
Test Coverage

•
𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 𝑚𝑜𝑑𝑒𝑠

𝑁𝑟. 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠
%

Inputs

• Test Case

• Model.mo

OpenModelica

• HDAE C-code Executable

DAE1 DAE2

DAE3

Modes

DAE1

DAE3

Modes Reduction

DAE1 DAE2

DAE3

Triggered Modes

Test coverage of systems with
continuous dynamics
Master’s thesis in Systems, Control and Mechatronics.

JAVIER GIL CEPEDA

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017: EX002/2017

Test coverage for systems
with continuous dynamics

JAVIER GIL CEPEDA

Department of Signals and Systems
Division of Signals and Control

Chalmers University of Technology
Gothenburg, Sweden 2017

Test coverage for systems with continuous dynamics
JAVIER GIL CEPEDA

© JAVIER GIL CEPEDA, 2017.

Supervisor: Sajed Miremadi, Volvo Car Corporation
Examiner: Knut Åkesson, Department of Signals and Systems

Master’s Thesis 2017:EX002/2017
Department of Signals and Systems
Division of Signals and Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover:

Typeset in LATEX
Gothenburg, Sweden 2017

iii

Test coverage for systems with continuous dynamics
JAVIER GIL CEPEDA
Department of Signals and Systems
Chalmers University of Technology

Abstract
Testing cyber-physical systems is a crucial part of the development process to en-
sure correct operation. To determine how well a system is tested, this thesis pro-
poses a novel methodology to measure test coverage for systems that contain both
continuous and discrete dynamics. The approach is based on using the modelling
language Modelica to obtain a mathematical representation of the behaviours of
the system that can be translated to a hybrid automaton. Then, a metric called
mode coverage is used to measure the exercised dynamical behaviours during the
testing process.
This work first describes mechatronic systems and how they can be modelled

as hybrid automata, a case-study from the automotive industry is presented as
an example. In a second stage, coverability criteria are presented as a metric to
evaluate the quality of the test, and two strategies to perform test coverage are
identified and analysed. Finally, a strategy based on structural analysis of modes
is implemented to the case study and the proposed algorithm is described in detail.
On the basis of the results, it can be concluded that the proposed methodology

can be used to pinpoint dynamics that are not examined during the testing process.
Such information can be further used to automate the generation of new test cases
that trigger the unexplored regions.

Keywords: Test coverage, mode coverage, hybrid automata, Model-Based Test-
ing, Automation.

iv

Acknowledgements
I would like to express my gratitude to all the people who contributed to the work
described in this thesis. First of all, I thank my thesis advisor Dr. Knut Åkesson
for engaging me in new ideas and guidance throughout the project. I would also
like to thank my supervisor at Volvo, Dr. Sajed Miremadi for giving me this thesis
opportunity but also supporting me to overcome problems that emerged during
the thesis work. Finally, I would like to send my thanks out to Johan Eddeland
for his clever and valuable insights.

Javier Gil Cepeda, Gothenburg, January 2017

v

Acronyms

CPSs Cyber-Physical Systems

DAE Differential Algebraic Equations

GCOV GNU Coverage

HA . Hybrid Automata
HDAE Hybrid Differential Algebraic Equations

MBT Model-Based Testing
MC/DC Modified Condition/Decision Coverage

SMT Satisfiability Modulo Theories
SUT . System Under Test

vi

Table of Contents

Acronyms vi

Contents vii

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 4
1.3 Related Work . 4
1.4 Research questions . 5
1.5 Method . 5

1.5.1 Justify research approach 5
1.5.2 Research approach . 5

1.6 Contributions . 6

2 Modelling Mechatronic Systems 7
2.1 Mechatronic Systems . 7
2.2 Modelling fundamentals . 7

2.2.1 Modelling approaches . 8
2.2.2 Hybrid DAE . 10

2.2.2.1 Hybrid DAE in SimCode 10
2.2.3 Hybrid Automata . 11

2.3 Modelling Software . 13

3 Test Coverage for CPSs 15
3.1 Coverability criteria . 15

3.1.1 The proposed criterion: mode coverage 16
3.2 Test coverage analysis: GCOV . 16

vii

Table of Contents

3.2.1 Introduction to GCOV . 16
3.2.2 Methodology Workflow . 17
3.2.3 Analysis of C-code . 17

3.3 Test coverage analysis: Hybrid Automaton 20
3.3.1 General algorithm . 20
3.3.2 Modes: from Hybrid DAE to Hybrid Automaton 22

3.3.2.1 Identification of modes 23
3.3.3 Mode Reduction . 27

3.3.3.1 Satisfiability Modulo Theories - the Z3 Solver . . . 27
3.3.3.2 Mode Reduction Workflow 28

4 Case study, Dog-Clutch 30
4.1 Description of the Dog-Clutch . 30

4.1.1 Modelling the Dog-Clutch 31
4.2 Implementation and evaluation . 33

5 Conclusion 37
5.1 Limitations . 37
5.2 Future Work . 38

A Clutch Model I

B Hybrid DAE IV

viii

List of Figures

1.1 V-Model . 2
1.2 Model-Based Testing work-flow . 3
1.3 Method . 6

2.1 Mechatronic system description . 8
2.2 Causal modelling example . 8
2.3 Acausal modelling example . 9
2.4 DAE example . 10
2.5 Hybrid automaton . 13
2.6 OpenModelica compiler stages . 14

3.1 GCOV workflow . 17
3.2 C-code from OpenModelica . 19
3.3 GCOV results . 19
3.4 Approach to measure test coverage 20
3.5 Algorithm to find triggered modes 22
3.6 Hybrid automaton . 26
3.7 Z3 Satisfiability example . 27
3.8 Mode reduction algorithm . 28
3.9 Example of the mode reduction algorithm 29

4.1 Dog-clutch operation . 30
4.2 Dog-Clutch model . 31
4.3 Distance limits in the clutch model 32
4.4 Result Test Coverage . 34

ix

List of Tables

2.1 DAEs generated by conditional equations 11
2.2 Hybrid DAE generated for the case study 12

3.1 Modes description . 23

4.1 Conditions from Appendix B . 33
4.2 Parsed conditions: Case study . 35
4.3 Modes in the case study . 36

x

1
Introduction

Test Coverage is a measure extensively used in software engineering to charac-
terise how well a model is tested. This thesis provides a definition of test coverage
for systems with continuous dynamics and develops an algorithm to measure test
coverage. The algorithm has been evaluated on a use case from Volvo Car Corpo-
ration.
This master’s thesis is a part of TESTRON [1] project carried out by Chalmers

University of Technology, Volvo Car Corporation and Quviq AB and funded by
VINNOVA, the Sweden Innovation Agency.

1.1 Background
Cyber-Physical Systems (CPSs) [2] [3] are closed loop feedback systems that
present high interconnection between the physical world and one or more com-
puting devices. As the level of capacity of computation has been increasing along
the years, more and more physical systems, such as biological systems, smart grids
or communications have started to be regulated by means of controllers. These
devices perform tasks such as computation or communication through sensors and
actuators, reacting in real time to the environment. Cyber-physical systems are
today ubiquitous in many different areas, such as transportation, robotics, health
care, energy, military or communication.
Applications of CPSs with a high level of inherent risk associated may be called

safety-critical and must, thus, be handled with special attention. These systems
have as their first requirement the correct (safe) operation rather than cost or
performance. Examples of safety critical applications are: a cruise controller in
a car, electronic medical equipment and the autopilot in an aeroplane. Thus, an
exhaustive analysis and verification of these systems is of crucial importance.
Verification can be defined as the process of determining whether a model meets

the specified requirements, ensuring that the system is well-engineered. In the
industry, the most common process to verify a model is by testing. Historically,
experienced engineers with high knowledge about the system under test did veri-

1

1. Introduction

fication by manual testing. Yet, the actual level of complexity acquired by CPSs
and the increased number and detail of specifications make it hard and, in prac-
tice, impossible to manually verify these kind of systems. Most important, the
continuous increment of costs motivates new testing approaches in the industry to
automate testing processes.
One emerging novel technique that will be implemented in the TESTRON

project, which has drawn attention in the past decade, is Model-Based Testing
(MBT) [4]. This approach is growing importantly in the automotive industry due
to the tendency towards the use of the Model-Based Design (MBD) methodology
in the development of embedded software, above all to comply with ISO26262
"Road vehicles – Functional safety" [5]. The advantage of the MBT approach is
that errors can be detected and fixed already in the early design phases, instead of
in integration or marketing stages as is shown in Figure 1.1. Saving costs and facil-
itating faster developments are important improvements achieved with the MBT
implementation [6].

Requirements

Design

Code

Integration

User acceptance

Model-Based
Testing

Figure 1.1 – Model-Based Design process. Model-based testing is implemented
in the earlier stages of the development process. From D. Firesmith [7].

The overall structure of the MBT technique is presented In Figure 1.2. The
motivation of this work lies in the last step of the algorithm where testing quality
is evaluated. A test script automates a process where a test case is executed on a
System Under Test (SUT) and finally a verdict is assigned to each test case. The
question that arises now is how test quality can be measured to generate a verdict.
A common method used in software testing is test coverage. Yet, typical cover-
age criteria for structural analysis at code level as Modified Condition/Decision
Coverage (MC/DC) have been questioned in [8] using a simple example of CPSs.
This is because analysis for verification of CPSs models is in general complex due
to the interaction between continuous and discrete dynamics.

2

1. Introduction

When talking about MBT, the importance of the coverage criterion is not limited
to providing a metric to measure test quality. In fact, the objective of test coverage
is to find areas that have not been covered by the test cases. The test criterion
serves therefore as a guideline in the generation of new test cases to cover such
areas. Another important property is that it may be a useful input to a test-
stopping rule. When the criterion is fulfilled or it has been reached an acceptable
level of coverage the testing may be stopped.

Adaptor + Env

Test

Selection

Criteria

Requirements

Test Case

Specification
Model

Verdicts

Test

Cases

Test

Script

(1)

(2)

(3)

(4)(4)

(5!2)

(5!1)

SUT

Figure 1.2 – Model-Based Testing work-flow from [4]. This master’s thesis focuses
in the last steps, 5-1 and 5-2. A test script is used to execute a test case on a SUT
and as a result a verdict is achieved.

The aim of this master’s thesis is twofold. Firstly, to define a coverage criterion
suitable for CPSs which answers the question, “What property of a CPSs must
be tested” Secondly, develop an algorithm to evaluate how well a test case tests
the property defined by the coverage criterion and returns a verdict. For the
first question, mode coverage criterion is used because it fits better with CPSs.
Regarding the second question, the algorithm proposed translates cyber-physical
systems into Hybrid Automata (HA) [9] [10] to be used for analysing test coverage.

3

1. Introduction

1.2 Purpose
The purpose of this thesis is to create a tool that measures test coverage for a
system with continuous dynamics. To that end, an algorithm has been developed
and implemented that takes as inputs a system under test (SUT) and a test case(s)
and returns the test coverage according to a pre-defined criterion.

1.3 Related Work
Hybrid systems have been extensively studied in the literature, in Alur R. et al.
[9] the framework of hybrid automata (HA) is introduced to verify linear hybrid
systems. Henzinger T. [11] applies model-checking techniques in HA for formal
verification concluding that reachability is undecidable even for simple hybrid au-
tomata.
Regarding test coverage for hybrid systems two approaches have been reviewed.

In A. Agung Julius et al. [12], the infinite set of possible testing scenarios is
reduced to a finite set by means of the notion of robust neighbourhoods. The
testing aims to cover all these finite scenarios. In the work presented by Tarik
Nahhal and Thao Dang [13] the coverage criterion used is state coverage. The
state space is divided into regions with the same characteristics and the notion
of star-discrepancy is used to describe how well the visited states represent the
reachable set of the system. The objective is to test the state space as much as
possible without leaving big unexplored areas. This method faces the problem of
the infiniteness of states in complex models, which requires a very long time of
computation and have no measure of that all modes have been tested.
As a difference, the algorithm proposed in this master’s thesis calculates test

coverage by reducing the infinite state space to a finite set of modes. Such modes
are used as a coverage criterion to quantify test coverage. Another difference
is that while previous works use hybrid automata to represent hybrid systems,
neither of them describes the process to generate it. The algorithm presented here
establishes a method to automate the creation of a hybrid automaton to be used
in the testing process.
The increasing attention and resources laid on the verification of hybrid systems

are reflected in the rising number of developed tools using MBT techniques. On
one hand, Reactis Tester and TestWeaver are testing and validation tools that
try to maximise the degree of coverage by using guided simulation techniques [14].
On the other hand, Simulink Design Verifier uses formal methods and SAT-solving
techniques to automatically generate test cases for state coverage [15]. The tool
developed in this master’s thesis does not use formal methods to verify a model
and differs from the other approaches in that, mode coverage is used instead of

4

1. Introduction

state coverage as a metric to evaluate test coverage.

