
Quantum Routing using Value-Based Re-
inforcement Learning

Master’s thesis in Physics

MIKKEL OPPERUD

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023

Master’s thesis 2023:06

Quantum Routing
using Value-Based Reinforcement Learning

MIKKEL OPPERUD

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2023

Quantum Routing using Value-Based Reinforcement Learning
MIKKEL OPPERUD

© MIKKEL OPPERUD, 2023.

Supervisor: Mats Granath, Physics
Examiner: Mats Granath, Physics

Master’s Thesis 2023:06
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2023

iv

Quantum Routing using Value-Based Reinforcement Learning
MIKKEL OPPERUD
Department of Physics
Chalmers University of Technology

Abstract
This thesis addresses the Quantum routing problem through the implementation
of a reinforcement learning algorithm. Quantum routing is the problem of making
quantum circuits executable on a quantum computer with limits of connectivity
which requires requires swapping information between qubits. A value-based vari-
ant of the Q-learning algorithm, coupled with deep convolutional neural networks,
was employed to optimize the routing process in a grid topology environment. The
environment allowed the agent to place and remove swaps and to "pull back" any
immediately executable qubits. The reward scheme was designed to optimize for
a shortened circuit depth with the first layers of swaps not counted, thus solving
the Quantum routing and placement problem concurrently. The study focused on
smaller grid sizes of 3x2, 3x3, and 3x4. Due to time constraints we were not fully able
to adequately access the performance of the model and were only able to achieve
solutions for smaller models, while the results for the larger ones (3x3 and 4x3)
were lackluster. For larger grid sizes our analysis on multiple hyper-parameters
revealed a better understanding for the reasons for this, suggesting possible reme-
dies. In conclusion, while the algorithm encountered issues during the experiment,
these obstacles present opportunities for future improvement and refinement. This
research provides a foundation for future studies in the realm of Quantum routing,
highlighting potential avenues for enhanced algorithm performance.

Keywords: Quantum Routing, Q-Learning, Reinforcement Learning, Quantum Place-
ment, Deep Convolutional Neural Networks, Grid Topology Environment, Qubits,
Agent, Concurrency, Quantum Circuit Depth.

v

Acknowledgements
I would like to thank my masters thesis supervisor, Prof. Mats Granath, for his
contributions, interests and support.

I owe special thanks to my family for their unending support and faith in me. I
would not be able to achieve going through this process without my father, my
mother and my brother. I have always felt the support of my grandparents and my
cousins, even though we are hundreds of kilometers apart.

Lastly, I also owe special thanks to the computational resources provided by the
National Academic Infrastructure for Supercomputing in Sweden (NAISS) and the
Swedish National Infrastructure for Computing (SNIC) at Chalmers Centre for
Computational Science and Engineering (C3SE) partially funded by the Swedish
Research Council through grant agreements no. 2022-06725 and no. 2018-05973.
Without these resources this project would have been exceedingly difficult.

Mikkel Opperud, Gothenburg, June 2023

vii

Contents

List of Figures xi

1 Introduction 1
1.1 An Introduction: On Quantum Computing and The Need for Compiler 1
1.2 Overview of the Problem . 2

2 Literature Review 3
2.1 Overview . 3
2.2 Early Approaches to Quantum Routing: 3
2.3 Classical approaches to the quantum routing problem 3
2.4 Deep Reinforcement Learning for Quantum Routing 4
2.5 Monte Carlo Tree Search for Quantum Routing: 4

3 Theory 5
3.1 Quantum Computing . 5

3.1.1 Quantum Information . 5
3.1.2 Quantum Gates and Circuits 6
3.1.3 The Qubit Routing Problem 8

3.2 Reinforcement Learning . 9
3.2.1 Introduction to Reinforcement Learning as a Markov Decision

Process . 9
3.2.2 Q-Learning . 12
3.2.3 Value-Based Learning . 13
3.2.4 Deep Q-Learning . 14

3.3 Neural Networks . 14
3.3.1 Fully Connected Neural Networks 15
3.3.2 Convolutional Neural Networks 17

4 Methods 19
4.1 The Environment . 19

4.1.1 The Observation . 19
4.1.2 The Actions . 21
4.1.3 The Reward function . 21

4.2 Implementation . 22
4.3 Experimental setup . 23

5 Results 27

ix

Contents

5.1 Environment size 3x2 . 27
5.2 Environment of size 4x3 . 31

6 Discussion 33

7 Conclusion 35

Bibliography 37

x

List of Figures

3.1 Shows a swap gate and how it switches the information of the qubits
q0 and q1 . 7

3.2 Shows a 4 qubit circuit with two hardamand gates and how it is
decomposed into layers based on the two qubit gates that can be
computed in parallell . 7

3.3 Qubit positioning in a 4x2 quantum computer. Highlighted are qubits
at positions (1,2) (q2) and (4,2) (q8) needing interaction via a gate, ne-
cessitating relocation through swap operations. Two approaches are
illustrated. The first, shown by the gray arrow, swaps q2 with q4 and
subsequently q4 with q6, enabling interaction. The second, optimal
approach concurrently swaps q2 with q4 and q6 with q8, illustrated by
the black arrows. 9

3.4 The agent-environment interaction in a Markov Decision Process,
known as the Action-Reward Feedback Loop in Reinforcement Learn-
ing. At each time step t, the agent selects an action at based on its
current knowledge and the received state st. This action is then
passed to the environment. In response, the environment transitions
to a new state st+1 and provides the agent with a reward Rt+1, which
the agent then uses to learn from the environment thus creating the
"Action-Reward Feedback Loop". 11

3.5 The schematic structure of an ANN with three input and one output
neuron and two hidden layers. Here the arrows between the neurons
of the different layers represent the individual weights of the weight
matrices WL

ij . 16

xi

List of Figures

4.1 The observation for three time-steps. Each observation is composed
of multiple layers, where the first layers represent a finished routed
circuit. The subsequent layers are layers that are to be routed, and
the last layers gives the number of layers beyond that. Each layer is
arranged in a grid, a matrix with each entry representing a qubit, and
where each qubit has the index of the other qubit it is supposed to
interact with (same colors). A swap gate is represented with negative
indexing (same indices but negative). The figure shows the two types
of action. The first, between the first and second time-step is a swap,
which is placed on the first and second qubit. The second action is
a ’pullback’, which pulls back all solved qubit pairs from the first
unfinished layer. 20

4.2 Graph of the exploration rate ε as a function of steps s for different
exploration fractions (p = 0.1, 0.3, 0.5, 0.7 and 0.9), for a run that
starts training at s = 50 000 and ends at s = 500 000. Here the
minimum exploration rate is fixed at εmin = 0. 24

5.1 Shows average total reward per episode for two runs each of two beta
reward parameters, that are responsible for giving negative reward
β = 0.1 and β = 0.2. 27

5.2 Average steps per episode as a function of time-steps taken, for two
runs each of two beta parameters, β = 0.1 and β = 0.2. 28

5.3 Average reward per episode as a function of time-steps taken, for three
runs each of both a 3D-convolutional network and a 2D-convolutional
neural network. 29

5.4 Average steps per episode as a function of time-steps taken, for three
runs each of both a 3D-convolutional network and a 2D-convolutional
neural network. 29

5.5 Average rewards per episode as a function of time-steps taken, for mul-
tiple different exploration fractions, which is the fraction of the train-
ing time that environments relies on random actions (epsilon greedy
policy). The colored vertical lines represents when ε has reached εmin
as seen in 4.2 . 30

5.6 Average steps per episode as a function of time-steps taken, for mul-
tiple runs of both 3x2, and 4x3 and one 3x3 environment. 30

5.7 Average steps and average rewards per episode as a function of steps,
for a 4x3 environment . 31

xii

1
Introduction

In this chapter we start by providing a concise history and introduction to the con-
cept of quantum computing. Next, we delve into the necessity for quantum routing,
followed by a brief summary of the existing work in this field and an explanation
of our proposed approach. Finally, we offer a more in-depth introduction to the
quantum routing problem.

