually, the testing equipment that can reliably
transfer test data in high-speed is extremely expensive. Therefore, the testing cost
becomes a significant part of the total project cost.

In a testing system, the input signals must be supplied to the experimental chip,
and the output signals of the chip must be evaluated. Figure 1.1 shows the tradi-
tional outside-chip approach: the input signals generation part and output signals
evaluation part is outside the chip. The generated input signals will be transferred
across the chip edge into the chip. After the input signals get processed inside the
chip the corresponding output signal will be transported across the chip edge to
the outside evaluation part for further evaluation [3]. However, this approach is not
very cost effective. Dependably carrying the high-bandwidth signals across the chip
edges in high-performance design usually needs expensive external test equipment.
Besides, there is also a need for chip pins which is a precious resource.

DUT(chip)

edge

Generate Input Signals
 Evaluate Output

Signals

data_in data_out

Figure 1.1: Outside chip approach

In contrast with the outside-chip approach, an on-chip approach is using extra hard-
ware to generate input signals to the design-under-test (DUT) unit and evaluate
output signals; hardware which is integrated inside the experimental chip [3]. The
on-chip approach relaxes the requirement on expensive external test equipment and
is more economical since only power and clock signals need to be applied to PCBs.
This approach can be used in testing application specific integrated circuits (ASICs),
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1. Introduction

for example, in two recent forward-error-correction chips (FECs) [4] [5]. Here, the
input pseudo-random test data was generated with a linear feedback shift regis-
ter(LFSR). Those input data were fed into a simulated communication channel
where some bits were flipped by LFSRs generated noise. The chip performance in
[4] [5] can be evaluated by comparing the data fed into the simulated channel with
data after the FEC decoder.

1.1 Aim
The existing testing approach used in the present FEC-chips can be generalized and
then be used for other test designs [3] [6]. The thesis aims to generalize the existing
testing approach and make the experimental chip evaluation setup more effective
and efficient. The results will be used to test other experimental chips and reduce
the time and expense of the chip design.

The thesis objectives are:
1. to define and document the interfaces to an Arduino board;
2. to design a new PCB shield that can be used for testing other experimental

chip;
3. to develop the Arduino software that can handle other shields designed to the

specifications;
4. to develop some generic IP blocks to support interfaces that are used for

Arduino to set parameters and read results on the experimental chip;
5. to investigate some features and alternative solutions:

• The original testing setup can only run one test site at a time, it would
be interesting to find a solution to run several test sites in parallel or
concurrently to speed up the testing procedure.

• With more complex chip design, there might be more external test equip-
ment need to connect to the pins of the chip to conduct the experiments so
the PCB shield and the Arduino software should be upgraded to control
those test equipment.

• There are more powerful computer cards than Arduino that can commu-
nicate to PC and the PCB, such as Raspberry Pi. It is also attractive to
investigate those powerful computer cards that can be used in the testing
infrastructure.

1.2 Thesis Outline
The thesis outline is as following: the Chapter 2 reviews the basic relevant technical
background in the thesis project. Chapter 3 explains the system architecture and
design decisions. Chapter 4, 5, and 6 presents the design implementation on Arduino
and VHDL, and PCB design respectively. The testing and evaluation setup, and
the experiment results are presented in Chapter 7. Chapter 8 and 9 discuss the
experiment results get in Chapter 7, and draws conclusions.

2



2
Technical background

This chapter explains the theory and techniques used in this project. Starting with
the introduction of the FEC-chip evaluation setup mentioned in Chapter 1, brief
introductions of serial communication interface and error-detecting scheme follow.
Next, the FIFO buffer is introduced. Finally, the meatastability phenomena and
synchronizers is described.

2.1 Present FEC-chip evaluation setup
As mentioned in the Chapter 1, the on-chip approach has been used in testing two
recent Forward-Error-Correction chips (FEC-chip). Figure 2.1 shows the FEC-chip
evaluation setup based on the on-chip approach [6]. The on-chip data-generation
and -evaluation hardware are integrated with the device under test (DUT). A PCB
with sockets accepts the experimental chip. The external lab clock generators and
power supplies connect to some pins of the socket to provide the clock signals and
power to the chip. The other pins of the socket can be used to control the chip, send
data to the chip, and retrieve data from the chip under the microcontroller’s control.
An Arduino, a microcontroller, connects to PC via a USB connection and can read
and control the I/O pins of the socket via the Arduino software. The software for
the Arduino and also MATLAB routines may be run on any PC to control and
monitor the Arduino and the lab supplies and clock generator via the Internet.
The most obvious advantage of this on-chip test setup is the low cost. Besides, since
the microcontroller plays a role as a gateway, when the one side of the gateway is
conceived, the other side’s development becomes easier.

To make the current setup become more efficient and effective, there are some areas
that can be improved:

• The Arduino communicates with the PCB through General-purpose input/out-
put (GPIO) pins which is hardware resource inefficient since most of the GPIO
pins of the Arduino are occupied. The communication using GPIO pins can-
not support very high speed data transmission thus it would be a bottle-neck
for more advanced design.

• The parameters sent to DUT may be flipped during transmission. There is
no error detection process in the transmission so the wrong parameters may
be set and the test result might make no sense. Due to the complexity of the
DUT, each experiment of testing the DUT takes long long time. It is too late
to modify the experiment parameters after getting the test results triggered

3



2. Technical background

RAM DUT
Generate

input
signals

Evaluate
output
signals

64 bits
counters

data_outdata_in

CTRL

control

MCU

read/
control

parallel

RSTEN CLK

ASIC

PCB

power supplies

MATLAB

PC

USB

clock generator

Figure 2.1: FEC-chip evaluation setup based on on-chip approach.

by wrong testing parameters. As a result of this, the testing-time cost will
increase significantly by any unreliable transmission.

• There might be more than one experiments to be done. Therefore, running
test sites in parallel or concurrently becomes interested as it can get several
experiments results at the same time.

The challenge to achieve these improvements is realizing the improvements while
keeping the low cost benefit of the evaluation setup.

The communication interface between the Arduino and the PCB can be upgraded to
some serial interfaces with higher hardware efficiency and higher speed. The multiple
test sites running rely on a certain communication protocol/interface. Section 2.2
gives an brief introduction to some serial interfaces. Some error-detecting schemes
can be used to improve the transmission reliability. Two commonly used error-
detecting techniques are presented in Section 2.3. The Arduino and the experimental
chip are two asynchronous subsystems of the whole evaluation setup. Data can be
passed between two asynchronous systems through a first-in-first-out (FIFO) buffer.
Basic knowledge of FIFO buffer is described in Section 2.4. Data travel from the
Arduino to the experimental chip need to be synchronized first then they can be
used for further processing; otherwise, the asynchronous data will cause the flip-flops
of the experimental chip enter metastable state and the in-between output value of
the flip-flops will propagate through the entire experimental chip. The metastability
phenomenon and how to prevent it is explained in Section 2.5.

2.2 Serial communication interface
Serial communication sequentially transmits data bit by bit in communication chan-
nels or computer bus. There are two types of serial communication interface, one is

4



2. Technical background

synchronous serial communication interface, such as Inter-Integrated Circuit (I2C),
Serial Peripheral Interface (SPI), and JTAG; and another is asynchronous serial com-
munication interface, such as Universal asynchronous receiver-transmitter (UART).

2.2.1 Universal asynchronous receiver-transmitter (UART)
Universal asynchronous receiver-transmitter (UART) is a hardware device for trans-
mitting/receiving data asynchronously and serially [8]. UARTs can be used to trans-
mit data between a computer and peripheral device serial port. In order to address
the asynchronous problem, UARTs need extra start and stop bits concatenated with
every bytes. Since there is no clock information transferred on the serial line, the
UARTs uses oversampling scheme to measure the middle point of each bit where the
bit is valid. That is, UARTs samples the same bit several times. As a consequence
of this, the UART cannot reach high data rate. UARTs can support speed from
300 baud to 115 200 baud which might be inadequate for future’s advanced chip de-
sign so it won’t be explained in detail in this section.

2.2.2 Inter-Integrated Circuit (I2C)
Inter-Integrated Circuit (I2C) is a hardware protocol that allows multiple slave de-
vices to communicate with one master or several master devices in a synchronous
and serial way [9]. It suits for low-speed communication between on-board peripher-
als. I2C consists of two wires, called Serial Data Line (SDA) and Serial Clock Line
(SCL). Serial Clock Line (SCL) is a unidirectional line and usually generated by the
master device. Serial Data Line (SDA) is bidirectional. Each slave on the I2C bus
is distinguished by its unique 7-bit address. There are two transmission modes of
the I2C protocol: fast mode and high-speed mode. In the fast mode, the maximum
of SCL rate is 400 kHz; and in the high speed mode, the maximum of SCL rate is
3.4 MHz. Since the I2C protocol cannot provide high speed transfer rate (the upper
limit is 3.4 MHz in high-speed mode), other details of the I2C won’t be expanded in
this section.

2.2.3 Serial Peripheral Interface (SPI)
Unlike the I2C protocol which is half-duplex and with low transmission speed, serial
Peripheral Interface (SPI) is a full-duplex, synchronous serial data bus that allows
transmitting data from a master device to slave device(s) [8]. The SPI doesn’t define
a limit speed, it depends on the device on the SPI bus. In general the SPI speed
can provide higher transmission speed than the I2C protocol. The SPI protocol has
four signal wires: MISO, Master In Slave Out; MOSI, Master Out Slave In; SCLK,
Serial Clock; and SS, Slave Select which is active low, when SS is low, the slave is
selected. The SCLK and SS are generated by the master device.

The SPI master needs to configure the clock phase (CPHA) and clock polarity
(CPOL) when it transmits data. The clock phase determines when would the data
are changed or sampled at the rising or trailing edge of the clock [10]. The clock

5



2. Technical background

phase 0 changes data at the trailing edge of the clock, and sampling the data at
the leading edge of the clock. The clock phase 1 is vice versa. The clock polarity
determines the polarity of the clock, the clock is idle at high or low, the leading
edge and the trailing edge are rising edge or falling edge. The CPOL 0 is a clock
idles at low and a clock cycle contains a pulse of 1. The leading edge of the CPOL
0 clock is a rising edge, and the trailing edge of the CPOL 0 clock is a falling edge.
The CPOL 1 is the opposite of the CPOL 0. The combination of clock polarity
and phase is called mode. Since the there are two types of clock polarity and phase
respectively, there are four types of mode in total. Mode “00” and Mode “11” are
the mostly used modes in SPI communication.

The conceptual diagram of SPI is depicted in Figure 2.2; there are 8-bit shift regis-
ters at both master and slave side [11, p.326]. These two shift registers are connected
in a ring via MISO and MOSI line. The master device generates SPI clock (SCK).
At the beginning of data transaction between the master and the slave, data are
loaded into the shift registers. Then the data stored in both shift registers will right
shift by one bit on an edge of the SCK, and these one bit data will be sampled at a
opposite edge of the SCK when they are stable.

SCK

shift register shift register

Master Slave

MOSI

MISO

Figure 2.2: conceptual diagram of SPI

Consider SPI mode 3 (mode “11”) as an example to illustrate SPI data transaction,
see Figure 2.3. The SPI master initiates the communication by asserting the SS to
low; then SPI clock is generated with initially high. On the first falling edge of the
SPI clock (the red dash line in the figure), data stored in the shift register will shift
out one bit on the MISO line, and the data on the MOSI line will shift in one bit
at the same time. Then these one bit data will be sampled at the next transition
edge (rising edge, the blue dash line in the figure). In the mode 3, changing data of
the data line always happens on the falling edge of SPI clock and sampling data of
the data line always happens on the rising edge of SPI clock until all 8-bits data get
exchanged.

SPI master device can communicate with multiple slave devices. There are two
configurations between the SPI master and SPI slaves: one is star-topology configu-
ration, another is daisy-chain configuration [11, p.326]. Assume there are two slave
devices connected to the master device. Figure 2.4a depicts the star-topology con-
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b7 b6 b5 b4 b3 b2 b1

b7 b6 b5 b4 b3 b2 b1

b0

b0

SS

SCK

MISO

MOSI

Figure 2.3: Timing diagram of SPI mode 3. The red dash line indicates the falling
edge of the SCK, and the blue dash line indicates the rising edge of the SCK.

figuration. In the star-topology configuration, the SPI master provides independent
chip select pins to each slave device but those slave devices use common data lines
and clock lines. When the chip select pin of the slave is inactive, the slave’s MISO
line is disabled and put it into high-impedance state. The daisy-chain configuration
is shown in Figure 2.4b, the SPI slaves share chip select pins and SPI clock pins,
the SPI master device provides the MOSI line to the first slave device, and the
output MISO of the first slave device is the input of the second slave device, and so
on, the final slave device’s output goes back to the master device via MISO line of it.
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(a) star-topology configuration
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(b) daisy-chain configuration

Figure 2.4: The diagram of star-topology and daisy-chain configuration with two
slave devices

The star-topology configuration has advantages such as easily connect new slaves to
the master, the signals don’t need to go through all slave nodes, and the likelihood of
data collision get eliminated. However, since the number of chip select pins is equal
to the number of slaves, the amount of slave numbers will get limited by the pin num-
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bers of the master device. Also, when considering the PCB design of star topology
configuration, the clock skew and signal reflection may wreak the signal integrity.
Thus, it’s better to use daisy-chain configuration when there are many slave devices.

The SPI block of Arduino series contains SPI control logic, clock generating logic,
and Pin control logic [12] [13]. There are three important registers inside the SPI
block of Arduino, SPI status register, SPI control register, and SPI data register.
The SPI control register stores the SPI interrupt enable, SPI enable, data order,
master/slave select, clock polarity, clock phase, and SPI clock rate information.
The SPI status register stores the SPI interrupt flag, write collision flag, and double
SPI speed bit. The SPI data register stores data being read or write via SPI bus.
When putting data into the SPI data register, the SPI clock starts to generate.

Arduino provides an SPI library so that the user doesn’t need to manipulate on the
SPI registers mentioned above. Table 2.1 summarizes the main functions of the SPI
library [14]. It is worth mentioning that what the SPI.transfer function does is to
put the data onto the SPI data register to initiate the data transmission [12] [13].
The return value of this function is the received data. So, when we only send data
via SPI bus, the return value can be ignored. The last coming byte on the SPI bus
will be stored in the Buffer register for further use. Therefore, the first returned
byte on the SPI bus is an old byte brought by the last SPI.transfer() call. So, the
first returning byte can be regarded as a junk data (has nothing with this time’s
SPI.transfer() call).

Table 2.1: Table of SPI library function.

function description
SPI.begin() initialize the SPI bus
SPI.beginTransaction() initialize the SPI bus with settings
SPI.endTransaction() stop the SPI bus

SPISettings() configure the maximum SPI speed,
data order (MSB first or LSB first), and data mode

SPI.transfer() read/write data via SPI bus

2.3 Error-detecting scheme
When transmitting digital data over communication channels, noise or interference
of the channel would introduce errors to the transmitted data. Error-detecting
schemes detect the transmission errors and improve the reliability of the data deliv-
ery. Two common error-detecting schemes are Parity check and Cyclic redundancy
check (CRC).

