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Extracting Interpretable Equations from Data
Studying and developing bloat control and sampling techniques in genetic program-
ming for symbolic regression
ADRIAN ERIKSSON & FILIP FROSTELIND
Department of Physics
Chalmers University of Technology

Abstract
Expressing relationships within data using mathematical formulas lies at the centre
of scientific discovery. In recent years symbolic regression has been proposed as a
tool for discovering relationships in data in order to convey information regarding
system dynamics. In this study an algorithm for symbolic regression using genetic
programming is developed and tested on a number of iconic equations from physics
(50 equations from the Feynman lectures on physics) and breathing data from a
ventilator. Two important features of genetic algorithms are investigated, namely
non-disruptive bloat control and sampling methods for breeding. The results shows
that the developed algorithm performs on-par with cutting-edge commercial genetic
programming software and that interesting features can be extracted from input
data. Further, an enhanced implementation of substitution with an approximate
terminal (SAT) is performed with promising results, reducing bloat without hinder-
ing adaptation. Lastly, the impacts of roulette, linear rank and Boltzmann selection
are investigated, and we find that they all produce similar results, but with different
strategies regarding exploration and exploitation.

Keywords: Genetic Programming, Symbolic Regression, Stochastic Optimisation,
Machine Learning, Bloat Control, Boltzmann Sampling, SAT-GP, TOPSIS
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1
Introduction

Expressing relationships within data using mathematical formulas lies at the centre
of scientific discovery. Consequently, scientific discoveries are often attributed to
the formulation of mathematical descriptions, such as Newton’s formulation of the
laws of motion [1] or Maxwell’s unifying equations within electromagnetism [2].
Formulas represent the predictive capability of a theory and is thus a cornerstone
for theoretical confirmation and application. This connection between theory and
formula allows a theory to provide rationale for the structure of its corresponding set
of equations. A plain example is the damped harmonic oscillator, which is described
by a formula consisting of two distinct terms. The first term describes to the force
related to the extension of the oscillator and the second term describes the frictional
contribution, according to,

F = −kx− cv.
The ability to convey insight from theory to formula has evoked the thought of ap-
plying this inherent connection in reverse – to gain theoretical understanding from
a formula capable of predicting some feature in an arbitrary system. This could
prove to be relevant in the era of machine learning and artificial intelligence when
our predictive capability often transcend our theoretical understanding. However,
a common problem with methods within artificial intelligence is that they lack the
ability to produce interpretable models, severely limiting our ability to extract in-
formation from the model itself. Artificial neural networks for instance often include
thousands of parameters, all contributing to the final model [3]. Yet, there are meth-
ods which circumvent this problem, one of which is symbolic regression.

The objective in symbolic regression is to find a mathematical expression that de-
scribes a given data set the best, based on accuracy and complexity (the given
number of operations, functions, variables and constants in an expression). The op-
timal solution is acquired by probing the space of all included operators, functions,
constants and variables. This can be achieved using different methods with genetic
programming being a common approach [4]. Genetic programming is a technique
that avoids brute force optimisation by applying processes analogous to mecha-
nisms within natural population genetics. In a genetic algorithm a mathematical
expression is seen as an individual representing a possible solution. By grouping
individuals, creating a population, a probabilistic search based on natural selection
and adaptation can be performed. The search is carried out over a number of gener-
ations, successively altering the population by selection, inheritance, mutation and
recombination. Without any prior knowledge of the system genetic programming
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1. Introduction

can be used for symbolic regression in order to distil system describing mathematical
expressions [5, 6].

Although symbolic regression using genetic programming can be used in order to
produce a mathematical formula with great predictive capability there are an infi-
nite number of formulas describing the same relationship. Thus, complicating the
connection between expression and theory. It is therefore of great interest to specify
which characteristics of an equation that makes it insightful and useful for conveying
information regarding theory. The genetic algorithm must hence incorporate some
definition of an insightful expression, promoting the existence of these expressions
within the population.

1.1 Background

The original notion of evolving programs was first introduced by Turing when he
proposed the idea of learning machines in 1950 [7]. Turing imagined an initial sim-
ple program consisting of hereditary material that can mutate. By evaluating the
program based on some judgement of the experimenter, desirable changes can be
promoted while undesirable ones punished, thus the program evolves. However, due
to the obvious technological limitation at the time Turing never implemented this.
Instead, it was Holland who popularised genetic programming with his work in the
early 1970s, conceptualising the field [8, 9]. Following Holland, in the 1990s Koza
produced a series of books on more practical applications of genetic programming,
showcasing the potentials of the method and formulating the principles and termi-
nology that is still used today [4]. Since then the field of genetic programming has
progressed dramatically.

Because of the lack of computational power, genetic programming was initially used
for simple problems, often applied to small systems with limited data points. This
is no longer the case, today genetic programming is utilised on a variety of problems
with ranging complexity and intricacy [10]. This change can be attributed to the
increase in computational power as well as an overall increased interest in machine
learning algorithms. Consequently, genetic programming has been used for a mul-
titude of different applications ranging from modelling of biochemical reactions [11]
to predicting stock prices [12].

In this work genetic programming is used for symbolic regression which was originally
done by Koza but has since been developed by numerous authors. Notably, Schmidt
and Lipson who used genetic algorithms to obtain conservation laws for physical
systems without supplying a target value, only evaluating the internal derivatives of
the input variables – highlighting the potential of genetic algorithms to be used for
identification of system behaviour [5].

2



1. Introduction

1.2 Problem Description
The objective of this thesis is to create a model performing symbolic regression using
genetic programming. The model should be built from the ground up and be based
on state-of-the-art implementation techniques within the field of genetic program-
ming, generating mathematical expressions conveying relationships in data. The
mathematical expressions should have high predictive capability while remaining
interpretable for the user. The model will be tested on 50 equations from different
areas of physics exhibiting a variety of features common in mathematical relation-
ships. In addition, the algorithm will be used on data from a ventilator containing
respiratory logs from a patient in order to deduce possible connections between time,
pressure, tidal volume and air flow.

Further, the aim is to focus on two aspects of genetic algorithms; innovative imple-
mentation of non-disruptive bloat control; and studying effects of different sampling
techniques on algorithm performance and characteristics. Non-disruptive bloat con-
trol refers to handling uncontrolled expansion of expression sizes without harming
the performance of the evolutionary process.

1.3 Scope and Delimitations
This thesis will focus on the application of genetic programming for symbolic regres-
sion rather than the details of implementation and optimisation of the algorithm.
Although a genetic program is created from scratch the details of the exact imple-
mentation will not be presented. This is because of the great variety of implemen-
tation methods, requiring a significant amount of effort to explain and motivate,
which would redirect the focus of the report. As a result the created algorithm
has non-optimal implementation schemes, resulting in a somewhat slower program
than one with more optimal implementation schemes. Further, because of the shear
amount of articles related to both bloat control and sampling techniques the im-
plemented methods regarding these two topics have been selected because of their
demonstrated ability to increase algorithm performance – acknowledging the fact
that there are many other possibilities for implementing both non-disruptive bloat
control and effective sampling.
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2
Theory

This chapter is intended to provide a theoretical background to symbolic regression,
stochastic optimisation and in particular genetic programming. It covers the funda-
mentals of genetic algorithms and highlights some important concepts, components
as well as challenges within genetic programming.

2.1 Symbolic Regression

Symbolic regression (SR), also referred to as symbolic function identification, is a
type of regression analysis that searches the space of mathematical expressions to
provide a model that fits a data set best in terms of accuracy and simplicity [4].
In other words the objective is to find a symbolic expression that most accurately
describes the relation between input and output data, and consist of the least num-
ber of mathematical operations, constants and variables. The latter is referred to
as minimal model complexity.

One key difference between SR and many other regression analyses is the fact that
no particular model is provided as a starting point for the algorithm. Instead, initial
expressions are randomly combined using key mathematical building blocks such as
numerical constants, mathematical operators and variables [4]. This limits the im-
pact of possible human bias and/or lack of system knowledge. Thus, in SR both the
model structure and parameters are optimised without any a priori assumptions, in
contrast to more common regression methods such as linear regression, which mainly
focuses on optimising model parameters with a predetermined model structure.

The search space in SR is typically much larger than the search space of other
regression analyses because of the addition of model structure. Hence, SR algo-
rithms are often more computationally demanding than other methods where the
model structure is predefined. In order to reduce the computational load of a SR
algorithm the number of included mathematical building blocks can be heuristically
reduced using educated guesses, reducing the dimension of the probed search space.
Although this will spoil the no a priori assumption it can be useful given that
the system under consideration is understood. There is thus a trade-off between
computational load and bias when preparing a SR algorithm.

5



2. Theory

2.1.1 Interpretable Models in Machine Learning
The recent advancements within machine learning (ML), particularly in artificial
neural networks, have increased the ability to accurately describe, previously un-
known, relationships in data. However, one common drawback when using neural
networks is that they develop models with complex structures, structures that are
difficult to interpret. A neural network can contain thousands of parameters, all con-
tributing to describing the given relationship. Because of this complexity many deep
learning approaches have been criticised for being black box models; the functions
they provide are too complicated for humans to comprehend due to their number
of parameters and how they often work recursively, making them hard to evaluate
and understand [3].

The criticism of black box ML has led to the distinction between two different
approaches within ML, namely explainable and interpretable ML. Explainable ML
refers to black box models which are explained in hindsight, and interpretable ML
refers to models specifically designed in order for the resulting models to be inter-
pretable. While black box models tend to outperform interpretable models in terms
of accuracy, this is not true for all systems and scenarios [3]. Symbolic regression is
an example of the latter, where the purpose is to identify a symbolic function with
the lowest complexity in order to describe system relations. The symbolic function
can both be used when trying to describe the system mathematically but may also
provide the user with insight on how the system works.

2.1.2 A Search for Parsimony
SR is a multi-objective optimisation method regarding model accuracy and complex-
ity. The complexity of a model in SR is determined by the number of operators and
operands contained by the model, and finding the most simple model is referred to
as finding the most parsimonious model. A guideline for parsimony can be derived
from the principle of Occam’s razor which states that, “one should not increase,
beyond what is necessary, the number of entities required to explain anything” [13].

In SR and other ML approaches the principle of parsimony tells us that if there
are several models producing the same result, one should choose the simplest one.
When models produce the same results this is a simple procedure, but one may also
account for the parsimony in models with different results and penalise the more
complex ones, allowing both the accuracy and parsimony of the model to influence
the result [13]. The simplest interpretation of parsimony in SR is to define the most
parsimonious model as the model that contains the lowest number of constants,
variables, mathematical operators, etc., that describes the data.

2.2 Stochastic Optimisation
Stochastic optimisation refers to a collection of different methods for either min-
imising or maximising an objective function which incorporates randomness [14].
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Classical optimisation methods can be used to solve a wide variety of optimisation
problems, in particular if the problem is known to be convex [15]. Methods like
gradient descent optimisation works well on convex problems but will fail in other
problems due to the possibility of getting trapped in local optima. Stochastic op-
timisation methods seek to avoid getting trapped in local optima by introducing
some stochastic functionality, and have during the last few decades become an es-
sential tool for science, engineering, statistics, computer science and business [14].
A common stochastic optimisation method is stochastic gradient descent which has
introduced a stochastic component compared to normal gradient decent. Instead of
looking at the gradient of the whole data set only one or a few random data points
are chosen for computation of the gradient, which has proven to be an effective ap-
proach [16].

In optimisation problems local optima are solutions which are optimal within a
neighbouring set of candidate solutions. The difference between local and global op-
tima is that the global optimum is the optimal solution among all possible solutions.
While introducing some stochastic functionality to an optimisation method might
reduce the possibility of getting trapped in local optima, there is no guarantee. This
phenomenon is referred to as premature convergence and is present in many types of
optimisation problems, such as SR [15]. In SR premature convergence corresponds
to getting stuck at some symbolic expression where neighbouring solutions are worse
but there exists other structurally different expressions with better performance.

Besides introducing randomness to optimisation methods there are several other
techniques that can be utilised to avoid getting stuck in local optima. Because of
the vast applicability of optimisation some of these techniques are more well-suited
than others, depending on the problem. For SR using genetic programming one of
these techniques is the island model [15], explained in section 2.6 after the introduc-
tion of genetic programming in section 2.3.

2.3 Genetic Programming
Genetic programming (GP) is a search method based on natural evolution – a form
of artificial evolution that operates on data structures within the computer. It is
an empirical modelling method for system modelling, emulation, monitoring and
control, with applications in a wide range of problems, including; identification of
physical conservation laws [5]; optimising release rates of pharmaceutical tablets
[17]; designing high performance mechanical structures [18]; as well as predicting
material properties of organic compounds [19]. GP can provide insight regarding
the underlying physical mechanisms and produce parsimonious models due to the
incorporation of both expression complexity and accuracy in the evaluation process
[20]. Furthermore, genetic algorithms have the ability to identify necessary variables
to capture the system behaviour with limited a priori assumptions.

A genetic algorithm progressively produces more accurate solutions by allowing a
group of possible solutions, a population, evolve over generations. A solution is
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called an individual and contains the structure of some solution to a specific prob-
lem. The structure depends on the situation, however when using GP for symbolic
regression it is most common to represent each individual as an expression tree, con-
taining the mathematical formula. By selecting the most fit individuals to progress
to the next generation and introducing various minor and/or major changes to their
structure, the population can evolve, resulting in more adapted individuals [21].
The changes are performed by genetic operators, mainly replication, mutation and
crossover, each performing different operations in order to progress the population.
In the following sections GP will be discussed in greater detail, highlighting the
different components in a genetic algorithm.

2.3.1 The Conventional Genetic Algorithm
A conventional genetic algorithm has four major design features which has to be
determined before running simulations [4]. These are,

1. representation and data structures of an individual,
2. fitness measure,
3. parameters for controlling the algorithm, and
4. how to compile the result and criterion for terminating the run.

Each design feature has implications on the algorithm’s performance. The represen-
tation of an individual must allow for a complete mapping of the search space and
the implementation method of this structure has major implications on the speed
and memory usage of the program. An example implementation for symbolic re-
gression is the use of expression trees. Expression trees can be implemented using
various data structures and has the benefit of enabling simple implementation of
genetic operations [22].