1.1 An Introduction: On Quantum Computing
and The Need for Compiler

Quantum computation emerged from the pioneering idea proposed by physicist Paul
Benioff, which combined the foundational elements of a Turing machine with quan-
tum mechanical principles [5]. This innovative model aimed to simulate quantum
mechanical systems, a potential that was later underscored by Feynman [8]. David
Deutsch substantiated the superiority of this computing model in his 1985 study
[1]. However, it was Peter Shor’s groundbreaking article introducing a quantum
algorithm for prime factorization – an algorithm exponentially swifter than classical
counterparts – that truly catalyzed the field [23].
As quantum technology progressed, we entered the ’NISQ era’ (Noisy Intermediate-
Scale Quantum) as coined by John Preskill in 2018 [19]. This era underscores the
inherent ’noisiness’ of quantum computers, emphasizing that computations must
be constrained in duration to prevent them from being disrupted by noise. The
longer a quantum computation persists, the more susceptible it becomes to errors
introduced by this noise. Consequently, there is an inherent limit to how extensive
these computations can be, making optimization paramount. Major players, such
as Google and IBM, have been working diligently to create quantum devices that
navigate the challenges of this era. One pivotal element in this journey is the
development of optimal compilers. Prominent compilers, like Cambridge’s Tket [27]
and IBM’s qiskit compilers, streamline quantum computations into two primary
stages: initial circuit optimization and the subsequent routing problem. This thesis
zeroes in on the intricacies and solutions to the latter.
Over the recent past, diverse strategies have been advanced to address the qubit
routing problem in quantum computing. IBM’s qiskit compiler, for instance, em-
ploys the A* algorithm as elaborated in the work by A. Zuhlener [31]. On the other
hand, Cambridge’s t-ket compiler relies on a non-optimal brute force algorithm based
on an approximate distance metric, a concept detailed in A. Cowtan et al.’s paper
[7]. Moving away from conventional methods, G. Nannicini et al. [16] introduced an

1

1. Introduction

integer programming technique, a foundation built upon by F. Wagner et al. [29]
who explored token swapping, while A. Bapat et al. [4] ventured into fast reversals.
In a unique departure from traditional algorithms, there have been strides in ap-
plying reinforcement learning to this issue. Reinfocement learning has seen a lot of
success in various tasks from playing Atari Games from only the pixel information
and score [15], mastering the Game of Go [24], and for robotics such as training
a bipedal robot to perform various soccer skills [9]. Lastly it has also been used
with some success for Quantum error correction [2]. Recently this method has been
used with some sucess on qubit routing such as "Using Reinforcement Learning to
Perform Qubit Routing in Quantum Compiler" by M. Pozzi et al. [18], and a study
by A. Sinha et al.[26], have brought forward approaches leveraging graph neural
networks in conjunction with Monte Carlo treesearch.
This thesis leans predominantly on the aforementioned reinforcement learning ap-
proach, building on insights from a preceding master’s study. We endeavor to adopt
a value-based strategy, a divergence from the prevalent q-learning method. The
overarching objective is to mitigate the complexity intrinsic to neural networks, as-
piring to achieve convergence for architectures accommodating a larger qubit count
than what current methodologies permit.

1.2 Overview of the Problem
The job of the Quantum Compiler can be brought into four steps, that effectively
are only two. Fistly the gates of the quantum code needs to be converted into
the gates for the quantum hardware, after that is done comes the quantum circuit
optimization problem, where these gates are reduced by use of different operation
relations. Then the ’logical’ quantum bits of the ’code’ circuit must be placed on
the physical circuit. This circuit does not have full connectivety, meaning that not
all qubits can interact with each other. Circuits are usually placed in a grid like
pattern, where they can interact with their neighbours. Thus after the placement
these qubits must then be transported in such a way as to be able to interact with
the correct qubits by means of swapgates. This is known as the routing problem.

2

2
Literature Review

This chapter presents the previous work conducted in the literature on approaches
to the Quantum Routing Problem and Enhancements to Reinforcement Learning
Approaches.

2.1 Overview
The routing problem in quantum computing has been an area of active research
for the past few years. The task involves finding the optimal sequence of qubit
operations, given the constraints imposed by the quantum hardware architecture.

2.2 Early Approaches to Quantum Routing:
Quantum routing problem started by introducing the quantum logic to network
architectures to decrease latency in data transfer. A routing algorithm was first
introduced by Shamsa et al. [22], on a hypercube network topology based on Quan-
tum Dot Cells to overcome the latency issue in data transfer. They tried perform
parallel computation using Quantum Dot Architecture to decrease latency and find
shortest path.
Another trend in early approaches to Quantum Rounting was to identify the prob-
lems which classically took exponential time but from a quantum perspective took
less time, i.e. polynomalial time. Motivated by this trend, Kempe [11] discusses
continuous and discrete quantum walks and proposes a packet routing algorithm.

2.3 Classical approaches to the quantum routing
problem

The t|ket> compiler, as described by Cowtan et al. [7], utilizes a hardware-agnostic,
four-step routing procedure for quantum circuits. The process begins by decompos-
ing the circuit into timesteps of simultaneously executable gates. An initial mapping
of logical to physical qubits is then established, creating a graph to dictate place-
ment based on interactions. The routing algorithm then iteratively builds a new
circuit compatible with the target architecture, using a minimal SWAP strategy to
manage qubits required for each gate. Finally, any non-native SWAP operations
are replaced with hardware-specific gates, and a clean-up phase removes extraneous

3

2. Literature Review

gates introduced during the synthesis. In addition, there have been multiple studies
[14]-[17] on the application of switching algorithms on quantum systems to propose
a congestion-free self-routing algorithm for quantum packet transfer.

2.4 Deep Reinforcement Learning for Quantum
Routing

One of the early works by Herbert et al. [10] introduced the concept of using rein-
forcement learning to solve the routing problem. The authors proposed an algorithm
that traverses the circuit layer by layer, learning a state-value function that deter-
mines the quality of SWAP insertions before the next layer. The optimal placement
is then calculated using simulated annealing. This work provided a proof of princi-
ple for using reinforcement learning in qubit routing, paving the way for subsequent
research in this area.
Following the initial success of reinforcement learning in Quantum Routing, van de
Griend [13] considered the compilation of hardware incompatible CNOT gates into
a minimal sequence of compatible CNOT gates based on restricted Gaussian Elim-
ination. The optimal sequence of steps in the elimination procedure was found by
a reinforcement-learning agent, demonstrating the potential for deep reinforcement
learning in quantum circuit synthesis.
In a more recent study, Pozzi et al. [18] sought to improve on the work of Herbert
et al. by inserting SWAP gates within a layer rather than before a layer. They also
introduced a more compact state representation and learned a (state, next state)
value function with double Q-learning. The authors reported an improvement on
state-of-the-art benchmarks, showcasing the potential for continual enhancement of
reinforcement learning methods for Quantum Routing.
In the next section, we discuss the theoretical background that underpins these
research efforts, including an introduction to quantum computing, reinforcement
learning, and their applications to the routing problem.

2.5 Monte Carlo Tree Search for Quantum Rout-
ing:

In a novel approach, Zhou et al. [30] utilized Monte Carlo Tree Search (MCTS)
for qubit routing. At each layer, the search over the tree corresponds to the search
for suitable SWAP gates. The simulation step is based on a heuristic that brings
the consecutive interacting qubits closer together. This approach, leveraging the
strengths of MCTS, presented a new direction for solving the routing problem.
Building on this idea, Sinha et al. [26] also employed MCTS for qubit routing. In
their approach, the tree corresponds to establishing a set of SWAP gates for the next
layer. Traversing the tree corresponds to either committing the set or extending it
by further SWAPs. The researchers integrated Q-learning on the tree and a graph
neural network to estimate the value of SWAP-gate sets in the simulation step,
combining reinforcement learning and MCTS in a novel way.

4

3
Theory

In the following sections, theoretical background on convolutional neural networks,
value based Q-learning and quantum computing are introduced. We start by giving
a brief overview of quantum computing. Here not everything is needed to understand
the problem, but the main points to take away is understanding of the structure of
quantum circuits and our approximate way of calculating the computational time
of the circuits.
Next we move on to introducing the problem in the section "The Qubit Routing
Problem". Moving on we talk about the techniques utilized to solve the problem,
talking about reinforcement learning, Q-learning, value-based Q-learning and deep
Q-learning. Then talking in detail about how neural networks work, both fully con-
nected and convolutional neural nets.

3.1 Quantum Computing
In this section we briefly go over the fundamentals of quantum information before
describing quantum circuits, and then the quantum routing problem.
We begin by describing how quantum information works, how it is built up by
qubits, how these qubits can change state by applying gates, and interact through
two qubit gates. Then more importantly how these gates come together to form
circuits, which then leads us to discuss physical gate connectivity and how that
leads to the quantum routing problem, which then is explained in detail.

3.1.1 Quantum Information
In quantum computing, the fundamental unit of information is the quantum bit,
or qubit. Unlike classical bits that can hold a value of either 0 or 1, a qubit can
hold a superposition of states. The state of a qubit is typically represented as a two
dimensional complex vector of length 1, which in dirac notation becomes:

|ψ⟩ = α|0⟩+ β|1⟩ (3.1)

Here, |0⟩ and |1⟩ are the basis states and α, β ∈ C are numbers that represent the
probabilities of measuring each of the states through the Born rule. According to
the Born rule, when measuring this state, the probability of obtaining the result
|0⟩ is |α|2 and obtaining the result |1⟩ is |β|2. After measuring the qubit collapses
to the state that has been measured. The total probability of each of the states

5

3. Theory

must be one which explains why the length of the state (or vector) must be one
(⟨ψ|ψ⟩ = α2 + β2 = 1).
This can be extended to measurements in different basis states. If we consider the
basis {|+⟩, |−⟩}, where |+⟩ = 1√

2(|0⟩ + |1⟩) and |−⟩ = 1√
2(|0⟩ − |1⟩), measuring a

qubit in this basis will collapse the qubit state to either |+⟩ or |−⟩. The probability
is determined by projecting |ψ⟩ onto the chosen basis states.

P± = |⟨±|ψ⟩|2 (3.2)
For multi qubit states the same thing applies, but with more basis states, where
each added qubit doubles the number of states. Mathematically these states are
described by the tensor product of their individual qubit states states. Explicitly
for two qubits |ψ1⟩ and |ψ2⟩, the combined state |ψ⟩ is represented as:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ (3.3)
This is known as a product state where the individual states are not connected.
In this way we can produce twice as many basis states for each added qubit. By
combining these product states we can get states that are entangled, meaning that
their states are intertwined in such a way that the state of one qubit cannot be
described independently of the other.
An example of an entangled state is the Bell state, given by:

|Φ+⟩ = 1√
2

(|00⟩+ |11⟩) (3.4)

In this state, if the first qubit is measured and found to be in state |0⟩, the second
qubit is instantaneously found to be in the same state, regardless of the distance
between them.

