
ARM-find
Antibiotic Resistance Mutation Finding Pipeline

Automated identification of antibiotic
resistance mutations in bacterial
genomes
Creation of the ARM-find pipeline

Master’s thesis in Bioinformatics

MARTIN BOSTRÖM

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017

Automated identification of antibiotic resistance
mutations in bacterial genomes

Creation of the ARM-find pipeline

Martin Boström

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Systems Biology and Bioinformatics
Chalmers University of Technology

Gothenburg, Sweden 2017

Automated identification of antibiotic resistance mutations in bacterial genomes
Creation of the ARM-find pipeline
Martin Boström

© Martin Boström, 2017.

Supervisors: Dr. Anna Johnning and Associate Professor Erik Kristiansson,
Department of Mathematical Sciences, Chalmers University of Technology

Examiner: Associate Professor Erik Kristiansson, Department of Mathematical
Sciences, Chalmers University of Technology

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Systems Biology and Bioinformatics
Chalmers University of Technology
SE-412 96 Gothenburg

Cover: Logo for the ARM-find pipeline.

Printed and bound at
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
2017

iv

Automated identification of antibiotic resistance mutations in bacterial genomes
Creation of the ARM-find pipeline
Martin Boström
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Antibiotic resistant bacteria are a fast-growing problem, worsened by the overuse
of antibiotics. In treatment of infections, it is often necessary to determine a resis-
tance profile for the infecting bacteria in order to establish the correct treatment,
and the time required to accomplish that through cultivation is sometimes long. Re-
cent advances in next-generation sequencing techniques have decreased the cost and
time requirements of whole-genome sequencing to the point where a bioinformatical
approach to resistance profile determination may prove faster than the traditional
one. Software tools are already available for the detection of mobile resistance genes
in bacterial genomes, but to my knowledge, no open-source tools exist that detect
resistance mutations. This thesis describes the creation of the ARM-find pipeline,
which can find such resistance mutations in assembled bacterial genomes, includ-
ing draft genomes. It comes with a resistance mutation database that currently
contains fluoroquinolone resistance mutations in E. coli, but is easily extensible to
cover additional antibiotics and species. In addition to describing the pipeline, this
thesis covers the prevalence of fluoroquinolone resistance mutations in E. coli and
Shigella. The pipeline was used to catalogue substitutions (in comparison to E.
coli K-12 MG1655) in the genes encoding DNA gyrase and topoisomerase IV – the
targets of fluoroquinolones – in all RefSeq genomes for both E. coli and Shigella.
Fluoroquinolone resistance mutations were found to be common, and the relative
frequencies of the mutations matched what has been reported in previous studies
on the subject.

Keywords: Antibiotic resistance, pipeline, fluoroquinolones, bioinformatics, E. coli,
Shigella, mutations

v

Acknowledgements

First and foremost, I would like to thank my supervisors, Anna Johnning and Erik
Kristiansson. Thank you both for always helping me when I needed it, and for
providing me with this master thesis project; it has been the most rewarding work
I have done during my time at university. Anna, I knew this was going to work
out when I first walked into your office and you had the same beautiful green Zelda
poster as I do - you have good taste. I would also like to thank everyone I’ve met
at the Mathematical Sciences department for the lovely fika sessions, and everyone
who has baked something for the weekly proper fikas. I love Thursdays now. Also,
thank you Christoffer for being such an excellent cubicle mate, and for watering
Jonte when I’m not around.

Finally, I would like to thank the people behind www.armfinder.com for having
already taken the name I had initially wanted for my pipeline (notice the lack of
-er in ARM-find). I wish you all the best in your mission to “Register, Find and
Contact Armwrestlers in the World”.

Martin Boström, Gothenburg, February 2017

vii

Contents

1 Introduction 1
1.1 Aims . 2

2 Theory 3
2.1 Fluoroquinolones and Their Targets 3
2.2 DNA and Protein Sequence Alignments 4
2.3 Genome Sequencing and Assembly 5

3 Methods 7
3.1 Pipeline Workflow . 7

3.1.1 Sequence Extraction . 9
3.1.1.1 BLAST Hit Extension 9
3.1.1.2 Merging BLAST Hits from the Same FASTA Se-

quence in the Genome 10
3.1.1.3 Post-Extraction Sequence Modifications 13

3.1.2 Global Alignment . 14
3.1.3 Mutation Calling and Identification of Resistance Mutations 14
3.1.4 Reporting . 15

3.2 Pipeline Arguments . 16
3.3 Substitution Study in E. coli and Shigella 16

4 Results 19
4.1 Pipeline Output . 19
4.2 Substitution Study Results . 21

4.2.1 Substitution Analysis . 21
4.2.2 Amino Acid Breakdown of Substitutions 26
4.2.3 Comparison between E. coli and Shigella 28

5 Discussion 31
5.1 Pipeline Design . 31

5.1.1 Sequence Extraction . 32
5.1.2 Global Alignment . 33

5.2 Substitution Study . 33
5.2.1 Fluoroquinolone Resistance Mutations 35

6 Conclusion 37

7 Future Work 39

Bibliography 41

A Shigella Results I

B Pipeline Code IX

ix

Contents

x

1
Introduction

Antibiotics are molecules that either kill or inhibit the growth of bacteria. Most an-
tibiotics that are in use as drugs today were originally found in nature, where they
are used by bacteria or fungi against other microbes [1]. They are an important
defence against bacterial infections, and are essential in healthcare. However, when
antibiotics are given as treatment, antibiotic resistant bacteria are given an increased
chance of achieving dominance through the elimination of the non-resistant compe-
tition. Through this mechanism, overuse of antibiotics has resulted in increasing
resistance among bacteria, and the trend is worsening [2]. Without effective an-
tibiotics, we could face a world where infections that have previously been easily
treatable become a death sentence.

Antibiotics work by affecting certain targets – the main ones are bacterial cell-
wall biosynthesis, protein synthesis, and DNA replication and repair. There are
different strategies that are used by bacteria to survive such attacks. They may
alter cell permeability, e.g. by changing the amounts of efflux pumps and porins
or by altering the cell wall, so that the concentration of the drug at the site of its
target remains too low to cause severe harm. An alternative strategy is to modify
the antibiotic so that it no longer binds to its target, or at least does so with lower
affinity. The bacteria may also modify the drug’s target, either through mutations
or later modifications (such as the addition of molecules at binding sites) to reduce
its binding affinity to the drug [1]. Finally, metabolic pathways can be altered to no
longer rely on the targeted enzyme [3].

Acquiring or improving the properties described above can be done through ac-
quisition of novel DNA or through alterations in pre-existing DNA. In the first
case, resistance genes can be transferred horizontally between bacteria by plasmids,
bacteriophages, naked DNA, or transposons. These genes could for instance code
for enzymes that modify the antibiotic, or replace antibiotic-targeted enzymes in
metabolic pathways. In the second case, antibiotic resistance arises through step-
wise mutations, with each mutation resulting in less susceptibility to the antibiotic
in question. The typical example of this is a reduced binding affinity between a drug
and its target, caused by mutations to that target.

Whether resistance genes or resistance mutations are the most important varies be-
tween different antibiotics. In the case of fluoroquinolones, a broad-spectrum class
of antibiotics that are highly effective for treating a variety of infections, chromo-
somal mutations have the highest impact on resistance. Since all fluoroquinolones

1

1. Introduction

have the same antibiotic mechanism, any mutation in the target genes that results
in resistance to one fluoroquinolone will also yield resistance to all the others [4].
Fluoroquinolone resistance has been extensively studied in Escherichia coli [4], a
common source of urinary tract infections. Studies have found that an alarmingly
large portion of E. coli have achieved some degree of resistance to fluoroquinolones
[2].

Because of the spread of antibiotic resistance, it is important to be able to quickly
characterise resistance in an infection, so that the correct treatment may be provided.
Currently, the antibiotic to give may be determined based on the symptoms of
the patient, or ideally by isolating the bacteria responsible for the infection and
evaluating their resistance profile. The latter is done by growing them in the presence
of different antibiotics in the lab [5], which can be a slow process, especially when the
infecting strain grows slowly, is difficult to cultivate, or is multi-resistant. However,
we may now have another option at hand. Recent developments in next-generation
sequencing (NGS) techniques have seen both the time requirement and the cost of
sequencing entire genomes decrease exponentially [6]. If the genetic alterations that
lead to antibiotic resistance are known, we could sequence the genomes of bacteria
and use that information to infer what antibiotics are suitable for treatment. This
has already been shown to be faster than cultivation-based resistance determination
in the UK for the slow-growing M. Tuberculosis [7].

If we are to improve the speed of resistance profile determination for bacteria through
whole-genome sequencing, we must have bioinformatical software tools that can find
resistance-related genetic elements quickly and efficiently. We will need tools both
for finding mobile resistance genes, and for finding resistance mutations, like the
ones that are important for fluoroquinolone resistance. There are several software
tools in existence for identifying mobile resistance genes, such as ResFinder [8],
the Comprehensive Antibiotic Resistance Database (CARD) [9], and the Antibiotic
Resistance Genes Database (ARDB) [10]. However, to my knowledge there are no
open-source tools that are designed to identify resistance mutations in bacteria,
which leads us to the aims of this project.

1.1 Aims

In this thesis, I have developed a pipeline for identifying antibiotic resistance mu-
tations in bacterial genomes; it is called ARM-find, short for Antibiotic Resistance
Mutation finding pipeline. To its database of resistance mutations, I have added
mutations that confer resistance to fluoroquinolones in E. coli. To test the perfor-
mance of the pipeline, I have searched for fluoroquinolone resistance mutations in
all E. coli genomes available from NCBI’s database RefSeq, as well as in the closely
related genus Shigella.

2

2
Theory

The aim of the following sections is to provide a brief explanation of how fluoro-
quinolones work, and what their targets are, as well as to explain the different types
of sequence alignments used in the pipeline, and some relevant information regarding
genome assembly.

2.1 Fluoroquinolones and Their Targets

Fluoroquinolones are a class of synthetic antibiotics that inhibit the replication and
transcription of bacterial DNA, by acting against DNA gyrase and topoisomerase
IV. At high concentrations, this leads to cell death. They are broad-spectrum, and
important in health-care. Fluoroquinolones are categorised into generations based
on the improvements that have been made to, among other things, their half life and
range of different kinds of bacteria that they are active against. What they have in
common is that they are synthetic fluorinated analogues of nalidixic acid, and tend
to contain a 4-pyridone-3-carboxylic acid with a ring connecting to positions 5 and
6, as shown in figure 2.1 [11].

Ring

6 N1

R

2

3

O

OH
4

O

5

Figure 2.1: The required pharmacophore of fluoroquinolones. Image modelled after figure from
[11].

The targets of fluoroquinolones, DNA gyrase and topoisomerase IV, are both topoi-
somerases, meaning they participate in the supercoiling of DNA. DNA gyrase is a
tetrameric enzyme that is composed of two GyrA and two GyrB subunits. It is re-
sponsible for introducing negative supercoils into DNA, which is necessary for DNA

3

2. Theory

replication [12]. Topoisomerase IV is homologous to DNA gyrase, and is composed
of two ParC and two ParE subunits. It is involved in the separation of chromosomes
during DNA replication [4]. Both enzymes cut DNA molecules in order to be able
to change their coiling, and ligate them back together after having done so. The
antibiotic mechanism of fluoroquinolones is that they bind to the DNA gyrase/topoi-
somerase IV-DNA complex, thereby stabilising it and preventing ligation [4]. This
stops DNA synthesis, causing the cells to stop growing. There are several hypotheses
for what causes the bactericidal effect that fluoroquinolones have. A common and
likely one states that the release of DNA ends from the enzyme-DNA-drug complex
triggers apoptosis [12].

The most clinically relevant cause of fluoroquinolone resistance is chromosomal mu-
tations to the genes encoding DNA gyrase and topoisomerase IV. These mutations
lower susceptibility to fluoroquinolones by reducing the binding affinity of the drug
to the enzyme-DNA complex. The current knowledge of such mutations has been
reviewed by Hopkins et al. [4], and that review is the basis for the resistance mu-
tations in ARM-find’s database. Though all those mutations have been associated
with increased fluoroquinolone resistance, having one does not necessarily decrease
a bacterium’s susceptibility to the drug. As an example, all resistance mutations
that have been found in topoisomerase IV have been accompanied by gyrA mu-
tations. The reason for this is believed to be that the susceptibility of GyrA to
fluoroquinolones must be decreased for mutations to the topoisomerase IV genes
to even make a difference to survivability. Fluoroquinolone resistance can also be
achieved through means other than mutations. One alternative is decreased uptake
of the drug through increased amounts of efflux pumps or decreased amounts of
porins, and another is mobile genes such as the plasmid-mediated qnr [4].

2.2 DNA and Protein Sequence Alignments

Both local and global alignments of nucleotide and amino acid sequences are used
in this pipeline. Global alignments are only viable when both sequences are of
roughly equal length, which of course is not the case when aligning a gene against
a genome. A local alignment is suitable for aligning a shorter sequence against
a longer one, as it does not attempt to match the entire sequences against each
other in the way that a global alignment does. Instead, it finds where in the longer
sequence the shorter sequence, or pieces of it, will fit. The choice between global
and local alignments is also affected by sequence similarity, but for the purposes of
the pipeline, sequence length differences are the deciding factor, as the sequences to
be aligned are assumed to be highly similar. ARM-find uses BLAST (Basic Local
Alignment Search Tool) [13] for local alignments, and MAFFT (Multiple Alignment
using Fast Fourier Transform) [14] for global alignments.

BLAST is a heuristic local alignment tool. It splits the query sequence into short
“words” (sequence snippets), and creates permutations of these words that are suf-
ficiently similar to the original word, according to a scoring matrix. These words
are then matched against the target sequence, and the matching positions are used

4

2. Theory

as seeds for alignment. Every such seeded alignment is extended in both directions
until its alignment score decreases beyond a certain threshold compared to the max-
imum value during extension. After termination, the alignment is rolled back to its
maximum score. The resulting alignments’ scores are then evaluated for statistical
significance by comparison to random sequences. Alignments scoring above a certain
threshold are kept and presented to the user [15].

MAFFT is a multiple sequence alignment tool that is capable of both local and global
alignments. As the name implies, it is based on the fast Fourier transform, which is
used to rapidly detect homologous segments [14]. It comes with options for several
alignment strategies, including progressive methods, structural alignment methods
for RNAs, and iterative refinement methods [16]. One such alignment option, the
iterative refinement method G-INS-i, is used in this pipeline for global alignment.
G-INS-i requires that the entire region can be aligned and attempts global alignment
using the Needleman-Wunsch algorithm [17].

2.3 Genome Sequencing and Assembly

Since DNA sequencing can only generate reads of limited length, sequencing genomes
necessitates the generation of many, many reads. To generate a full genomic DNA
sequence, the genome has to be assembled using these reads. Assembled genomes
can be in different states of completeness; genomes that have been fully assembled
are called complete assemblies, whereas partially assembled genomes are called draft
assemblies. In a draft assembly, the genetic sequence is typically split over many
contigs, and the concept of scaffolding is important. A contig is a contiguous se-
quence of nucleotides known with a high degree of certainty. A scaffold can contain
several contigs, between which the distance is known (or estimated), but the DNA
sequence is not. The distance between contigs can be found through methods such
as mate pair sequencing. The result is sequences that can include large stretches of
N’s, designating unknown bases. The number of N’s between two contigs may not
match the actual number of bases separating them exactly.

5

2. Theory

6

3
Methods

The pipeline was coded in Python (version 3), and is built to run on a Linux sys-
tem with the BLAST, MAFFT, and EMBOSS command line interface programs
installed. It was designed to find resistance mutations in a FASTA format input file
containing the genomic DNA sequence of an organism. The DNA sequence may be
split across many FASTA sequences in the input file. The pipeline is meant to be
used with assembled genomes, and has therefore not been tested with raw sequence
data. However, it was written to work with genomes in various stages of assembly,
and can thus handle draft genomes. The workflow of the pipeline is explained in sec-
tion 3.1, and illustrated by means of a flowchart in figure 3.1. The code is presented
in appendix B.

ARM-find was built to find antibiotic resistance mutations, but the word mutation
implies change, which can be a bit misleading. What the pipeline actually does is
identify nucleotides and amino acids that are different in the input genome com-
pared to a reference sequence. When mutations or substitutions are mentioned in
this report, it would be more appropriate to say “difference between input genome
and reference sequence”. Working this distinction into every sentence would make
for cumbersome reading, however, which is why I am clarifying the nomenclature
now.

3.1 Pipeline Workflow

When searching for antibiotic resistance mutations, the pipeline considers one target
sequence (e.g. the DNA sequence encoding an enzyme subunit) at a time. For each
target sequence, the pipeline goes through the following main steps:

1. Extracting the appropriate region of DNA, corresponding to a reference DNA
sequence (most likely a gene) with known resistance mutations, using BLAST.

2. Global alignment of the extracted sequence (and its translated amino acid se-
quence if the target is a protein) against the reference sequence, using MAFFT.

3. Mutation calling, by comparing the extracted sequence to the reference se-
quence at each position.

4. Comparison of found mutations to a database of known resistance mutations.

7

3. Methods

Read resistance mutations for target
sequence

BLAST alignment & parsing

Hits > 0

Merge hits from same FASTA sequence
if part of the same copy of gene

Remove bad hits

Hits > 0

Pad BLAST hits with N's

Hits = 0

MAFFT alignment & parsing

Is target
a protein?

Yes

Translate DNA sequence

MAFFT alignment & parsing of
amino acid sequence

No

Call mutations & check sequence
coverage

Compare called mutations against
resistance mutations & add to report

Add missed bases/amino acids/targets to
coverage reports

Hits = 0

All targets
analysed?

Yes

Write report files
and exit

No
Proceed to next target ID

Get target IDs and resistance mutations
for selected species

Start iteration over target IDs

Extend BLAST hits

Save nucleotide overlap between hits

Save amino acid overlap between
hits

Figure 3.1: Flowchart showing the workflow of the pipeline. Processes in green and blue are part
of a loop that is repeated for each target sequence associated with resistance mutations for the
chosen species.

8

3. Methods

3.1.1 Sequence Extraction

To identify antibiotic resistance mutations in a specific DNA sequence in a genome,
that sequence must first be found in the genome, which can be accomplished through
sequence alignment against a reference sequence. The reference sequences for gyrA,
gyrB, parC, and parE are from E. coli K-12 MG1655, and were downloaded from
the PATRIC database [18]. Since genes and genomes are obviously not similar in
length, global alignment is not an option. For that reason, a local alignment tool is
used to find the correct sequence in the genome in this pipeline - more specifically,
BLAST [13], as it is the most widely used tool for local alignments, and contains
all the functionality needed for this part of the pipeline. The blastn command
is used in order to run Megablast, which is suitable for highly similar sequences
(approximately 95 % sequence identity) [19]. All parameters are left at default
values. The output format is set to XML (-outfmt 11) to facilitate parsing.

This first local alignment would in many cases be enough for mutation calling,
as most nucleotides would be comparable between the sequences directly from the
alignment. However, there are some cases which demand sequence extraction and
global alignment before mutation calling. For instance, if there are mutations at
the end of the sequence being aligned, those might end up not being included in
the BLAST alignment. Similarly, if there is a large mismatching region, or large
insertions or deletions, in the aligned sequences, BLAST will tend to split the align-
ment into two hits, one on each side of the mismatching region. Both of these cases
would result in mutations being missed during mutation calling, and possibly even
in missed frameshifts that result in a completely different amino acid sequence after
translation. For these reasons, the BLAST alignment is used only to find the correct
region in the genome, which is then extracted for later global alignment.

It is quite possible for the pipeline to extract more than one sequence from a BLAST
alignment, for instance when a gene is split over two or more FASTA sequences in
the genome. These sequences are treated separately, rather than merging them, as
the final report generated by the pipeline includes what FASTA sequence in the
genome any given mutation was found on. Naturally, this would not be practical
if hits from different FASTA sequences were merged at this stage. Additionally,
multiple sequences in the extraction can be a result of multiple copies of a gene, or
of several hits in one gene, separated by a mismatching region. In the latter case,
the hits are normally merged, as discussed in section 3.1.1.2, but there are scenarios
where this is not desirable, as well as those where it simply fails.

3.1.1.1 BLAST Hit Extension

As the alignments made by BLAST may not extend all the way to the end of the
reference sequence, extension is often necessary before extraction of the sequence.
This is done simply by checking the first and last base number of the reference
sequence in a BLAST hit, and whether those numbers correspond to the first and
last base numbers of the entire reference sequence. If they do not, then the BLAST

9

3. Methods

hit does not cover the entire reference sequence, and may need to be extended, as
shown in figure 3.2. The number of bases not covered on either side of the BLAST
hit is calculated, and the pipeline attempts to retrieve those bases from the genome
one by one, taking into account what strand the match was found on to determine
direction in the genome and whether the base at a certain position should be taken,
or its complement. BLAST hit extension will stop if the pipeline tries to access bases
outside of the range of the FASTA sequence the hit was found on in the genome, or
if a base in the genome is already part of another BLAST hit. The latter restraint
is in place to avoid overlap between the BLAST hits with respect to the bases in
the genome. This only applies to overlap in the genome, though. Overlap in the
reference sequence between hits can be caused by multiple copies of a gene, for
instance, and should therefore be included, so that the pipeline can report whether
mutations to a given reference sequence position in the genome is the same in each
instance of reference sequence overlap.