1.4 Research questions
The following questions are answered in this thesis:
RQ1: What coverage criteria for hybrid systems are useful for testing?
RQ2: How can modelling languages as Modelica, be transformed into mathemati-

cal descriptions suitable for analysis?
RQ3: What are the strength and weakness of the proposed coverage criteria?

1.5 Method
This subsection firstly justifies the qualitative approach followed throughout this
thesis with the aim of answering the research questions defined in the previous
chapter. Secondly, the approach is presented.

1.5.1 Justify research approach
1. The acausal modelling approach was used as it efficiently models CPSs and

is able to translate them into a mathematical representation. Among all the
modelling environments, OpenModelica was chosen since it allows control
over all the processes, from model description to the simulation.

2. Hybrid automata is a well studied formal model, suitable to be applied in
the analysis of hybrid systems. Research and programming development was
carried out to achieve a systematic way to generate hybrid automata from a
mathematical description provided by OpenModelica.

3. Two different coverage criteria were studied resulting in mode coverage as a
criterion to quantitatively measure test coverage.

4. The approach followed along the thesis allows exploiting the advantages of
emerging satisfiability modulo theories solvers to efficiently reduce the num-
ber of unreachable modes in the HA.

1.5.2 Research approach
The aim of the thesis is to measure test coverage for systems with continuous
dynamics. The approach followed can be summarised in Figure 1.3. A CPS system
is represented by the control and plant blocks and the feedback loop. The control
block describes the discrete dynamics while the plant describes the continuous

5

1. Introduction

dynamics. Thus, the goal is to find the dynamical behaviours or modes of the
plant block that are excited by a test vector.

Control Plant
Test

vector

Modes

Figure 1.3 – The method followed in this thesis aims to identify modes that are
triggered by a test case in a cyber-physical system. The modes describe continuous
dynamics in the plant block.

The procedure followed is described below:

1. The modelling framework OpenModelica was used to transform a CPSs sys-
tem described in Modelica language into a hybrid DAE. After analysing
the results obtained from OpenModelica, it was decided to use a hybrid
automata as the system from which to measure test coverage, also mode
coverage was identified as a proper coverage criterion since it is particularly
useful in analysing hybrid automata.

2. The hybrid DAE was used to automatically generate a hybrid automaton,
which is a mathematical description suitable for test coverage analysis.

3. By using the Z3 solver, the HA was reduced removing the unfeasible modes.
4. Measure test coverage with mode coverage as a criterion.
5. Throughout the process, strength and weakness of the approach were exam-

ined.
The application developed has been implemented in Python and two software

tools have been used, OpenModelica and the Satisfiability Modulo Theories (SMT)
Z3 solver.

1.6 Contributions
To the best knowledge of the authors, this master’s thesis proposes a novel method-
ology to perform test coverage based on the use of the Modelica language to repre-
sent CPSs as hybrid automata. Furthermore, it is proposed the definition of mode
coverage as a coverage criterion to determine how well a system is tested.

6

2
Modelling Mechatronic Systems

Modelling mechatronic systems consist of capturing the dynamics of a system in
a mathematical description. Among all the possible representations, two are of
particular importance for this work: the Hybrid Differential Algebraic Equations
(HDAE) and the hybrid automata.
This chapter is organised as follows: Mechatronic systems are first presented to

later move on towards modelling concepts as modelling approaches, mathematical
representations and different software for modelling and simulation mechatronic
systems. Finally, the Dog-Clutch model used through the thesis is presented.

2.1 Mechatronic Systems
Mechatronic systems are a type of cyber-physical systems where the physical part is
a mechanical system. An outline of a mechatronic system is presented in Figure 2.1.
Typically, a micro-controller running a control algorithm is located in the electronic
domain. On the other side, a robot or some mechanical process interacting with
the environment is used in the mechanical domain. The communication between
the two domains is conducted through actuators to perform the actions decided
by the controller and through sensors providing the feedback from the mechanical
part. Examples of mechatronic devices are robots and manipulator arms, more
complex examples are aeroplanes. The mechatronic system investigated here is a
dog-clutch that is explained in detail in section 4. This device is used to propagate
motion by coupling two rotating shafts.

2.2 Modelling fundamentals
This section describes the two mathematical representations used throughout the
modelling process, the hybrid DAE and hybrid automata. The objective is to
translate the original model coded in Modelica into hybrid automata, which is a
suitable structure to analyse test coverage, a HDAE is used as an intermediate
step.

7

2. Modelling Mechatronic Systems

Control
Algorithm

Actuators

Sensors

Process

Electronics Mechanics

Figure 2.1 – Description of the interaction between the electrical and the me-
chanical part of a mechatronic system

2.2.1 Modelling approaches
A mechatronic system usually consists of two parts: a controller and a plant.
Modelling the controller usually includes sensors and actuators and may experience
jitter, delay times and other disturbances. Since control algorithms are designed
using a model of the plant, it is thus necessary to model the mechanical system
as close as possible to the reality. The implementation of the plant is a difficult
task due to the highly complex interaction between the different domains. Two
prominent approaches are commonly used to carry out modelling tasks, causal and
acausal modelling, both are described below in more details.

Figure 2.2 – Simulink model of an inductor where the input is the voltage and
the output the current

1. Causal modelling: Causal models follow the principle of causality. Blocks
have defined inputs and outputs that impose a causal relationship between
variables. The interconnection between different blocks is done by links,

8

2. Modelling Mechatronic Systems

which transmit signals at each time step. The model is constructed follow-
ing the dependencies between variables, generating a determined data flow
direction for the signals. Systems that present such behaviour are called
causal systems, an example of this is created with Simulink and shown in
Figure 2.2, where a mathematical description of an inductor is used to ob-
tain current from a voltage input. One disadvantage of this approach is that
the model diagram follows a hierarchy and represents the mathematical re-
lationships rather than the physical representation of the model. Another
drawback is the re-usability of the block, in this case, it can only be used to
compute current when the voltage and resistnce are given.

2. Acausal modelling: This approach also called the Physical Network Ap-
proach aims to model physical systems through a mathematical description
made up by a set of Differential Algebraic Equations (DAE). Unlike the
causal approach, equations neither specify input nor output variables. In
this context, equations must be understood as relations among variables,
not as assignments, therefore causality is not specified. The directionality
or data flow of the variables among blocks is defined during simulation time
when the equations are solved. Graphically the acausal approach provides
a model with a topology very similar to the real physical model. Figure
2.3 describes a simple example where an ideal inductor is created. The icon
represents an inductor that is governed by the relation L · di

dt
= V , where

voltage and current flows are simultaneously simulated.

1 model Inductor "Ideal linear electrical inductor "
2 extends Interfaces.OnePort (i(start =0));
3 parameter SI.Inductance L(start =1) " Inductance ";
4 equation
5 L*der(i) = v;
6 end Inductor ;

Figure 2.3 – A script that models an Inductor using Modelica is shown within
the frame. Above the script, the graphical representation of the class Inductor is
depicted.

The second approach, acausal modelling, fits better with the aim of this thesis
in the sense that it is possible to extract the equations describing the behaviours

9

2. Modelling Mechatronic Systems

of the model to analyse it. That is in opposition to the causal approach, where
only a bunch of C-code files is obtained making it complicated, if not impossible,
to analyse behaviours of mechatronic systems. In fact, the equations provided by
acausal modelling are expressed in a structure called hybrid DAE that is described
more exhaustively in the next section.

2.2.2 Hybrid DAE
A hybrid DAE can be summarised as a mathematical model that switches its
behaviour with time and is composed of a set of DAEs, representing continuous
dynamics. Below are briefly introduced, from a less to a more complex level, the
different systems of equations that define a hybrid DAE. An example of how a
HDAE looks is presented in Figure 2.4.

Algebraic equations describe the design and physical constraints among vari-
ables. It does not contain derivatives of the system variables.

Ordinary differential equations are equations with derivatives that models
rates of change of the system variables and are used to describe natural
phenomena.

Differential algebraic equations are a generalization of ODE’s including alge-
braical equations. A DAE can be expressed as F (ẋ, x, t) = 0.

ẋ1 = 2x1 + u1
ẋ2 = 4x2 + 6u2

}
ẋ = f (x, u) Differential equations

x1 = 3x2 h(x) = 0 Algebraical equation

Figure 2.4 – Example of a DAE composed by two differential equations and one
algebraical equation.

Hybrid DAEs naturally arise during the modelling process of physical systems.
This mathematical description is the tool used to construct hybrid automata from
which test coverage will be analysed.

2.2.2.1 Hybrid DAE in SimCode

As far, the concept of hybrid DAE has been introduced without any mention
with regard to its implementation in a computational language. An efficient way
to represent HDAEs is through conditional equations also called if-equations, an
example of two conditional equations is shown in (2.1). In this simple example,
the value of the variables a and b defines the expression at which variables ẋ and

10

2. Modelling Mechatronic Systems

x are updated. The two conditional equations describes four different DAEs that
are shown in Table 2.1.

ẋ1 =
{

2x1 + u, if a < 0
−(x1 + u), if a ≥ 0

(2.1a)

x2 =
{

1, if b < 0
0, if b ≥ 0

(2.1b)

a, b < 0 ẋ1 = 2x1 + u

x2 = 1
ẋ1 = 2x1 + u

x2 = 0
a < 0; b ≥ 0

a ≥ 0; b < 0 ẋ1 = −(x1 + u)
x2 = 1

ẋ1 = −(x1 + u)
x2 = 0

a, b > 0

Table 2.1 – DAEs generated by the conditional equations in (2.1).

The modelling software OpenModelica uses the hybrid DAE mathematical de-
scription to collect all the information related to the dynamics of the model in a
data structure called SimCode. A simplified version of the SimCode for the case
study is shown in Table 2.21. The different DAEs that conforms the hybrid DAE
are described by regular equations and the conditional equations (2.2a), (2.2d),
(2.2e) and (2.2f). The variables defined by if-equations, update its value according
to the guards Gi that are evaluated to true or false each time instant.

2.2.3 Hybrid Automata
A hybrid automaton is a high-level formal model that can be described as an
extended finite automata (EFA) with continuous state variables. EFAs are usually
modelled using modes, edges and guards. In this thesis a mode represent a discrete
region or location in a graph that determines a specific continuous dynamic of the
plant. Edges and guards are used to represent the transitions between modes.
A HA can evolve in two different ways, by discrete and by continuous evolu-

tion. In the first case, a transition is satisfied bringing the system to a new mode
and imposing a different behaviour. In the second case, continuous state variables

1For the sake of clarity some equations have been reduced

11

2. Modelling Mechatronic Systems

engage_req = if G1 then 1 else 0 (2.2a)
f_spring_current = KI * current + (-k_spring) * z - DampingBelleville * zv (2.2b)

a = 0.02777777777777778 * sin(36.0 * phi) (2.2c)
$DER.zv = if G2 then if G3 then DIVISION(f_spring_n_current, mass) else (2.2d)

DIVISION(f_spring_n_current - stiff2 * (-0.0016 + z), mass) else 1

t = if G4 then if G5 then 2 else if G6 then HiSpeed2 * w else 1.5 else 0.0
(2.2e)

eng_state = if G7 then if G8 then 0.0 else if C9 then 1 else 0.0 else 0.0 (2.2f)
$DER.z = zv (2.2g)

$DER.phi = w (2.2h)
prev_eng_state = pre(eng_state) (2.2i)

Table 2.2 – Set of equations and conditional equations that included in a hybrid
DAE in OpenModelica. The guards Gi are evaluated to true or false at each time
instant.

evolve according to differential algebraic equations. For mechatronic systems the
controller determines the locations of the EFA and the mechanical system deter-
mines the continuous dynamics. A more formal definition of Hybrid automaton is
presented below:

Definition 2.1. Hybrid automaton [9] [13]:
A Hybrid automaton is defined by a five-tuple as:

〈X ,Q,F , E ,G〉 (2.3)

X ⊆ Rn is the continuous state space of the system in which continuous state
variables are defined. Here X ⊆ Rn

Q = 〈q1, q2, ..., qn〉, n ∈ N is the finite set of modes or regions. Discrete transi-
tions switch between different behaviours. Associated with each mode is a
DAE describing the behaviour (dynamics) of the system.

