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Abstract

Analyzing data at a massive scale is one of the biggest challenges that Last.fm
is facing. Interpreting patterns in user behaviour becomes a challenge when
millions of users interact in billions of combinations; the data sets must be
analyzed, summarized and presented visually.

This thesis describes a data store for multi-dimensional time-series-based
data. Measurements are summarized across multiple dimensions. The data
store is optimized for speed of data retrieval: one of the design goals is to serve
data at mouse-click rate to promote real-time data exploration.

Similar data stores do exist but they generally use relational database sys-
tems as their backing database. The novelty of our approach is to model mul-
tidimensional data cubes on top of a distributed, column-oriented database to
reap the scalability benefits of such databases.

Sammanfattning

Att analysera data p̊a en massiv skala är en av de största utmaningarna som
Last.fm st̊ar inför. Att tolka mönster i användarbeteende blir en utmaning
när miljoner användare samspelar i miljarder kombinationer. Datamängderna
m̊aste analyseras, summeras och presenteras visuellt.

Detta examensarbete beskriver ett datalager för multidimensionell tidsserie-
baserad data. Mått är summerade över multipla dimensioner. Datalagret är
optimerat för dataextraheringshastighet: Ett av designm̊alen är att servera data
i musklickshastighet för att främja utforskning av data i realtid.

Liknande datalager existerar men de använder oftast relationella databassys-
tem som databas för back-end. Nyheten i v̊art angripssätt är att modellera mul-
tidimensionella datakuber ovanp̊a en distribuerad, kolumnorienterad databas för
att utnyttja skalbarhetsfördelarna av s̊adana databaser.

Keywords: Data warehouse, MapReduce, BigTable, Python, distributed
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Chapter 1

Introduction

”One day some of the kids from my neighbourhood carried my mother’s
groceries all the way home—you know why? It was out of respect!”

— Travis Bickle

Background

Any organization will eventually want to analyze various characteristics of its
service and operations. The services can be anything from web sites to theme
parks; the analysis might include characteristics such as the number of visitors
per day, or the average time a theme park guest spends queueing for a particular
ride. Generally, the services and operations will generate a log for later analysis.
As the services grow in size, so will the data sets they generate. The size of the
data sets at Last.fm is in the range of several gigabytes per day. Some data sets
are many times larger. It is our belief that this is typical.

An important property of these data sets is that they generally have a regular
structure and are broken down into records that are independent of each other.
The records can be analyzed independently of each other without losing any of
their meaning, as such they are very well suited for parallel analysis.

Each log record typically contains a number of fields. For example, a log of
visits to a web site might contain a time-stamp, information about what country
the visitor originates from, and what web browser used by the user.

When the records in the data set have been analyzed, conclusions can be
made about what countries generate the most traffic to the site, which web
browser is most popular in a certain country, etc. Summaries of data are gen-
erally called aggregates. To aggregate data, for example to compute the sum of
visitors for all European countries, is a common technique for speeding up data
lookup in data stores.

A single computer is not likely to be able to process that amount of data
before a new batch arrives, and for very large data sets a single computer would
simply not be able to fit the intermediate data set in its working memory.

It is appropriate to exploit the parallel nature of the records by breaking up
the data sets in pieces and to have each piece be processed on a separate node
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in a large compute cluster. It is also appropriate to store the data across many
storage nodes in what is called a distributed file system.

Organizations measure their operations by considering many variables. When
these variables are placed in a spreadsheet, the variables are set on the x and y
axes. Each axis represents a logical grouping of variables. In the example of a
log file of visits to a web site above, country of origin is one such variable. A
variable is generally called a dimension in this thesis.

As an example: The International Aerodyne Corporation, a leading exporter
of woodworking nails, uses a spreadsheet to keep track of the number of nails
exported to each country every month (see table 1.1).

January February March
Canada 120 140 120
Great Britain 60 50 50
Germany 80 100 110
Sweden 40 30 30

Table 1.1: Spreadsheet showing crates of nails exported.

In the figure above, the time dimension is set on the x-axis and the country
dimension is set on the y-axis. If the Aerodyne Corporation were to start keeping
track of the kind of nails they sell (pins, tacks, spikes, etc.) in addition to the
country to which the nails were sold, they would effectively have added a new
dimension to their data.

Many organizations work with data that have more than three dimensions.
Such data is hard to manage in a spreadsheet, and the organizations need spe-
cialized tools to analyze and visualize their data.

Last.fm

Last.fm is an internet radio station that also has a large focus on metadata.
Their users can submit what music they listen to, this is called scrobbling.
Data submitted by users is analyzed and the user is offered personalized charts,
music, and event recommendations, based on their listening. Users can also edit
metadata about artists, albums, events etc; this forms a musical encyclopedia
and community. The Last.fm web site ties together the above mentioned areas
and presents it to the users.

Problem description

At Last.fm there is a central repository where metrics and statistics for various
services are stored. There is a web site for internal use that displays graphs
of the services and their statistics. Examples of statistics are web site usage
broken down by country, scrobbling broken down by client and daily subscription
counts.

The statistics are stored in a relational database. Each measure is stored
atomically; a summing operation across numerous rows is required to answer
queries. The database is bursting at the seams because of the size of the data.
Some of the problems with the current setup is that adding a new data source
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to the database requires manual intervention and that some of the questions
that analysts ask can not be answered in real-time.

Last.fm foresees that its data sets will continue to grow and would like to
move away from the current setup towards a scalable data store. The data store
should be able to answers most questions in real time. It should be easy to
publish new data sets.

Goal

The goal is to build a data store that enables its users to perform multi-
dimensional analysis.

In addition, the secondary goal is to build a tool that allows users to easily
store their data sets in this data store. The tool should provide a simple—as in
minimalistic—mechanism for data analysis (import) and querying (export).

The data analysis will require the user to write a custom import program.
The queries will be performed via an export API for consumption by computer
programs. Common queries must be answered expediently to allow for analysts
to explore data in real time.

The tool will support analytical functions such as drill-down, slicing, etc;
it should also be aware of dimensions in general and the time dimension in
particular. Each dimension contains a measurement in a specified unit. Example
units are plays, page views, space travels, or such. There should be no upper
bound on either on the number of units nor on the number of dimensions.

Existing Software

OLAP1 is a broad category of techniques for processing data, and visualizing
the analysis. It is called online because the data store will be queried, and the
user user expects a, at least close to, direct response.

HDW is a system whose goal is to create a high performance large scale data
warehouse based on MapReduce and BigTable. [22]

Omniture is a data warehouse used at Last.fm. Criticism against Omniture
is that it is cumbersome and slow to use. [5]

Overview

This thesis describes the Zohmg system and how to use it.
In chapter 2 general data warehouse concepts are introduced; it also intro-

duces new techniques that the reader might not know.
Chapter 3 establish the theoretical base of the problem statement, and the

expected system’s function and requirements.
Chapter 4 presents the work method during the thesis. It also presents tools

possible to use for solving the problem statement.
In chapter 5, the implementation choices and details of the Zohmg system

are presented.

1On-Line Analytical Processing
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Chapters 6 discuss the results, related, future work, and presents the con-
clusion.

In appendix A an example work flow is presented. Appendix B contains a
glossary.
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Chapter 2

Concepts

” I don’t let go of concepts - I meet them with understanding. Then
they let go of me.”

— Byron Katie

Introduction

This first section of this chapter presents data warehouses and the concept of
data cubes. It then introduces common operations on data cubes: projections,
slicing and dicing, and aggregation.

The last section features new techniques in distributed storage and comput-
ing; these techniques are Google’s BigTable and MapReduce.

2.1 Data Warehouses

A data warehouse is a repository of an organization’s electronically stored data.
Data warehouses are designed to facilitate reporting and analysis; the core ac-
tions of a data warehouse are to load, transform and extract data.