The fitness measure is the metric for which the evaluation of each individual is
based on. It is case specific, non-unique, and has to be capable of evaluating all in-
dividuals. A common fitness measure for SR is the root-mean-square error although
there are numerous other alternatives, that does not only account for the accuracy
of the model but also the complexity. The definition of the fitness measure will influ-
ence the selection and in turn which individuals that will progress the evolutionary
process.

The main parameters for controlling the algorithm are population size and max-
imum number of generations, together these parameters determine how well the
simulation will perform. Population size determines the amount of genetic material
that is available at any instance and the total number of generations determines
how long the population is allowed to adapt to the system. Other parameters for
controlling the algorithm include ratios for the genetic operators (commonly repli-
cation, mutation and crossover), as well as different internal settings for each of the
components. In a non-conventional genetic algorithm several intermediate compo-
nents might be present, adding additional parameters. Also, the genetic operators
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might have different functionality depending on their implementation, resulting in
extra parameters. The optimal settings of an algorithm depends on implementation
and system. Common parameter optimisation techniques include trials of different
combinations in order to find the best settings. There are also other parameter
optimisation methods which avoids large number of tests [23].

The simplest termination criterion for a genetic algorithm is to proceed until the
maximum number of generations is reached. This criterion enables maximum con-
trol for the user regarding computational time and ensures that the best solution is
found, given that the maximum number of generations is sufficiently large for the
problem. However, if the fitness metric is defined in such a way that an individual
can attain a perfect score, this can also be used as a termination criterion. When
terminating the adaptation process the program should compile the result gathered
from the simulation and present it to the user. This usually includes presenting the
Pareto front of the run. The Pareto front includes the best solution (individual with
best fitness) for all complexities, giving a broader perspective of the result compared
to a single best solution [20]. It is explained further in section 2.5.1.

Given that the four major design features of the genetic algorithm have been dealt
with the program can be executed. The program itself consists of three main com-
ponents, initialisation, genetic iteration and termination. An illustration of this is
shown in figure 2.1, including the three components. The purpose of each component
is:

1. Initialisation includes creating a randomly generated population of individuals
as a starting point for the algorithm. The population should be generated in
such a way that it has an abundance of genetic material and high genetic
diversity in order to speed up the search process and to avoid non-optimal
solutions.

2. Genetic iteration includes the actual probing of the solution space using genetic
programming and consists of four parts:

i. Fitness evaluation refers to calculating the score measure for each indi-
vidual.

ii. Termination refers to evaluation of the termination criterion, if the crite-
rion is true, the genetic process is terminated, otherwise it continues.

iii. Selection refers to selecting individuals for creating the next generation,
this is done using a sampling method usually based on selecting individ-
uals more fit than others to proceed to the next generation.

iv. Genetic operators refers to different operations that are used in order
to create offspring for the new generation. Genetic operation includes;
replication, copy an individual; mutation, apply a random change to an
individual; crossover, swap parts of individuals with each other.

3. Result includes summarising the genetic iteration and preparing the result
based on the user’s requirements.

Determining each design feature and parameter of a genetic algorithm is a challeng-
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ing task and will impact the end result. A common difficulty is balancing exploita-
tion and exploration [20]. Exploitation refers to optimisation of a small number of
solution structures, maximising their fitness, creating optimal individuals given the
small number of structures. In contrast, exploration refers to searching for solutions
on a large number of structures, without fully optimising them. Neither exploitation
nor exploration can be utilised alone in order to get accurate and reliable results.
Instead the algorithm should balance these two tactics in order to perform well. A
typical approach is for the algorithm to initially favour exploration while increasing
exploitation with increasing generations. This increases the probability of the opti-
mal solution structure to be found while ensuring that it has the correct parameters
as the simulation is complete.

2. Genetic Iteration
Iteratively progressing the population using genetic algorithm.

i. Fitness Evaluation
Calculate fitness for each 

individual.

iii. Selection
Select individuals for 

breeding based on fitness 

via some sampling method.

iv. Genetic Operations
Perform replication, 

mutation and crossover on 

the selected individuals. 

Increment generation, 

g = g + 1.

ii. Termination
Terminate run if stop 

criterion is fulfilled.

3. Result
Summaries result 

over all generations.

1. Initial Population
Create the initial random 

population based on some 

scheme in order for the 

starting population to have a 

diverse set of genetic 

material. This is generation 

zero, g = 0.

Figure 2.1: Schematic illustration of a conventional genetic algorithm. The three
main components is the initialisation of the population, the genetic iteration and
the termination/result. The genetic iteration consists of four internal parts which
the iteration cycles each generation.

2.3.2 Representation and Data Structures
In any self-improving system there is at least one structure that undergoes adap-
tation. In GP it is the population and its individuals that adapts throughout the
simulation, where each individual in every generation represents a point in some
search space. Compared to other techniques genetic methods involve a parallel
probing of the search space including all individuals in the population. The individ-
ual structures that undergo change are hierarchically structured computer programs
[4]. Their internal structure can dynamically change throughout the genetic process
and their size, shape and content govern how well they perform.

Although an individual can exhibit complex structures it is composed out of simple
building blocks, analogous to the human genome showcasing extraordinary complex-
ity using only a handful of relatively simple molecules. The building blocks of an
individual is referred to as basis functions and terminals, and provide the syntax
for creating and changing individuals. A basis function operates on a number of
arguments referred to as the operator’s arity. A unary operator (accepting 1 argu-
ment) has arity 1, a binary operator (accepting 2 arguments) has arity 2, etc. The
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included basis functions are called the function set and may include: arithmetic op-
erators (+, −, ÷, ...), mathematical functions (cos, exp, log, ...), Boolean operators
(AND, OR, ...), and any other general or domain specific operators. A terminal
is an operand, accepting no arguments, and is typically a variable or a constant.
Variables are inputs, sensors, detectors or state variables describing some feature in
a system. Constants are numerical constants or other similar instances of constants.
The included terminals are called the terminal set. The function and terminal sets
determines the search space of a genetic algorithm. Hence, these sets must include
the basic building blocks in order to be capable of expressing an accurate solution,
referred to as sufficiency of the function and terminal sets. There is no definite or
unique approach to this, in some situation the inclusion is inherent to the problem
statement and in some it is not [4]. Including additional primitive functions and
terminals has a degrading effect on the algorithm, however, in cases where it is not
clear what the minimal sufficiency is, it is preferable to include more than needed
to avoid missing potential solutions.

2.3.2.1 Expression Tree Representation

An individual in GP is typically represented by a tree structure [24]. In SR this
can be done using an expression tree. In an expression tree each leaf is an operand
(terminal) and each internal node is an operator (function). In turn all subtrees are
syntactically valid subexpressions. This makes expression trees suitable for repre-
senting individuals.

Expression trees can be implemented in numerous ways depending on the situation.
The implementation has an impact on how the algorithm performs, for instance,
some implementations might allow for faster fitness evaluation while others results
in more efficient memory usage. The optimal implementation depend on the prob-
lem and setup, and selection of proper data structures can improve the performance
of the algorithm [22, 25].

In figure 2.2 an example expression tree is illustrated. The tree consists of 6
nodes, 3 terminals and 3 functions. The tree is a representation of the formula
sin(x) × (x ÷ 4.2), where x is some variable. The conversion from tree to formula
is not one-to-one, and depending on the traversal method the notation of the given
formula differs. A postorder traversal will result in postfix notation, a preorder
traversal will result in prefix notation and an inorder traversal will result in com-
mon infix notation. It often computationally beneficial to use either post- or prefix
notation.

2.3.2.2 Ramped Half-and-Half Initialisation

The initial structures in GP plays an important role for introducing genetic diver-
sity into the population before the genetic search is carried out. A proper initialisa-
tion can improve the speed of which the algorithm finds solutions significantly [4].
When using expression trees one popular initialisation method is ramped half-and-
half initialisation. This method utilises a combination of two methods for generating
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÷

×

S

X X 4

Infix notation:       sin(x) × (x ÷ 4)

Postfix notation:   x sin x 4 ÷ ×

Prefix notation:    × sin x ÷ x 4

1

Grow

Maximum Depth

2 3

Full

Initial Individuals

Crossovered Individuals

Figure 2.2: Expression tree representation of a simple mathematical expression
with three notations depending on the traversal method used to evaluate the tree.

individuals, the grow and full method. The grow method refers to generating an
individual by randomly filling the children of all nodes until every leaf is a terminal.
This will result in an unbalanced tree. This can either be done randomly or with
a maximum allowed depth at which nodes can only become terminals, limiting the
size of the tree. The full method instead creates a balanced tree by only selecting
functions until a certain depth. An illustration of trees generated using grow and
full methods is shown in figure 2.3. The ramped half-and-half method divides the
population size into equal sized portions for every depth between one and a user-
specified maximum, and for each depth half of the individuals are generated using
the grow method and half using the full method. This ensures a variety of sizes,
shapes and contents of individuals in the initial population.

÷

×

S

X X 4

Infix notation:       sin(x) × (x ÷ 4)

Postfix notation:   x sin x 4 ÷ ×

Prefix notation:    × sin x ÷ x 4

1

Grow

Maximum Depth

2 3

Full

Initial Individuals

Crossovered Individuals

Figure 2.3: Example trees generated using grow and full method. The figure
shows three examples for both grow and full methods corresponding to 1, 2 and 3 as
maximum depth. These generation methods are used in order to create the initial
population in genetic algorithms.
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2.3.3 Fitness
Evaluating fitness is the most important procedure in GP [26]. The fitness measure
determines the accuracy of the solution and guides the selection of individuals for
subsequent generations. Calculating fitness is also the most computationally de-
manding step.

Fitness is case specific, meaning that for different problems different methods for
determining an individual’s fitness is needed. The most common approach for fitness
is creating an explicit fitness measure for each individual, assigning each individual
with a scalar measure by some well-defined evaluation procedure. This measure of
fitness is called the raw fitness, r, and is the natural fitness for the given problem,
e.g. for the travelling salesman problem it is the distance travelled after visiting
each vertex. If the raw fitness is defined as the error, it is calculated for individual
i in a population of size M in generation g as,

r(i, g) =
N∑
j=1
|S(i, j)− T (j)|, (2.1)

where S(i, j) is the returned value of individual i for fitness case j and where T (j)
is the target value for fitness case j, given N fitness cases. However, due to the
definition of raw fitness as the natural measure for a specific problem the better
value of fitness may either be smaller or larger.

In addition to raw fitness there is standardised fitness, s, adjusted fitness, a, and
normalised fitness, n. The standardised fitness restates the raw fitness so that a
lower value is better than a larger. The purpose of standardised fitness is, as the
name suggests, to create a standardised fitness measure which has the best value
equal to zero. If the raw fitness already obtains these two features the raw fitness is
equal to the standardised fitness. Otherwise, the reversal from raw to standardised
fitness is,

s(i, g) = rmax − r(i, g), (2.2)

where rmax is the maximum possible value of the raw fitness. It customary but not a
absolute necessity to use standardised fitness, however it simplifies the comparison
between individuals. Adjusted fitness is a further optional expression of the fitness
and is calculated from the standardised fitness according to,

a(i, g) = 1
1 + s(i, g) . (2.3)

The adjusted fitness lies between 0 and 1, where an individual with larger values of
adjusted fitness is better, reversed compared to the relation in standardised fitness.
The benefits of using adjusted fitness is that it exaggerates differences for individu-
als close to the optimal solution, which is important in later generations, when the
distinction between good and very good individuals must be done. For instance,
given a standardised fitness ranging from 0 to 100, two individuals with (standard-
ised) fitnesses 93 and 95 have the corresponding adjusted fitnesses 0.011 and 0.010,
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whereas two individuals with fitnesses 1 and 3 have adjusted fitnesses 0.5 and 0.25.
Thus, making a similar difference between two individuals more prominent as they
become more adapted.

Normalised fitness is used when it is necessary for an individual’s fitness to rep-
resent the probability of being selected for creating the next generation – such is
the case for several selection methods, which will be discussed in the next section,
section 2.3.4. The normalised fitness is calculated simply by,

n(i, g) = a(i, g)∑M
j=1 a(j, g)

, (2.4)

dividing each individual’s fitness with the sum of all individuals’ fitness.

2.3.3.1 Explicit Fitness Measure

When using GP for SR a common explicit fitness measure is root-mean-square error
(RMSE). RMSE is defined as,

RMSE =
√∑N

i=1(ŷi − yi)2

N
, (2.5)

where ŷi and yi are predicted and target values for instance i out of totalN instances,
respectively. RMSE provides a solid and well-studied measure for evaluating a mod-
els performance in regards to some target values.

2.3.4 Selection
Selection occurs once every iteration in the genetic algorithm and is the process of
deciding which individuals that will be used for creating the subsequent generation.
Selection is performed based on the fitness and should prioritise individuals with
higher fitness over those with lower. However, simply selecting a few of the best
individuals will result in highly fit individuals with low genetic diversity, which
will hinder the progress of a population. Because of this a genetic algorithm must
balance the selection process between exploitation and exploration. This is done by
using sampling methods. In the following sections the five most prominent selection
methods are explained, namely elitism, roulette, rank, tournament and Boltzmann
selection.

2.3.4.1 Selection Pressure

Selection pressure is an important concept within selection in GP, and refers to
the sampler’s interpretation of the fitness [27]. Given two individuals with different
fitnesses, the selection pressure determines how much this difference will influence
the probability of selecting any of these individuals. A high selection pressure implies
that the sampler will be inclined to select individuals based on fitness, selecting high
scoring individuals much more frequently than low scoring ones. A low selection
pressure implies the opposite, that the sampler will select individuals more randomly,
reducing the influence of the fitness. Selection pressure is an important concept
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because of its implications on exploitation and exploration. A high selection pressure
will promote exploitation whereas a low selection pressure will promote exploration.

2.3.4.2 Elitism Selection

Elitism selection is the most straight forward approach to selection. In elitism selec-
tion the highest scoring individuals are passed down to the next generation. Elitism
selection is highly exploitative but is used in order to preserve a small percentage
of the best individuals over the course of the evolutionary process. This prevents
individuals with good potential from falling out the population and preserves the
current best solution, improving the overall performance of the algorithm. It is
standard practice in GP to use elitism for a small amount of the selection.