2.3.1 Parity check
Parity is the simplest form of error detection code. A parity bit is a bit that ap-
pended to a string of binary code. The total number of 1’s of the string appended
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with a parity bit can be even or odd. There are two kinds of parity bits, even parity
bit and odd parity bit. The original total number of 1’s of the string is an odd
number, after the even parity bit added to the end of the string, the parity of the
whole set(include the even parity bit) becomes to an even number, and vice versa.
The even parity is 1-bit cyclic redundancy check (CRC).

The parity of the string can be calculated by XOR sum of all the bits, the XOR sum
is 0 indicates the parity of the string is even, and vice versa. The parity check can
be easily implemented but it can only detect odd number of bit errors since even
number of bits flip won’t change the parity of the string.

2.3.2 Cyclic redundancy check (CRC)
Cyclic redundancy check (CRC) is widely used in detecting burst errors in blocks of
transmitted/received data in serial transmission systems [15]. The CRC code can
be calculated by a polynomial long division. The polynomial presentation of the
n-bit CRC is n+1 bits which is the divisor of the polynomial long division. The in-
put data is the dividend of the division, and the n-bit reminder is the CRC checksum.

At a transmitter’ side, first left-shift the input data with n-bits then the shifted
data is divided by the n+1 bits (polynomial) divisor, and the result of the division,
a n-bit remainder, is the CRC checksum. The original input data padded with this
n-bit remainder will be sent from transmission end. At a receiving end, the received
data is divided by the same divisor (polynomial). If the remainder is zero, it is
determined that there is no detectable errors during transmission, and vise versa.

Figure 2.5 shows an example of the CRC calculation process. Suppose the input data
is “11001010”, 3-bit binary CRC needs to encode the input data, and the (3 + 1)-bit
polynomial (divisor) is “1011”. The first step is to left shift the input data with 3
bit, i.e. right pad 3 zeros after the input data. The padded input data is the divi-
dend of the polynomial long division. Then left align the divisor with the dividend.
The second step is to XOR the dividend and the divisor if the most significant bit
of the dividend is not zero. The result of the XOR calculation becomes the new
dividend. If the most significant bit of the dividend is zero, right shift the divisor
until it meet a non-zero most significant bit. Repeating the second step for several
times until the polynomial of the XOR result is not larger than the polynomial of
the divisor. The last 3-bit of the XOR result is the remainder of the polynomial long
division, namely the CRC code. Here the CRC code is “100”. The padded input
data becomes “11001010100” and will be sent to the receiver.

At the receiver side, the receiver will perform a CRC check process with a polyno-
mial long division similar with the CRC calculation process. The difference is the
dividend becomes to the received data. The divisor is still as same as the divisor
used in the CRC calculation process, i.e.“1011”. If the remainder of the division is
zero, that means the received data is the same as the transmitted data from the
transmitter. Otherwise, there are errors in the received data. Figure 2.6a and Fig-
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Figure 2.5: CRC calculation process. The input data is “11001010”, the divisor is
“1011”, and the calculated CRC checksum is “100”.

ure 2.6b shows two example of the CRC check process with the received data are
“11001010100” and “11001011100”. The remainder of the division when the received
data is “11001010100” is zero, that means no errors happens in the transmission.
The remainder of the division when the received data is “11001010101” is “011”,
that means some bits flipped during the transmission.

2.4 FIFO buffer
A first-in-first-out (FIFO) buffer can be used to pass data between two asynchronous
systems [11, p.153]. A FIFO uses wr and rd signal to control the write and read data
of the FIFO. The data will be written into the bottom of FIFO when wr is activated,
and the data can be read from the top of the FIFO when rd is activated. There are
two read configurations of the FIFO, first word fall through (FWFT) configuration
and standard configuration. In the FWFT configuration, the data at the top of the
FIFO will be passed to the read port automatically without control signals. In the
standard configuration, the data at the top of the FIFO will be retrieved from the
FIFO after the rd is asserted.

A circular queue that connects the end (tail) of the queue to the front (head) can
be used to implement the FIFO buffer [11, p.154]. Two pointers write pointer and
read pointer can identify the position of the write and read operation in the queue.
When the buffer is empty, the write pointer and the read pointer points to the same
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position of the queue. The write/read pointer will move forward by one step when
there is a write/read operation. Since it is a circular buffer, when the buffer is full,
the write point and the read pointer point to the same position also. Therefore, it
is impossible to distinguish these two status "empty" and "full" only depends on the
position which the pointer points. Two flip-flops can be used to keep the empty and
full status respectively based on the wr and rd signals.

There are two types of the FIFO buffer, synchronous FIFO and asynchronous FIFO.
For the synchronous FIFO, its write and read operation are controlled by the same
clock, and the asynchronous FIFO is vice versa. The asynchronous FIFO can be
used as a synchronizer in a clock domain crossing (CDC) design. Since the coun-
ters inside the asynchronous FIFO must cross different clock domain, using binary
counters to track the write/read pointers’ movement of the asynchronous FIFO can
be error-prone. Using grey counter in which the two successive counter value only
differs in one-bit to do the track can eliminate the error probability when the coun-
ters work [16, p.652-653].

2.5 Metastability and synchronizer
The timing constraints of a flip-flop (FF) include setup time and hold time [16,
p.216]. The setup time (Tsetup) is a period of time that the input data of the FF
must be stable before it be sampled at the clock edge. The hold time (Thold) is a
time interval that the input data must be stable after the clock edge. When the
input data toggles during the Tsetup or Thold, which is close to the sampling edge,
it can easily enter the metastable status in which the output of the FF is between
“0” and “1” and cannot be decided to either “1” or “0” [16, p.612-614] [17]. The FF
will enter stable status eventually after a period of time. The metastable status is
unavoidable but a synchronizer can provide enough time to the FF and let it enter
the stable status. The synchronizer confines the metastability condition inside itself
and stops the in-between value propagate to the downstream logic [16, p.617-620].
In a clock domain crossing (CDC) design, the signals which travel from one clock
domain to another clock domain must be synchronized to prevent the metastability.

The most commonly used synchronizer is two-stage FF since it is simple and robust
[16, p.617-620]. Figure 2.7 shows the two-stage FF synchronization circuit. However,
the knowledge of the input signals are going to synchronized is needed beforehand;
the input signal of the two-stage FF synchronizer should be stable at least two clock
cycles otherwise it cannot be sampled at the rising edge of the second clock [17].

A four-phase handshaking protocol is illustrated in Figure 2.8; it can be used to
synchronize signals without the knowledge of the signals and the relative rate of
the two clocks [16, p.617-620]. Two control signals req and ack are used in the
protocol. The sender sends the data first, and the req signal followed. The req will
be synchronized by the receiver, and after the receiver read the req_sync it will
send the ack to the sender. The sender will synchronize ack and then change the
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Clock

Asynchronous
input

Figure 2.7: two-stage FF synchronization circuit

status of the req. After the req changes status, the ack also changes. There is also a
two-phase handshaking protocol which is simpler than the four-phase handshaking
protocol. The handshaking protocol assume the minimum knowledge of the two
subsystems so that it is overhead and not efficient. It is not suitable to transfer a
large trunk of data between two clock domains because of its high overhead. The
asynchronous FIFO can fast transfer data between two clock domains so that it is
widely used when move a bundle of data cross the clock domains [17].

Sender Receiver

req

ack

data

data

Figure 2.8: Four-phase handshake synchronization circuit
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3
Design Implementation Overview

This chapter will give an overview of the design implementation of the thesis project.
The following sections will describe system architecture and data flow.

3.1 System Architecture
The system architecture overview is shown in Figure 3.1. Compared with the present
on-chip approach, the current communication interface between an microcontroller
unit (MCU) and the PCB is adapted to SPI. In this thesis project, Arduino board
is used as the MCU. Through the SPI interface, the Arduino can send or retrieve
data to or from the experimental chips. The Arduino can write parameters into
the RAM and read the written parameters back to ensure the correct parameters
has stored in the RAM. The Arduino board can also retrieve testing result from
the chip. A generic RAM access block can let the Arduino and other design blocks
of the experimental chips to read/write data from/to the SRAM of the DUT. The
input signal generation part can fetch the stored parameters to generate the corre-
sponding input signals. To avoid burst error during data transaction between the
Arduino and the experimental chip, CRC error detection approach is used. At the
transmitter side (the Arduino or the chip), each data byte will be followed by its
one byte CRC checksum before it is going to send via SPI. The receiver (the chip
or the Arduino) will do a CRC check respect to the received data byte and its CRC
checksum. The system can support multiple test sites running feature which rely
on the SPI implementation. To fulfil all the new features and changes, a new PCB
is designed.

The design implementation can be summarized into two categories: software im-
plementation on Arduino and VHDL; hardware implementation on PCB. The next
section will explain the software implementation and its data flow briefly.

3.2 Data flow
As mentioned above, the software implementation can be divided into Arduino im-
plementation and VHDL implementation. There is an SPI interface between the
Arduino and the experimantal chip. The Arduino is served as master device of the
SPI interface, and the chip is severed as slave device of the SPI interface. So, the
implementation of the SPI interface contains implementation on Arduino software
and VHDL. Signals transfer from the Arduino to the chip need to be resynchonized
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Figure 3.1: New on-chip FEC-chip evaluation setup

on the chip side first, a synchronization interface implemented on VHDL is needed.

The data flow of the software implementation is illustrated in Figure 3.2. As a
master device of the SPI interface, the Arduino sends data packets to a chip. The
data packets contains information about command code, addresses, and parameters
which will be written into the RAM. The chip will receive the data packets via the
SPI interface, resynchronize them, and decode data packets into command byte,
address byte, and parameter bytes. The command byte will be decoded into control
signals; some of the control signals will be used to control write/read operations of
the RAM, other control signals will be used to determine which kind of data is going
to send via the SPI interface. A CRC check process will check the received data
packet if there are some transmission errors and report it to the Arduino via a GPIO
pin of the Arduino. The data is going to send to the Arduino will be added a header
and appended its CRC checksum and then send via the SPI interface. Through the
header, the Arduino or PC can distinguish which chip the data belongs to. Each
chip connected to the Arduino has its own unique header. After the Arduino receives
data packets come from the chip, it will check if there are transmission error via a
CRC check process. The retrieved data and the error information will be upload to
PC for further processing. More implementation details will be explained in Chapter
4 and Chapter 5.

3.3 Design decisions
This section will present the design decisions and reasons for those decisions.

• MCU
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Figure 3.2: Data flow of the software implementation. The red vertical square
represents for the SPI interface. The left part of the figure shows the data flow on
the Arduino side, and the right part of the figure shows the data flow on the VHDL
side.

In this project, Arduino board is used as the MCU. The main reason to choose
Arduino is that the present evaluation setup uses Arduino board, and devel-
opment based on the existing design implementation can save some time. An-
other reason is that Arduino is well-documented and has good forum so that
it is easy to find resources to solve problems during development.

• Communication interface
The communication interface between the Arduino and the experimental chip
is an SPI interface. The reason to use SPI interface is that UART and I2C
interface cannot support high speed data transaction so that they may not
meet speed requirements for more advanced design.

• Synchronizer
There are three ways to synchronize signals cross clock domains, two-stage
flip-flop, handshake scheme, and asynchronous FIFO. Since the SS line, SCK
line, MOSI line are single bit output from Arduino, using two-stage flip-flop
as synchronizers at the chip side is enough.

• Error detection
Since parity check cannot detect even number of bit error, CRC is used as an
error detection scheme in this project.
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Design Implementation on

Arduino

The Arduino software mainly manages the SPI interface, generates CRC checksum,
and employs CRC check to check whether the received data is right or not. The
Arduino board sends commands to the experimental chip, retrieves data from the
experimental chip, and checks the retrieved data. The following section will de-
scribe the CRC generate/check process, SPI interface, and multiple test kit running
respectively.

4.1 CRC generating/check process
The purpose of the CRC generating/check process is to improve the reliability of the
data transaction. The CRC generating/check process is easy to implement on the
Arduino software. The basic operations of CRC generating process includes append
zeros to the input data, MSB check, XOR calculation, and shift. The append zeros
to the input data should be done once at the initial stage of the CRC generating
process. The MSB check, XOR calculation, and shift operations should be done re-
peatedly until a remainder is obtained. Thus, these three kinds of operations should
be put into a for loop, and an index is needed to control the iteration of the for loop.
When the polynomial of the index is not greater than the polynomial of the divisor
which indicates that a remainder, namely the CRC checksum, has been obtained,
the iteration should be stopped.

The CRC check process is similar to CRC generating process, the difference is that
at the initial stage the input data with the CRC checksum will be given to the CRC
check function instead of appending zeros to the input data. The same for loop to
calculate the polynomial division will be used in the CRC check process. when the
iteration stops, check the remainder and return the check results. If the remainder
is zero which means there is no error in the input data, and vice versa.

Every byte the Arduino sends to the experimental chip is needed to be followed by
its CRC checksum. The experimental chip also does the same thing. Hence, the
CRC generating function will be called every time there is a byte to be sent, and
the CRC check function will be called every time there are two bytes received. More
details about how the CRC generating/checking process are combined with the SPI

17



4. Design Implementation on Arduino

transaction will be discussed in the next section.

4.2 SPI interface
The Arduino board communicates with experiment chips via an SPI interface. The
basic SPI protocol is used for bytes exchange between the Arduino board and the
experimental chip, on top of it there is a more high-level interface to control the
content to exchange and when to exchange [18] [19]. The SPI protocol is a master-
slave fashion protocol, the Arduino board is a master device which initiates the
SPI communication, configures the slave clock frequency(SCK), transmission speed,
transmission mode, transmission order(MSB first or LSB first), and decides the data
value and timing to transaction. The experimental chip is a slave device which only
activates when the chip select pin is set to low. In this thesis project, one SPI master
communicates with two SPI slaves in a star-topology configuration. The two SPI
slaves works with the same clock control (SCK), share the data lines (MOSI, and
MISO), but are dedicated with independent chip select pins (SS). The following two
subsections will illustrate the basic SPI protocol implementation on the Arduino
board and a message exchange protocol on top of it respectively.

4.2.1 Basic SPI protocol
The basic SPI protocol defines the one byte data exchange process. There are two
kinds of implementation of the basic SPI protocol on Arduino, software SPI and
hardware SPI. The software SPI means to use an Arduino provided SPI library to
complete the SPI protocol, and the hardware SPI means to manipulate the SPI
related registers of the processor of the Arduino board to complete the SPI proto-
col. The hardware SPI can save time for calling the SPI library to reach faster SPI
operations. However, the hardware SPI requires the user or developer to have good
understanding on microcontroller, including knowledge on registers and interrupt
management. The low-level programming also increases the maintaining difficulties.
Thus, in this thesis project, the software SPI is used.