3.1.2 Quantum Gates and Circuits
Now that we understand how the underlying information is represented we move on
to the actual operations on the quantum bits, namely the quantum gates, which is
what is interesting for this study. These gates are the building blocks of quantum
circuits and perform operations on qubits. Quantum gates are represented as unitary
matrices. For a single qubit, common quantum gates include the Pauli-X, Pauli-Y,
Pauli-Z (the spin matricies) and Hadamard gates. Each of these gates performs
a specific operation on a qubit, changing its state. These maintain the length or
’probability’ of the qubit meaning that they are Unitary, which is a requirement for
any quantum operation/gate. The operations are shown below:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)

Z =
(

1 0
0 −1

)
, H = 1√

2

(
1 1
1 −1

)

6

3. Theory

Quantum gates can also operate on multiple qubits. Notably, the CNOT (Controlled-
NOT) gate operates on two qubits: a control qubit and a target qubit. If the control
qubit is in state |1⟩, it applies a NOT operation (or a Pauli-X gate) on the target
qubit. Another important two-qubit gate is the SWAP gate, which exchanges the
states of the two qubits, which is shown in the figure below 3.1. As we will see later
this two bit gate will be the most important for this study.

Figure 3.1: Shows a swap gate and how it switches the information of the qubits
q0 and q1

These quantum gates can in turn be used together to build circuits that form more
complex quantum operations. These complex quantum operations can always be
broken down into one and two qubit gates, given that one has the right set of these
gates (universal quantum gate set). Together with the fact that quantum computers
of today nearly exclusively deal with one and two qubit gates, means that we will
only look at those gates.
The circuit can then in turn be divided into layers of the two qubit gates that can
be performed in parallel. This gives a good estimate of how long it will take to
execute the gate, given that the two qubit gates take significantly longer to per-
form than one qubit gates. These layers are what will be used later to estimate
the performance of the routing, and is what in this project will be optimized for.
This (execution time) along with the fact that one qubit gates do not have any con-
nectivity issues (see later), means that the one qubit gates can be effectively ignored.

Figure 3.2: Shows a 4 qubit circuit with two hardamand gates and how it is
decomposed into layers based on the two qubit gates that can be computed in
parallell

7

3. Theory

A simple example of a four qubit quantum circuit can be seen in fig:3.2, which uses
hardamard gates and CNOT gates. In figure (b) we can also see how it is is decom-
posed into layers based on the two qubit gates that can be performed in parallell.
In this case we have three layers of two qubit gates.

These quantum circuits do not directly correspond to quantum hardware in two re-
spects. Firstly, the set of gates available on the hardware will usually not correspond
to the gates of the quantum code. These will thus be translated into sequences of
gates available on the actual hardware. This process is known as quantum gate
synthesis. Then these gates will be compressed, where series of gates will be trans-
lated either into the identity or into fewer gates, in a process called quantum circuit
optimization.

3.1.3 The Qubit Routing Problem

Moving on we look closer at the qubit routing problem. As stated previously the
main issue is with the qubit connectivity of the quantum Hardware. Specifically, for
regular qubit gates any qubit n can interact with any qubit m. In today’s Quantum
Computers, this is not possible. Here there are physical constraints imposed on
the circuit that only allows adjacent qubits to interact with each other. There are
different connectivities that the quantum computer can have.
Quantum computers today predominantly utilize a grid-based layout for their qubits,
where two-qubit operations can only occur between neighboring qubits, such as those
in IBM systems, Google’s quantum computer, and local developments at Chalmers.
A visual representation of this topology can be seen in fig 3.3.

Here the qubits are represented by dots, with the connecting lines symbolizing po-
tential interactions. These connections primarily span horizontally and vertically
(black lines), though diagonal interactions (gray lines) may also occur. The focus of
our study will be on the standard grid-like structures (only black lines) currently in
development at Chalmers. The figure itself shows one qubit gate being composed of
two qubits (marked by red) being routed by means of swap gates in two ways. The
first, solution (a) has two overlapping swap-gates placed between qubit q2 and q4
and then between q4 and q6, while solution (b) performs two swaps that can be done
in parallel. Swapping q2 and q4 and simultaneously q6 and q8. This illustrates in
a simple way the routing problem, and the way different solutions lead to different
results. For the full problem one not only have to take into account multiple gates
at once for each layer, but also one has to think about swapping the qubits in the
layers behind as well. These added complexities is what leads to finding an optimal
solution to the problem being NP-complete as proven in [10], in turn meaning that
to solve this problem practically we need good approximate solutions.

8

3. Theory

Figure 3.3: Qubit positioning in a 4x2 quantum computer. Highlighted are qubits
at positions (1,2) (q2) and (4,2) (q8) needing interaction via a gate, necessitating
relocation through swap operations. Two approaches are illustrated. The first,
shown by the gray arrow, swaps q2 with q4 and subsequently q4 with q6, enabling
interaction. The second, optimal approach concurrently swaps q2 with q4 and q6
with q8, illustrated by the black arrows.

3.2 Reinforcement Learning
Moving on we describe reinforcement learning. Starting off with the basic theory
coming from Markov Descicion Processes (MDP’s) and how they are solved with
different algorithms. Continuing by describing the Q-learning algorithm followed by
the value based version of this. Finally ending with how to use these in conjunction
with neural networks, which gets us the deep Q-learning algorithm (DQN).

3.2.1 Introduction to Reinforcement Learning as a Markov
Decision Process

Reinforcement learning (RL) is a paradigm of machine learning where an agent
learns to make decisions by interacting with an environment. At the heart of RL is
an agent that learns to make decisions based on interactions with its environment.

9

3. Theory

In the context of the Qubit Routing problem, our agent will be executing swaps in
the quantum circuit, which serves as its environment. RL is particularly useful in
situations where there is no correct answer readily available but instead, the optimal
strategy is discovered through the process of exploration and exploitation over time.
It has proven itself useful in a wide variety of aplications, from mastering strategic
games such as chess and Go [24, 25], autonomous vehicles [3], to robotics [9] and
quantum error correction [2].

More formally, the RL problem is an instance of the Markov Decision Process
(MDP), a mathematical framework typically denoted by a tuple (S,A, P,R, γ), that
provides a precise language for stating and solving problems of stochastic control.
The components of this tuple are:

S: The state space, which represents the set of all possible states the environment
can be in. In our case, each state would correspond to a specific configuration of
the quantum circuit. A: The action space, encompassing all the possible actions the
agent can take. For the Qubit Routing problem, an action is a swap operation on
the quantum circuit. P : The state transition probability matrix. It characterizes
the dynamics of the environment by defining the probability of transitioning to each
possible next state, given the current state and action, often denoted as P (st+1|st, a).
R: The reward function, denoted as R(st+1, a, st), signifies the expected reward
the agent will receive after performing a specific action in a particular state and
transitioning to the next state. γ: The discount factor. A number between 0 and 1,
it determines the present value of future rewards.
It is important to note that both the transition probability and reward function
only depend on the current and next state and has no memory of previous states or
actions.
The agent’s objective in an MDP is to find a policy, which is a mapping from states
to actions, that maximizes the expected cumulative discounted reward over time.
This is often written as:

max
π

E

[∞∑
t=0

γtR(st, at, st+1)
∣∣∣∣∣π
]

(3.5)

Reinforcement learning is a specific method for solving this problem that uses ma-
chine learning, and that learns the policy by trial and error through exploring the
environment in a ’action-reward feedback loop’. This loop is illustrated in figure
3.4. Here agent-environment interaction occurs in successive steps, providing the
cyclical nature of reinforcement learning. At each time-step t, the agent receives the
current state st of the environment and chooses an action at based on its current
policy. After the agent takes the action, the environment transitions to a new state
st+1 and provides a reward rt+1 to the agent. The agent’s policy then gets updated
based on the received reward, and the next iteration of the interaction begins. This
iterative process of the agent interacting with the environment, learning from the
reward, and improving its policy forms the core of reinforcement learning.

10

3. Theory

Figure 3.4: The agent-environment interaction in a Markov Decision Process,
known as the Action-Reward Feedback Loop in Reinforcement Learning. At each
time step t, the agent selects an action at based on its current knowledge and the
received state st. This action is then passed to the environment. In response, the
environment transitions to a new state st+1 and provides the agent with a reward
Rt+1, which the agent then uses to learn from the environment thus creating the
"Action-Reward Feedback Loop".

Among the variety of RL algorithms, here are a few prominent ones as talked about
in [28] and presented in [21]:

Value Iteration and Policy Iteration are classical methods that solve for the
optimal policy in a tabular setting, where states and actions are discrete and the
entire model of the environment is known.

Q-Learning is an off-policy algorithm that learns an action-value function, which
provides the expected return for each action in each state. It can handle environ-
ments with discrete states and actions.

Deep Q-Networks (DQN) extend Q-learning to environments with high-dimensional
state spaces by using deep neural networks as function approximators.