2.3.4.3 Proportional Roulette Wheel Selection

In proportional roulette wheel selection, or simply roulette selection, individuals are
selected based on their fitness. The selection can be imagined as spinning a roulette
wheel with one segment for each individual where each segment is proportional to
the corresponding individual’s fitness. This implies that individuals with higher
fitness will be selected more often than those with lower, mimicking the effect of
survival of the fittest. The probability of selecting an individual is equal to their
normalised fitness. The benefits of roulette selection is that sampling of individuals
will be done on the whole population with all individual being subject for breeding.
However, roulette selection is prone to premature convergence and to hinder genetic
diversity [28]. Early outstanding individuals introduces a bias in the search which
might steer the search into a genetic trap. Meaning that early sub-optimal solutions
might dominate the population, leaving little room for alternative solution to evolve.

2.3.4.4 Linear Rank Selection

Rank selection tries to combat the deficiencies of roulette selection by eliminating the
impact of each individual’s absolute fitness value. In rank selection the probability
of selecting an individual is based on its rank, where rank is the placement of the
individuals fitness in ascending order. In linear rank selection the probability of
selection is linearly dependent on the rank. The probability of selecting individual
i is thus,

p(i) = rank(i)
M(M − 1) , (2.6)

where M is the number of individuals. This formulation of probability of selection
prevents a few individuals from dominating the population in the early generations,
promoting exploration over exploitation. However, in contrast to roulette selection,
linear rank selection might instead cause the population to converge much slower
due to the resulting small differences in probability of selection [29]. There are
in addition to linear ranking other rank-based selection schemes which interpret
the rank differently resulting in different sampling characteristics. One example is
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exponential rank selection, which introduces an exponential based ranking scheme
that is highly exploitative in contrast to linear ranking.

2.3.4.5 Tournament Selection

In tournament selection a small number of individuals compared to the total pop-
ulation are chosen at random. These individuals then compete against each other,
and the one with the highest fitness wins and is hence selected. The number of
individuals selected for each competition is called tournament size and is commonly
set to 2, referred to as binary tournament selection [28]. Tournament selection is
also beneficial due to it being easy to implement and can be executed in parallel, im-
proving the speed of selection. However, similar to linear rank selection, tournament
selection is prone to degrading the convergence speed.

2.3.4.6 Boltzmann Selection

Boltzmann selection is a unique selection scheme compared to the previous men-
tioned ones because it changes the selection pressure throughout the search. In
Boltzmann selection the sampling of individuals is controlled by a continuously
varying temperature,

T = T0(1− α)k, k = γ + β
g

G
, (2.7)

where T0 is the initial temperature, g is the current generation, G is the maximum
generations and α, β and γ are hyperparameters defining the profile of the tempera-
ture change. The selection is then performed by sampling a potential energy surface
where the probability of selecting individual i, with fitness fi is,

p(i) = C exp
(−(fmax − fi)

T

)
, (2.8)

where T is the Boltzmann temperature, fmax is the maximum fitness and C is a
normalisation constant,

C =
( M∑
j=1

exp
(−(fmax − fj)

T

))−1
. (2.9)

Boltzmann selection is more intricate than the previous mentioned selection tools
and has more options as to how it should perform the sampling. In essence Boltz-
mann selection attempts to balance exploration and exploitation by lowering the
temperature for every generation. As can be seen in equation 2.8 the temperature
is inversely connected to the selection pressure. A high temperature results in low
selection pressure whereas a low temperature results in high selection pressure. This
leads to the selection pressure initially being low and continuously increasing. The
nature of this change is determine by the hyperparameters; α and β determines how
much each generation should differ from one another regarding selection pressure;
and γ determines the initial selection pressure.
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2.3.5 Genetic Operators
Genetic operators are used to modify individuals undergoing adaption in GP. The
objective of genetic operators is to preserve and restructure existing as well as to
introduce new genetic material. The three main genetic operators are replication,
crossover and mutation. These operators, among others, are used collectively in
order to change the individuals selected for breeding.

2.3.5.1 Replication

Replication is the simplest form of genetic operation and involves copying the struc-
ture of a parent individual [4]. The resulting child individual is thus an exact copy of
the parent. Replication is performed in order to preserve well performing individuals
and to prevent loss of functional structures due to other genetic operators or the
selection scheme. Also, by replicating individuals they can serve as references for
the modified individuals – meaning that all modified individuals in a new generation
will be directly compared to the replicated individuals from the previous generation.
This helps to prevent evolutionary dead-ends by preventing deteriorating modifica-
tion from happening over consecutive generations. Replication is often used on a
small number of individuals, often selected using elitism selection [27]. Thus, the
highest scoring individuals will always remain in the population.

2.3.5.2 Crossover

Crossover mixes the structure of two parent individuals creating child individuals
that include features from both parents. The basic crossover operation requires se-
lection of two parent individuals. Then, for each parent structure a point is selected
at random, uniformly distributed. Because of the tree structure’s inherent proper-
ties each point is a subtree and can thus be swapped with one-another, creating two
new individuals with mixed features. A schematic illustration of this is shown in
figure 2.4. In the figure the two initial individuals have two highlighted subtrees,
representing the subtrees to-be swapped. Hence, the crossovered individuals have
had their subtrees replaced, creating two new individuals.

The main purpose of the crossover operation is to introduce major and minor changes
based on already existing subtrees to the selected individuals for breeding. The idea
is that the selected individuals in any generation contain structural fragments that
are important for their performance. The crossover operator will stochastically re-
structure these individuals in order to find more accurate solutions by combining
fragments of generationally well-performing individuals.

Crossover can be performed in numerous ways [30]. Beyond the standard crossover
previously described, referred to as free crossover, there are also other, such as
size-fair and homologous crossover. In free crossover there are no illicit crossover
scenarios, meaning that any two subtrees of the parent individuals can be swapped.
A terminal can be swapped with the root of a tree, creating offspring with possibly
tangible deviations to their parents. In turn, free crossover allows tree structures to
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grow uncontrollably from generation to generation, having the potential to drasti-
cally slowing down the program.

÷

×

S

X X 4

Infix notation:       sin(x) × (x ÷ 4)

Postfix notation:   x sin x 4 ÷ ×

Prefix notation:    × sin x ÷ x 4

1

Grow

Maximum Depth

2 3

Full

Initial Individuals

Crossovered Individuals

Figure 2.4: Schematic crossover. The initial individual represents the parents and
the crossovered individuals are the resulting children of a basic crossover operation
using the highlighted subtrees.

Size-fair (limited) crossover is similar to free crossover but limits the children’s abil-
ity to grow [31]. This is enforced by only allowing subtrees to swap given that both
subtrees are within a certain size difference, e.g. given a maximum size difference
threshold of 1, two subtrees with sizes 2 and 4 are not allowed to be swapped, but
subtrees with size 2 and 3 are allowed. Thus, controlling the growth of the offspring,
resulting in less degradation of program speed while, however, preventing possible
beneficial crossover operations from happening.

It is assumed that if an individual survives the selection process it must contain
important structural fragments that can be used to create new individuals [31].
However, it is reasonable to assume that the context of which these fragments are
executed will determine their worth – homologous crossover tries to acknowledge this
fact. Homologous crossover is similar to size-fair crossover but instead of randomly
selecting two subtrees with a maximum size difference, the selection is based on the
closeness of the subtrees. The closeness of two subtrees is not uniquely defined but
can be defined as the distance to the root, resulting in swapping subtrees at the
same or close to the same depth.

2.3.5.3 Mutation

The mutation operator provides potentially new genetic material to the population.
Mutation has two important functionalities [4]; to reintroduce diversity to a prema-
turely converging population; and to introduce changes at positions in individuals
where other genetic operation can not access. The first functionality revolves around
the often highly nonlinear search space of genetic algorithms and that two solution
with similar fitness might have drastically different structures. A population can
converge towards a solution with non-optimal structure, which can be hindered by
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introducing random major and minor structural changes to the individuals. The
second functionality is a consequence of how crossover operates. If for instance, for
SR, a certain fragment is interpreted as x1 + x2 but should (for optimally reasons)
be x1 − x2, mutation can be effective.

There are a multitude of different mutation operations, three of them are point,
branch and constant mutation, the latter being specific for when there are numeri-
cal constants present (SR). Point mutation refers to randomly selecting a node in an
individual and then replacing it with a randomly selected replacement node, with-
out compromising the syntactic integrity of the individual. Branch mutation also
requires selection of a random node in an individual but instead of only replacing
the node the entire subtree is replaced by a new generated subtree. Constant mu-
tation refers to random adjustments of leafs containing numerical constants in SR.
A genetic program may include one, two or all of these mutation operations based
on the specific problem.

2.4 Bloat in Genetic Programming
The dynamics of a genetic program is determined by the operations which are ap-
plied to its population. A common feature observed in genetic algorithms is that the
average size of individuals in a population tend to grow over generations, sometimes
uncontrollably [32]. Furthermore, this growth is not guaranteed to be accompanied
by a corresponding improvement in fitness. This phenomenon is referred to as bloat
and is defined as: program growth without (significant) return in terms of fitness,
and is subject to extensive research within GP [32]. Not only has it been studied
due to it being an interesting phenomenon but also due to how it affects the overall
performance of the program. Because bloat causes individuals to grow bigger it is
thereof causing each generation to be more computationally expensive. Addition-
ally, by making individuals bigger the resulting symbolic expressions are harder to
interpret and may also cause the program to exhibit poor generalisation [32].

The topic of bloat can be divided into two subtopics: what is causing and how
to control bloat, which have both been studied extensively. Studying what is caus-
ing bloat in a genetic program is important in order to control it, but not absolutely
necessary. It is also possible to control bloat without explicitly dealing with the
cause, only with the bloat itself [33].

2.4.1 Causes of Bloat
There are several theories and explanations as to what is causing bloat. Two of the
more established theories are fitness-causes-bloat theory (FCBT) and crossover-bias
theory (CBT) [34]. In FCBT two features are assumed to be common in a genetic
search:

1. there exists a many-to-one mapping to the fitness space from the syntactic
space, and
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2. for any fitness value there exist exponentially more large individuals than small
individuals with the same fitness.

The latter feature suggests that if a particular fitness is desired (for example the
optimal value of zero RMSE) there is a tendency towards larger/more bloated indi-
viduals during the genetic search simply due to the fact that there are more of them
within the search space [34].

In CBT the focus is instead shifted towards the crossover operator. The bloat
is assumed to be a product of applying subtree crossovers on the population. While
the average tree size is not changed during a subtree crossover, a number of small
trees are created. Smaller trees in SR are less likely to exhibit good behaviours due
to their size, hence the following selection operations are biased towards favouring
the larger individuals [34]. Over generations this is effectively increasing the average
tree size in the population, causing bloat.

2.4.2 Bloat Control
Regardless if a genetic program has established the cause of bloat or not, it is vital
that it is controlled. There are many different ways of doing this. A simple solution
which was proposed as a direct response to bloat is to set a maximum depth for the
expression trees and to discard all individuals produced in genetic operations which
exceed this depth [4]. While being easy to implement this method is introducing
bias from the user when deciding on the maximum depth, which could prevent
the program from finding the correct solution given that it is more complex then
what is allowed. Also, by hard-capping the maximum depth it can have negative
effects on the genetic diversity and the distribution of tree sizes. There are today
numerous alternatives for controlling bloat, some of these methods are presented in
the following sections.

2.4.2.1 Parsimony Pressure

The parsimony pressure method is in theory a quite simple and straight-forward
solution to prevent bloat in GP. Even though there exists more modern and advanced
methods, parsimony pressure is still the most used and widely established method
[32]. It is targeting bloat caused by fitness, described in FCBT, by adding a penalty
to the fitness of each individual depending on tree size. The resulting fitness fpp is
described as,

fpp(x) = f(x)± α · l(x), (2.10)

with a minus sign if large fitness is defined as good or a plus sign if the reverse
is true. f(x) is the unweighted fitness, α is a constant known as the parsimony
coefficient and l(x) is the size of the individual [32].

The parsimony coefficient is critical in the implementation. Maintaining control
of the bloat requires a precise and careful choice of α. One of the main critiques
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of this method is that the choice of α is often done by trial and error, and the fact
that one choice might not work equally well for different problems [32].

The choice of α has been studied, and some alternatives in which it is no longer
constant has been developed. The alternatives contains methods for keeping the av-
erage number of nodes at a constant number, making it scale linearly throughout a
run or making it follow a sinusoidal behaviour during a run [32]. While the produced
results from respective implementation may differ, they all control bloat, preventing
uncontrolled population growth. By changing the value of α throughout the simu-
lation it is effectively reducing the impact of user-bias towards solution-complexity.

2.4.2.2 Limited Crossovers

As mentioned in section 2.3.5.2 there are different types of crossover operations.
Assuming that the crossover operation is causing bloat, as is suggested in CBT,
using different types of crossovers can be a potential form of bloat control technique.
By using something like size-fair crossover, also referred to as limited crossover,
where two individuals are only allowed to swap subtrees with a given maximum
difference in size, the amount of bloat can be reduced. However, while it controls the
growth of offspring, it will also prevents possible beneficial crossover operations from
happening [31]. A possible work-around is to use a mix of different types of crossover
techniques [30]. The resulting benefit is that all crossover operations are possible
while still limiting the probability of bloat-causing ones. It has been proven that a
mix of size-fair, homologous and standard crossovers together with some additional
techniques can produce good results fitness-wise, although while displaying the same
exponential tree size growth as for the standard crossover operation [30]. Mixed
crossover is hence by itself not a successful bloat controlling technique.

2.4.2.3 Substituting a Subtree with an Approximate Terminal

The previously mentioned methods for controlling bloat focuses on the causes of
bloat, FCBT and CBT respectively. Another method, which does not focus on
what causes but rather how to control bloat, is substituting a subtree with an ap-
proximate terminal (SAT or SAT-GP in short). This method is more recent than
earlier mentioned ones (proposed in 2017) and has shown promising results both
regarding controlling bloat and overall performance of the program [33].