Several Arduino functions can be used to complete the one-byte SPI transmission
process. Figure 4.1 illustrates a complete SPI transaction flow, which starts with
SPI.begin(), the SPI libary is called and the SCK and MOSI are pulling to low, and
the SS is pulling to high [14]. Then followed by SPI.beginTransaction() calling with
SPISettings inside, the SPI port starts to use with certain transmission speed, order,
and mode. When the Arduino is configured as a master device, the maximum SPI
speed is half of MCU’s CPU speed [12] [13]. In this project, the transmission speed
is 4 MHz, the data order is most significant bit first (MSB), the mode is mode 3.
The chip select pin (SS) is set to low to select the slave. The SPI.transfer() is used
to transmit data between master and slave. Since the default state of the SCK and
MOSI is set to low when the SPI.begin() is called, but the SCK is idle high for mode
3, an extra pulling SS to high should be executed before setting the SS to low to
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make sure the SCK can be idle high when the data transaction begins. Noticed that
the SPI communication is a full-duplex communication, that means the first coming
byte data is data has already existed on the SPI bus. The data will be sent from the
master to the slave via MOSI line, and the return data will be received via MISO
line. After finishing the transmission, the chip select pin will be brought to high to
deselect the slave. The SPI transaction will be finished with a SPI.endTransaction()
calling.

SPI.begin()

SPI.beginTransaction(SPISettings(...))

SPI.transfer()

data = SPI.transfer()

digitalWrite(SS, LOW)

digitalWrite(SS, HIGH)

SPI.endTransaction()

Initialize SPI

begin using SPI port and configure it

select the device

send data           

Read data back

deselect the device

Stop using SPI port

transfer data

Figure 4.1: A complete SPI transaction flow on Arduino

The data operations in the basic SPI protocol include sending data and retrieving
data, and these two kinds of operations are employed by SPI.transfer() call. When
the master device send data to the slave device, the return value of SPI.transfer()
is ignored. When the master device read data from the slave device, the return
value of SPI.transfer() is the retrieval value from the slave device. Combining the
two basic data operations, more kinds of operations will be created. Section 4.2.2
will discuss operations created based on the two basic data operations and how the
master device manages them.

4.2.2 Message exchange protocol
On top of the basic SPI protocol, a message exchange protocol manages what kind of
data is going to exchange and when to exchange between the master device and the
slave device. As described in Section 4.2.1, more data operation will be created by
combining the sending data and retrieving data operation, that is, more commands
will be created. There are four commands that Arduino can send to the experimental
chip, writeData, readDataTest, readDataParam, and fetchDataParam. The
writeData and fetchDataParam only send data (commands) to the slave device;
the readDataTest and readDataParam combines the sending data and retriev-
ing data operations: first sending command to the slave device then retrieving data

19



4. Design Implementation on Arduino

back from the slave device. The writeData command can write data to a certain
address of the RAM. The readDataTest command can read the test results from
the experimental chip. The readDataParam command is used to read back the
parameters written into the RAM. With writeData and readDataParam com-
mands, parameters can be written into the RAM and can be checked whether it has
been written correctly to the RAM. The fetchDataParam command can inform
the other design blocks to fetch the parameters stored in a specific address of the
RAM. Table 4.1 shows the command name and its command code.

Table 4.1: Table of command name and command code.

command name command code
writeData 0x01
readDataTest 0x02
readDataParam 0x03
fetchDataParam 0x04

Since there might be more than one experimental chip run in parallel or concur-
rently, the commands send to the experimental chips should specify which chip it
will send to. In other words, the Arduino board should send commands to the slave
with a dedicated chip select pin. Also, the master device should be able to distin-
guish which chip the coming bytes belongs to. Hence, a header will be added to the
coming data before sending to the master device to indicate the source of the data.
In order to improve the reliability of the data sent to the slave device, each byte
sent to the chip will be followed by its CRC checksum so that the slave device can
carry out CRC check process. Symmetrically, the Arduino side should also perform
CRC check prcoess to bytes received from the chip to make sure the received data
is correct. So, to retrieve one byte data from the chip four bytes data have to be
sent to the chip; the header, the header’s CRC checksum, the data, and the data’s
CRC checksum will return one after the other. Because the data sent to the chip
will be decoded by the same decoding component which decodes the writeData data
packet, all packets send to the chip should be keep same length. The writeData data
packet includes four bytes data contains command code, address, and parameters,
and four bytes CRC checksum to each of the byte, so it is eight bytes long in total.
That means all data packets send to the chip should be eight bytes long.

The command code is known beforehand so its CRC checksum can be calculated via
a MATLAB script without calling CRC generating function. However, the address
or parameters which are going to be written into the RAM is a unknown knowledge
to the program so their CRC checksum should be calculated with CRC generating
function call.

There are four functions which are employed in Arduino software to complete the
four commands’ function mentioned above: writeData(uint8_t addr, uint16_t
data, int chip_select), readDataParam(uint8_t addr, uint8_t data_byte[
], uint16_t error_byte[ ], int chip_select), fetchDataParam(uint8_t addr,
int chip_select), and readDataTest(uint8_t data_byte[ ], uint16_t er-
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ror_byte[ ], int chip_select). More details about how these functions work will
be discussed below.

writeData(uint8_t addr, uint16_t data, int chip_select)
The writeData(uint8_t addr, uint16_t data, int chip_select) function is
employed to send data to a pointed address of a specific experimental chip. Inside
the writeData function, the SS is brought to low to select the chip, and then send
the command, address and data, each will be followed by its CRC checksum, finally
raise up the SS line to deselect the chip. Since there is no need to read back the
exchanged data from chips in this situation, the returned data can be ignored. Table
4.2 shows the data stream is send to the chip of writeData command (Assuming data
0x0A0B will be written into address 0x01 of the RAM). The left column indicates
the order of the sending byte. For example, the first sending byte is the command
which value is 0x01.

Table 4.2: Table of writeData sending packet.

index content send
1 command 0x01
2 command’s CRC checksum 0xCA
3 addr 0x01
4 addr’s CRC checksum 0xCA
5 data_byte1 0x0A
6 data_byte1’s CRC checksum 0xEC
7 data_byte2 0x0B
8 data_byte2’s CRC checksum 0x26

readDataParam(uint8_t addr, uint8_t data_byte[ ], uint16_t error_byte[
], int chip_select)
The readDataParam(uint8_t addr, uint8_t data_byte[ ], uint16_t er-
ror_byte[ ], int chip_select) function can be used to read parameters stored in
a specific address of the RAM of the chip. The sending command part is similar to
the writeData function. The last two data bytes sent to the chip is not important in
this case, so sending dummy data is okay. Table 4.3 shows the command packet is
going to send to the chip. After the command packet arrives at the chip, the packet
will be decoded into control signals and the corresponding data will be uploaded to
the MISO line. As the SPI master device (Arduino) doesn’t know when the slave
data will be ready to send back, and the slave device cannot initiate a data trans-
action, the master has to wait for enough time until the slave data is ready. The SS
line will be brought to high when the command sending is finished, after waiting for
enough time to let the slave data be ready, the SS line will be brought to low again to
start the reading data process. In this way, the sending command stage and the re-
trieving data stage are separated and the data read back is a "ready" data of the chip.
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Table 4.3: Table of readDataParam sending packet.

index content send
1 command 0x03
2 command’s CRC checksum 0x94
3 addr 0x01
4 addr’s CRC checksum 0xCA
5 dummy 0xFF
6 dummy’s CRC checksum 0x42
7 dummy 0xFF
8 dummy’s CRC checksum 0x42

The conceptual diagram of the whole process (Assuming data stored in the address
0x01 of the RAM will be read) is shown in Figure 4.2. The returned parameters
are two bytes long, and including the header and header’s CRC checksum and the
CRC checksum of each parameter byte, eight bytes will be returned. Since the
SPI protocol is a full-duplex protocol, the first return byte is a returned value of
last time’s SPI.transfer() call so it can be regarded as a junk byte. Therefore,
SPI.transfer() function need to call nine times at the retrieving data stage, the
first time will return a junk byte, and the other eight times will return the header,
the header’s CRC checksum, parameters and their CRC checksum. A CRC check
function should be called every time one byte parameter and its CRC checksum
returned.

0x03 0x94 0x01 0xCA 0xFF 0X42 0XFF

ignored

0X42

SS

sending
byte

received 
byte

0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

Junk 0x81 0xCC 0x0A 0xEC 0x81 0xCC 0x0B 0x26

0xFF

data exchange

send command stage retrieve data stage

data exchange

CRC check CRC check CRC check CRC check

Figure 4.2: The conceptual diagram of the whole readDataParam process. The
grey shadow part of the diagram means don’t care data. The first time the SS is
set to low, command packet is sent to the chip. After that, the SS line is raised
up to high. When the SPI master device (Arduino) wants to read data back, the
SS line is brought to low again. The first return byte is a junk data, then the
parameters stored in the RAM with their header(assume the header is 0X81) and
CRC checksum are returned.

fetchDataParam(uint8_t addr, int chip_select)
The fetchDataParam(uint8_t addr, int chip_select) function is used to fetch
the parameters stored in a specific address of the RAM of the chip. The fetched
parameters will be put into a register so that other design blocks can fetch them.
Similar with the writeData function, this function doesn’t care about the returned
data either. So the Arduino can ignore the returned data. Table 4.4 shows the
command packet is going to send to the chip when this function is called (Assuming
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another design block wants to fetch the data stored in the address 0x01 of the RAM).

Table 4.4: Table of fetchDataParam sending packet.

index content send
1 command 0x04
2 command’s CRC checksum 0xBC
3 addr 0x01
4 addr’s CRC checksum 0xCA
5 dummy 0xFF
6 dummy’s CRC checksum 0x42
7 dummy 0xFF
8 dummy’s CRC checksum 0x42

readDataTest(uint8_t data_byte[ ], uint16_t error_byte[ ], int chip_select)
The readDataTest(uint8_t data_byte[ ], uint16_t error_byte[ ], int chip_select)
function is used to retrieve test results from the experimental chip. The read-
DataTest is similar to the readDataParam function, the number of retrieved
data and the CRC check times might be different. Table 4.5 shows the command
packet is going to send to the chip. In this thesis project, the test results is 8 bytes
long, as illustrated above, retrieving one byte from the chip needs four bytes sent to
the chip, thus the 1 byte junk data plus 32 bytes data would return and 16 times
CRC check should do.

Table 4.5: Table of readDataTest sending packet.

index content send
1 command 0x02
2 command’s CRC checksum 0x5E
3 dummy 0xFF
4 dummy’s CRC checksum 0x42
5 dummy 0xFF
6 dummy’s CRC checksum 0x42
7 dummy 0xFF
8 dummy’s CRC checksum 0x42

With these four functions, the Arduino can send commands to the chip and retrieve
data from the chip if necessary. Calling these four functions with different chip select
pin numbers, the Arduino can send different commands to different chips and also
read data back from those chips. The next section will explained the concurrent
test sites running.
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4.2.3 Concurrent test sites running
There might be several test sites run concurrently or in parallel. Therefore, each
command function should be called with a dedicated chip select pins. The first
coming byte of every four bytes packet shows the source of the data (which chip).
The data come from different chip have different headers. In this thesis project, one
chip’s header is 0x80, another chip’s header is 0x81. With header 0x80, its CRC
checksum is 0x06; with header 0x81, its CRC checksum is 0xCC.

The Arduino plays the role of the master device, and the experimental chips act as
slave devices. The next chapter will present how slave devices cooperative with the
master device (Arduino) to complete data transaction and its implementation.
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The VHDL implementation contains a synchronizer interface, an SPI interface, a
CRC control block, a RAM access block, and an finite state machine (FSM) to
mange data given into the CRC control block. Figure 5.1 displays the conceptual
diagram of the VHDL implementation. Arrows in the diagram shows the data flow
of the implementation mentioned in the Chapter 3.2. Each rectangle of the diagram
represents one of the design blocks of the VHDL implementation. The synchronizer
interface synchronizes signals travel from Arduino to the chip. The synchronized
signals are connected to the SPI interface and then complete data transaction. The
CRC control block mainly performs the CRC check process to data coming from
the Arduino via SPI, and generates the CRC checksum to data is going to send to
the Arduino and then concatenates a header and the CRC checksum to the sending
data. The data received through the SPI interface will be decoded to control signals
in the RAM access block. Some of the control signals will control the write and
read operations of the RAM, and the other control signals will be passed into the
FSM to determine which kind of data will be fed into the CRC control block. The
following subsections will explain the implementation of each block in detail.

synchronizer
interface

SPI
interface CRC

control
block

RAM
access
block

FSM

Figure 5.1: Conceptual diagram of the VHDL implementation. Each rectangle
represents a design block, and arrow of the figure represents the data flow.

5.1 Synchronizer interface
In the communication between Arduino and the chip, the Arudino boards works
in slow clock domain and the chip works in a much more higher clock frequency
domain so that signal will transfer cross two different clock domains. Metastability
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problem introduced by clock domain cross should be handled in the communication.
Figure 5.2 shows the block representation of the synchronizer interface. There are
three two-stage flip-flop synchronizers in the synchronizer interface to synchronize
SS signal, SCK signal, and MOSI signal respectively. The MISO line speed is as
same as the Arduino master speed, so the MISO line can be directly connected to
Arduino MISO pin. The synchronized SS, SCK, and MOSI signals will be passed
to the SPI interface. The next section will describe how the SPI interface works.

i_clk

sck_async

ss_async

mosi_async

sck_sync

ss_sync

mosi_sync

Figure 5.2: Block representation of the synchronizer interface

5.2 SPI interface
The SPI interface is in charge of data exchange between the Arduino and the chip.
Figure 5.3 shows the block representation of the SPI interface. Except for four basic
SPI signals, namely chip select i_ss, serial clock i_sck, master-in-slave-out signal
o_miso, and master-out-slave-in signal i_mosi, there are other signals contained
in the SPI interface: clock signals i_clk and reset signal i_rst are provide by the
chip; an 8-bit signal i_byte_tx is used to store data which are going to send on
the MISO line; an 8-bit signal o_byte_rx is used to output received data; a flag
signal o_rxDone which lasts for one clock cycle can indicate 8-bit (one byte) data
has received.

i_clk

i_rst

i_sck

i_ss

i_mosi

i_byte_tx

o_rxDone

o_miso

o_byte_rx

8

8

Figure 5.3: Block representation of the SPI interface

The experimental chips serve as slave devices and it should be in same data mode
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as the master device, i.e. mode 3; data of MISO line and MOSI line will be changed
on the falling edge of the SCK and sampled on the rising edge of the SCK. So, edge
detection components that can detect the rising and falling edge of the SCK are
needed. The following process only happens when the SS line is brought to low. A
counter routines the number of the bits have exchanged during SPI transaction and
it will augment one on every rising edge of the SCK. When all 8-bits (one byte)
data have been shifted in on the MOSI line, the flag o_rxDone will raise up. This
flag will be used to control the CRC control block, RAM access block, and the FSM
block.

There are two registers are used to store data in bytes: byte_rx and byte_tx. The
byte_rx register stores received data, and on every rising edge of the SCK one-bit
MOSI data will be shifted into the least significant bit of the register to update the
register. The byte_tx register stores data are going to send, the initial sending data
i_byte_tx will be loaded into the register when the counter values is zero; and then
on every falling edge of the SCK a zero will be shifted into the least significant bit
of the register and the most significant bit of the register will be shifted out to the
MISO line simultaneously.