BLAST hit

Genomic FASTA
sequence

Reference sequence

Extension Attempted
extension

Figure 3.2: During hit extension, the number of reference bases missed on both sides is counted,
and extension of that length is attempted. Should the end of the genomic FASTA sequence (or
another BLAST hit) be encountered first, extension will stop.

Sometimes, BLAST will find erroneous hits that tend to match only a short part of
the reference sequence. When these are extended to cover as much of it as possible,
the result can be that thousands of incorrect bases are added. To combat this, the
pipeline will discard all hits that are extended more than 20 % of the reference
sequence length, unless they meet one of the following criteria:

1. The hit neighbours another hit in the genomic sequence, after all hits have been
extended. This preserves hits that would otherwise be deleted for extending
over large insertions, for example in scaffolds.

2. The hit is the result of a merge of several hits, as detailed below in section
3.1.1.2. In this case, a hit could seem to be extending too far, whereas it in
reality is just extending to cover the hits it was merged with.

3.1.1.2 Merging BLAST Hits from the Same FASTA Sequence in the
Genome

There are two cases that will make BLAST find two or more correct hits in one
FASTA sequence from the genome. The first is if there are multiple copies of a gene,
in which case the hits should remain separate. The second case is when hits are
separated by a mismatching region. In the latter case, it is useful to merge the hits.

10

3. Methods

To illustrate the problems that can be caused by not merging such hits, imagine an
alignment with two hits separated by a large insertion. During hit extension, the
number of bases to extend is decided based on where on the reference sequence the
hit is, and does not take into account the size of the insertion. In most cases, the hits
will simply be extended until they come to a base covered by the other hit, but it is
also possible to miss part of the insertion during extension, depending on its size and
the positions of the hits on the reference sequence. A second problem arises when
the insertion size is not evenly divisible by three, thereby causing frameshift. If the
hits were merged, translation of the resulting sequence would lead to a drastically
different amino acid sequence, as it should. If the hits aren’t merged, the frameshift
would only show in one of the hits, or it might be missed completely.

In order to tell the difference between hits that should be merged and hits that
should not, there are a number of checks in place. For this explanation, let us
call the distance between two adjacent hits in the genome genome distance, and
the distance between the same hits in the reference sequence reference distance
(illustrated in figure 3.3). If reference distance < 100, the hits will be merged.
This allows for some leeway for deletions and substitutions, both of which cause
increased reference distance. It also allows any insertion size, as insertions do not
change the reference distance. In addition to the above criterion, any pair of adjacent
hits that satisfy the condition |genome distance− reference distance| < 100 will
be merged. This allows for combinations of substitutions and insertions to pass
more freely.

1 2

Reference distance

Genome distance

Reference
sequence

Genomic FASTA
sequence

Figure 3.3: Two BLAST hits mapping to different parts of the reference sequence, with reference
distance and genome distance explained.

Even if the criteria above are met, there are a few more checks that must be cleared
for hit merging to occur. In order to avoid merging hits from different copies of a
gene, as well as to avoid other complications, the hits must:

• be on the same DNA strand in the genome.

• satisfy the condition genome distance ≤ reference sequence length.

• not overlap in the genome.

• come in the expected order in both the genome and in the reference sequence,
with respect to which strand they are on. Out of order hits are likely either
bad hits or parts of different gene copies.

11

3. Methods

• not be separated by a region with a high percentage (>30 %) of N’s. This
stops merging of hits separated by regions of uncertain lengths in scaffolds,
where merging is likely to cause erroneous frameshift.

If there are more than two hits in a FASTA sequence in the genome, each adjacent
pair of hits will be considered for merging separately. Then, unbroken chains of pairs
accepted for merging will be marked for merging into one hit, as shown in figure
3.4.

1 2 3 4 5

1-3 4-5

Figure 3.4: Example of merging multiple hits from one FASTA sequence. Each pair is evaluated
for merging separately. The pairs are then added together until a pair that was not accepted for
merging is encountered. In this case, all pairs were accepted for merging except 3-4, which results
in two final hits, one with hits 1-3, and one with hits 4 and 5.

Finally, when all merging decisions are finished, all hits except the last one in each
merge set are deleted, and the value of genome distance − reference distance is
saved for each merge pair. The last hit can then be extended as explained in section
3.1.1.1, with the only change being that extension distance is increased by the saved
distance values for every involved merge pair, as shown in figure 3.5. This compen-
sates for the change in length due to insertions or deletions between the merge pairs.
If the saved distance value is negative, the extension will be shortened instead of
lengthened, which is necessary for hit merging when the hits are separated because
of a deletion, rather than an insertion or substitutions.

1 2

Reference distance

Genome distance Extension length

Regular
Extra

2

Reference
sequence

Genomic FASTA
sequence

Figure 3.5: Once a group of hits to be merged has been decided, only the last hit (here, hit 2)
is kept. Extension length is modified by genome distance − reference distance. This difference
is indicated in black. Regular extension would only be based on the distance to the end of the
reference sequence, which for hit 2 is as long as the green and white segments of the reference
sequence. Extra extension (black) is necessary when there is an insertion between the hits, as in
this case.

12

3. Methods

3.1.1.3 Post-Extraction Sequence Modifications

Once the appropriate DNA sequences have been extracted from the genome, some
processing is necessary in preparation for global sequence alignment. If the sequence
extraction yielded hits that do not cover the entire reference sequence, then the
length of those hits will be shorter than the reference, which is suboptimal for a
global alignment. Apart from making mutation calling more arduous, it could also
result in faulty alignments, with the hit being stretched to cover more of the sequence
than it should. To solve this, all hit sequences that do not cover the entire reference
sequence are padded with N’s, signifying unknown bases. To calculate how many
N’s should be added to each side of the sequence, the number of bases added during
hit extension is subtracted from the number of bases that the original BLAST hit
missed from the reference sequence, for each side. With this information, the hit
can be padded with the appropriate amount of N’s on either side. It is still possible
for the hit and the reference sequence to be of different lengths, but only because of
indels, which is as it should be.

Another benefit of N padding is avoiding frameshift during translation. If a hit
does not cover the beginning of a gene and is not padded, the likelihood of an
erroneous frameshift is high. Padding with the correct amount of N’s solves that
problem. Hence, translation of hit sequences is done after padding, if they code for
proteins.

Translation is performed with the transeq command of the EMBOSS package [20].
All reference sequences that are to be translated start with a start codon and end
with a stop codon in the pipeline’s sequence database. The BLAST alignment,
hit extension, and sequence padding discussed above make sure that the hits are
correctly lined up against the reference sequence, starting with the start codon, and
ending with the stop codon, which means that erroneous frameshift is unlikely to
cause problems. Hence, transeq is run with the argument -snucleotide1 to limit
translation to the first reading frame. Furthermore, the argument table=11 is used
to set the translation table to that of bacteria.

While the pipeline database currently only contains protein-coding sequences, it is
possible that future additions might include DNA sequences that do not code for
proteins, such as promoters or sequences coding for rRNA. To distinguish between
sequences that should be translated and sequences that should not, the pipeline
checks the mutations database, to see if there are any resistance mutations for
amino acids for a given target. If there are, then the sequence must code for a
protein, and should be translated. If there are not, then it should not be translated.
This holds true as long as no protein-coding sequences without resistance mutations
for amino acids are added to the mutations database, but since there would be no
point in adding such a sequence, this is not a problem.

Finally, the range of any overlaps between the BLAST hits are saved for later re-
porting. At this stage, only nucleotide sequence overlap is saved, as the BLAST
alignment files provide sufficient information for finding said overlap, whereas the
amino acid sequences need to be aligned before overlap can be calculated.

13

3. Methods

3.1.2 Global Alignment

For the purposes of this pipeline, there were only a few specific requirements for a
global alignment tool. Since the sequence extraction can yield multiple hits, it would
be much more practical to work with multiple alignment, rather than aligning every
hit sequence against the reference sequence one by one. Additionally, to be able to
call mutations that add or remove stop codons, it was necessary for the alignment
tool to not only be able to accept nucleotide and amino acid codes, but special
characters as well, such as the asterisk (*) used to demark a stop codon. MAFFT
[14] meets these requirements, and was thus chosen for the role. MAFFT is run and
adapted for global alignment through use of the ginsi command, with all parameters
at default values, apart from the optional argument --anysymbol. This is necessary
in order to include stop codon asterisks in the alignment. Global alignment is done
for both the nucleotide sequence and, in case the target is a protein, the amino
acid sequence, to enable mutation calling. After global alignment of the amino acid
sequence, the ranges of potential overlaps between translated BLAST hits are saved
for later reporting.

3.1.3 Mutation Calling and Identification of Resistance Mu-
tations

During mutation calling, DNA and protein sequences are handled separately, and
one hit at a time. For each hit, every position in the sequence is compared one by
one. For each position in the reference sequence that is not a hyphen, signifying a
gap, a counter is incremented. This is done to keep track of which number in the
reference sequence a certain position in the alignment corresponds to, so that the
correct position of mutations can be reported. During mutation calling, information
on substitutions, insertions, and deletions is saved, but also information on what
positions in the reference sequence are covered by the hits. This information is later
used to generate reports on mutation coverage.

Once all mutations have been called for a given target sequence, they are compared
with all resistance mutations in the pipeline’s database for that target. If there are
matches, the relevant antibiotic (or antibiotics) is associated with that mutation
in the report. Since the mutations database could contain resistance mutations
that the reference sequence itself has, all resistance-associated positions are saved
during mutation calling. When comparing called mutations to the database, the
resulting “non-mutations” (e.g. S83S) are skipped, unless they confer antibiotic
resistance.

The database is split into two files, targets and mutations, in order to minimise
repetition of data that could increase the risk of mistakes during data entry. The
targets file simply associates every target DNA sequence with a unique identifier
(target ID), and lists what species the sequence is from (see table 3.1).

14

3. Methods

Table 3.1: The targets database lists all target sequences, along with with the associated species.

Target ID Species Name
target0000001 E. coli DNA gyrase - subunit GyrA
target0000002 E. coli DNA gyrase - subunit GyrB
target0000003 E. coli Topoisomerase IV - subunit ParC
target0000004 E. coli Topoisomerase IV - subunit ParE

The mutations database contains the resistance mutations, where every entry is
linked to the appropriate row in the targets database by its target ID. For ev-
ery mutation in the database, there is information on what kind of antibiotics the
conferred resistance applies to, its position in the target sequence, what nucleotide
or amino acid occupies it in the reference sequence, and what the substituted nu-
cleotide or amino acid is. A few example lines from the mutations database are
shown in table 3.2.

Table 3.2: The mutations database lists all antibiotics resistance mutations, and is linked to the
targets database by target ID.

Target ID Antibiotics Nucleotide/
protein

Position Reference
nucleotide/
amino acid

Mutation

target0000001 Quinolones prot 84 A P
target0000001 Quinolones prot 84 A V
target0000003 Quinolones prot 57 S T

3.1.4 Reporting

Three kinds of reports are created. The first one lists the mutations that were
found, and whether or not these are associated with antibiotic resistance. The
second report lists all known resistance mutation positions that the pipeline was
unable to evaluate in the input genome. This can either be because the position was
not covered by the BLAST hits, or because of an ambiguous base code. Both cases
mean it is unknown whether a resistance mutation is present or not. The second
report is included so that the user will know if the absence of a resistance mutation
in the first report means that the mutation is not present, or if it just means that
no information on it is available. Finally, the third report lists all target sequences
that are not covered, in order to clearly show when a target sequence is not covered
by any BLAST hits.

15

3. Methods

3.2 Pipeline Arguments

The behaviour of the pipeline can be controlled with several arguments, which are
listed in table 3.3. The only required arguments are --infile and --species.

Table 3.3: Arguments of the pipeline. Mandatory arguments are underlined.

Argument Short form Explanation

--infile -i Path of the genome file to be analysed.

--out -o Takes path to output directory. Default: create output directory in
current working directory. If existing path is specified, files in that
directory may be removed if names conflict.

--species -s Takes abbreviated name of the species of the input genome (e.g. “E.
coli” - quotation marks are necessary due to the space in the name).

--list_species Lists all currently supported species and exits.

--verbose -v Sets output level to verbose.

--quiet -q Suppresses all printed output.

--logfile -l Redirects output (verbose) to log file. If no path is specified, it is
placed in the output directory.

--ext_program_output Includes external programs’ output in the pipeline’s output.

--keep_tmp_files Prevents deletion of temporary files (alignments, translations etc.).

--BLAST_perc_identity Takes a float (0 ≤ x ≤ 100) for “percent identity cut-off” in BLAST.
Default is the same as Megablast default (95 %)

--report_all_coverage Includes all missing positions in coverage report, not just those related
to antibiotic resistance.

3.3 Substitution Study in E. coli and Shigella

All RefSeq genomes for E. coli and every species of the Shigella genus were down-
loaded from NCBI [21]. All RefSeq genomes are complete, but can be in varying
stages of assembly, making them suitable for testing the pipeline. Knowledge of flu-
oroquinolone resistance mutations in E. coli most likely applies to the genus Shigella
as well, due to its close relationship to E. coli. Before pathogenic forms of E. coli
were discovered, Shigella was classified as a separate genus due to its clinical signif-
icance. Later research has clearly shown that they are one species [22]. Therefore,
Shigella was included in this study.

The downloaded genomes were all analysed in the pipeline for fluoroquinolone re-
sistance mutations, generating data on mutations in the DNA gyrase subunit genes
gyrA and gyrB, as well as the topoisomerase IV subunit genes parC and parE. All
subsequent analysis was done for E. coli and Shigella separately. The number of
substitutions in every position in both the nucleotide sequence and the amino acid
sequence for all four subunits was summed up across the genomes. All substitu-
tions found after an indel in a genome were discarded in order to avoid counting
substitutions caused by frameshift, as global alignment of a frameshifted amino acid
sequence produces very erratic results. Additionally, since overlapping BLAST hits

16

3. Methods

can result in multiple substitutions in the same reference position in one genome,
the extra substitutions in every reference position with more than one substitution
were counted. This was done in order to check if the percentage of genomes with
substitutions would be overestimated, and if so, by how much. For the amino acid
sequences, the most frequent substitution positions (>3 % of genomes) were also
checked for which amino acids the substitutions were to. For the nucleotide se-
quences, analysis of the ratio of synonymous versus non-synonymous mutations was
performed. This was done by checking whether an amino acid substitution resulted
for each single nucleotide substitution. Analysis and graph creation was done in R
and Python.

17

3. Methods

18

4
Results

In this section, two different kinds of results are presented. The first is an exam-
ple of the output of the pipeline, and the second is the results of the substitution
study.

4.1 Pipeline Output

A few example lines from a report file that could be generated by the pipeline are
shown in table 4.1. Target names have been abbreviated to fit the page, and would
normally read “DNA gyrase - subunit GyrA” etc. “Involved antibiotics” shows which
classes of antibiotics are present among the resistance mutations for a given target
in the database. Called mutations are listed under “Mutation”. The first letter
indicates the base in the reference sequence, the following number its position in the
reference sequence, and the remainder the mutation. Hyphens represent deletions,
and multiple letters indicate insertions. For instance, “C231CT” means a T was
inserted after the C at position 231. “Nucl/prot” simply indicates whether a given
mutation is in the DNA or the amino acid sequence. Should a mutation (e.g. S83L
in GyrA) confer resistance to an antibiotic, or antibiotics, they will be listed under
“Resistance”.

Table 4.1: Example lines from a report file that could be generated by the pipeline.

Target
name

Involved
antibiotics

Mutation Nucl/
prot

Resistance FASTA
sequence(s)

Mutation
prevalence

Sequence coverage

GyrA Quinolones C248T nucl ’1’ Full
GyrA Quinolones S83L prot Quinolones ’1’ Full
GyrB Quinolones C231CT nucl ’1’ Full
ParC Quinolones G239T nucl ’2’, ’3’, ’3’, ’4’ 0.25 Partial, w/ start
ParC Quinolones G239C nucl ’3’, ’3’, ’2’, ’4’ 0.5 Partial, w/o start
ParC Quinolones G239C nucl ’3’, ’3’, ’2’, ’4’ 0.5 Full
ParE Quinolones T1372- nucl ’5’ Full

“FASTA sequence(s)” lists the FASTA sequence in the input genome that the mu-
tation was found on. If a reference sequence position is covered by two or more
BLAST hits, the FASTA sequences they were found on will all be listed. For multi-
copy genes within one FASTA sequence, the same sequence can be listed more than
once. For every mutation whose position is found on several FASTA sequences,

19

4. Results

the first sequence listed under “FASTA sequence(s)” will be the sequence where the
mutation was found. This is illustrated by the three mutations in position 239 in
ParC in table 4.1. Note that two were found on the same FASTA sequence, and
that the position was covered four times. Since only three mutations are reported,
there must be one place where the base is not mutated.

Whenever a reference sequence position is covered by more than one BLAST hit,
the mutations at that position, or lack thereof, can be different from each other.
The degree to which the mutations are the same can be read from the “Mutation
prevalence” column, where

Mutation prevalence = Number of BLAST hits with same mutation
Number of BLAST hits covering given position

Taking the example of position 239 in ParC again (table 4.1), G239C has a mutation
prevalence of 0.5, since it occurs twice among four hits (including the non-mutated
base), while the same value for G239T is 0.25 (one mutation in four hits).

Finally, “Sequence coverage” provides information on how much of the reference
sequence was covered by the extended BLAST hit. The possible levels are “Full”,
“Partial w/ start”, and “Partial w/o start”. Whether the start of the sequence
is included or not in a partial hit is of interest, as the reading frame cannot be
guaranteed to be correct if the start of the sequence is missing in a hit. There may
be indels that change it before the start of the hit.

Positions that are not covered by the extended BLAST hits are listed in the mutations
not covered report file (see table 4.2). By default, only positions where mutations
can confer antibiotic resistance are listed, but all non-covered positions can be in-
cluded through the use of an optional argument (--report_all_coverage) to the
pipeline. In case no positions in a target sequence are covered, that sequence’s name
will be listed in the targets not covered report (see table 4.3).

Table 4.2: Excerpt from a mutations not covered report file, with optional argument given to
include positions not related to antibiotics resistance mutations. Target names have been abbre-
viated.

Target name Involved antibiotics Not covered Nucl/prot Resistance
ParE Quinolones 458 prot Quinolones
ParE Quinolones 459 prot
ParE Quinolones 460 prot Quinolones

Table 4.3: Example of a targets not covered report file.

Target name Involved antibiotics
DNA gyrase - subunit GyrB Quinolones
Topoisomerase IV - subunit ParC Quinolones
Topoisomerase IV - subunit ParE Quinolones

20

4. Results

4.2 Substitution Study Results

Due to the similarity of the results between E. coli and Shigella, and the large
number of graphs, the results for E. coli will be presented first, and in greater detail.
A comparison between E. coli and Shigella may be found in section 4.2.3.

Running all 4660 E. coli genomes through the pipeline sequentially took 5 hours,
41 minutes, and 21 seconds, meaning the average analysis time was 4.4 seconds per
genome. This is by no means a controlled measurement, as no care was taken to
limit other processes running on the system, and all the genome files were copied and
unzipped during the run, but it serves as an indication of approximately how long it
takes the pipeline to search a genome for fluoroquinolone resistance mutations.

4.2.1 Substitution Analysis

There was considerable variability in the nucleotide sequence of the analysed sub-
units, as shown in figures 4.1 (gyrA), 4.3 (gyrB), 4.5 (parC), and 4.7 (parE), where
the substitution percentage is shown in grey. As an overlay on the graphs, the
percentage of genomes with single nucleotide substitutions that cause amino acid
substitutions is shown in red. These results clearly show that most substitutions
are synonymous. Comparing the non-synonymous nucleotide substitutions to the
amino acid substitutions - see figures 4.2 (GyrA), 4.4 (GyrB), 4.6 (ParC), and 4.8
(ParE) - it is clear that they match well.

Of all the E. coli genomes, 70 contained insertions in the topoisomerase genes. Many
of these were checked to see if the insertion identification was correct, which resulted
in two common insertion types being identified. The first was the insertion of a large
amount of N’s, typical of a scaffold where the sequence of bases between two contigs
is unknown, and the distance is estimated. These cases did not cause frameshift,
as they resulted in one BLAST hit on either side of the insertion. Those hits were
protected from merging due to the high N content of the mismatching region. This
is exactly the case that feature was designed for. In the second type of insertion,
which caused frameshift, the insertion was part of a repeat sequence of one base,
such as an extra A in a sequence of several A’s, constituting a homopolymer.

Because some genomes (90 in the case of E. coli) contained overlapping BLAST hits,
there were cases of multiple nucleotide substitutions in one reference position in the
same genome. For the vast majority of these cases, there were only one or two extra
substitutions in a reference position across all genomes. Ten reference positions had
more than ten extra substitutions, with the highest amount being 35. That means
that among all the nucleotide substitution graphs for E. coli (figures 4.1, 4.3, 4.5,
and 4.7), there is one bar that is 0.75 percentage units (35/4660) too high due to
overcounting of substitutions, and that some other bars are affected, but to a much
lesser extent. Most of these extra substitutions (~89 % of affected positions) were
synonymous mutations. For the amino acid sequences, only eight reference positions
had extra substitutions, with the highest amount being two.

