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Abstract

This project explores the concept SDR (Software Defined Radio) using the free software GNU-
radio and the graphical environment GRC (GNU Radio Companion). One goal was to evaluate the
potential of GNU-radio and GRC in combination with the RF-hardware Ettus USRP B210 to find
out what can easily be made and what cannot. Another goal was at the beginning to implement a
DAB (Digital Audio Broadcasting) receiver in GNU-radio. Due to the complexity of a DAB
receiver and the fact that this was my first contact with SDR, the project was limited to the use of
the standard function blocks that comes with the GNU-radio package. A number of experiments
resulted in list of blocks that can be used and blocks that are missing. As a good side effect of all

experiments a useful RF-recorder / player was created.

The main purpose with implementing a DAB receiver in SDR is to achieve an affordable and
flexible tool to examine how different interferences affects the different internal data streams and
finally the sound reproduction in a DAB system. For this reason, creation and injection of

interferences into a DAB-signal using SDR is also covered in this project.

The DAB system uses COFDM (Coded Orthogonal Frequency Division Multiplex), a modulation

technology that has increased in popularity over the last years. This report aims to make it easier to

understand the fundamentals of this technology.

Most of the practical work were done at Volvo PV Torslanda, Gothenburg.

Keywords: DAB, radio, SDR, Software Defined Radio, Ettus, USRP B210, GNU-radio, GRC,

implementation
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Glossary

ADC - Analogue Digital Converter

C/N — Current / Next

CA — Conditional Access

CIF — Common Interleaved Frame

COFDM - Coded Orthogonal Frequency Division Multiplex
CRC - Cyclic Redundancy Check

CU - Capacity Unit

DAB - Digital Audio Broadcasting

DAC - Digital Analogue Converter

DSP — Digital Signal Processing

EEP — Equal Error Protection

ETSI - European Telecommunications Standards Institute
FEC — Forward Error Correction

FFT — Fast Fourier Transform

FIB — Fast Information Block

FIC — Fast Information Channel

FIDC — Fast Information Data Channel

FIG — Fast Information Group

FIR — Finite Impulse Response

FM - Frequency Modulation

FPGA - Field Programmable Grid Array
GNU — GNU's Not Unix!

GPIO — General Purpose Input Output

GRC — Gnu Radio Companion

GUI — Graphical User Interface

IFFT — Inverse Fast Fourier Transform

ISI — Inter-Symbol Interference

LNA — Low Noise Amplifier

MCI — Multiplex Configuration Information
MPEG — Moving Pictures Expert Group
MSC — Main Service Channel

OE — Other Ensemble

OFDM - Orthogonal Frequency Division Multiplex
PAD - Programme Associated Data

PRBS - Pseudo-Random Binary Sequence
PRS — Phase Reference Symbol

PWM — Pulse Width Modulation

RF — Radio Frequency

RX - Reception

SDR - Software Defined Radio

SNR - Signal Noise Ratio

SI — Service Information

TII — Transmitter Identification Information
TX — Transmission

UEP — Unequal Error Protection

UHD — USRP Hardware Driver

USB — Universal Serial Bus

USRP — Universal Software Radio Peripheral



1. Introduction
1.1. Background

The trend of today is that more and more countries change their radio broadcasts to the DAB
(Digital Audio Broadcasting) standard [8](516). The main reason is that DAB is superior to FM
when it comes to the use of bandwidth. There are also other advantages like more data services,
better sound quality (at high bit rates) and the possibility to use the same frequency at all
transmitting sites. To meet these needs Volvo provides DAB receivers for their cars. The demands
on a automotive DAB receiver is slightly higher than for domestic ones. They must work
satisfyingly when the car moves and all challenges that comes with that. The signal strength and
quality will change all the time due to changes in distance to the transmitter, doppler shift, new
multipath situations etc. Interferences from different sources will also change under movement and
also the car itself can produce interferences. The electrical system in vehicles becomes more and
more complex. One specific source of interference is the PWM (Pulse Width Modulation)
controllers in electric / hybrid vehicles where high currents are switched on and off rapidly creating
a lot of harmonics. To optimize the DAB receiver for automotive use and to develop the vehicle in a
DAB-friendly way more tools are needed. Anechoic chambers and spectrum analysers are great
resources for these purposes but what happens inside the DAB decoder chip set is still a bit of a
black hole. The old analogue FM systems give early warnings like increased noise, switching to
mono etc. In a DAB receiver the first warning is that the audio signal becomes unusable because of
cut outs, skipping and high pitched noises. With a SDR (Software Defined Radio) model of a DAB
receiver with free access to all decoding stages it will be possible to monitor error rates, signal
levels, phase errors and more to be aware of the margins to that stage where the audio signal
becomes unusable. There are equipment available today for these purposes but the devices are very
expensive and not very configurable. Another advantage is that SDR devices are very generic. They

can be used in almost any application as long as the bandwidth is sufficient.



1.2. Purposes

* Investigate how much of a DAB-receiver that can be created using the graphical
environment GNU-radio and the graphical environment GRC and the standard blocks that
comes with the package.

* Evaluate GNU-radio, GRC and the hardware device Ettus USRP B210.

* Create a interference injector using GNU-radio and GRC.

1.3. Limitations

e The newer standard DAB+ is not covered.
*  Only transmission mode 1 is treated.