The idea behind SAT-GP is to select a group of the k largest individuals in each
generation and to substitute a random subtree within them with an approximate
terminal, with similar semantics. It is implemented as follows [33]: for each of the
chosen individuals to reduce, choose a random node in the individual as the cur-
rent subtree T1. The node can be any node within the individual. Then, choose
a random terminal X from the terminal set of the genetic program. The values of
terminal X in all N data points are denoted as S = (a1, a2, ..., aN) and the values
from evaluating subtree T1 are denoted as S1 = (b1, b2, ..., bN). The subtree T1 is
then to be replaced by a new subtree T2 = θ∗ ·X, where θ∗ is the coefficient that min-
imises the squared Euclidean distance between θ ·S and S1. This equals minimising
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f(θ) = ∑N
i=1(ai · θ − bi)2, hence θ∗ is given by,

θ∗ = min
θ

N∑
i=1

(ai · θ − bi)2. (2.11)

By calculating the derivative of f(θ) and equalling to zero, the optimal value is given
by,

θ∗ =
∑N
i=1 ai · bi∑N
i=1 a

2
i

. (2.12)

Thus, T1 can be substituted by the approximate tree T2.

Choosing the number of largest individuals to reduce, k, is a delicate task and
is usually based on some percentage of the population size [33]. This percentage
must account for the increase in solution sizes over generations. Otherwise, too
many or too few individuals may have their size reduced, resulting in either too
aggressive or too mild bloat control. In addition to reducing bloat SAT-GP may
also reduce overly complex individuals by simplifying certain subtrees. Hence, aid-
ing the genetic program in finding more parsimonious solutions [33]. However, the
substitution might also hinder certain solutions from fully developing.

2.5 Results in Genetic Programming
Genetic programs produce a large number of candidate solutions over the course of
a simulation. The main idea is that solutions will adapt over generations, creating
increasingly more fit individuals. However, because of the adaptive nature of the
program there is no guarantee that a solution will remain in the population through-
out the entire run, rather it is unlikely that a single solution will survive for more
than a fraction of the total generations. This highlights an important challenge with
interpretation of the results in GP – it is not sufficient to search the final generation
for solutions. Hence, the gathering of results must proceed throughout the whole
genetic simulation.

Given that the collection of results is performed over the whole simulation the next
challenge revolves around selection of the best solution. This depends on the spe-
cific project but often involves deciding on how to weight solution performance to
parsimony. In real applications when there is noise and unknown features included
in the input data, choosing solely based on fitness will most likely not provide the
most desirable solution. A common approach to these two challenges is to create a
Pareto frontier for each simulation. The Pareto frontier and how to interpret it is
presented in the following sections.

2.5.1 Definition of the Pareto Frontier
The Pareto frontier, also known as the Pareto front or the Pareto set, is the set of
parameterisations (allocations) that are all Pareto optimal. Pareto optimality is a
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notion of optimality defined for multi-objective optimisation, where the objective
function is represented as a vector rather than a scalar [15]. With a set of data X
and a set Y defined as y = f(x), y ∈ Y, x ∈ X, the Pareto frontier can informally
be defined as a set of points which are most feasible (either minimise or maximise
f(x) depending on what is wanted), i.e. for each given x ∈ X the best y-value is in
the Pareto frontier.

A more formal definition of the Pareto frontier P (Y ) is: Consider a system with
a function f : RN → RM , a compact set X of feasible decisions in the metric
space RN and where Y is the feasible set of criterion vectors in RM such that
Y = {y ∈ RM : y = f(x), x ∈ X}. Assume that the preferred directions of criteria
is known, i.e. if y should be minimised or maximised, such that a point y′ ∈ RM is
preferred over another point y′′ ∈ RM . Then the Pareto frontier is written as,

P (Y ) = {y′ ∈ Y : {y′′ ∈ Y : y′′ > y′, y′′ 6= y′} = ∅}, (2.13)

where the > implies that y′′ is preferred over y′.

The Pareto frontier is a useful tool in several fields [35]. Since the frontier con-
tains all Pareto optimal parameterisations it is used as a tool to study the trade-offs
within a constrained set of parameters. It is for example useful when studying the
error/deviation from a suggested symbolic function in symbolic regression versus its
complexity.

2.5.2 Interpretation of the Pareto Frontier
Interpreting a Pareto frontier from a multi-objective optimisation problem is not
as straightforward as from a conventional single-objective optimisation problem.
This is because the Pareto frontier from a multi-objective optimisation problem
contains several Pareto optimal solutions. In symbolic regression the accuracy and
the complexity of a solution are both optimised. This is expressed as the error, for
example RMSE, and the complexity in the Pareto frontier. Thus, the Pareto front
for symbolic regression shows the most accurate solution for every complexity.

In symbolic regression some Pareto fronts are easier to interpret than others, visu-
alised in figure 2.5. In figure 2.5a the optimal value for accuracy (RMSE) is exhibited
by several solution complexities. A natural method for selecting the best solution is
thereof to select the solution that has perfect accuracy with the lowest complexity.
Thus, the most parsimonious solution with perfect accuracy is selected. However,
the Pareto front in figure 2.5b does not provide any solution with perfect accuracy,
making the selection of best solution more difficult.

There are many different methods used to facilitate the choice of best solution from
the Pareto front. Results from previous works suggests that a prominent method
is the technique for order of preference by similarity to ideal solution (TOPSIS in
short) [36]. In TOPSIS the solution with the smallest Euclidean distance to the ideal
solution and the largest Euclidean distance to the negative-ideal solution is chosen.
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Figure 2.5: Two examples of Pareto frontiers in symbolic regression. In 2.5a the
RMS error is zero for complexity seven and higher, with the exception of complexity
eight. In 2.5b none of the points in the Pareto frontier have an RMS error of zero.

The ideal solution is defined as a combination of the best value of each objective in
the given Pareto set, i.e. the lowest RMSE and complexity. The negative-ideal solu-
tion is defined as the opposite, the combination of the largest RMSE and complexity.

TOPSIS is implemented as follows [36]: initially calculate a normalised objective
matrix F withm (number of data points) rows and n (number of objectives) columns
as,

Fij = fij√∑m
i=1 f

2
ij

. (2.14)

A weighted normalised objective matrix vij is then constructed by multiplying each
column in Fij with a weight wj,

vij = Fij · wj, j = 1, 2, ..., n, (2.15)

where the weight wj is chosen by the user. The weights may be used if one or more
objectives are deemed more important than others, but can be equal for all objec-
tives if they are all deemed equally important. The element in vector w should sum
up to one.

In the set J of minimisation objectives the ideal solution A+ is determined as,

A+ = {mini(vij), j ∈ J, i ∈ 1, 2, 3, ...,m} =
(
v+

1 , v
+
2 , ..., v

+
n

)
, (2.16)

and similarly the negative-ideal A− as,

A+ = {maxi(vij), j ∈ J, i ∈ 1, 2, 3, ...,m} =
(
v−1 , v

−
2 , ..., v

−
n

)
. (2.17)
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With the ideal A+ and negative-ideal A− determined, the distance from each point
in the Pareto set to respective ideal point can be calculated. The distances to A+

are stored in S+ as,

Si+ =
√√√√ n∑
j=1

(vij − v+
j )2, i = 1, 2, ...,m, (2.18)

and to A− in S− as,

Si− =
√√√√ n∑
j=1

(vij − v−j )2, i = 1, 2, ...,m. (2.19)

To lastly determine which of the solutions in the Pareto frontier to suggest, the
closeness C of each solution is calculated and the smallest is chosen as,

min
i

Ci = Si+
Si− + Si+

. (2.20)

2.6 Performance Enhancing Method for Genetic
Programming

In section 2.2 the challenge of premature convergence within stochastic optimisa-
tion was presented. There are several methods for tackling this problem, however for
symbolic regression using GP, methods for mitigating premature convergence often
involve modification to the selection procedure. This is typically done by introduc-
ing some kind of mating restriction [15]. This can involve changing the parameters
or changing the sampling method or, as was hinted in section 2.2, other methods
such as the island model.

In the island model the whole population of N individuals is divided into Ns sub-
groups, each with a total of Ng = N/Ns individuals. If no interactions are allowed
between these subgroups, this is equal to running Ns independent simulations with a
population size of Ng. However in the island model a certain amount of individuals
may be allowed to migrate over to other populations and replace the worst individ-
uals of that population. This is done in order to upset the evolutionary lineage by
introducing other well performing but different solutions to the population. Since
the model uses several different smaller populations it is less likely to get trapped
in one specific local minimum, as each subgroup is independent of each other until
migration occurs [15].

2.7 Sampling of Data Points
The quality of any analysis is dependent on the quality and abundance of input
data. In many areas of engineering the amount of available data is large as a result
of technological advances regarding collecting and organising data. Consequently, it
is important to contemplate how and which parts of the input data should be used
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in order to avoid bias and false predictions. In cases when dealing with large sets
of data it is often necessary to sample subsets of the entire data set in order for the
analysis to become viable to perform regarding computational load.

Many machine learning algorithms perform optimally when there is a large data
set available to train on [16], meaning more data points enhance the accuracy of the
algorithms. When large amounts of data is available the bottleneck that arise is the
computational time required to use and/or train an algorithm. The time is depen-
dent on the computational resources available and the computational complexity of
the algorithm, which is dependent on the number of data points.

When there are more data points available than what can be used due to time
and computational limitations, there are different ways of choosing which ones to
include. The relative importance of experimental data points has been studied, con-
cluding that some data points might be of more importance than other [37].

There are two main types of sampling methods: probabilistic sampling techniques
and non-probabilistic sampling techniques [38]. The most simple probabilistic sam-
pling technique is random sampling, where data points is simply chosen at random.
It is easy to implement and to understand but the the main drawback of the tech-
nique is that it can not guarantee representation of the whole data set [38]. There are
many other techniques which may increase representation of the whole data set, but
each come with other drawbacks such as being harder to implement or introducing
bias.

2.7.1 The Sampling Theorem
Another important aspect of sampling arises when it comes to sampling signals. As
stated in the sampling theorem [39]:

Theorem 1 (The Sampling Theorem)
A continuous bandlimited signal is uniquely determined by its values at uniform sam-
pling points if the sampling frequency is greater than twice the maximal frequency of
the signal.

This frequency is also referred to as the critical frequency and is simply defined as

fs > 2 ·B (2.21)

where B is highest frequency of the signal. Hence the sampled points from a signal
must be sampled with a rate of at least 2 ·B and for the sampling theorem to hold
they must be sampled uniformly.
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3
Development and Tuning of

Genetic Program

This chapter revolves around implementation of concepts presented in chapter 2,
presenting a detailed description of the finished algorithm. In addition, an enhanced
version of SAT (substituting a subtree with an approximate terminal) is presented
followed by a comparison of different bloat controlling techniques and how choice
of sampling method impacts algorithm performance as well as the size distribution
of individuals of the simulation. Lastly the implementation of TOPSIS (technique
for order of preference by similarity to ideal solution) is presented with an added
feature for ensuring optimal proposal solution.

3.1 General Outline
The overall algorithm is schematically illustrated in figure 3.1. It consists of a
slightly altered version of the conventional genetic algorithm presented in figure 2.1
in section 2.3.1. The algorithm first initialises a population and then enters the
main genetic loop, repeating fitness evaluation, selection, breeding and an enhanced
version of SAT until termination, whereby the result is summarised. In the following
sections each algorithm module is described in turn.

3.1.1 Initial Population
Individuals are created using expression trees. Each individual has an attributed
size and a root node. The size and the root node correspond to the individual’s
complexity and bottom level node of its expression tree, respectively. The root node
has 0, 1 or 2 children depending on the arity of its expression. The root’s children in
turn also have children, creating a data structure for representing expression trees.
Creation of individuals is done using either grow or full methods with uniformly
distributed function and terminal selection. The function set can consist of any
subset of the following functions,

Fset = {+,−,÷,×, sin, cos, exp, log, sqrt}, (3.1)

and the terminal set is determined by the input data according to,

Tset = {π,C, x1, x2, ...}, (3.2)
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where C represents numerical constants and x1, x2, . . . are input variables. Nu-
merical constants are uniformly initialised ranging from 0 to 5. Initialisation of all
populations is done using ramped half-and-half initialisation. To account for un-
even partitioning all residual individuals are generated using grow method with the
maximum allowed depth.

Data

x1 x2 y

0.13 -0.32 -0.19

0.48 0.24 0.73

0.19 0.45 0.64

… … …

Initial Population
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Result

Complexity Equation
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2 cos(x1)

3 x1+ x2 

… …

Yes

Figure 3.1: Schematic illustration of the final algorithm outline. Each box corre-
sponds to an algorithm module responsible for some vital process.

3.1.2 Fitness Evaluation
Fitness evaluation is done by converting each expression tree to postfix notation,
using postorder traversal, and evaluating the corresponding expression string. The
implemented fitness measure is RMSE and evaluation is performed using the sup-
plied data points from the input. The RMSE is a form of natural standardised
fitness and is converted to adjusted fitness and then normalised over all individuals
before selection. Individuals with expressions containing undefined operations such
as division with zero, are given an adjusted fitness equal to zero, in order for them
to avoid being selected for reproduction.

3.1.2.1 Termination

Termination of the genetic loop is done after a user-specific number of generations
have been completed. The number of generations before termination varies depend-
ing on the purpose of the simulation. The gradient of the learning curve averaged
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over several simulation runs can be used in order to judge the sufficiency of the num-
ber of generations. A flattened average learning curve indicates that the progression
of solution accuracy has stalled, making additional generations redundant. If this is
the case it is more beneficial to change other hyperparameters such as population
size or ratios of genetic operators for the performance of the algorithm.

3.1.2.2 Data

The input data consists of input variables and corresponding target values. The
number of data points used for evaluation of fitness has an important effect on the
quality of the result but also the computational load. Thus, the number of fitness
cases must account for both of these factors. Current implementation allows for up
to 9 input variables.

3.1.3 Selection
Five selection schemes are implemented: elitism, roulette, linear rank, tournament
and Boltzmann selection. The initial step of selection is to determine the number of
individuals that has to be sampled for each genetic operation. This is determined by
user-defined ratios and involves splitting the total number of individuals into three
partitions, corresponding to replication, crossover and mutation. The partitions for
crossover and mutation are sampled using the selected sampler while replication uses
elitism selection.

3.1.4 Breeding
Breeding involves replication, crossover and mutation. Replication is done by simply
copying individuals. Two crossover operations are implemented: free and size-fair
crossover. Based on the number of individuals selected for crossover the user may
define the ratios for free and size-fair crossovers. Three mutation operations are im-
plemented: point, branch and constant mutation. Point mutation selects a random
node and replaces it with a different node with the same arity in order to avoid
syntactical errors. Branch mutation selects a random subtree and replaces it with
a newly generated tree using grow method with maximum depth of 2. Constant
mutation scales a numerical constant with scaling factor α according to,

α = 10β, (3.3)

where β is uniformly distributed between 0 and 1, making the scaling factor assume
values between 0.1 and 10, with equal probability of reducing and increasing a
numerical constant’s value.