Policy Gradient Methods directly optimize the policy in the direction of increas-
ing return. Actor-Critic Methods combine the benefits of value-based methods
and policy-based methods.

Proximal Policy Optimization (PPO) is a policy optimization method that
achieves good performance in a wide range of tasks and is relatively easy to im-
plement.

Each of these algorithms uses different techniques and ideas to learn the optimal
policy, but they all rely on the core principle of maximizing the cumulative reward.

Despite its potential, RL is known to be sample inefficient and sensitive to hyperpa-
rameters, but ongoing research is tackling these issues. The beauty of this framework
however lies in its generality, making it a potent tool for a wide range of sequential
decision-making problems, including the Qubit Routing problem. It allows us to not

11

3. Theory

only systematically explore the solution space but also to exploit learned knowledge
for more efficient problem-solving.

3.2.2 Q-Learning
Q-learning is an off policy algorithm, off policy meaning that it uses an other policy
to learn then it uses to solve the problem. The central component in Q-Learning is
the Q-function, denoted as Q(s, a). This function gives the expected return or the
cumulative discounted future reward, for taking action a in state s and following
policy π thereafter. It is defined more precisely as:

Q(s, a) = Eπ

[∞∑
t=0

γtR(st, at, st+1)
∣∣∣∣∣s0 = s, a0 = a

]
(3.6)

The policy here is the optimal policy defined in the subsection about Markov Deci-
sion Processes.
The goal of Q-Learning is to find the optimal Q-function, Q∗(s, a), which yields the
maximum expected return achievable by following any strategy, starting from state
s, taking action a, and thereafter following the optimal policy.
Writing out this expected reward given the policy and the transition probability we
get the Bellman equation for the Q-function:

Qπ(s, a) =
∑
s′
p(s′|s, a)[R(s, a, s′) + γQπ(s′)] (3.7)

If we set π(a|s) = maxa Q(s, a) and have a deterministic transition matrix p(s′|s, a) =
δsas′ , we get a simpler expression for the Q-function:

Q∗(s, a) = R(s, a, s′) + γmax
a′

Q∗
(s

′, a′) (3.8)

In order to obtain the optimal Q-function we then iteratively update the Q-values
using the Temporal Difference (TD) learning. Where we update the Q-value from
reward received r and the q-values from the next state s′. We have the one step
Q-learning algorithm:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
, (3.9)

This algorithm is has been proven to be guaranteed to converge to the optimal Q-
value Q→ Q∗,where α is the update rate, a tunable parameter often set between 0
and 1

In the equation above, r+ γmaxa′ Q(s′, a′) is the learned value or updated Q-value.
The difference between this learned value and the old value, Q(s, a), is the Temporal
Difference (TD) error, denoted as δ. The Q-value is updated by moving a fraction
α of the way towards the learned value.

In classical Q-learning, a table known as the Q-table is used to store the Q-values for
each state-action pair. This table keeps track of the learned values and is updated

12

3. Theory

through iterative exploration of the environment and application of the Bellman
equation.

In this exploration phase, an ε-greedy strategy is typically utilized to balance explo-
ration and exploitation. This involves a trade-off: with probability ε, the algorithm
explores by selecting an action randomly, and with probability 1 − ε, it exploits
by choosing the action with the highest Q-value in the current state. This policy
encourages the agent to try various actions while still mostly choosing what it cur-
rently thinks is the best action.

However, for larger environments, where the number of state-action pairs can be
prohibitively large, using a Q-table may not be feasible due to memory constraints.
In these scenarios, an approximation of the Q-function becomes necessary. One
popular approach is the use of neural networks to approximate the Q-function,
a method known as Deep Q-Learning. The neural network essentially learns to
predict the Q-values given a state-action pair, thus providing a scalable and efficient
alternative for large problem spaces. We will delve deeper into this technique in an
upcoming section on "Deep Q-Learning".

3.2.3 Value-Based Learning
Value-Based Learning forms a group of reinforcement learning strategies focused
on determining the optimal value function. Derived from this, the optimal policy
can be identified. Contrasting with policy-based methods, which directly seek to
learn the policy, value-based methods indirectly encode the policy within the value
function. Consequently, the policy is expressed by always opting for the action that
maximizes the current estimate of the value function.
Comparing this to Q-learning we can express this value function given the state
V (s) in terms of the Q-value state action pair Q(s, a) as:

V (s) = max
a

Q(s, a), (3.10)

Here, V (s) represents the value of state s under an optimal policy, and Q(s, a) is
the maximum action-value function.
When applying the concept of temporal difference learning to value-based methods,
the update rule changes slightly. It takes the form of:

V (s)← V (s) + α
[
r + γmax

s′
V (s′)− V (s)

]
, (3.11)

where:
s is the current state, r is the reward received after transitioning to the new state,
s′ is the new state, α is the step-size parameter, and γ is the discount factor. This
approach to learning can often provide more stability, as it doesn’t require the
maintenance of a separate policy which might be subject to oscillations or instability.
Instead, it optimizes the value function, allowing the policy to emerge implicitly.

13

3. Theory

3.2.4 Deep Q-Learning
Deep Q-Learning, or Deep Value-Based Learning, is an extension of the traditional
Q-Learning algorithm. The term "Deep" in Deep Q-Learning refers to the use of
deep neural networks as function approximates to estimate the Q-function, Q(s, a).
As previously noted, in standard Q-Learning we maintain a table of Q-values for
each state-action pair. However, in environments with large state-action spaces,
this becomes computationally infeasible. Deep Q-Learning addresses this problem
by using a neural network, the Q-network, to approximate the Q-function.
The inputs to the Q-network are the state representations, and the network outputs
a Q-value for each possible action in the state. During training, we aim to minimize
the difference between the predicted Q-values and the "target" Q-values by updating
the networks weights. The weights of the neural network are typically updated with
input-target pairs (see next section). The network will receive an input, guess an
output and then be trained to match the target. In our case this target is specified
by the updated value from the temporal difference equation (3.11).
The target values here are calculated by a target network, which is used to update
the weights of the policy network that we are using. The target network is then
updated to the policy network’s weights from time to time. The reason for this is to
ensure stability in the learning process, where the network learns to just continually
increase the Q-values.

In Deep Q-learning, the algorithm begins by exploring the environment and collect-
ing experiences, guided by the epsilon-greedy policy. These experiences, recorded as
tuples in an experience replay buffer, contain crucial information: the current state,
the action taken, the received reward, the subsequent state, and whether it’s the
final state, often denoted as (s, a, r, s’). In our value-based approach, we store the
state alongside all corresponding actions, rewards, and next states: (s, ai, ri, s

′
i).

The replay buffer serves two crucial roles. First, by storing and reusing past experi-
ences in the learning process, the replay buffer helps break the correlation between
consecutive samples, stabilizing learning. This is significant as neural networks,
widely employed in contemporary reinforcement learning algorithms, assume the
data samples are independently and identically distributed (i.i.d), an assumption
violated when consecutive samples from the environment are considered.
Second, a replay buffer allows the agent to learn from rare but important experiences
multiple times, which can greatly speed up the learning process. In practice, the
replay buffer operates as a cyclic array: as new state transition tuples are added,
the oldest tuples are purged once the buffer reaches capacity and the samples are
chosen based on a uniform distribution.

3.3 Neural Networks
In this last section in the theory we describe neural networks, and how they function
from quite a mathematically precise standpoint. Describing how they are built up,
how the training process works, along with all of the different terms that are later
used. We start by describing fully connected neural networks, how they are built

14

3. Theory

up and trained, before moving on to describing how convolutional neural nets are
built up.

3.3.1 Fully Connected Neural Networks
An artificial neural network is a non linear function NN(x|θ) with tunable param-
eters θ, which is used for pattern-recognition tasks such as image classification, face
recognition and in natural language processing among other things.
A base element of a neural net are the so called neurons n that output a numeri-
cal value. These neurons are typically arranged in interconnected layers, where the
values of the neurons of one layer nL determine the value of the neurons in the next
layer nL+1 through some non-linear function FL(x). For a fully connected layer
neural network this function is given by:

nL+1 = FL(nL) = f
(
WL · nL + bL

)
. (3.12)

Where WL is a matrix whose elements are called weights, and bL are called the
biases of the layer L. These are the tunable parameters of the neural network. The
function f : R → D ⊂ R is called activation and the range D reflects the possible
output of the neuron. Thus a neural network is a function that maps an an input x
to an output y through a layered set of functions:

NN(x|θ) = FL(FL−1(... F1(x) ...)). (3.13)

This can be visualized by the figure 3.5. All the weights w and biases b that describe
the neural net should be chosen in a way to produce a meaningful output. The goal
of the neural net is to tune the parameters θ in such a way as to given a set of inputs
x reproduce a desired target outputs y→ t. The parameters in question here is the
set of all weights and biases of the network θ = {WL, bL | ∀L}. These input target
pairs are organized in a dataset D = (x, t). In our case this dataset is composed
of the observation of the environment x for the input and the rewards ri and next
observations (state) si+1 used to calculate the target (the V -values), through the
temporal difference equation from the value function section 3.11.