OLAP

OLAP is an umbrella term for systems built in a certain manner and that are
optimized quickly answer multi-dimensional analytical queries.

At the core of any OLAP system is the OLAP cube (also known as a multi-
dimensional cube or a hypercube). The cube consists of numeric facts—called
measures—which are grouped by dimensions. For example, the number of nails
sold is a measure while country, month and type of nail are dimensions. It is
from OLAP that [we] have appropriated the concept of a data cube.

Modelling OLAP cubes can be done in different ways, using different tech-
niques. The two main techniques are: MOLAP1 (or just OLAP), and RO-
LAP2. Data warehouses designed after the MOLAP principle use optimized

1Multidimensional On-Line Analytical Processing
2Relational On-Line Analytical Processing
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multi-dimensional array storage whereas ROLAP data warehouses use relational
databases as storage. When designing a ROLAP data warehouse a star or
snowflake schema would be used to model the dimensions.

Data cubes

A data cube is a conceptual n-dimensional array of values. It aids in reasoning
about dimensions. In the context of this thesis, each dimension of the cube
corresponds to an attribute of the data in question and each point along the
dimension’s axis is a value of the corresponding attribute. At any point where
the n dimensions intersect, a measure can be found. For example, if the dimen-
sions are country and nail type, the point in the cube where country is equal to
Sweden and nail type is equal to tack will contain a measurement of the units
of tack nails sold in Sweden.

Data cubes are traditionally modeled as star schemas in relational database
systems. [20]

Projections

One of the most common operations on a data cube is the projection. A projec-
tion is a function to another data cube, where one or more dimensions are dis-
carded from the cube and the measurements along each dimensions are summed
up, leaving a data cube of a lesser dimension.

For example, consider the three-dimensional data cube that represents sales
of nails; the dimensions are nail type, country and month. A projection from
that cube to one with two dimensions—month and nail type—would flatten the
country dimension: the measurements in the new cube represent the global sales
of each nail type for each month.

Slice and Dice

The slice operation fixes the values of one or several dimensions in the cube.
The data omitted from this operation would be any data associated with the
values of the dimension that were not fixed. The dice operation is a slice on
more than two dimensions.

For example, consider again the three-dimensional data cube that represents
sales of nails; the dimensions are nail type, country and month. A slice of that
cube with the country dimension fixed to Germany would contains sales figures
for each nail type and month for Germany only.

Aggregates

An aggregate is a composite value that is derived from several variables. Typical
examples of aggregate functions are average, count, and sum.

For example, sales figures for a whole year may be summed up and stored
along the year dimension.

In a standard OLAP setup, a number of aggregates are pre-computed and
stored in the cube. These base aggregates represent only a fraction of the many
possible aggregations. The remaining aggregates are computed from the base
aggregates as they are demanded.
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The main reason for pre-computing aggregates is to reduce access times, the
time it takes to compute an aggregate may be unacceptable to a waiting user.
Pre-computing frequently requested aggregates is therefore regularly done in
the background, giving the user fast access to these. [20]

The classic trade-off between time and space applies to whether or not to
pre-compute an aggregate. Pre-computing too many aggregates might result in
an unfeasible amount of data, while pre-computing too few aggregates results
in longer access times for those aggregates that were not pre-computed.

2.2 New Techniques

The OLAP field contains much research, for instance complete techniques such
as Dwarf [18], which is an OLAP engine, the Stanford Data Warehousing Project
[15], and DROLAP [12].

Google is the originator of two recent techniques: BigTable—a distributed
column-oriented schema-less database—and MapReduce—a framework for dis-
tributed parallel computations.

The following sections will present and review these two techniques.

2.2.1 BigTable

BigTable is a data store designed for storing very large data sets. BigTable’s
cells are basically indexed by row key, column key, and a time-stamp. Each row
has a key and any number of cells attached to it. The rows in a table are sorted
by their keys. The typical use-case of BigTable is to scan a range of rows. It is
therefor important to set up the row keys so that related data is close to each
other. For example, if it makes sense to traverse the data in chronological order,
the key might contain a representation of the data’s time-stamp. The classic
example is to have the reversed domain name (i.e. com.google.www) as the row
key, which means that all sub-domains of any domain are next to each other
(see table 2.1).

Data Model

BigTable’s data model can be thought of as a sparse, distributed, sorted, multi-
dimensional map. In concept, this multidimensional map is identical to a nested
hash table. The dimensions of the map are: row key, column family and column
qualifier, and a version time-stamp.

( row key , column key , time−stamp ) −> value

Listing 2.1: BigTable data model illustration.

The data model is a simple one: Rows of data are stored in labeled tables.
Each row is indexed with a row key, a column key, and a time-stamp. The
column keys have the form ”column-family:qualifier”, where the column-family
is one of a number of fixed column-families defined by the table’s schema, and
the qualifier is an arbitrary string specified by the application. In effect, column-
families are pre-announced when creating the table while qualifiers are not. The
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contents of each column family are stored together, so the user will want to store
items that have similar characteristics in the same column family. Each data
point is called a cell. A cell is an uninterpreted array of bytes, there are no data
types, and it is up to the application to interpret the data correctly. The table
can store any number of time-stamped versions of each cell, allowing versioning
of data.

Row Key Time Column Column

Stamp ”contents:” ”anchor:”

t9 ”anchor:cnnsi.com” ”CNN”
t8 ”anchor:my.look.ca” ”CNN.com”

”com.cnn.www” t6 ”<html>...”

t5 ”<html>...”

t3 ”<html>...”

Table 2.1: Example HBase table.

2.2.2 MapReduce

MapReduce is a software framework for distributed computations on very large
data sets. The computations are run in parallel across a network of computers.

Figure 2.1: Overview of MapReduce dataflow.

As the name implies, MapReduce is made up of two parts or phases: map
and reduce. The user specifies a map function that consumes a single key/value
pair to generate a set of intermediate key/value pairs, and a reduce function
that merges all intermediate values that belongs to the same key.
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MapReduce is not a new concept. The abstraction of two functions to process
small parts of the large data set was inspired by the map and reduce functions
commonly found in functional programming languages such as Lisp.

MapReduce splits the input into n pieces and assigns each computational
node of the cluster to work on one or more piece. The map function runs on
each node and emits key/value pairs. These are passed to the reduce function
where the values are collated by the reduce function.

The use of this model allows the framework to easily parallelize the com-
putations. In the inevitable case of a failure at a computational node, the
computations that failed can simply be re-executed on another node.

Summary

This chapter introduced Data Warehouses in general and OLAP in particular.
The concept of data cubes was introduced by OLAP. Dimensionality reducing
operations and aggregations of data cubes was also introduced in this chapter.

The chapter rounded of with a presentation of new techniques for distributed
storage and processing; namely Google’s BigTable and MapReduce techniques.
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Chapter 3

System Analysis

”Methods and means cannot be separated from the ultimate aim.”

— Emma Goldman

Introduction

This chapter will discuss and analyze the Zohmg system, that is to be built.
First the application area and the wanted system functionality are presented;

while discussing the input and output characteristics, and possible challenges.
Furthermore, a rough sketch and discussion of the Zohmg systems different
components will be presented. Secondly, the Zohmg system requirements will
be featured.

Throughout this chapter distinction is made between the developer who
develops the application, and the user who uses the product which the developer
creates. Although, in reality, they might be the same person.

3.1 System Function

Last.fm has a central statistics and metrics tool built on a relational database.
It is possible to import analyzed data to this tool; the data is presented to the
user as graphs. Disadvantages of this system include

• Problems with new data source additions: they can sometimes not be
loaded because they are too big.

• If a user wants to perform a custom query, manual intervention by the
developer is necessary.

• There is no way for this system to handle custom queries.