21

4. Results

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

Base number

%
 o

f g
en

om
es

Substitution percentage − gyrA (DNA sequence)

Figure 4.1: Substitution percentage for the DNA sequence of gyrA in E. coli. Red bars denote
non-synonymous mutations.

83

87

678

828

0

5

10

15

20

25

30

35

40

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

Amino acid number

%
 o

f g
en

om
es

Substitution percentage − GyrA (amino acid sequence)

Figure 4.2: Substitution percentage for the amino acid sequence of subunit GyrA in DNA gyrase
in E. coli.

22

4. Results

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Base number

%
 o

f g
en

om
es

Substitution percentage − gyrB (DNA sequence)

Figure 4.3: Substitution percentage for the DNA sequence of gyrB in E. coli. Red bars denote
non-synonymous mutations.

185

492

618

703

0

5

10

15

20

25

30

35

40

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Amino acid number

%
 o

f g
en

om
es

Substitution percentage − GyrB (amino acid sequence)

Figure 4.4: Substitution percentage for the amino acid sequence of subunit GyrB in DNA gyrase
in E. coli.

23

4. Results

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Base number

%
 o

f g
en

om
es

Substitution percentage − parC (DNA sequence)

Figure 4.5: Substitution percentage for the DNA sequence of parC in E. coli. Red bars denote
non-synonymous mutations.

80

84 192

471

475

481

718

0

5

10

15

20

25

30

35

40

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Amino acid number

%
 o

f g
en

om
es

Substitution percentage − ParC (amino acid sequence)

Figure 4.6: Substitution percentage for the amino acid sequence of subunit ParC in topoisomerase
IV in E. coli.

24

4. Results

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

0 200 400 600 800 1000 1200 1400 1600 1800

Base number

%
 o

f g
en

om
es

Substitution percentage − parE (DNA sequence)

Figure 4.7: Substitution percentage for the DNA sequence of parE in E. coli. Red bars denote
non-synonymous mutations.

136

155

458

529

0

5

10

15

20

25

30

35

40

50 100 150 200 250 300 350 400 450 500 550 600

Amino acid number

%
 o

f g
en

om
es

Substitution percentage − ParE (amino acid sequence)

Figure 4.8: Substitution percentage for the amino acid sequence of subunit ParE in topoisomerase
IV in E. coli.

25

4. Results

4.2.2 Amino Acid Breakdown of Substitutions

For most amino acid positions where the substitution percentage was above 3 %
(lower percentage positions were not considered), there was only one amino acid
that the substitutions were to, or one that composed the vast majority of the substi-
tutions, as shown in figures 4.9 (GyrA), 4.10 (GyrB), 4.11 (ParC), and 4.12 (ParE).
The amount of genomes with missing data was low for every position. Missing data
can be a result of lack of coverage by BLAST hits, or ambiguous base codes in
the triplet, both resulting in the unknown amino acid X during translation. It can
also be caused by indels prior to the position in question, as all positions after an
indel are disregarded to avoid counting substitutions caused by frameshift and the
resulting bad global alignment.

In terms of fluoroquinolone resistance, many of the genomes had resistance muta-
tions in positions 83 and 87 in GyrA (figure 4.9), 80 and 84 in ParC (figure 4.11),
and 529 in ParE (figure 4.12). No resistance mutations were found in GyrB in any
genome.

W

L

A

Y
H

G Q
E

N

E

V
T

S

0

5

10

15

20

25

30

35

40

83 87 678 828

Amino acid number

%
 o

f g
en

om
es

Missing

A

E

G

H

L

N

Q

S

T

V

W

Y

Substitution percentage with amino acid breakdown − GyrA

Figure 4.9: Substitution percentage for all amino acid positions with substitutions in >3 % of
genomes for GyrA in E. coli, with amino acid breakdown. White diagonal lines indicate fluoro-
quinolone resistance. Right-hand bars show percentage of genomes with unknown amino acids.

26

4. Results

K

D

A

N

T

D
0

5

10

15

20

25

30

35

40

185 492 618 703

Amino acid number

%
 o

f g
en

om
es

Missing

A

D

K

N

T

Substitution percentage with amino acid breakdown − GyrB

Figure 4.10: Substitution percentage for all amino acid positions with substitutions in >3 % of
genomes for GyrB in E. coli, with amino acid breakdown. None of the detected substitutions were
associated with resistance. Right-hand bars show percentage of genomes with unknown amino
acids.

*

I

R

V

K

G

Q

D

A

V

T

G

E

L

H

I

R

A

0

5

10

15

20

25

30

35

40

80 84 192 471 475 481 718

Amino acid number

%
 o

f g
en

om
es

Missing

A

D

E

G

H

I

K

L

Q

R

T

V

*

Substitution percentage with amino acid breakdown − ParC

Figure 4.11: Substitution percentage for all amino acid positions with substitutions in >3 % of
genomes for ParC in E. coli, with amino acid breakdown. White diagonal lines indicate fluoro-
quinolone resistance. Right-hand bars show percentage of genomes with unknown amino acids.

27

4. Results

L

I

G

N

R

W
T

PR

A

S

L

0

5

10

15

20

25

30

35

40

136 155 458 529

Amino acid number

%
 o

f g
en

om
es

Missing

A

G

I

L

N

P

R

S

T

W

Substitution percentage with amino acid breakdown − ParE

Figure 4.12: Substitution percentage for all amino acid positions with substitutions in >3 % of
genomes for ParE in E. coli, with amino acid breakdown. White diagonal lines indicate fluoro-
quinolone resistance. Right-hand bars show percentage of genomes with unknown amino acids.

4.2.3 Comparison between E. coli and Shigella

The same types of graphs were generated for Shigella as for E. coli. In the interest
of readability, they may be found in appendix A.

In the Shigella genomes, fewer nucleotide positions had substitutions than in the
E. coli genomes, as evidenced by comparing figures 4.1, 4.3, 4.5, and 4.7 (E. coli)
to figures A.1, A.3, A.5, and A.7 (Shigella). However, the substituted positions
had a higher substitution percentage in general. Just like for E. coli, synonymous
substitutions were much more common than non-synonymous ones. The profiles of
non-synonymous mutations in figures A.1, A.3, A.5, and A.7 also matched the amino
acid substitutions in figures A.2, A.4, A.6, and A.8 well, apart from one position.
In gyrA, position 1270 has a non-synonymous mutation (C1270T) in approximately
15 % of the analysed genomes (figure A.1), whereas the corresponding amino acid
(L423) is not substituted in any genomes (figure A.2). However, reviewing the raw
mutation data (not shown), it became clear that every genome with a mutation
in nucleotide 1270 also had a C1272G substitution, in the same codon. Together,
these two mutations result in an unchanged amino acid, even though the C1270T
mutation alone would have resulted in an amino acid substitution from leucine to
phenylalanine, as shown in table 4.4.

The amino acid substitutions that are not related to fluoroquinolone resistance were
mostly different between E. coli (figures 4.9, 4.10, 4.11, and 4.12) and Shigella

28

4. Results

Table 4.4: The resulting codons and amino acids for all combinations of C1270T and C1272G
mutations in gyrA.

Mutation Codon Amino acid
None (reference) CTC Leucine
C1270T TTC Phenylalanine
C1272G CTG Leucine
C1270T and C1272G TTG Leucine

(figures A.9, A.10, A.11, and A.12). In terms of resistance mutations, the same
positions had substitutions in GyrA in Shigella as in E. coli, although with slightly
lower substitution percentages in Shigella. Neither E. coli nor Shigella genomes
had any resistance mutations in GyrB. For ParC, Shigella genomes had resistance
mutations in position 84, but not in 80, unlike E. coli. Finally, there were no
resistance mutations in ParE in Shigella genomes, whereas E. coli genomes had
resistance-associated substitutions in position 529.

29

4. Results

30

5
Discussion

In this thesis, I have constructed a pipeline that automatically identifies resistance
mutations in complete genomes, including draft genomes. I have created a database
for resistance mutations that currently contains chromosomal mutations conferring
resistance to fluoroquinolones in E. coli, but is easily extensible to cover more classes
of antibiotics and other organisms. In order to test the pipeline, as well as to put it
to good use, I have analysed every RefSeq genome available from NCBI for both E.
coli and Shigella, and shown the prevalence of fluoroquinolone resistance mutations
in those genomes. In the sections below, I will discuss pipeline design choices and
their implications, as well as the results of the RefSeq genome analysis study.

5.1 Pipeline Design

Much work was put into making the pipeline able to handle difficult situations, in-
cluding genes split over multiple FASTA sequences, multiple copies of genes, similar
but unrelated sequence snippets, and intra-gene regions of sizeable dissimilarity. For
many of these situations, test cases had to be constructed artificially, as they were
not encountered at all during the large-scale genomic analysis of this thesis. While
all tested scenarios worked well, real data is preferable for finding oversights. Ad-
ditionally, since only four genes have been used during testing, it is possible that
future additions of antibiotics could unearth new challenges. That being said, I have
made an effort to keep the process of the pipeline as general as possible, so that it
works for all manner of target sequences.

There are many cases of cut-off values in the pipeline that are used to distinguish
between different situations, such as when BLAST hits should or should not be
merged, or which hits should be kept and which should be discarded. These values
were set to handle situations that were either thought likely to occur, or that were
encountered during the large-scale genomic analysis. The values are ad hoc, in that
they yield the correct results for the data analysed in this thesis, but have in no
way been optimised. It is also important to point out that although the cut-off
values work well for the current state of the pipeline, there is no guarantee that
they will also work for any target sequences and species that might be added in the
future.

31

5. Discussion

It is important to note that while the pipeline can find resistance mutations, it
provides no information on what level of resistance can be expected from a cer-
tain mutation, or combination of mutations. That is left to the user to evaluate.
Additionally, one should not assume that the list of resistance mutations for any an-
tibiotic in the database is exhaustive. There may be other factors that contribute to
antibiotic resistance as well, such as increased expression of efflux pumps, decreased
expression of outer membrane porins, or mobile resistance genes.

The fact that this pipeline uses external programs for different tasks makes it suscep-
tible to future parsing problems. If BLAST or MAFFT were to change the formats
of their reports, for instance, there could be compatibility issues. The likelihood of
that happening might be low, but it is an unavoidable risk when depending on other
programs.

5.1.1 Sequence Extraction

Using Megablast for local alignment relies on the aligned sequences being highly
similar (approximately 95 % sequence identity) [19]. This is a reasonable expec-
tation, as sequences are unlikely to differ more in the same species. Additionally,
local regions of high dissimilarity do not cause problems here, as BLAST will simply
find hits that meet the sequence identity requirement on either side of such regions,
which can then be analysed separately. Using the database entries for one species
to analyse another could be problematic, but in those cases it would not be safe to
assume that the resistance mutations are the same anyway, so the 95 % sequence
identity issue should not be a matter of great concern. If the pipeline were to be
used on genomes that were not yet assembled, for instance directly on raw sequenc-
ing data, the shorter sequence lengths might make the 95 % cut-off more limiting.
However, that use case would most likely require extensive reworking of the pipeline,
and the BLAST sequence identity cut-off would not be the biggest issue by far.

Another potential problem of the sequence extraction part of the pipeline concerns
indels in the beginning and ends of genes. If BLAST does not match the ends of a
target sequence, hit extension will retrieve the missed bases. However, if there is an
insertion or a deletion in the region outside of the BLAST hit, then the number of
retrieved bases will be off. This would result in not covering the first base in case
of an insertion, or retrieving bases outside of the gene for deletions. The erroneous
bases at the ends would then likely be misidentified as substitutions, rather than
indels. However, the likelihood of indels in the beginning and end of genes was
deemed to be low. Even so, it might be advisable to double-check mutations in the
first and last bases of a sequence, should any be found.

Another challenge posed by indels comes from cases where two BLAST hits are
separated by a region that contains an indel. If a hit extends to cover the indel, but
does not reach the end of the gene, the number of N’s added for padding will be
off. Naturally, the worst possible outcome of this is frameshift. In most cases, hit
merging will avert the issue completely through the extension distance compensation
involved in the process. However, it is possible that the hits will not be merged, most

32

5. Discussion

notably if they are separated by a large amount of N’s, which can occur in scaffold
genomes. For these situations, the “sequence coverage” column of the main report
file comes in handy, since the values “Full” and “Partial w/ start” will indicate that
the reading frame is correct, as the start of the sequence is covered.

Deletion of bad BLAST hits is based on deleting hits that extend too far. This
works well for short sequence matches outside the target sequence, as hit extension
will be much longer than what is deemed acceptable by the pipeline, resulting in
the deletion of the erroneous hit. However, if BLAST finds a hit just outside of
a target sequence’s position in the genome, it is theoretically possible for it to be
protected from deletion by extending up to a legitimate hit in the correct place in
the genome. In the worst case scenario, it might even claim bases in the end of the
target sequence, if its hit extension is handled before the legitimate hit. A potential
solution to this could be to check that all BLAST hits that are in close proximity
to each other are arranged in a logical sequence with respect to what part of the
reference sequence they match, and delete any that do not fit. However, as this
problem was not encountered during this thesis, it was deemed to be too unlikely
to merit the amount of work required to solve it.

5.1.2 Global Alignment

To get the correct reading frame during translation, the pipeline relies on alignment
to the start codon, which will always be at the start of the stored target sequences.
The problem with this is that the reading frame could be changed by the gene end
indels described above. A possible solution to this could be alternative methods of
identifying the reading frame, but the low likelihood of gene end indels makes this
a most likely unnecessary addition.

When the reading frame is changed due to indels, the global alignment of amino
acid sequences runs into problems, as the sequences to be aligned will tend to be
very dissimilar. The report will then include a very large of amount of insertions,
deletions, and substitutions in the amino acid sequence. Diagnosing this situation is
easy when it occurs, though, as a nucleotide insertion or deletion will be immediately
followed by all the mismatches in the amino acid sequence. However, any automated
use of the pipeline will require checks for indels in the nucleotide sequence, so that
frameshifted global alignment results may be handled, just as was done for the
substitution study in this thesis.

5.2 Substitution Study

When analysing the substitution percentages in the four subunits, it is important to
remember that “substitution percentage” refers to the percentage of genomes that
have a different base or amino acid in any given position compared to the reference
sequence. The reference is not the origin of all other strains, and therefore no
conclusions can be drawn about which genomes are mutated; they can simply be

33

5. Discussion

compared. One cannot infer mutation likelihood from the graphs presented in this
thesis. It should also be noted that the analysed genomes do not necessarily represent
all E. coli and Shigella genomes well. It would not be unreasonable to suspect that
clinical isolates are overrepresented among the RefSeq genomes, thereby possibly
resulting in an overestimation of the prevalence of resistance mutations across all
genomes. After all, the entire reason that Shigella is categorised as a genus rather
than a subgroup of E. coli is its pathogenicity [22], highlighting our focus on effects
on humans in our way of thinking of these organisms.

When the insertions that were found in some genomes were investigated, two com-
mon insertion types were identified. One of these was the frameshift-causing inser-
tion of one base into a repeat sequence of the same base, such as an extra A inserted
into a sequence of several A’s. As repeating bases are more difficult to sequence and
assemble correctly, these insertions are probably caused by sequencing or assembly
problems. Since both DNA gyrase and topoisomerase IV are essential, any gene
with frameshift would cause death, if it were the only copy of the gene. Though
the genomes with this kind of insertion were not thoroughly checked for extra gene
copies, sequencing or assembly problems seem much more likely than multiple gene
copies, with one of them being completely useless because of frameshift.

For some reference positions, overlapping BLAST hits resulted in there being more
than one substitution to a reference position in the same genome. However, the
relatively low amount of extra substitutions means the resulting overestimation of
substitution percentages is negligible. This is especially true for the amino acid
sequences, where only very few reference positions had extra substitutions, and at
most two per position. That is certainly few enough not to be visible in the presented
graphs.

The non-synonymous nucleotide substitutions shown in figures 4.1, 4.3, 4.5, and 4.7,
would not necessarily have had to match the amino acid substitutions in figures
4.2, 4.4, 4.6, and 4.8 (and likewise for the corresponding Shigella figures), as multi-
ple mutations in a triplet could result in an exchanged amino acid where only one
mutation would not have. However, as the profiles of the non-synonymous substi-
tutions and the amino acid substitutions are so similar, one may conclude that the
vast majority of amino acid substitutions were caused by single nucleotide muta-
tions. The exception to this is the mutations in nucleotide 1270 in gyrA in Shigella,
which by itself is a non-synonymous mutation, as indicated in figure A.1. However,
the mutations in nucleotide 1272 negated the amino acid change, as shown by the
lack of a substitution in amino acid 423 in figure A.2. The fact that synonymous
mutations vastly outnumbered non-synonymous mutations was expected, as most
non-synonymous mutations would likely reduce fitness. A synonymous mutation,
on the other hand, can be expected to have much less effect on fitness, resulting in
more mutations that remain.

The top substitution percentages were noticeably higher among the Shigella genomes
than among the E. coli genomes. Since the Shigella genus is generally accepted to
be more appropriately characterised as a part of the E. coli species [22], it seems
reasonable that there would be more similarity among Shigella than the larger en-

34

5. Discussion

compassing species of E. coli, resulting in some very high substitution percentages.
If similar subgroups of E. coli were to be analysed separately from the species, simi-
lar results would likely emerge. However, it might also be possible that the apparent
greater diversity of E. coli could be caused by the larger amount of genomes analysed
- 4660 compared to Shigella’s 812.

5.2.1 Fluoroquinolone Resistance Mutations

Previous studies have found that the most common resistance mutation in GyrA in
E. coli is in position S83 (especially the substitution S83L), followed by D87 [4]. This
matches the results of this thesis exactly. For strains with single mutations in GyrA,
S83 substitutions have been found to confer significantly higher fluoroquinolone
resistance than D87 substitutions, providing a likely reason for the higher prevalence
of the former [4]. Studies have also found that S83L results in higher resistance
than S83A, and that D87N yields higher resistance than D87G and D87Y [4]. This
provides a plausible explanation for the fact that S83L and D87N were much more
common than the other mutations in the same positions in this study.

In spontaneous in vitro E. coli mutants, gyrB nucleotide substitutions have been
shown to be approximately as common as gyrA nucleotide substitutions, while the
latter dominated clinical isolates [4]. The substitution study showed no resistance
mutations in gyrB at all, while gyrA resistance mutations were common. This could
possibly be an indication of clinical isolates being overrepresented among RefSeq
genomes.

In ParC, the most commonly reported resistance mutations are in position S80 (es-
pecially the substitution S80I), followed by E84 [4]. Again, this matches the results
of the substitution study. Since ParC is homologous to GyrA, with S83 and D87
in GyrA corresponding to S80 and E84 in ParC [23], this similarity to the GyrA
resistance mutations was expected. In previous studies, ParC and ParE mutations
have not been found without GyrA mutations in E. coli, probably because the fluo-
roquinolone susceptibility of DNA gyrase needs to be reduced before topoisomerase
IV mutations can affect resistance [4]. This could explain why there are fewer S80
and E84 substitutions in ParC than S83 and D87 substitutions in GyrA. It would
have been interesting to check whether the GyrA mutation requirement holds true
for all the E. coli RefSeq genomes, but time constraints prohibited it.

35

5. Discussion

36

6
Conclusion

I have constructed a pipeline (ARM-find) that works well for finding fluoroquinolone
resistance mutations in both E. coli and Shigella genomes, including draft genomes.
Its resistance mutation database is easily extensible, allowing for the identification
of resistance mutations for any antibiotic in any species, provided that it is known
which mutations are relevant. The analysis time required to analyse a genome is
short, making ARM-find suitable to run on consumer-grade computers. Through
scripted use of the pipeline, I have been able to discover that a large portion of
E. coli and Shigella RefSeq genomes contain fluoroquinolone resistance mutations.
The relative frequencies of those resistance mutations matched was has been previ-
ously reported, and the most common resistance mutations were the ones that lower
susceptibility to fluoroquinolones the most.

37

6. Conclusion

38

7
Future Work

ARM-find functions as was intended from the start, but there are improvements
that could be made. The most obvious improvement is of course the addition of
more species and classes of antibiotics, to increase the usefulness of the pipeline
for resistance mutation identification. This would provide the added benefit of
allowing testing of situations that do not occur when just looking for fluoroquinolone
resistance mutations in E. coli. For instance, future reference sequences might be
more difficult to align, due to things like segments that are also found elsewhere
in the genome. Testing situations like these would allow for the optimisation of all
parameter values in the pipeline, which are currently chosen in an ad hoc manner
that works for fluoroquinolone in E. coli.