F : X ×Q → X represents the vector field that defines the continuous dynamics
in each mode. In this work continuous dynamics are described by DAEs.

E ⊆ Q × Q is a finite set of edges representing discrete transitions. A transition
e ∈ E is defined by a three tuple (m, m′, g) where m is the origin mode,
m′ is the target mode and g ∈ G is the guard of the transition. Transitions
determines the discrete dynamics.

G : Ge|e ∈ E is the set of guards enabling transitions among different modes.
When a guard is evaluated to true, a new mode becomes active imposing a
new behaviour. In this report, guards are represented by predicates.

Definition 2.2. Hybrid State

12

2. Modelling Mechatronic Systems

(q, x) ∈ Q × X is a specific hybrid state of the system which includes discrete
and continuous variables.

G𝑢𝑎𝑟𝑑 1 ?

G𝑢𝑎𝑟𝑑 2 ?

 𝑥1 = 2𝑥1 + 𝑢1
 𝑥2 = 4𝑥2 + 6𝑢2
𝑥1 = 3𝑥2

𝑀𝑜𝑑𝑒 1 𝑀𝑜𝑑𝑒 2

 𝑥1 = 𝑥1 + 2𝑢1
 𝑥2 = −𝑥2 + 𝑢2
3𝑥1 = 𝑥2

Figure 2.5 – Hybrid Automaton with two modes. Transitions between modes
are enabled when the corresponding guard is evaluated to True. At each mode a
DAE defines the dynamics of the system.

2.3 Modelling Software
To carry out the modelling task there are plenty of commercial software avail-
able. Below, the modelling environments considered during this project are briefly
presented.

• Causal Approach:
Simulink®: is a block diagram environment for multidomain simulation and

Model-Based Design [16].
• Acausal approach:

Simscape™: is a tool for modelling and simulating multidomain physical
systems. [17]. This is the tool used at Volvo Car Corporation to imple-
ment the dog-clutch model, this model is discussed later in this report.

OpenModelica: is an open-source Modelica-based modelling and simula-
tion environment intended for industrial usage [18]. In this thesis Open-
Modelica was selected to carry out the simulation process.

The decision towards using OpenModelica as the modelling environment was
motivated by two qualitative criteria. Mainly because it uses an acausal modelling

13

2. Modelling Mechatronic Systems

approach so that dynamics are described by equations. The other important reason
is that OpenModelica provides an open source environment where it is possible
to rewrite the internal code and customise all the internal steps involved in the
simulation process. This property was really appreciated in the beginning of this
work because it gave great versatility to decide among different strategies in order
to answer the proposed research questions. For instance, one of the first issues
was about to choose between the generated C-code files or the optimised sorted
equations to identify the different modes or behaviours of the system.

CHAPTER 2. BACKGROUND 2.4. OPENMODELICA COMPILER (OMC)

that will not change at runtime). Another reason that the code optimizer is often found towards the end
of the transformation chain is so that it can perform machine dependent optimizations: for example use
special assembly instructions only available on certain processors.

Finally the optimized intermediate code is translated to the target program in the code generator. If
the target program is written in machine code you can execute it right away. But if the target program
is written in C for example you have to compile it with a C compiler to obtain an executable.

2.4 OpenModelica Compiler (OMC)

The OpenModelica Compiler (OMC) is the core of the OpenModelica environment [5]. Its main job is
to translate Modelica code to C code. The generated C code has to be compiled with a C compiler and
linked together with runtime and simulation libraries to produce the final result.

In addition to processing files on the command line, OMC can also be started as a background pro-
cess and will then accept commands from other processes such as the interactive shell (Figure 2.3).

The translation process from Modelica code to executable code is depicted in Figure 2.7.

Figure 2.7 Compiler phases in the OpenModelica compiler (taken from [5]).

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Modelica model

Flat Model

Sorted equations

Optimized sorted
equations

C Code

Executable

First the Modelica source code is parsed into a parse tree similar to the one in Figure 2.6. The trans-
lator phase converts this parse tree to a so called flat model. In the flat model the code has been type-
checked, all object-oriented operations have been performed, and definitions from external packages
have been included. The flat model only consists of equations, declarations, and functions.

The next two phases, the analyzer and optimizer, are necessary for compiling equations. They ma-
nipulate and simplify the equations so that they are on a form suitable for solving numerically.

Finally C code is generated that is compiled with a C compiler and linked together with runtime and
simulation libraries.

The compiler is divided into a set of modules depicted in Figure 2.8. Since this thesis deals only
with the code generation phase of OMC, the most important modules are CodeGen and SimCodeGen
(located in the right middle in the figure). CodeGen translates functions to C code and SimCodeGen
deals with equations.

7

Figure 2.6 – OpenModelica Compiler Translation stages from Modelica code to
executable C-code. Figure taken from P. Fritzson et al. [19].

The workflow of OpenModelica is summarised in Figure 2.6. OpenModelica
takes as input a model described in the Modelica language and after some internal
steps, the model is translated to a structure with optimised equations. This struc-
ture is internally called SimCode and is the object used to generate the C-code
for simulation. The importance of this structure lies in the fact that the set of
equations describe a hybrid DAE which can be dumped into a file or read from
the C-file.

14

3
Test Coverage for CPSs

Two different approaches to perform test coverage are presented in this section.
The first is structural analysis of the code and the second is structural analysis of
the modes.
After evaluation of the two different options, the second approach was chosen.

Finally, the general algorithm is presented to check test coverage using a model
and a test case.

3.1 Coverability criteria
As previously mentioned in the introduction, verification is used to assure the
correctness and can be done in a variety of ways. However, testing is the most
common process to verify a model. A common method used by software engineers
to evaluate the quality of testing is test coverage analysis.
Test coverage is a technique used within software testing to quantify the degree

to which a model is covered during the testing process. Using this technique
requires, above all, to decide what property or characteristic of the system should
be measured. An adequate metric or coverage criterion has to be defined indicating
what properties must be exercised to perform a “good” test. Based upon a chosen
metric, it is possible to quantify how well the SUT is explored under simulation.
For instance, statement coverage is a typical coverage criterion in the industry,
which describe whether a statement of a code have been executed at least once
or not at all. The degree of compliance reached during testing can be measured
quantitatively by the percentage of statements executed.
According to [20], many development standards claim structural coverage cri-

teria at code level as the best practice in industrial software development. Such
types of criteria aim to analyse the structure of the program. Some examples
of those criteria are: function coverage, statement coverage, branch coverage and
condition coverage [21]. Unfortunately, these criteria do not fit well with CPSs.
CPSs are non-deterministic reactive systems i.e. they constantly interact with
its environment in a manner that one input to the system can lead to different
outputs depending on the state of the environment. This is in opposition to the

15

3. Test Coverage for CPSs

classical model of computation where for one input a specific output is expected.
In [8], it has been shown that the coverage criterion Modified Condition/Decision
Coverage (MC/DC) is not able to exercise all the modes of an elementary case of
CPSs even if the MC/DC coverage is fulfilled. Thus, classical software test criteria
are inadequate for verification of CPSs.
Other coverage metrics as state coverage have been used [13] to measure test

coverage for CPSs. Though, CPSs have continuous states implying that the state
space is infinite so that in practice it cannot be entirely explored. Other appropri-
ate coverage criteria should be used.

3.1.1 The proposed criterion: mode coverage
The objective of this master’s thesis is to cover/excite all the different finite be-
haviours of the system. Based on this idea, two coverability approaches have been
identified and examined. The first approach studied was structural analysis at
code level that involves the GNU Coverage (GCOV) tool. The second approach is
intended for structural analysis of modes1 and requires the use of hybrid automata
and Satisfiability Modulo Theories (SMT).
After having examined the two methods, the proposed criterion was mode cov-

erage and is defined as follows:

Mode Coverage = Number of modes exercised during simulation
set of reachable modes × 100% (3.1)

In the next sections both approaches to do test coverage are described thor-
oughly.

3.2 Test coverage analysis: GCOV
This part presents the approach followed towards accomplishing test coverage at
code level. To begin with, the GCOV tool is introduced and later the method-
ology used to analyse C-code for test coverage is explained. To conclude, the
disadvantages that led to discarding this approach are explained.

3.2.1 Introduction to GCOV
GCOV [22] is a software tool for coverage analysis of code generated by the GCC
compiler (GNU Compiler Collection). This is the compiler used by OpenModelica
to generate the C-code for simulation. For the goal of this thesis, the interesting

1The definition of mode is in 2.1

16

3. Test Coverage for CPSs

functionality of this tool is its ability to count lines of code that are executed
during simulation.

3.2.2 Methodology Workflow
The workflow of the method followed is summarized in Figure 3.1. Since it was
decided to use OpenModelica, a manual translation from Simscape code to Mod-
elica code was done. Inside OpenModelica a SimCode structure, that contains all
the information needed for C-code generation, was generated. SimCode is later
passed as input to a process where C-code files are returned. The last step lies in
executing the GCOV tool upon the C-code to obtain structural coverage analysis
at code level.

Manual
Translation

OpenModelica GCOV

Figure 3.1 – Work-flow followed to perform structural coverage analysis at code
level employing GCOV.

The attractive point of this methodology is that dynamics described by equations
in the original model are captured by the C-code. Another advantage is that
OpenModelica tracks all the processes of equation transformations in such a way
that C-code can be easily interpreted and hence, analysed.

3.2.3 Analysis of C-code
The aim of the analysis is to identify, in the C-code, all behaviours of the system
triggered during simulation. It is useful to recall that behaviours are described by
DAEs which, in turn, are made up of set of equations, as it is shown in section
2.2.2. The algorithm to perform test coverage is summarised in three steps below:

1) to identify lines where the equations that defines dynamics are located.
2) to check whether those lines have been triggered or not.
3) calculate the percentage of equation triggered against the total number of

equations

The C-code generated2 from the conditional equation (2.1a) is used in Figure 3.2
to exemplify how the analysis has been carried out. The highlighted lines 13

2For the sake of clarity the code has been slightly modified

17

3. Test Coverage for CPSs

and 17 assign one of the two dynamics to the variable tmp2, which value is later
updated to the variable ẋ in line 19. Identification of lines that assign dynamics was
done using the libClang [23] package inside the programming environment Eclipse.
LibClang parses the source code generating an abstract syntax tree that can be
traversed later to find specific parts of the code. GCOV was invoked to identify
whether lines were executed during simulation or not. When GCOV completed
the analysis, it was returned a file containing, among other information, the times
a line was executed. In Figure 3.2 can be seen that both lines 13 and 17 were
executed at least one time. In particular, 8808 and 6677 times respectively. In
this case, test coverage would be 100% as both behaviours of the variable ẋ were
exercised.
Several drawbacks were found during the implementation that makes difficult

to follow this approach. The most important are listed below:
• This method allows to account how many times the different equations that

defines the dynamics are triggered during simulation but is not capable of
discerning which of them are triggered concurrently. That is important be-
cause the combination of the dynamics is what defines the behaviour or mode
at any given moment. As a result it is not possible to identify modes with
the GCOV solution proposed.

• The method to detect specific lines in the C-code lacks generality. Actually,
parsing C-files could be a complex task if the objective is to automate the
process to all possible models.

• It is necessary to modify the OpenModelica compiler to generate C-code
files with a suitable format for GCOV. Some necessary modifications are: to
remove the use of the C ternary operator “?”, to handle different types of
linear and non-linear functions to make them explicit, modify the makefile
that compiles and links the C-code, etc. Although these adjustments can be
done, it could be a source of frequently occurred problems.