3.1.5 Enhanced and Adaptive SAT
In SAT-GP a random subtree is substituted with a new small subtree consisting of
a constant, θ, multiplied with a random terminal, X, from the terminal set. The
choice of terminal is selected randomly from the terminal set and is followed by

29



3. Development and Tuning of Genetic Program

finding the constant which minimises the Euclidean distance between the old and
the new subtree.

An enhanced version of SAT is implemented. Instead of selecting a random terminal
for substitution the selection of terminal is performed based on every terminal’s op-
timal Euclidean distance to the to-be substituted subtree. The algorithm works as
follows: for all available terminals, Xi, in the terminal set, Tset, perform least square
optimisation to find every terminal’s respective optimal constant θ∗i that minimises
the Euclidean distance between θ∗i ·Xi and the subtree selected for substitution. If
Xi is a numerical constant the corresponding optimal constant θ∗ is equal to the
mean of the selected subtree. The algorithm then compares the Euclidean distance
between each subtree θ∗i ·Xi and the to-be substituted subtree and selects the optimal
subtree for substitution. Thus, the best substitution is performed. If the optimal
substitution is a numerical constant the substituted subtree θ∗ ·C is reduced to C∗,
where C∗ = θ∗. The selection of subtree for substitution is only applied to non-leaf
nodes.

Selecting the ratio for largest individuals to reduce with SAT-GP, k, has to be done
in such a way that it prevents bloat while still avoids too aggressive size-reduction.
Because of the stochastic nature of a genetic algorithm the sizes of individuals will
change, sometimes drastically, over a simulation. This implies that a certain value
for k might not be suitable for an entire run. This motivated the development of a
method for adaptive k.

The adaptive-k method starts with k at 1% and whenever the average tree size
increases after one generation, k is increased with 0.25%. If the average tree size
instead decreased, k is decreased by 0.5%. The method also contains a user-chosen
cap which should prevent runaway individual sizes. If the average tree size passes
this cap (such as 20, 30 or 40 average complexity) then k is instead increased by
1%. This adaptive method is developed to maintain a balanced increase/decrease
of the average tree size. It does still allow for trees to grow bigger than the cap,
but will over time try to simplify them more aggressively. In comparison to other
bloat controlling techniques it does not affect choice of parents in breeding, put a
hard cap on the tree sizes or affect which subtrees to swap in crossovers. However,
the choice of cap-value may infer some bias but is necessary in order to avoid issues
regarding computational load. The mentioned values of k are obtained by trial and
error.

3.2 Studying Bloat Control & Samplers
In the following sections different bloat controlling techniques are studied as well as
how different samplers impact the resulting error progression and size distribution
of individuals. For this purpose a target function is constructed with the intent to
provide a similar challenge as for a problem which might be encountered in real
applications. The resulting function has close resemblance to Newton’s equation for
gravitational force with an added term according to,
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f(x) = C1
x1x2

x2
3

+ C2
√
x4, (3.4)

where x1, x2, x4 ∈ U{0, 10}, x3 ∈ U{5, 15}, C1 = 13.10, C2 = 2.68 and using one
unrelated variable x5 ∈ U{0, 10}. The function has in this form a complexity of 14
and should provide a comparable reference for future input functions. From this
function 60 random points are generated and used as the data set in the following
comparisons.

3.2.1 Bloat Controlling Techniques
Two of the theories trying to explain what is causing bloat in GP, presented in sec-
tion 2.4, are crossover-bias-theory (CBT) and fitness-causes-bloat-theory (FCBT).
Since bloat may be caused by one or several different phenomenons there are varying
approaches to prevent bloat. Using size-fair crossovers is one way of targeting the
cause of bloat as described in CBT, while parsimony pressure is a method targeting
fitness as the cause of bloat as described in FCBT. There are also other techniques
whose main purpose is to reduce bloat, ignoring what is causing it, such as SAT. In
order to investigate different techniques for bloat control a number of tests are per-
formed. Initially varying crossover operations are studied, followed by a comparison
of different parsimony pressures and lastly two constant k-values for the enhanced
implementation of SAT are compared to the adaptive-k method in figures 3.2, 3.3
and 3.4, respectively. The best performing methods in terms of bloat control are
then studied further in figures 3.5 and 3.6. Between different runs the majority of
parameters and settings are kept constant only varying the bloat controlling method.
All parameters and settings can be found in table 3.1.

In figure 3.2 results from three different crossover settings are presented. Free refers
to 100% of crossovers being unlimited, limited refers to 100% of crossovers being
size-fair with a maximum allowed difference of 1 and mixed refers to mixing unlim-
ited and limited crossovers with 50% of each. Free and mixed are both experiencing
a large increase in average tree size, corresponding to the exponential tree growth
mentioned in section 2.4 and are clear examples of bloat since the error progression
does not improve accordingly. They do however result in slightly lower RMSE than
limited. Regarding bloat control it is clear that only the limited crossover alone
achieves any acceptable level of bloat control. Since mixed crossovers produces less
bloat than free and similar RMSE, it is chosen as the standard for crossovers used
for all further investigations of bloat controlling techniques, samplers etc.

Three different examples of parsimony pressure are presented in figure 3.3 corre-
sponding to three different values of the penalty constant α. The penalty is de-
scribed in equation (2.10) in section 2.4.2.1. For both α = 0.1 and α = 0.01 the
average tree sizes are relatively constant, both controlling bloat well. For α = 0.001
the average tree size increases initially but is more or less constant after 600 gen-
erations. Since the target function has complexity 14 the desired average tree size
should be close-to or slightly higher than 14 for the search to successfully explore the
function space around the correct complexity. For α = 0.1 the average tree size is
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Table 3.1: Program settings for investigation of different bloat controlling tech-
niques. An additional cap terminating a run if the average number of nodes exceeds
1000 is also used for all runs.

Setting Description
Population size 1000
Generations 1000
Initialisation Ramped Half-and-Half with 9 levels of maximum depth
Function set {+, −, ×, ÷, exp, log, sin, cos, sqrt}
Terminal set {π, C, x}
Fitness measure RMSE
Selection Roulette
Target Function C1

x1x2
x2

3
+ C2

√
x4

Data points 60
Replication 1%
Mutation 29% (point: 25%, branch: 25%, constant: 50%)
Crossover 70% (varying composition of free and size-fair)
Parsimony Pressure Yes (varying α)
Enhanced SAT Yes (varying k and with adaptive-k using cap 20)
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Figure 3.2: The average tree sizes and best solution over time for three different
crossover settings. The data is the average of 10 independent runs with different
random seeds.

around 9 for most generations, for α = 0.01 it is approximately 15 and for α = 0.001
it is between 50 and 70 for the last 400 generations. Hence, neither α = 0.1 nor
α = 0.001 controls bloat as desired, while α = 0.01 performs relatively well. One
important thing to note is that the values for α are deduced by trial and error.
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Equation (2.10), describing the parsimony pressure, implies that α may cause the
penalty for complex individuals to have great impact on the resulting fitness fpp. If
the fitness measure is significantly smaller than the parsimony term the resulting
altered fitness will be dominated by the parsimony pressure and vice versa. Since
the magnitude of the unweighted fitness f may vary, there is therefore no guarantee
that the studied values of α would affect average tree sizes equally for other target
functions.
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Figure 3.3: The average tree sizes and best solution over time for three different
values parsimony penalty α. The data is the average of 10 independent runs with
different random seeds. The crossovers are mixed; 50% free and 50% size-fair.

Figure 3.4 is displaying three cases of the enhanced SAT methods; two with constant
k-values and one using adaptive-k method, described in section 3.1.5. For k = 5%
the number of nodes decreases rapidly and is kept at a very low level, resulting
in a high RMSE. For k = 3% the number of nodes appear to have some sporadic
increases and decreases until generation 600 when a constant increase can be seen.
For the adaptive k the number of nodes is kept close-to constant below 20 (since
the SAT cap is set at 20). Both the adaptive and k = 3% perform well in terms of
RMSE but only the adaptive one manages to control bloat as desired.

From figures 3.2, 3.3 and 3.4 it is concluded that the lowest RMSE values are
achieved using mixed crossovers with a parsimony pressure constant of α = 0.001 or
with only free and mixed crossovers, which all have average tree sizes much larger
than desired. This result is inline with the second feature in FCBT, described in sec-
tion 2.4.1, which states that there exists exponentially more large individuals than
small individuals with the same fitness. However, a solution with orders of mag-
nitude higher complexity than the true complexity is not acceptable making these
three setups unsuitable for further use. From the figures it is also concluded that
mainly three of the total nine setups are successfully controlling bloat in a desired
way: using limited crossovers, using a combination of mixed crossovers with parsi-
mony pressure constant with α = 0.01 and using a combination of mixed crossovers
with adaptive-k for the enhanced SAT. To compare these three setups their average
tree sizes and best solution over time are presented together with the addition of
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areas showing the standard deviation in figures 3.5 and 3.6.
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Figure 3.4: The average tree sizes and best solution over time for the enhanced
SAT method, for two constant k values and using adaptive-k. The data is the
average of 10 independent runs with different random seeds. The crossovers are
mixed, 50% free and 50% size-fair.
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Figure 3.5: The average tree sizes for the three most well-performing methods in
terms of bloat control. For each method the average of 10 independent runs with
different random seeds are shown together with semi-transparent areas representing
the standard deviation. The areas do not represent distribution of sizes within
populations, only the average number of nodes between runs.

Both in figure 3.5 and 3.6 SAT using adaptive-k has smaller standard deviation
during the majority of the generations in comparison to the other two setups. Not
only is it controlling bloat in a more consistent way over multiple runs, it is also
achieving lower RMSE solutions on average and with a smaller variance between
runs. Additionally using only size-fair crossovers is limiting the genetic operations,
while the chosen α = 0.01 might not work equally well for other target functions.
The enhanced SAT method with adaptive-k in combination with mixed crossovers
is therefore chosen as the bloat controlling setup to be used for all further tests.
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Figure 3.6: The best solution over time for the three most well-performing methods
in terms of bloat control. For each method the average of 10 independent runs with
different random seeds are shown together with semi-transparent areas representing
the standard deviation.

3.2.2 Samplers

The sampler used for selection determines the balance between exploitation and ex-
ploration. As mentioned in section 2.3.4, there are numerous samplers which samples
individuals for breeding in different ways. The difference between samplers is easy
to understand although the impact they have on the population can be difficult
to predict due to the complex dynamics resulting from the interactions of different
components of the genetic algorithm.

In order to investigate how different samplers impact the progression of solution
accuracy and size distribution of individuals, simulation are performed using dif-
ferent samplers. In the tests roulette, linear rank and three setups of Boltzmann
selection are investigated. The motivation for choice of samplers and parameters for
Boltzmann selection is further developed in appendix A. In short roulette is chosen
due to its high selective pressure, linear rank due to its low selective pressure and
Boltzmann due to the potential of having the selection pressure change throughout
the simulation. Each selection method is tested on the same data for 50 simulation
runs, with settings according to table 3.2. The result is presented in figures 3.7-3.11,
which presents the error progression and complexity distribution of the cumulative
result over all simulations for each sampling scheme. In each figure the left graph
presents the error progression while the right graph shows the cumulative size dis-
tribution for all simulations. The intent of each simulation is not to find the correct
solution but instead to highlight the dynamics of the different samplers. By running
several simulation on the same sampling method certain sampler-specific features
can be distinguished guiding the choice of sampling method for future simulations.

The result from roulette selection is shown in figure 3.7. The average RMSE at
the end of a simulation is 1.25 with a somewhat flattened learning curve. The size
distribution shows, compared to the upcoming selection methods, a scattered dis-

35



3. Development and Tuning of Genetic Program

Table 3.2: Program settings for investigation of sampler’s impact on error progres-
sion and size distribution of individuals.

Setting Description
Population size 1000
Generations 2000
Initialisation Ramped Half-and-Half with 9 levels of maximum depth
Function set {+, −, ×, ÷, exp, log, sin, cos, sqrt}
Terminal set {π, C, x}
Fitness measure RMSE

Selection Roulette, Linear Rank, Boltzmann
(T0 = {150/N, 250/N, 350/N})

Target Function C1
x1x2
x2

3
+ C2

√
x4

Data points 60
Replication 1%
Mutation 29% (point: 25%, branch: 25%, constant: 50%)
Crossover 70% (free: 50%, fixed: 50%)
Parsimony Pressure No
Enhanced SAT Yes (with adaptive-k using cap 40)

tribution with two blurry peaks around complexities 1 and 35. There also seems to
be a non insignificant amount of individuals with intermediate complexities between
these two peaks. The size distribution over generations assumes its final shape after
approximately 20% of the total simulation, showing only minor changes afterwards.
The presence of intermediate solutions shows that the sampler is searching for solu-
tions with different complexities.

Linear rank selection has the lowest average final RMSE of all samplers tested, 0.95.
The result is presented in figure 3.8. Although linear rank selection exhibits the
best result regarding average error it also has the most flattened learning curve out
of all samplers, indicating that its adaptive momentum has reduced significantly
towards the end of the simulation. This is true for all samplers as it becomes
increasingly more difficult to improve upon the current best solution. The size
distribution shows a distinct peak around complexity 30 and assumes its final form
after approximately 20% of the simulation run. The size distribution indicates that
the program is performing a meticulous search around the peak complexity.