* Creation of new function blocks is outside this project. All implementation shall be done

using the standard GNU-radio blocks. One exception is the MPEG audio layer 2 decoder.



2. The DAB system

DAB (Digital Audio Broadcasting) is a radio standard for transmission of digital audio and data.
The transmissions can be terrestrial, satellite or cable distributed [1](p164). The development of the
DAB standard dates back to late 80:s and the first test transmissions took place in 1991 [8](p515).
The DAB standard is specified by ETSI (European Telecommunications Standards Institute) in a
number of documents that can be found at worlddab's home page. The documentation is vast and it
may be hard to get a good overview. This chapter is intended as a quick overview for making it easy

to understand the basics of DAB. All facts in chapter 2 can be found in [1] and [8].

2.1. System overview

A DAB transmission consists of a whole ensemble instead of a single station. This means that a
single frequency carries many radio stations providing different services. DAB ensembles are
transmitted in the VHF band I to V or the L-band. See annex A for VHF band III frequency table. A
typical service provides audio and PAD (Programme Associated Data). With a rough comparison
with FM transmissions PAD would correspond to programme related messages provided by RDS
(Radio Data System). However, the service labels doesn't come with the PAD data. The audio is
compressed using MPEG1 audio layer 2 resulting in audio frames which also contains the PAD.

This is done separately for every service.

PAD
Audio frame

MPEG-encoder

Audio

Figure 2.1.1: Audio frames are generated separately for each service [1](p22).




It is also possible to transmit general data services that goes outside the MPEG encoder using

packet mode or stream mode [1](p22).

The audio frames, the packet data and the streamed data are then separately processed by an
energy dispersal scrambler, a convolutional encoder and a time interleaver. The energy dispersal

scrambler scrambles the data in a random way to avoid transmission of repeating patterns| 1](p24).

The convolutional encoder adds redundancy to the signal for error protection. UEP (Unequal Error
Protection) or EEP (Equal Error Protection) can be used. UEP means that important parts of the
audio-frames (such as the header) gets more protection than less important parts (such as sub band

samples).

The time interleaver shuffles data bits in the time dimension according to a pre-defined pattern.

This adds protection against short interferences.

Audio frames, . .
Packet data or To main service

streamed data Energy dispersal Convolutional multiplexer
scrambler encoder Time interleaver |

Figure 2.1.2: All signals are processed to add protection and robustness against
interferences [1](p22).

The next step is to mix all services in the ensemble. This is done by a multiplexer (MUX) and the
result is CIF:s (Common Interleaved Frames)[1](p22). The structure of the multiplexing varies

depending on bit-rate and protection level for each service.



Scrambled &

. ) encoded FIB:s
FIB assembler Energy dispersal Convolutional
scrambler encoder é

Multiplex control data

FIDC MCI Sl

Time interleaved M CIFs
frames from U ’
different services X

Figure 2.1.3: All services are multiplexed [1](p22). All information about the
MUX is provided by a FIC which is built up of FIB:s [1](p29).

When the ensemble is received the receiver needs to know the structure of the multiplexed data to
be able to pick the right data for the selected service. For that reason, a FIC (Fast Information
Channel) is generated[1](p21). The FIC contains service labels and the MCI (Multiplex
Configuration Information). It is also possible to send data through the FIC using FIDC (Fast
Information Data Channel). Typical usages are traffic and warning messages that are independent of
the selected service. The FIC is built up of several FIB:s (Fast Information Blocks). The FIB:s are

energy dispersal scrambled and convolutional encoded but not time interleaved| 1](p22).

The CIF:s and the scrambled and convolutional encoded FIB:s are then put together to form
transmission frames according to transmission mode. Serial data is converted to parallel data and a
symbol generator generates sub-carriers modulated with n/4 D-QPSK (Differential Quadrature

Phase-Shift Keying) (explained in 2.5).

The subcarriers are frequency interleaved which gives protection against narrow-banded

interferences.

A synchronisation channel that consists of a null-frame and a PRS (Phase Reference Symbol) is

added to complete the COFDM (Coded Orthogonal Frequency Multiplex) signal.

A TlI-signal (Transmitter Identification Information) is added to the COFDM signal before it is

up-converted to radio frequency, amplified and transmitted via antenna or cable.

A simplified block diagram showing the generation of a DAB ensemble can be found in annex B.



CIFs

Synchronization-
channel-
generator

Tl signal
generator

Transmission-
frame MUX

Symbol-
generator

OFDM generator
Transmission
signal

Figure 2.1.4: The generation of the transmission signal [1](p22). The transmission signal is
then amplified and sent to the antenna (or cable).

2.2. The DAB transmission frame

The COFDM signal is divided into transmission frames which structure is shown in figure 2.2.1
[1](p144). The frame length varies depending on transmission mode. Transmission mode 1 uses a
frame length of 96 ms which corresponds to 77 COFDM symbols including the null symbol.

The synchronization channel which is explained in chapter 2.5 is used for frame synchronization,
phase reference and frequency correction.

The FIC (Fast Information Channel) which is used to carry configuration information and other
information that is common for the whole ensemble is covered in chapter 2.3.

The Main Service Channel (MSC) transports data for all services and is covered in chapter 2.4.

Syncronization | Fast Information Main Service Channel (MSC
channel Channel (FIC) ( )

Figure 2.2.1: The structure of the DAB data frame [1](p28).