Before this method was implemented, and due to the aforementioned disadvan-
tages, it was decided to move on with another approach that is discussed in the
next section.

18

3. Test Coverage for CPSs

1 /∗
2 equat ion index : 15
3 type : SIMPLE_ASSIGN
4 der(x) = if a < 0 then 2x + u else -(x + u)
5 ∗/
6 void clutch_eqFunction_15 (DATA ∗data , threadData_t ∗ threadData)
7 {
8 const i n t equat ionIndexes [2] = {1 ,15} ;
9 RELATIONHYSTERESIS(tmp0 , $Pa , 0 , 0 , Less) ;

10 tmp1 = (modelica_boolean) tmp0 ;
11 i f (tmp1)
12 {
13 tmp2 = (2) * (x + u);
14 }
15 e l s e
16 {
17 tmp2 = (-1) * (x + u);
18 }
19 DER(x) = tmp2;
20 }

Figure 3.2 – Script showing the C-code generated from the conditional equation
in (2.1a). Highlighted lines show the conditional equation in Modelica language
and the sentences where the script assigns dynamics to the variable ẋ

1 −: 1 : /∗
2 −: 2 : equat ion index : 15
3 −: 3 : type : SIMPLE_ASSIGN
4 −: 4 : der(x) = if a < 0 then 2x + u else -(x + u)
5 −: 5 : ∗/
6 15485 : 6 : void clutch_eqFunction_15 (DATA ∗data , threadData_t ∗ threadData)
7 −: 7 : {
8 −: 8 : const i n t equat ionIndexes [2] = {1 ,15} ;
9 15485 : 9 : RELATIONHYSTERESIS(tmp0 , $Pa , 0 , 0 , Less) ;

10 15485 : 10 : tmp1 = (modelica_boolean) tmp0 ;
11 15485 : 11 : i f (tmp1)
12 −: 12 : {
13 8808 : 13 : tmp2 = (2) * (x + u);
14 −: 14 : }
15 −: 15 : e l s e
16 −: 16 : {
17 6677 : 17 : tmp2 = (-1) * (x + u);
18 −: 18 : }
19 15485 : 19 : DER(x) = tmp2;
20 15485 : 20 :}

Figure 3.3 – Example of the file generated by GCOV where the script in Figure
3.2 is the input. It shows how often each line is executed during simulation.
Highlighted lines show the conditional equation in Modelica language and the
sentences where the script assigns dynamics to the variable ẋ

19

3. Test Coverage for CPSs

3.3 Test coverage analysis: Hybrid Automaton
A hybrid automaton is a formal model that may be used to analyse CPSs because
of its ability to reduce the infinite state space to a finite set of locations called
modes, this property provides a new coverage criterion calledmode coverage. In the
course of this section is described the approach followed to perform test coverage
as proposed in (3.1). Initially, the general algorithm to quantify mode coverage
is presented, then, two steps of the algorithm are described in more detail: the
abstraction from a hybrid DAE to hybrid automata and the operation of the Z3
Solver to reduce the number of modes in a HA.

3.3.1 General algorithm
The algorithm developed during this master’s thesis to automate the process of
quantifying test coverage for CPSs is hereby presented, see Figure 3.4. The ap-
proach taken is based on the translation of a hybrid DAE to a formal model
described as a hybrid automaton. Then, test coverage is carried out aiming to
exercise all the modes of the system, the different steps are described below.

Test Coverage

•
𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 𝑚𝑜𝑑𝑒𝑠

𝑁𝑟. 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠
%

Inputs

• Test Case

• Model.mo

OpenModelica

• HDAE C-code Executable

DAE1 DAE2

DAE3

Modes

DAE1

DAE3

Modes Reduction

DAE1 DAE2

DAE3

Triggered Modes

Figure 3.4 – Overview of the approach followed to perform test coverage starting
from a test case and a model of a CPSs described in Modelica language.

• Inputs: The algorithm begins with a model to be tested and a test case to
excite behaviours of the model.

20

3. Test Coverage for CPSs

• OpenModelica: The environment OpenModelica takes the model.mo and
generates a hybrid DAE that is saved in a data structure named SimCode
from which modes can be extracted to generate a hybrid automaton. The
second input, the test case, and an executable file are used in the last step
to simulate the original model. The results of the simulation are saved in a
file that is later on used to identify the triggered modes during simulation.
The most importance of using OpenModelica resides in the fact that it was
transformed a Cyber-Physical system into a Hybrid DAE.

• Modes: A hybrid automaton is created from a hybrid DAE. At this step,
all feasible and infeasible modes are identified. This process is explained
in detail in section 3.3.2. To the extent that this process is automated it
supposes an advantage with respect to other approaches as [12] and [13],
since they started their approaches with a hybrid model without showing
how it is achieved.

• Mode Reduction: At this point infeasible modes of the hybrid automaton
are removed by means of the Z3 solver, in addition, modes describing the
same dynamics are removed. The remaining modes are saved and sent to
the last step where test coverage is measured. A more in-depth explanation
is presented in section 3.3.3.

• Triggered modes: The workflow to retrieve the triggered modes during
simulation time is shown in Figure 3.5. The input to the algorithm are the
conditions of the hybrid DAE and the results of the simulation. The algo-
rithm loops through the simulation time and all the conditions are evaluated
to check whether they are true or false. As mentioned in section 3.3.2.1,
solely one condition in each conditional equation will be evaluated to true.
Thus, a mode is identified as the logical conjunction of the conditions evalu-
ated to true at each time instant. Following the example of the hybrid DAE
in (3.3), at any given time the evaluation of the conditions will give as a
solution only one of the modes listed in Table 3.1. When the for loop is
completed, the repeated modes are filtered. Likewise, modes with different
conditions but representing the same dynamics are also eliminated such that
the final output is the minimal set of triggered modes.

• Test coverage: At this point, it is now possible to measure test coverage
produced by executing a test case on the SUT applying (3.1) which is shown
here again for clarity:

Mode Coverage = Number of modes exercised during simulation
set of reachable modes × 100%

(3.2)

21

3. Test Coverage for CPSs

• Results.mat
• Conditions Hybrid DAE

Minimal set of
triggered modes

i < simulation time?

False

Evaluate conditions
with results.mat file

Store triggered modes

i = i + 1

Filter repeated modes

True

Figure 3.5 – Description of the process Triggered modes. The algorithm aims to
find the modes triggered during simulation time, starting with the results of the
simulation and the conditions retrieved from a hybrid DAE.

3.3.2 Modes: from Hybrid DAE to Hybrid Automaton
The procedure developed for constructing hybrid automata relies on the abstrac-
tion of hybrid DAEs. To illustrate the steps carried out, a simple example of a
hybrid DAE shown in (3.3) is used throughout this section. The example consists
of two conditional equations that can take two and three different values (f j

i) de-
pending on which of the conditions is true. The conditions, represented as Cj

i , are
predicate sentences, as for instance “a ≥ 0”, where a can be of type real, integer
or boolean.

var1 =

if C1
1 then f 1

1

elseif C1
2 then f 1

2

(3.3a)

var2 =

if C2

1 then f 2
1

elseif C2
2 then f 2

2

elseif C2
3 then f 2

3

(3.3b)

22

3. Test Coverage for CPSs

The following simplifications have been made:
• In Modelica, conditional equations must have an else statement at the end

to cover the case when the rest of conditions are evaluated to false. For
clarity purposes, this statement is obviated without loss of generality in the
explanation to generate a HA.

• Hybrid DAEs can also contain regular equations that are not conditional,
though, that sort of equations always exist in all modes so that they can be
omitted in the analysis without missing modes.

For this simple case, the hybrid DAE in (3.3) results in six modes that are listed
in Table 3.1. The hybrid automaton generated is depicted in Figure 3.6 where the
automaton consists of 6 modes and 30 transitions.

Mode var1 var2 Guard

1 f 1
1 f 2

1 C1
1 ∧ C2

1

2 f 1
1 f 2

2 C1
1 ∧ C2

2

3 f 1
1 f 2

3 C1
1 ∧ C2

3

4 f 1
2 f 2

1 C1
2 ∧ C2

1

5 f 1
2 f 2

2 C1
2 ∧ C2

2

6 f 1
2 f 2

3 C1
2 ∧ C2

3

Table 3.1 – Information that can be extracted from 3.3 to define modes. Each
mode has associated a guard as a combination of conditions. Each guard defines
the value of the variables var1 and var2 that represents the dynamics of the mode.

3.3.2.1 Identification of modes

Hereinafter, the followed procedure identifies modes by its unequivocally associated
guard, which is a combination of conditions that must be fulfilled to reach a specific
mode.
It is easy to see that the maximum number of possible modes can be calculated

by multiplying the number of conditions inside each conditional equation with

23

3. Test Coverage for CPSs

each other. In the case of 3.3, the number of modes is 2 × 3 = 6. In order to
automate the process of mode generation, the set of possible modes is modelled as
the cross-product over all the conditions in a hybrid DAE and is represented by
the logical formula (3.4). This logical formula is said to be in Conjunctive Normal
Form (CNF) and to expand it means to end up doing the cross-product of the
elements Ci

j. The usefulness of representing modes through a CNF formula will
become more clear when explaining the Z3 solver [24] in section 3.3.3.1.

Modes =
k∧

i=1

 ni∨
j=1

Ci
j

 (3.4)

where:
k ∈ N = number of conditional equations

ni ∈ N = number of conditions at each conditional equation

As an example, the result of applying the above formula on the hybrid DAE
(3.3) is presented in the below equation (3.5) which spans all the possible modes.
Obviously, the modes finally calculated coincide with the modes in table 3.1.

Modes =
(
C1

1 ∨ C1
2

)
∧
(
C2

1 ∨ C2
2 ∨ C2

3

)
= (3.5)

=
(
C1

1 ∧ C2
1

)
∨
(
C1

1 ∧ C2
2

)
∨
(
C1

1 ∧ C2
3

)
∨

∨
(
C1

2 ∧ C2
1

)
∨
(
C1

2 ∧ C2
2

)
∨
(
C1

2 ∧ C2
3

)
A more deep insight into how modes are calculated suggest the following short-

comings to be borne in mind when building the hybrid automata:
1) Hybrid automata are able to capture non-deterministic behaviour, i.e., there

may also be situations where two or more conditions in a conditional equation
are true at the same time. For instance, staying in mode 1, it could happen
that conditions C2

1 and C2
2 being true, entailing the possibility that modes

1 and 2 would be active simultaneously, which is physically impossible. In
order to achieve deterministic behaviour, the modes should be described in
a manner so that two or more conditions can never be true at any given
time. In the tool developed along with this work, the procedure followed is
illustrated with the guard associated with the mode 1:

Mode 1 :
〈(

C1
1 ∧ ¬C1

2

)
∧
(
C2

1 ∧ ¬
(
C2

2 ∨ C2
3

))〉
The above mode can solely be reached when C1

1 and C2
1 are true and C1

2 , C2
2

and C2
3 false.

24

3. Test Coverage for CPSs

2) Not all guards are feasible; it can occur that some conditions in a guard
contradict each other. For instance, the mode 1 with guard 〈C1

1 ∧ C2
1〉 where

C1
1 = current < 0 and C2

1 = current ≥ 0 will be always false, meaning that
this mode does not exist. The SMT Z3 tool is used in order to identify such
contradictions and remove the infeasible modes generated by (3.4). This
process significantly reduces the number of modes in the system.

3) Several conditions Cj
i in (3.3) may update a variable to the same value so

that different guards would define the same mode. Looking at table 3.1, it
could happen that f 2

1 = f 2
3 so that mode 1 = mode 3 and mode 4 = mode

6, thus, the created automaton has four modes instead of 6. This possibility
is exploited to further decrease the number of modes in the HA.