Since there might be more than one chip are connected to the master device, a tri-
state buffer is needed on the MISO output. When the SS line is high, which means
the chip is de-selected, the MISO output will be in high-impedance state. To do so,
data collision on the MISO line can be avoided. Correspondingly, the MISO pin of
the chip should be defined as tri-state pin type in PCB design.

Figure 5.4 shows how the RX part of the SPI interface works. Suppose Arduino
sends byte 0xca to the chip via the SPI interface. In mode 3, the SCK is in idle
high. Noticed that there is a period of time between SS is brought to low to SCK
is brought to low, that is because only when SPI data is put into the data line the
Arduino starts to generate SCK. On every falling edge of the SCK, one-bit data is
shifted into the MOSI line but it won’t be sampled until the rising edge of the SCK.
On every rising edge of the SCK the counter will augment by one, and the sampled
one-bit MOSI data will be shifted into the byte_rx register. After all 8-bits get
sampled the rxDone flag will raise up and the value of the byte_rx register is the
byte sent by Arduino. The received byte 0xca will be passed to CRC control block.
The next section will describe how CRC control block works.

SS

SCK

cnt 1 2 3 4 5 6 7 00

rxDone

byte_rx 0x00 0xca

MOSI

SCK_rising

SCK_falling

0x01 0x03 0x06 0x0c 0x19 0x32 0x65

1 1 0 0 1 0 1 0

Figure 5.4: Timing diagram of RX part of the SPI interface
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5.3 CRC control block
The main functions of CRC control block include CRC checking to the received
data from the SPI interface and generating CRC checksum of each data byte and
appending the checksum to the data byte before transmitting via SPI. Figure 5.5
shows the block representation of the CRC control block. The upper part above
the dash line shows signals from the synchronizer interface and the SPI interface to
other blocks, and the bottom part below the dash line shows signals from the other
blocks to the SPI interface. Signal i_ss_sync comes from the synchronizer interface.
Signal i_load comes from the o_rxDone signal of the SPI interface, and i_byte_rx
signal is the o_byte_rx of the SPI interface. Signal i_en_crcg is a enable signal of a
CRC generator component inside the CRC control block. Signal i_load2crcg controls
data loading into the CRC generating component. Signal i_byte2crcg comes from
the FSM and represents the input data of the CRC generating component. Signal
o_byte_tx will be connected to the SPI interface and sent to the Arduino.

i_clk

i_en

i_en_crcg

i_ss_sync

i_load

i_load2crcg

i_byte_rx

i_byte2crcg

o_ld2dec

o_byte2dec

o_byte_tx

o_error
8

8

8

8

Figure 5.5: Block representation of the CRC control block

Figure 5.6 shows the block diagram of the CRC control block, where the upper
branch is for stripping off the CRC checksum and passing the data bytes to RAM
access block, the middle branch is for CRC checking process, and the lower branch
is for appending CRC checksum to data byte and sending. Since the data stream
come in one byte data followed by one byte CRC checksum, and the CRC checksums
don’t need to be passed to the RAM access block, a RX FIFO is needed here to
store the received data byte in order. The i_ss_sync signal is used as enable signal
of the RX FIFO. A counter is used to control the write and read control signal of
the RX FIFO. The counter will augment by one every time the rxDone flag, namely
i_load signal, raises up and goes back to zero when the counter is equal to one. The
coming data byte will be written into the RX FIFO when the counter is zero, and
read out from the RX FIFO when the counter is one. In this way, the first, third,
fifth, and seventh arrived data will be written into the RX FIFO and the second,
fourth, sixth, and eighth arrived byte(CRC checksum byte) won’t be stored in the
FIFO.
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Signal ld2dec means "load to decoder" and the signal is used for informing the decoder
of the RAM access block to start decoding data packets. The RX FIFO mentioned
above uses a FWFT configuration so that the data written into the FIFO will be
available at the data output port of the FIFO one clock after the wr is active. So,
the ld2dec should be one clock later than the wr to indicate available FIFO data
output. Signal byte2dec means "bytes to decoder". The data output of RX FIFO
will be buffered at a register and then be passed to the RAM access block after the
ld2dec signaled.

Bytes Combine CRC check FIFO CRC Check

Feed Input CRC Generate

RX FIFO

TX FIFO

1st header
2nd CRC

3rd data

4th CRC

byte2dec

error

byte2crcg

byte_rx

byte_tx

counter

Data&CRC

CRC

ld2dec

Figure 5.6: Block diagram of CRC control block. The byte_rx signal is coming
from SPI interface, the byte_tx signal connects to the TX line of the SPI interface.
The byte2dec is a signal will pass to the RAM access block to decode. The ld2dec
signal indicates the byte2dec is going to shift out from the CRC control block. The
byte2crcg is a signal comes from other design blocks and will be fed into the CRC
generator. The error signal is a output signal to indicate that the bursting error
exists in the received bytes.

Input data of a CRC check process should be data together with its CRC check-
sum, that means the input data length should be two bytes long. A bytes_combine
block in which two coming bytes will be combined into one word data packet will be
needed. The counter mentioned above can be used to control the one word packet
shift out. When the counter is one, one word packet will be shifted out. The CRC
check process takes some time, and before one CRC check process finished the new
data fed into the CRC check component will be ignored. Hence, a FIFO is needed
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to temporarily buffer the one word packet until the last time’s CRC check will be
done. A finish flag of the CRC check component will be used as the read control
signal of the FIFO. Only when there is no ongoing CRC check process, i.e. the finish
flag raised up, the new data can be fed into the CRC check component. The result
of CRC checking process will be given to the error port.

Input data bytes are going to feed into the CRC generate component may be param-
eters stored in the RAM, or the testing result generated by the experimental chip. A
finite state machine will be used to choose proper data give into the CRC generating
block based on the instructions’ decoding results. The FSM will be explained later
on. The generated CRC checksum and the original data byte will be sent into a
feed input component. The function of the feed_input component is to add data
header and append CRC checksum to data byte so that the data stored in the TX
FIFO will be header, header’s CRC checksum, data byte, and CRC checksum of the
data byte in turn. In this way, the received data on the Arduino side are also in one
byte data followed by one byte CRC checksum format, and the Arduino board can
know in which chip the data come from. A component called N_clk_timer works
in the feed_input component to make sure the feed_input component only works
four clock cycles to get the four bytes output once one byte checksum is generated.
The following two parts will explain the implementation of the CRC generator and
the CRC checker.

5.3.1 CRC generator
As same as the CRC generating implementation on the Arduino, CRC generation
process starts with zero padding to the input data, then checking MSB, XOR cal-
culation, and shifting operations will be repeatedly executed until getting the CRC
checksum. An finite state machine can be used to implement the CRC generator.
Figure 5.7 shows the state machine diagram of CRC generate process. There are
seven states in the state machine, s_init, s_load, s_cmp, s_msbck, s_xor, s_shiftr,
and s_done. Assume that the FSM is initially in the s_init state. It moves to
the s_load state when there is a load signal asserted. Inside the s_load state, the
input data will be padded a series of zeros, the number of padded zeros is equal to
the width of CRC checksum. The divisor will also be padded a series of zeros to
make the new padded zeros dividend and the divisor have the same width. Then
the FSM moves to the s_cmp state. An index is used to indicate in which bit the
CRC generation process is performed. If the index is greater than the width of CRC
checksum in this state, it implies that the polynomial of the dividend is greater than
the polynomial of the divisor, and the FSM will enter the s_msbck state; otherwise,
it indicates that a CRC checksum has already generated, and the FSM will enter the
s_done state. A finish flag will raise up to show the completion of the generation
process in the s_done state. In the state s_msbck, when the MSB of the dividend is
‘1’, the FSM will enter the state s_xor and calculate the XOR of the dividend and
the divisor; otherwise, it will enter the state s_shiftr, both dividend and the divisor
will right shift by one bit until the MSB of the dividend is ‘1’.
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s_init s_load s_cmp

s_shiftr

s_msbck s_xor

s_done

MSB=’1'

MSB=’0'

MSB=’0'

MSB=’1'poly <= 
divisor’s poly 
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>=divisor’s 

poly load=’1'

load=’0'

Figure 5.7: State diagram of CRC generation process.

5.3.2 CRC checker
The CRC check process is similar to the CRC generating process, but there is no
need to pad zeros to the input data. Figure 5.8 illustrates the state diagram of the
CRC checking process. The state diagram is similar to the state diagram of the
CRC generating process, except the transition from the s_cmp state to the s_erck.
At the s_cmp state, if the index is not greater than the width of CRC checksum,
it indicates that the division should stop, the value of the remainder is the division
result, and the FSM will move to the s_erck state. If the remainder is zero that
implies there is no transmission error of the input string; otherwise, an error flag
will raise up.

s_init s_load s_cmp

s_erck s_shiftr

s_msbck s_xor

s_done

MSB=’1'

MSB=’0'

MSB=’0'

MSB=’1'poly <= 
divisor’s poly 

poly 
>=divisor’s 

poly load=’1'

load=’0'

Figure 5.8: State diagram of CRC checking process.
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5.4 RAM access block
Data bytes signal byte2dec will be passed to the RAM access block from the CRC
control block. The main function of the RAM access block is reading or writing
data to or from RAM. Figure 5.9 presents the block representation of the RAM
access block. Signal i_ss_sync comes from the synchronizer interface and is used
as a enable signal of a packet decoder. Signal i_din is the byte2dec of CRC control
block. Signal i_ld is the ld2dec signal of the CRC control block. o_WRPARAM,
o_RDTST, o_RDPARAM, and o_FTPARAM are control signals are going to send
to an FSM to trigger the FSM enter corresponding states. Parameters stored in the
RAM can be read from the port o_para_out. Figure 5.10 shows the block diagram
of the RAM access block. The ld2dec signal which is provided by the CRC control
block is used for controlling the data load into packet decoder. The packet decoder
decodes the received data bytes into instructions, address, and parameters which
will be written into the RAM. The instruction decoder decodes the instructions
into control signals. Some of the control signals can control the read and write
action of the RAM, and other control signals will be ported out to trigger the FSM
enter different states. Decoded parameters can be written into RAM when write
control signal is asserted, and the data stored in the RAM can be read when the
read control signal is asserted, and it will be sent to parameter out register. The
following subsections will introduce the packet-decoder, instruction decoder, and
dual-port ram in detail.

i_clk

i_rst

i_ss_sync

i_din

i_ld

o_RDTST

o_RDPARAM

o_WRPARAM

o_FTPARAM

o_para_out

8

16

Figure 5.9: Block representation of the RAM access block

5.4.1 Packet-decoder
The packet decoder decodes the received data bytes into instructions, write/read
address, and parameters which will be written into the RAM sequentially. The
ld2dec signal which is provided by the CRC control block acts as a load signal to
control bytes loading into the packet decoder. In this thesis project, the first com-
ing byte from the control block will be decoded to instruction byte (command), the
second byte will be decoded to the address byte, and the third and fourth byte will
be decoded to the parameters byte. Since all coming bytes need to go through this
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Figure 5.10: Block diagram of RAM access block. The blue words shows the
signal provided by other design block. The ld2dec signal and din signal come from
the CRC control block. The RDPARAM, WRPARAM, FTPARAM, and RDTST
signal are decoding results of the instruction decoder.

packet-decoder, all function command packets sending from the SPI master Arduino
should be in four bytes format. For instance, when read test result, the read test
command packet contains four bytes and only the first byte contains useful infor-
mation: the first byte is the instruction byte, and the other three bytes are dummy
bytes.

To avoid triggering wrong read/write operations of the RAM, the earlier arriv-
ing byte should wait for the later arriving bytes so that data bytes sent to the
Instruction-decoder, address register, parameters-in register can be aligned to a
same time instance. For example, assuming the former instruction byte is 0x01
(writeData), and the new arrived instruction byte is 0x03 (readDataParam). When
the new address byte and parameters bytes haven’t arrived, the address byte and
the parameters bytes of the writeData command will be used. As a result of this,
wrong address’s data will be retrieved from the RAM. When all four bytes have
been decoded, a flag will be raised up. The instruction byte will be decoded into
control signals in the instruction-decoder. The next subsection will explain how the
instruction-decoder works.
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5.4.2 Instruction-decoder
The flag signal of the packet decoder will serve as an enable signal of the instruction
decoder. The instruction decoder decodes the instruction bytes according to the
bytes value and then asserts corresponding control signals. Table 5.1 shows the
decoding rules of the instruction-decoder. There are two types of control signals
will be generated by the instruction-decoder: the active low control signals en, wr,
and rd which are used to control the read and write operation of the RAM; and active
high control signals RDPARAM, WRPARAM, FTPARAM, and RDTST which are
used as trigger signals to trigger the FSM enters different state. For example, when
the instruction byte is 0x03, that is, readDataParam, the en signal and rd signal
is set to low, the wr signal is set to high, and the RDPARAM signal is also set to
high. The WRPARAM, FTPARAM, and RDTST signal are set to low. When the
decoded result is read test result, the RAM should be blocked, either write or read
operation are allowed.

Table 5.1: Table of decoding rules of the instruction decoder

i_din o_en o_wr o_rd o_WR-
PARAM

o_RD-
PARAM

o_RD-
TST

o_FT-
PARAM

writeData 0x01 ’0’ ’0’ ’1’ ’1’ ’0’ ’0’ ’0’
readDataParam 0x03 ’0’ ’1’ ’0’ ’0’ ’1’ ’0’ ’0’
readDataTest 0x02 ’1’ ’1’ ’1’ ’0’ ’0’ ’1’ ’0’
fetchDataParam 0x04 ’0’ ’1’ ’0’ ’0’ ’0’ ’0’ ’1’

5.4.3 Simple Dual-port RAM
There are several types of dual-port RAM implementations. One collected require-
ment [7] of this thesis project is the Arduino board should be able to send parameters
to the chip, and those parameters should be stored at the SRAM of the chip, so that
other parts of the chip can fetch some parameters when needed. That means the
read operations should independent with write operations, only when the read signal
is active, data can be read from the RAM. Thus, the simple dual-port RAM has we
control signal and rd control signal to control write and read operations separately.
The SRAM is a 256 · 16 large RAM, the address width of the RAM is 8, and the
data width of the RAM is 16.