The data source is typically a log file; it is often a large file, up to gigabytes
in size, of structured data. The data is structured the same way on each line,
this makes writing a program for analyzing the entire data set as simple as
analyzing a single line.
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Reporting the analyzed data is the final step. This is what the user is
interested in: viewing the analyzed data. The tool at Last.fm presents the user
with a dashboard that has a selection of graphs on primary metrics; it also has
a list of all available graphs. All the graphs are pre-aggregated, no support
exists for custom queries. Enabling the user to query the aggregated data—
for instance viewing the most popular web browser in a country—would open
possibilities to explore the data. During exploration interesting details could
possibly be discovered; details which may be excluded from the pre-rendered
aggregates.

Since the data sources at Last.fm are time-stamped logs, the constraint to
only handle time-series was brought upon the system. This decision was reached
mainly to keep the implementation simple.

System Components

The following three components form the outline of the Zohmg system: import-
ing, storing, and exporting data.

At Last.fm there are several different facilities which produce logs, among
them: web servers, scrobbling1, radio streaming etc. This data resides on a
commodity hardware cluster used for parallel computation. The system needs
to be able to easily import data from these logs, taking in to account both the
locality of the data as well as the structure of the individual data records.

The Zohmg import component consists of a framework which enables the
user to write import programs. The import component handles half of the
MapReduce pattern, the reduce part; it also adds an interface for relaying the
imported data to the storage component. The import programs written by the
user include the other half of the MapReduce pattern, namely the map part,
and uses the interface for storing the imported data.

The storage component is built upon a BigTable-like database. Although
BigTable is schema less, the user imposes a loose structure by configuring the
layout of the wanted data sets. Basically, this configuration defines the table
layout and defines what structure the imported data must have.

The cardinality of a dimension is the number of distinct values of the di-
mension, see it as number of members in a set where the dimension is viewed
as a set. For example, the dimension of logged in has a cardinality of two since
logged in is a boolean variable; the user is either logged in or not. The country
dimension has a much higher cardinality: there are some 300 countries in the
world. Certainly, there could be dimensions whose cardinality is unbound: the
path dimension in the web log example, for example, could in theory have a
limitless number of values.

The number of possible combinations of dimensions of the data—the number
of points in n-space—is directly related to the cardinality of each dimension. It
is likely that the user’s data is of such a nature that it is physically impossible
to store information about all dimension combinations. This is why the user
is asked to define what projections are interesting: storing aggregates for the
slices of the cube that is interesting is both a time and space save, and in many
cases the only feasible solution.

1Last.fm users can submit what music they listen to, this is called scrobbling.
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Because of the distributed nature of HBase and its ability to store a very large
number of rows, there is no actual upper bound on the cardinality supported
by Zohmg. There may however be complex queries that have filters on high-
cardinality that Zohmg will be unable to answer. This can be remedied in part
by setting up projections that cater especially to those queries, but the issue
can not be fully avoided. The authors have successfully stored data where the
cardinality of the dimensions exceeded millions.

Due to the several different data sources, there exist several different types
of applications one could build on top of Zohmg. Therefore the system does not
implement any user interface other than the HTTP API; which takes a query
with time range, unit, and selected units to extract.

When extracting data it is important to remember that data handled by
and stored in Zohmg is not typed in any way. The developer is responsible for
interpreting the data in a correct manner.

3.2 System Requirements

The four key requirements of the Zohmg system are: ease of use, speed, scal-
ability, and adoption, where adoption means being able to fit in the existing
software and hardware ecosystem.

The system should have an easy facility for importing and analyzing new
data sources, while still being fast and efficient. A simple script—or tweak of
an already existing data import script—should be enough for importing and
analyzing a new data source.

Time is of essence when exporting data to the user. The user should be able
to explore the data at mouse-click rate, not having to wait for computation. This
is usually solved by pre-rendering the data which can be viewed or queried.

Importing data requires computing power, which is a limited resource. This
calls for the need to make the import phase efficient. Using a desktop worksta-
tion to process several gigabytes of data is simply impossible; it might require
more time than the actual worth of data it is importing—for instance taking
more than one day to import a days worth of data. There are a number of ways
to solve this, among them: more powerful machines and parallelizing.

Acquiring more powerful machines quickly becomes expensive. Even if more
powerful machines are acquired they might not have enough power for processing
several gigabytes of data: the data to be processed might not fit in the working
memory.

The other technique, parallelizing, uses a cluster of commodity hardware
machines. Using commodity hardware for computation significantly reduces the
cost, since commodity hardware is cheap; thusly preferred in most situations.

In order for a computational setup, cluster or other, to be efficient it needs
to scale well. In this sense, scaling means that adding more hardware should, in
a best case scenario, add all of the computational power of the new hardware.

The system needs to coexist and integrate seamlessly with the already ex-
isting hardware and software eco system at Last.fm. Thus, building on top of
already existing software is a natural choice.
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Summary

This chapter has analyzed and discussed the function and requirements of the
system to be built.

The system function section discussed the Zohmg system’s goal and its com-
ponents. The goal is to have a system which enables the developer to easily im-
port and analyze new data sources and to be fast enough to serve the analyzed
data at mouse-click rate to the user. The system’s three core components—
importing, storing, and extracting data—have also been discussed.

Furthermore the requirements on the Zohmg system were discussed; the four
key requirements are: ease of use, speed, scaling, and fitting into the existing
hardware and software eco system.
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Chapter 4

Method

”Arrange whatever pieces come your way.”

— Virgina Wolf

Introduction

The first section describes how the thesis project work was begun and later
structured. The design and implementation phases are also described in this
section.

The following two sections presents the tools which were selected to build
Zohmg upon.

The last section presents the scope of the thesis.

4.1 Procedure

This project started with an introduction to existing tools and infrastructure
at Last.fm. The introduction also included specifying requirements on the final
product, and introduction to several important concepts in data warehousing
(such as OLAP). The concepts were presented with related literature and re-
search papers.

The general procedure of the thesis project was done as exploratory work,
which involved rapid prototyping on sub problems and iteratively improving
these prototypes. A working system solution successively moved closer when
more of these sub problems was solved in a satisfactory manner.

Once a thorough understanding of the problem scope and its theoretical
solution the design were entered. Finally a short implementation phase was
executed.

Literature Studies

To establish good understanding of the problem in general and new concepts,
literature and research papers were studied. The concepts studied are data
warehousing, OLAP, distributed storage with column-oriented databases such
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as BigTable, and distributed computing with the MapReduce pattern and frame-
works.

Also a lot of related and surrounding, possibly useful, concepts were studied;
although some of these never made it to the final solution. [16, 21]

Software

There exists several MapReduce frameworks, for example Apache Hadoop and
Disco[3] which are both free software. As mentioned in the scope section Hadoop
was selected to be built upon because it already had an preeminent role in
production at Last.fm.

There exists a few databases which inspired by BigTable; they aim to be
distributed and have column-oriented properties: HBase, Cassandra, MonetDB,
MongoDB, Hypertable. CouchDB is a document-oriented database.

These databases were explored and tested, but most of them were in a very
early phase of development and hard to even install. The experience was that
HBase was the most mature of them. Maturity was the compound experience
with the software: community, code base, documentation, stability etc. HBase
is also tightly coupled with Hadoop which is used in production at Last.fm.

CouchDB was experienced to be mature as well but lacked integration with
MapReduce, resulting in that all database communication had to be done over
HTTP. This would use vast resources to keep all HTTP connections open,
working around this adds additional work compared to BigTable-like databases.
CouchDB also lacks sorting of documents over a computer cluster, which BigTable-
like databases utilize. The result was that setting up CouchDB with replication,
which would spread the work, required hands-on work.

Benchmarks

In order to evaluate software which candidated for taking responsibility for the
data storage, benchmarked were planned. Finally, only HBase made it to the
benchmarking part, the other databases in the roster were difficult or impossible
to either compile, install, setup, or all of them.