Another possible feature that comes to mind is automatic species identification.
Currently, the species of the input genome has to be set with the --species ar-
gument. The rationale for this was that the pipeline is meant to be used with
assembled genomes, and it seems unlikely that the species would remain unknown
after assembly. If the pipeline were to be adapted for use with raw sequencing data,
automatic species identification would make much more sense, as it would be more
plausible that the species would be unknown in that scenario. Allowing for input of
raw sequencing data would be a big improvement for the pipeline, for several rea-
sons. It would reduce the level of expertise required to use it, and it would probably
reduce the amount of time from sequencing to resistance mutation identification,
allowing for speedier determination of suitable treatment in hospitals. Reducing the
time required for resistance identification is of course a big part of why this pipeline
was made in the first place. However, this feature would probably require extensive
reworking of the workflow. If the reads from the sequencing data are not sufficiently
long, which they most likely would not be, some assembly might be required in the
pipeline. That would not be an easy feature to implement, but it would certainly be
useful. Another option could be to align the reads against the reference sequence,
and modify reporting so that it would not produce one line for every mutation.

One feature that already exists, but could be improved upon, is handling of over-
lapping sequences. The most important addition would be identification of multiple
gene copies. Currently, whether a mutation is covered elsewhere in the genome or
not is made clear by the report through the FASTA sequence(s) and mutation preva-
lence columns. However, no information is provided on why the position is covered
multiple times. Identification of multiple gene copies would be very useful, as a

39

7. Future Work

resistance mutation in one gene copy might not mean the same thing if there are
non-mutated copies, as it would have if there were only one copy of the gene. That
sort of information would aid in determination of whether the analysed bacteria are
clinically resistant to a certain antibiotic or not.

I would like to slightly rework the mutations database to include information for
every mutation on the references that support its inclusion. This would simplify fu-
ture maintenance of the database, as well as lend it more credibility. The easiest way
to implement this would probably be the addition of a column of comma-separated
Digital Object Identifiers (DOIs) to the articles that the resistance mutations are
referenced in.

These are just some of the features that would be useful in ARM-find. Other
examples include making it work on non-Linux platforms, or even creating a website
where analysis could be run on servers, instead of the user’s computer. While
certainly useful, those features are less likely as future additions than the ones
discussed above.

40

Bibliography

[1] Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Na-
ture. 2000 Aug;406(6797):775–781.

[2] Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges
and responses. Nat Med. 2004 Dec;10(12 Suppl):S122–129.

[3] Sköld O. Sulfonamide resistance: mechanisms and trends. Drug Resist Update.
2000;3(3):155–160.

[4] Hopkins KL, Davies RH, Threlfall EJ. Mechanisms of quinolone resistance in
Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents.
2005 May;25(5):358–373.

[5] Leekha S, Terrell CL, Edson RS. General principles of antimicrobial therapy.
Mayo Clin Proc. 2011 Feb;86(2):156–167.

[6] van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation
sequencing technology. Trends Genet. 2014 Sep;30(9):418–426.

[7] Witney AA, Gould KA, Arnold A, Coleman D, Delgado R, Dhillon J, et al. Clin-
ical application of whole-genome sequencing to inform treatment for multidrug-
resistant tuberculosis cases. J Clin Microbiol. 2015 May;53(5):1473–1483.

[8] Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O,
et al. Identification of acquired antimicrobial resistance genes. J Antimicrob
Chemother. 2012 Nov;67(11):2640–2644.

[9] Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD
2017: expansion and model-centric curation of the comprehensive antibiotic
resistance database. Nucleic Acids Res. 2017 Jan;45(D1):D566–D573.

[10] Liu B, Pop M. ARDB–Antibiotic Resistance Genes Database. Nucleic Acids
Res. 2009 Jan;37(Database issue):D443–447.

[11] Sharma PC, Jain A, Jain S. Fluoroquinolone antibacterials: a review on chem-
istry, microbiology and therapeutic prospects. Acta Pol Pharm. 2009;66(6):587–
604.

[12] Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Mi-
crobiol Mol Biol R. 1997;61(3):377–92.

41

Bibliography

[13] Altschul A, Gish W, Miller W, Myers E, Lipman D. Basic local alignment
search tool. J Mol Biol. 1990 Oct;215(3):403–410.

[14] Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids
Res. 2002 Jul;30(14):3059–3066.

[15] Korf I, Yandell M, Bedell J. BLAST. 1st ed. Sebastopol, California: O’Reilly
and Associates, Inc.; 2003.

[16] Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software
Version 7: Improvements in Performance and Usability. Mol Biol Evol.
2013;30(4):772–780.

[17] Katoh K, Kuma Ki, Toh H, Miyata T. MAFFT version 5: improvement in
accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33(2):511–
518.

[18] Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al.
PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic
Acids Res. 2014 Jan;42(Database issue):D581–591.

[19] Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL.
NCBI BLAST: a better web interface. Nucleic Acids Res. 2008 Jul;36(Web
Server issue):5–9.

[20] Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet. 2000 Jun;16(6):276–277.

[21] McEntyre J, Ostell J, editors. The NCBI Handbook. Bethesda (MD): National
Center for Biotechnology Information (US); 2002.

[22] Lan R, Reeves P. Escherichia coli in disguise: molecular origins of Shigella.
Microbes Infect. 2002;4(11):1125 – 1132.

[23] Kumagai Y, Kato JI, Hoshino K, Akasaka T, Sato K, Ikeda H. Quinolone-
resistant mutants of Escherichia coli DNA topoisomerase IV parC gene. An-
timicrob Agents Chemother. 1996 Mar;40(3):710–714.

42

A
Shigella Results

I

A. Shigella Results

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

Base number

%
 o

f g
en

om
es

Substitution percentage − gyrA (DNA sequence)

Figure A.1: Substitution percentage for the DNA sequence of gyrA in Shigella. Red bars denote
non-synonymous mutations.

83

87

211

678

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

Amino acid number

%
 o

f g
en

om
es

Substitution percentage − GyrA (amino acid sequence)

Figure A.2: Substitution percentage for the amino acid sequence of subunit GyrA in DNA gyrase
in Shigella.

II

A. Shigella Results

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Base number

%
 o

f g
en

om
es

Substitution percentage − gyrB (DNA sequence)

Figure A.3: Substitution percentage for the DNA sequence of gyrB in Shigella. Red bars denote
non-synonymous mutations.

775

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Amino acid number

%
 o

f g
en

om
es

Substitution percentage − GyrB (amino acid sequence)

Figure A.4: Substitution percentage for the amino acid sequence of subunit GyrB in DNA gyrase
in Shigella.

III

A. Shigella Results

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Base number

%
 o

f g
en

om
es

Substitution percentage − parC (DNA sequence)

Figure A.5: Substitution percentage for the DNA sequence of parC in Shigella. Red bars denote
non-synonymous mutations.

80

452

533 542 747

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Amino acid number

%
 o

f g
en

om
es

Substitution percentage − ParC (amino acid sequence)

Figure A.6: Substitution percentage for the amino acid sequence of subunit ParC in topoiso-
merase IV in Shigella.

IV

A. Shigella Results

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 200 400 600 800 1000 1200 1400 1600 1800

Base number

%
 o

f g
en

om
es

Substitution percentage − parE (DNA sequence)

Figure A.7: Substitution percentage for the DNA sequence of parE in Shigella. Red bars denote
non-synonymous mutations.

136

408

473

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

50 100 150 200 250 300 350 400 450 500 550 600

Amino acid number

%
 o

f g
en

om
es

Substitution percentage − ParE (amino acid sequence)

Figure A.8: Substitution percentage for the amino acid sequence of subunit ParE in topoiso-
merase IV in Shigella.

V

A. Shigella Results

L

Y G

N
Y

E

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

83 87 211 678

Amino acid number

%
 o

f g
en

om
es

Missing

E

G

L

N

Y

Substitution percentage with amino acid breakdown − GyrA

Figure A.9: Substitution percentage for all amino acid positions with substitutions in >3 %
of genomes for GyrA in Shigella, with amino acid breakdown. White diagonal lines indicate
fluoroquinolone resistance. Right-hand bars show percentage of genomes with unknown amino
acids.

L

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

775

Amino acid number

%
 o

f g
en

om
es

Missing

L

Substitution percentage with amino acid breakdown − GyrB

Figure A.10: Substitution percentage for all amino acid positions with substitutions in >3 % of
genomes for GyrB in Shigella, with amino acid breakdown. No resistance mutations were detected.
Right-hand bars show percentage of genomes with unknown amino acids.

VI

A. Shigella Results

I

V

V

S N

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

80 452 533 542 747

Amino acid number

%
 o

f g
en

om
es

Missing

I

N

S

V

Substitution percentage with amino acid breakdown − ParC

Figure A.11: Substitution percentage for all amino acid positions with substitutions in >3
% of genomes for ParC in Shigella, with amino acid breakdown. White diagonal lines indicate
fluoroquinolone resistance. Right-hand bars show percentage of genomes with unknown amino
acids.

I

G

N

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

136 408 473

Amino acid number

%
 o

f g
en

om
es

Missing

G

I

N

Substitution percentage with amino acid breakdown − ParE

Figure A.12: Substitution percentage for all amino acid positions with substitutions in >3 % of
genomes for ParE in Shigella, with amino acid breakdown. No resistance mutations were detected.
Right-hand bars show percentage of genomes with unknown amino acids.

VII

A. Shigella Results

VIII

B
Pipeline Code

1 #!/ usr /bin /env python3
2 # ARM−f i nd p i p e l i n e
3 #
4 # Overview
5 # This p i p e l i n e takes a genomic DNA sequence in FASTA format and looks f o r

a n t i b i o t i c r e s i s t a n c e mutations saved in i t s database .
6 #
7 #
8 # Main Steps :
9 #

10 # I t e r a t i o n through every t a r g e t sequence in the p i p e l i n e ’ s database :
11 # 1 . Reading r e f e r e n c e mutations and check ing whether sequence codes f o r a

p ro t e in .
12 # 2 . Sequence ex t r a c t i on from genome FASTA f i l e o f gene that can conta in

a n t i b i o t i c s r e s i s t a n c e mutations .
13 # − BLAST alignment o f r e f e r e n c e sequence aga in s t genome .
14 # − Merging o f BLAST h i t s from same FASTA sequence and same gene copy .
15 # − Extension o f BLAST h i t s to cover r e f e r e n c e sequence f u l l y .
16 # − Dele t i on o f bad BLAST h i t s .
17 # − N padding o f BLAST h i t s that don ’ t cover r e f e r e n c e sequence f u l l y .
18 # 3 . Global al ignment o f nuc l e o t i d e sequence (as we l l as t r an s l a t ed sequence i f

i t i s a p ro t e in) aga in s t the r e f e r e n c e sequence .
19 # 4 . Mutation c a l l i n g
20 # 5 . Comparison with a n t i b i o t i c s r e s i s t a n c e mutations in database .
21 # − Report c r e a t i on
22 #
23 #
24 # Dependencies :
25 # 1 . NCBI BLAST
26 # 2 . MAFFT
27 # 3 . EMBOSS
28 #
29 ###
30 # IMPORTS
31 ###
32
33 import sys
34 import os . path
35 import s h u t i l
36 import subproces s
37 import argparse
38 import random
39 import datet ime
40 import er rno
41 import re
42 import c o l l e c t i o n s
43
44
45 ###
46 # Main data f low
47 ###
48
49
50 de f main () :

IX

B. Pipeline Code

51 # f i nd d i r e c t o r y o f t h i s s c r i p t
52 g l oba l p i p e l i n e_d i r
53 p ip e l i n e_d i r = os . path . dirname (os . path . r ea lpa th (__file__))
54 # Parse arguments
55 parse_parameters ()
56 # I n i t i a l i s e output /working d i r e c t o r y
57 c rea te_d i r (args . out)
58
59 # Saving repor t path v a r i a b l e s
60 mutations_report_path = args . out + " / repo r t . txt "
61 mutations_not_covered_path = args . out + " /mutations_not_covered . txt "
62 targets_not_covered_path = args . out + " / targets_not_covered . txt "
63
64 # Remove old output f i l e s in output d i r e c t o r y
65 remove_old_out_fi les ([mutations_report_path , mutations_not_covered_path ,

targets_not_covered_path])
66
67 # Read input f i l e to va r i ab l e
68 g l oba l genome_contents
69 with open (args . i n f i l e . name , " r ") as my f i l e :
70 genome_contents = myf i l e . read ()
71
72 # Read ’ mutations ’ and ’ p r o t e i n s ’ databases
73 mutations_db = read_database (" mutations ")
74 targets_db = read_database (" t a r g e t s ")
75
76 # Check i f s p e c i e s argument i s supported . Exit i f not .
77 supported_spec ies = get_supported_spec ies (targets_db)
78 i f a rgs . s p e c i e s not in supported_spec ie s :
79 p r i n t (’ERROR: " ’ + args . s p e c i e s + ’ " ’ + ’ was not r e cogn i s ed as a supported

s p e c i e s . Supported s p e c i e s are : ’)
80 f o r s p e c i e s in supported_spec ies :
81 p r i n t (s p e c i e s)
82 p r i n t ()
83 sys . e x i t ()
84
85 # Keep only t a r g e t s f o r the c o r r e c t s p e c i e s
86 targets_db = get_targe t s_for_spec i e s (targets_db)
87
88 # I n i t i a t e r epor t l i s t s
89 mutation_report = []
90 mutation_coverage_report = []
91 target_ID_coverage_report = []
92
93 # Make BLAST database from genome f i l e
94 BLAST_database_path = make_BLAST_db(args . i n f i l e . name , args . out + " /tmp")
95
96 L_print (" I t e r a t i n g through ta r g e t sequences in t a r g e t s database . ")
97 # I t e r a t e through each ta r g e t ID to handle one sequence at a time
98 f o r target_ID in targets_db :
99 L_print ("Working with t a r g e t ’ {0} . " . format (targets_db [target_ID] [1]))
100
101 # Saving path to r e f e r e n c e sequence and working d i r e c t o r y f o r cur rent t a r g e t ID
102 refseq_path = p ipe l i n e_d i r + " / re f e r ence_sequence s / " + target_ID + " . f a s t a "
103 out_dir = args . out + " /tmp/ " + target_ID
104
105 # Check that the r e f e r e n c e sequence f i l e i s a v a i l a b l e
106 i f ch e ck_f i l e (re fseq_path) i s Fa l se :
107 p r i n t ("ERROR: Path to r e f e r e n c e sequence ({0}) could not be r e s o l v ed . Check

i n t e g r i t y o f t a r g e t s database . Shutt ing down . " . format (re fseq_path))
108 sys . e x i t ()
109
110 # I n i t i a t i n g tmp d i r e c t o r y f o r t a r g e t ID
111 crea te_d i r (out_dir)
112
113 ###
114 # READING REFERENCE MUTATIONS
115
116 # Reading r e f e r e n c e mutations
117 ref_mutations = read_ref_mutations (target_ID , args . sp e c i e s , mutations_db ,

X

B. Pipeline Code

targets_db)
118
119 # Check i f " t a r g e t ID" sequence i s a p ro t e in .
120 i f l en (ref_mutations . prot) > 0 :
121 t r an s l a t i on_requ i r ed = True
122 e l s e :
123 t r an s l a t i on_requ i r ed = False
124
125 ###
126 # SEQUENCE EXTRACTION
127
128 # BLAST alignment
129 BLAST_alignment_path = BLAST_align (args . i n f i l e . name , refseq_path , out_dir ,

BLAST_database_path)
130
131 # BLAST pars ing
132 match_dict , query , no_of_hits = parse_BLAST_alignment (BLAST_alignment_path ,

re fseq_path)
133
134 i f no_of_hits > 0 :
135 # Checking f o r mu l t ip l e h i t s from any one FASTA sequence and merging these i f

appropr ia t e
136 match_dict = merge_same_fseq_hits (match_dict , query . l ength)
137
138 # Extending BLAST h i t s to cover r e f e r e n c e sequence , and d e l e t i n g bad h i t s .
139 match_dict , no_of_hits = extend_BLAST_hits (match_dict , query . l ength)
140
141 i f no_of_hits > 0 :
142 # Finding over lap between BLAST h i t s
143 nuc l_over laps = find_nucl_over lap (match_dict)
144
145 # Saving r e f e r e n c e sequence and (padded) h i t sequences
146 nucl_sequences = get_padded_BLAST_sequences (match_dict , query . name , query .

sequence)
147
148 ###
149 # TRANSLATION AND SEQUENCE ALIGNMENT
150
151 # Writing nuc l e o t i d e sequences to f i l e f o r MAFFT
152 extracted_sequences_path = wr i t e_fas ta (nucl_sequences , out_dir + " /

extracted_sequences . f a s t a ")
153
154 # MAFFT alignment and par s ing f o r nuc l e o t i d e sequences
155 MAFFT_nucl_alignment_path = MAFFT_align(extracted_sequences_path , out_dir +

" /MAFFT_nucl_alignment ")
156 MAFFT_aligned_nucl_sequences = parse_MAFFT_alignment (

MAFFT_nucl_alignment_path)
157
158 i f t r an s l a t i on_requ i r ed i s True :
159 # Trans la t i on to amino ac id sequence and par s ing t r a n s l a t i o n
160 trans lated_path = t r a n s l a t e (extracted_sequences_path)
161 remove_trans la t i on_su f f i xe s (trans lated_path)
162
163 # MAFFT alignment and par s ing f o r amino ac id sequences
164 MAFFT_prot_alignment_path = MAFFT_align(trans lated_path , out_dir + " /

MAFFT_prot_alignment ")
165 MAFFT_aligned_prot_sequences = parse_MAFFT_alignment (

MAFFT_prot_alignment_path)
166
167 # Finding ove r l ap s between the amino ac id sequences
168 prot_over laps = f ind_prote in_over lap (MAFFT_aligned_prot_sequences . r e f ,

MAFFT_aligned_prot_sequences . h i t s)
169
170 ###
171 # MUTATION CALLING
172
173 # Ca l l i ng mutations
174 nucl_mutations , bases_covered = cal l_mutat ions (MAFFT_aligned_nucl_sequences

. r e f , MAFFT_aligned_nucl_sequences . h i t s , ref_mutations , " nucl ")
175 i f t r an s l a t i on_requ i r ed i s True :

XI

B. Pipeline Code

176 prot_mutations , amino_acids_covered = cal l_mutat ions (
MAFFT_aligned_prot_sequences . r e f , MAFFT_aligned_prot_sequences . h i t s ,
ref_mutations , " prot ")

177
178 # Compare c a l l e d mutations to r e f e r e n c e sequence mutations and append

r e s u l t s to the mutation r epo r t
179 mutation_report = append_mutation_report (mutation_report ,

MAFFT_aligned_nucl_sequences , nucl_over laps , nucl_mutations , ref_mutations , "
nucl ")

180 i f t r an s l a t i on_requ i r ed i s True :
181 mutation_report = append_mutation_report (mutation_report ,

MAFFT_aligned_prot_sequences , prot_over laps , prot_mutations , ref_mutations , "
prot ")

182
183 # Creat ing empty s e t s f o r append_coverage_report () , in case no h i t s were

a v a i l a b l e
184 i f no_of_hits == 0 :
185 bases_covered = se t ()
186 amino_acids_covered = se t ()
187
188 ###
189 # MUTATION COMPARISON AND REPORT
190
191 # Check which bases /amino ac id weren ’ t covered in the sequence and append to

coverage r epo r t s .
192 mutation_coverage_report , target_ID_coverage_report = append_coverage_report (

mutation_coverage_report ,
193 target_ID_coverage_report ,
194 bases_covered ,
195 ref_mutations ,
196 targets_db ,
197 target_ID ,
198 query . length ,
199 " nucl ")
200 i f t r an s l a t i on_requ i r ed i s True :
201 mutation_coverage_report , target_ID_coverage_report = append_coverage_report (

mutation_coverage_report ,
202 target_ID_coverage_report ,
203 amino_acids_covered ,
204 ref_mutations ,
205 targets_db ,
206 target_ID ,
207 i n t (query . l ength / 3) ,
208 " prot ")
209
210 # Remove ta r g e t ID tmp d i r e c t o r y when i t i s no l onge r needed . Not necessary ,

but keeps the tmp d i r e c t o r y from growing in s i z e unne c e s s a r i l y .
211 i f a rgs . keep_tmp_files i s Fa l se :
212 s h u t i l . rmtree (out_dir)
213
214 L_print (" F in i shed with t a r g e t ’ { 0} ’ . " . format (targets_db [target_ID] [1]) , 2)
215
216 # Remove the e n t i r e tmp d i r e c t o r y
217 i f a rgs . keep_tmp_files i s Fa l se :
218 s h u t i l . rmtree (args . out + " /tmp")
219
220 L_print (" F in i shed with a l l t a r g e t sequences . ")
221
222 # Write mutation repor t to f i l e
223 header = " Target name\ t Invo lved a n t i b i o t i c s \ tMutation\ tNucl / prot \ tRes i s t ance \

tFASTA sequence (s) \ tMutation preva l ence \ tSequence coverage "
224 wr i t e_repo r t_ f i l e (mutation_report , header , mutations_report_path)
225
226 # Write mutation coverage r epo r t to f i l e
227 header = " Target name\ t Invo lved a n t i b i o t i c s \tNot covered \ tNucl / prot \ tRes i s t ance "
228 wr i t e_repo r t_ f i l e (mutation_coverage_report , header , mutations_not_covered_path)
229
230 # Write t a r g e t ID coverage r epor t to f i l e
231 header = " Target name\ t Invo lved a n t i b i o t i c s "
232 wr i t e_repo r t_ f i l e (target_ID_coverage_report , header , targets_not_covered_path)

XII

B. Pipeline Code

233
234 ###
235
236 # Exit
237 L_print ("Done . Ex i t ing ")
238 sys . e x i t ()
239
240
241 ###
242 # Basic input and parameter handl ing
243 ###
244
245
246 # Pr in t s an e r r o r message along with how to c a l l −−help f o r the s c r i p t
247 de f error_msg (msg) :
248 p r i n t (msg)
249 p r i n t ("Try \" python {0} −−help \" f o r more in fo rmat ion . " . format (sys . argv [0]))
250
251
252 # Def in ing arguments , and proce s ing where d i r e c t a c c e s s to the g l oba l args .