5.5 FSM
As mentioned above, there will be two types of data of the experimental chip can
be sent via SPI interface: the parameters stored in the RAM, and the test results.
An FSM is needed to manage which kind of data is going to be fed into the CRC
generating block and then be sent via SPI interface. Figure 5.11 shows the block
representation of the FSM. Signal i_WRPARAM, i_RDPARAM, and i_RDTST
are control signals come from the RAM access block. Signal i_para_out comes
from the parameter register of the RAM access block. Signal i_din_test is the test
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results generated by the chip. The output signals of the FSM block include data
bytes o_byte2crcg which are going to pass to the CRC control block, enable signal
o_en_crcg which controls the CRC generator of the CRC control block, and load
signal o_load2crc to control loading data into the CRC generator.

i_clk

i_rst

i_ss_sync_falling

i_load

i_WRPARAM

i_RDPARAM

i_RDTST

i_FTPARAM

i_para_out

i_din_test

o_byte2crcg

o_en_crcg

o_load2crcg

16

64

8

Figure 5.11: Block representation of the FSM

There are seven state of the FSM, s_init, s_wr, s_ftpara, s_wtrdp, s_wtrdt, s_rdtst,
s_rdpara. On the Arduino implementation, commands need reading data back are
divided into two stages: sending command stage and retrieving data stage. These
two stages are separated through SS high/low operation, SS will be brought to high
after sending command finished, and then be brought to low to enter the retriev-
ing data stage after waiting for enough time to ensure the slave data is ready. As
corresponding to this, the states of the FSM can be divided summarized into three
categories: states without reading data back, namely state s_wr and s_ftpara;
states waiting for an SS falling edge, namely state s_wtrdp and s_wtrdt; and states
reading data, i.e.state s_rdtst and s_rdpara. When RDPARAM signal or RDTST
signal are raised up to high, the FSM will enter wait reading state until a synchro-
nized SS falling edge is detected. Then the FSM will switch to the reading data state.

Figure 5.12 illustrates the state diagram of the FSM. The following part will describe
control path of the FSM first, the data path of the FSM will be described later on.
A signal called op_state is the concatenation of the control signals and will be used
to indicate the FSM enter different states. Starting with the state s_init, when
WRPARAM raises to high, the FSM moves to the state s_wr and then jumps back
to the state s_init. When RDPARAM raises to high, the FSM jumps to the state
s_wtrdp. Inside the state s_wtrdp, the FSM will switch to the state s_rdpara once a
synchronized SS falling edge is detected. Once the FSM enters the state s_rdpara, a
counter will be triggered. The counter is used to count how many bytes of data have
been read by the Arduino, that is, how many bytes the Arduino and the chip have
been exchange with each other. So, the flag signal rxDone of the SPI interface can
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be used to control the counter’s increment. The counter will augment by one every
time there’s a high i_load signal of the FSM (rxDone signal of the SPI interface).
As mentioned in 4.2.2, for retrieving data from the experimental chip, there must be
four times the number of data bytes plus one dummy data comes from the Arduino
board. Hence, when the counter counts up to four times the number of data bytes
plus one, the FSM moves back to the s_init state. The reading test results’ states
transition is similar to the transition of reading parameters, the difference is the
upper limit to let the state machine jump back to the state s_init.

s_init

s_wr

s_ftpara

s_wtrdp

s_wtrdt

s_rdtst

s_rdpara
op_state=``0100''

op_state=``0010''

op_state=``1000''

op_state=``0001''

i_ss_sync_falling=`1'

i_ss_sync_falling=`1'

cnt_tst =

(num_byte_test_result * 4 +

1)

cnt_param =

(num_byte_param * 4
 + 1)

op_state=i_RDTST &
i_WRPARAM &
i_RDPARAM &

i_FTPARAM cnt_param <
(num_byte_param * 4 + 1)

cnt_tst <
(num_byte_test_result * 4 +

1)

i_ss_sync
_falling=`0'

i_ss_sync
_falling=`0'

Figure 5.12: State diagram of the FSM

The above paragraph described the control path of the FSM, next the data path
will be explained. The data path of the FSM mainly determines the data bytes
will be given to the CRC generator, signal byte2crcg; the enable signal of the CRC
generator, signal en_crcg; and the load data signal of the CRC generator, signal
load2crcg. Since data bytes passed into the FSM may be longer than one byte but
the CRC generator and the SPI interface can only manipulate data in bytes, so a
component called split is employed to split a trunk of data into bytes, and it will
shift out one byte data every time a enable signal of the component is asserted.
The split data should be ready before the load2crcg is asserted to ensure no repeat
data will be loaded into the CRC generator. The split bytes data will be assigned
to byte2crcg and go through the CRC generating block to generate CRC checksum.
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The signal en_crcg will be enabled at the state s_rdpara and the state s_rdtst since
the CRC generating block only works at these two states.

5.6 Top Module
As explained at the beginning of this chapter, the top module of the VHDL imple-
mentation connects the synchronizer interface, the SPI interface, the CRC control
block, the RAM access block, and the FSM. An edge detection component is used
to detect the synchronized SS falling edge will generate the i_ss_sync_falling sig-
nal and pass it to the FSM. Figure 5.13 shows the block representation of the top
module. Signal i_sck, i_ss, i_mosi, and o_miso are SPI interface related signals.
Signal i_en controls subblock CRC checker of the CRC control block, and the CRC
check result o_error will be reported back to Arduino board. The Arduino board
and other design blocks of the chip can fetch parameters stored in the RAM from
the o_para_out port when o_FTPARAM is raised up to high. When o_RDTST is
raised up to high, the test results i_din_test generated by the chip will be uploaded
to the Arduino board via the SPI interface.

i_clk

i_rst

i_sck

i_ss

i_mosi

o_miso

i_en

o_error

o_para_out

o_FTPARAM

i_din_test

o_RDTST

64

16

Figure 5.13: Block representation of the top module on VHDL implementation
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The designed testing infrastructure should be able to used in testing other experi-
mental chips, so the present PCB design used in testing the FEC chip need to be
upgraded. The communication interface between the Arduino and the chip will be
upgraded to SPI interface, the SPI interface uses 4 pins instead of 32 pins used before
for data transmission between the Arduino and the chip so that many pins of both
Arduino and the chip can be saved. The existing PCB is provided power by external
lab power supplies which is expensive and inconvenient. The power management
design of the new PCB should be able to supply more power on board to reduce the
cost of using external power supplies while keeping the power dissipation and the
thermal characteristics in proper range. The existing PCB uses voltage translators
to translate 5 V signals of the Arduino to 0.8 V. The new PCB will still use voltage
translators to translate voltage of signals but the number of the translators will
change. The new PCB design of the project can be divided into three parts: power
management, the experimental chip pin design, and the voltage level translating.
The following section will present design related to these parts.

6.1 Power management
The power management of the PCB is an important part and it should follow these
principles:

• low-cost, simple, adaptable, safe, and accurate;
• supply more power on-board if it’s possible;
• low power dissipation;
• low heat generation;
• enough design margin so that it can be updated to other chip testing without

re-design the PCB.

Starting from the second principle, the task is supplying more power on-board to re-
duce the external power supplies using. There are three types of power on the PCB:
VDD_core_internal, VDD_core_external, and VDD_IO. The VDD_core_internal
and VDD_IO are generated on the PCB, and the VDD_core_external is provided
by external lab power supplies. Since there are two experimental chips on the
PCB, there should be two VDD_core provided to the two chips separately. One
of the VDD_core should be able to switch between the VDD_core_internal and
VDD_core_external. As there are two chips connected to the Arduino, there should
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be two VDD_core_internal generated. Voltage regulators can be used to supply
power on the PCB. There are two types of voltage regulators: linear voltage reg-
ulator and switching voltage regulator. The linear voltage regulators are cheap,
simple, low noise but with low power efficiency while switching voltage regulators
are expensive, complex, higher noises but with high power efficiency. As one of
the PCB design principles is low-cost and simple so linear voltage regulators will
be the starting option. Figure 6.1 shows a simple schematic of typical application
of adjustable linear voltage regulator. VIN is provided by rail supply. When the
voltage of EN pin falls into the threshold range the voltage regulator will be enabled.
The FB provides a feedback voltage. The output voltage of the voltage regulator is
adjustable by changing the radio of R1 and R2. The output voltage of the voltage
regulator can be calculated by

Vout = VREF · (1 + R1

R2
) (6.1)

VIN

EN

VOUT

FB
R1

R2

GND

CIN

Figure 6.1: Simple schematic of typical application of adjustable linear voltage
regulator.

Power dissipation and thermal characteristic are two key factors of choosing linear
voltage regulators. The estimated power dissipation of linear voltage regulator can
be calculated by:

Pregulator = (Vin − Vout) · Iload (6.2)

With certain Iload, small Vin − Vout can reduce the power dissipation of the voltage
regulator. The dropout voltage is defined as the minimum difference value of Vinand
Vout to let the regulator work within specification. Low-dropout (LDO) linear volt-
age regulator is a kind of voltage regulator with small dropout specification and it
will be used in the project.

Thermal resistance θJA(°C/w) can be used to choose ICs with good thermal char-
acteristic, it shows the number of degree the chips will heat up above the ambient
air temperature per each watt of drained power. In general, components which ther-
mal resistance multiplied by their power dissipation is less than 10°C belong to "low
power" components. With around θJA(°C/w)=100(°C/w), the approximate power
dissipation is 100 mW, that means a component which power dissipation is above
100 mW needs extra thermal path to dissipate the heat. If the thermal resistance of
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a component is about 20°C/w to 30°C/w, the dissipated power can up to 500 mW.
To simplify the design, 100 mW can be used as a upper limit value of choosing volt-
age regulators.

Table 6.1 shows the design requirements regarding the voltage and current range of
the VDD_core_internal and VDD_IO [20]. Observing the given requirements, it
can be seen that the minimum voltage and maximum voltage of VDD_core_internal
are smaller than the VDD_IO, but the minimum current and maximum current
are larger than the VDD_IO. The minimum voltage of the VDD_core_internal is
0.25 V which is too small to find a LDO regulator. Figure 6.2 shows a solution
[21] to provide small voltage combined with voltage regulator and voltage reference.
Instead of connecting the R2 to the ground, connecting it with the VREF pin of the
voltage reference, the voltage reference should be higher than the VF B (the VREF in
Equation 6.2). Noticed that the current on the the VREF pin will also flow through
R1, so the Vout can be calculated by:

Vout = VF B − R1 · (VREF − VF B)
R2

(6.3)

From the equation above, it can be seen that with a fixed VF B, the larger the VREF

is the smaller the Vout will be. When the required Vout is higher than VF B, there is
no need to connect the R2 to the voltage reference, the R2 should be connected to
ground; otherwise, connect the R2 to the output of voltage reference.

With this voltage reference connects to the voltage regulator solution, voltage reg-
ulator which can provide 0.8 V to 3.3 V, and 0.6 A to 3 A output is acceptable for
both VDD_IO and VDD_core_internal. TPS7A7002 [22] is used in this project.
TPS7A7002 is a LDO voltage regulator which can provide adjustable voltage output
as low as 0.5 V. Its thermal resistance is θJA(°C/w)=47(°C/w), and the maximum
current output is 3 A. The reference voltage of TPS7A7002 is 0.5 V and its input
voltage range is from 1.425 V to 6.5 V. The voltage range of VDD_IO is more flex-
ible, so the design of VDD_IO will be discussed first, and the VDD_core_internal
will be discussed later on.

Table 6.1: Table of voltage and current range of two on-board supply power.

V I
min max min max

VDD_core_internal 0.25 V 1.5 V 0.6 A 3 A
VDD_IO 0.8 V 3.3 V 50 mA 100 mA

6.1.1 VDD_IO
For VDD_IO, assume the power dissipation is 100 mW, the dropout of the voltage
regulator for VDD_IO is between 100 mW/100 mA = 1 V to 100 mW/50 mA = 2 V,
that is, the input voltage of the specific voltage regulator is between 0.8 V + 1 V =
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VIN

EN

VOUT

FB
R1

R2

GND

CIN

LDO regulator

VIN

GND

VREF

EN

COUT

voltage reference

Figure 6.2: Simple schematic of generating small voltage with LDO regulator and
voltage reference.

1.8 V to 3.3 V+2 V = 5.3 V. The design requirement of LDO regulator for VDD_IO
can be summarized as in Table 6.2. TPS7A7002 fulfils the requirements, so it can
be used in the project.

Table 6.2: Table of design requirements of voltage regulator for VDD_IO

Vin Vout Iload

min max min max min max
VDD_IO ≤ 1.8 V ≥ 5.3 V 0.8 V 3.3 V 50 mA 100 mA

Suppose Vin = 5 V, Vout = 0.8 V, and Iload = 100 mA, the power dissipation can
be calculated to be 0.42 W according to Equation 6.2, and the IC will heat up
0.42 W · 47(°C/w) = 19.74°C, plus the room temperature 25°C, the temperature is
approximately 45°C which is under 125°C.

6.1.2 VDD_core_internal
As described before, finding a LDO voltage regulator to supply voltage less than
0.8 V might be hard, so the design task can be divided into two tasks: finding a
linear voltage regulator can generate 0.8 V or above voltage; finding voltage ref-
erence can provide reference voltage larger than the reference voltage of the LDO
regulator so that the final output of LDO regulator can be 0.25 V small. The output
voltage of the voltage regulator should not be bigger than 1.5 V too much for safety
reason, with this condition, low power dissipation requirement, and the maximum
output current around 1 A less than 3 A, the design requirement of LDO regulator
for VDD_core_internal is summarized in Table 6.3. The Vin of the LDO regulator
should be close to the Vout to dissipate less power.
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Table 6.3: Table of design requirements of LDO regulator for
VDD_core_internal

Vin Vout Iload

min max min max min max
VDD_core_internal Vout,min+ ≤ 1 V Vout,max+ ≤ 1 V 0.8 V 1.5 V 0.6 A 3 A

TPS7A7002’s reference voltage is 0.5 V. Therefore, the output of the voltage refer-
ence should be higher than 0.5 V. As illustrated in the Equation 6.2, once the VREF

is fixed the output voltage of the LDO regulator only depends on the resistors’
ratio. As the voltage reference also depends on the resistors’ ratio of voltage reg-
ulator, the resistors’ value should be determined after finding a voltage reference IC.

The next step is choosing a proper voltage reference. As the same input rail provides
power to the LDO regulator and voltage reference, and the output voltage of the
voltage reference also depends on the resistors’ ratio of voltage regulator, this step
should also take the output of LDO regulator into consideration. The procedure of
choosing the voltage reference is using Equation 6.2, Equation 6.3, and the bound-
ary value of the output voltage of the LDO regulator and the voltage reference to
determine the range of the resistors’ ratio and the output voltage of the voltage
reference. The detailed procedure will be shown under below.

Substitute the Vout,min = 0.8 V, Vout,min = 1.5 V, and VREF = 0.5 V into the Equation
6.2, we can get

0.8 V ≤ Vout = 0.5 · (1 + R1

R2
) ≤ 1.5 V (6.4)

The solution to this inequality equation is

0.6 ≤ R1

R2
≤ 2 (6.5)

Here, we get the first resistors’ ratio range is [0.6, 2].

The final output voltage of the voltage regulator should be at least 0.25 V. The
0.25 V can be served as a boundary value. Substitute the Vout,min = 0.25 V and
VF B = 0.5 V into the Equation 6.3, we have

Vout = VF B − R1 · (VREF − VF B)
R2

= 0.5 V − R1 · (VREF − 0.5 V)
R2

= 0.25 V (6.6)

The solution to this equation is

R1

R2
= 0.25
VREF − 0.5 (6.7)

Here, we get the second resistors’ ratio range. Consider the Equation 6.5 and the
Equation 6.7 together, we have

0.6 ≤ 0.25
VREF − 0.5 ≤ 2 (6.8)
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The solution to this inequality is

0.625 V ≤ VREF ≤ 0.92 V (6.9)

Here, we get the first requirement of the voltage reference: 0.625 V ≤ VREF ≤ 0.92 V.
Usually the voltage reference can provide output larger than 1 V, so the target volt-
age reference should be around 1 V.