Prototyping

As mentioned above, the problem domain was explored by prototyping solu-
tions to sub problems of the greater system. The prototypes were for example
used to find out if a problem was solvable at all, or what the most efficient
implementation of an idea was.

Most of the exploration was straight forward. Many questions could be
answered from observations or by logical reasoning, other questions were more
open ended. Such an open ended question was deciding on a suitable output
format1. For open ended questions the approach was to first reason about
suitable solutions, compare them against each other on the drawing board and
then eventually as prototypes.

The first prototypes handled data sources. The different data sources had
different formats and locations, the related prototypes dealt with how these data

1An output format is a concept in Hadoop; it is a format which the reduce step uses to

output the results.
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sources should be analyzed and imported with MapReduce. The succeeding
prototypes explored export and data storage functionality.

Python

Python is a general-purpose high-level multi-paradigm—amongst others: object-
oriented, imperative and functional—scripting language. [6]

Because there existed a Python module for writing MapReduce programs
(Dumbo for Hadoop, both further later in this chapter), Python was a natural
choice during the design and exploration phases. Python was also a good choice
because of the rapid prototype development it enables.

Design Phase

After familiarity with the problem and its theoretical solution was reached, the
design phase was entered. During this phase a grand design for the system was
laid out.

The initial design was ambitious; it contained, amongst other things, compo-
nents to import, store, and export data, a query language and sub-components
for query analysis. The intended tasks for these components were to identify the
most common queries and optimization. These features are likely advantageous
in a large data store but it is possible to do without them.

In the end, it was decided to use a simplified version of the initial design.
As mentioned in chapter 3 in the section System Components, the final design
only included components to import, store, and export data.

Implementation

The implementation phase was rather small. The already existing evolved pro-
totypes, which solved sub problems, was simply stitched together. The result
gave a solid ground to stand on: A system which could run import programs
(MapReduce jobs), shuffle data from the import programs into HBase, and ex-
port data from HBase through a HTTP API. Data cube implementation was
added to this resulting system.

4.2 Tools

4.2.1 Apache Hadoop

Hadoop is a free software implementation of Google’s MapReduce-framework; it
is written in Java, and is part of the Apache Software Foundation. Hadoop is a
fairly mature piece of software and is used in production at numerous companies,
among them Last.fm. [1]

Hadoop Distributed File System

HDFS is a free software implementation of the GFS2. [14]
The goal of HDFS is to store large data sets while being able to handle

hardware failure and being deployed in heterogeneous hardware and software

2Google File System
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eco systems. Additionally, the Hadoop and HDFS interaction is designed with
the notion that it is cheaper to move the computation, MapReduce programs,
to the data than the other way around.

Every Hadoop node can be formatted with HDFS, this reserves disk space
on the node to be used for HDFS. The HDFS partition3 resides on the node’s
general purpose file system. It is also possible to use HDFS as a stand-alone
general purpose distributed file system, without Hadoop.

The default block size on HDFS 64 MB, significantly larger than file systems
used for hard drives. The motivation is that applications that use HDFS are
not general purpose applications which run on general purpose file systems, but
batch applications which read, write, or both, large amounts of data.

Hadoop streaming

Any program that reads and outputs to the file pointers stdin and stdout,
respectively, can be used as MapReduce programs with Hadoop Streaming. This
makes it possible to use any shell script or program which inputs and outputs
this way as a MapReduce program.

Dumbo

Dumbo is a Python framework for writing Hadoop programs in Python; it
exploits the Hadoop Streaming Mode to do so. It is used extensively at Last.fm
for writing short prototypes. [4]

4.2.2 Apache HBase

HBase is a free software implementation of Google’s BigTable. [11] It is a
sub-project of Hadoop, written in Java and a part of the Apache Software
Foundation. HBase is still in its infancy and few organizations use it for mission-
critical applications. [2]

Physical Storage

Each column-family is stored as a single file in HBase; it is then subdivided into
column-qualifiers within this file. This is important to consider when designing
application and schemas, since reading from several column-families will open
several files.

Sparsity

When many cells are empty, the table is said to be sparse. This can poten-
tially be a problem, because even sparse cells may cost storage space. BigTable
and HBase, however, don’t store empty cells; as consequence sparsity is not
associated with a great storage cost. [17, 20]

3The HDFS partition is a directory containing HDFS files on a general-purpose file system.
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Hierarchies

Depending on how the row keys are formatted different, hierarchies are created.
The order in which the data is stored is important, it defines how effective
scanning data will be. Sparsity also comes into play during effective scanning.
In the case of having thousand rows and requesting ten out of these, then only
one per cent of the data is interesting. If a scan would be required to visit all
the thousand rows a lot of rows are skipped. Skipping rows is expensive in that
sense that they are visited but the result is thrown away. The goal is to push
this cost to a bare minimum, using as many of the rows as possible.

The minimum cost of scanning data is achieved by ordering the data so that
a scan uses every visited row. In the case with thousand rows of which ten are
wanted, would mean that ten rows scan are scanned of which all are used.

Thrift

HBase has a Thrift server which serves as the interface to languages other than
Java—for instance Python.

Thrift is a remote procedure call framework for building scalable cross-
language services. Thrift combines a software stack with a code generation
engine to build services that work seamlessly between a wide range of program-
ming and scripting languages. [19]

Thrift was originally developed at Facebook and in April 2007 it was released
as free software. It entered the Apache Incubator in May 2008.

4.2.3 Dependability

Regarding the infrastructure, both Hadoop and HBase have high availability,
reliability, and scalability.

Both Hadoop and HBase are distributed systems; making them highly avail-
able out of the box. Although the Job Tracker4 is a single point of failure for
Hadoop. The HDFS NameNode5 is also a single point of failure. However, a
secondary HDFS NameNode, which regularly takes a snapshot of the primary
NameNode’s state, is spawned. There exist no automatic fail-over though, if
the main the primary NameNode crashes manual intervention is needed.

Both systems have high reliability. Data on HDFS are replicated to—
typically three—other nodes in the cluster. Jobs submitted to Hadoop also
have a high reliability: If a node does not succeed with a job it is rescheduled
to another free node which executes it.

Regarding scalability Hadoop and HBase scales close to linearly when nodes
are added to the cluster.

While relational databases can be made highly available and reliable with
load balancing and so called sharding, the setup is non-trivial.

4All client applications are submitted to Hadoop’s Job Tracker.
5A unique server which keeps the directory tree of all files in HDFS.
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4.3 Scope

Tools

The MapReduce framework Hadoop is used in production at Last.fm. Hadoop
was selected to be used for distributed computing, because of the need for simple
integration with already existing infrastructure and developer competence at
Last.fm.

The BigTable-implementation HBase was selected to be used as the under-
lying data storage. It was selected because of its integration with Hadoop, and
also, out of the box, solved several Zohmg related distributed storage prob-
lems. Several other distributed databases were tested, but HBase turned out to
be the best alternative because of the easy integration with Last.fm’s existing
infrastructure, code maturity, as well as its vibrant community.

Data Store

The Zohmg data store should just store data, it should have basic import and
export functionality. Zohmg shall not interpret the stored data, this is left to
the user to do in a correct manner. This decision was reached because of time
constraints when implementing Zohmg.

Because BigTable stores data sorted on row keys, it was decided that Zohmg
only supports time-series-based data. Having data sorted between nodes in
a computer cluster balances the network, computational, and storage loads,
resulting in more even utilization of the cluster. Time-series analysis is also the
most common for logs, since each entry is time-stamped. [23] Since Zohmg only
supports time-series, each query has to be made over a time range.

All measures are integers. Sum is the only supported aggregation function.
The data store does not support reach-like data (i.e. number of unique visitors)
since it is not sumable.

Zohmg is designed as a data store, which simply imports, stores, and exports
data. Although presenting the data is important, this is left to the user to solve.
The section Design Phase in this chapter mentions an original plan where a
query language and sub-components for optimization were included. In the
end, these were left out. These restrictions were made because of keeping the
implementation simple, and more general.