The three setups of Boltzmann selection tested are using different values for the
initial temperature, T0, according to 150/N , 250/N and 350/N , where N is the
population size. Values for parameters α, β and γ are presented in appendix A
(see equation (2.7) for reference). The results are presented in figures 3.9-3.11. The
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Figure 3.7: Error progression and complexity distribution for roulette selection
on 60 data points from target function 3.4. The graphs show the accumulative
results from 50 simulations each using a population size of 1000 running for 2000
generations.
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Figure 3.8: Error progression and complexity distribution for linear rank selection
on 60 data points from target function 3.4. The graphs show the accumulative
results from 50 simulations each using a population size of 1000 running for 2000
generations, settings are presented in table 3.2.

average final RMSE is lowest for T0 = 150/N and highest for T0 = 350/N , implying
that the lower initial temperature results in the best algorithm performance. In all
three figures the two phases of exploration and exploitation are visible when ex-
amining the size distributions. Exploration occurs in early stages of the simulation
when the selection pressure is low and the genetic diversity is high. This can be
seen in the figures where individuals in early stages have lower complexities, which
based on the second feature assumed in FCBT (section 2.4.1), indicates that the
individuals are not selected based on fitness but rather genetic differentiation. The
selection pressure is gradually increased as the Boltzmann temperature is decreased,
successively promoting exploitation over exploration. Towards the end of all three
simulations the size distribution have changed dramatically compared to the initial
structure, exploiting the best individuals with larger complexities which, again ac-
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cording to the second feature assumed in FCBT, is expected. The gradual change
in temperature, resulting in the change from low to high selection pressure, also
changes the appearance of the error progression. For Boltzmann the improvement
in solution accuracy is more protracted compared to roulette and linear rank selec-
tion, implying that the initial process of the simulation is more focused on creating
genetic diversity than finding the optimal solution.
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Figure 3.9: Error progression and complexity distribution for Boltzmann selection
(T0 = 150/N) on 60 data points from target function 3.4. The graphs show the
accumulative results from 50 simulations each using a population size of 1000 running
for 2000 generations, settings are presented in table 3.2.
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Figure 3.10: Error progression and complexity distribution for Boltzmann selection
(T0 = 250/N) on 60 data points from target function 3.4. The graphs show the
accumulative results from 50 simulations each using a population size of 1000 running
for 2000 generations, settings are presented in table 3.2.

The three tested selection schemes shows three different approaches to selection with
similar results. An important distinction between Boltzmann and both roulette and
linear rank selection is that in Boltzmann selection the number of maximum gen-
erations will affect exploration and exploitation. If the number of generations is
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Figure 3.11: Error progression and complexity distribution for Boltzmann selection
(T0 = 350/N) on 60 data points from target function 3.4. The graphs show the
accumulative results from 50 simulations each using a population size of 1000 running
for 2000 generations, settings are presented in table 3.2.

increased the resulting exploration and exploitation phases will increase. However,
for roulette and linear rank selection increasing the maximum allowed generations
will simply extend the progression, leaving the previous progression unchanged. This
is something which might change the performance of the samplers when applied us-
ing different settings.

The investigation on how roulette, linear rank and Boltzmann selection impacts
the performance of the overall algorithm has shown similar results for all samplers
regarding RMSE but not size distribution. This is an indication that the three dif-
ferent approaches are all viable but might have performance variations depending
on the specific input data and algorithm settings. In the following results all simula-
tions are performed using roulette, linear rank and Boltzmann selection with initial
temperature T0 = 150/N (due to T0 = 150/N showing most promising results of the
Boltzmann selection setups).

3.3 Choosing Solution in Pareto Frontier
The results generated in a multi-objective optimisation such as SR using GP are
often presented in a Pareto frontier, which was presented and explained in section
2.5.1. One of the methods for choosing one of the solutions contained in the Pareto
set is TOPSIS (technique for order of preference by similarity to ideal solution).
In short one is creating a matrix F by normalising each input objective, here com-
plexity and RMSE, and storing each vector as a column. Each column j is then
multiplied by a weight wj, which can be varied if one objective is considered more or
less important. In the case of SR both error and complexity are of similar interest,
hence the weight vector w = 1

2 (1,1).

Since the Pareto frontier consists of all Pareto optimal solutions, there is no correct
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choice of solution. However, in the results from SR one of the two objectives may
reach its optimal value; the RMSE may reach zero. An RMSE of zero corresponds
to a solution which describe the dynamics of the system perfectly (ignoring possi-
ble overfitting), but might not be the most parsimonious one. To make sure these
solutions are also presented to the user a small alteration of the TOPSIS algorithm
is made, always presenting the most parsimonious solution with zero RMSE if there
exists any. The rest of TOPSIS is implemented as described in section 2.5.1. An
example of when TOPSIS would suggest another solution than the one with zero
RMSE is shown in figure 3.12.
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Figure 3.12: Example of a Pareto frontier where TOPSIS does not suggest the
most parsimonious solution with zero RMSE, marked as Best Solution.
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4
Results

In this chapter the results from two different tests are presented. The first test
intends to evaluate the algorithm’s ability to identify exact expressions based on
input data from 50 equations from physics [40]. The result is then compared with
two other algorithms’ performance on the same equations. The second test includes
simulations done with input data from a ventilator, where the objective is to identify
a mathematical expression for the air flow using different subsets of the input data
consisting of time, pressure and tidal volume.

4.1 Feynman Equations
To test how well the developed genetic program can perform symbolic regression
(SR) a number of equations are needed. Also, to put the performance into context,
the results should ideally be compared to the corresponding results from other pro-
grams.

There are infinitely many equations that can be used to test the algorithm. Equa-
tions are used in far more areas than just physics, but since the authors of this thesis
are aspiring physicists, there are few examples more compelling than the equations
from the famous Feynman lectures on physics [40]. In the lectures Richard Feyn-
man derives a large number of equations from various areas of physics, some are
simple while others are more complex. The content of the lectures vary a lot but
are divided into three volumes; I: Mainly mechanics, radiation and heat; II: Mainly
electromagnetism and matter ; and III: Quantum mechanics [40]. Each volume con-
sists of several chapters containing numerous equations. The denotation used in this
thesis for equation 10 in chapter 15 of volume II is II.15.10.

The performance of two different methods for SR have previously been compared
for 100 Feynman equations – comparing a newly developed physics-inspired method
for SR, called AI Feynman1 with one of the best commercial GP softwares, called
Eureqa [41]. The data set used for the 100 equations is public and is used in this
thesis.2 It should be pointed out that the authors of AI Feynman have chosen which

1The model consists of a series of modules trying to exploit properties of data such as smooth-
ness, symmetry, separability, compositionality, units and low order polynomial components. Com-
mon features in physics which are used to derive expressions.

2All data sets used for the Feynman equations are available at: https://space.mit.edu/home/
tegmark/aifeynman.html
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100 Feynman equations to perform the comparison on.

Because of the limited scope of this thesis the first 50 applicable equations in the
mentioned comparison is used as test set to study the performance of the developed
genetic program. In the following section the result from the study is presented,
comparing the created algorithm with AI Feynman and Eureqa. Afterwards, the
performances of roulette, linear rank and Boltzmann sampling are compared.

4.1.1 Comparison to AI Feynman and Eureqa
The program settings used for producing the results in this section are found in
table 4.1. The result for each equation includes 30 total runs, 10 for each sampler
(roulette, linear rank and Boltzmann). If one or several of the total 30 runs finds
the correct equation (RMSE = 0 and lowest achievable complexity) the result is
considered successful. The results from testing the developed program on the 50
different Feynman equations are presented in table 4.2, together with the results for
AI Feynman and Eureqa. For every equation in the table a figure showing error
progression and the Pareto frontier is found in appendix C.

Table 4.1: Program settings for testing the developed program on the 50 Feynman
equations (and ventilator data). For each equation 10 independent runs with each
sampler is executed, corresponding to using the island model without interactions.

Setting Description
Population size 2000
Generations 5000
Initialisation Ramped Half-and-Half with 9 levels of maximum depth
Function set {+, −, ×, ÷, exp, log, sin, cos, sqrt}
Terminal set {π, C, x}
Fitness measure RMSE
Selection (parameters) Roulette, Linear Rank, Boltzmann (T0 = 150/N)
Target Function 50 Feynman equations
Data points 100
Replication 1%
Mutation 29% (point: 25%, branch: 25%, constant: 50%)
Crossover 70% (free: 50%, fixed: 50%)
Parsimony Pressure No
Enhanced SAT Yes (with adaptive-k using cap 20)
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Table 4.2: The 50 Feynman equations tested. All equations are derived in the
Feynman lectures on physics and follows the denotation of Volume / Chapter /
Equation Number. AI-F denotes AI Feynman, a physics inspired method for SR.
Eureqa is a commercially available GP software. Thesis denotes the program devel-
oped in this thesis. ”Yes” indicates that the correct equation in terms of accuracy
and parsimony has been found.

Feynman Eq. Equation AI - F Eureqa Thesis

I.6.20a f = e
−θ2

2 /
√

2π Yes No Yes

I.6.20 f = e
−θ2
2σ2 /
√

2πσ2 Yes No No

I.6.20b f = e
−(θ−θ1)2

2σ2 /
√

2πσ2 Yes No No

I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2 Yes No No

I.9.18 F = Gm1m2
(x2−x1)2+(y2−y1)2+(z2−z1)2 Yes No No

I.10.7 m = m0√
1−v2/c2

Yes No No

I.11.19 A = x1y1 + x2y2 + x3y3 Yes Yes Yes

I.12.1 F = µNn Yes Yes Yes

I.12.2 F = q1q2
4πεr2 Yes Yes Yes

I.12.4 Ef = q1
4πεr2 Yes Yes Yes

I.12.5 F = q2Ef Yes Yes Yes

I.12.11 F = q(Ef +Bνsin(θ)) Yes Yes Yes

I.13.4 K = 1
2m(v2 + u2 + w2) Yes Yes Yes

I.13.12 U = Gm1m2( 1
r2
− 1

r1
) Yes Yes Yes

I.14.3 U = mgz Yes Yes Yes

I.14.4 U = kx2

2 Yes Yes Yes

I.15.3x x1 = x−ut√
1−u2/c2

Yes No No

I.15.3t t1 = t−ux/c2√
1−u2/c2

Yes No No

43



4. Results

Table 4.2 continued from previous page

Feynman Eq. Equation AI - F Eureqa Thesis

I.15.10 p = m0v√
1−v2/c2

Yes No No

I.16.6 v1 = u+v
1+uv/c2 Yes No No

I.18.4 r = m1r1+m2r2
m1+m2

Yes Yes Yes

I.18.12 τ = rFsin(θ) Yes Yes Yes

I.18.16 L = mrvsin(θ) Yes Yes Yes

I.24.6 E = 1
4m(ω2 + ω2

0)x2 Yes Yes Yes

I.25.13 Ve = q
C

Yes Yes Yes

I.27.6 ff = 1/( 1
d1

+ n
d2

) Yes Yes Yes

I.29.4 k = ω
c

Yes Yes Yes

I.29.16 x =
√
x2

1 + x2
2 − 2x1x2cos(θ1 − θ2) Yes No No

I.30.3 I∗ = I∗0
sin2(nθ/2)
sin2(θ/2) Yes No No

I.32.5 P = q2a3

6πεc3 Yes Yes Yes

I.32.17 P = (1
2εcE

2
f )(8πr2

3 )( ω4

(ω2−ω2
0)2 ) Yes No No

I.34.8 ω = qvB
p

Yes Yes Yes

I.34.10 ω = ω0
1−v/c Yes No Yes

I.34.14 ω = 1+v/c√
1−v2/c2

ω0 Yes No No

I.34.27 E = ~ω Yes Yes Yes

I.37.4 I∗ = I1 + I2 + 2
√
I1I2cos(δ) Yes Yes Yes

I.38.12 r = 4πε~2

mq2 Yes Yes Yes

I.39.10 E = 3
2pFV Yes Yes Yes

I.39.11 E = 1
γ−1pFV Yes Yes Yes
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Table 4.2 continued from previous page

Feynman Eq. Equation AI - F Eureqa Thesis

I.39.22 PF = nkbT
V

Yes Yes Yes

I.40.1 n = n0e
−mgx
kbT Yes No Yes

I.41.16 Lrad = ~ω3

π2c2(e
~ω
kbT −1)

Yes No No

I.43.16 v = µqVe
d

Yes Yes Yes

I.43.31 D = µekbT Yes Yes Yes

I.43.43 κ = 1
γ−1

kbv
A

Yes Yes Yes

I.44.4 E = nkbT ln(V2
V1

) Yes Yes No

I.47.23 c =
√

γpr
ρ

Yes Yes Yes

I.48.20 E = mc2√
1−v2/c2

Yes No No

I.50.26 x = x1
(
cos(ωt) + αcos(ωt)2

)
Yes Yes Yes

II.2.42 P = κ(T2−T1)A
d

Yes Yes Yes

Total: 50 50 32 34

The result from all simulated equations shows that the developed algorithm solves
34 out 50 equations. The commercial GP software Eureqa solves 32 and AI Feynman
solves all 50 equations. Of the 100 available equations the first 50 are tested here,
excluding any inverse trigonometric functions (two in total) since neither arcsine nor
arccosine are implemented in the developed algorithm. Furthermore, the number
of data points used for testing the developed program is 100 compared to 300 for
Eureqa and between 10, 102 and 103 for AI Feynman except equation I.9.18 where
106 are used [41].

4.1.2 Comparison of Samplers
The results presented in the right-most column of table 4.2 indicate if one or several
runs during testing is successful. Each test consists of 10 independent runs for each
of the three sampling techniques roulette, linear rank and Boltzmann. The perfor-
mance of the different sampling techniques are studied in section 3.2.2. The study
suggests that the three different samplers all produce promising result but achieves
this using different approaches to exploration and exploitation, and should thus all
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be used in order to produce actual results.

For the majority of the equations in table 4.2 all three samplers have the same
result; for every No none solved the equation; and for most Yes they all solved it.
There are however 11 cases where the results varies for the three samplers. Cases
where only one or two samplers finds the correct equation, or equations where a
sampler finds the correct equation but with wrong complexity. These equations are
shown in table 4.3.

Table 4.3: Equations which are not solved by all three samplers. Yes indicates
that an equation has been found with the correct complexity, while Yes* indicates a
solution with RMSE = 0 has been found but with wrong complexity. The number
of solved equations for each sampler can be seen on the last row accompanied by
the number of solved equations in terms of only RMSE.

Feynman Eq. Roulette Linear Rank Boltzmann

I.6.20a No Yes Yes*

I.12.2 Yes Yes* Yes*

I.12.4 Yes* Yes* Yes

I.13.4 No Yes No

I.13.12 Yes Yes* Yes*

I.18.4 No No Yes

I.24.6 Yes No Yes

I.32.5 Yes No Yes*

I.34.27 Yes* Yes Yes

I.37.4 No Yes No

I.40.1 Yes No Yes

Total: 11 5 (7*) 4 (7*) 5 (9*)

Table 4.3 highlights some differences in performances between the three sampling
techniques. For each equation at least one sampler has successfully solved the equa-
tion but in several cases solutions are found that are more complex than the target
(indicated by *). These cases are examples of solved equations which have not been
sufficiently simplified.