Another important parameter of choosing the voltage reference is the input voltage
Vin,ref . Since the VIN rail of the voltage regulator also provides power to the voltage
reference, i.e. Vin,ref = Vin,reg, the Vin,ref of the voltage reference should keep close to
the Vout of the voltage regulator to reduce dissipated power. A suitable Vin without
dissipating too much power should be around 2 V. Two requirements of choosing
the voltage reference are summarized in Table 6.4.

Table 6.4: Table of design requirements of voltage reference for
VDD_core_internal

Vin Vout

min max
voltage reference 2.0 V 1.2 V 2.0 V

Some voltage reference ICs can fulfil the requirements listed in the Table 6.4, with
specific output voltage of the LDO regulator, different reference ICs can be used.
Suppose the final Vout is smaller than 0.25 V, a possible VREF could be 1.25 V,
then LM4140 [23] can be used. LM4140 is a voltage reference IC that can pro-
vide 1.25 V reference voltage with a minimum supply voltage of 1.8 V. Substi-
tute VREF = 1.25 V, Vout ≤ 0.25 V into Equation 6.3, it can be calculated to
R1/R2 ≥ 0.33. One requirement of the TPS7A7002 is the 27 kΩ ≤ R2 ≤ 33 kΩ.
Pick E96 series resistor R2 = 30.1 kΩ, the closest resistor value in the E96 series is
10.2 kΩ. The final output voltage is 0.246 V which is smaller than 0.25 V. When R2
is connected to ground, the generated power is 0.67 V; if the R2 is connected to the
output of voltage reference LM4120, the generated power will be 0.246 V.

When input voltage of the VDD_IO and VDD_core_internal are close to each
other, the two power inputs can be provided by same power rail. To do so, one
external power supply will be saved.

6.2 Experimental chip pin design
For the pin design, a 48-pin package is used. There should be four pins for the SPI
interface. One of the four SPI interface pins is MISO pins, it should be configured
at tri-state pins otherwise it will cause pin conflict. There are 8 pins for controlling
function, and 8 pins for debugging function. Two pins are used for providing clock
signals to the chip, and 22 pins are used to providing power to the chip, the I/O, and
the ground. Since the I/O signals are slow two VDD_IO pins lays on the opposite
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side of the chip are enough. In order to avoid the ripple in the ground plan, more
GND pins are used than VDD_IO/VDD_core pins. There are still 4 pins left
and it can be used as GNDs and VDDs.

6.3 Voltage level translating
Since the Arduino’s GPIO’s voltage is 5 V, but the experimental chip’s pin voltage
is around 1 V, thus voltage translator are needed between the Arduino and the chip
to let them communicate with each other. In this thesis project, voltage translator
LSF0108 [24] is used. Pull-up resistors are connected to the input and output side of
the voltage level translating IC. In order to simplify the layout, resistor-network are
used to reduce the number of resistors. Table 6.5 shows the resistors’ value of these
three voltage translator when the current through each pass resistor is at 15 mA.

Table 6.5: Table of resistors value of resistor network

VrefB VrefA

LS0108 330 Ω 30 Ω
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Results

This chapter will present results get in the project. Before showing the results,
testing methodologies and evaluation setup used in this project will be described
first. The results of the project include the testing results of the evaluation setup,
utilization result of the VHDL implementation on an FPGA board, and the PCB
design schematic.

7.1 Testing methodologies
The testing methodologies used in this project include unit testing and system test-
ing. The unit testing was performed on Arduino implementation and VHDL imple-
mentation. The following subsections will describe the unit testing briefly.

7.1.1 Unit testing
The unit testing on Arduino implementation tested three important functions on
an Arduino UNO board: SPI communication, CRC generating function, and CRC
checking function. To test the SPI communication of the Arduino, a loopback test
was performed:

• Connecting the MOSI pin of the Arduino to the MISO pin;
• Calling SPI.transfer( ) function to send a specific byte;
• Reading the return value of the SPI.transfer( ) call and print this value on a

serial monitor.
The expected result of this unit test is the returned value printed on the serial mon-
itor is as same as the send value.

Before testing the CRC generating function, given a certain byte value, its CRC
checksum should be calculated by a MATLAB script first. Then the following steps
are performed:

• Passing the certain byte as a input data of the CRC generating function;
• Printing the CRC checksum on the serial monitor;
• Comparing the generated CRC checksum with the MATLAB script calculated

CRC checksum.
The expected result of the CRC generating unit test is the generated CRC checksum
is equal to the calculated CRC checksum.

45



7. Results

The unit testing of the CRC checking function is similar to the CRC generating
unit testing. The difference are the input data passed to the CRC checking function
is two-bytes long: one byte data followed by its CRC checksum; and the binary
checking result will be printed on the serial monitor. Feeding the input data with-
out transmission error and with transmission error to the CRC checking function,
the expected test result is the CRC checking function should be able to detect the
transmission error and report it correctly.

The unit testing on the VHDL implementation was performed on a NEXYS 4 FPGA
board [25], and the general idea of the unit testing is using switches of the FPGA
board to give the input signals of the unit under test (components or blocks) and
giving the output of the unit under test to LED lights of the FPGA board. The unit
testing of the SPI interface is in similar manner with the test on the Arduino, a loop-
back test was performed. The SCK signal of the SPI interface is provided by a clock
generator component on VHDL. The MOSI pin was connected to the MISO pin of
the SPI interface. The 8-bits i_byte_tx was provided by 8 switches of the FPGA
board, and the 8-bits o_byte_rx was given to 8 LED lights of the SPI interface. The
expected result of the unit testing is the o_byte_rx LED displays is equal to the in-
put i_byte_tx eventually. The other components’ or blocks’ unit testing are followed
the general testing idea mentioned above and they won’t be explained in detail here.

All components/blocks passed the unit testing. The system testing of this project
was conducted with an Arduino UNO board, a NEXYS 4 FPGA board, and a volt-
age level translating circuit on a bread board. The next section will describe the
system testing.

7.1.2 System testing and evaluation
The initial testing and verifying setup had PC (MATLAB), an Arduino board, and
an FPGA board. The Arduino serves as a gateway between the PC and the chip,
the testing was intended to start with testing and verifying functions of the Ar-
duino and the FPGA board, and then move to the functions between PC and the
Arduino board, finally combine them all. However, designing and implementing
functions between the Arduino and the FPGA board, and designing PCB schematic
have run out of the time so that functions between the PC and the Arduino have
been left out of the project. As a consequence of that, the system testing and eval-
uation only tested and verified functions between the Arduino and the FPGA board.

The system testing setup of the thesis project includes an NEXYS 4 FPGA board,
and Arduino UNO board, and a voltage level translating circuit layed on a bread
board. Since the maximum voltage of pmod pins of the NEXYS 4 FPGA board is
3.3 V, and the maximum voltage of GPIO pins of the Arduino board is 5 V, a voltage
level translating circuit is needed between the FPGA board and the Arduino. All
signals come from the Arduino board should be adapted to 3.3 V. Because 3.3 V
can be recognized as voltage high by Arduino UNO, an unidirectional voltage level
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translator is enough for this case, signals generated by the FPGA board can be
connected to the Arduino directly. In this thesis project, an M74HC4050 [26] is used
as a voltage level translator. However, in PCB design, the voltage level translators
between the Arduino board and the experimental chip should be bi-directional to
obtain more reliable signal transaction. All signals come from the experimental
chip should be shift to 5 V first then be passed to the Arduino board. Figure 7.1
shows the simple schematic of the testing setup. The SPI related GPIO pins of the
Arduino is given to the voltage level translating circuit and Table 7.1 shows the
pins connection between the Arduino UNO and the FPGA. With another Arduino
moudle, the SPI related pins might different.

Table 7.1: Table of pins connection between Arduino UNO and NEXYS 4 FPGA.

Arduino UNO NEXYS 4 FPGA
MOSI 11 ja[1]
MISO 12 ja[2]
SCK 13 ja[3]
SS 10 ja[4]
SS2 9 ja[4](chip#2)

Figure 7.1: Simple schematic of evaluation setup

The Arduino board sends command packets to the FPGA board, and waits for the
FPGA board sends packet back. Using the Arduino’s serial monitor, the retrieved
data can be seen via it. An Arduino program sketch_master.ino plays the role
as the SPI master, and a VHDL source code top_test.vhd serves as the SPI slave.
The top_test entity contains the top component and a ROM component. To test
the readDataTest function, the test results can be fixed given by a certain 8-byte
long data; or it can be given by a ROM stored different 8-byte long data. The ROM
can be generated by Xilinx Block Memeory Generator [27], series 8-byte long data
can be written into a coefficient (COE) file to initialize the ROM. The output of
parameter register is given to LED lights of the FPGA board.
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There are two testing scenarios: only one slave device (the experimental chip) is con-
nected to the master device Arduino; two slave devices are connected to the master
device. The signle slave test scenario can be used to test command functions, and
the two slave scenario are used to test multiple test sites running function. Some
test vectors used in the single slave scenario can be used in the two slave scenario.
Testing cases used in these two scenarios are described below.

Testing scenario 1: only one slave connected to the master device, Arduino sends
command packets to the experimental chip 1, the header of the data packet is 0x81.
Executing following test cases in order, observing test results on the serial monitor
of Arduino IDE and the LED lights of FPGA:

1. write parameter 0x0A0B to RAM address 0x01.
2. write parameter 0x0C0B to RAM address 0x02.
3. write parameter 0xEC0B to RAM address 0x03.
4. read parameter stored in the RAM address 0x01.
5. read parameter stored in the RAM address 0x02.
6. read parameter stored in the RAM address 0x03.
7. fetch parameter stored in the RAM address 0x01.
8. read test results; suppose the test results is fixed given by 8 byte long value

0x0123456789ABCDEF.
9. read test results stored in a ROM.

After executing the first seven test cases, the LED lights displayed as 0x0A0B,
0x0C0B, and 0xEC0B sequentially, then displayed as 0x0A0B again. Since only
readDataParam and readDataTest function will return value to the Arduino, only
test case 4-6 and 8-9 will display values on the serial monitor of the Arduino IDE.
List 7.1 shows the serial print displayed on the serial monitor after running test case
4. The first returned byte was the header 0x81, then followed by the header’s CRC
checksum 0xCC; next was the first byte of the parameter 0x0A and its CRC check-
sum 0xEC. The second byte of the parameter was 0x0B, before received 0x0B, the
header 0x81 and the header’s CRC checksum came first, finally the CRC checksum
of the second byte came. The last four lines of the printed log only displayed the
data and the CRC check result. All error check result was ‘0’, which means no error.

Listing 7.1: test results of test case 1 to 4
read parameters o f S lave#1 begin
data_byte = 81
crc_byte = CC
data_byte = A
crc_byte = EC
data_byte = 81
crc_byte = CC
data_byte = B
crc_byte = 26
0 : data = 81 ; e r r o r = 0
1 : data = A; e r r o r = 0
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2 : data = 81 ; e r r o r = 0
3 : data = B; e r r o r = 0

To verify the CRC check function of the Arduino, data input with errors have to be
produced on purpose. There are two ways can generate wrong data. The first way is
modifying the CRC checksum of the header to let a wrong CRC checksum appended
after the header when it sends to the Arduino. The second way is removing the first
SPI.transfer( ) call to retrieve junk data and performing the CRC check process
directly from the second SPI.transfer( ) call (the new first SPI.transfer( ) call). If
we start the CRC checking process from the junk value, all the CRC check results
should be ‘1’. List 7.2 shows the test results with solution two; All CRC check results
were ‘1’.

Listing 7.2: test results of test case 1 to 4 with CRC error
read parameters o f S lave#1 begin
data_byte = 81
crc_byte = 81
data_byte = CC
crc_byte = A
data_byte = EC
crc_byte = 81
data_byte = CC
crc_byte = B
0 : data = 81 ; e r r o r = 1
1 : data = CC; e r r o r = 1
2 : data = EC; e r r o r = 1
3 : data = CC; e r r o r = 1

List 7.3 shows the test results of the test case 8. The 8-byte long data 0x0123456789ABCDEF
were split into bytes and returned orderly, the even index printed sentences showed
the header of the returned packets, and the odd index print sentences showed the
returned test results of the chip.

Listing 7.3: test results of test case 8
read t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 23 ; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 45 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 67 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 89 ; e r r o r = 0
10 : data = 81 ; e r r o r = 0
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11 : data = AB; e r r o r = 0
12 : data = 81 ; e r r o r = 0
13 : data = CD; e r r o r = 0
14 : data = 81 ; e r r o r = 0
15 : data = EF; e r r o r = 0

Test case 9 is similar to test case 8. To make sure the the different data stored in the
ROM can be read as test results, readDataTest function should be called in the loop
function of the Arduino so that every iteration of the loop a different value will be
shifted into the top module of the VHDL implementation. Since the log was long,
so it won’t be shown fully here (the log contains 16 iterations). List 7.4 shows the
first two round of the test result of this test case. The test results showed that when
the test data of the chip changed, it can be read back via the readDataTest function.

Listing 7.4: the first two rounds of the test results of test case 9
round = 0
read t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = FE; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = DC; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = BA; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 98 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 76 ; e r r o r = 0
10 : data = 81 ; e r r o r = 0
11 : data = 54 ; e r r o r = 0
12 : data = 81 ; e r r o r = 0
13 : data = 32 ; e r r o r = 0
14 : data = 81 ; e r r o r = 0
15 : data = 10 ; e r r o r = 0
round = 1
read t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = F; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = ED; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = CB; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = A9 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 87 ; e r r o r = 0
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10 : data = 81 ; e r r o r = 0
11 : data = 65 ; e r r o r = 0
12 : data = 81 ; e r r o r = 0
13 : data = 43 ; e r r o r = 0
14 : data = 81 ; e r r o r = 0
15 : data = 21 ; e r r o r = 0

Another interesting question is how large data the readDataTest function can pro-
cess. By now the test results data of the chip are 8-byte long. The data length
might increase in the future, it can be also smaller than 8 bytes. Thus, a boundary
test should be implemented here. Giving different length fixed data as test results
of the chip, varied data length from 1 byte to 10 bytes, and 20 bytes, the boundary
test was performed. The test result of the boundary test is shown in List A.1, since
20 byte data has already a large number, data length even large won’t be tested in
this project. If the design passed 20 bytes, it can also pass testing with data length
less than 20 bytes.

Testing scenario 2: two slaves connected to the master device, Arduino sends
command packets to two experimental chips. The header of chip 1 is 0x81, and the
header of chip 2 is 0x80. The purpose of test cases in the testing scenario 2 is ver-
ifying the multiple test sites running function. So, if the returned data of different
chip can carry different headers with same commands but with different address or
data value the returned data is correct, then it can be proved that the multiple test
sites running can work properly. Same test vectors used in testing scenarios 1 can
be used here. The following test cases were performed:

1. write parameter 0x0A0B to ram address 0x01 of chip 1
2. write parameter 0x0C0B to ram address 0x01 of chip 2
3. read parameter stored in the ram address 0x01
4. read test results (assume the test results of chip 1 is 0x0123456789ABCDEF,

and the test results of chip 2 is 0xFEDCBA9876543210)

The test results of test case 1 and 2 are shown in List 7.5. As it was shown in the list,
all data packets come from different chip differs with different headers. Parameter
0x0A0B of chip 1 and parameter 0x0C0CB of chip 2 were returned with no errors.
The test results of test case 3 and 4 are shown in List 7.6, test result data of two
chips were retrieved with different headers and without errors.