25

3.
Test

C
overage

for
C
PSs

Mode 1
𝐶1
1 ∧ 𝐶1

2

Mode 2
𝐶1
1 ∧ 𝐶2

2

Mode 3
𝐶1
1 ∧ 𝐶3

2

Mode 4
𝐶2
1 ∧ 𝐶1

2

Mode 5
𝐶2
1 ∧ 𝐶2

2

Mode 6
𝐶2
1 ∧ 𝐶3

2

𝐶1
2

𝐶2
2

𝐶2
2

𝐶3
2

𝐶1
2

𝐶2
2

𝐶2
2

𝐶3
2

𝐶1
2

𝐶3
2

𝐶1
2

𝐶3
2

Mode 4

Mode 1

Mode 6

Mode 3

𝐶1
1𝐶2

1𝐶1
1𝐶2

1 𝐶1
1𝐶2

1

𝐶1
1 ∧ 𝐶1

2 𝐶1
1 ∧ 𝐶2

2

𝐶2
1 ∧ 𝐶1

2 𝐶2
1 ∧ 𝐶2

2

𝐶1
1 ∧ 𝐶2

2 𝐶1
1 ∧ 𝐶3

2

𝐶2
1 ∧ 𝐶2

2 𝐶2
1 ∧ 𝐶3

2

𝐶1
1 ∧ 𝐶3

2

𝐶2
1 ∧ 𝐶1

2

𝐶1
1 ∧ 𝐶1

2

𝐶2
1 ∧ 𝐶3

2

Figure 3.6 – Hybrid automaton abstracted from the hybrid DAE in 3.3.

26

3. Test Coverage for CPSs

3.3.3 Mode Reduction
The mode reduction step is based on the use of the Satisfiability Modulo Theories, there-
fore, first is introduced the Z3 solver and later is presented the workflow to reduce the
number of modes.

3.3.3.1 Satisfiability Modulo Theories - the Z3 Solver

The Z3 solver is a Satisfiability Modulo Theories (SMT) solver developed by L. de Moura
and N. Bjørner at Microsoft Research [24]. An SMT solver is such that given a logical
formula in first-order logic, it decides whether it is satisfiable or not. A formula F is
said to be satisfiable when exists a valuation that makes F true. In the SMT context,
the input to the solver represents a constraint system that the solver will try to satisfy
providing a solution.
In order to illustrate the operation of the solver is presented an example in Figure

3.7, that uses two different formulas. The first case is decided to be satisfiable and a
solution is provided while for the second case no solution is returned since the formula is
unsatisfiable.

x = Int('x')
y = Int('y')
solve(And (x > 5, y<7, y == x+5))
--
check(): unsat
Solution : no solution

x = Int('x')
y = Int('y')
solve(And (x > 5, y == x+5))
--
check(): sat
Solution: [x = 6, y = 11]

a) sat b) unsat

Figure 3.7 – Example of how the Z3 solver checks satisfiability. First are defined the
variables x and y, then a constraint is added to the solver. With the check command the
solver decides whether the formula has a solution or not, if yes a solution is displayed.

The logical formulas used in the fore-mentioned example are the same sort of formula
as was used in (3.5) to identify all modes: both are logical formulas that uses predicates.
Obviously, this was not a coincidence but a deliberate choice in favor of using the Z3
solver to analyse modes. Primarily, the objective is to check satisfiability for all modes
in order to remove those that are false. Among different SMT solvers, Z3 was selected
because of the following reasons:

• It is free available for academic purposes. Licensed with Microsoft Research License
Agreement (MSR-LA).

• It has interfaces API’s in several languages, in particular, in Python which is the
language used to develop test coverage in this thesis.

• If a formula is satisfiable, SMT Z3 returns a solution which is an useful property
used during the development of the algorithm to perform test coverage.

• It is a high-performance theorem prover. In the SMT Competition at 2014 SMT Z3
participated as a reference for the other competitors.

27

3. Test Coverage for CPSs

For the time being, the Z3 solver supports nonlinear polynomial Real arithmetic but
cannot handle transcendental functions such as sine, cosine and exponential. [25].

3.3.3.2 Mode Reduction Workflow

The number of modes increases as the level of complexity of the DAEs raise. As com-
mented in the earlier section 3.3.2.1, the combination of conditions easily leads to infeasible
modes that can be removed applying the Z3 tool. More accurately, the Z3 solver selects
the feasible modes among all possible modes. Figure 3.8 shows the algorithm to perform
reduction of modes, which is divided into two main parts: firstly, all possible modes are
sent to the Z3 solver as an input, through (3.4). The core of the method is a while loop
checking whether the set of added constraints is satisfiable or unsatisfiable. If satisfiable,
Z3 returns a solution that is mathematically coherent and represents a feasible mode in
the model. Later, the mode is negated and forwarded to the solver as a new constraint,
such that at the next time the solver is checking satisfiability it will not return the same
solution. When the model is decided to be unsatisfiable the search of feasible modes is
completed. In the second part of the algorithm, further reduction of modes is achieved
by removing those describing same dynamics to obtain the minimal set of modes in the
system.

Check
SAT ?

sat

unsat

Add to
Solver

Constraint:

¬ Mode
Mode

Stored feasible
Modes

Filter repeated
Modes

Solution

Minimal set of
feasible modes

i=1

k

j=1

ni

Gj
i

Figure 3.8 – Mode reduction algorithm. A set of constraints representing modes of a
HA is added to the solver through a logical formula. The solver checks satisfiability and
if satisfiable it returns a solution that is negated and added back to the solver. This loop
is repeated until the constraints are unsatisfiable, thus, concluding the process. Finally,
modes describing identical behaviours are removed.

A simple example describing the operation of the Z3 solver to identify satisfiable modes
is presented in Figure 3.9. The input to the algorithm is the constraint (x < 0∨ y < 0)∧

28

3. Test Coverage for CPSs

(x ≥ 0∨y ≥ 0) that has only two satisfiable solutions: 〈x < 0 ∧ y ≥ 0〉 or 〈y < 0 ∧ x ≥ 0〉.
The first time that satisfiability is checked (line 17), the solver returns a solution that is
added back to the solver as a constraint using the logical Not. The second time the solver
tries to solve the constraints, it returns the other solution that is also added to the solver
as a constraint. When the solver inspect the constraints to find a solution for the third
consecutive time, it is decided to be unsatisfiable as expected.

1 >> x , y = Int (' x y ') // Dec la ra t i on o f i n t e g e r v a r i a b l e s
2 >> p1 , p2 , p3 , p4 = Bools (' p1 p2 p3 p4 ') // Dec la ra t i on o f boolean v a r i a b l e s
3
4 >> s l v = So lve r () // c r e a t i n g the o b j e c t s o l v e r
5 >> s l v . add (And(Or(x<0,y<0) ,Or(x>=0,y>=0))) // adding the input to the s o l v e r
6
7 // boo leans f o r keeping t rack the d i f f e r e n t c o n d i t i o n s p r e v i o u s l y added
8 >> s l v . add (p1 == (x<0) , p2 == (y<0) , p3 == (x>=0), p4 == (y>=0))
9

10 >> s l v . a s s e r t i o n s () // Shows cur rent c o n s t r a i n t s in the So lve r
11 [And(Or(x < 0 , y < 0) , Or(x >= 0 , y >= 0)) ,
12 p1 == (x < 0) ,
13 p2 == (y < 0) ,
14 p3 == (x >= 0) ,
15 p4 == (y >= 0)]
16
17 >> s l v . check () // check ing s a t i s f i a b i l i t y
18 sa t // returned value . Const ra in t s are S a t i s f i a b l e
19
20 >> s l v . model () // s o l v i n g the c o n s t r a i n t s
21 [x = −1, // returned s o l u t i o n
22 y = 0 ,
23 p1 = True , // f e a s i b l e mode = 〈p1 ∧ p4〉 = 〈x < 0 ∧ y ≥ 0〉
24 p2 = False ,
25 p3 = False ,
26 p4 = True]
27
28 // adding the f e a s i b l e mode as a c o n s t r a i n t to the s o l v e r
29 >> s l v . add (Not (And(p1 , p4)))
30
31 >> s l v . check () // check ing s a t i s f i a b i l i t y
32 sa t // s a t i s f i a b l e c o n s t r a i n t s
33
34 >> s l v . model () // s o l v i n g the c o n s t r a i n t s
35 [x = 0 , // s o l u t i o n
36 y = −1,
37 p1 = False , // f e a s i b l e mode = 〈p2 ∧ p3〉 = 〈y < 0 ∧ x ≥ 0〉
38 p2 = True ,
39 p3 = True ,
40 p4 = False]
41
42 // adding the f e a s i b l e mode as a c o n s t r a i n t to the s o l v e r
43 >> s l v . add (Not (And(p2 , p3)))
44
45 >> s l v . check () // check ing s a t i s f i a b i l i t y
46 unsat // U n s a t i s f i a b l e

Figure 3.9 – Description of the operation of the Z3 solver in the mode reduction algo-
rithm. Starting with the formula (x < 0∨ y < 0)∧ (x ≥ 0∨ y ≥ 0), the Z3 solver returns
all the possible solutions until the constraints are unsatisfiable. Lines started with “>>”
are commands written in the Python console, the rest of lines are the solutions provided
by the Z3 solver. The script was coded using the Z3 API in Python

29

4
Case study, Dog-Clutch

This chapter focuses on the results of applying the algorithm described in section 3.3.1
to measure test coverage for the case study, the Dog-clutch model provided by Volvo
Cars Corporation. The system proposed is simple but complicated enough to carry on
the objectives stated in the beginning of this master thesis. The first part of the section
is dedicated to describe the dog-clutch system and the second part evaluates the results
obtained.

4.1 Description of the Dog-Clutch
A dog-clutch is a mechatronic system. The following elements characterize its mechatronic
nature:

a) Mechanical system: The physical system is composed by the following mechanical
components: Dog-clutch, Cam-Ring and Spring. This is the plant of the model that
determines the dynamical properties of the system.

b) Computer Device: All the information from the communication devices is gath-
ered, processed and forwarded to the actuators by an electronic control unit. This
implements a closed loop control algorithm that determines the logical attributes of
the system.

c) Communications: The communication between the computer device and the
physical system is done by means of a solenoid playing the role of an actuator
and positioning sensors providing feedback to the control algorithm.

EM
Dog-
clutch

shaft 1 shaft 2

Figure 4.1 – Initially, the electric motor transmits the torque generated to the shaft 1.
Then, the function of the dog-clutch is to propagate the torque in the shaft 1 to the shaft
2 that is connected to the wheels.

30

4. Case study, Dog-Clutch

a) b) c) d)

Figure 4.2 – Example of a dog-clutch system. a) Image of a real dog-clutch. b) dis-
engaged state, the cam-ring is static c) synchronizing phase, the cam-ring starts moving
in the same direction as the Dog-Clutch. A control algorithm synchronizes the velocity
of the two parts to achieve the optimal position to engage. d) engagement phase, both
components rotate with the same velocity. Cam-Ring begins to move axially until both
parts are engaged. Figure provided by Volvo Car Corporation.

The function of a dog-clutch is to engage two rotating shafts to propagate motion. In
the case studied here, the torque generated by an electric motor is transmitted to the
wheels in order to move the vehicle as shown in Figure 4.1. The operation of the clutch
system is shown in Figure 4.2, where the three main states are described. It consists of two
pieces, a dog-clutch and a cam-ring that meshes together by moving the cam-ring towards
the dog-clutch. The movement of the cam-ring is produced by an anchor that pushes it
when a solenoid is energised. To disengage the system the solenoid must be deactivated.
When the velocity of the two parts is synchronised the cam-ring moves axially to engage
with the clutch-dog. This axial displacement is done through a solenoid controlled by
current.

4.1.1 Modelling the Dog-Clutch
The starting point was the clutch model provided by Volvo Car Corporation, which was
implemented in Simscape™. Though, since OpenModelica was the chosen tool for simula-
tion purposes, the model was translated from Simscapre to Modelica language. Since both
environments share the acausal modelling approach1, it facilitated the code translation
task. The final version of the code is presented in Appendix A.
It must be mentioned how the acausal approach influences the style of coding. Firstly,

for all variables and parameters, it must be indicated the type (real, integer, boolean,
...). Secondly, all the variables must have assigned a physical quantity so that units are
consistent in the equations. Finally, there is a specific section called equation where, as
the name suggests, equations describing the system are added. Recall that equations are
not assignments but relations between physical quantities.
The equation section is declared using an if-then-else structure that imposes the logics

of the system, i.e. it represents the discrete dynamics of the system. Each conditional
statement (if, elseif, else) is used to define a new situation where a set of equations
describes the continuous behaviour at that state. In total, 20 distinct scenarios of the
system are modelled and have been commented inside the Modelica code. The following
variables and parameters forms the conditions statements defining the fore-mentioned
scenarios:

1The characteristics of this approach are described in more detail in section 2.2.1

31

4. Case study, Dog-Clutch

• z (m): Is a variable of the model used to describe the distance between the dog-
clutch and the cam-ring as it can be seen in Figure 4.3.