In order to tune the parameters θ one uses a so called loss-function L(y, t) that
measures how far away one the output is from the target. Then what one wants to
optimize the total loss of the data-set with respect to the parameters θ. This total
loss is known as the cost function:

C(θ|D) =
∑

(x,t)∈D
L(NN(x|θ), t) (3.14)

This allows one to alter the parameters θ = (w,b) in order to minimise the value
of C. This parameter optimization is performed via gradient-descent by updating
according to:

θi+1 = θi − η∇θC (3.15)

15

3. Theory

Figure 3.5: The schematic structure of an ANN with three input and one output
neuron and two hidden layers. Here the arrows between the neurons of the different
layers represent the individual weights of the weight matrices WL

ij .

where η is a hyperparameter, called learning rate. This optimization can be done
by using the target value pair from the dataset D, which is referred to as training.

The underlying algorithm utilized for computing these gradients is known as back-
propagation. Fundamentally rooted in the chain rule of calculus, backpropagation is
a procedure that efficiently computes the gradient of the cost function with respect
to the weights and biases in the network. The essential feature of backpropagation is
that it operates iteratively, updating the network’s parameters from the last layers
to the first. This recursive application of the chain rule allows for efficient compu-
tation of gradients, even in networks with a large number of layers. Consequently,
backpropagation forms the backbone of training procedures in deep learning.

In the interest of computational efficiency, the complete dataset D is typically di-
vided into subsets known as mini-batches, Bi ⊂ D. Each of these mini-batches
usually contain around 100 instances. Rather than calculating the exact gradient of
the cost function over the entire dataset, which can be computationally expensive
and time-consuming, these mini-batches are used to estimate the gradient. This
approach enables more frequent updates to the model parameters, promoting faster
convergence during training. However, as each update is now based on a random
subset of the total data rather than the full dataset, the gradient calculations can
vary significantly from one mini-batch to another. This can introduce a degree of
volatility in the training process, potentially leading to erratic movements in the
parameter space and difficulties in achieving stable convergence. While this sounds
bad, this actually helps the training process as a whole in that it prevents one from
getting stuck in local minima.

16

3. Theory

To combat these instabilities, optimization algorithms such as the Adam algorithm
are typically employed [12]. Adam algorithm incorporates adaptive learning rates
and momentum, essentially performing an averaging of previous gradients with expo-
nentially decaying importance. This effectively smooths the gradient descent path,
mitigating the volatility caused by mini-batch learning, and assists in stable and
efficient convergence towards the optimal solution. This averaged out gradient is
computed with:

gexp-avg = 1− β1

1− βt
i

t∑
i=0

gt−iβ
i
1 (3.16)

Where β1 ∈ [0, 1] is the parameter of exponential decay. And the factor in front of
the sum makes sure that this becomes an average. E.g. gexp-avg = 1 if gi = 1∀i.
This is then divided by the length of the gradient averaged in the same way:

|g|exp-avg =
√√√√1− β2

1− βt
2

∑
i

g2
t−iβ

i
2 (3.17)

Here with β2 ∈ [0, 1] as the exponential decay parameter. The squaring of the
gradient is an elementwise Then the parameters θ will be updated according to:

θt ← θt−1 + α
gexp-avg

|g|exp-avg + ϵ
(3.18)

Here α is the step-size, and ϵ is a small parameter to prevent any infinities. In [12]
this the exponentially decaying averages of the gradients are called the first moment
vector mt = gexp-avg · (1− βt

1) and second moment vector vt = [|g|exp-avg]2 · (1− βt
2),

(in-spite of being a scalar) respectively. These are updated each iteration.

3.3.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a special type of neural network, op-
timized for pattern detection in grid-like topology data, such as images. This is
achieved by using a mathematical operation called convolution in place of general
matrix multiplication in at least one layer, thus the name convolutional neural net-
work.
The convolution operation involves applying a filter, also known as a kernel, across
the input data to produce a feature map. This filter is applied by sliding over the
input data in a grid-like manner, such that the output (a ’filtered’ version of the
input) represents local regions of the input.
If we denote FL as the Lth layer of the CNN, and let K be the kernel, the operation
of a convolutional layer can be expressed mathematically as:

nL+1 = FL(nL) = f
(
K ∗ nL + bL

)
, (3.19)

where "∗" represents the convolution operation, nL represents the input to layer L,
bL is the bias, and f is a non-linear activation function.

17

3. Theory

Note that unlike in fully connected layers, where each neuron’s output is influenced
by every neuron in the previous layer, in convolutional layers, neurons are only
affected by a local region of neurons in the previous layer. This region is defined by
the size of the kernel.
CNNs share the weights of the kernel among all neurons in the same feature map.
This makes CNNs translation invariant, meaning they can detect patterns regardless
of where they occur in the input space. This structured approach and local connec-
tivity make CNNs particularly suited to tasks such as image and video recognition,
where local pixel patterns e.g. edges and textures are significant features.

If we look closer at the convolution operation for a 2D input I of size m× n and a
2D kernel K of size a× b, then the convolution operation is defined as:

(I ∗K)[i, j] =
a∑

u=0

b∑
v=0

I[i− u, j − v]K[u, v], (3.20)

where I ∗K is the output after applying the kernel, and [i, j] denotes the indices in
the output matrix. The kernel is applied on every valid a×b sub-region of the input.
This operation is repeated for each channel in the case of multi-channel inputs.
The input to a CNN is typically a 3D tensor. Where one has multiple channels c of
images m × n. This can be the three channels for the three RGB-values or in our
case for each layer in the observation (see later).
The output of a convolutional layer is an other set of channels c′ of new images
m′× n′, where n′ and m′ depend on three variables. These are kernel size (a× b) as
discussed before, stride s, which is the distance taken between each kernel operation,
and padding p which are zeros that are added around the image. c′ is the number
of kernels Ki[u, v] (or filters) used. For every output channel there exists multiple
filter that each convolve with the separate channels of the input and are then added
together: Oc′ [i, j] = ∑

c(Ic ∗Kc
c′), where c is the channel index for the input and c′

is the channel index for the output. Rewriting the kernel operation (3.20) with this
information we get the exact formula for the output Oc′ given the input, kernels,
stride and padding:

Oc′ [i, j] =
∑

c

a,b∑
u,v=0

I ′
c[si− u, sj − v]Kc

c′ [u, v] (3.21)

For instance, in image processing tasks, the input is an image with width n, height
m, and a number of channels c corresponding to the color space used (e.g., 3 for
RGB images). These neurons represent pixel intensity values. A convolutional layer
transforms this input volume to an output volume of size n′ ×m′ × c′

Another key characteristic of CNNs is the use of pooling layers. These layers are used
to reduce the spatial size (width and height) of the input volume and to decrease
the computational complexity. A commonly used pooling operation is max pooling,
where the maximum value within a certain window is passed to the next layer.

18

4
Methods

Here we mainly describe the reinforcement learning environment focusing on how
its observations, the possible actions and what they do in addition to how the re-
ward scheme works. We then move on to describing implementation details around,
which libriaries were utilized and how the environment along with the algorithm was
implemented. Next we talk about the experimental setup, describing which metrics
we used to assess the agents performance and different hyperparameters we tested
and how they work.

4.1 The Environment
The environment in short is a quantum circuit into which one can place swaps in
order to rout each layer of the circuit and to “pull back” the routed gates of that
layer once one (in this case the agent) is satisfied. Each layer is represented as
a m × n grid for the agent reflecting the connectivity of the architecture (see the
observation subsection).
The underlying structure that stores the circuit is a list containing each layer, which
is in turn a list containing each gate detailed by the index of the qubits that compose
them and a separate list detailing if these gates are swap gates or not. In addition
to this there is a counter for the array to indicate which layer one should add new
swap gates, where the preceding layers have already been routed (solved layers), and
the next layers are to be routed (Unsolved layers).

4.1.1 The Observation
The agent interprets the environment through multi-layered observations of the
quantum circuit, where the layout of each layer mirrors the physical grid layout
of the quantum computer. Figure 4.1 shows three such observations, where each
successive observation (left to right) shows a change in the observation due to the
two types of actions: A swap and a ‘pullback’ action which is explained in detail in
the next subsection on actions. Each layer is represented as a matrix where each
entry signifies a qubit, with its value indicating the index of the qubit it is meant
to interact with. If a qubit doesn’t have an interaction in a specific layer, its matrix
entry will be zero. As interactions are bidirectional, the partner qubit’s entry will
reflect the first qubit’s index, creating a compact representation of pairwise qubit
interactions per layer.
The observation then segregates into specific groupings of layers: solved layers,

19

4. Methods

Figure 4.1: The observation for three time-steps. Each observation is composed
of multiple layers, where the first layers represent a finished routed circuit. The
subsequent layers are layers that are to be routed, and the last layers gives the
number of layers beyond that. Each layer is arranged in a grid, a matrix with each
entry representing a qubit, and where each qubit has the index of the other qubit it
is supposed to interact with (same colors). A swap gate is represented with negative
indexing (same indices but negative). The figure shows the two types of action. The
first, between the first and second time-step is a swap, which is placed on the first
and second qubit. The second action is a ’pullback’, which pulls back all solved
qubit pairs from the first unfinished layer.