2.3. Fast Information Channel (FIC)

Instead of occupying one frequency for each radio station a number of stations are multiplexed and
transmitted on a single frequency called an ensemble. The old way to select station was to change
the received frequency. Transmitting several stations multiplexed at one frequency created two new

needs:

e The user must be informed about all available stations / services on the ensemble.

e The user must be able to select one of these.

The solution is the use of a FIC (Fast Information Channel). The FIC contains data about all
services on the ensemble [1]. The service labels shown in the display of the receiver are transmitted
through the FIC together with the MCI used by the receiver to find the selected service in the MSC
(Main Service Channel) [1](p29). The FIC contains a number of FIB:s (Fast Information Blocks).
The number of FIB:s depends on transmission mode. DAB mode 1 uses 12 FIB:s per data frame.
Every FIB is 32 byte long. The first 30 bytes consists of one or more FIG:s (Fast Information
Group) and the last 2 bytes is used for CRC (Cyclic Redundancy Check) which is used for error
detection. There are different FIG types for different purposes (see table).

FIG type Function Explanation

0 (000) MCI and part of the SI Carries the multiplex
configuration

1 (001) Labels Service labels to be shown in

the display of the receiver.
2 (010) Labels (long) Same as 1 but for longer labels
that doesn't fit in one FIG.

3(011) Reserved -

4 (100) Reserved -

5(101) FIDC FIC Data channel

6 (110) CA Conditional Access

7 (111) Reserved Except for length 31 which is

used for end marker

Table 2.3.1: The different FIG types and their functions [1](p30).



FIB 1 FIB 2 FIB3 | FIB 12
———y
End- : 16-bit
FIG m FIGn & marker Paddlng CRC
‘_
—
Type Length Data field
Figure 2.3.2: Structure of the FIC [1](p29).

FIC
(384 bytes)

FIB
(32 bytes)

FIG

F igur 2.3.3: The service labels are provided by the FIG type
land?2 [1](p30).

It is possible to use different bit-rates and protection levels (explained in the error protection

chapter) for sub-channels inside one ensemble.

A change in the sub-channel organisation is called a reconfiguration. If a reconfiguration is near by,

this is announced in the FIG type 0 before the actual reconfiguration by sending the new

configuration in combination with the flag C/N (Current / Next) set to 1.




2.4. Main Service Channel (MSC)

The MSC contains data for all services. The data is grouped in a number of CIF:s (Common
Interleaved Frame). DAB mode 1 uses 4 CIF:s per data frame and each CIF contains 55 296 bits
split into 864 CU:s (Capacity Unit)[1](p34). Data can be transmitted in packet mode or stream
mode. Stream mode is used for transmission of signals without a obvious beginning or end such as
audio. The data rate is always a fixed multiple of 8 kb/s. In stream mode the data is divided in

logical frames.

CIF1 CIF 2 CIF3 | . CIF n MSC
—
Cu CuU Ccu P
Ccu CU (6912 bytes)

Sub-channels

Figure 2.4.1: The MSC is divided into a number of CIF:s. Every CIF consists of 864 CU:s.
The sub-channels occupies different number of CU:s depending on bit-rate, protection level
etc...
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2.5. Transmission signal

The data frames described in 2.2 are transmitted using COFDM (Coded Orthogonal Frequency
Division Multiplex) [8](p515). The word “Coded” refers to the error protection used (convolutional
coding for DAB). While most modulation techniques modulates one carrier COFDM uses a large

number of sub-carriers, each modulated with a modulation scheme.

Amplitude
4

>

% fc K4 Frequency

Figure 2.5.1: Graph showing the the sub-carriers in the frequency domain. The f.is
the centre frequency and K is the number of carriers. DAB mode [ uses 1536
carriers, 768 on each side of f.[1](p145, 148).

The main advantage with multiple carriers is that the guard area between each symbol can be
much longer in the time domain compared with a single carrier system with the same data rate [8]
(p367). The reason is that each symbol contains more data. Large guard areas gives better protection
against ISI (Inter-Symbol Interference) caused by multipath propagation, which is reflections of the

same signal with a time-delay and attenuation.

Guard area

&
I Symbol 1 I I Symbol 2 I
|
I Symbol 1 I Guard area I Symbol 2 I
| |
Time

Figure 2.5.2: The larger guard area, the better protection against ISI. Green:
Valid data. Red: ISI. Blue: Data corrupted by ISI [8](p362).
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During each guard interval a cyclic prefix is transmitted. A cyclic prefix is a copy of the first
samples of the previous symbol [8](p362). The cyclic prefix helps the receiver to detect the exact
start of every symbol. It also helps the receiver to pick the right data within a symbol in case there

are delays caused by multipath propagation.

| Copy |

Cyclic

—_—_—m

Time

Figure 2.5.3: The cyclic prefix is a copy of the first samples of the previous symbol and is sent
during the guard interval [8](p362).

Orthogonal refers to the mathematical term orthogonality. To save bandwidth, the sub-carriers
must be as close to each other as possible without interfering each other. The minimum carrier-
spacing is where the carriers are orthogonal to each other. Every modulated sub-carrier produces
side-lobes. There are null-points between the side-lobes and orthogonality in this case is when other

sub-carriers are placed in the null-points [8](p354).