Because the data sources are typically large, the storage needs to be efficient.
Storing the analyzed data can be done in different ways, for instance storing the
raw data or just aggregates. Storing the raw data is very expensive, since it
would basically copy the data to the data store. Because of this the decision
was made to only store aggregates.

Summary

The first section of this chapter talked about the procedure during the thesis
work. It described the exploratory model and the prototyping performed, as
well as the design phase which led to the implementation.

The following sections presented and discussed the selected tools; they also
discussed the tools’ impact on design and implementation choices.

The last section described the scope of the thesis.
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Chapter 5

Implementation

”A good idea is about ten percent and implementation and hard work,
and luck is 90 percent.”

— Guy Kawasaki

Introduction

This chapter will present the implementation of Zohmg. For a usage manual,
see the appendix.

In the first section the implementation of project creation, configuration,
and setup will be presented. The second section features the data import im-
plementation. It will present example data as well as an example user map
function to show this. The third section presents the implementation of data
interchange between Zohmg and other software such as Hadoop, Dumbo, and
HBase. It also shows an overall of Zohmg. The third section also presents the
implementation details of Zohmg’s data export component.

5.1 Project Management

Zohmg employes the concept of projects. A project is a self contained applica-
tion data directory. A Zohmg project is necessary for using Zohmg; they are
created with a management script, which is also used for interacting with the
Zohmg system. When the user has created a Zohmg project directory further
actions can be performed. The Zohmg projects reside within a project direc-
tory, which contains five directories: clients, config, lib, and mappers. The
details of these directories are presented throughout this chapter.

Configuration

Zohmg needs configuration of the user’s data sets and the environment for
Hadoop and Dumbo. When the data set files are configured, the user runs
the management script, which executes the configuration and creates tables in
HBase according to the configuration.
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Data Sets

A data set is any set of data that the user has. Zohmg requires the user to write
a configuration that describes the attributes of the data. The configuration of a
data set is a list of dimensions and projections. This configuration will be read
during the import phase to match analysed data against the schema definition.

The data set configuration files reside in the project’s config directory. The
data sets are configured using YAML1, a human-readable data serialization
format. Any human-readable configure file method could have been chosen.
YAML was chosen because it is is very simple for humans to read and edit, and
likewise for machines. The Python module PyYAML was used to implement
the YAML configuration reading part. [8]

Listing 5.1 shows an example data set configuration.

datase t : submiss ions

dimensions :
− a r t i s t
− t rack
− user

p r o j e c t i o n s :
− a r t i s t
− user
− user−a r t i s t
− user−t rack
− a r t i s t −t rack

un i t s :
− s c r obb l e s
− l o v e s
− bans

Listing 5.1: A data set configuration example.

Environment

The execution environment is described by a Python script. In it are defined
run-time variables which are required by Hadoop and Dumbo, namely the Java
class path and the absolute path to the Hadoop directory.

By using a Python script for run-time variables leaves the problem of val-
idation to Python. The environment configuration file resides in the project’s
config directory.

5.2 Importing

In order to import data to Zohmg, the user writes a map function in Python.
Zohmg employs Dumbo to run the map function on the Hadoop instance defined

1YAML Ain’t a Markup Language
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by the hadoop home variable.
A standard MapReduce map function emits key-value pairs. The Zohmg user

map function emits triples (tuples with three values), which consist of a time-
stamp, a hash table of dimensions and their respective values, and a hash table
with units and their respective measurements (values). In effect, the dimensions
and the time-stamp specify a point in n-space (the key) and the measurements
represent the observations made at that point (the value(s)).

A reducer function that is specific to Zohmg is employed to perform aggre-
gation on the output from the map phase. The reducer sums the measurements
for each point in n-space and for each unit and emits the resulting aggregates.

The output from the reducer is interpreted by a custom output reader. Com-
monly, an output reader stores the output of the reduce phase on disk. The
output reader that Zohmg employs instead stores the aggregates in HBase. It
is written in Java.

Reduce

Map

Reduce

ReduceMap

Map

Map

Map

Data

HBase

Output Format

Figure 5.1: Diagram over data import to Zohmg.

Example of Importing

An example data source is the Apache HTTP Server access logs. The Combined
Log Format is commonly used to log Apache HTTP Server requests. The log
format is configurable, an example log line might have the following format

1 2 7 . 0 . 0 . 1 − emma [20/Apr /2009 : 13 : 37 : 00 +0100]
”GET /music HTTP/1.0” 200 2324 ”http :// l a s t . fm/”
” Moz i l l a /5 .0 (X11 ; U; Linux i686 )”

Listing 5.2: Example log line entry for the Apache HTTP Server’s Combined
Log Format.

The above example log entry is line broken due to space constraints, normally
the entire entry would be on a single line. The example log line contains access
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info for a specific request; it contains the key entries: the client’s IP address,
time-stamp, requested resource, HTTP status code for the request, the client’s
user agent etc.

Processing—which means: read, analyze, and store—logs of the format men-
tioned in Listing 5.1, requires the user to write a map function. This user map
function might look something like

def map( key , va lue ) :
l og = par s e apache l og ( va lue )
dimensions = { ’ u se ragent ’ : l og . useragent ,

’ path ’ : l og . path ,
’ s t a tu s ’ : l og . s ta tuscode }

measurements = { ’ pageviews ’ : 1 ,
’ bytes ’ : l og . s i z e }

y i e l d l og . timestamp , dimensions , measurements

Listing 5.3: An example map function, parsing Apache access logs.

The above example showcases the emitting of dimensionality. In the example
the actual parsing of the log is abstracted out by the function parse apache log();
it is assumed that this function accepts a single line from an Apache HTTP
Server log file and returns an object with the appropriate fields, such as usera-
gent and statuscode.

For every line of the log file (the value argument to the map function), a
point in n-space (the dimensions and the time-stamp) is emitted together with
a count of page views and bytes; one page view per request and the number
of bytes served in the request. It is possible to add logic here, perhaps only
counting requests from user agents that are not web spiders which resulted in a
HTTP 200 status code.

The last line yields the tuple. This is a Python construct, similar to an
iterator, called a generator that lets the map function emit any number of
tuples for a single invocation.

Since the goal is to store projections rather than all combinations of all
dimensions, the data needs to be mangled slightly before sending it down the
pipe to the underlying data store. Dumbo expects a key-value pair from the
mapper. Hadoop will collect all keys and give the reducer a key and an iterator
of values.

Remember, the user map function gives a point in n-space and a list of
measurements. The measurements needs to be extracted and each such mea-
surement is summed over. Zohmg solves this by wrapping the user map function.

The wrapper takes each tuple emitted by the user map function and per-
forms a dimensionality reduction, ending up with the projections requested by
the user. For every projection and unit, the dimensions remaining after the
reduction are appended to the string representation of the unit and emitted as
the key. The value is simply the value of the unit. The Hadoop framework will
do the heavy work of collecting all keys and summing the values.

The reducer, then, is very simple: it is a simple sum of the values. The
output of the reducer will not be stored on disk as is usually the case, but
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will instead be interpreted by a custom OutputReader (see Data Interchange
section) that persists the data to HBase.

The user will import a day worth of logs by invoking

zohmg import mappers/apache.py /data/weblogs/2009/04/20

This will instruct Zohmg to apply the map function found in apache.py to
all logs that it can find in the directory /data/weblogs/2009/04/20 on HDFS.
The emitted output is duly collected and projections are carefully stored in the
data store.

5.3 Storage / Data Model

The underlying data store is HBase, which is a column-oriented database. Col-
umn families are pre-defined, but everything else, such as column qualifiers and
rowkeys, can assume arbitrary values.