Listing 7.5: test results of test case 1 and 2
read parameters o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = A; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = B; e r r o r = 0
read parameters o f S lave#2 begin
0 : data = 80 ; e r r o r = 0
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1 : data = C; e r r o r = 0
2 : data = 80 ; e r r o r = 0
3 : data = B; e r r o r = 0

Listing 7.6: test results of test case 3 and 4
read t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 23 ; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 45 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 67 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 89 ; e r r o r = 0
10 : data = 81 ; e r r o r = 0
11 : data = AB; e r r o r = 0
12 : data = 81 ; e r r o r = 0
13 : data = CD; e r r o r = 0
14 : data = 81 ; e r r o r = 0
15 : data = EF; e r r o r = 0
read t e s t r e s u l t o f S lave#2 begin
0 : data = 80 ; e r r o r = 0
1 : data = FE; e r r o r = 0
2 : data = 80 ; e r r o r = 0
3 : data = DC; e r r o r = 0
4 : data = 80 ; e r r o r = 0
5 : data = BA; e r r o r = 0
6 : data = 80 ; e r r o r = 0
7 : data = 98 ; e r r o r = 0
8 : data = 80 ; e r r o r = 0
9 : data = 76 ; e r r o r = 0
10 : data = 80 ; e r r o r = 0
11 : data = 54 ; e r r o r = 0
12 : data = 80 ; e r r o r = 0
13 : data = 32 ; e r r o r = 0
14 : data = 80 ; e r r o r = 0
15 : data = 10 ; e r r o r = 0

7.2 Utilization result of the VHDL implementa-
tion

After synthesizing the VHDL code on Vivado based on the NEXYS 4 FPGA board,
an utilization report was generated by Vivado. Appendix B shows the report. Both
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LUT and memory utilization are very low.

7.3 PCB design
The Arduino and VHDL implementation took up most of the time so that only a
schematic of PCB was created, the layout and manufactured of the PCB have been
left out. Figure C.1 shows the schematic of the PCB. The whole PCB schematic was
segmented into several parts, the left part is the Arduino component, the middle
part is the voltage level translating circuits, the right part are two experimental
chips are connected to the Arduino through the voltage level translating circuits,
and the left down corner part is the power management part.

7.4 ASIC power and area
The ASIC simlulation of the VHDL implementation has been left outside of this
project. It was planned in the beginning of the project and was performed before
this summer, but during the summer the whole design was substantially changed,
and those changes and updates was time consuming, so it became impossible to redo
it due to the time limit of the project.
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This chapter will discuss the results obtained in Chapter 7. Starting with the analy-
sis of the results, limitation and evaluations to the design implementation will follow.

8.1 Results
After running the test cases 1 to 3 in the testing scenarios 1, the LED lights were off.
Then the FPGA board displayed sequentially as 0x0A0B, 0X0C0B, and 0XEC0B
after executing test case 4 to 6. The LED lights displayed as 0x0A0B again after ex-
ecuting test case 7. The test results suggest the Arduino can communicate with the
SPI interface, and write parameters into the RAM of the chip and read parameters
stored in the RAM of the chip. Since only when the read control signal of the RAM
block is asserted the parameters stored in the RAM can be read from the parameter
register of the RAM access block, and the first three write command didn’t enable
the read control signal, the LED lights were turned off. When reading parameters
stored in certain addresses of RAM, parameters were sent to parameter register so
the LED displayed as those values. After fetching parameter stored in the RAM ad-
dress 0x01, value 0x0A0B displayed on the LED lights. Similar to read parameters,
the fetched parameters were sent to parameter register so the LED lights displayed
as value 0x0A0B which was written into address 0x01 after running the test case 1.

The test results showed in the List 7.1 and List 7.2 suggests that the CRC generat-
ing function on the VHDL implementation can work properly, the data packet can
be sent with headers, and the CRC checking function is correct. All data bytes are
coming as one byte data followed by one byte CRC checksum manner, in order to
get one byte useful data four bytes are needed: first byte is the header indicates
the source of the data(which chip), the second byte is the header’s CRC checksum,
and the third byte is the useful data byte, and the fourth byte is data bytes’ CRC
checksum. When there is transmission error, the Arduino can detect it and report it.

Test results presented in the List 7.3 suggests that the Arduino can retrieve the test
results generated by the chip successfully, all eight bytes test results were returned
with header. The test results showed in the List A.1 suggests that the Arduino can
read back at least 20 bytes long data from the chip.

Test results showed in the List 7.5 and 7.6 suggests that the multiple test sites
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running function can work correctly: different chips’ data packet with their headers
were read back, and no data collision happened during transmission.

All testing results suggests that the main functions of the testing system, namely
SPI interface, CRC checking/generating on Arduino, CRC generating on VHDL,
accessing RAM of the chip, and retrieving test results of the chip, can work prop-
erly. The CRC check function on the VHDL implementation was verified okay in
unit testing, but the checking result the error signal cannot be reported back to the
Arduino. The reason of this will be explained in the next section.

From the post-synthesize utilization report showed in the Appendix B, it can be
seen that both LUT and memory utilization of the VHDL implementation on the
NEXYS 4 FPGA is very low. This suggests that the VHDL implementation doesn’t
use too much resources of the FPGA board, and there is a larger portion of the
FPGA resource left for testing experimental chips.

Although the testing results described above suggests the main functions of the
testing system work properly, some limitations should be noticed. In testing and
evaluation part to the project design, the test results of experimental chips were
provided with fixed given value or different value stored in a ROM on the FPGA.
Some important features of the system when the testing results are provided by some
other DSP or FEC chip might have been hided, which would bias the evaluation
of the designed testing system. If there is a DSP/FEC chip connected behind the
existing evaluation setup illustrated in section 7.1.2 to provide a real testing results
of design chips, some effort need to put to make the DSP/FEC chip upload data
to the other parts of the evaluation setup, such as solving synchronization problems
between the DSP/FEC chip and the NEXYS 4 FPGA board, and creating another
communication interface between the DSP/FEC chip and the FPGA board, or an
interface between DSP/FEC chip and Arduino.

8.2 Evaluation of the design implementation

8.2.1 CRC calculating implementation
The CRC generator and CRC checker on the VHDL implementation is a serial im-
plementation which consists of shift registers and on every clock it can only process
one-bit data. The advantage of the serial implementation is the low hardware com-
plexity, but it can not get the CRC calculation results with a fast speed [28]. Since
there is no high speed requirement of the testing system, the serial implementation
is acceptable. However, the serial CRC implementation may not fulfil the specific
high speed requirements for testing other high-performance design chips. Parallel
CRC implementation can overcome the low speed drawback.
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8.2.2 CRC check error reported back problem
One problem in the design is Arduino cannot catch CRC check error reported on
the VHDL implementation. Since clock signals provided by the experimental chip
are much faster than the SCK generated by Arduino, the time Arduino needs to
complete one time digital read/write is much longer than one clock tick of the chip.
That means before the Arduino can finish reading the error reported by the chip,
the error signal might has already changed. One possible solution to solve this prob-
lem is four-phase handshaking scheme. In the handshaking scheme, the error signal
must be resynchronized on a hardware two-stage flip flop before they are sent to the
Arduino. Clock signals and power supply must be provided to the hardware flip-flop
which decrease the hardware efficiency of the design. Therefore, the handshaking
scheme was not used to solve this problem in the project.

Since the initial reason to add an error detection procedure to the system is to avoid
writing wrong parameters into the chip and trigger wrong testing experiments, a
compensation to report error back to the Arduino is using the readDataParam func-
tion read parameters written into the RAM back to the Arduino and comparing
them with parameters send to the chip. The comparing can be done at the Arduino
side, and the Arduino report the checking results to PC. Due to the time limit of
the project, this comparing and checking function has left out. With the compensa-
tion solution wrong test experiments triggered by wrong parameters can be avoided,
however, transmission error happens in sending data stages of command fetchData-
Param cannot be reported to the Arduino; the address of the fetchDataParam may
be wrong. As a consequence of this, there is still possibility that a wrong exper-
iment will be launched. This problem may be solved by changing the computer
card from Arduino to CPLD or other FPGA board, since synchronization in VHDL
implementation is easier than synchronization between VHDL implementation and
an MCU. At that time, four-phase handshaking scheme could be used to fixing the
cannot catch CRC check error problem.

If the Arduino can catch the CRC check error successfully, error handling could
be done at the Arduino or move above to PC. When there is a CRC check error,
the Arduino can resend the command without issuing the PC, or the Arduino can
upload this error to PC to let PC resend the command. It depends on the user how
to deal with this error information.

8.2.3 Performance regarding the RAM
In the project, an SRAM is used for storing parameters for testing the design chips.
The RAM can store at most 256 16-bit parameters. With less knowledge about the
specific design chip, the performance of the RAM hasn’t been take into consideration.
At the planning stage of the project, one desired bonus feature is storing waveform
in the RAM [7]. However, it turns out achieve the main features has been used up
all the time, and this bonus feature has been left. It would be interesting to store
waveform in the RAM and let design chips to arbitrarily fetch symbols stored in the
RAM [29]. At this point, how large waveform the RAM can store and how fast the
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design chip can fetch the symbols becomes attractive topics of the project.

8.2.4 Data waste in the designed system
From the testing results, it can be seen that there are data wasted in the testing
system, every useful byte retrieved from the chip will cost other three bytes: one
byte header, the header’s CRC checksum, and CRC checksum of the useful byte.
The reason of the data redundancy include hardware limitation, and the data trans-
action reliability.

The Arduino’s SPI library is an 8-bit oriented SPI implementations, the Arduino
can only exchange one byte long data with the chip. Increasing the data process
length on Arduino or on VHDL may require more complex implementation to split
larger data into bytes before data transaction. So, the existing data waste is kept
in the system.

There may be rare cases that tri-state buffers of the MISO line of the two chips
doesn’t work properly so that the two chips may upload data on the MISO line
simultaneously. To improve the data transmission reliability, each byte is going to
send via SPI interface should carry its header and header’s CRC checksum. In real-
ity, the probability may be so low so the design can be relaxed a bit. A header and
the header’s CRC checksum will only add before the first byte. Take the eight bytes
test results sending as an example, if only add header and header’s CRC checksum
before the first byte, it only needs 1 + 2 + 8 · 2 = 19 bytes exchanging on the SPI
interface and saved 14 bytes.

8.2.5 SPI interface
The SPI interface increases the data transmission speed and use less hardware re-
source. However, since the SPI communication relies on the chip select line (SSand
the SPI clock (SCK), once the Arduino board cannot provide stable SS or SCK, the
SPI interface cannot work. For example, in the testing stage of the project, there
were several times that the SCK line was not stable by jump wire’s connection so
that the MISO line and the MOSI line signals got random delay. As a result of this,
wrong data was retrieved back to the Arduino.

8.2.6 PCB design
Low-dropout linear voltage regulator was used in this project to generating power
on-board. The solution is low-cost, simple, and low noise. However, linear voltage
regulators always waste more power compare to the switching voltage regulator, and
with low power efficiency. Combined with switching voltage regulator and the LDO
voltage regulator may be a good solution [30]: use a switching voltage regulator
followed by a LDO voltage regulator; the switching voltage regulator can provide an
efficiency but with noise output, and the LDO voltage regulator can give a noise-free
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output. On the other hand, the output of the voltage regulator is fixed after the
input voltage and the resistors’ ratio are fixed. This solution is not flexible, and the
adjustment of the voltage output range is hard.
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Conclusion

This chapter summarizes the results and relates them to the aim and objectives that
were set at the beginning of the project. The possible future development will be
discussed at the end.

9.1 Objective fulfillment
The project aims to generalize the existing testing approach and make the experi-
mental chip evaluation setup more effective and efficient. In the project, the original
interface between the Arduino and the experimental chip has been updated to an
SPI interface. The original input and output pins for data transaction have been
replaced by SPI MISO and MOSI pins, fewer pins are used so that a smaller chip
package can be used and the price of the whole testing system gets decreased. Be-
sides, since SPI communication can achieve faster data transmission, a large trunk
of data can be exchanged during a short period of time. Two experimental chips are
connected to the Arduino via the SPI interface so that these two chips can be per-
formed with different experiments and finally speed up the research process. From
SPI interface aspect, the testing infrastructure has become more efficient and more
effective.

A CRC check/generating function is added to the data transmission process. Data
transaction reliability will be improved by the error-detect scheme. The wrong test-
ing parameters won’t trigger further testing process, and the wrong testing results
can be detected so that they won’t be used for analysis. Thus, the whole testing
process becomes more efficient and more reliable.

A RAM access block that can be used to store different kinds of testing parameters
has been added. As a storage of the parameters is independent with the type of the
experimental chips, the RAM access block can be generalized to other chips. When
there are some particular parameters changed to launch a different experiment, only
these parameters need to sending to the chip, other parameters can be fetched from
the RAM. To do so, possible data transaction errors may be reduced, and the work-
load of the whole system get decreased. The RAM access block makes the whole
design more general and efficient.

A new PCB was designed, more general pin names have been used for the Arduino
and the chip, so it can be generalized to test other design chips. Due to the COVID-
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19 pandemic and the time limit of the project, only a schematic of the PCB was
created, more accurate analysis of the PCB design has been left. The PCB hasn’t
been laid out nor manufactured yet so that testing work of the hardware part of the
testing infrastructure was never completed. A good advantage of the project design
is that the whole design is divided into several design blocks (layers), so that opti-
mizations or alternatives can be targeted on single blocks. In this way, the testing
infrastructure can be easily generalized and expanded.

Because of the time limit of the project, there was no time to implement function
in MATLAB to control the Arduino to communicate with the chips, and there was
no time to explore other powerful computer cards that can be used in this project.

9.2 Future work
This section will discuss about some possible development in the future. The future
work includes PCB design, storing waveform in the RAM, exploring other powerful
computer cards, and other development. The following subsection will describe each
topic in detail.

9.2.1 PCB design
The voltage output of the LDO voltage regulator is fixed after the VIN and the
ratio of R1/R2 are determined. It is not flexible and a digital potentiometer should
replace the fixed value R1/R2 to provide adjustable and programmable voltage out-
put. Usually digital potentiometers are controlled by MCU via I2C/SPI/parallel
communication. Since the SPI related pins of the Arduino have been used, and the
parallel communication will use more hardware resources, the digital potentiometer
used in the project should be I2C controlled. To control the digital potentiometer
IC via the I2C, Arduino software development regarding controlling the IC via I2C
need to be done. The PCB design can start from choosing proper digital poten-
tiometer. The next step is layout the PCB according to the designed schematic, and
printing the new PCB. The testing of the PCB should focus on testing the power
generation part of the PCB since this part should be safe enough to avoid damage
experimental chips. In order to avoid the generated power damage experimental
chips, safely control the voltage range generated on the PCB is necessary. One pos-
sible solution is to using analog read pins of the Arduino to read the voltage value
back and output the power to the chip only when the voltage falls into the safe range.