Looking at all tested equations the number of solved equations sum up to 28 (30*),
27 (30*) and 28 (32*), for roulette, linear rank and Boltzmann selection, respectively.
They all solve 27 or 28 equations when including both accuracy and parsimony. How-
ever, Boltzmann selection finds the most solutions (32) if the parsimony requirement

46



4. Results

is neglected. While the differences in performance between the samplers are small,
the results suggest that Boltzmann sampling is better at finding the correct genetic
material in order to solve an equation due to it performing best both in terms of
parsimony and accuracy. It is also concluded that a combined usage of all three
samplers lead to a better overall result compared to only using one.

4.2 Ventilator Data
In order to test the algorithm on a real application, data from a ventilator containing
time, pressure, tidal volume and air flow is studied. A ventilator provides respiratory
support to a patient by supplying air to the lungs during inhalation. The data is
supplied by i3tex AB and originates from a ventilator that uses a fan to force air into
the lungs, which i3tex AB has helped develop. A subset of the raw data is presented
in figure 4.1. The pressure and flow refers to sensor measurements in close proximity
to the fan while the tidal volume (volume related to inhalation and exhalation) is
calculated by some internal algorithm. The genetic algorithm is tasked to find an
expression describing the relationship between flow and different combinations of
time, pressure and tidal volume.
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Figure 4.1: A subset of the raw data from ventilator logs. From left to right the
graphs shows how pressure, tidal volume and flow changes over time.

The result consists of four simulations with different input data using the same
settings as for the previous result, presented in table 4.1. The only difference is
that 300 uniformly distributed data points are used instead of 100, in order to
ensure sufficient resolution (in accordance with the sampling theorem). The result
from each simulation is presented in figures 4.2-4.5. Figure 4.2 shows the resulting
error progression and Pareto front from simulations using input data including time,
pressure and tidal volume (Q(t, p, V )); figure 4.3 shows results from input data
including pressure and tidal volume Q(p, V ); figure 4.4 shows results from input
data including pressure Q(p); and figure 4.5 shows results from input data including
time and pressure Q(t, p). For each simulation the TOPSIS method is applied in
order to generate a suggestive solution. These solutions are presented in equations
(4.1)-(4.4) with their corresponding RMSE, and are plotted in figure 4.6.
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Figure 4.2: Error progression and Pareto front from simulations using 300 data
points of time, pressure and tidal volume data, with flow as target. The graphs show
the accumulative results from 30 simulations, 10 for each sampling method, using
population size of 2000 running for 5000 generations, settings are presented in table
4.1.
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Figure 4.3: Error progression and Pareto front from simulations using 300 data
points of pressure and tidal volume data, with flow as target. The graphs show
the accumulative results from 30 simulations, 10 for each sampling method, using
population size of 2000 running for 5000 generations, settings are presented in table
4.1.
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Figure 4.4: Error progression and Pareto front from simulations using 300 data
points of pressure data, with flow as target. The graphs show the accumulative
results from 30 simulations, 10 for each sampling method, using population size of
2000 running for 5000 generations, settings are presented in table 4.1.
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Figure 4.5: Error progression and Pareto front from simulations using 300 data
points of time and pressure data, with flow as target. The graphs show the accumu-
lative results from 30 simulations, 10 for each sampling method, using population
size of 2000 running for 5000 generations, settings are presented in table 4.1.

The resulting equations generated (suggested by TOPSIS) from the first, Q(t, p, V ),
and second, Q(p, V ), simulations are identical apart from minor variation in nu-
merical values. Their corresponding error progression and Pareto fronts are also
similar, indicating that the flow can be described without time as an explicit vari-
able given the pressure and tidal volume. The third, Q(p), simulation provides no
real suggestion for a relationship linking flow directly to pressure. The best sug-
gested solution (of the ones suggested by TOPSIS) in terms of RMSE is generated
in the fourth, Q(t, p), simulation, where the flow is related to pressure and time.
In every simulation apart from the fourth simulation Boltzmann selection provides
the best average error progression. This is however not the most important feature
since the suggested solution is acquired through TOPSIS, often implying that the
best solution in terms of RMSE will not be selected.

Q(t, p, V ) = p(10.83p− V − 33.67), RMSE = 43.8 (4.1)

Q(p, V ) = p(10.69p− V − 32.46), RMSE = 43.6 (4.2)

Q(p) = p, RMSE = 82.4 (4.3)

Q(t, p) = −343.1 cos(2.54t) cos(0.40p), RMSE = 35.4 (4.4)

In figure 4.6 all suggested solutions are shown with the target values for flow. The re-
sulting equations from the first and second simulations provides accurate predictions
regarding position of inhales and exhales but provides poor estimates for maximum
and minimum flow rates. The equation from the fourth simulation provides accurate
predictions regarding both position of inhales and exhales as well as peak values for
the flow rates.

Out of all simulations the solution with the lowest RMSE is generated in the second
simulation according to equation (4.5), which has complexity 28. It is shown in fig-
ure 4.7. The solution has similarities to the equation suggested by TOPSIS for the
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first and second simulation but has higher accuracy with a RMSE of 18.3 compared
to 43.6 and 43.8.

Q(p, V ) = 1.4p sin(0.03V )(p(p− cos(0.46p))− 1.38(V + cos(0.14V )) + 1.94) (4.5)
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Figure 4.6: Graph showing all four suggested equations from the simulations per-
formed on the ventilator data, linking flow to time, pressure and tidal volume.
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Figure 4.7: Graph showing the best solution out the four performed simulations,
linking flow to pressure and tidal volume.
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5
Conclusion and Discussion

This chapter is intended to concertise the main findings of the thesis and to discuss
the result as well as other concepts utilised and mentioned throughout the report.
The main topics of discussion are validity of the input data, algorithm performance
and improvements, specifically regarding bloat control and sampling techniques.
In the closing section the authors presents their ideas regarding future work and
interesting possibilities for genetic programming going forward.

5.1 Key Findings
The objective of this thesis was to create a model performing symbolic regression
using genetic programming. A model capable of generating interpretable mathemat-
ical expressions describing relationships within data with high accuracy. Without
any detailed analysis of the result it is safe to conclude that this objective has been
met.

The comparison of the developed algorithm with AI Feynman and Eureqa, demon-
strated the model’s ability to discover a variety of simple and complex mathemati-
cal expressions from data. The result is comparable, arguably better than, Eureqa
(there are some uncertainties regarding program parameters used when producing
the result for Eureqa). The created model finds 34 out of 50 equations, compared to
Eureqa’s 32. Also, of the equations that was not found the majority of them was not
found by neither the thesis model nor Eureqa – highlighting expression structures
which are difficult for genetic algorithms to distinguish. AI Feynman is however out-
performing both of the other methods solving all 50 equations, which at least is an
indication of their algorithm doing a better job in finding typical relations in physics.

Several bloat controlling techniques have been studied, such as limited crossovers,
parsimony pressure and the enhanced version of SAT. The use of only limited
crossovers as a bloat control technique was not successful. Neither parsimony pres-
sure nor the enhanced version of SAT were successfully controlling bloat with con-
stant values for α (the penalty constant in parsimony pressure) and k (the propor-
tion of individuals SAT is applied to), respectively. The introduction of adaptive-k
proved to be the best technique both in terms of RMSE and in terms of controlling
bloat – no matter the input data. It also allows for the most non-disruptive bloat
control out of the studied techniques since it does not affect choice of parents or
subtrees in crossovers. Additionally it tries to replace the bloat-causing expression
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trees with the best possible approximation while still reducing the tree size.

The study of samplers showed how different sampling techniques impacts the ex-
ploration and exploitation phases of the genetic search. The size distributions in
section 3.2.2 highlighted how selection pressure changes the sizes of the individu-
als in the population. Boltzmann sampling illustrated this in the perhaps most
clear way as the selection pressure changes over the course of the entire simulation.
Boltzmann selection also showed the most promising results in both tests (Feyn-
man equations and ventilator data), although the difference was only slight. The
selection of hyperparameters for Boltzmann selection also highlighted the complica-
tion of introducing additional parameters to an algorithm already including several
performance-sensitive parameters.

5.2 Discussion

This thesis covers a substantial amount of concepts and ideas regarding stochas-
tic optimisation, symbolic regression, genetic programming as well as development,
tuning and performance of a genetic program. There are thereof a corresponding
amount of topics for discussion, in the following section the authors attempts to
distil the main areas of discussion and improvement of the entire thesis.

5.2.1 Feynman Equations

Since the Feynman lectures covers varying topics of physics such as mechanics, ra-
diation, heat, electromagnetism and quantum mechanics they contain equations of
varying complexities and structures. This also means that it would be possible to
choose 50 equations of different nature. A closer look at the equations in table 4.2 re-
veals that some of the equations have similar structures. For example I.6.20a, I,6.20
and I.6.20b are essentially variants of the same equation. Equations I.10.7, I.15.3x,
I.15.3t, I.15.10, I.34.14 and I.48.20 all contain the same denominator

√
1− v2/c2,

and neither the developed program nor Eureqa successfully solves any of them. This
indicates that both genetic programs struggle with this kind of structure, however it
is perhaps not necessary to have six different equations to conclude that. The first
50 of 100 available equations, which AI Feynman and Eureqa have been tested on,
were chosen in this thesis. In hindsight a better option would for instance have been
to test every second equation from the 100, resulting in a more diversified equation
set. This would help highlighting further strengths and weakness of the developed
program and genetic programming in general.

To gain more insight on the actual differences in performance between the developed
program and the other two methods it would also be informative to study the noise
tolerance on all tested equations. This has been done for AI Feynman and would
further highlight how well the developed program actually performs – which has
great relevance for application on real times series data.
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5.2.2 Ventilator Data
The ventilator data provided an interesting challenge for the algorithm, testing its
ability to derive expressions from data with noise. The challenge was also unique in
the sense that there is no real answer as to what equation is correct, and that there
is no certain physical connection between the variables and the target. The results
from the simulations highlighted a problem regarding TOPSIS and the method’s
interaction with the Pareto front. The TOPSIS method selects a single equation
from the Pareto front which in turn only provides a single solution for each complex-
ity. Coupling this with the algorithm’s inability to ensure that every equation on
the Pareto front is in its least complex form (most parsimonious form) means that
there might exist other solutions than the one suggested by TOPSIS with better
accuracy and similar complexity. It would therefore enhance the value of TOPSIS if
the algorithm could simplify expressions to a greater extent. Also, selecting a single
solution from 30 simulations might not paint a complete picture of the result – it
would be interesting to see to what extent the different input variables were used in
different solutions, especially in simulations when the resulting suggested solution
did not include all input variables (such as for simulation one, Q(t, p, V ), where time
was not included in the suggested equation, see equation (4.1)).

The algorithm was tested using four different subsets of the input data (Q(t, p, V ),
Q(p, V ), Q(p) and Q(t, p)). The combinations were selected heuristically and was
limited due to time constraints. Although all simulations generated expressions de-
scribing the flow, the perhaps most interesting result came from the first simulation
when all input variables were included. The resulting expression suggested by TOP-
SIS is presented in equation (4.1) and includes three terms: one positive and two
negative. Comparing this equation with a general equation for flow in a ventilator
according to,

Q = Prs

R
− V

CR
− Palv

R
, (5.1)

reveals some similarities. In equation (5.1) the flow, Q, is described as a function
depending on the pressure applied to the respiratory system, Prs, the resistance of
the system, R, the respiratory system’s compliance, C, and a constant pressure cor-
responding to the alveolar and expiratory pressure, Palv [42]. The pressure Prs is
the sum of the pressure from the lungs and the ventilator, whereas in the ventilator
data the pressure is only the pressure from the ventilator, making the comparison
between the two equations somewhat difficult. However, the two equations have
similar structures, indicating that the suggested solution has some conformity with
an actual expression used in ventilators – highlighting the potential of the algorithm.

The overall best equation in terms of RMSE (shown in figure 4.7) predicts the air
flow accurately within the input domain. The logical next step is to test this rela-
tionship in other regions of the data, with different respiratory conditions. This was
however never done due to time constraints. Although the result shows a practical
example on how the algorithm can be used in order to derive unknown relationships
in data.
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5.2.3 Algorithm
The developed algorithm was an overall success. It enabled simulations to be per-
formed on a reasonable time scale, and allowed easy access for tuning parameters and
implementation of additional modules, such as SAT. However, there are still things
left to desire. As with all algorithms speed of calculation is an important factor, and
in genetic algorithms it is the fitness evaluation that is the most computationally
heavy operation. The operation’s speed is in turn dependent on the data struc-
ture which is used to represent the individuals’ expression trees. There are several
published ideas on how to create better data structures for individual’s expressions.
One alternative is to use directed acyclic graphs (DAGs), which avoids the need
for recursive evaluation of the expression trees resulting in faster interpretation of
individuals [22, 25]. Also, because of the stochastic nature of evolutionary processes
genetic algorithms requires a large number of iterations in order to converge. This
creates two possibilities for improvement, either, as previously mentioned, reduce
the calculation time for evaluating fitness or alter the course of adaptation in order
for the algorithm to converge faster. This last approach leaves room for bias and
could e.g. imply changing the size of the terminal and function sets.

An advantage of genetic algorithms compared to neural networks is that they re-
quire much less data points (fitness cases). In genetic algorithms adding additional
data points does not make significant improvements to performance, given suffi-
cient sampling [41]. Hence, using only 100 (or 300 by Eureqa) data points for the
Feynman equations is enough, which in specific cases could be an upside of genetic
algorithms. For some equations (I.6.20b, I.9.18, I.29.16) AI Feynman requires usage
of a convolutional neural network to identify symmetries, separability and perform
variable reduction, resulting in the need of at least 1000 data points, which could
possibly change for real applications when there is substantially more noise, creating
a need for even more data.