Zohmg models the aggregated data with this in mind. An HBase table is
created for each data set, and in the table is a single column family called ’unit’.
For every unit that the data set contains there will be a column qualifier. For
example, ’unit:pageviews’ would be one such column qualifier in the example
above. Employing the qualifier to encode arbitrary unit names means that the
user can add new units to his data set configuration without having to change
the schema of the HBase table.

Zohmg stores one or more projections of the data, and each projection is
made up of one or more dimensions in addition to the ever-present time dimen-
sion. Every dimension is a tuple of dimension name and dimension value. The
dimension tuples of the projection are stored in the rowkey. The rowkey is a
string; the dimension names and values are separated by a dash. As such, the
dash is one of the few disallowed characters in dimension names and values.

For example, a rowkey for the projection of the user agent and status code
dimensions might look like this:

useragent−f i r e f o x −s tatuscode −200−20090420
useragent−f i r e f o x −s tatuscode −200−20090421
useragent−f i r e f o x −s tatuscode −200−20090422
. .
useragent−f i r e f o x −s tatuscode −404−20090420
useragent−f i r e f o x −s tatuscode −404−20090421
useragent−f i r e f o x −s tatuscode −404−20090422
. .
useragent−s a f a r i −s tatuscode −200−20090420
useragent−s a f a r i −s tatuscode −200−20090421
. .

Listing 5.4: Example of rowkeys

The rowkeys are sorted lexicographically. This means that all entries for the
user agent ’firefox’ will be found close to each other. If the data analyst is more
interested in finding all entries with status code 200, it would make sense to set
up the projection so that status code is the first dimension.
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Internal Data Interchange

The reducer needs to communicate to the output reader under what row and
column the computed aggregate is to be stored. The reducer does this by
emitting the row key as key, and a JSON-serialized hash table, which is called
a dict in python, as value. The structure of the map is of the form
{"column-family:qualifier" : value}.

The output reader, which is a Java class that is executed within the Hadoop
framework, de-serializes the JSON structure and constructs an HBase object
that is persisted to the underlying HBase data store.

5.4 Exporting Data

In order to join together all the different abilities wanted from the data server,
it was designed as a middleware application. Middleware is software that acts
as an intermediary.

The data export server is built with a WSGI2 framework, which includes
both middleware and application parts. The middle ware applications are re-
sponsible for dispatching requests to the corresponding application or file. WSGI
middleware receives a WSGI request and then performs logic upon this request,
before passing the request to a WSGI application. [7, 13] Since the main goal
was not to build a middleware framework from scratch, an existing such was
used.

When a user queries the data server, JSON3 is returned. JSON was cho-
sen because it is i simple text serialization format which is widely used in web
development. The Python module simplejson was selected for the this imple-
mentation detail. [10]

HBaseZohmg HTTP Server

Scanner

Result set

HTTP Get request

JSON responseClient

Figure 5.2: Diagram over data export from Zohmg.

External

The data export server is built with Python Paste—a middleware framework—
the data server dispatches to the requested application depending on the URL
it was fed. [7]

2Web Server Gateway Interface, a HTTP extension where a CGI-like environment is passed

around.
3JavaScript Object Notation

33



WSGI applications receive a WSGI request and returns a response with the
built-in web server.

URLParser

The URLParser class is a middleware application that comes with Python Paste;
its purpose is to dispatch to applications based on the URL. The URLParser
removes the first part of the URL and tries to find a matching application to
relay the request to. For instance, consider the URL /client/file.html. The
first part—client—will be removed and the request /file.html will be sent
to the application named client.py.

Clients

This is a custom application built for Zohmg. It dispatches request to serve
static files from the project’s clients directory. Custom clients—which interact
with Zohmg—can be built with HTML and JavaScript, see the examples.

Data

The data serving part of Zohmg fetches data from HBase via its Thrift interface.
The user submits a scan query with row range, unit, and dimensions, and all
the wanted values associated with these variables.

http://localhost:8086/data/?t0=20090101

&t1=20090420&unit=pageviews

&d0=country&d0v=SE

The above query would return the page views for SE between 1 January 2009
and 4 April 2009. The results from the scan is served to the user as JSONP4.

Transformers

The transformer middleware application fetches data from HBase with the same
mechanism as the raw data server (via the Thrift interface); it then uses a user
transformer to alter the data and return it to the user. The user transformer
is a Python program in the project’s transformers directory. See appendix A
for more information.

The data is received in the transformer application as a hash table, which
is then available for manipulation. The result is returned from the transformer
application as a hash table and the transformer middleware returns the trans-
formed result to the user as JSONP.

Summary

This chapter’s first section has presented the implementation of the Zohmg
system. The concept of Zohmg project’s and management of the same were
introduced; as well as how these are configured. The second section presented

4JSON with padding: JSON extension which adds name of callback function as an argu-

ment to the function itself.
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how to import data with Zohmg, giving examples of data and the user map
function. In the third, and final, section Zohmg’s data interchange was featured.
Both the internal data interchange, which is used together with Hadoop, Dumbo,
and HBase, and the external data interchange, which is used by the user to query
Zohmg.
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Chapter 6

Results

”When we can’t dream any longer we die.”

— Emma Goldman

6.1 Results

The goal of this thesis was to build a tool that allows its user to perform multi-
dimensional analysis of a large corpus of data. That goal has been achieved by
implementing a data store that leverages HBase as a backing store and utilizes
the Hadoop MapReduce framework as its import functionality.

The resulting software is a command line application written in Python.
The command line application is the sole interface to the data store. From here
the user can initiate import jobs, start a server for exporting data, and manage
projects folders.

The import jobs are executed on the Hadoop MapReduce framework. The
job execution is delegated to Dumbo, a python module for running Hadoop jobs
that are not written in Java. The job consist of a map function that wraps
around the map function written by the user, and a reducer function that sums
together measurements for each point in the multi-dimensional measurement
space. The output from the MapReduce job is stored in an HBase table.

Data is exported from the data store through an HTTP interface. Queries
to the data store are made with HTTP GET requests. The response is encoded
as JSON, a lightweight computer interchange format. The exports are not
parallelized; they are performed as one or more scans over an HBase table.

The data store is time series based, meaning that all data points are specified
along the time axis, as well as any number of other dimensional axes. A single
level of granularity is used throughout each data set. The values of dimensions
are entirely user-definable.

Zohmg functionality and performance was tested with two data sets. The
first one being Last.fm’s web logs for the entirety of 2006, the second one being
scrobble logs. Both of these data sets are several Gigabytes big and both sets
have a cardinality of millions or more. Zohmg imported managed to import
these two data sets and then serve the aggregates at mouse-click rate.
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6.2 Discussion

The decision to implement the import functionality on Hadoop was driven by
both practical and environmental reasons: it is unfeasible to analyse large data
sets on a non-distributed system so some sort of distributed computation model
was needed to reach a satisfiable performance, and Last.fm already has a large
Hadoop cluster and a technology culture in which Hadoop is used extensively.
The decision to use Hadoop was in the end a non-decision, an already made
conclusion.

The reasons behind using Dumbo and writing Zohmg in Python are similar.
Last.fm was already moving towards writing a larger set of its analysis tools in
Python thanks to Dumbo, which is a product of another intern at the company.
Python is a language which allows for rapid prototyping and is as such well
suited for writing both the user’s map function and the whole of Zohmg.

The main point of contention was which backing store to use. A number of
different systems that fitted the requirements were tried out but none of them
proved to be either very dissimilar from the BigTable apporach of HBase, or
ready for production. HBase has the advantage of being closely tied to Hadoop
which means that there was already tools available for writing HBase-centric
MapReduce jobs in Hadoop. The technology culture at Last.fm again proved to
be the main reason: there were already projects within the company that were
using HBase, so the needed infrastructure and know-how was there.