9.2.2 Storing waveform in the RAM
As mentioned in section 8.2.3, exploring the performance of the RAM would be
interesting to the project. How large the RAM could be, how fast the design chips
can fetch the symbols from the RAM, and the relationship between the area and the
access speed of the RAM could be attractive points. When fast access data stored in

60



9. Conclusion

the RAM, some errors might happen, so the access error rate is also an interesting
point.

9.2.3 Exploring other powerful computer card
Arduino board provides the low-cost feature to the testing infrastructure but it has
some drawbacks to limit the efficiency of the testing infrastructure. So, it is attrac-
tive to explore other powerful computer cards in the future. This subsection will
shortly discuss some drawbacks of using Arduino in the project and then give some
possible alternatives to the Arduino regarding its drawbacks.

As explained in section 8.2.2, Arduino board cannot catch the CRC check error
reported from the chip. One of the reasons is that synchronization between an FP-
GA/ASIC design and a MCU on the MCU side is hard. However, synchronization
on FPGA/ASIC side can be simply achieved by using some flip-flops. On the other
hand, the Arduino sets the SPI communication configurations via SPI.settings() (a
software call), but the specific configuration cannot pass to the VHDL implementa-
tion directly. As a consequence of this, the SPI configuration is fixed on the VHDL
implementation. For example, in this project, the SPI mode is mode 3, both Ar-
duino and VHDL implemenation should keep the same mode. If the Arduino side
changes to other mode, the SPI implementation on VHDL should also change. If
the specific configuration can be passed to the VHDL implementation directly, like
CPOL and CPHA, the SPI implementation on VHDL can be adapted to an interface
with CPOL and CPHA port so that the SPI mode can be changed easily. When
both master device and slave device are implemented on VHDL, this can be achieved
easily. From the synchronization aspect and the directly set configuration aspect,
using CPLD or FPGA as a computer card might be a good choice. Also, if the
whole testing system can be implemented on SoC, that would be good to enhance
the testing performance significantly [31].

If the compensation method mentioned in section 8.2.2 can fulfil the users’ expec-
tation, some other powerful computer cards such as Arduino Due and Raspberry
Pi can be used in the project. In the Arduino board used in the present FEC chip
evaluation setup is Arduino Mega2560 which provides 5 V GPIO signals and these
signals must be adapted to 0.8 V signals via voltage translators. Voltage shifter/-
translator ICs that can shift signals from 5 V to 0.8 V are seldom. From this aspect,
a computer card that can provide 3.3 V GPIO signals or even lower voltage signals
are attractive. The Arduino Mega2560 which is used in the existing FEC chip eval-
uation and the Arduino board used in the developing stage of the project are using
8-bit microcontroller processor which can not provide fast speed read/write opera-
tion and the largest number the Arduino can represent is not large enough. Thus,
seeking another powerful computer cards that have powerful calculation ability is
interesting. The Arduino Due can provide 3.3 V GPIO signals and has a 32-bit Arm
core that fulfils the above two requirements so it may be a possible alternative. If
the voltage range of GPIO pins is not important in developing then Raspberry Pi
could be a alternative to the computer card.
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9.2.4 Other development
As explained in section 8.2, the serial CRC calculation may not meet high perfor-
mance of the experimental chips. It would be interesting to explore the parallel CRC
implementation on VHDL, and comparing the serial CRC implementation with the
parallel CRC implementation on ASIC timing, power, area aspect regarding the
different input data length and input data values.

The data waste problem can be improved with only add header and header’s check-
sum to the first transaction byte as described in section 8.2. It is worth to reduce
the data waste with this method to lower the cost of the design further more.

The testing methodologies used in the project are unit testing and system testing.
With more mature design, performance testing is necessary, such as stress test, en-
durance testing. Those testing can be performed to evaluate the reliability and
robustness of the testing system.
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Listing A.1: test results of different length test results
read 1 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
read 2 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 23 ; e r r o r = 0
read 3 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 23 ; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 45 ; e r r o r = 0
read 4 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 23 ; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 45 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 67 ; e r r o r = 0
read 5 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 23 ; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 45 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 67 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 89 ; e r r o r = 0
read 6 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 23 ; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 45 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 67 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 89 ; e r r o r = 0
10 : data = 81 ; e r r o r = 0
11 : data = AB; e r r o r = 0
read 7 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 23 ; e r r o r = 0
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4 : data = 81 ; e r r o r = 0
5 : data = 45 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 67 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 89 ; e r r o r = 0
10 : data = 81 ; e r r o r = 0
11 : data = AB; e r r o r = 0
12 : data = 81 ; e r r o r = 0
13 : data = CD; e r r o r = 0
read 8 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = 1 ; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 23 ; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 45 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 67 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 89 ; e r r o r = 0
10 : data = 81 ; e r r o r = 0
11 : data = AB; e r r o r = 0
12 : data = 81 ; e r r o r = 0
13 : data = CD; e r r o r = 0
14 : data = 81 ; e r r o r = 0
15 : data = EF; e r r o r = 0
read 9 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = EF; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = 1 ; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 23 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 45 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 67 ; e r r o r = 0
10 : data = 81 ; e r r o r = 0
11 : data = 89 ; e r r o r = 0
12 : data = 81 ; e r r o r = 0
13 : data = AB; e r r o r = 0
14 : data = 81 ; e r r o r = 0
15 : data = CD; e r r o r = 0
16 : data = 81 ; e r r o r = 0
17 : data = EF; e r r o r = 0
read 10 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = CD; e r r o r = 0
2 : data = 81 ; e r r o r = 0
3 : data = EF; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 1 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 23 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 45 ; e r r o r = 0
10 : data = 81 ; e r r o r = 0
11 : data = 67 ; e r r o r = 0
12 : data = 81 ; e r r o r = 0
13 : data = 89 ; e r r o r = 0
14 : data = 81 ; e r r o r = 0
15 : data = AB; e r r o r = 0
16 : data = 81 ; e r r o r = 0
17 : data = CD; e r r o r = 0
18 : data = 81 ; e r r o r = 0
19 : data = EF; e r r o r = 0
read 20 byte t e s t r e s u l t o f S lave#1 begin
0 : data = 81 ; e r r o r = 0
1 : data = CD; e r r o r = 0
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2 : data = 81 ; e r r o r = 0
3 : data = EF; e r r o r = 0
4 : data = 81 ; e r r o r = 0
5 : data = 1 ; e r r o r = 0
6 : data = 81 ; e r r o r = 0
7 : data = 23 ; e r r o r = 0
8 : data = 81 ; e r r o r = 0
9 : data = 45 ; e r r o r = 0
10 : data = 81 ; e r r o r = 0
11 : data = 67 ; e r r o r = 0
12 : data = 81 ; e r r o r = 0
13 : data = 89 ; e r r o r = 0
14 : data = 81 ; e r r o r = 0
15 : data = AB; e r r o r = 0
16 : data = 81 ; e r r o r = 0
17 : data = CD; e r r o r = 0
18 : data = 81 ; e r r o r = 0
19 : data = EF; e r r o r = 0
20 : data = 81 ; e r r o r = 0
21 : data = 1D; e r r o r = 0
22 : data = 81 ; e r r o r = 0
23 : data = EF; e r r o r = 0
24 : data = 81 ; e r r o r = 0
25 : data = 1 ; e r r o r = 0
26 : data = 81 ; e r r o r = 0
27 : data = 23 ; e r r o r = 0
28 : data = 81 ; e r r o r = 0
29 : data = 45 ; e r r o r = 0
30 : data = 81 ; e r r o r = 0
31 : data = 67 ; e r r o r = 0
32 : data = 81 ; e r r o r = 0
33 : data = 89 ; e r r o r = 0
34 : data = 81 ; e r r o r = 0
35 : data = AB; e r r o r = 0
36 : data = 81 ; e r r o r = 0
37 : data = CD; e r r o r = 0
38 : data = 81 ; e r r o r = 0
39 : data = E0 ; e r r o r = 0
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Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.
-------------------------------------------------------------------------------------------------
| Tool Version : Vivado v.2019.1 (win64) Build 2552052 Fri May 24 14:49:42 MDT 2019
| Date : Sun Nov 22 18:20:20 2020
| Host : DESKTOP-EUC18TO running 64-bit major release (build 9200)
| Command : report_utilization -file top_utilization_synth.rpt -pb top_utilization_synth.pb
| Design : top
| Device : 7a100tcsg324-1
| Design State : Synthesized
-------------------------------------------------------------------------------------------------

Utilization Design Information

Table of Contents
-----------------
1. Slice Logic
1.1 Summary of Registers by Type
2. Memory
3. DSP
4. IO and GT Specific
5. Clocking
6. Specific Feature
7. Primitives
8. Black Boxes
9. Instantiated Netlists

1. Slice Logic
--------------

+----------------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+----------------------------+------+-------+-----------+-------+
| Slice LUTs* | 758 | 0 | 63400 | 1.20 |
| LUT as Logic | 730 | 0 | 63400 | 1.15 |
| LUT as Memory | 28 | 0 | 19000 | 0.15 |
| LUT as Distributed RAM | 28 | 0 | | |
| LUT as Shift Register | 0 | 0 | | |
| Slice Registers | 601 | 0 | 126800 | 0.47 |
| Register as Flip Flop | 584 | 0 | 126800 | 0.46 |
| Register as Latch | 17 | 0 | 126800 | 0.01 |
| F7 Muxes | 4 | 0 | 31700 | 0.01 |
| F8 Muxes | 2 | 0 | 15850 | 0.01 |
+----------------------------+------+-------+-----------+-------+
* Warning! The Final LUT count, after physical optimizations and full implementation, is typically
lower. Run opt_design after synthesis, if not already completed, for a more realistic count.

1.1 Summary of Registers by Type
--------------------------------

+-------+--------------+-------------+--------------+
| Total | Clock Enable | Synchronous | Asynchronous |
+-------+--------------+-------------+--------------+
| 0 | _ | - | - |
| 0 | _ | - | Set |
| 0 | _ | - | Reset |
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| 0 | _ | Set | - |
| 0 | _ | Reset | - |
| 0 | Yes | - | - |
| 19 | Yes | - | Set |
| 526 | Yes | - | Reset |
| 0 | Yes | Set | - |
| 56 | Yes | Reset | - |
+-------+--------------+-------------+--------------+

2. Memory
---------

+-------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-------------------+------+-------+-----------+-------+
| Block RAM Tile | 0.5 | 0 | 135 | 0.37 |
| RAMB36/FIFO* | 0 | 0 | 135 | 0.00 |
| RAMB18 | 1 | 0 | 270 | 0.37 |
| RAMB18E1 only | 1 | | | |
+-------------------+------+-------+-----------+-------+
* Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate only
one FIFO36E1 or one FIFO18E1. However, if a FIFO18E1 occupies a Block RAM Tile, that tile can still
accommodate a RAMB18E1

3. DSP
------

+-----------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-----------+------+-------+-----------+-------+
| DSPs | 0 | 0 | 240 | 0.00 |
+-----------+------+-------+-----------+-------+

4. IO and GT Specific
---------------------

+-----------------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-----------------------------+------+-------+-----------+-------+
| Bonded IOB | 90 | 0 | 210 | 42.86 |
| Bonded IPADs | 0 | 0 | 2 | 0.00 |
| PHY_CONTROL | 0 | 0 | 6 | 0.00 |
| PHASER_REF | 0 | 0 | 6 | 0.00 |
| OUT_FIFO | 0 | 0 | 24 | 0.00 |
| IN_FIFO | 0 | 0 | 24 | 0.00 |
| IDELAYCTRL | 0 | 0 | 6 | 0.00 |
| IBUFDS | 0 | 0 | 202 | 0.00 |
| PHASER_OUT/PHASER_OUT_PHY | 0 | 0 | 24 | 0.00 |
| PHASER_IN/PHASER_IN_PHY | 0 | 0 | 24 | 0.00 |
| IDELAYE2/IDELAYE2_FINEDELAY | 0 | 0 | 300 | 0.00 |
| ILOGIC | 0 | 0 | 210 | 0.00 |
| OLOGIC | 0 | 0 | 210 | 0.00 |
+-----------------------------+------+-------+-----------+-------+

5. Clocking
-----------

+------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+------------+------+-------+-----------+-------+
| BUFGCTRL | 1 | 0 | 32 | 3.13 |
| BUFIO | 0 | 0 | 24 | 0.00 |
| MMCME2_ADV | 0 | 0 | 6 | 0.00 |
| PLLE2_ADV | 0 | 0 | 6 | 0.00 |
| BUFMRCE | 0 | 0 | 12 | 0.00 |
| BUFHCE | 0 | 0 | 96 | 0.00 |
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| BUFR | 0 | 0 | 24 | 0.00 |
+------------+------+-------+-----------+-------+

6. Specific Feature
-------------------

+-------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-------------+------+-------+-----------+-------+
| BSCANE2 | 0 | 0 | 4 | 0.00 |
| CAPTUREE2 | 0 | 0 | 1 | 0.00 |
| DNA_PORT | 0 | 0 | 1 | 0.00 |
| EFUSE_USR | 0 | 0 | 1 | 0.00 |
| FRAME_ECCE2 | 0 | 0 | 1 | 0.00 |
| ICAPE2 | 0 | 0 | 2 | 0.00 |
| PCIE_2_1 | 0 | 0 | 1 | 0.00 |
| STARTUPE2 | 0 | 0 | 1 | 0.00 |
| XADC | 0 | 0 | 1 | 0.00 |
+-------------+------+-------+-----------+-------+

7. Primitives
-------------

+----------+------+---------------------+
| Ref Name | Used | Functional Category |
+----------+------+---------------------+
| FDCE | 509 | Flop & Latch |
| LUT2 | 421 | LUT |
| CARRY4 | 124 | CarryLogic |
| LUT4 | 120 | LUT |
| LUT6 | 103 | LUT |
| LUT5 | 81 | LUT |
| LUT3 | 78 | LUT |
| LUT1 | 74 | LUT |
| IBUF | 70 | IO |
| FDRE | 56 | Flop & Latch |
| RAMD32 | 42 | Distributed Memory |
| OBUF | 19 | IO |
| FDPE | 19 | Flop & Latch |
| LDCE | 17 | Flop & Latch |
| RAMS32 | 14 | Distributed Memory |
| MUXF7 | 4 | MuxFx |
| MUXF8 | 2 | MuxFx |
| RAMB18E1 | 1 | Block Memory |
| OBUFT | 1 | IO |
| BUFG | 1 | Clock |
+----------+------+---------------------+

8. Black Boxes
--------------

+----------+------+
| Ref Name | Used |
+----------+------+

9. Instantiated Netlists
------------------------

+----------+------+
| Ref Name | Used |
+----------+------+
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Figure C.1: PCB schematic
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