An addition to the general algorithm is to introduce a symbolic simplification step.
It could either be used to simplify every expression tree every generation, or only
used on all solutions in the Pareto frontier after the last generation. This would
force every solution to take its most parsimonious form, which in turn would mean
that in most cases of solutions with RMSE = 0 the solution would also be optimal
in terms of parsimony. It would most likely lead to an improvement for each in-
dividual sampler (most Yes* in table 4.3 would have been solved optimally), and
for the program in general. Also, as discussed regarding the ventilator data and
the TOPSIS method, by simplifying all expressions it is easier to select the optimal
solution when there is no solution with RMSE = 0.

5.2.4 Bloat Control
Three different approaches to controlling bloat was studied in section 3.2.1, target-
ing bloat in three different ways. It was concluded that using only size-fair/limited
crossovers does slow down bloat, but it also hinders the natural evolution within the
population greatly. It did however show descent results for best solution over time,
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but it did lack one important feature: adaptability (ability to adapt the magnitude
of the bloat control depending on changes in the population).

Parsimony pressure also has its drawbacks, one of which is that it alters the choice of
parents for breeding. While it does a great job of promoting smaller individuals, it
can also lead to loss of well fitted larger individuals, containing key genetic material.
However, the main problem preventing this method from being implemented effec-
tively is the same as for limited crossovers: the lack of adaptability, guaranteeing it
controls bloat sufficiently independent on population characteristics. The same goes
for the standard and enhanced implementation of SAT; choosing a constant k does
not provide sufficient bloat control.

Based on the conclusion that none of the three methods could guarantee sufficient
bloat control at all instances of simulations, SAT was implemented using an adaptive
k-value. This could have been done using parsimony pressure as well, adaptively
changing α, which has been done in other articles [32]. However, due to the fact
that there is no instance, to the knowledge of the authors, where SAT has been im-
plemented with varying values of k and that it has some superior features compared
to parsimony pressure, it was chosen as bloat controlling technique.

Two further topics for discussion regarding SAT is the cap-value of adaptive-k and
the implication of the enhancement of the original SAT method. The cap, which is
introduced with adaptive-k, regulates the aggressiveness of the bloat control. When-
ever the average tree size grows bigger than the cap, k increases. The cap is necessary
for the bloat control to work as desired and allows for equal sizes between different
runs and input functions. However, it does not remove all trees bigger than the cap,
like the original hard-cap bloat control proposed by Koza [4], thus allowing for some
exploration of the function space above the cap. The choice of cap is however very
important. If it is too small, the program will be less likely to find correct solutions.
If if too big, the program will be slower and may struggle to find solutions with
optimal parsimony. The cap of 20 was chosen having analysed the complexities of
the 50 chosen equations. A larger cap might have led to better/worse results. It
should also be mentioned that SAT will sometimes harm big trees by over-reducing
them – it always reduces sizes but will sometimes remove good genetic material as
well.

The implementation of SAT was done with a change compared to its original form.
In the original version of SAT a random terminal is chosen and the best accompa-
nying parameter to multiply with is computed. The new subtree always has three
nodes. It was concluded that this original version would be more likely to substitute
in worse-fitting subtrees, than if one were to do the same calculations for all avail-
able terminals. It was also concluded that there exists cases when a constant (the
mean) would be a better fit than a constant multiplied by a terminal. Therefore the
enhanced version was developed. It is guaranteed to be at least as good as the old
version since all terminals are studied. It will add to the computational cost of the
program, but the magnitude of the addition is negligible in comparison to the rest
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of the program.

5.2.5 Sampling Techniques

The thesis investigates the performance of roulette, linear rank and Boltzmann se-
lection, and although their impact on the population is different they all perform
similarly well. An interesting discovery was done when comparing the resulting size
distributions of roulette and linear rank sampling. Because roulette sampling is de-
scribed as the selection method with higher selective pressure compared to linear
rank it would be reasonable to assume that it would favour larger individuals to a
greater extent than linear rank, assuming that larger individuals exhibit better fit-
ness to a larger extent than smaller individuals. Although this is not the case, which
can be seen when observing figures 3.7 and 3.8 in section 3.2.2. A possible explana-
tion to this is that linear rank’s size distribution is a closer depiction of the actual
resulting size distribution from the genetic operators. There is always a probability
for a genetic operator to create an individual with invalid mathematical expression,
such as division with 0. In roulette sampling these individuals will never be selected,
but in linear rank there is an small associate probability of being selected, and the
overall probability of selecting a defected individual is higher when there are more of
them. In other words, because there is a certain amount of large individuals created
every iteration with invalid mathematical syntax, linear rank selection will lead to a
more focused size distribution with larger individuals. At first glance it might seem
to be a negative process, however this enables expressions trees a second chance to
become well-adapted individuals, and judging by the results of linear rank, it seems
to provide sufficient sampling.

Boltzmann selection is the most intricate of the three selection methods. In the
process of selecting which parameters to test it became apparent that it is a difficult
process. In the end three initial temperatures were selected as candidates, all using
the same other parameters. From the result it seems like Boltzmann selection has a
slightly better performance compared to roulette and linear rank selection. Further,
from the error progression and size distribution for Boltzmann selection, it seems like
the evolutionary process is not really completed (there is still a non-zero gradient on
the error progression) implying that the simulation would benefit from staying at a
high selection pressure for more iterations. This was tested to some extent but re-
sulted in problems with bloat when the selection pressure was held high for a greater
number of iterations. A possible fix to this issue would be to discontinue the change
of Boltzmann temperature at a late point in the simulation, effectively freezing the
selection profile – enabling exploitation while possibly avoiding too much bloat.

There is a plethora of different sampling methods which can be used for breeding,
as is the case for a lot of the components in a genetic algorithm. There is a large
amount of published material regarding different sampling techniques. For instance
there are several interesting approaches to tournament selection that provides both
genetic diversity and bloat control [43].
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5.3 Opportunities for Further Work
In its entirety this project has highlighted many areas of genetic programming and
symbolic regression which are subject for future studies. Some minor, such as tuning
of probabilities and ratios of the genetic operators, while others major – components
of the thesis which in them self have and will support material for many articles to
come. A major component of a genetic algorithm is sampling of individuals. While
the Boltzmann sampling used in this report seem to provide the best result the se-
lection of parameters was done using a rather arbitrary framework. Thus, it would
be interesting to study the limitations and possibilities of Boltzmann sampling in
detail. A possibility could be to incorporate features of linear rank selection into
Boltzmann, in order to have better control over the selection pressure.

SAT has been studied and discussed a lot in this thesis. The enhanced version
of it is at least as good as the standard version. However, it can be improved even
further. As of now it is searching for either a constant or a constant times a ter-
minal. This could be extended to search for more complicated functions such as
polynomials of varying degrees, performing linear regression on a greater variety of
subtrees, or other mathematical functions. This would require the k-value to be
bigger but would lead to better approximations. One could also include some other
functions than multiplication in the search, which the authors of the original SAT
have begun studying [44].

In section 2.6 the island model was introduced, a method used to avoid prema-
ture convergence within stochastic optimisation. The special case of non-interacting
islands, equal to running independent runs, has been used in the developed pro-
gram. An implementation of interaction between different populations would be an
interesting phenomena to study further. Allowing different courses of evolutionary
progress to interact and mix.

Arguably, the most interesting topic for future work would be to study how to
implement modules and features from AI Feynman in order to improve the algo-
rithm. AI Feynman is based on methods from physics and maths used in order
to derive and prove relationships, methods which would undoubtedly improve the
performance of any algorithm tasked to find relationship in data. Additionally, the
authors of AI Feynman expresses some concerns regarding their algorithm when
applied on difficult equations, and mention that it could be improved using genetic
features [41]. Perhaps the future of symbolic regression is a combination of the two
methods.
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A
Selection of Sampling Scheme

A.1 Selecting Candidate Schemes
Three sampling methods were chosen as candidate samplers to be used for produc-
ing results: roulette, linear rank and Boltzmann selection. The choice of sampling
schemes where based on the diverse nature of how they perform their sampling.
Roulette promotes exploitation, selecting more fit individuals proportional to their
normalised fitness. Linear ranking promotes exploration, selecting individuals based
on their rank, ignoring the actual distance in fitness between two individuals. Boltz-
mann attempts to incorporate both exploitation and exploration by changing the
nature of the sampling for every generation. Both roulette and linear rank selection
does not have any hyper parameters unlike Boltzmann selection.

A.1.1 Selecting Boltzmann Parameters
The temperature of Boltzmann selection is inversely proportional to the selection
pressure – a low temperature creates a high selection pressure, and vice versa. For
every generation the temperature changes according to,

T = T0(1− α)k, k = γ + β
g

G
, (A.1)

as in equation 2.7, in section 2.3.4.6, where T0, α, β and γ are hyper parameters
that can be altered in order to change the temperature profile for a simulation. The
important factors to consider for the temperature is the gradient and final tempera-
ture (temperature in and close to the last generation). The gradient determines how
fast the selection goes from randomly to exponentially dependent on the fitness, and
the final temperature governs the selection pressure in the end. If the temperature
is not close to zero near the end of the simulation, there is a high probability of
selecting individuals with low fitness, which undesirable.

In figure A.1 the temperature profiles for different combinations of parameters are
shown. From these temperature profiles three candidate parameter setups were se-
lected for further investigation, these temperature profiles are shown in figure A.2.
The candidates were selected due to their difference in selection pressure and rep-
resents a transition from high selection pressure (T0 = 150/N) and low selection
pressure (T0 = 350/N). The corresponding selection pressures are visualised in fig-
ure A.3, where the unnormalised probability of selection depending on the fitness for
different stages of the simulation is shown. The gradient determines the selection
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A. Selection of Sampling Scheme

pressure. A steep gradient corresponds to high differentiation between individu-
als with small fitness differences; high selection pressure. The line for the zeroth
generation illustrates the initial selection pressure. From low to high temperature
the three setups have decreased selection pressure, corresponding to three slightly
different approaches to Boltzmann selection used as candidate setups.
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Figure A.1: Temperature profiles for different combinations of parameters for
Boltzmann selection. Each graph represents one setup of T0, α and γ with four lines
each using a different β.
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Figure A.2: Temperature profiles corresponding to three setups of Boltzmann
selection used for further examination. The three profiles have α = 0.01, β = 300
and γ = 200 with different initial temperatures, T0 = 150/N, 250/N, 350/N .
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Figure A.3: Selection pressures for three Boltzmann temperature profiles, shown
in figure A.2. Each graph presents six stages of the simulation, after 0%, 20%, 40%,
60%, 80% and 100% of generations. The right most graph, corresponds to higher
overall selection pressure compared to the middle and left most graph.

III



A. Selection of Sampling Scheme

IV



B
Time Estimation of Program

B.1 The Dependencies of Execution Time
When looking at algorithms it is very useful to know how the computational time
of the algorithm scales with different parameters. Time complexity of an algorithm
is often expressed using the big O notation. In short, the big O notation describes
how the algorithmic time complexity generally scales with respective variable and
hence does not provide an exact expression of the execution time. Exact constants,
which may also depend on specs of the used computer, are hence neglected. Some
examples of this for an input variable n are O(n), O(log(n)) and O(2n) which de-
scribe linear time, logarithmic time and exponential time.

The algorithm presented in this thesis contains many different steps and is also
stochastic, meaning that when executed there might be different events occurring in
different runs. It would still be beneficial to have some knowledge of how the execu-
tion time depends on some of the input parameters. The following input parameters
were chosen to be studied below: type of sampler, max number of generations, num-
ber of individuals in the population, the number of data points in the data set and
the number of input variables. For all runs enhanced SAT adaptive was used and
capped at 20.

Initially the execution time was studied while varying the number of input vari-
ables and the number of data points in the data set. This was done while keeping
max number of generations and number of individuals constant at 300. The results
of this for three different samplers are presented in figure B.1.

To then study the dependency on the number of individuals and max number of
generations, the values for number of data points and number of input variables were
kept constant at 100 and 5 respectively. The results for the same three samplers are
shown in figure B.2.

B.1.1 Functional Expressions of Execution Time
From the results shown in figure B.1 & B.2 one may analyse the behaviour of the
execution time and try to make a rough estimation on how it depends on number of
input variables, number of data points, number of generations and number of indi-
viduals for each of the samplers. But since this thesis revolves around an algorithm
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Figure B.1: The executions time of the three different samplers as a function of
number of data points for the cases of 1, 5 and 9 input variables.
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Figure B.2: The executions time of the three different samplers as a function of
number of generations for the cases of 10, 100 and 1000 individuals.

for symbolic regression, why not use it to receive symbolic functional expressions for
each sampler, and then transform to big O notation? The Pareto frontiers presented
in figure B.3 are produced using the algorithm developed in the thesis on the data
from the time measurements above.

The Pareto frontiers for each sampler are presented in figure B.3, together with the
suggested solution from TOPSIS. Those functions are presented in the following
equations, where x1 is max number of generations, x2 number of individuals, x3
number of data points and x4 number of input variables, according to,
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Figure B.3: The Pareto frontiers from simulations run on the measured time data
in section B.1, with a suggested solution from the TOPSIS algorithm.

tBoltzmann ≈ x1

(
x2

π
+ x3√

x4
− 54.53

)
,

tlinrank ≈ 0.026 · x1 · x2 · x3 · e−e·x4 ,

troulette ≈ 0.023 · x1 · x2 · x3 · cos(cos(x4)).

These symbolic functions for execution time can the be expressed in the big O
notation as,

tboltzmann → O(x1) ·O(x2 + x3

x4
),

tlinrank → O(x1 · x2 · x3) ·O(exp(−x4)),
troulette → O(x1 · x2 · x3).
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While the three big O expressions differ somewhat from each other, it seems as
the execution time scales linearly with the number of generations, number of indi-
viduals and number of data points in one way or another for all three samplers. It
is interesting that the number of variables seems to be reducing the execution time,
which by an analysis does not make sense. It should be noted that while the first
three variables take values in the ranges [10,1000] the number of input variables can
only be 1, 5 or 9. Hence there might be a big enough variance between execution
time of runs to trick the program into thinking that x4 reduces the overall time.

From the expressions for the three execution times tboltzmann, tlinrank and troulette
one major conclusion can be drawn: these are not the exact symbolic functions that
describe execution time. They do however give the kind of indication which was
sought after: execution time seems to be scaling linearly with x1, x2 and x3.
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C
Figures from Results

In this chapter the error progression and Pareto frontier for all simulations on the
Feynman equations is presented in order of table 4.2.
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