INPUT_PARAMETER i s not s u f f i c i e n t
253 # (e . g . a s s i gn i ng p r i n t l e v e l s f o r −−verbose and −−qu i e t)
254 de f parse_parameters () :
255 # Def in ing arguments
256 par s e r = argparse . ArgumentParser ()
257 par s e r . add_argument ("− i " , "−− i n f i l e " , r equ i r ed="True " , type=argparse . FileType (’ r ’

) , he lp=" Input genome f i l e to be analysed − f a s t a format . ")
258 par s e r . add_argument ("−o " , "−−out " , he lp="Output and working d i r e c t o r y . Choose a

non−e x i s t i n g d i r e c t o r y to remove a l l r i s k o f c o n f l i c t i n g f i l e names . ")
259 par s e r . add_argument ("−s " , "−−s p e c i e s " , r equ i r ed="True " , he lp=" Spec i f y the s p e c i e s

o f the input genome − abbrev iated name (e . g . E . c o l i) . ")
260 par s e r . add_argument ("−− l i s t_ s p e c i e s " , a c t i on=" store_true " , he lp=" L i s t s the

s p e c i e s that are supported , and e x i t s . ")
261 par s e r . add_argument ("− l " , "−− l o g f i l e " , nargs=’ ? ’ , const=" standard_path " , he lp="

D i r e c t s a l l output (verbose) to a log f i l e . ")
262 par s e r . add_argument ("−v " , "−−verbose " , a c t i on=" store_true " , he lp=" Pr in t s a l l

messages . ")
263 par s e r . add_argument ("−q " , "−−qu i e t " , a c t i on=" store_true " , he lp=" Suppresses a l l

output . ")
264 par s e r . add_argument ("−−ext_program_output " , a c t i on=" store_true " , d e f au l t=False ,

he lp=" Inc lude s ex t e rna l program output in the p i p e l i n e ’ s output . ")
265 par s e r . add_argument ("−−keep_tmp_files " , a c t i on=" store_true " , d e f au l t=False , he lp=

"Does not d e l e t e any temporary f i l e s . ")
266 par s e r . add_argument ("−−BLAST_perc_identity " , type=f l o a t , he lp=" Sets percent

i d e n t i t y c u t o f f f o r BLAST (0−100) . Defau l t i s 95 %. ")
267 par s e r . add_argument ("−−report_al l_coverage " , a c t i on=" store_true " , d e f au l t=False ,

he lp=" Inc lude s any po s i t i o n that i s not covered in mutations_not_covered report
, r e g a r d l e s s o f whether i t cor re sponds to a p o s s i b l e r e s i s t a n c e mutation or not
. ")

268
269 g l oba l args # Dec lar ing g l oba l i n s i d e parse_parameters , so that both other

f unc t i on s AND th i s func t i on can ac c e s s i t .
270 args = par s e r . parse_args ()
271
272 # Proce s s ing arguments
273 i f a rgs . l i s t_ s p e c i e s :
274 targets_db = read_database (" p r o t e i n s ")
275 supported_spec ies = get_supported_spec ies (targets_db)
276 p r i n t (" \nSupported s p e c i e s : ")
277 f o r s p e c i e s in supported_spec ies :
278 p r i n t (s p e c i e s)
279 p r i n t ()
280 sys . e x i t ()
281
282 i f a rgs . BLAST_perc_identity i s not None :
283 i f a rgs . BLAST_perc_identity <= 0 or args . BLAST_perc_identity >= 100 :
284 error_msg ("ERROR: Sp e c i f i e d BLAST percent i d e n t i t y c u t o f f i s not a f l o a t

between 0 and 100 . ")
285 sys . e x i t ()
286 e l s e :

XIII

B. Pipeline Code

287 args . BLAST_perc_identity = 95
288
289 i f a rgs . qu i e t :
290 args . p r i n t l e v e l = 0
291 e l i f a rgs . verbose :
292 args . p r i n t l e v e l = 2
293 e l s e :
294 args . p r i n t l e v e l = 1
295
296 i f a rgs . out i s not None :
297 i f a rgs . out . endswith (" / ") :
298 args . out = args . out . r s t r i p (" / ")
299 e l s e :
300 # Creates a d i r e c t o r y named with today ’ s date and some random numbers i f no

d i r e c t o r y was s p e c i f i e d , in order not to ove rwr i t e anything
301 date = datet ime . date . today () . i s o f o rmat ()
302 randb i t s = random . ge t r andb i t s (32)
303 args . out = " {0}_{1}_{2} " . format (" p ipe l ine_out " , date , r andb i t s)
304
305 i f a rgs . l o g f i l e == " standard_path " :
306 args . l o g f i l e = args . out + " / log . txt "
307
308 i f a rgs . l o g f i l e i s not None :
309 i n i t _ l o g f i l e ()
310
311
312 # Custom pr in t func t i on that takes l e v e l s 0 , 1 , and 2 to de s i gna t e in which

opera t i on modes
313 # i t w i l l be pr in ted or suppressed (normal , quiet , verbose) .
314 # Writes to l o g f i l e i f one i s s p e c i f i e d .
315 de f L_print (msg , l e v e l =1) :
316 i f a rgs . l o g f i l e i s None :
317 i f l e v e l <= args . p r i n t l e v e l :
318 p r i n t (msg)
319 e l s e :
320 o f = open (args . l o g f i l e , " a ")
321 o f . wr i t e (msg + " \n")
322 o f . c l o s e ()
323
324
325 # Executes s h e l l commands , and uses L_print to e i t h e r d i sp l ay the output , suppres s

i t , or wr i t e i t to the l o g f i l e .
326 # Note that suppressOut=True can be s e t i f output should be excluded from L_print (

e . g . f o r MAFFT, whose output i s a l l a l ignments)
327 de f L_execute (cmd , l e v e l =1, header=" " , suppress_out=False) :
328 proc = subproces s . Popen (cmd , stdout=subproces s . PIPE , s t d e r r=subproces s . PIPE ,

s h e l l=True)
329 (out , e r r) = proc . communicate ()
330 i f a rgs . ext_program_output i s True :
331 # Print header i f i t ’ s de f i ned − used f o r ex t e rna l programs with pr in ted output
332 i f header != " " :
333 L_print (" \n" + "−" ∗ 80 + " \n " + header + " \n" + "−" ∗ 80 , l e v e l)
334 # For s h e l l commands whose output needs to be saved , but not L_printed , the

f o l l ow i n g c ond i t i o na l he lp s
335 i f suppress_out i s Fa l se :
336 # Empty output should not show up as empty l i n e s in the l og /output
337 i f out . decode (’ a s c i i ’) != " " :
338 L_print (out . decode (’ a s c i i ’) , l e v e l)
339 i f e r r . decode (’ a s c i i ’) != " " :
340 L_print (e r r . decode (’ a s c i i ’) , l e v e l)
341 i f header != " " :
342 L_print ("−" ∗ 80 + " \n" , l e v e l)
343 re turn out
344
345
346 # Removes f i l e s in f i l e _ l i s t , as we l l as tmp d i r e c to ry , in output d i r e c t o r y .
347 de f remove_old_out_fi les (f i l e _ l i s t) :
348 tmp_dir = args . out + " /tmp"
349 i f os . path . e x i s t s (tmp_dir) and os . path . i s d i r (tmp_dir) :
350 s h u t i l . rmtree (tmp_dir)

XIV

B. Pipeline Code

351 f o r f i l e in f i l e _ l i s t :
352 s i lent_remove (args . out + " / " + f i l e)
353
354
355 # I n i t i a l i s e s l o g f i l e . I f f i l e e x i s t s : e x i t i f not an old l o g f i l e , ove rwr i t e i f i t

i s
356 de f i n i t _ l o g f i l e () :
357 # Creates l og f i l e d i r e c t o r y i f i t doesn ’ t e x i s t
358 i f a rgs . l o g f i l e . endswith (" / ") :
359 error_msg (" Sp e c i f i e d l o g f i l e path ended with a ’ / ’ . P lease s p e c i f y the de s i r ed

path o f the l o g f i l e , not i t s parent d i r e c t o r y . ")
360 sys . e x i t ()
361 log_dir = args . l o g f i l e [: a rgs . l o g f i l e . r index (" / ")]
362 c rea te_d i r (log_dir , suppress_pr int=True)
363
364 # Checks i f f i l e e x i s t s , and s tops s c r i p t i f i t i s something e l s e than an old log

f i l e .
365 l o g f i l e_heade r = "#" ∗ 80 + " \n\n Lo g f i l e o f ARM−f i nd \n\n" + "#" ∗ 80 + " \n\n"
366 i f os . path . i s f i l e (args . l o g f i l e) :
367 with open (args . l o g f i l e , " r ") as my f i l e :
368 contents = myf i l e . read ()
369 i f r e . match (l og f i l e_heade r , contents) i s None :
370 error_msg (" L o g f i l e e r r o r : the s p e c i f i e d f i l e a l r eady ex i s t s , but i s not an

old l o g f i l e . Ex i t ing . ")
371 sys . e x i t ()
372 i f os . path . i s d i r (args . l o g f i l e) :
373 error_msg (" L o g f i l e e r r o r : the s p e c i f i e d path i s a d i r e c t o r y . P lease s p e c i f y the

de s i r ed path o f the l o g f i l e . Ex i t ing . ")
374 sys . e x i t ()
375
376 # Removes o ld l o g f i l e and wr i t e s header to new f i l e
377 s i lent_remove (args . l o g f i l e) # I f args . l o g f i l e i s the path to an old l o g f i l e ,

removes i t
378 o f = open (args . l o g f i l e , " a ")
379 o f . wr i t e (l o g f i l e_heade r)
380 o f . c l o s e ()
381
382
383 # Creates d i r e c t o r i e s r e c u r s i v e l y
384 de f c r ea te_d i r (path , suppress_pr int=Fal se) :
385 par t s = path . r s t r i p (" / ") . s p l i t (" / ")
386
387 f o r i in range (l en (par t s)) :
388 tmppath = " / " . j o i n (par t s [: (i + 1)])
389 # This check makes sure paths s t a r t i n g with "/ " don ’ t cause c ra she s .
390 i f tmppath != " " :
391 i f os . path . e x i s t s (tmppath) i s Fa l se :
392 i f suppress_pr int i s Fa l se :
393 L_print (" Creat ing {0} " . format (tmppath) , 2)
394 os . makedirs (tmppath)
395
396
397 # F i l e removal
398 de f s i lent_remove (f i l ename) :
399 try :
400 os . remove (f i l ename)
401 except OSError as e :
402 i f e . e r rno != errno .ENOENT: # errno .ENOENT = no such f i l e or d i r e c t o r y
403 r a i s e # re−r a i s e except ion i f a d i f f e r e n t e r r o r occured
404
405
406 # Checks f o r a f i l e
407 de f che ck_f i l e (f i l ename) :
408 i f os . path . e x i s t s (f i l ename) i s Fa l se or os . path . g e t s i z e (f i l ename) == 0 :
409 L_print ("Cannot f i nd {0} . " . format (f i l ename) , 2)
410 re turn Fa l se
411 e l s e :
412 re turn True
413
414

XV

B. Pipeline Code

415 ###
416 # BLAST func t i on s
417 ###
418
419 # Makes a BLAST database from the genome f i l e
420 de f make_BLAST_db(i n f i l e , out_dir) :
421 # Making a BLAST database f o r al ignment
422 L_print ("Making a BLAST database from {0} " . format (i n f i l e) , 2)
423 BLAST_database_path = " {0}/BLAST_database " . format (out_dir)
424 L_execute (" makeblastdb −dbtype nucl −in {0} −out {1} " . format (i n f i l e ,

BLAST_database_path) , l e v e l =2, header="makeblastdb output : ")
425 re turn BLAST_database_path
426
427
428 # Does a BLAST alignment o f a r e f e r e n c e sequence (ref_seq_path) aga in s t a genome

f i l e (i n f i l e) , and gene ra t e s output f i l e s .
429 de f BLAST_align (i n f i l e , ref_seq_path , out_dir , BLAST_database_path) :
430 L_print ("Making a Megablast al ignment o f {0} aga in s t {1} " . format (ref_seq_path ,

i n f i l e) , 2)
431 # Megablast al ignment . BLAST arch ive chosen as output format to enable l a t e r

conver s i on with b las t_formatter
432 BLAST_result_path = " {0}/megablast_alignment . asn " . format (out_dir)
433 L_execute (" b l a s tn −db {0} −query {1} −outfmt 11 −out {2} −perc_ident i ty {3} " .

format (BLAST_database_path , ref_seq_path , BLAST_result_path , s t r (args .
BLAST_perc_identity)) , l e v e l =2)

434 L_print ("BLAST al ignment complete \n" , 2)
435 re turn BLAST_result_path
436
437
438 # Takes a BLAST alignment in output format 11 (BLAST arch ive) and par s e s i t .
439 # Also takes the path to the r e f e r e n c e sequence used as the query in the BLAST

alignment ,
440 # in order to be ab le to re turn that sequence as part o f a l i s t f o r MAFFT alignment

.
441 # Pars ing BLAST in tabu la r format (5) ra the r than the cur rent xml (11) has some

advantages , but s i n c e sequence names with mul t ip l e ad jacent spaces are
truncated badly

442 # in tabu la r format , we would have to c r e a t e a temporary genome f i l e with sequence
names without spaces , and then r ep l a c e the names the re with the c o r r e c t names
in the r epo r t .

443 de f parse_BLAST_alignment (BLAST_alignment , ref_seq_path) :
444 L_print (" Pars ing BLAST al ignment f i l e : {0} " . format (BLAST_alignment) , 2)
445 # Conversion to BLAST XML (f o r par s ing) and pa i rw i s e (f o r r e a d a b i l i t y) output

formats
446 dir_path = os . path . dirname (BLAST_alignment)
447 name = os . path . basename (BLAST_alignment)
448 i f name . endswith (’ . asn ’) :
449 name = name [: −4]
450 xml_fi le_path = " {0}/{1}. xml " . format (dir_path , name)
451 readab le_f i l e_path = " {0}/{1} _pairwise " . format (dir_path , name)
452
453 # The tabu la r format i s probably the best f o r computat iona l ly low−demand pars ing ,

except f o r the f a c t that a l l names with spaces are truncated in f a s t a f i l e s ,
which i s unacceptable .

454 L_print (" Converting BLAST arch ive format to xml ({0}) " . format (xml_fi le_path) , 2)
455 L_execute (" b las t_formatte r −arch ive {0} −outfmt 5 −out {1} " . format (

BLAST_alignment , xml_fi le_path) , l e v e l =2)
456
457 # There i s no po int in c r e a t i n g human−r eadab le f i l e s i f a l l tmp f o l d e r s are

de l e t ed .
458 i f a rgs . keep_tmp_files i s True :
459 L_print (" Converting BLAST arch ive format to human−r eadab le format ({0}) " . format

(readab le_f i l e_path) , 2)
460 L_execute (" b las t_formatte r −arch ive {0} −outfmt 0 −out {1} " . format (

BLAST_alignment , readab le_f i l e_path) , 2)
461
462 L_print (" Ret r i ev ing al ignment in fo rmat ion from f i l e " , 2)
463 # Read xml f i l e contents to va r i ab l e
464 with open (xml_file_path , " r ") as my f i l e :
465 xml_contents = myf i l e . read ()

XVI

B. Pipeline Code

466 # Reading the contents o f the r e f e r e n c e sequence f i l e
467 with open (ref_seq_path , " r ") as my f i l e :
468 re f_seq_contents = myf i l e . read ()
469
470 # Number o f a l ignments made
471 no_of_hits = xml_contents . count ("<Hsp_num>")
472
473 # Name o f query sequence in f a s t a f i l e (a f t e r >) .
474 query_name = re . s earch (r "<BlastOutput_query−def >(.∗?)</BlastOutput_query−def>" ,

xml_contents) . group (1)
475
476 # Replace any XML codes f o r cha ra c t e r s with the ac tua l cha ra c t e r s .
477 query_name = replace_XML_codes (query_name)
478
479 # Sequence name c o r r e c t i o n (l i n e s s t a r t i n g with > in f a s t a f i l e s) . BLAST XML

output format removes a l l but
480 # one space whenever the re are two or more conse cu t i v e spaces in sequence names ,

but only f o r the query sequence .
481 query_name = correct_BLAST_name_spaces (query_name , re f_seq_contents)
482
483 query_seq = get_fseq (query_name , re f_seq_contents) . upper ()
484 query_length = len (query_seq)
485
486 Query = c o l l e c t i o n s . namedtuple (’Query ’ , ’name , sequence , l ength ’)
487 query = Query (query_name , query_seq , query_length)
488
489 # The func t i on has to be ex i t ed i f no h i t s are found , with the same kind o f data

s t r u c tu r e returned as i f i t had been s u c c e s s f u l .
490 # Further handl ing o f t h i s case in main ()
491 i f no_of_hits == 0 :
492 L_print ("WARNING! No BLAST h i t s were found f o r {0} . Mutation c a l l i n g not

p o s s i b l e . " . format (query_name))
493 re turn None , query , no_of_hits
494
495 # Create d i c t i ona ry where each key w i l l be a property o f the BLAST al ignment (e . g

. sequence l ength) .
496 # The va lues w i l l be l i s t s , where the i n d i c e s correspond to BLAST h i t s . For

example , with 2 h i t s , one would get
497 # the sequence l ength o f the second h i t by a c c e s s i n g the l i s t be long ing to the

key f o r sequence length , at the second index .
498 match_dict = {}
499
500 # Save a l l r e l e van t a t t r i b u t e s o f the h i t s to the d i c t i ona ry .
501 match_dict [’ db_strand ’] = re . f i n d a l l (r "<Hsp_hit−frame >(.∗?)</Hsp_hit−frame>" ,

xml_contents)
502 match_dict [’ query_strand ’] = re . f i n d a l l (r "<Hsp_query−frame >(.∗?)</Hsp_query−frame

>" , xml_contents)
503 match_dict [’ db_hit_seq ’] = re . f i n d a l l (r "<Hsp_hseq >(.∗?)</Hsp_hseq>" , xml_contents

)
504 match_dict [’ query_hit_seq ’] = re . f i n d a l l (r "<Hsp_qseq >(.∗?)</Hsp_qseq>" ,

xml_contents)
505 match_dict [’ db_hit_from ’] = re . f i n d a l l (r "<Hsp_hit−from >(.∗?)</Hsp_hit−from>" ,

xml_contents)
506 match_dict [’ db_hit_to ’] = re . f i n d a l l (r "<Hsp_hit−to >(.∗?)</Hsp_hit−to>" ,

xml_contents)
507 match_dict [’ query_hit_from ’] = re . f i n d a l l (r "<Hsp_query−from >(.∗?)</Hsp_query−from

>" , xml_contents)
508 match_dict [’ query_hit_to ’] = re . f i n d a l l (r "<Hsp_query−to >(.∗?)</Hsp_query−to>" ,

xml_contents)
509
510 # As s e v e r a l h i t s can be in one FASTA sequence , and a l l are with in one <Hit></Hit

>, each FASTA sequence name has
511 # to be counted the r i g h t amount o f t imes .
512 matching_fseqs = re . f i n d a l l (r "<Hit >(.∗?)</Hit>" , xml_contents , re .DOTALL)
513 match_dict [’ f s e q ’] = []
514 f o r f s e q in matching_fseqs :
515 fseq_name = re . search (r "<Hit_def >(.∗?)</Hit_def>" , f s e q) . group (1)
516 h i t s_in_fseq = f s e q . count ("<Hsp>")
517 f o r i in range (h i t s_in_fseq) :
518 match_dict [’ f s e q ’] . append (replace_XML_codes (fseq_name))