Amplitude
A

>
Frequency

Figure 2.5.4: An orthogonal arrangement of the sub-carriers optimizes the use of
bandwidth. The spacing is chosen so every sub-carrier (blue) is placed at null-points.
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DAB uses n/4 D-QPSK (Differential Quadrature
Phase-Shift Keying) as sub-modulation[8](517).

QPSK uses four different phase-angles which
represents four different numbers (2 bits each) [2]

(p118). I and Q stands for in phase and quadrature.

O,

Figure 2.5.5: Each sub-carrier is
modulated with a QPSK-scheme, and
contributes with 2 bits / symbol.

Differential modulation means in this case that the complex number that is represented by each
sub-carrier is multiplied with the same sub-carrier index from the previous symbol [1](p161)(the
arguments are added). Since the constellation points are placed in 45°, 135°, 225° and 315° the
constellation graph will shift 45° every symbol which is equal to n/4 in radians. The second symbol
in the synchronization channel is called PRS (Phase Reference Symbol). One purpose with the PRS
is to act as a phase reference for the first symbol that carries data. The advantage with differential

modulation is that phase errors that occurs during transmission doesn't affect the transmitted data.

1 2 3

Figure 2.5.6: Phasors showing one sub-carrier transmitting the phase 45° tree symbols in
row. Using differential modulation the previous symbols value is used as phase reference.
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A DAB mode 1 transmission frame consists of 77 symbols including the null-symbol [1](p145).
The null-symbol indicates the beginning of the frame by setting the amplitude of all carriers to zero
[8](p528). However, a few sub-carriers can be used for transmitter identification during the null-
symbol [8](p533). The next symbol is the PRS which, as mentioned before, acts as phase reference
for the first data carrying symbol. Figure 2.5.7 visualizes how the symbols are arranged in a

transmission frame. Every column represents a symbol according to figure 2.5.1 seen from above.

Kifrequerd) Ko 0 OO OO0 O000O0O
* 0000000000
*» 0000000000
*e 0000000000
*c 0000000000
e O0000000O0O0
*» 0000000000
*e 0000000000
*» 0000000000
00000000O00O0
4 0000000000
g L (time)
1= |
Synchronization Channel
Figure 2.5.7: A set of symbols builds a data frame. The null-symbol synchronizes the receiver
by indicating the start of the frame. The PRS acts as a phase reference for the first OFDM
symbol. K = total number of sub-carriers, k = carrier index, L = total number of symbols /
frame (null symbol excluded). | = symbol index. f. = centre frequency. In the guard area
between every symbol in the time dimension a cyclic prefix is transmitted (not shown).
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Parameter | Definition Value for transmission mode 1
L Number of symbols / frame (null symbol excluded) | 76

K Number of used carriers 1536

Tr Frame duration 96 ms

Tauie Null symbol duration ~1,297 ms

Ts Symbol duration (except null) ~1,246 ms

Ty Inverse of carrier spacing 1 ms

A Guard interval duration ~0,246 ms

Table 2.5.1: COFDM parameters for transmission mode 1 [1](p145).

2.6. Energy dispersal

The energy dispersal step scrambles the data with a PRBS (Pseudo-Random Binary Sequence).
This is done to prevent transmission of regular patterns [1](p24, 128). The receiver must recover the

data by scrambling with the PRBS again [8](p538).

A shift-register is loaded with the polynomial P(x)=x’+x’+1 (bit 9, 5 & 1 set to 1, other bits 0). The
incoming data bits are the xor:ed with the shift-register content according to figure 2.6.1. The

content in the shift-register shifts every bit. The shift-register resets every 24 ms [8](p537).

THHHHHHHHE

4
=1

=1 = Scrambled data

Data in

Figure 2.6.1: The PRBS generator generates a sequence based on the polynomial
P(x)=x’+x’+1. The data stream is scrambled with the PRBS to avoid transmission of patterns.
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2.7. Error protection

* Frequency interleaving
* Time interleaving
* CRC

* Convolutional coding

Frequency interleaving means that the information carried by each sub-carrier is re-ordered
between sub-carriers before transmission according to a pre-defined pattern [1](p157). This gives
protection against narrow-banded interferences. Example: Imagine that the text “Hello world” is
transmitted with 11 sub-carriers, one carrier for each letter. If the first 3 carriers are interfered the
transmitter would detect: “ lo world”. If the letters are shuffled around prior to transmission
resulting in the message “lodHrlwe ol” and then shuffled back in the receiver the result could be:
“He lo w rl ” (depending on shuffle sequence). The last message is easier to understand because it is
easier to compensate for many small errors than one big. The same is true for error protection

mechanisms.

The idea with time interleaving are similar to frequency interleaving except for that fact that
information is shuffled in the time dimension instead. This minimizes the consequences caused by

interferences over time. Time interleaving is only applied for the MSC [1](p137).

CRC (Cyclic Redundancy Check) is used at FIB, MSC and MPEG level for error detection. The
data is bit-wise shifted trough a shift-register with 16 stages. The information is XOR:ed with a 16-
bit polynomial between every stage. The final result in the shift-register represents the 16-bit CRC
word. The CRC words are transmitted along with the corresponding data. It is then possible for the
receiver to check the data by performing the same CRC calculation again and compare the result

with the transmitted CRC word. CRC is just used for checking data, not correcting errors.
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Convolutional coding is the FEC (Forward Error Correction) used in DAB [1](p129). The process
adds redundancy to the transmitted signal by transmitting more data than needed. By doing so it is

possible to correct errors caused by different channel conditions.