20

4. Methods

unsolved layers, and a ’layers left’ layer.
The solved layers, typically composed of two or more layers, contain completed or
routed layers. This is where the swaps are placed, more specifically in the last
of these layers. These swaps are marked with negative indices, a differentiation
crucial as swaps can be removed by placing additional swaps at the same location.
The purpose of displaying this layer is to provide the agent with a comprehensive
understanding of the circuit, enabling more strategic placement of swaps to prevent
the addition of extra layers.
Following are the unsolved layers, which are the immediate layers that are supposed
to be routed and thus usually form the most significant portion of the observations.
Like the layers preceding it, it is composed of quantum gates indexed in the same
way, but with no swap gates since they all are added in the solved layers.
Finally, the ’layers left’ layer consists of entries representing the number of layers
remaining beyond the unsolved layers. This provides a measure of the routing task
still required which is vital for the value based network to be able to give an accu-
rate estimation, given (as we shall see later) that the reward scheme gives points for
solving layers.

This observation format allows the agent to easily process the quantum circuit’s
state and qubit interactions, facilitating strategic quantum gate manipulations.

4.1.2 The Actions
For an environment there are two types of actions. These are the swap actions
and the ’pullback’ action. There is one swap action for each of the adjacent qubit
pairs in the circuit. Meaning that for a circuit with a grid-size of m × n we have
m(n−1)+n(m−1) swap actions. For a swap action a swap will be placed as far back
is possible until it overlaps with qubits of gates in the preceding layer. However, if it
fully overlaps with a swap, that swap will be removed, and if there are overlapping
qubits in the first finished layer a new layer will be created.
Next there is the pullback action which does two things. First it takes all of the
solved qubits in the first unsolved layer of the environment and places them behind
in a new layer, the last of the finished layers and thus the new current layer. After
that is done the circuit is compressed, in order to ensure that there are as few layers
as possible. Here the back and the front layers are done separately in order for the
qubits of the solved and unsolved to be separated. In the compression step one
iterates through each layer and each gate in that layer, where they are pulled back
as far as possible according to the rules established when placing the swap gates. If
a layer is empty at the end of this process, then that layer is removed.

4.1.3 The Reward function
The reward function is based how many added vs how many expected added layers
one has, and how many layers there are in total. The idea is that if all of the rewards
from one completed episode are added up (without a discount factor) Rtot = ∑

i ri

21

4. Methods

the result should be
Rtot = dstart − β(dend − dstart) (4.1)

Here dstart and dend is the depth of the circuit at the start and end respectively. smax
is the maximum number of steps needed to transport two qubits from opposite ends
of the circuit. Since the steps are overlapping it also means the amount of layers
that is needed to be added to transport these layers together.
β is a tunable parameter that together with smax should give an estimate of the
maximum number of added layers per layer solved lmax = βsmax.
This total reward function decreases linearly with the increase in the number of
added rewards.
This total reward can then easily be reformulated to a reward for each step:

ri = pi − pi−1 − β(di − di−1) (4.2)

Where pi is the number of remaining (pending) layers for the agent to solve for
time-step t = i, and di is the total depth of the circuit for time-step t = i.
An alternative is to instead use the number of solved qubit gates for each timestep
instead of counting each solved layer. In that case the reward instead becomes:

ri = gi − gi−1

G
− β(di − di−1) (4.3)

where gi is the number of remaining gates for the agent to solve for time-step t = i
and G is the average number of gates per layer, thus it still satisfies (4.1). Here the
total reward is the same, but the agent receives a reward more often, reducing the
problem of sparse rewards.
In addition to this the environment receives a fix negative reward σ if it was not able
to finish the routing within the allotted maximum steps Smax. Finally, we also have
a parameter η ∈ [0, 1], which allows one to continually switch between the reward
scheme based on layers (4.2) or based on gates (4.3). Effectively we only ever have
either η = 1 or η = 0. Taken together the full reward is given by:

ri = η(∆pi) + (1− η)∆gi

G
− β(∆di)− σδiSmax (4.4)

Here the ’∆’ denotes the difference between the current (i) and previous (i − 1)
time-step of the given variable (pi, gi or di), and the δij is the Kronecker’s delta.

4.2 Implementation
In this project, we leveraged several existing libraries to create an efficient imple-
mentation. For the enviromental setup we utilized the Gym library [6], which was
chosen to enable seamless integration with stable baselines [20]. The use of sta-
ble baselines offered us the benefit of quick implementation and the robustness of
the Deep Q-Network (DQN) algorithm, which we modified to suit our value-based
approach.
The primary modification was adjusting the structure of the experience replay buffer.
In standard Q-learning, the buffer stores tuples in the format (s, a, r, s’). However,

22

4. Methods

we altered this approach to store the state alongside all corresponding actions, re-
wards, and next states: (s, ai, ri, s

′
i).

A second significant change involved the computation of Q-values. Instead of relying
on conventional calculations, we derived Q-values from the values of all the next
states, i.e., Q(s, a) = V (s′

a). This modification not only impacted the training of
weights but also had ramifications on the policy.
For the training process, we utilized the ’rl-baselines3-zoo’ repository, an extensive
collection that houses a predefined training function. This function accepts a range
of parameters, including the choice of algorithm, the number of environments, and
the location of hyperparameters. This extensive customization capability greatly
expedited the training process and enhanced the overall efficacy of our model.

4.3 Experimental setup
Next we move on to an overview of our testing parameters and the training proce-
dure employed for our ’experimental setup’ for reinforcement learning agent. Our
tests were conducted extensively on the 3x2 environment using various hyperpa-
rameters. Further, primary hyperparameters, which we postulated would exert a
significant effect, were rigorously tested on the 4x3 environment. The computa-
tions for this research were enabled by resources provided by the National Academic
Infrastructure for Supercomputing in Sweden (NAISS) and the Swedish National
Infrastructure for Computing (SNIC) at Chalmers Centre for Computational Sci-
ence and Engineering (C3SE), partially funded by the Swedish Research Council
through grant agreements no. 2022-06725 and no. 2018-05973. We utilized an A40
GPU for the experiments, conducting tests on multiple nodes. The algorithm took
approximately two to three hours to run 500,000 episodes - a timeframe that could
likely be improved substantially with more efficient memory management. The cir-
cuit configurations for these tests were entirely random, two layers deep, and each
layer was fully populated, implying maximum utilization of gates per layer.
We tested various hyperparameters, including the β reward parameter as detailed in
equation (4.2), the network type (3D convolutions versus 2D convolutions), different
network sizes, and distinct ’exploration fractions’. The exploration fraction, a critical
hyperparameter, pertains to our utilization of an epsilon-greedy policy for agent
exploration.
As per this policy, a fraction of the agent’s actions, determined by ϵ, are randomly
selected, thereby ensuring exploration of the environment. Over time, ϵ decays in
a linear fashion, starting from ϵ = 1 (indicating completely random action selec-
tion) and tapering off to a lower limit ϵ = ϵmin, reached at a specific point during
the training period. This point in training is denoted by the ’exploration fraction’.
Additionally, there is a period during the run where the algorithm only collects expe-
riene without training the agent, and thus only chooses actions randomly, effectively
turning ε = 1.
Figure 4.2 shows this by illustrating how ε changes as a function of steps for various
exploration fractions: 0.1, 0.3, 0.5, 0.7, and 0.9. Showing the collection period of
s ∈ [0, 50000] where ε = 1, and the training period where it goes over to the decaying
ε. This diagram demonstrates the different exploration fractions tested during one

23

4. Methods

Figure 4.2: Graph of the exploration rate ε as a function of steps s for different
exploration fractions (p = 0.1, 0.3, 0.5, 0.7 and 0.9), for a run that starts training at
s = 50 000 and ends at s = 500 000. Here the minimum exploration rate is fixed at
εmin = 0.

of the experiments detailed in the ’Results’ section.
Lastly, it is important to note that we performed hyperparameter tuning not just
to optimize the agent’s performance but also to enhance our understanding of the
underlying issues affecting performance. The purpose of testing various hyperpa-
rameters was twofold - firstly, to evaluate the algorithm’s potential for optimization,
and secondly, to discern whether the characteristics of the environment were con-
tributing to any stagnation in progress. As such, the following results offer insights
not just into the effectiveness of the reinforcement learning agent, but also a broader
understanding of the impact of environmental and algorithmic factors on its perfor-
mance.

We primarily relied on two performance metrics, with the first being the number of
steps per episode across environments of different complexity - 3x2, 3x3, and 4x3.
For the tests focusing exclusively on 3x2 and those where environments of different
sizes (3x2, 3x3, and 3x4) were utilized, we established a maximum limit of 100
steps. Meanwhile, for the tests with the larger, more challenging 4x3 environment,
we permitted a more generous maximum of 250 steps.
The rationale for adopting this metric was multifaceted. Foremost, it served as
an indicator of learning efficiency. A reduction in the average episode length over
time signifies that the model is finding optimal solutions more promptly. Secondly,
this metric revealed valuable insights about the exploration-exploitation trade-off.
Longer initial episode lengths might be observed as the agent explores the envi-
ronment, which ideally decrease over time as the agent starts exploiting its learned
knowledge.
Furthermore, the average episode length allowed us to understand the problem’s
complexity, with shorter episodes suggesting simpler problems or efficient learn-
ing algorithms, and vice versa. It also provided an estimate of the inference time,

24

4. Methods

a crucial factor in real-world applications where decision-making time is critical.
Therefore, while the success rate is an essential measure, the number of steps per
episode provided a more comprehensive view of the learning dynamics.