• ω (rad/s): Is an input of the model describing the angular velocity difference between
the dog-clutch and the cam-ring

• a (rad): Is a variable of the model describing the backlash phenomenon.
• Z0, Z1 (m): Are internal parameters of the model describing distance limits, shown

in Figure 4.3.
• alim (m): Defines a half of backlash. Is a parameter of the model.
• wlim (rad/s): Specifies the maximum value of ω to engage the system. Is a parameter

of the model.
• engage_req: Defines with a 1 or 0 whether engage of the clutch is required. Is a

parameter of the model.
• prev_eng_state: Binary number that informs about the state of the clutch in the

previous time instant. Is a parameter of the model.

𝑍0𝑍1 𝑍 = 0

Figure 4.3 – The variable Z defines the distance between the two parts of the system.
Z0 delimits when the dog-clutch reaches the cam-ring. Z1 delimits when the dog-clutch
reaches the final position.

The importance of these variables and parameters lies in the fact that they will form
the guards enabling transitions in the hybrid automaton used to analyse test coverage.

32

4. Case study, Dog-Clutch

4.2 Implementation and evaluation
The Python programming language was used to implement the tool that performs test
coverage. It was chosen primarily because of two reasons: (1) it is an efficient language
manipulating strings so it is adequate to parse Hybrid DAEs provided by OpenModelica;
(2) the Z3 solver has an API in Python so that it is easier to use it. The implementation
of the proposed algorithm is presented following the chain of processes described in Figure
3.4 and will help to discuss the shortcomings encountered.

• Inputs: A model of the Dog-Clutch implemented in Modelica language and a test
case in form of CSV file were the inputs of the algorithm. The first can be seen in
the Appendix A and the test case was chosen randomly with the only requirement
that the values of the variables should be inside the physical margins of the model.

• OpenModelica: The main Python application launched the OpenModelica soft-
ware and created the hybrid DAE structure shown in Appendix B and a Matlab file
with the results of the simulation. In the hybrid DAE two type of equations can be
distinguished, one one hand, there are five simple assignment equations as those in
lines 2, 3, 4, 5 and 6, in the other hand, four conditional equations in lines 1, 7, 21
and 30 that will be used to generate the modes of the HA. The conditions in these
equations are expressions made up from the variables described in section 4.1.1.

• Modes: To identify all the possible modes contained in the original model, the
conditions in each conditional equation were parsed in two different formats: Python
and Z3. The reason for this was that the Z3 solver requires inputs in a specific format
while the Python format was used to evaluate whether the conditions were true or
false. A future work could be to improve the algorithm so that Z3 format can be
used in both cases simplifying the parsing step. Finally, 48 conditions were obtained
distributed as follows:

Conditional equation Nr. of conditions
Engage_req 2

DER.zv 20
t 12

eng_state 14

Table 4.1 – Number of conditions for each conditional equation described in the hybrid
DAE structure shown in Appendix B.

As example, the conditions obtained after parsing the equation t are shown in Table
4.2.
The total number of modes obtained at this stage is the cross product of the con-
ditions found, for the case study: {2} × {20} × {12} × {14} = 6720. This number
includes the infeasible modes that should be removed.

• Mode Reduction: After running the Z3 solver on python, only 34 of the 6720
modes were decided to be logical, which clearly represents a huge reduction in the
amount of modes. The execution time of only 0.6 seconds performed by the Z3 solver
was another pleasant surprise. Definitely, these two facts evidence the effectiveness
reached by the solver. Further reduction of modes was achieved by checking the

33

4. Case study, Dog-Clutch

dynamics described by those modes, resulting in 20 different behaviours that are
shown in Table 4.3 where for each mode is shown the value assigned to each variable.
Some problem were found when examining the results:
a) Mode 1 is unreachable and it appears due to the way the Modelica causal

approach describes models.
b) 10 modes out of the 20 modes do not exist in the original model.

These two points falsifies the measure of test coverage since 100% will never be
reached, this is a task to solve in future work.

• Triggered Modes: For the test case created, only nine modes were exercised
throughout the simulation, they are identified in Table 4.3 with an asterisk. This is
the more time consuming step of the proposed methodology since 48 conditions are
evaluated at each time instant.

• Test coverage: The result of measuring test coverage is displayed and dumped
into a txt file as in Figure 4.4. For the case study and using the inputs described
above, only 45% of the feasible modes were exercised, indicating, that more test
cases are needed to achieve higher coverage. Besides the numerical results, more
information about the model can be dumped into the txt file as the triggered and
feasible modes including the conditions that composes them.
The results obtained here are considered useful for two reasons:
a) the identified modes no triggered by the test case can be used as clues in

an algorithm to automatically generate new test cases that increase the test
coverage measure. The automated generation of test cases is the final objective
of the model-based testing methods.

b) numerically quantify how well a mechatronic system is tested.
It must be noted that the final methodology implemented in this thesis generates
modes that are not reachable so that 100% coverage could be impossible to reach
as it happens with the case study analysed in this work.

1 Mode Coverage : 45.00%
2
3 F e a s i b l e Modes : 20 V i s i t e d Modes : 9

Figure 4.4 – Result of measuring test coverage using mode coverage as a criterion.
Feasible modes are those that are mathematically coherent while visited modes are modes
that have been exercised by a specific test case during simulation.

34

4.
C
ase

study,D
og-C

lutch

t_C0 = (engage_req == 1 and prev_eng_state == 0) and (z < 0.0016) and (not ((z >= 0.0016 and abs(w) > w_lim) or (z >= 0.0016 and abs(w) <= w_lim

and abs(a) <= a_lim) or (z >= 0.0016 and abs(w) <= w_lim and abs(a) > a_lim)))

t_C1 = (engage_req == 1 and prev_eng_state == 0) and (z >= 0.0016 and abs(w) > w_lim) and (not ((z < 0.0016) or (z >= 0.0016 and

abs(w) <= w_lim and abs(a) <=a_lim) or (z >= 0.0016 and abs(w) <= w_lim and abs(a) >a_lim)))

t_C2 = (engage_req == 1 and prev_eng_state == 0) and (z >= 0.0016 and abs(w) <= w_lim and abs(a) <=a_lim) and

(not ((z < 0.0016) or (z >= 0.0016 and abs(w) > w_lim) or (z >= 0.0016 and abs(w) <= w_lim and abs(a) >a_lim)))

t_C3 = (engage_req == 1 and prev_eng_state == 0) and (z >= 0.0016 and abs(w) <= w_lim and abs(a) >a_lim) and

(not ((z < 0.0016) or (z >= 0.0016 and abs(w) > w_lim) or (z >= 0.0016 and abs(w) <= w_lim and abs(a) <=a_lim)))

t_C4 = (engage_req == 1 and prev_eng_state == 0) and (not ((z < 0.0016) or (z >= 0.0016 and abs(w) > w_lim) or (z >= 0.0016 and

abs(w) <= w_lim and abs(a) <=a_lim) or (z >= 0.0016 and abs(w) <= w_lim and abs(a) >a_lim)))

t_C5 = (engage_req == 1 and prev_eng_state == 1) and (abs(a) >a_lim and z < 0.0032 and z >= 0.0016) and

(not ((abs(a) >a_lim and z >= 0.0032 and z >= 0.0016)))

t_C6 = (engage_req == 1 and prev_eng_state == 1) and (abs(a) >a_lim and z >= 0.0032 and z >= 0.0016) and

(not ((abs(a) >a_lim and z < 0.0032 and z >= 0.0016)))

t_C7 = (engage_req == 1 and prev_eng_state == 1) and (not ((abs(a) >a_lim and z < 0.0032 and z >= 0.0016) or

(abs(a) >a_lim and z >= 0.0032 and z >= 0.0016)))

t_C8 = (engage_req == 0 and prev_eng_state == 1) and (abs(a) >a_lim and z >= 0.0016) and (not ())

t_C9 = (engage_req == 0 and prev_eng_state == 1) and (not ((abs(a) >a_lim and z >= 0.0016)))

t_C10 = (engage_req == 0 and prev_eng_state == 0)

t_C11 = not ((engage_req == 1 and prev_eng_state == 0) or (engage_req == 1 and prev_eng_state == 1) or

(engage_req == 0 and prev_eng_state == 1) or (engage_req == 0 and prev_eng_state == 0))

Table 4.2 – Conditions extracted from the conditional equation t after parsing the Hybrid DAE in Appendix B. In this case the
conditions were parsed to Python format

35

4.
C
ase

study,D
og-C

lutch

engage_req engage_state t mass · der(zv)

Mode 1 0 0 0 0

Mode 2 0 0 0 f_spring −DampingBelleville_extra · zv

Mode 3 * 0 1 W BD · w + stiff · (−0.00437 + abs(a)) · (·Real·)(sign(a)) f_spring −W SD · (−0.0016 + z) · zv

Mode 4 0 0 HiSpeedDamping2 · w f_spring − stiff2 · (−0.0016 + z)

Mode 5 0 0 LoSpeedDamping2 · w f_spring − stiff2 · (−0.0016 + z)

Mode 6 0 1 W BD · w + stiff · (−0.00437 + abs(a)) · (·Real·)(sign(a)) f_spring − stiff2 · (−0.0032 + z)−W SD · (−0.0016 + z) · zv

Mode 7 0 0 0 f_spring − stiff2 · (−0.0016 + z)

Mode 8 0 1 0 f_spring − stiff2 · (−0.0032 + z)

Mode 9 * 0 0 0 f_spring

Mode 10 * 0 1 0 f_spring

Mode 11 1 0 0 0

Mode 12 1 0 0 f_spring −DampingBelleville_extra · zv

Mode 13 * 1 1 W BD · w + stiff · (−0.00437 + abs(a)) · (·Real·)(sign(a)) f_spring −W SD · (−0.0016 + z) · zv

Mode 14 1 0 HiSpeedDamping2 · w f_spring − stiff2 · (−0.0016 + z)

Mode 15 * 1 0 LoSpeedDamping2 · w f_spring − stiff2 · (−0.0016 + z)

Mode 16 * 1 1 W BD · w + stiff · (−0.00437 + abs(a)) · (·Real·)(sign(a)) f_spring − stiff2 · (−0.0032 + z)−W SD · (−0.0016 + z) · zv

Mode 17 1 0 0 f_spring − stiff2 · (−0.0016 + z)

Mode 18 * 1 1 0 f_spring − stiff2 · (−0.0032 + z)

Mode 19 * 1 0 0 f_spring

Mode 20 * 1 1 0 f_spring

Table 4.3 – Feasible Modes obtained by the developed application. Each mode is defined by four variables that change its dynamic
at different modes. The asterisk indicates the modes exercised by the specific test case used during simulation.

36

5
Conclusion

A new approach to measure test coverage for systems with continuous dynamics is pre-
sented. The developed algorithm supports the use of Modelica language to describe CPSs
in form of hybrid automata which can be used to define test coverage.
Mode coverage has been identified to be a good candidate as coverage criterion since it

is able to capture the infiniteness of the continuous dynamics of the CPSs in a finite set
of modes, which allow implementing quantitative methods to measure test coverage.
The study carried out in this thesis has examined the procedure to abstract CPSs

implemented by means of an acausal approach into a mathematical description of a hy-
brid automaton. The results are promising to the extent that Hybrid DAEs created by
OpenModelica can be used to automate the process of mode generation and measuring
coverage. The results given by the algorithm permit to discover untested areas in the
system and provide clues to guide the generation of new test cases to cover such areas,
which is the main objective of Model-Based Testing approach. The approach followed can
also enhance other testing methods in order to support testing of hybrid systems.
With regard to the reduction mode technique implemented, it is worth to remark the

high performance shown by the Z3 solver to decide satisfiability and to remove infeasible
modes yielding more accurate results. The approach proposed here could not have been
achieved unless the enormous progress and development conducted in SMT solvers in
recent times.
The usefulness of this approach still requires more development and testing with more

general CPSs models in order to guarantee that software as OpenModelica always pro-
duces hybrid DAEs that are suitable to be transformed into hybrid automata. In addition,
the Z3 solver also should be assessed against more complex models to verify its perfor-
mance.