Two different protection modes are used UEP (Unequal Error Protection) and EEP (Equal Error
Protection). The difference is that UEP uses more protection in critical parts of the signal like the

header in the audio frame.

It is possible to use different protection levels for different sub-channels. UEP offers 5 protection
levels and EEP 4. Higher protection level uses more bandwidth to gain more redundancy. The
protection level affects the code rate where 8/32 is the highest and 8/9 is the lowest. The code rate is
the ratio data in / data out. Code rate 8/32 means that the data is expanded by a factor four which
means that four bits are transmitted for every input bit. In fact, the convolutional encoder always
expands the amount of data with a factor four and then uses puncturing vectors to reduce the
number of bits depending on selected code rate. In other meanings, every usable coding rate has its

own puncturing vector.

Out
Code rate Puncturing
In
=1 =1 =1 =1
¢ 1 1
4 =1 1 =1 1 =1 1 =]
=1 — =] al =1

Figure 2.7.1: The mother code is generated by a network of shift registers and xor gates. The
selected code rate controls the puncturing process [8](p537).
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2.8. Audio and PAD

The audio and the PAD (Programme Associated Data) are encoded during transmission using
MPEG Audio Layer II (ISO/IEC 11172-3 and ISO/IEC 13818-3) [1](p60). The audio frames varies
in size depending on audio mode and the actual bit-rate (8 kb/s to 384 kb/s) [1](p72). The following

audio modes are available:
*  Mono
* Dual channel
* Stereo
* Joint stereo (Stereo mode with lower quality to save bandwidth)

Possible sampling rates are 24 kHz and 48 kHz.

The compression is done by filtering the audio signal into 32 sub-bands [1](175). A psycho-
acoustic model processes the audio spectrum to determine how much the quality in every sub-band
can be reduced without affecting the audible result significantly. The main idea is to take advantage
of the weaknesses of the human hearing. For example, loud sounds masks away silent sounds. A
reduction of the quality or, in some cases, removal of the silent sound will make a minor audible

difference.
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3. The RF-hardware

In this project the Ettus USRP B210 is used as the primary RF-hardware. The USRP B210 is a
circuit board used to transmit and receive radio signals. It acts like an interface between the
computer and the antenna. Most of the RF functions are handled by a single AD9361 chip [5]. For
signal processing a Spartan 6 FPGA is used [3]. When used as a receiver all signals from the
antenna are first amplified by a LNA (Low Noise Amplifier) [4] and down converted to a baseband.
The down conversion is done in both 0° and 90° phase of the LO-signal (Local Oscillator) which
creates a complex base band signal with I and Q components (In Phase and Quadrature). The I and
Q components are converted to digital by two 12-bit ADC:s. Both digital signals are fed into the
FPGA [3] which converts the signals into one UHD (USRP Hardware Driver) transport protocol.
The UHD stream is sent to the computer through a USB 3.0 interface. Parameters like Gain, input
channel, local oscillator frequency, sampling rate and other settings are also sent over the USB.
When transmitting signals the operation is reversed. Two 12-bit DAC:s converts from digital to

analogue and a PA (power amplifier) amplifies the signal that feeds the antenna. [4]

The device doesn't contain any FPGA software. Instead, the FPGA is loaded with software from
the computer each power up. This is done automatically by the UHD driver. However, the driver

need to be set up which is covered in the “installation” chapter.

USB 3.0 FPGA (Xilinx Spartan 6 A
USB 3.0-interface XC6SLX150) RFIC (Analog devices AD9361)
T | I

System clock RF-Frontend
1S aﬁd timing Switch network
Ext_Ref generation

ZXHd

o
>
L8

> L
L

RF- RF-

Figure 3.1: The architecture of the USRP B210.
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Features of the USRP B210 [3]:

20

RF coverage 70 MHz — 6 GHz

USB 3.0 interface

12 bit ADC / DAC

2 TX and 2 RX channels with full or half duplex

GPIO capability

Up to 56 MHz instantaneous bandwidth (1 TX and 1 RX used)

Up to 30.72 MHz of instantaneous bandwidth (2 TX and 2 RX used)

Figure 3.2: The USRP B210 with and without metal case.




4. GNU radio and GNU radio companion

GNU radio is a software development tool-kit for creation of software defined radios. It comes
with a large number of function blocks that provides functions like signal sources and sinks, signal
processing, mathematical and logical operations. The signal processing blocks are written in C++
[9]. SDR:s can be written in python after importing required GNU radio modules but the most user
friendly way is to use the graphical interface GRC (Gnu Radio Companion). In GRC blocks are
picked from a library and placed on a work area. Connections between blocks are made by drawing
lines between their input and output ports which gives a very good overview over the signal flow
[7]. There are a number of different data types used between blocks. To visualize which data type is
associated with a specific in- or output, colour codes are used [10]. Most blocks have a number of
parameters that can be set by the user. Examples of such parameters is frequency and amplitude of
an oscillator or cut off frequency of a low pass filter. Many blocks have a brief documentation that

can be viewed inside the setting menu.