The import facility makes use of MapReduce and a custom mapper and
reducer. There is still the unresolved issue of whether it would be more efficient
to not use a reducer at all and write to HBase directly from the mapper. The
argument is that HBase is better at handling writes to random locations in the
key space. The downside of this would be that summing for aggregation would
have to be done at every cell update.

The data export uses a simple HTTP server. The query and response fit
well into the HTTP primitives and the ubiquity of HTTP clients and libraries
makes it a good choice for a simple and quick interface. The HTTP server
queries HBase over Thrift, which is quick enough but less than optimal. A more
advanced solution would be to implement a Thrift server in Java and offer a
Thrift interface to Zohmg. That would presumably be more efficient. There
could also be situations where a MapReduce job would be well-served to use the
aggregates as input. That situation would be resolved by providing an custom
input format that reads straight from the HBase table.

The decision to use JSON was based on the fact that JSON is lighweight
and efficient to parse, and has support for the few primitives that are needed
to describe the exported data. Also, JSON parsers are ubiquitious and libraries
are available in almost any language.

6.3 Future Work

Says Wikipedia: ”Organizations generally start off with relatively simple use
of data warehousing. Over time, more sophisticated use of data warehousing
evolves.” Zohmg is a simple data warehouse; the seed from which a more so-
phisticated data warehouse may evolve.

There is as of yet no support for specifying granularities. The only supported
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resolution of time is the day. Future work could include adding support for
querying data at any level of granularity.

The single act of aggregation performed is the summing of the measurements.
Future work may include average, max and min, etcetera.

There is no metadata store. It would be very helpful for the application
writer to know what the known values are for each dimension. Future work
could include a metadata service with a simple Thrift interface at which the user
can query for dimensions, their respective cardinalities and values, etcetera.
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Appendix A

Usage

”There comes a time when all people break down and do the unthink-
able: They read the manual.”

— Unknown

The following chapter will describe how the Zohmg system is used. Project
deployment and data import and export will be described briefly.

Installation

During the installation phase superuser (root) privileges are required.
Hadoop and HBase is required to run Zohmg, they form the foundation of

data processing and storage which Zohmg builds upon. Zohmg is built with
Python and also requires a few Python modules, on a Debian based system
these are installed by the install script (see below).

To install Hadoop and HBase automatically a script is provided.

sh scripts/install_hadoop_hbase.sh

The above command will install Hadoop and HBase to /opt by default, this
is customizable with script arguments. Both Hadoop and HBase will be con-
figured for local (standalone) mode when the installation is done. Installing
Hadoop and HBase on a cluster requires additional attention, for instance
passphraseless SSH1 keys and additional program configuration.

The Zohmg installation depends on Python Setuptools [9], which needs to
be installed prior to the installation.

When Hadoop and HBase is installed install Zohmg by invoking the following
command in the root of the source tree

python install.py

Creates eggs of Zohmg system and puts them in system-wide directory for
python packages.

Zohmg files copied, scripts, documentation, library files (other’s software).

1Secure Shell, an encrypted data transport protocol; it is commonly used for remote access.
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Deployment

The Zohmg manage script is used to create a project directory

zohmg create project

The next step is editing the configuration files, which are located in the project’s
config directory. The configuration files are text files in YAML and Python
format. When the files are edited, run the setup command; this executes the
configuration and creates infrastructure (HBase tables) for the project.

zohmg setup

Import

In order to import log-like data to the data store, the map part of the MapRe-
duce program needs to be created. The reduce step is taken care of by Zohmg,
which uses sum reducer that simply sums up values with the same keys.

User Mappers

Import jobs use mappers written either in Python or Java. User mappers import
each line from the input file and set the arguments to the map function, key and
value, as line number and line contents, respectively. The user can then perform
computations on these entities and finally yield the results as a dictionary. The
resulting dictionary will be interpreted by Zohmg and stored accordingly.

zohmg import mappers/somemapper.py hdfs/path

Export

It is possible to query Zohmg about metadata it has on each of the imported
data sets.

Data is served to the user over HTTP in JSONP format or. To start the
data server execute

zohmg serve

The command above starts the data server on default port 8086, with the
--port argument it is possible to change server port.

The data server have three methods of serving data: raw, transformed, or
static. The raw and transformed data are aggregates served from HBase, trans-
formed in the latter case, while the static method just serve static files from the
project’s clients directory. Aggregates served from HBase are returned to the
user as JSONP.
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Data

Based on the query—which the user submits—the corresponding data is served
from HBase as JSONP. The query is a simple definition of wanted row range,
dimensions, projections, or both, and values for these. The query is submitted
to the data server via HTTP, a query could look like

http://localhost:8086/data/?t0=20090101

&t1=20090420&unit=pageviews

&d0=country&d0v=SE

The above query would return the page views for SE between 1 January
2009 and 4 April 2009.

Transformers

It is possible to transform the raw data in Zohmg by using a so called trans-
former. The transformer application receives a query—of the same format as
the raw data server’s—and then transforms the data with the requested trans-
former program from the project’s transformers directory, output is dumped
as JSONP.

Accessing transformed data is done similarly to the raw data extraction.

http://localhost:8086/transform/transformer/

?t0=20090101&t1=20090420&unit=pageviews

&d0=country&d0v=SE

The above query extracts the same data as the query from the Data section.
This data is run through the transformer.py application and is, again, served
to the user as JSONP.

Clients

It is possible to build static web pages out of HTML and JavaScript, which can
interact with the data server. These static pages can for instance present some
sort of query building mechanism—for instance with drop down boxes—and
then send this query to the data server and graph the resulting data.

The data server serves static files from the project’s clients from

http://localhost:8086/clients/filename
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Appendix B

Glossary

Column-oriented A column-oriented database stores its content by column rather
than by row. This is an advantage for databases such as data
warehouses, where aggregates computed over large numbers of
similar data items.

JSON JavaScript Object Notation, a lightweight text-based human-
readable data interchange format. It is used for representing sim-
ple data structures and associative arrays (called objects). JSON
is often used for serializing structured data and transmitting it
over network connection.

OLAP An acronym for On-Line Analytical Processing. It is a subdivision
of the broader category business logic. OLAP is an approach to
quickly find answer to user queries.

Replication The process of sharing information for ensurance of consistency
between redundant sources. For instance multiple databases on
different machines share the same content for sake of redundancy,
the information is not lost if one machine fails.

Serializing Serializing data is the task of converting an object into a sequence
of bits, making it possible to store on a storage medium or trans-
mitted over a network link. Rereading the sequence of bits should
restore the original state of the object it was in before the serial-
ization.

Sharding A method for horizontal partitioning in a database. Horizontal
partinioning is a design principle whereby rows of a database table
are held seperately. Each partition forms a so called shard, which
may be located on a separate database server. The advantage is
the number of rows in each table is reduced, which reduces index
size and thus performance.
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Appendix C

Zohmg README

INTRODUCING: ZOHMG.

-------------------

Zohmg is a data store for aggregation of multi-dimensional time series data. It

is built on top of Hadoop, Dumbo and HBase. The core idea is to pre-compute

aggregates and store them in a read-efficient manner Zohmg is

wasteful with storage in order to answer queries faster.

This README assumes a working installation of zohmg. Please see INSTALL for

installation instructions.

Zohmg is alpha software. Be gentle.

CONTACT

-------

IRC: #zohmg at freenode

Code: http://github.com/zohmg/zohmg/tree/master

User list: http://groups.google.com/group/zohmg-user

Dev list: http://groups.google.com/group/zohmg-dev

RUN THE ZOHMG

-------------

Zohmg is installed as a command line script. Try it out:

$> zohmg help

AN EXAMPLE: TELEVISION!

-----------------------

Imagine that you are the director of operations of a web-based
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television channel. Your company streams videos, called "clips".

Every time a clip is streamed across the intertubes, your software

makes a note of it in a log file. The log contains information about

the clip (id, length, producer) and about the user watching it

(country of origin, player).