Complementing the primary metric of the number of steps per episode, we also con-
sidered the average reward per episode as a secondary performance indicator. This
measure gave us insights into the agent’s decision-making efficacy during the train-
ing process. Specifically, we quantified this by calculating the mean of cumulative
rewards garnered by the agent across each episode. Given that the environment was
two layers deep, the theoretical maximum possible reward was set to be 2. How-
ever, the effective maximum reward varied based on the selected value of β, which
represented the penalty for each added layer.
The decision to use the average reward per episode as a performance metric was
motivated by several key considerations. Firstly, it allowed us to understand how
well our agent was maximizing its rewards, a core principle of reinforcement learning.
By evaluating the ability of the agent to optimize its cumulative rewards over time,
we could assess its capacity to learn the optimal policy.
Moreover, this metric provided a means to examine the agent’s strategy as it navi-
gated through the environment. Specifically, the balance between immediate versus
future rewards, a critical component of reinforcement learning algorithms, could be
observed through the lens of the average reward per episode.
Finally, the variation in the average reward per episode, depending on the β value,
allowed us to study the impact of the penalty associated with adding layers. This
served as an effective way to gauge the sensitivity of the agent’s learning process to
changes in the reward structure, further enriching our understanding of its perfor-
mance.
Therefore, the average reward per episode, coupled with the number of steps per
episode, painted a holistic picture of the learning process, offering deep insights into
the performance and decision-making patterns of the reinforcement learning agent.

25

4. Methods

26

5
Results

Results include the aforementioned metrics of the average reward, and average num-
ber of steps for each episode. In addition to this we look at some examples of how
the environment went about solving the problem for the cases where it got stuck, to
illustrate the issues that occurred when it didn’t go to plan. All of the environments
looked at has two layers, reward parameter β of β = 0.1 or β = 0.2. Meaning that
one has a maximum obtainable reward of rtot = 2. Meaning that any reward episode
with a reward over rtot = 1 will have routed the problem correctly. The η and σ
parameters were set to η = 1 and σ = 5 for all except the 4x3 environment, which
had η = 0 and σ = 10 respectively

5.1 Environment size 3x2
This section shows four main hyperparameters that were tested, β, the exploration
fraction (explained in the method), different types of convolutional neural networks
and finally different enviornment sizes.

Figure 5.1: Shows average total reward per episode for two runs each of two beta
reward parameters, that are responsible for giving negative reward β = 0.1 and
β = 0.2.

27

5. Results

Figure 5.1 average total reward per episode for two runs each of two beta parame-
ters, β = 0.1 and β = 0.2.
In figure 5.2 we see the average steps per episode as a function of time-steps taken,

Figure 5.2: Average steps per episode as a function of time-steps taken, for two
runs each of two beta parameters, β = 0.1 and β = 0.2.

for two runs each of two beta parameters, β = 0.1 and β = 0.2.
From these figures one can clearly see the stability caused by the lower β-value, yet
that there is quite some variation in the runs.

In figure 5.3 we see the average reward per episode as a function of time-steps and in
figure 5.4 we have the average steps for three runs each of both a 3D-convolutional
network and a 2D-convolutional neural network, each with 8 convolutional and 4
linear layers respectively.
From these two figures we see a general trend of all heading towards being able
to solve the problem, but with some instability some of them, and quite a bit of
instability in one case. From the figure there is no clear distinction between the 2D
and 3D convolutional networks performance or stability, due to the high variation
in between the runs.

Then we have the average rewards 5.5 per episode as a function of steps, for dif-
ferent runs with different exploration fraction, which is the fraction of the training
period where the agent explores the environment through the epsilon greedy policy
ϵ > ϵmin = 0.05. The graph of ε as a function of agent steps for this experiment can
be seen in figure 4.2.
From these figures one sees firstly that there is a clear improvement from the increase
in exploration, however the second thing to note is the instability in the environment
once random actions have been turned off, which can most clearly be seen from for
the p = 0.3 and p = 0.5. This that the agent still hasn’t learned the environment

28

5. Results

Figure 5.3: Average reward per episode as a function of time-steps taken, for
three runs each of both a 3D-convolutional network and a 2D-convolutional neural
network.

Figure 5.4: Average steps per episode as a function of time-steps taken, for three
runs each of both a 3D-convolutional network and a 2D-convolutional neural net-
work.

completely and that the randomness allows it to run into situations that it is more
familiar with. Given the way the environment is set up with the ability to remove
swaps one has placed previously.

29

5. Results

Figure 5.5: Average rewards per episode as a function of time-steps taken, for
multiple different exploration fractions, which is the fraction of the training time
that environments relies on random actions (epsilon greedy policy). The colored
vertical lines represents when ε has reached εmin as seen in 4.2

Figure 5.6: Average steps per episode as a function of time-steps taken, for multiple
runs of both 3x2, and 4x3 and one 3x3 environment.

Lastly we move on to comparing environments of different sizes, from 3x2, to 3x3,
to 4x3 in their average number of steps 5.6 per episode.
Here we have a maximum number of episodes of 100, an exploration fraction of
p = 0.4 for the smaller circuits and one 4x3 circuit and p = 0.7 for the rest.
From the figure one can see the 3x2 runs stabilizing into being able to solve the
problem, while it seems like the 3x3 is able to solve an individual layer. Whether or
not that is just due to the randomness or the network had some impact is unclear.

30

5. Results

Then lastly, we see that the runs for the 4x3, directly stabilize into states where they
do some sort of loop to prevent layers from being added and thus end up getting
the negative punishment from the σ = 5 parameter.

5.2 Environment of size 4x3
Next we move on to a circuit of size 4x3 and a depth of two. here we had β = 0.1
and η = 0, and the negative reward for not completing the environment after 250
steps was σ = 10. We just multiple neural networks of varying sizes, convolutions
channels of 64 to 256 for each layer, and a corresponding number of neurons in the
linear layers, with lengths of both layers being 4 to 8. This can be seen in figure
5.7. This shows the different Networks perform on this environment in terms of the
average reward and the average episode length as a function of the time during the
training.

Figure 5.7: Average steps and average rewards per episode as a function of steps,
for a 4x3 environment

First off we see no indication of an improvement given larger network size, where
the variance shown in Similarly to the 3x3 run from the previous figure of differently
sized environments 5.6, we see some indication of being able to solve some layers
with the help of randomness. We can see an improvement over the previous figure’s
4x3 runs, which is most likely caused by the increase in the number of total steps.
We can clearly see from the previous run how it immediately shot up to 100 steps,
and thus was not able to receive any positive rewards.

One first sees the great increase in performance from the time the agents starts to
perform actions around the 50k step mark (as per usual). Before the performance
starts to level off again, and stabilizes around the 250-300k step mark where it falls
flat, using up the maximum 250 steps and gaining only the punishment for not
routing the circuit (σ = 10) as punishment.
From these figures there is no indication of improvement due to network size, as
one can see more variance between the individual for one network size as apposed

31

5. Results

to the difference between runs of different sizes. Similarly to the 3x3 run from the
previous figure (5.6), we see some indication of being able to solve some layers with
the help of randomness. Given the improvement over the previous figure’s 4x3 runs,
it appears that being able to take more steps was vital to even allow the environment
to be able to solve the environment in the first place.

32

6
Discussion

The main point of this study was to determine the efficacy of this value based method
for solving the routing problem. However due to time constraints, the method was
only able to be tested to a point. From this the main point became instead to
determine, from what tests that were performed, whether or not the failure of the
environment to solve the larger 4x3 case was due to some fault with the hyperpa-
rameters or whether or not one could blame the method itself.
From the different 3x2 runs one can clearly see a large difference in the stability
of the runs even for runs with the same parameter is tested. Examples of this can
clearly be seen in the run for the testing of the 2D in comparison to the 3D con-
volutional networks 5.4 and the testing of β-parameters 5.2. This large variation
makes it difficult to say anything about the efficacy of different β-paramaters nor to
compare the performance of either 2D or 3D convolutional neural networks.
Similarly, for the comparison of different sizes of networks for a 4x3 environment
(figure 5.7) we see that all the tested networks appear to perform equally well, the
range of variances exhibited by the other networks, indicating no distinguishable
differences in their performance. Here a wider selection of networks with a large
difference in size were tested. Which means that we can with more confidence say
that the network size didn’t matter much.

The main parameter of interest however was the exploration fraction, where one can
see that the lower ones does not allow the agent to explore enough to be able to
solve the environment. Interestingly one sees a decreased performance after below a
certain ε threshold indicating that, randomness had a positive impact on the ability
of the agent to solve the problem. However without any randomness it doesn’t seem
to perform well until it has learned enough as we see with those environments that
have learned with randomness for longer. This drop-off in performance as ε → 0
can be seen in all of the training runs of the 4x3 environment.
Looking closer at the environment one can see the importance of randomness, and
how the path to a solution to the problem remains stable in spite of it. Randomly
selecting actions presents no inherent issues, as demonstrated by the exploration of
various actions leading to immediate states with consistent values. This observation
emerges due to the commutative nature of numerous actions, stemming from the
fact that a lot of the swaps are non-overlapping. Consequently, for a given state,
the values associated the subsequent states tend to align closely, if not identically.
Furthermore, the intrinsic reversibility of certain mistakes, like those involving swap
gates, diminishes the drawbacks of random action selection. However this reversibil-
ity will in some cases cause the agent to get stuck in an infinite loop. This issue gets

33

6. Discussion

rectified by having random actions, as it allows the agent to get to adjacent states
outside of that loop.