Options Variable
1D: top_block ID: samp_rate
Generate Options: WX GU| Value: 640k

UHD: USRP Sink

File Source Throttle Samp Rate (Sps): 640k
File: /home/fredrik/strom Sample Rate: 640k Cho: Center Freq (Hz): 88.05M
Repeat: Yes Ignore rx_rate tag: True Cho: Gain (dB): 75

Cho: Antenna: TX/RX

Figure 4.1: Example of a simple GRC application for transmission of a pre-recorded FM
baseband.
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Data type Name in GRC

Complex Float 64

Complex Float 32 | Complex

Complex Integer 64

Complex Integer 32

Complex Integer 16

Complex Integer 8
Float 64

Float 32 Float
Integer 64

Integer 32 Int
Integer 16 Short, IShort
Integer 8 Byte, Char, UChar

Message Queue

Q
o
—
S
=
=

Asynchronous

Message
Wildcard

Table 4.1: The different data types used in GRC and their colour codes [10].

4.1. Sources and sinks

Source blocks, often referred to as “sources” are used as signal sources. Signals can be generated,
read form a file or captured with a hardware device. There are also null source blocks that can be
used to connect unused inputs, which in most cases is necessary to make the flow graph executable.
Waveform generators and blocks that captures signals from a hardware are always set to a specific
sample rate. This is not possible with file or null source blocks. In those cases the sample rate can
be limited either by connecting a throttle block or by connecting it to a hardware sink. If a file
source is used in a flow graph without a rate limiting block GRC will use 100% of the processor
and the sample rate will be limited by the speed of the computer. The rate limiting block can be
connected anywhere in the flow graph as long as the signal path from the source to the limiting

block is synchronous.
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Sink blocks are used to output signals from the flow graph to hardware, a file or a null source.
When using hardware sinks the sample rate must be set to match both the incoming signal and the
hardware. If previous signal processing blocks needs a higher sample rate than supported the
hardware or a specific rate is needed the sample rate has to be converted. This can be done by using

decimation, which many blocks offers, or by using a re-sampling block.

Signal Source
Sample Rate: 32k

Waveform: Sine Audio Sink
out———= in

Frequency: 1k Sample Rate: 32k

Amplitude: 1

Offset: 0

Figure 4.1.1: Simple flow graph that generates a 1 kHz sine wave and
outputs it as audio through the sound card.

4.2. Signal processing blocks

The main feature with SDR and GNU radio is the possibility to process signals with software. This
strategy is often referred to as DSP (Digital Signal Processing). GNU radio provides a lot of DSP
blocks that in GRC are categorized in groups in the block library. It is also possible to search for
blocks. When connecting blocks together there are some rules. The data type must match in every
connection. Many blocks have configurable ports which makes it possible to set data type. There
are also a number of blocks called type converters which are used to convert form one data type to
another. The sample rate must always be considered when connecting blocks. First, the sample rate
must be high enough to handle the actual signal. According to the sampling theorem the minimum
sampling rate is defined as f; > 2 - finaxsignal [6] (p 122). If @ block has more than one input port the

sample rate must in many cases be the same on both inputs ports.
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4.3. Tagged streams

There are some situations when it is necessary to pass information between blocks in sync with a
signal that doesn't exist in the signal itself. For example, one block extracts data packages and sends
it downstream as a data stream. To be able to interpret the data the next block needs to know the
beginning and length of every data packet. If both blocks supports tagged streams the solution is to
tag the beginning of every packet with a tag containing the packet length. One feature is that tags

are shown when using some of the instruments which makes debugging easier.

—Data0

—Data 1

Amplitude

frame_len: 48
ofdm_sync_carr_offset: 0
ofdm_sync_chan_taps: #<uniform-vector>

B S A L S o B s
0 1 2 3 4 5 6
Time (ms)

Figure 4.3.1: Time scope showing a data burst containing tags at the beginning.

4.4. GUI and instrumentation

GRC offers some GUI (Graphical User Interface) Widgets for creating simple GUI:s with check
boxes, sliders, choosers etc. The parameter “ID” sets the name of the variable that carries the value
from the widget. For example, if the ID of a chooser is set to “freq” and the user selects 100 using
that chooser the variable “freq” will carry the value 100. Using the variable “freq” as parameter in
blocks instead of numerical values allows the user to control that parameter from the GUI in real
time. The instrumentation blocks are used to create instruments like oscilloscopes, spectrum
analysers etc. They have only input ports and the output is plotted in a window. GRC offers widgets
and instrumentation using both WX and QT framework. The “option” block is set to use either WX

or QT.
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5. Method

Receiving and decoding DAB signals is complicated and the receivers are very complex. A first
study of the specifications were done and a planning report were written. The next step was to
install programs and preform simple test projects to be familiar with the tools.