XVII

B. Pipeline Code

519
520 # Type conve r s i on s
521 match_dict [’ db_hit_from ’] = [i n t (x) f o r x in match_dict [’ db_hit_from ’]]
522 match_dict [’ db_hit_to ’] = [i n t (x) f o r x in match_dict [’ db_hit_to ’]]
523 match_dict [’ query_hit_from ’] = [i n t (x) f o r x in match_dict [’ query_hit_from ’]]
524 match_dict [’ query_hit_to ’] = [i n t (x) f o r x in match_dict [’ query_hit_to ’]]
525
526 # Create match_dict e n t r i e s f o r query/db_hit_from/ to + extens ion , and i n i t i a l i s e

l i s t s in them .
527 match_dict [’ query_hit_from_extended ’] = [None] ∗ no_of_hits
528 match_dict [’ query_hit_to_extended ’] = [None] ∗ no_of_hits
529 match_dict [’ db_hit_from_extended ’] = [None] ∗ no_of_hits
530 match_dict [’ db_hit_to_extended ’] = [None] ∗ no_of_hits
531
532 # Order h i t s by query_hit_from to get l a t e r r epo r t i ng in a s e n s i b l e order from

the pe r sp e c t i v e o f the r e f e r e n c e sequence
533 so r t ed_ ind i c e s = sor t ed (range (no_of_hits) , key=lambda k : match_dict [’

query_hit_from ’] [k])
534 f o r key in match_dict :
535 match_dict [key] = [match_dict [key] [i] f o r i in so r t ed_ ind i c e s]
536
537 re turn match_dict , query , no_of_hits
538
539
540 # Sequence name c o r r e c t i o n (l i n e s s t a r t i n g with > in FASTA f i l e s) . BLAST XML output

format
541 # removes a l l but one space whenever the re are two or more cons e cu t i v e spaces in

sequence names .
542 de f correct_BLAST_name_spaces (sequence_name , f a s t a_ f i l e_con t en t s) :
543 pattern = " "
544 f o r char in sequence_name :
545 i f char == " " :
546 pattern += r " \ s+"
547 e l s e :
548 pattern += re . escape (char)
549 sequence_name = re . search (pattern , f a s t a_ f i l e_con t en t s) . group (0)
550 re turn sequence_name
551
552
553 # Replaces any XML codes f o r cha ra c t e r s with the ac tua l cha ra c t e r s .
554 de f replace_XML_codes (s t r i n g) :
555 codes = { "" ; " : ’ " ’ , "& ; " : "&" , "&apos ; " : " ’ " , "&l t ; " : "<" , "> ; " : ">" }
556 f o r code , char in codes . i tems () :
557 s t r i n g = s t r i n g . r ep l a c e (code , char)
558 re turn s t r i n g
559
560
561 # Merges non−over lapp ing BLAST h i t s that are on the same FASTA sequence , and are

not d i f f e r e n t c op i e s o f a gene .
562 de f merge_same_fseq_hits (match_dict , query_length) :
563 # Check f o r more than one match per FASTA sequence and LPrint i f so .
564 # Note that t h i s assumes no two FASTA sequences w i l l have the same name in one

genome f i l e .
565 mult ip le_hits_in_fseq = False
566 no_of_hits = len (match_dict [’ f s e q ’])
567 i f no_of_hits > 1 :
568 L_print (" Checking f o r mu l t ip l e h i t s from any one genomic FASTA sequence . " , 2)
569 multimatch_fseq = {}
570 mult imatch_fseq_hit_indices = {}
571 f o r i in range (no_of_hits) :
572 f s e q = match_dict [’ f s e q ’] [i]
573 count = match_dict [’ f s e q ’] . count (f s e q)
574 i f count > 1 :
575 multimatch_fseq [f s e q] = count
576 mult ip le_hits_in_fseq = True
577 i f f s e q not in mult imatch_fseq_hit_indices :
578 mult imatch_fseq_hit_indices [f s e q] = [i]
579 e l s e :
580 mult imatch_fseq_hit_indices [f s e q] . append (i)
581

XVIII

B. Pipeline Code

582 i f l en (multimatch_fseq) > 0 :
583 L_print ("WARNING: mul t ip l e matches from one genomic FASTA sequence found . ")
584 e l s e :
585 L_print ("No genomic FASTA sequence gave r i s e to more than one h i t sequence . " ,

2)
586
587 f o r f seq , count in multimatch_fseq . i tems () :
588 L_print ("WARNING: genomic FASTA sequence named {0} gave r i s e to {1}

al ignments . " . format (f seq , count))
589
590 # Looking f o r h i t s on the same FASTA sequence that should be merged .
591 # This s o l u t i o n assumes no over lap and ascending order o f query_hit_from . This

should be true , as we ’ ve so r t ed above ,
592 # and BLAST should not f i nd mul t ip l e matches that over lap in one FASTA sequence .
593
594 # I n i t i a l i s e l i s t f o r remembering how many bases to add i f h i t s are merged
595 match_dict [’ merged_hits_extra_bases ’] = [0] ∗ no_of_hits
596 # I n i t i a l i s e l i s t f o r remembering how many bases to add i f h i t s are NOT merged .
597 match_dict [’ no_merge_extra_bases ’] = [0] ∗ no_of_hits
598 # I n i t i a l i s e l i s t f o r remembering which h i t s are invo lved in merges .
599 match_dict [’ merged_hit ’] = [Fa l se] ∗ no_of_hits
600
601 i f mult ip le_hits_in_fseq i s True :
602 hits_to_merge = []
603
604 f o r f seq , i n d i c e s in mult imatch_fseq_hit_indices . i tems () :
605 L_print (" Checking i f mu l t ip l e h i t s from genomic FASTA sequence ’{0} ’ can be

merged . " . format (f s e q) , 2)
606
607 # Ind i c e s must be so r t ed by strand , and then by db_hit_from (ascending f o r

strand 1 , descending f o r strand −1) .
608 # This i s in order to make sure that h i t s that are next to each other in the

genome are next to each other here .
609 # I f the re are mu l t ip l e c op i e s o f a gene on one FASTA sequence , only us ing

query_hit_from so r t i n g could cause problems .
610 indices_by_strand = {1 : [] , −1: [] }
611 f o r i in i n d i c e s :
612 i f match_dict [’ db_strand ’] [i] == " 1 " :
613 indices_by_strand [1] . append (i)
614 e l s e :
615 indices_by_strand [−1] . append (i)
616
617 indices_by_strand [1] . s o r t (key=lambda k : match_dict [’ db_hit_from ’] [k])
618 indices_by_strand [−1] . s o r t (key=lambda k : match_dict [’ db_hit_from ’] [k] ,

r e v e r s e=True)
619
620 i n d i c e s = indices_by_strand [1] + indices_by_strand [−1]
621
622 # i can ’ t be the l a s t index , s i n c e we ’ re comparing with i + 1 .
623 f o r i in range (l en (i n d i c e s) − 1) :
624 # Distance between the matching query sequence par t s o f the two h i t s
625 query_hit_from = match_dict [’ query_hit_from ’] [i n d i c e s [i]] , match_dict [’

query_hit_from ’] [i n d i c e s [i + 1]]
626 query_hit_to = match_dict [’ query_hit_to ’] [i n d i c e s [i]] , match_dict [’

query_hit_to ’] [i n d i c e s [i + 1]]
627
628 query_distance = (max(query_hit_from) − min(query_hit_to) − 1)
629
630 # Distance between the two h i t s on the FASTA sequence
631 db_hit_from = match_dict [’ db_hit_from ’] [i n d i c e s [i]] , match_dict [’

db_hit_from ’] [i n d i c e s [i + 1]]
632 db_hit_to = match_dict [’ db_hit_to ’] [i n d i c e s [i]] , match_dict [’ db_hit_to ’] [

i n d i c e s [i + 1]]
633 # Hit d i s t ance c a l c u l a t i o n depends on which strand the h i t s are on .
634 i f match_dict [’ db_strand ’] [i n d i c e s [i]] == " 1 " :
635 h i t_d i s tance = max(db_hit_from) − min(db_hit_to) − 1
636 e l s e :
637 h i t_d i s tance = max(db_hit_to) − min(db_hit_from) − 1
638
639 # For h i t over lap (on FASTA sequence) check

XIX

B. Pipeline Code

640 over lap = range (max(match_dict [’ db_hit_from ’] [i n d i c e s [i]] , match_dict [’
db_hit_from ’] [i n d i c e s [i + 1]]) ,

641 min (match_dict [’ db_hit_to ’] [i n d i c e s [i]] , match_dict [’ db_hit_to ’] [
i n d i c e s [i + 1]] + 1))

642
643 # I f the query d i s t ance i s 0 , or c l o s e to 0 , we have an i n s e r t i o n , and the

h i t s should be merged .
644 # I f the query d i s t ance i s n ’ t 0 , but the d i f f e r e n c e between the h i t and

query d i s t an c e s i s smal l (some room f o r i n d e l s) ,
645 # the we have a mismatching reg ion , and the h i t s should s t i l l be merged .
646 # Also check that the matches are on the same strand − though problems with

t h i s are un l i k e l y .
647 i f (
648 (query_distance < 100 or abs (h i t_d i s tance − query_distance) < 100) and
649 # Make sure h i t s are on the same strand
650 match_dict [’ db_strand ’] [i n d i c e s [i]] == match_dict [’ db_strand ’] [i n d i c e s [

i + 1]] and
651 # Don ’ t merge h i t s that are from d i f f e r e n t cop i e s o f a gene
652 h i t_d i s tance <= query_length and
653 # Checks to make sure that the h i t s don ’ t over lap in the genome f i l e ,

as t h i s could cause problems . I don ’ t th ink they ever w i l l , but I ’m not 100 %
sure .

654 l en (over lap) == 0
655) :
656
657 # I f the re are mu l t ip l e c op i e s o f a gene on the same FASTA sequence , i t

i s p o s s i b l e to e r roneous l y t ry to merge the end o f one copy with the s t a r t
658 # of another . This check prevents that , by making sure that the order o f

the h i t s in the genome matches the order in the query .
659 hit_from_distances = query_hit_from [1] − query_hit_from [0] , db_hit_from

[1] − db_hit_from [0]
660 i f (
661 # I f db_strand i s 1 , check that the s i gn o f the d i f f e r e n c e s between

the s t a r t s o f the h i t s i s the same (or that e i t h e r /both d i f f e r e n c e s i s 0)
662 (not min (hit_from_distances) < 0 < max(hit_from_distances) and

match_dict [’ db_strand ’] [i n d i c e s [i]] == " 1 ") or
663 # I f db_strand i s −1 check that the s i gn o f the d i f f e r e n c e s between

the s t a r t s o f the h i t s i s d i f f e r e n t (or that e i t h e r /both d i f f e r e n c e s i s 0)
664 (min (hit_from_distances) <= 0 <= max(hit_from_distances) and

match_dict [’ db_strand ’] [i n d i c e s [i]] == "−1")
665) :
666
667 # Get FASTA sequence sequence to check whether i n t e r v a l between h i t s

conta in s too many N ’ s f o r merging
668 fseq_sequence = get_fseq (f seq , genome_contents)
669 # Get range o f i n t e r v a l between h i t s , r e g a r d l e s s o f whether the strand

i s " 1 " or "−1"
670 space_from , space_to = sor t ed (db_hit_from + db_hit_to) [1 : −1]
671 # Accept merge i f amount o f N ’ s in i n t e r v a l between h i t s i s below 30 %.
672 i f f seq_sequence [space_from − 1 : space_to] . upper () . count ("N") < (

space_to + 1 − space_from) ∗ 0 . 3 :
673 # Append adjacent h i t s that are to be merged , and remember that they ’

re invo lved in merging .
674 hits_to_merge . append ({ ’ i n d i c e s ’ : [i n d i c e s [i] , i n d i c e s [i + 1]] , ’

i n s e r t i o n_ s i z e ’ : h i t_d i s tance − query_distance })
675 f o r index in [i n d i c e s [i] , i n d i c e s [i + 1]] :
676 match_dict [’ merged_hit ’] [index] = True
677
678 # I f two adjacent h i t s are not merged due to N content problems , but

the re i s an i nd e l between them , then that needs to be compensated f o r during
679 # h i t ex tens i on f o r the h i t with lower query_hit_from .
680 e l s e :
681 match_dict [’ no_merge_extra_bases ’] [min (i n d i c e s [i] , i n d i c e s [i + 1])] =

h i t_d i s tance − query_distance
682
683 # I f the re are h i t s to merge , compare adjacent s e t s o f h i t s to merge with each

other . I f a l l h i t s should
684 # be merged , add the l a s t h i t to the f i r s t set , and add the add i t i ona l h i t

d i s t ance . The second s e t i s then d i s r ega rded .
685 i f hits_to_merge != [] :

XX

B. Pipeline Code

686 # Since i n f o on each merge i s c o l l e c t e d in one l i s t , o ther l i s t s o f the same
merge are d i s r ega rded .

687 skip_index = se t ()
688 # i nd i c e s in hits_to_merge that w i l l end up conta in ing in fo rmat ion on merging

.
689 merge_info_indices = s e t ()
690 f o r i in range (l en (hits_to_merge)) :
691 i f i not in skip_index :
692 merge_info_indices . add (i)
693 i f l en (hits_to_merge) > 1 :
694 f o r j in range (i + 1 , l en (hits_to_merge)) :
695 i f hits_to_merge [i] [’ i n d i c e s ’] [−1] == hits_to_merge [j] [’ i n d i c e s ’] [0] :
696 hits_to_merge [i] [’ i n d i c e s ’] . append (hits_to_merge [j] [’ i n d i c e s ’] [1])
697 hits_to_merge [i] [’ i n s e r t i o n_ s i z e ’] += hits_to_merge [j] [’

i n s e r t i o n_ s i z e ’]
698 skip_index . add (j)
699
700 # I n i t i a t e l i s t with i n d i c e s to d e l e t e a c r o s s a l l merges
701 a l l_ ind i c e s_to_de l e t e = []
702 # Going through s e t s o f h i t s to merge
703 f o r i in merge_info_indices :
704 # Saving i n d i c e s o f h i t s that should be de l e t ed f o r cur rent merge
705 ind i ce s_to_de l e t e = hits_to_merge [i] [’ i n d i c e s ’] [: − 1]
706 # Saving the extra bases nece s sa ry f o r the h i t that w i l l be extended to

cover the o the r s
707 match_dict [’ merged_hits_extra_bases ’] [hits_to_merge [i] [’ i n d i c e s ’] [− 1]] =

hits_to_merge [i] [’ i n s e r t i o n_ s i z e ’]
708
709 L_print (" {0} h i t s (h i t numbers : {1}) were merged in to one . " . format (l en (

ind i ce s_to_de l e t e) + 1 , " , " . j o i n ([s t r (hits_to_merge [i] [’ i n d i c e s ’] [j] + 1) f o r
j in range (l en (hits_to_merge [i] [’ i n d i c e s ’]))])) , 2)

710
711 # The h i t s that are to be de l e t ed can conta in inde l s , which w i l l change how

long the remaining sequence should be extended − t h i s i s taken care o f here .
712 f o r j in ind i ce s_to_de l e t e :
713 inde l_extra = abs (match_dict [’ db_hit_to ’] [j] − match_dict [’ db_hit_from ’] [

j]) − abs (match_dict [’ query_hit_to ’] [j] − match_dict [’ query_hit_from ’] [j])
714 match_dict [’ merged_hits_extra_bases ’] [hits_to_merge [i] [’ i n d i c e s ’] [− 1]] +=

inde l_extra
715
716 a l l_ ind i c e s_to_de l e t e += ind i ce s_to_de l e t e
717
718 # Delete h i t s in r e v e r s e order , so that the th ing s that should be de l e t ed don

’ t change index in the loop
719 f o r j in a l l_ ind i c e s_to_de l e t e [: : − 1] :
720 no_of_hits −= 1
721 f o r key in match_dict :
722 de l match_dict [key] [j]
723 e l s e :
724 L_print ("No h i t s from genomic FASTA sequence {0} could be merged . " . format (

f s e q) , 2)
725
726 re turn match_dict
727
728
729 # Extends BLAST h i t s to cover as much o f query sequence as p o s s i b l e
730 de f extend_BLAST_hits (match_dict , query_length) :
731 # Looping through the BLAST h i t s and adding ext ra bases to sequences as needed to

f i l l as much o f the query sequence as p o s s i b l e
732 L_print (" Checking i f BLAST h i t s need to be extended to cover query sequence . " , 2)
733
734 # Save a l l covered po s i t i o n INDICES (f i r s t p o s i t i o n i s 0) f o r each FASTA sequence

, so that extens i on can avoid cover ing a base twice , thereby avo id ing f a l s e
over lap .

735 fseq_coverage = {}
736 f o r i in range (l en (match_dict [’ f s e q ’])) :
737 i f match_dict [’ f s e q ’] [i] not in f seq_coverage . keys () :
738 fseq_coverage [match_dict [’ f s e q ’] [i]] = s e t ()
739 # We have to s o r t h i t s in order not to get 0 l ength range on one strand .
740 sorted_db_hits = sor t ed ([match_dict [’ db_hit_from ’] [i] , match_dict [’ db_hit_to ’] [

XXI

B. Pipeline Code

i]])
741 f o r j in range (sorted_db_hits [0] , sorted_db_hits [1] + 1) :
742 fseq_coverage [match_dict [’ f s e q ’] [i]] . add (j − 1)
743
744 no_of_hits = len (match_dict [’ f s e q ’])
745 f o r i in range (no_of_hits) :
746 L_print ("Working with h i t #{0} found on genomic FASTA sequence named : {1} " .

format (i + 1 , match_dict [’ f s e q ’] [i]) , 2)
747 # Save number o f ext ra bases needed from FASTA sequence (upstream and

downstream) to cover as much o f the query sequence as p o s s i b l e .
748 # Upstream and downstream are in the p e r sp e c t i v e o f the query sequence . "

merged_hits_extra_bases " are added upstream in case
749 # s e v e r a l h i t s from one FASTA sequence are to be merged (the d i s t ance between

these h i t s must be taken in to account) .
750 # ’ no_merge_extra_bases ’ are added downstream in case two adjacent h i t s weren ’ t

merged due to too many N ’ s , to compensate f o r i n d e l s .
751 upstream_extra = match_dict [’ query_hit_from ’] [i] − 1 + match_dict [’

merged_hits_extra_bases ’] [i]
752 downstream_extra = query_length − match_dict [’ query_hit_to ’] [i] + match_dict [’

no_merge_extra_bases ’] [i]
753 # I n i t i a l i s e ex tens i on counter s to keep track o f how much a match sequence has

been extended .
754 # Necessary in order to keep track o f what query index corresponds to the ends

o f a match .
755 added_upstream = 0
756 added_downstream = 0
757
758 # I f the FASTA sequence doesn ’ t span the e n t i r e query :
759 i f upstream_extra > 0 or downstream_extra > 0 :
760
761 # Save DNA sequence o f the matched FASTA sequence
762 fseq_seq = get_fseq (match_dict [’ f s e q ’] [i] , genome_contents)
763
764 i f upstream_extra > 0 :
765 # I f BLAST h i t i s on the strand presented in the FASTA sequence :
766 i f match_dict [’ db_strand ’] [i] == " 1 " :
767 # Save i n d i c e s o f needed upstream bases in order o f proximity to h i t

sequence
768 i n d i c e s = range (match_dict [’ db_hit_from ’] [i] − 2 , match_dict [’ db_hit_from

’] [i] − upstream_extra − 2 , −1)
769 f o r j in i n d i c e s :
770 # I f index i s in range o f FASTA sequence s t r i ng , add base at that index

to beg inning o f h i t sequence
771 i f j >= 0 :
772 # Check that the base i s n ’ t a l r eady part o f another h i t on the FASTA

sequence to avoid f a l s e over lap . Stop loop i f i t i s .
773 i f j in f seq_coverage [match_dict [’ f s e q ’] [i]] :
774 break
775 e l s e :
776 match_dict [’ db_hit_seq ’] [i] = fseq_seq [j] + match_dict [’ db_hit_seq ’

] [i]
777 added_upstream += 1
778 fseq_coverage [match_dict [’ f s e q ’] [i]] . add (j)
779
780 # Else (i f BLAST h i t i s on the complementary strand to the FASTA sequence) :
781 e l s e :
782 # Save i n d i c e s o f needed upstream bases in order o f proximity to h i t

sequence .
783 i n d i c e s = range (match_dict [’ db_hit_from ’] [i] , match_dict [’ db_hit_from ’] [i

] + upstream_extra)
784 f o r j in i n d i c e s :
785 # I f index i s in range o f FASTA sequence s t r i ng , add complement o f base

at that index to beg inning o f h i t sequence .
786 # Not REVERSE complement , s i n c e adding bases one by one in the order in

i n d i c e s a l r eady takes care o f the order .
787 i f j < l en (fseq_seq) :
788 # Check that the base i s n ’ t a l r eady part o f another h i t on the FASTA

sequence to avoid f a l s e over lap . Stop loop i f i t i s .
789 i f j in f seq_coverage [match_dict [’ f s e q ’] [i]] :
790 break

XXII

B. Pipeline Code

791 e l s e :
792 match_dict [’ db_hit_seq ’] [i] = complement (fseq_seq [j]) + match_dict [

’ db_hit_seq ’] [i]
793 added_upstream += 1
794 fseq_coverage [match_dict [’ f s e q ’] [i]] . add (j)
795
796 i f downstream_extra > 0 :
797 # I f BLAST h i t i s on the strand presented in the FASTA sequence :
798 i f match_dict [’ db_strand ’] [i] == " 1 " :
799 # Save i n d i c e s o f needed downstream bases in order o f proximity to h i t

sequence
800 i n d i c e s = range (match_dict [’ db_hit_to ’] [i] , match_dict [’ db_hit_to ’] [i] +

downstream_extra)
801 f o r j in i n d i c e s :
802 # I f index i s in range o f FASTA sequence s t r i ng , add base at that index

to end o f h i t sequence .
803 i f j < l en (fseq_seq) :
804 # Check that the base i s n ’ t a l r eady part o f another h i t on the FASTA

sequence to avoid f a l s e over lap . Stop loop i f i t i s .
805 i f j in f seq_coverage [match_dict [’ f s e q ’] [i]] :
806 break
807 e l s e :
808 match_dict [’ db_hit_seq ’] [i] += fseq_seq [j]
809 added_downstream += 1
810 fseq_coverage [match_dict [’ f s e q ’] [i]] . add (j)
811
812 # Else (i f BLAST h i t i s on the complementary strand to the FASTA sequence) :
813 e l s e :
814 i n d i c e s = range (match_dict [’ db_hit_to ’] [i] − 2 , match_dict [’ db_hit_to ’] [i

] − downstream_extra − 2 , −1)
815 f o r j in i n d i c e s :
816 # I f index i s in range o f FASTA sequence s t r i ng , add complement o f base

at that index to end o f h i t sequence .
817 # Not REVERSE complement , s i n c e adding bases one by one in the order in

i n d i c e s a l r eady takes care o f the order .
818 i f j >= 0 :
819 # Check that the base i s n ’ t a l r eady part o f another h i t on the FASTA

sequence to avoid f a l s e over lap . Stop loop i f i t i s .
820 i f j in f seq_coverage [match_dict [’ f s e q ’] [i]] :
821 break
822 e l s e :
823 match_dict [’ db_hit_seq ’] [i] += complement (fseq_seq [j])
824 added_downstream += 1
825 fseq_coverage [match_dict [’ f s e q ’] [i]] . add (j)
826
827 message = ("Added {0} bases upstream of h i t sequence , and {1} bases

downstream of h i t sequence . "
828 "Note that upstream and downstream r e f e r to r e v e r s e complement i f match

was found on complement strand . ")
829 L_print (message . format (added_upstream , added_downstream) , 2)
830
831 # Save the range o f the r e f e r e n c e sequence covered by the h i t sequence a f t e r

ex tens i on
832 # ’ merged_hits_extra_bases ’ only app l i e s upstream , s i n c e only the h i ghe s t

query_hit_from h i t i s kept during merging .
833 match_dict [’ query_hit_from_extended ’] [i] = match_dict [’ query_hit_from ’] [i] −

added_upstream + match_dict [’ merged_hits_extra_bases ’] [i]
834 # ’ no_merge_extra_bases ’ only app l i e s downstream . I f h i t s aren ’ t merged , ext ra

(or l e s s) ex tens i on i s handled downstream , to avoid f r ame sh i f t f o r a whole h i t
in case o f unknown r eg i on s (many N ’ s) .