In light of this, two strategies come to the forefront. The initial strategy involves
extended training sessions infused with randomness. This will prevent the agent from
getting stuck in these infinate loops. As a result, continuity in training supplemented
by randomness emerges as a key pathway for further improvement.
The second strategy contemplates the adoption of an alternative policy, potentially
a softmax policy in lieu of the epsilon-greedy approach. By introducing controlled
randomness through a softmax policy, the agent will more naturally choose between
different non-overlapping actions lead to similarly valued states.
Another potential avenue for further improvement lies in the adoption of Monte
Carlo Tree Search (MCTS). The success of MCTS in various problem domains, as
demonstrated in previous studies such as [30] and [26], highlights its potential ap-
plicability to the quantum routing compilation challenge. By integrating MCTS,
the agent could navigate the solution space with a blend of guided exploration, in-
fluenced by both randomness and the insights provided by the value-based neural
network. This approach allows the agent to look ahead further to see how different
actions affect which paths can be chosen, and might give more insight than the
similarly valued potential actions given directly by the network.

Furthermore, beyond the realm of reinforcement learning, the neural network’s
learned value estimates can potentially serve as a valuable metric for classical graph
algorithms. One notable approach could involve leveraging the network’s insights
within a regular graph traversal algorithm like A*. By utilizing the network’s value
assessments as heuristic information, the algorithm could make more informed deci-
sions about node prioritization during the routing process. This marriage of value-
based insights with classical algorithmic techniques could potentially harness the
strengths of both paradigms.

In summary, the application of value-based reinforcement learning to the quantum
routing compilation problem has demonstrated promising potential, particularly in
the context of enhancing decision-making through controlled randomness and ex-
tended training. However, looking ahead, the integration of Monte Carlo Tree Search
stands out as a viable strategy to further guide exploration, building upon the con-
vergence achieved by the value-based network. Moreover, the fusion of value-based
estimates with classical graph algorithms offers an exciting avenue for future re-
search, potentially leading to a powerful symbiosis of quantum-inspired learning
and classical problem-solving techniques.

34

7
Conclusion

This study focuses on Quantum Routing Problem and attempts at finding a solu-
tion based on Value-based variant of Q-learning algorithm. Three deep convolutional
neural networks have been proposed for three grid setup environments, with grid
size 3x2, 3x3, and 4x3. For the 3x2 grid-size the agent was able to find solutions to
the problem, with most hyper-parameters not affecting the training much. On the
other hand, the two models for 3x3 and 4x3 grid sizes, were only able to reach a
steady state, that indicated that it was stuck in an infinite loop. The potential of
obtaining a similar success with the models proposed for 3x3 and 4x3 grid sizes were
discussed. It is indicated that the proposed models would likely be able to solve the
problem if they were trained for longer with randomness. In addition further im-
provements to the model were discussed, such as using a soft-max policy and using
Monte Carlo Tree Search, due to the similar values of the resultant states and the
important role randomness had in breaking any loops.
In addition it is essential to acknowledge the invaluable support and computational
resources that facilitated the execution of this research. The computations for this
study were made possible by the generous provision of resources from the National
Academic Infrastructure for Supercomputing in Sweden (NAISS) and the Swedish
National Infrastructure for Computing (SNIC) at Chalmers Centre for Computa-
tional Science and Engineering (C3SE).

35

7. Conclusion

36

Bibliography

[1] Quantum theory, the church–turing principle and the universal quantum com-
puter. Proceedings of the Royal Society of London. A. Mathematical and Phys-
ical Sciences, 400(1818):97–117, July 1985.

[2] Philip Andreasson, Joel Johansson, Simon Liljestrand, and Mats Granath.
Quantum error correction for the toric code using deep reinforcement learn-
ing. Quantum, 3:183, 2019.

[3] Szilárd Aradi. Survey of deep reinforcement learning for motion planning of au-
tonomous vehicles. IEEE Transactions on Intelligent Transportation Systems,
23(2):740–759, 2022.

[4] Aniruddha Bapat, Andrew M. Childs, Alexey V. Gorshkov, Samuel King, Eddie
Schoute, and Hrishee Shastri. Quantum routing with fast reversals. Quantum,
5:533, aug 2021.

[5] Paul Benioff. Quantum mechanical hamiltonian models of turing machines.
Journal of Statistical Physics, 29(3):515–546, 1982.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[7] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will
Simmons, and Seyon Sivarajah. On the qubit routing problem. 2019.

[8] Richard P. Feynman. Quantum mechanical computers. Conference on Lasers
and Electro-Optics, 1984.

[9] Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H. Huang, Dhruva Tirumala,
Markus Wulfmeier, Jan Humplik, Saran Tunyasuvunakool, Noah Y. Siegel,
Roland Hafner, Michael Bloesch, Kristian Hartikainen, Arunkumar Byravan,
Leonard Hasenclever, Yuval Tassa, Fereshteh Sadeghi, Nathan Batchelor, Fed-
erico Casarini, Stefano Saliceti, Charles Game, Neil Sreendra, Kushal Patel,
Marlon Gwira, Andrea Huber, Nicole Hurley, Francesco Nori, Raia Hadsell,
and Nicolas Heess. Learning agile soccer skills for a bipedal robot with deep
reinforcement learning, 2023.

[10] Steven Herbert and Akash Sengupta. Using reinforcement learning to find
efficient qubit routing policies for deployment in near-term quantum computers,
2019.

[11] Julia Kempe. Discrete quantum walks hit exponentially faster - probability
theory and related fields, Feb 2005.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2017.

37

Bibliography

[13] Aleks Kissinger and Arianne Meijer van de Griend. Cnot circuit extraction
for topologically-constrained quantum memories. Quantum Information and
Computation, 20(7,8):581–596, 2020.

[14] Jung-Shian Li and Ching-Fang Yang. The design of a quantum benes switch.
In 2007 IEEE Conference on Electron Devices and Solid-State Circuits, pages
539–544, 2007.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013.

[16] Giacomo Nannicini, Lev S. Bishop, Oktay Günlük, and Petar Jurcevic. Optimal
qubit assignment and routing via integer programming. ACM Transactions on
Quantum Computing, 4(1), oct 2022.

[17] Peter J. Pemberton-Ross and Alastair Kay. Perfect quantum routing in regular
spin networks. Physical Review Letters, 106(2), 2011.

[18] Matteo G. Pozzi, Steven J. Herbert, Akash Sengupta, and Robert D. Mullins.
Using reinforcement learning to perform qubit routing in quantum compilers.
ACM Transactions on Quantum Computing, 3(2):1–25, 2022.

[19] John Preskill. Quantum computing in the NISQ era and beyond. Quantum,
2:79, aug 2018.

[20] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian
Ernestus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learn-
ing implementations. Journal of Machine Learning Research, 22(268):1–8, 2021.

[21] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017.

[22] M. Shamsa and B. Ahluwalia. Qca-based routing mechanism for parallel com-
puters and application in railways. Proceedings of the 2001 1st IEEE Conference
on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).

[23] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, oct 1997.

[24] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[25] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. Mas-
tering chess and shogi by self-play with a general reinforcement learning algo-
rithm, 2017.

[26] Animesh Sinha, Utkarsh Azad, and Harjinder Singh. Qubit routing using graph
neural network aided monte carlo tree search. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 36(9):9935–9943, 2022.

[27] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Sim-
mons, Alec Edgington, and Ross Duncan. t|ket⟩ :
aretargetablecompilerforNISQdevices.QuantumScienceandTechnology, 6(1) :
014003, nov2020.

38

Bibliography

[28] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. The MIT Press, second edition, 2018.

[29] Friedrich Wagner, Andreas Bärmann, Frauke Liers, and Markus Weissenbäck.
Improving quantum computation by optimized qubit routing. Journal of Opti-
mization Theory and Applications, 197(3):1161–1194, may 2023.

[30] Xiangzhen Zhou, Yuan Feng, and Sanjiang Li. A monte carlo tree search frame-
work for quantum circuit transformation. Proceedings of the 39th International
Conference on Computer-Aided Design, 2020.

[31] Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology
for mapping quantum circuits to the ibm qx architectures. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226–
1236, 2019.

39

Bibliography

40

	List of Figures
	Introduction
	An Introduction: On Quantum Computing and The Need for Compiler
	Overview of the Problem

	Literature Review
	Overview
	Early Approaches to Quantum Routing:
	Classical approaches to the quantum routing problem
	Deep Reinforcement Learning for Quantum Routing
	Monte Carlo Tree Search for Quantum Routing:

	Theory
	Quantum Computing
	Quantum Information
	Quantum Gates and Circuits
	The Qubit Routing Problem

	Reinforcement Learning
	Introduction to Reinforcement Learning as a Markov Decision Process
	Q-Learning
	Value-Based Learning
	Deep Q-Learning

	Neural Networks
	Fully Connected Neural Networks
	Convolutional Neural Networks

	Methods
	The Environment
	The Observation
	The Actions
	The Reward function

	Implementation
	Experimental setup

	Results
	Environment size 3x2
	Environment of size 4x3

	Discussion
	Conclusion
	Bibliography