Following hardware and software were used during the project:

* RF-hardware: Ettus USRP B210

e Computer: Dell Precision M4600 (32 MB ram)

* Operating system: Lubuntu linux 14.10 kernel 3.16.0-33-generic (x86_64) and Windows 7
* DAB receiver: Pure One Elite

e USB-dongle: FM+DAB+DVB-T SDR with RTL2832 R820T Chipset

* GNU Radio Companion version 3.7.3

Following preparing tasks were done:

* Setting up the computer
o Installation of Lubuntu Linux
o Setting up the UHD (USRP Hardware Driver)
o Installing GNU radio Companion
* Understanding the basics of the tools
© QGeneration of simple signals
o Using sources, sinks and instrumentation
© Creation of simple graphical user interfaces using WX and QT
o Creation of a mono / stereo FM receiver with pre-sets
* Generation of DAB baseband signals
© Creation of a baseband recording application
© Capture DAB signals using the USRP and the recording application
o Creation of a playback application

o Verifying captured base bands
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* Generation of a authentic FIC data file and MPEG audio file
o Installing “DAB player von Andreas Gsinn”
o Saving FIC data
o Saving MEPG audio

All tasks above were done with success and some of them are described in details later. It is
obvious that DAB baseband signals are needed for testing purposes. The other test files were

strategically chosen so other blocks of the receiver can be developed stand alone without a working
OFDM receiver.

The main part of the project was the implementation of the receiver and the interference injector.
The idea was first to define the blocks in such a way that the output can be predicted and measured
easily after applying a appropriate input signal. One example is the synchronization algorithm
which shall output a sync pulse every 96 ms after applying a DAB mode 1 signal at the input
(according to the frame length). This can be measured using the GNU-radio instrumentation.

However, as more knowledge about the technology was collected along the way following main

and sub-areas were defined:

e OFDM receiver
© Frame synchronization
o Frequency correction
© OFDM sampling
o FFT
o Differential decoding and frequency interleaving
o Serialization

o Constellation demodulator
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* Stream manipulation

o FIC detection
= FIB detection and CRC
= FIG detection and presentation of service labels
=  Multiplex configuration

o MSC detection
= CIF detection and CRC
= PAD detection and presentation

= MPEG audio decoding and playback

* Interference injection
o Sine wave interferer
© Square wave interferer
©  Multipath simulation
o Recorded interferences
=  Recording

=  Playback

Details about the areas mentioned above can be found later in this chapter.
It should be mentioned that discoveries during the project caused changes in the defined sub-areas.

There are some blocks that comes with GNU-radio that builds a fully functional OFDM
transmitter or receiver with a single block. It was found early that none of them supported the
parameters used by DAB. The only choice then was to try to build the OFDM receiver using
discrete blocks.

One major mistake during the implementation was caused by a misunderstanding about how phase
errors in the sub-carriers are corrected. The most common approach in OFDM is to use a known
symbol (which in this case would be the PRS) to measure the phase error in every sub-carrier. The

result is then used to equalize all sub-carriers the rest of the frame. Most OFDM blocks that comes

with GNU-radio are designed that way.
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5.1. Planning report

The planning report contained the following tasks:

1. Preparations

2. Reception of a DAB signal

3. Demodulation of the DAB signal

4. FIG detection

5. MSC detection

Detection of PAD data and audio stream
MPEG decoding

Interference handling

© 2®» =2

Integration

10. Completion of report

Notable changes from the planning report was that step 5 and 6 was excluded since it was found in
step 4 that important function blocks were missing. Step 9 was also excluded since it requires that
all previous steps are completed. Also the writing of the report were delayed about 3 weeks caused

by personal issues. The progress were communicated to the supervisor continuously.

A Gantt chart can be found in annex E.
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5.2. Installation

This guide assumes that Linux is installed on the computer and that it has access to the internet.
This guide is verified to work with the distribution Lubuntu 14.10. To install GNU Radio, open a

terminal window and type:

sudo apt-get install gnuradio

[13%4]

The user will first be prompted to enter password and later confirm the installation by typing “j”” or
“y” and enter. After the installation the program can be launched from the start menu under the
name GRC. To launch GNU Radio from the terminal type:

~$ gnuradio-companion

At this point GNU Radio should be up and running but it will probably not connect to the USRP
B210. Check the driver by connecting the device to the computer, open the terminal and type:

~$ uhd find devices

If the UHD driver is missing the user will get the message “command not found”. Solve this with:

~$ sudo apt-get install uhd

If the device is not detected the user will get the message “No UHD Devices Found”. The main

problem is likely that the FPGA images for the device are missing. To download and install these

type:

~$ cd /usr/lib/uhd/utils

~$ sudo ./uhd images downloader.py

Check again with:
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~$ uhd_find_devices

If everything went well the UHD-driver should upload the FPGA image to the device and then

output something like:

linux; GNU C++ version 4.8.3; Boost _105500; UHD 003.007.001-0-unknown

-- UHD Device 0

Device Address:
type: b200
name:
serial: F5000B
If the device still is undetected type:
~$ Isusb
Disconnect the device and type again:

~$ lsusb

If one device 1s missing compared to the first list the conclusion should be that the USB connection

is working. For further troubleshooting, visit Ettus homepage.
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5.3. Generation of DAB baseband signals

The experimenting work with modelling the demodulator requires a valid DAB baseband signal
source. The solution was to capture a DAB ensemble with the USRP, record it to file, verify the file
and then use the file as signal source. One alternative solution could be to receive a live DAB
transmission with the USRP and to use that signal as source. One major disadvantage with that is

that it is hard to know if the signal quality is good enough.