5.1 Limitations
This work succeeded in proving the validity of the methodology proposed, though, some
limitations have been found, further described below.

a) The algorithm has been tested in a single, simple but still complex example to be
able to assess the developed application.

b) The Z3 solver does not check for reachability, therefore it may happen that the
algorithm generates feasible modes that are unreachable or physically impossible.

c) Z3 do not support real transcendental functions, e.g. sine, cosine and exponential.
Thus, transcendental functions are not allowed in the conditions.

37

5. Conclusion

5.2 Future Work
This section presents the future work that can be done based on the results presented in
this master’s thesis.

• Generate test cases:
The next natural step would be to develop a tool that automates the process to
generate test cases to explore the localised untested areas, i.e. to continue with the
implementation of the model-based testing methodology.

• Verification against more complex systems:
The developed application has been tested only against one mechatronic system
so more cases are necessary to verify the generation of hybrid automata and more
thoroughly evaluate the approach followed.

• Improve Reduction of modes:
In order to achieve an accurate test coverage measure, it is necessary to refine the
mode reduction process to remove non-existent modes in the hybrid automata.

• Analyse HA under other criteria:
Besides mode coverage criterion, other criteria such as transition coverage can be
carried out to guarantee correctness. In addition, it would be interesting to analyse
how well the continuous dynamic is tested within each mode.

38

Bibliography

[1] S. Miremadi, Modellbaserad testning av mekatroniska system (testron) - vinnova,
2016. [Online]. Available: http : / / www . vinnova . se / sv / Resultat / Projekt /
Effekta/2009- 02186/Modellbaserad- Testning- av- Mekatroniska- System-
TESTRON/ (visited on 09/02/2016).

[2] R. Alur, Principles of cyber-physical systems. MIT Press, 2015.
[3] E. A. Lee, “Cyber physical systems: Design challenges”, in 2008 11th IEEE In-

ternational Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), IEEE, 2008, pp. 363–369.

[4] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing
approaches”, Software Testing, Verification and Reliability, vol. 22, no. 5, pp. 297–
312, 2012.

[5] M. Conrad, “Verification and validation according to iso 26262: A workflow to fa-
cilitate the development of high-integrity software”, Embedded Real Time Software
and Systems (ERTS2 2012), 2012.

[6] M. A. Mäkinen, “Model based approach to software testing”, PhD thesis, Citeseer,
2007.

[7] D. Firesmith, Four types of shift left testing, 2017. [Online]. Available: https://
insights.sei.cmu.edu/sei_blog/2015/03/four- types- of- shift- left-
testing.html (visited on 01/06/2017).

[8] J. Eddeland, J. Gil, R. Fransen, S. Miremadi, M. Fabian, and K. Åkesson, Automated
mode coverage analysis for model-based testing of hybrid automata, 2016.

[9] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems”, in
Hybrid systems, Springer Berlin Heidelberg, 1993, pp. 209–229.

[10] J.-F. Raskin, “An introduction to hybrid automata”, in Handbook of networked and
embedded control systems, Springer, 2005, pp. 491–517.

[11] T. A. Henzinger, “The theory of hybrid automata”, in Verification of Digital and
Hybrid Systems, Springer, 2000, pp. 265–292.

[12] A. A. Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J. Pappas, “Robust test
generation and coverage for hybrid systems”, in International Workshop on Hybrid
Systems: Computation and Control, Springer, 2007, pp. 329–342.

[13] T. Nahhal and T. Dang, “Test coverage for continuous and hybrid systems”, in
International Conference on Computer Aided Verification, Springer, 2007, pp. 449–
462.

[14] J. Kapinski, J. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-guided ap-
proaches for verification of automotive powertrain control systems”, in 2015 Amer-
ican Control Conference (ACC), IEEE, 2015, pp. 4086–4095.

39

http://www.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/Modellbaserad-Testning-av-Mekatroniska-System-TESTRON/
http://www.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/Modellbaserad-Testning-av-Mekatroniska-System-TESTRON/
http://www.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/Modellbaserad-Testning-av-Mekatroniska-System-TESTRON/
https://insights.sei.cmu.edu/sei_blog/2015/03/four-types-of-shift-left-testing.html
https://insights.sei.cmu.edu/sei_blog/2015/03/four-types-of-shift-left-testing.html
https://insights.sei.cmu.edu/sei_blog/2015/03/four-types-of-shift-left-testing.html

Bibliography

[15] R. Agrawal, “Semi-automated formalization and verification of automotive require-
ments using simulink design verifier”, 2015.

[16] 2016. [Online]. Available: https : / / se . mathworks . com / products / simulink/
(visited on 11/30/2016).

[17] 2016. [Online]. Available: https : / / se . mathworks . com / products / simscape/
(visited on 11/30/2016).

[18] 2016. [Online]. Available: https://www.openmodelica.org/ (visited on 11/30/2016).
[19] P. Fritzson and et. al., Openmodelica system documentation, 2014-02-01 for Open-

Modelica 1.9.1 Beta1. Open Source Modelica Consortium, 2014, p. 14. [Online].
Available: https://openmodelica.org/svn/OpenModelica/trunk/doc/OpenMode
licaUsersGuide.pdf (visited on 09/12/2016).

[20] A. Baresel, M. Conrad, S. Sadeghipour, and J. Wegener, “The interplay between
model coverage and code coverage”, in Proc. EuroCAST, 2003, pp. 136–190.

[21] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas, “The art of software testing
.”, 2004.

[22] 2016. [Online]. Available: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
(visited on 12/10/2016).

[23] 2017. [Online]. Available: http://releases.llvm.org/download.html.
[24] L. De Moura and N. Bjørner, “Z3: An efficient smt solver”, in International con-

ference on Tools and Algorithms for the Construction and Analysis of Systems,
Springer, 2008, pp. 337–340.

[25] L. De Moura, Z3 supports for nonlinear arithmetics, 2016. [Online]. Available: http:
//stackoverflow.com/questions/18064822/z3- supports- for- nonlinear-
arithmetics (visited on 12/21/2016).

40

https://se.mathworks.com/products/simulink/
https://se.mathworks.com/products/simscape/
https://www.openmodelica.org/
https://openmodelica.org/svn/OpenModelica/trunk/doc/OpenModelicaUsersGuide.pdf
https://openmodelica.org/svn/OpenModelica/trunk/doc/OpenModelicaUsersGuide.pdf
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://releases.llvm.org/download.html
http://stackoverflow.com/questions/18064822/z3-supports-for-nonlinear-arithmetics
http://stackoverflow.com/questions/18064822/z3-supports-for-nonlinear-arithmetics
http://stackoverflow.com/questions/18064822/z3-supports-for-nonlinear-arithmetics

A
Clutch Model

[]

Listing A.1 – Clutch model implemented in Modelica language
1 encapsulated model c l u t c h
2 import Mode l i ca .Cons tant s .p i ;
3 import M o d e l i c a . S I u n i t s . {Torque , Current , Ve loc i ty , Mass , Trans lat iona lSpr ingConstant ,
4 RotationalDampingConstant , TranslationalDampingConstant , Angle , Length ,
5 Rotat ionalSpr ingConstant , AngularVeloc ity , E l ec t r i ca lForceCons tant ,
6 DynamicViscosity , Frequency } ;
7
8 // PARAMETERS
9 parameter Frequency freqHz = 1 ;

10 parameter Mass mass = 0 .15 ;
11 parameter Trans la t iona lSpr ingConstant k_spring = 100 ;
12 parameter RotationalDampingConstant WallBounceDamping = 10 ;
13 parameter TranslationalDampingConstant DampingBe l l ev i l l e = 10 ;
14 parameter DynamicViscosity WallScrapeDamp = 1 e3 ;
15 parameter TranslationalDampingConstant DampingBel l ev i l l e_extra = 100 ;
16 parameter Angle ph i_ in i t = 0 ;
17 parameter Length z_in i t = 0 ;
18 parameter Rotat iona lSpr ingConstant s t i f f = 1 e4 ;
19 parameter Trans la t iona lSpr ingConstant s t i f f 2 = 1 e5 ;
20 parameter RotationalDampingConstant HiSpeedDamping2 = 0 .01 ;
21 parameter RotationalDampingConstant LoSpeedDamping2 = 0 .01 ;
22 parameter E l e c t r i c a l F o r c e C o n s t a n t KI = k_spring ∗ z1 / Iho ld ;
23
24
25 // VARIABLES
26 I n t e g e r eng_state (s t a r t = 0 , f i x e d = true) ;
27 I n t e g e r engage_req ;
28 I n t e g e r prev_eng_state ;
29 Real a ; // Backlash ang le (rad ians)
30 Real f_spring_n_current ; // Force e x e r c i s e d by the sp r i ng
31 Torque t (s t a r t = 0) ; // due to F r i c t i o n
32 Length z (s t a r t = z_init , f i x e d = true) ; // p o s i t i o n
33 Ve lo c i ty zv (s t a r t = 0 , f i x e d = true) ; // v e l o c i t y
34 Angle phi (s t a r t = phi_in it , f i x e d = true) ; // r o t a t i o n a l ang le
35
36 // INPUTS FROM AN EXTERN FILE
37 input Current cur rent ;
38 input AngularVeloc i ty w;
39
40 // PROTECTED VARIABLES
41 protected
42 constant Real a_lim = s i n (d e l t a / 2) ;
43 constant Real wmax = 3 ;
44 constant I n t e g e r p = 36 ;
45 constant AngularVeloc i ty w_lim = 30 ∗ (p i / 3 0) ; // Speed t r e s h o l d f o r engaging the c l u t c h
46 constant Angle d e l t a = 0 . 5 ∗ (p i / 1 8 0) ;
47 constant Length z0 = 1 .6e −3; // d i s t a n c e to s t a t o r t ee th
48 constant Length z1 = 3 .2e −3; // d i s t a n c e to f u l l y engaged
49 constant Current I c l = 2 . 3 ;
50 constant Current Iho ld = 1 . 2 ;
51 constant Current current_min = 0 .01 ;
52 constant Length dog2dog_range = 0 .2e −3;

I

A. Clutch Model

53
54 // EQUATION SECTION
55 equation
56 prev_eng_state = pre (eng_state) ;
57 w = der (phi) ;
58 zv = der (z) ;
59 a = s i n (p ∗ phi) / p ;
60 f_spring_n_current = KI ∗ cur rent − k_spring ∗ z − DampingBe l l ev i l l e ∗ zv ;
61 i f cur rent > current_min then
62 engage_req = 1 ;
63 else
64 engage_req = 0 ;
65 end i f ;
66 i f engage_req == 1 and prev_eng_state == 0 then
67 // engage requested , c l u t c h out o f the cam−r i n g
68 i f z < z0 then
69 // Rotor has not reached s t a t o r
70 eng_state = 0 ;
71 t = 0 ;
72 mass ∗ der (zv) = f_spring_n_current ;
73 e l s e i f z >= z0 and abs (w) > w_lim then
74 // Rotor has reached s t a t o r
75 // Speed d i f e f r e n c e too la rge , g l i d e on tee th
76 eng_state = 0 ;
77 t = HiSpeedDamping2 ∗ w;
78 mass ∗ der (zv) = f_spring_n_current − s t i f f 2 ∗ (z − z0) ;
79 e l s e i f z >= z0 and abs (w) < w_lim and abs (a) <= a_lim then
80 // Rotor has reached s t a t o r
81 // Speed d i f f e r e n c e OK
82 // Tooth with in gap bounds , engage c l u t c h and move forward
83 eng_state = 1 ;
84 t = 0 ;
85 mass ∗ der (zv) = f_spring_n_current ;
86 e l s e i f z >= z0 and abs (w) < w_lim and abs (a) > a_lim then
87 // Rotor has reached s t a t o r
88 // Speed d i f f e r e n c e OK
89 // Tooth o u t s i d e gap bounds
90 eng_state = 0 ;
91 t = LoSpeedDamping2 ∗ w;
92 mass ∗ der (zv) = f_spring_n_current − s t i f f 2 ∗ (z − z0) ;
93 else
94 eng_state = 0 ;
95 t = 0 ;
96 mass ∗ der (zv) = 0 ;
97 end i f ;
98 e l s e i f engage_req == 1 and prev_eng_state == 1 then
99 // engage requested , Clutch engaged in prev ious s t a t e