Your objective is to analyze the logs to find out how many people

watch a certain clip over time, broken down by country and player,

etc.

The rest of this text will show you by example how to make sense of

logs using Zohmg.

THE ANATOMY OF YOUR DATA SET

----------------------------

Each line of the logfile has the following space-delimited format:

timestamp clipid producerid length usercountry player love

Examples:

1245775664 1440 201 722 GB VLC 0

1245775680 1394 710 2512 GB VLC 1

1245776010 1440 201 722 DE QUICKTIME 0

The timestamp is a UNIX timestamp, the length is counted in seconds

and the id’s are all integers. Usercountry is a two-letter ISO

standard code while the player is an arbitrary string.

The last field -- "love" -- is a boolean that indicates whether the user

clicked the heart shaped icon, meaning that she was truly moved by the

clip.

DO YOU SPEAK ZOHMG?

-------------------

In the parlance of Zohmg, clip and producer as well as country and

player are dimensions. 1440, ’GB’, ’VLC’, etc, are called attributes of

those dimensions.

The length of a clip, whether it was loved, etc, are called

measurements. In the configuration, which we will take a look at

shortly, we define the units of measurements. Measurements must be

integers so that they can be summed.

Simple enough!
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CREATE YOUR FIRST ’PROJECT’

---------------------------

Every Zohmg project lives in its own directory. A project is created

like so:

$> zohmg create television

This creates a project directory named ’television’. Its contents are:

config - environment and dataset configuration.

lib - eggs or jars that will be automatically included in job jar.

mappers - mapreduce mappers (you will write these!)

CONFIGURE YOUR ’PROJECT’

------------------------

The next step is to configure environment.py and dataset.yaml.

config/environment.py:

Define HADOOP_HOME and set the paths for all three jars (hadoop, hadoop-streaming,

hbase). You might need to run ’ant package’ in $HADOOP_HOME to have

the streaming jar built for you.

config/dataset.yaml:

Defining your data set means defining dimensions, projections and

units.

The dimensions lets Zohmg know what your data looks like while the

projections hints at what queries you will want to ask. Once you get

more comfortable with Zohmg you will want to optimize your projections

for efficiency.

For example, if you wish to find out how many times a certain clip has

been watched broken down by country, you would want to set up a

projection where clip is the first dimension and country is the second

one.

For the television station, something like the following will do just

fine.

## config/dataset.yaml
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dataset: television

dimensions:

- clip

- producer

- country

- player

projections:

- clip

- player

- country

- clip-country

- producer-country

- producer-clip-player

units:

- plays

- loves

- seconds

After you’ve edited environment.py and dataset.yaml:

$> zohmg setup

This command creates an HBase table with the same name as your dataset.

Verify that the table was created:

$> hbase shell

hbase(main):001:0> list

television

1 row(s) in 0.1337 seconds

Brilliant!

DATA IMPORT

-----------

After the project is created and setup correctly it is time to import some

data.

Data import is a process in two steps: write a map function that analyzes

the data line for line, and run that function over the data. The data

is normally stored on HDFS, but it is also possible to run on local data.

WRITE A MAPPER
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----------------

First we’ll write the mapper. It will have this signature:

def map(key, value)

The ’key’ argument defines the line number of the input data and is

usually (but not always!) not very interesting. The ’value’ argument is a

string - it represents a single line of input.

Analyzing a single line of input is straightforward: split the line

on spaces and collect the debris.

## mappers/mapper.py

import time

def map(key, value):

# split on space; make sure there are 7 parts.

parts = value.split(’ ’)

if len(parts) < 7: return

# extract values.

epoch = parts[0]

clipid, producerid, length = parts[1:4]

country, player, love = parts[4:7]

# format timestamp as yyyymmdd.

ymd = "%d%02d%02d" % time.localtime(float(epoch))[0:3]

# dimension attributes are strings.

dimensions = {}

dimensions[’clip’] = str(clipid)

dimensions[’producer’] = str(producerid)

dimensions[’country’] = country

dimensions[’player’] = player

# measurements are integers.

measurements = {}

measurements[’plays’] = 1

measurements[’seconds’] = int(length)

measurements[’loves’] = int(love)

yield ymd, dimensions, measurements

The output of the mapper is a three-tuple: the first element is a

string of format yyyymmdd (i.e. "20090601") and the other two elements

are dictionaries.
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The mapper’s output is fed to a reducer that sums the values of the

units and passes the data on to the underlying data store.

RUN THE MAPPER

--------------

Populate a file with a small data sample:

$> cat > data/short.log

1245775664 1440 201 722 GB VLC 0

1245775680 1394 710 2512 GB VLC 1

1245776010 1440 201 722 DE QUICKTIME 0

^D

Perform a local test-run:

$> zohmg import mappers/mapper.py data/short.log --local

The first argument to import is the path to the python file containing the map

function, the second is a path on the local file system.

The local run will direct its output to a file instead of writing to

the data store. Inspect it like so:

$> cat /tmp/zohmg-output

’clip-1440-country-DE-20090623’ ’{"unit:length": {"value": 722}}’

’clip-1440-country-DE-20090623’ ’{"unit:plays": {"value": 1}}’

’clip-all-country-DE-20090623’ ’{"unit:length": {"value": 722}}’

[..]

If Hadoop and HBase are up, run the mapper on the cluster:

$> zohmg import mappers/mapper.py /data/television/20090620.log

Assuming the mapper finished successfully there is now some data in

the HBase table. Verify this by firing up the HBase shell:

$> hbase shell

hbase(main):001:0> scan ’television’

[..]

Lots of data scrolling by? Good! (Interrupt with CTRL-C at your leisure.)

SERVE DATA

----------
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Start the Zohmg server:

$> zohmg server

The Zohmg server listens on port 8086 at localhost by default. Browse

http://localhost:8086/ and have a look!

THE API

-------

Zohmg’s data server exposes the data store through an HTTP API. Every

request returns a JSON-formatted string.

The JSON looks something like this:

[{"20090601": {"DE": 270, "US": 21, "SE": 5547}}, {"20090602": {"DE":

9020, "US": 109, "SE": 11497}}, {"20090603": {"DE": 10091, "US": 186,

"SE": 8863}}]

The API is extremely simple: it supports a single type of GET request

and there is no authentication.

There are four required parameters: t0, t1, unit and d0.

The parameters t0 and t1 define the time span. They are strings of the

format "yyyymmdd", i.e. "t0=20090601&t1=20090630".

The unit parameter defines the one unit for which you query, for

example ’unit=plays’.

The parameter d0 defines the base dimension, for example ’d0=country’.

Values for d0 can be defined by setting the parameter d0v to a

comma-separated string of values, for example "d0v=US,SE,DE". If d0v is

empty, all values of the base dimension will be returned.

A typical query string looks like this:

http://localhost:8086/?t0=20090601&t1=20090630&unit=plays&d0=country&d0v=DE,SE,US

This example query would return the number of clips streamed for the

time span between the first and last of June broken down by the

countries Sweden, Germany and the United States.

The API supports JSONP via the jsonp parameter. By setting this
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parameter, the returned JSON is wrapped in a function call.

PLOTTING THE DATA

-----------------

There is an example client bundled with Zohmg. It is served by the Zohmg server

at http://localhost:8086/graph/ and is quite useful for exploring your dataset.

You may also want to peek at the javascript code to gain some inspiration and

insight into how the beast works.

The graphing tool uses Javascript to query the data server, and plots

graphs with the help of Google Charts.

KNOWN ISSUES

------------

Zohmg is alpha software and is still learning how to behave properly in mixed

company. You will spot more than a few minor quirks while using it and might

perhaps even run into the odd show-stopper. If you do, please let us know!

Zohmg currently only supports mappers written in Python. Eventually, you will

also be able to write mappers in Java.
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