835 match_dict [’ query_hit_to_extended ’] [i] = match_dict [’ query_hit_to ’] [i] +
added_downstream − match_dict [’ no_merge_extra_bases ’] [i]

836
837 # Save the range o f the genome sequence covered by the h i t sequence a f t e r

ex tens i on
838 i f match_dict [’ db_strand ’] [i] == " 1 " :
839 match_dict [’ db_hit_from_extended ’] [i] = match_dict [’ db_hit_from ’] [i] −

added_upstream
840 match_dict [’ db_hit_to_extended ’] [i] = match_dict [’ db_hit_to ’] [i] +

added_downstream

XXIII

B. Pipeline Code

841 e l s e :
842 match_dict [’ db_hit_from_extended ’] [i] = match_dict [’ db_hit_from ’] [i] +

added_upstream
843 match_dict [’ db_hit_to_extended ’] [i] = match_dict [’ db_hit_to ’] [i] −

added_downstream
844
845 # Remove lone h i t s that have to be extended too f a r .
846 match_dict , no_of_hits = remove_lone_short_hits (match_dict , query_length ,

f seq_coverage)
847
848 re turn match_dict , no_of_hits
849
850
851 # Remove lone h i t s that have to be extended too far , un l e s s part o f a merge .
852 de f remove_lone_short_hits (match_dict , query_length , f seq_coverage) :
853 L_print (" Checking i f any BLAST h i t s need to be de l e t ed . " , 2)
854
855 no_of_hits = len (match_dict [’ f s e q ’])
856 ind i ce s_to_de l e t e = []
857
858 f o r i in range (no_of_hits) :
859 L_print ("Working with h i t #{0}, found on genomic FASTA sequence named : {1} " .

format (i + 1 , match_dict [’ f s e q ’] [i]) , 2)
860 # Don ’ t d e l e t e merged h i t s .
861 i f match_dict [’ merged_hit ’] [i] i s True :
862 cont inue
863 # Don ’ t d e l e t e i f h i t extends up to another h i t . Min/max s o l v e s strand i s s u e s .

Note that ’ db_hit_to_extended ’ conta in s a base number (f i r s t number i s 1) ,
whi l e f seq_coverage conta in s i n d i c e s (f i r s t index i s 0) .

864 # OBS! This i s prob lemat ic i f the shor t i n c o r r e c t h i t i s c l o s e to the ac tua l
gene . I t might extend up to a base that ’ s a l r eady added and be s a f e from
de l e t i o n .

865 i f min (match_dict [’ db_hit_from_extended ’] [i] , match_dict [’ db_hit_to_extended ’] [
i]) − 2 in fseq_coverage [match_dict [’ f s e q ’] [i]] :

866 cont inue
867 i f max(match_dict [’ db_hit_from_extended ’] [i] , match_dict [’ db_hit_to_extended ’] [

i]) in f seq_coverage [match_dict [’ f s e q ’] [i]] :
868 cont inue
869 # Delete h i t s that did not meet the c r i t e r i a above , and that were extended too

f a r .
870 extens i on = abs (match_dict [’ query_hit_from_extended ’] [i] − match_dict [’

query_hit_from ’] [i]) + abs (match_dict [’ query_hit_to_extended ’] [i] − match_dict [
’ query_hit_to ’] [i])

871 i f ex t ens i on / query_length > 0 . 2 :
872 L_print (" Hit #{0} was de l e t ed due to long extens i on (l i k e l y er roneous h i t) . " .

format (i + 1) , 2)
873 ind i ce s_to_de l e t e . append (i)
874
875 # Delete h i t s in r e v e r s e order , so that the th ing s that should be de l e t ed don ’ t

change index in the loop
876 f o r i in ind i ce s_to_de l e t e [: : − 1] :
877 no_of_hits −= 1
878 f o r key in match_dict :
879 de l match_dict [key] [i]
880
881 i f l en (ind i ce s_to_de l e t e) == 0 :
882 L_print ("No h i t s were de l e t ed . " , 2)
883
884 re turn match_dict , no_of_hits
885
886
887 # Return over lapp ing ranges in nuc l e o t i d e sequence
888 de f f ind_nucl_over lap (match_dict) :
889 # No over lap un t i l i t ’ s found
890 ove r l ap_ex i s t s = Fal se
891
892 no_of_hits = len (match_dict [’ f s e q ’])
893
894 # I n i t i a l i s e l i s t o f l i s t s f o r over lap i n f o
895 ove r l ap s = [[] f o r i in range (no_of_hits)]

XXIV

B. Pipeline Code

896
897 # Check f o r s e v e r a l h i t s from one FASTA sequence , and h i t sequence over lap , i f

more than one BLAST h i t was found .
898 i f no_of_hits > 1 :
899 L_print (" Checking f o r over lap between h i t sequences . " , 2)
900 # Check f o r over lap between h i t sequences
901 f o r i in range (no_of_hits) :
902 f o r j in range (no_of_hits) :
903 # Disregard over lap with s e l f
904 i f j != i :
905 # Range ob j e c t o f over lap sequence . Length 0 i f no over lap
906 over lap = range (max(match_dict [’ query_hit_from_extended ’] [i] , match_dict [

’ query_hit_from_extended ’] [j]) ,
907 min (match_dict [’ query_hit_to_extended ’] [i] , match_dict [’

query_hit_to_extended ’] [j]) + 1)
908 # I f the re i s over lap :
909 i f l en (over lap) > 0 :
910 ove r l ap_ex i s t s = True
911 # Save i n f o on over lap f o r h i t sequence i : ove r lapp ing sequence index (

j) , and query sequence numbers f o r the over lap (from , to)
912 ove r l ap s [i] . append ([j , min (over lap) , max(over lap)])
913
914 i f ove r l ap_ex i s t s i s True :
915 L_print ("WARNING: Overlap between sequences found . ")
916 f o r i in range (no_of_hits) :
917 i f ove r l ap s [i] != [] :
918 f o r j in range (l en (ove r l ap s [i])) :
919 i f ove r l ap s [i] [j] [0] > i :
920 L_print ("Genomic FASTA sequences ’{0} ’ and ’{1} ’ over lap in the

r e f e r e n c e sequence r eg i on o f {2}−{3} " . format (match_dict [’ f s e q ’] [i] , match_dict [
’ f s e q ’] [ove r l ap s [i] [j] [0]] , ove r l ap s [i] [j] [1] , ove r l ap s [i] [j] [2]) , 2)

921 e l s e :
922 L_print ("No over lap between sequences was found . " , 2)
923
924 re turn ove r l ap s
925
926
927 # Return r e f e r e n c e and h i t sequences , padding the l a t t e r i f nece s sa ry
928 de f get_padded_BLAST_sequences (match_dict , query_name , query_seq) :
929 # Adding sequences to a l i s t o f l i s t s f o r pas s ing to wr i t e_fas ta . S ta r t i ng here

with the r e f e r e n c e sequence
930 # and l a t e r appending padded_hit_seqs .
931 s e q_ l i s t = [[query_name , query_seq]]
932
933 query_length = len (query_seq)
934
935 no_of_hits = len (match_dict [’ f s e q ’])
936
937 # Add appropr ia te n padding to the h i t s and save them to s e q_ l i s t f o r re turn

statement
938 n_seq = "n" ∗ query_length
939 f o r i in range (no_of_hits) :
940 # Add padding to the h i t sequence .
941 padded_hit_seq = n_seq [: match_dict [’ query_hit_from_extended ’] [i] − 1] +

match_dict [’ db_hit_seq ’] [i] + n_seq [match_dict [’ query_hit_to_extended ’] [i] :]
942 # Gap hyphens need to be removed .
943 padded_hit_seq = padded_hit_seq . r ep l a c e ("−" , " ")
944 # Append padded h i t sequences to s e q_ l i s t f o r pas s ing to wr i t e_fas ta
945 s e q_ l i s t . append ([match_dict [’ f s e q ’] [i] , padded_hit_seq . upper ()])
946
947 L_print ("BLAST pars ing o f ’ {0} ’ ’ complete \n\n" . format (query_name) , 2)
948
949 re turn s e q_ l i s t
950
951
952 ###
953 # Alignment
954 ###
955
956 # Does a MAFFT alignment o f sequences in i n f i l e and re tu rn s a s t r i n g with the

XXV

B. Pipeline Code

output path
957 de f MAFFT_align(i n f i l e , out_path) :
958 L_print ("Making a MAFFT alignment o f sequences in {0} " . format (i n f i l e) , 2)
959 # Without −−anysymbol , MAFFT removes ∗ (stop codons) be f o r e al ignment . Note that

t h i s r e s u l t s in case−s e n s i t i v i t y .
960 L_execute (" g i n s i −−anysymbol {0} > {1} " . format (i n f i l e , out_path) , l e v e l =2, header

="MAFFT output : ")
961 L_print ("MAFFT alignment complete " , 2)
962 re turn out_path
963
964
965 # Parse MAFFT alignment
966 de f parse_MAFFT_alignment (MAFFT_alignment_path) :
967 L_print (" Pars ing MAFFT alignment f i l e : {0} " . format (MAFFT_alignment_path) , 2)
968
969 with open (MAFFT_alignment_path) as myf i l e :
970 MAFFT_alignment = myf i l e . read ()
971
972 # Go through MAFFT alignment and save sequences and t h e i r names as l i s t s in the

h i t_seqs l i s t .
973 h i t s = []
974 l i n e s = MAFFT_alignment . s p l i t l i n e s ()
975 f o r l i n e in l i n e s :
976 i f l i n e . s t a r t sw i t h (">") :
977 h i t s . append ([l i n e [1 :] , " "])
978 e l s e :
979 h i t s [−1] [1] += " " . j o i n (l i n e . s p l i t ())
980
981 # Save the r e f e r e n c e sequence l i s t in h i t_seqs to ref_seq , and d e l e t e i t from

hit_seqs .
982 r e f = h i t s [0]
983 de l h i t s [0]
984
985 Al ignedSequences = c o l l e c t i o n s . namedtuple (’ Al ignedSequences ’ , ’ r e f , h i t s ’)
986 a l igned_sequences = AlignedSequences (r e f , h i t s)
987
988 re turn a l igned_sequences
989
990
991 # Returns p o s i t i o n s o f ove r l ap s in terms o f r e f e r e n c e base numbers f o r a l l p ro t e in

h i t sequences .
992 de f f ind_prote in_over lap (r e f , h i t s) :
993 no_of_hits = len (h i t s)
994
995 re f_seq = r e f [1]
996 hi t_seqs = [h i t s [i] [1] f o r i in range (no_of_hits)]
997
998 prot_start_index = [None] ∗ no_of_hits
999 prot_end_index = [None] ∗ no_of_hits
1000
1001 ove r l ap s = [[] f o r i in range (no_of_hits)]
1002
1003 i f no_of_hits > 1 :
1004 # Save index o f f i r s t and l a s t amino ac id that i s n ’ t an X or a − f o r each hit ,

and then change the i n d i c e s to
1005 # r e f e r e n c e sequence index by subt ra c t i ng any gap hyphens in the r e f e r e n c e

sequence up to the r e l e van t po int .
1006 f o r i in range (no_of_hits) :
1007 prot_start_index [i] = re . s earch (r " ^ [X−]∗ . " , h i t_seqs [i]) . end () − 1
1008 prot_start_index [i] −= ref_seq . count ("−" , 0 , prot_start_index [i] + 1)
1009
1010 prot_end_index [i] = re . s earch (r " . [X−]∗$ " , h i t_seqs [i]) . s t a r t ()
1011 prot_end_index [i] −= ref_seq . count ("−" , 0 , prot_end_index [i] + 1)
1012
1013 # Saving over lap with other h i t sequences f o r each h i t sequence .
1014 f o r i in range (no_of_hits) :
1015 f o r j in range (no_of_hits) :
1016 # No over lap with s e l f
1017 i f j != i :
1018 # Range ob j e c t o f over lap sequence . Length 0 i f no over lap

XXVI

B. Pipeline Code

1019 over lap = range (max(prot_start_index [i] , prot_start_index [j]) , min (
prot_end_index [i] , prot_end_index [j]) + 1)

1020 i f l en (over lap) > 0 :
1021 # Report ing amino ac id numbers , not i nd i c e s , so +1.
1022 ove r l ap s [i] . append ([j , min (over lap) + 1 , max(over lap) + 1])
1023
1024 re turn ove r l ap s
1025
1026
1027 ###
1028 # Mutation c a l l i n g , comparison , and repor t
1029 ###
1030
1031 # Cal l mutations in nuc l e o t i d e or amino sequence (sequence_type = " nucl " / " prot ") .
1032 # Also checks which bases in the r e f e r e n c e sequence are covered , that i s not only

by N/X.
1033 de f ca l l_mutat ions (r e f , h i t s , ref_mutations , sequence_type) :
1034 i f sequence_type == " nucl " :
1035 message = "DNA"
1036 ref_mutations = ref_mutations . nucl
1037 e l i f sequence_type == " prot " :
1038 message = " pro t e in "
1039 ref_mutations = ref_mutations . prot
1040 L_print (" Ca l l i ng mutations in {0} sequence " . format (message) , 2)
1041
1042 # Get p o s i t i o n s o f p o t e n t i a l r e s i s t a n c e mutations . Necessary f o r ca s e s where the

r e f e r e n c e sequence has a r e s i s t a n c e mutation ,
1043 # s i n c e only c a l l e d mutations are checked f o r r e s i s t a n c e .
1044 re f_mutat ion_pos i t ions = s e t ()
1045 i f re f_mutat ions != [] :
1046 f o r ref_mutation in ref_mutat ions :
1047 re f_mutat ion_pos i t ions . add (i n t (ref_mutation [0]))
1048
1049 no_of_hits = len (h i t s)
1050
1051 # I n i t i a l i s e l i s t s with mutation d i c t s
1052 subs = [c o l l e c t i o n s . OrderedDict () f o r i in range (no_of_hits)]
1053 i n s = [c o l l e c t i o n s . OrderedDict () f o r i in range (no_of_hits)]
1054 d e l s = [c o l l e c t i o n s . OrderedDict () f o r i in range (no_of_hits)]
1055
1056 # I n i t i a l i s e s e t to save a l l bases /amino ac id s that are covered (not N/X) ,
1057 # to f a c i l i t a t e check ing i f a r e s i s t a n c e mutation i s covered .
1058 ref_numbers_covered = se t ()
1059
1060 # Save sequence i n f o to s epara t e va r i ab l e s , in order to avoid index mayhem .
1061 re f_seq = r e f [1]
1062 hi t_seqs = [h i t s [i] [1] f o r i in range (no_of_hits)]
1063 # Saving mutations
1064 f o r h i t in range (no_of_hits) :
1065 # I n i t i a l i s e base number counter f o r r e f e r e n c e sequence − f o r handl ing gaps .

The f i r s t base w i l l be numbered 1 .
1066 ref_number = 0
1067 f o r i in range (l en (re f_seq)) :
1068 # To repor t mutation p o s i t i o n s in r e l a t i o n to r e f e r e n c e sequence , gaps have

to be handled
1069 i f re f_seq [i] != "−" :
1070 ref_number += 1
1071 # I f base i s the same in h i t and re f , remember that t h i s base i s covered
1072 i f re f_seq [i] == hit_seqs [h i t] [i] :
1073 ref_numbers_covered . add (ref_number)
1074 # Check i f ref_number i s a r e s i s t an c e −a s s o c i a t ed po s i t i o n . I f so , add l i k e

normal sub .
1075 i f ref_number in re f_mutat ion_pos i t ions :
1076 subs [h i t] [ref_number] = [re f_seq [i] . upper () , h i t_seqs [h i t] [i] . upper () , i]
1077 # Else (i f bases d i f f e r) , check how
1078 e l s e :
1079 # I f h i t sequence base i s a gap , save r e f e r e n c e base number , r e f e r e n c e base

, and index in the h i t
1080 i f h i t_seqs [h i t] [i] == "−" :
1081 de l s [h i t] [ref_number] = [re f_seq [i] , i]

XXVII

B. Pipeline Code

1082 ref_numbers_covered . add (ref_number)
1083 # I f r e f e r e n c e sequence base i s a gap , save r e f e r e n c e base number be f o r e

gap , i n s e r t e d h i t sequence base , and index in the h i t .
1084 # I f the re i s an extens i on o f a gap , append the extra base in s t ead . We only

need to save the index o f the f i r s t gap (not ext ra f o r ex t en s i on s) .
1085 e l i f re f_seq [i] == "−" :
1086 i f ref_number in i n s [h i t] :
1087 i n s [h i t] [ref_number] [1] += hit_seqs [h i t] [i]
1088 e l s e :
1089 i n s [h i t] [ref_number] = [re f_seq [i − 1] , h i t_seqs [h i t] [i] , i]
1090 # I f normal sub s t i t u t i on , save r e f e r e n c e base number , r e f e r e n c e sequence

base , h i t sequence base , and index in the h i t .
1091 # Only normal sub s t i t u t i on , and unknown base (N) remain , so check f o r " not

N" .
1092 e l i f ((sequence_type == " nucl " and hit_seqs [h i t] [i] . upper () != "N") or
1093 (sequence_type == " prot " and hit_seqs [h i t] [i] . upper () != "X")) :
1094 subs [h i t] [ref_number] = [re f_seq [i] . upper () , h i t_seqs [h i t] [i] . upper () , i]
1095 ref_numbers_covered . add (ref_number)
1096
1097 Cal ledMutat ions = c o l l e c t i o n s . namedtuple (’ Cal ledMutat ions ’ , ’ subs , ins , d e l s ’)
1098 ca l led_mutat ions = Cal ledMutat ions (subs , ins , d e l s)
1099 re turn cal led_mutat ions , ref_numbers_covered
1100
1101
1102 # Appends c a l l e d mutations to report , whi l e making a comparison with known

r e s i s t a n c e mutations .
1103 de f append_mutation_report (mutation_report , MAFFT_alignment , over laps ,

hit_mutations , ref_mutations , seq_type) :
1104 i f seq_type == " nucl " :
1105 message = "DNA"
1106 e l i f seq_type == " prot " :
1107 message = " pro t e in "
1108 L_print (" Comparing c a l l e d mutations in {0} sequence to r e s i s t a n c e mutations , and

adding to r epor t . " . format (message) , 2)
1109
1110 a n t i b i o t i c s = " , " . j o i n (ge t_ invo lved_ant ib i o t i c s (ref_mutations))
1111
1112 # Set v a r i a b l e s f o r nuc l e o t i d /amino ac id so the same name can be used .
1113 i f seq_type == " nucl " :
1114 re f_res i s tance_mutat ions = ref_mutations . nuc l
1115 unknown = "N"
1116 e l i f seq_type == " prot " :
1117 re f_res i s tance_mutat ions = ref_mutations . prot
1118 unknown = "X"
1119
1120 r e f = MAFFT_alignment . r e f
1121 h i t s = MAFFT_alignment . h i t s
1122
1123 no_of_hits = len (h i t s)
1124 r e p o r t_ l i s t = []
1125
1126 # Loop through h i t sequences
1127 f o r i in range (no_of_hits) :
1128 # Loop through s ub s t i t u t i o n s f o r the g iven h i t sequence
1129 f o r mutation_type in [’ subs ’ , ’ d e l s ’ , ’ i n s ’] :
1130
1131 f o r ref_number , mutation in g e t a t t r (hit_mutations , mutation_type) [i] . i tems () :
1132 # No r e s i s t a n c e un l e s s found
1133 r e s i s t a n c e = " "
1134 # Loop through r e s i s t a n c e mutations
1135 f o r ref_mutation in re f_res i s tance_mutat ions :
1136 # Set r e s i s t a n c e to the the c o r r e c t a n t i b i o t i c (s) i f the mutation matches

any on record f o r r e s i s t a n c e
1137 i f ((mutation_type == ’ subs ’ and i n t (ref_mutation [0]) == ref_number and

ref_mutation [2] == mutation [1]) or
1138 (mutation_type == ’ de l s ’ and i n t (ref_mutation [0]) == ref_number and

ref_mutation [2] == "−")) :
1139 i f r e s i s t a n c e != " " :
1140 r e s i s t a n c e += " , "
1141 r e s i s t a n c e += ref_mutation [3]

XXVIII

B. Pipeline Code

1142
1143 # I f r e f e r e n c e base /aa i s the same as mutated base /aa , and that mutation i s

not a s s o c i a t ed with r e s i s t an c e , sk ip adding i t to r epo r t .
1144 # mutation [0] == mutation [1] occurs because a l l r e s i s t an c e −a s s o c i a t ed

p o s i t i o n s are c a l l e d as mutations , in case the r e f e r e n c e sequence has a
r e s i s t a n c e mutation .