100 i f abs (a) > a_lim and z < z1 and z >= z0 then
101 // tee th in the gap , h i t t i n g the wa l l bounds , c l u t c h not in f i n a l p o s i t i o n
102 eng_state = 1 ;
103 t = s t i f f ∗ (abs (a) − a_lim) ∗ s i g n (a) + WallBounceDamping ∗ w;
104 mass ∗ der (zv) = f_spring_n_current − WallScrapeDamp ∗ (z − z0) ∗ zv ;
105 e l s e i f abs (a) > a_lim and z >= z1 and z >= z0 then
106 // tee th in the gap , h i t t i n g the wa l l bounds , c l u t c h not in f i n a l p o s i t i o n
107 eng_state = 1 ;
108 t = s t i f f ∗ (abs (a) − a_lim) ∗ s i g n (a) + WallBounceDamping ∗ w;
109 mass ∗ der (zv) = f_spring_n_current − s t i f f 2 ∗ (z − z1) − WallScrapeDamp∗
110 ∗ (z − z0) ∗ zv ;
111 e l s e i f abs (a) <= a_lim and z < z1 and z >= z0 then
112 // tee th in the gap , not h i t t i n g the wa l l bounds , c l u t c h not in f i n a l p o s i t i o n
113 eng_state = 1 ;
114 t = 0 ;
115 mass ∗ der (zv) = f_spring_n_current ;
116 e l s e i f abs (a) <= a_lim and z >= z1 and z >= z0 then
117 // tee th in the gap , not h i t t i n g the wa l l bounds , c l u t c h in p o s i t i o n
118 eng_state = 1 ;
119 t = 0 ;
120 mass ∗ der (zv) = f_spring_n_current − s t i f f 2 ∗ (z − z1) ;
121 e l s e i f z < z0 then
122 // tee th o u t s i d e gap
123 eng_state = 0 ;
124 t = 0 ;

II

A. Clutch Model

125 mass ∗ der (zv) = f_spring_n_current ;
126 else
127 eng_state = 0 ;
128 t = 0 ;
129 mass ∗ der (zv) = 0 ;
130 end i f ;
131 e l s e i f engage_req == 0 and prev_eng_state == 1 then
132 // Detatch c l u t c h . Clutch engaged in prev ious s t a t e
133 i f abs (a) > a_lim and z >= z0 then
134 // tee th in the gap , h i t t i n g the wa l l bounds
135 eng_state = 1 ;
136 t = s t i f f ∗ (abs (a) − a_lim) ∗ s i g n (a) + WallBounceDamping ∗ w;
137 mass ∗ der (zv) = f_spring_n_current − WallScrapeDamp ∗ (z − z0) ∗ zv ;
138 e l s e i f abs (a) <= a_lim and z >= z0 then
139 // tee th in the gap , not h i t t i n g the wa l l bounds
140 eng_state = 1 ;
141 t = 0 ;
142 mass ∗ der (zv) = f_spring_n_current ;
143 e l s e i f z < z0 then
144 // c l u t c h was engaged but now has somehow reached o u t s i d e dog tee th
145 eng_state = 0 ;
146 t = 0 ;
147 mass ∗ der (zv) = f_spring_n_current ;
148 else
149 eng_state = 0 ;
150 t = 0 ;
151 mass ∗ der (zv) = 0 ;
152 end i f ;
153 e l s e i f engage_req == 0 and prev_eng_state == 0 then
154 // Detatch c l u t c h .
155 i f z < z0 and z >= 0 then
156 // c l u t c h not engaged , i . e . o u t s i d e dog tee th
157 eng_state = 0 ;
158 t = 0 ;
159 mass ∗ der (zv) = f_spring_n_current ;
160 e l s e i f z < z0 and z < 0 then
161 // c l u t c h not engaged
162 eng_state = 0 ;
163 t = 0 ;
164 mass ∗ der (zv) = f_spring_n_current − DampingBel l ev i l l e_extra ∗ zv ;
165 e l s e i f z >= z0 then
166 // tee th buncing o f eachother
167 eng_state = 0 ;
168 t = 0 ;
169 mass ∗ der (zv) = f_spring_n_current − s t i f f 2 ∗ (z − z0) ;
170 else
171 eng_state = 0 ;
172 t = 0 ;
173 mass ∗ der (zv) = 0 ;
174 end i f ;
175 else
176 eng_state = 0 ;
177 t = 0 ;
178 mass ∗ der (zv) = 0 ;
179 end i f ;
180 end c l u t c h ;

III

B
Hybrid DAE

Listing B.1 – SimCode gernerated by OpenModelica for the case study
1 engage_req=i f cur rent > 0 .01 then 1 else 0 [I n t e g e r]
2 f_spring_n_current=KI ∗ cur rent + (−k_spring) ∗ z − DampingBe l l ev i l l e ∗ zv [Real]
3 a=0.02777777777777778 ∗ s i n (36 . 0 ∗ phi) [Real]
4 DER.z=zv [Real]
5 DER.phi=w[Real]
6 prev_eng_state=pre (eng_state) [I n t e g e r]
7 DER.zv=i f engage_req == 1 and prev_eng_state == 0 then i f z < 0 .0016 then DIVISION(f_spring_n_current , mass) else i f z >= 0 .0016 and
8 abs (w) > 3 .141592653589793 then DIVISION(f_spring_n_current − s t i f f 2 ∗ (−0 .0016 + z) , mass) else i f z >= 0 .0016 and abs (w) < 3 .141592653589793
9 and abs (a) <= 0 .004363309284746571 then DIVISION(f_spring_n_current , mass) else i f z >= 0 .0016 and abs (w) < 3 .141592653589793 and abs (a) >

10 0 .004363309284746571 then DIVISION(f_spring_n_current − s t i f f 2 ∗ (−0 .0016 + z) , mass) else 0 . 0 else i f engage_req == 1 and prev_eng_state == 1
11 then i f abs (a) > 0 .004363309284746571 and z < 0 .0032 and z >= 0 .0016 then DIVISION(f_spring_n_current − WallScrapeDamp ∗ (−0 .0016 + z) ∗ zv , mass)
12 else i f abs (a) > 0 .004363309284746571 and z >= 0 .0032 and z >= 0 .0016 then DIVISION(f_spring_n_current − s t i f f 2 ∗ (−0 .0032 + z) − WallScrapeDamp ∗
13 (−0 .0016 + z) ∗ zv , mass) else i f abs (a) <= 0 .004363309284746571 and z < 0 .0032 and z >= 0 .0016 then DIVISION(f_spring_n_current , mass) else i f
14 abs (a) <= 0 .004363309284746571 and z >= 0 .0032 and z >= 0 .0016 then DIVISION(f_spring_n_current − s t i f f 2 ∗ (−0 .0032 + z) , mass) else i f z < 0 .0016
15 then DIVISION(f_spring_n_current , mass) else 0 . 0 else i f engage_req == 0 and prev_eng_state == 1 then i f abs (a) > 0 .004363309284746571 and z >=
16 0 .0016 then DIVISION(f_spring_n_current − WallScrapeDamp ∗ (−0 .0016 + z) ∗ zv , mass) else i f abs (a) <= 0 .004363309284746571 and z >= 0 .0016 then
17 DIVISION(f_spring_n_current , mass) else i f z < 0 .0016 then DIVISION(f_spring_n_current , mass) else 0 . 0 else i f engage_req == 0 and prev_eng_state
18 == 0 then i f z < 0 .0016 and z >= 0 . 0 then DIVISION(f_spring_n_current , mass) else i f z < 0 .0016 and z < 0 . 0 then DIVISION(f_spring_n_current −
19 DampingBel l ev i l l e_extra ∗ zv , mass) else i f z >= 0 .0016 then DIVISION(f_spring_n_current , mass) else 0 . 0 else 0 . 0 [Real]
20
21 t=i f engage_req == 1 and prev_eng_state == 0 then i f z < 0 .0016 then 0 . 0 else i f z >= 0 .0016 and abs (w) > 3 .141592653589793 then
22 HiSpeedDamping2 ∗ w else i f z >= 0 .0016 and abs (w) < 3 .141592653589793 and abs (a) <= 0 .004363309284746571 then 0 . 0 else i f z >= 0 .0016 and
23 abs (w) < 3 .141592653589793 and abs (a) > 0 .004363309284746571 then LoSpeedDamping2 ∗ w else 0 . 0 else i f engage_req == 1 and prev_eng_state == 1
24 then i f abs (a) > 0 .004363309284746571 and z < 0 .0032 and z >= 0 .0016 then WallBounceDamping ∗ w + s t i f f ∗ (−0 .004363309284746571 + abs (a))
25 ∗ /∗ Real ∗/ (s i g n (a)) else i f abs (a) > 0 .004363309284746571 and z >= 0 .0032 and z >= 0 .0016 then WallBounceDamping ∗ w + s t i f f ∗
26 (−0 .004363309284746571 + abs (a)) ∗ /∗ Real ∗/ (s i g n (a)) else 0 . 0 else i f engage_req == 0 and prev_eng_state == 1 then i f abs (a) >
27 0 .004363309284746571 and z >= 0 .0016 then WallBounceDamping ∗ w + s t i f f ∗ (−0 .004363309284746571 + abs (a)) ∗ /∗ Real ∗/ (s i g n (a)) else 0 . 0
28 else i f engage_req == 0 and prev_eng_state == 0 then −0 . 0 else 0 . 0 [Real]
29
30 eng_state=i f engage_req == 1 and prev_eng_state == 0 then i f z < 0 .0016 then 0 . 0 else i f z >= 0 .0016 and abs (w) > 3 .141592653589793 then 0 . 0
31 else i f z >= 0 .0016 and abs (w) < 3 .141592653589793 and abs (a) <= 0 .004363309284746571 then 1 else 0 . 0 else i f engage_req == 1 and
32 prev_eng_state == 1 then i f abs (a) > 0 .004363309284746571 and z < 0 .0032 and z >= 0 .0016 then 1 else i f abs (a) > 0 .004363309284746571 and
33 z >= 0 .0032 and z >= 0 .0016 then 1 else i f abs (a) <= 0 .004363309284746571 and z < 0 .0032 and z >= 0 .0016 then 1 else i f abs (a) <=
34 0 .004363309284746571 and z >= 0 .0032 and z >= 0 .0016 then 1 else 0 . 0 else i f engage_req == 0 and prev_eng_state == 1 then i f abs (a) >
35 0 .004363309284746571 and z >= 0 .0016 then 1 else i f abs (a) <= 0 .004363309284746571 and z >= 0 .0016 then 1 else 0 . 0 else i f engage_req == 0 and
36 prev_eng_state == 0 then −0 . 0 else 0 . 0 [Real]

IV

	Acronyms
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Related Work
	Research questions
	Method
	Justify research approach
	Research approach

	Contributions

	Modelling Mechatronic Systems
	Mechatronic Systems
	Modelling fundamentals
	Modelling approaches
	Hybrid DAE
	Hybrid DAE in SimCode

	Hybrid Automata

	Modelling Software

	Test Coverage for CPSs
	Coverability criteria
	The proposed criterion: mode coverage

	Test coverage analysis: GCOV
	Introduction to GCOV
	Methodology Workflow
	Analysis of C-code

	Test coverage analysis: Hybrid Automaton
	General algorithm
	Modes: from Hybrid DAE to Hybrid Automaton
	Identification of modes

	Mode Reduction
	Satisfiability Modulo Theories - the Z3 Solver
	Mode Reduction Workflow

	Case study, Dog-Clutch
	Description of the Dog-Clutch
	Modelling the Dog-Clutch

	Implementation and evaluation

	Conclusion
	Limitations
	Future Work

	Clutch Model
	Hybrid DAE