1145 # This check removes a l l c a s e s l i k e R45R , except i f that c on f e r s r e s i s t a n c e
.

1146 i f mutation [0] == mutation [1] and r e s i s t a n c e == " " :
1147 cont inue
1148
1149 # I n i t i a t e v a r i a b l e f o r count ing over lapp ing FASTA sequences at t h i s

mutation , and how many o f them have the same mutation .
1150 over lapp ing_fseqs = 0
1151 same_mutation = 0
1152 # I n i t i a t e v a r i a b l e conta in ing the FASTA sequences a mutation was found on
1153 f s e q s = " ’{0} ’ " . format (h i t s [i] [0])
1154 f o r over lap in ove r l ap s [i] :
1155 # Have to check that the re are ove r l ap s . I f the re aren ’ t , ove r l ap s w i l l

conta in ∗no_of_hits∗ empty l i s t s
1156 i f l en (over lap) > 0 :
1157 # Check i f base /amino ac id at ref_number ove r l ap s with any other FASTA

sequence
1158 i f over lap [1] <= ref_number and over lap [2] >= ref_number :
1159 over lapp ing_fseqs += 1
1160 # Appends the FASTA sequence name which ove r l ap s the cur rent one
1161 f s e q s += " , " + " ’{0} ’ " . format (h i t s [over lap [0]] [0])
1162 # Check i f the sub s t i t u t ed / de l e t ed base /amino ac id in FASTA sequence

i s the same as the base /amino ac id in the
1163 # over lapp ing one . (over lap [0] i s the index o f an over lapp ing FASTA

sequence in h i t s , 1 r e f e r s to the sequence (not name) ,
1164 # and mutation [−1] i s the index o f the base /amino ac id in that

sequence) . I f same mutation , increment va r i ab l e .
1165 i f ((mutation_type == ’ subs ’ and h i t s [over lap [0]] [1] [mutation [−1]] ==

mutation [1]) or
1166 (mutation_type == ’ de l s ’ and h i t s [over lap [0]] [1] [mutation [−1]] == "

−")) :
1167 same_mutation += 1
1168 # I f mutation_type i s ’ i n s ’ :
1169 e l i f mutation_type == ’ i n s ’ :
1170 # Same check as above , but tak ing p o t e n t i a l l y longer−than−one

sequence in to account .
1171 i f h i t s [over lap [0]] [1] [mutation [−1] : mutation [−1] + len (mutation [1])

+ 1] == mutation [1] :
1172 same_mutation += 1
1173
1174 # Adjust ing r epor t depending on type o f mutation
1175 i f mutation_type == ’ subs ’ :
1176 mutation_text = mutation [0] + s t r (ref_number) + mutation [1]
1177 e l i f mutation_type == ’ de l s ’ :
1178 mutation_text = mutation [0] + s t r (ref_number) + "−"
1179 e l i f mutation_type == ’ i n s ’ :
1180 mutation_text = mutation [0] + s t r (ref_number) + mutation [0] + mutation [1]
1181
1182 # Only wr i t e mutation preva l ence column value i f the r e are over lapp ing

FASTA sequences
1183 i f ove r l app ing_fseqs > 0 :
1184 mutation_prevalence = (same_mutation + 1) / (over lapp ing_fseqs + 1)
1185 e l s e :
1186 mutation_prevalence = " "
1187
1188 # In fo on how we l l the h i t cove r s the r e f e r e n c e sequence
1189 i f h i t s [i] [1] [0] != unknown and h i t s [i] [1] [− 1] != unknown :
1190 coverage = " Fu l l "
1191 e l i f h i t s [i] [1] [0] != unknown :
1192 coverage = " Pa r t i a l w/ s t a r t "
1193 e l s e :
1194 coverage = " Pa r t i a l w/o s t a r t "
1195
1196 # Append an item to i n t e r n a l r epo r t l i s t with in fo rmat ion on the mutation .

XXIX

B. Pipeline Code

1197 repor t_ l i s t_ent ry = [r e f [0] , a n t i b i o t i c s , mutation_text , seq_type ,
r e s i s t an c e , f s eq s , mutation_prevalence , coverage]

1198 r e p o r t_ l i s t . append ([r epor t_l i s t_entry , ref_number])
1199
1200 # Sort i n t e r n a l r epo r t l i s t by ref_number , i n s t ead o f by ref_number f o r subs , ins

, and de l s s epa r a t e l y
1201 so r t ed_ ind i c e s = sor t ed (range (l en (r e p o r t_ l i s t)) , key=lambda k : r e p o r t_ l i s t [k] [1])
1202 r e p o r t_ l i s t = [r e p o r t_ l i s t [i] f o r i in so r t ed_ ind i c e s]
1203
1204 # Append i n t e r n a l r epo r t l i s t (nucl / prot) to c l a s s i n s t ance
1205 f o r item in r e p o r t_ l i s t :
1206 mutation_report . append (item [0])
1207
1208 re turn mutation_report
1209
1210
1211 # Appends r e s i s t a n c e mutations that are not covered by the h i t sequences to

mutation coverage report ,
1212 # and appends t a r g e t sequences where no mutations were covered to t a r g e t coverage

r epo r t .
1213 de f append_coverage_report (mutation_coverage_report , target_ID_coverage_report ,

pos i t ions_covered , ref_mutations , targets_db , target_ID , seq_length , seq_type) :
1214 L_print (" Checking i f any r e s i s t a n c e mutations weren ’ t covered in h i t sequences ,

and adding to coverage r epor t " , 2)
1215
1216 a n t i b i o t i c s = " , " . j o i n (ge t_ invo lved_ant ib i o t i c s (ref_mutations))
1217
1218 # Set v a r i a b l e s f o r nuc l e o t i d e /amino ac id so the same name can be used .
1219 i f seq_type == " nucl " :
1220 re f_res i s tance_mutat ions = ref_mutations . nuc l
1221 any_coverage = False
1222 e l i f seq_type == " prot " :
1223 re f_res i s tance_mutat ions = ref_mutations . prot
1224
1225 # Save r e f e r e n c e mutations l i s t to d ic t , with the mutation po s i t i o n as the key .
1226 ref_mutat ions_dict = {}
1227 f o r mutation in re f_res i s tance_mutat ions :
1228 ref_mutat ions_dict [i n t (mutation [0])] = mutation [1 :]
1229
1230 f o r i in range (1 , seq_length + 1) :
1231 i f i not in pos i t i ons_covered :
1232 # I f the cur rent po s i t i o n i s n ’ t covered and corresponds to a r e f e r e n c e

mutation , add item to coverage report , i n c l ud ing r e s i s t a n c e type o f the
mutation .

1233 i f i in re f_mutat ions_dict . keys () :
1234 mutation_coverage_report . append ([targets_db [target_ID] [1] , a n t i b i o t i c s , i ,

seq_type , re f_mutat ions_dict [i] [− 1]])
1235
1236 # I f the cur rent po s i t i o n i s n ’ t covered and doesn ’ t correspond to a r e f e r e n c e

mutation , add item to coverage report , but only i f the −−report_al l_coverage
argument i s g iven .

1237 e l i f a rgs . report_al l_coverage i s True :
1238 mutation_coverage_report . append ([targets_db [target_ID] [1] , a n t i b i o t i c s , i ,

seq_type , " "])
1239
1240 e l i f i in pos i t i ons_covered and seq_type == " nucl " :
1241 any_coverage = True
1242
1243 # I f no base i s covered , add ta r g e t ID to target_ID_not_covered r epor t .
1244 i f seq_type == " nucl " and any_coverage i s Fa l se :
1245 target_ID_coverage_report . append ([targets_db [target_ID] [1] , a n t i b i o t i c s])
1246
1247 re turn mutation_coverage_report , target_ID_coverage_report
1248
1249
1250 # Write l i s t o f l i s t s as tab−separated va lues on separa te l i n e s in f i l e .
1251 de f wr i t e_repo r t_ f i l e (report , header , f i l e_path) :
1252 L_print ("Writing r epo r t : {0} " . format (f i l e_path) , 2)
1253 f i l e = open (f i l e_path , ’w ’)
1254 f i l e . wr i t e (header + " \n")

XXX

B. Pipeline Code

1255
1256 f o r row in repor t :
1257 f i l e . wr i t e (" \ t " . j o i n ([s t r (x) f o r x in row]) + " \n")
1258
1259 f i l e . c l o s e ()
1260
1261
1262 ###
1263 # Database handl ing
1264 ###
1265
1266 # Read database f i l e (" mutations " or " t a r g e t s ") and re turn d i c t
1267 # with keys being a l l unique va lue s at index 0 in each l i n e , and the corre spond ing
1268 # va lue s being l i s t s with the remaining va lue s o f each l i n e in l i s t format .
1269 de f read_database (database_type) :
1270 L_print (" Reading {0} database . " . format (database_type) , 2)
1271 # Set f i l e path accord ing to database type
1272 i f database_type == " mutations " :
1273 f i l e_path = p ip e l i n e_d i r + " /mutation_databases /mutations "
1274 e l i f database_type == " t a r g e t s " :
1275 f i l e_path = p ip e l i n e_d i r + " /mutation_databases / t a r g e t s "
1276
1277 i f ch e ck_f i l e (f i l e_path) i s Fa l se :
1278 p r i n t ("ERROR: Could not f i nd {0} database . Check i f c o r r e c t f i l e i s p re sent

with path ’ {1} ’ . Ex i t ing . " . format (database_type , f i l e_path))
1279 sys . e x i t ()
1280
1281 with open (f i l e_path , ’ r ’) as my f i l e :
1282 contents = myf i l e . read ()
1283
1284 l i n e s = contents . s p l i t l i n e s ()
1285 db_dict = c o l l e c t i o n s . OrderedDict ()
1286
1287 f o r i in range (1 , l en (l i n e s)) :
1288 l i n e s [i] = l i n e s [i] . s p l i t (" \ t ")
1289 # Since the re i s only one entry f o r each ta r g e t ID , each key in db_dict w i l l
1290 # conta in one l i s t without s u b l i s t s .
1291 i f database_type == " t a r g e t s " :
1292 db_dict [l i n e s [i] [0]] = l i n e s [i] [1 :]
1293 # Since the re almost c e r t a i n l y i s more than one entry f o r each an t i b i o t i c , each
1294 # key in db_dict w i l l conta in a l i s t o f l i s t s .
1295 e l s e :
1296 i f l i n e s [i] [0] in db_dict :
1297 db_dict [l i n e s [i] [0]] . append (l i n e s [i] [1 :])
1298 e l s e :
1299 db_dict [l i n e s [i] [0]] = [l i n e s [i] [1 :]]
1300
1301 re turn db_dict
1302
1303
1304 # Takes the f u l l t a r g e t s database d i c t and re tu rn s a d i c t with only the t a r g e t s

cor re spond ing to the c o r r e c t s p e c i e s .
1305 de f ge t_targe t s_for_spec i e s (targets_db) :
1306 f i l t e r ed_ta rge t s_db = c o l l e c t i o n s . OrderedDict ()
1307 f o r target_ID , target_data in targets_db . items () :
1308 i f target_data [0] == args . s p e c i e s :
1309 f i l t e r ed_ta rge t s_db [target_ID] = target_data
1310 re turn f i l t e r ed_ta rge t s_db
1311
1312
1313 # Searches p r o t e i n s database and re tu rn s s p e c i e s supported by the p i p e l i n e
1314 de f get_supported_spec ies (targets_db) :
1315 supported_spec ies = s e t ()
1316
1317 f o r target_ID , data in targets_db . items () :
1318 i f data [0] not in supported_spec ie s :
1319 supported_spec ies . add (data [0])
1320
1321 re turn so r t ed (supported_spec ies)
1322

XXXI

B. Pipeline Code

1323
1324 # Return r e f e r e n c e sequence mutations (both nuc l e o t i d e and pro t e in) cor re spond ing

to
1325 # a c e r t a i n t a r g e t ID , and s p e c i e s .
1326 de f read_ref_mutations (target_ID , spe c i e s , mutations_db , targets_db) :
1327 L_print (" Reading r e s i s t a n c e mutations . " , 2)
1328 # Save l i s t cor re spond ing to the c o r r e c t a n t i b i o t i c from the mutation database
1329 ref_mutations = mutations_db [target_ID]
1330
1331 # I n i t i a l i s e l i s t s f o r sav ing nuc l e o t i d / p ro t e in mutations
1332 nucl_mutations = []
1333 prot_mutations = []
1334
1335 # Save mutations cor re spond ing to the c o r r e c t s p e c i e s and pro t e in
1336 f o r i in range (l en (ref_mutations)) :
1337 i f targets_db [target_ID] [0] == sp e c i e s :
1338 # Separate nuc l e o t i d e and pro t e in mutations
1339 i f re f_mutations [i] [1] == " nucl " :
1340 nucl_mutations . append (ref_mutations [i] [2 :] + [ref_mutations [i] [0]])
1341 e l s e :
1342 prot_mutations . append (ref_mutations [i] [2 :] + [ref_mutations [i] [0]])
1343
1344 RefMutations = c o l l e c t i o n s . namedtuple (’ RefMutations ’ , ’ nucl , prot ’)
1345 ref_mutations = RefMutations (nucl_mutations , prot_mutations)
1346
1347 re turn ref_mutations
1348
1349
1350 # Save the a n t i b i o t i c s c l a s s e s that are invo lved in the r e s i s t a n c e mutation search

f o r the cur rent t a r g e t ID .
1351 de f ge t_ invo lved_ant ib i o t i c s (ref_mutations) :
1352 a n t i b i o t i c s = s e t ()
1353 f o r ref_mutation in ref_mutat ions . nucl + ref_mutations . prot :
1354 i f ref_mutation [3] not in a n t i b i o t i c s : # The cond i t i o na l i s not r e a l l y

nece s sa ry here , but can improve speed
1355 a n t i b i o t i c s . add (ref_mutation [3])
1356 re turn a n t i b i o t i c s
1357
1358
1359 ###
1360 # General b i o i n f o rma t i c s f unc t i on s
1361 ###
1362
1363 # Trans la t e s DNA sequences in i n f i l e . Table 11 i s f o r b a c t e r i a l t r a n s l a t i o n (Use

t ranseq −help f o r other organisms)
1364 de f t r a n s l a t e (i n f i l e , o u t f i l e=None , t ab l e =11) :
1365 i f o u t f i l e i s None :
1366 o u t f i l e = i n f i l e + " _trans lated "
1367 # −s nuc l e o t i d e 1 means the input f i l e conta in s nuc l e o t i d e sequences ,
1368 L_print (" Trans la t ing ’{0} ’ ’ and sav ing output to ’{1} ’ " . format (i n f i l e , o u t f i l e) ,

2)
1369 L_execute (" t ranseq −sequence {0} −s nuc l e o t i d e 1 −t ab l e {1} −outseq {2} " . format (

i n f i l e , tab le , o u t f i l e) , l e v e l =2, header=" t ranseq output : ")
1370 re turn o u t f i l e
1371
1372
1373 # Removes read ing frame s u f f i x added to sequence names by EMBOSS’ s t ranseq
1374 de f r emove_trans la t i on_su f f i xe s (i n f i l e) :
1375 with open (i n f i l e , ’ r ’) as my f i l e :
1376 t r a n s l a t i o n = myf i l e . read ()
1377
1378 # Go through t r a n s l a t i o n and save sequences and t h e i r names (i n c l ud ing >) as

l i s t s in the sequences l i s t .
1379 sequences = []
1380 l i n e s = t r a n s l a t i o n . s p l i t l i n e s ()
1381 f o r l i n e in l i n e s :
1382 i f l i n e . s t a r t sw i t h (">") :
1383 # Transeq mod i f i e s the names in f a s t a f i l e s with a s u f f i x to i nd i c a t e

t r a n s l a t i o n frame .
1384 # For a frame one t r an s l a t i on , "_1" i s added a f t e r the f i r s t space , or at the

XXXII

B. Pipeline Code

end o f the name
1385 # i f the re are no spaces . The f o l l ow i n g code removes that s u f f i x .
1386 i f " " in l i n e :
1387 corrected_name = re . sub (r " (^ . ∗ ?) (_1) () (. ∗) " , r " \1\3\4 " , l i n e)
1388 e l s e :
1389 corrected_name = re . sub (r " (^ . ∗) (_1$) " , r " \1 " , l i n e)
1390
1391 sequences . append ([corrected_name , " "])
1392 e l s e :
1393 sequences [−1] [1] += " " . j o i n (l i n e . s p l i t ())
1394
1395 # Overwrite o ld f i l e .
1396 with open (i n f i l e , ’w ’) as my f i l e :
1397 f o r i in range (l en (sequences)) :
1398 myf i l e . wr i t e (sequences [i] [0] + " \n")
1399 myf i l e . wr i t e (sequences [i] [1] + " \n")
1400
1401
1402 # Complement , i n c l ud ing ambiguous base codes (except those that are t h e i r own

complement)
1403 de f complement (sequence) :
1404 trantab = s t r . maketrans ("ATCGKMRYBVHDatcgkmrybvhd" , "TAGCMKYRVBDHtagcmkyrvbdh")
1405 sequence = sequence . t r a n s l a t e (trantab)
1406 re turn sequence
1407
1408
1409 # Gets the DNA sequence between "> f s e q " and the next ">" or end o f s t r i n g (

whichever i s s h o r t e s t)
1410 de f get_fseq (f seq , genome) :
1411 pattern = r ">" + re . escape (f s e q) + r " (. ∗ ?) (>|$) "
1412 match = re . s earch (pattern , genome , re .DOTALL) . group (1)
1413 match = " " . j o i n (match . s p l i t ())
1414 re turn match
1415
1416
1417 # Writes a f a s t a f i l e from a l i s t o f l i s t s , the l a t t e r conta in ing f a s t a names (

a f t e r ">") and sequences
1418 de f wr i t e_fas ta (f a s t a_ l i s t , o u t f i l e) :
1419 o f = open (o u t f i l e , ’w ’)
1420 f o r i in range (l en (f a s t a_ l i s t)) :
1421 o f . wr i t e (">" + f a s t a_ l i s t [i] [0] + " \n" + f a s t a_ l i s t [i] [1] + " \n")
1422 o f . c l o s e ()
1423 re turn o u t f i l e
1424
1425
1426 # Runs the main () func t i on
1427 i f __name__ == "__main__" :
1428 main ()

XXXIII

	Introduction
	Aims

	Theory
	Fluoroquinolones and Their Targets
	DNA and Protein Sequence Alignments
	Genome Sequencing and Assembly

	Methods
	Pipeline Workflow
	Sequence Extraction
	BLAST Hit Extension
	Merging BLAST Hits from the Same FASTA Sequence in the Genome
	Post-Extraction Sequence Modifications

	Global Alignment
	Mutation Calling and Identification of Resistance Mutations
	Reporting

	Pipeline Arguments
	Substitution Study in E. coli and Shigella

	Results
	Pipeline Output
	Substitution Study Results
	Substitution Analysis
	Amino Acid Breakdown of Substitutions
	Comparison between E. coli and Shigella

	Discussion
	Pipeline Design
	Sequence Extraction
	Global Alignment

	Substitution Study
	Fluoroquinolone Resistance Mutations

	Conclusion
	Future Work
	Bibliography
	Shigella Results
	Pipeline Code