GNU radio comes with blocks that makes recording and playback of baseband signals easy. A RF
recording and playback equipment was used as signal source. The output of the signal source was
connected to input RX2 on the USRP. The recording was done with the USRP source block
connected to a file sink block. A OFDM demodulator requires I and Q components of the signal so
both blocks were set to complex data type. A simple GUI that provides possibilities to adjust gain,
set frequency and to monitor the received spectrum was also made. The gain was adjusted for the
best SNR and the frequency so the centre frequency of the OFDM spectrum was close to zero.
Ensembles were first recorded with three different sample rates: 2, 4 and 8 MHz. Even 2,048 MHz
was used later to match the FFT window with the FFT length. Since the sample rate must be a
multiple of the clock rate this was changed from the default 32 MHz to 32,768 MHz when sampling
with 2.048 MHz.

Options QT GUI Chooser QT GUI Range
ID: top_block 1ID: freg 1D: gain
Generate Options: QT GUI Label: DAB Channel Label: Receivergain
Num Options: List Default Value: 1
Default Value: 222.064M Start: 0
Options: [174.928e6, 176.6... Stop: 70
i Labels: ["5A [{174.928 MHz)... Step: 100m
ID: samp_rate
Value: 4M
File Sink
= - File: ...E9730BE9221/DABstrom
Unbuffered: Off
UHD: USRP Source Append file: Overwrite
Samp Rate (5ps): 4M
ChO: Center Freq (Hz): ..64M [BUE——
ChO: Gain (dB): 1 QT GUI Frequency Sink
ChO: Antenna: RX2Z s e L
- fif| FFT Size: 1.024K
Center Frequency (Hz): 0
Bandwidth (Hz): 4M
Figure 5.3.1: Flow graph of the baseband recorder
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Figure 5.3.2: GUI of the baseband recorder.




To verify the recorded baseband signal a transmitter application was built with GRC. In this case
the USRP was used as a transmitter by using the USRP Sink block. The transmitted signal was
received with a domestic DAB receiver. If the ensemble could be received and all services
reproduced with all service labels intact and the audio without any audible errors the file was
considered as usable for further experiments. For fine tuning of the frequency offset a Frequency
Xlating FIR filter was used. A low pass filter was added to suppress frequencies outside the sub-
carriers. The reception quality were flawless using 8 and 4 MHz sampling rate. 2 MHz worked
poorly (skipping audio). 2 MHz should be enough but the explanation can be that it was a second
generation copy. The 2,048 MHz recording were hard to verify because GNU-radio froze all the
time when combining that frequency with the USRP sink. However, the signal looked fine in the

FFT scope.

Options QT GUI Range QT GUI Range QT GUI Range QT GUI Range QT GUI Chooser
1D: top_block 1D: level 0 ID: offset 0 1D: level 1D: offset 1D: freq_0
Generate Options: QT GU| Label: Output level Label: Frequency offset Label: Output level Label: Frequency offset Label: DAB Channel
Default Value: 1 Default Value: 0 Default Value: 70 Default Value: B0k Num Options: List
Variable Start: 0 SEOE =L Start: 0 Start: -1M Default Value: 222.064M
D Stop: 100 Stop: 100k Stop: 100 Stop: 1M Options: [174.928e6, 176.6...
; - Step: 100m E = : = [
et P Step: 1 Step: 1 Step: 10k Labels: ["5A(174.928 MHz)
QT GUI Entry QT GUI Fre
quency S5ink
File Source 1D: freq Low Pass Filter

Name: QT GUI Plot
File: ..30BE9221/DABstrom4M2 Label: Frequency Decimation: 1 FFT Size: 2.048k
Repeat: Yes Default Value: 220M Gain: 1 Center Frequency (Hz): 0

e e Rt Bandwidth (Hz): 4M
Cutoff Freq: 768k

Transition Width: 100k

Frequency Xlating FIR Filter
Decimation: 1

Throttle

Sample Rate: 4M Taps: 1 WIni:.Ic;w;sHammlng . URI:I:: USSRP.jll:k
Ignore rx_rate tag: Tue Center Frequency: 80k . c::pc : (Sps): Hor: 2201
Sample Rate: 4M : Center Freq (Hz):

Cho: Gain (dB): 70
ChO: Antenna: TX/RX

Figure 5.3.3: Flow graph of a DAB transmitter using a baseband file source
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-140 - WJ\MMMMAH
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-2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000
Frequency (MHz)
Figure 5.3.4: FFT plot of the transmitted signal (before up conversion). The higher noise
level on the left side is in fact a second DAB-ensemble suppressed by the low pass filter.
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5.4. Generation of FIC data file and MPEG audio file

After the demodulation the next milestone is to detect the FIC and decode it. The first real proof
that the OFDM demodulator is working would be to extract the service labels from the FIC and
print them on the screen. Developing a FIC decoder requires authentic FIC data for testing
purposes. It is a benefit if the test FIC contains the same data as the FIC in the baseband file. For
generation of a authentic FIC file a DAB receiving software called “DAB player von Andreas
Gsinn” was used. The software player supports a large number of USB dongles, for example those
using the Realtek RTL2832U chip. It also offers possibilities to save FIC data. It is also possible to
save MPEG audio from the selected service. A number of FIC files were created from real
broadcasts and from the earlier developed DAB baseband transmitter. MPEG audio files were also

created for testing of the audio decoding step.

Figure 5.4.1: The dongle used together with "DAB player von Andreas
Gsinn" to capture FIC and MPEG data.
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5.5. OFDM frame synchronization

To be able to extract any valid data from the stream a frame synchronization algorithm is needed.
GNU radio provides 3 different OFDM frame synchronization methods, Cox & Schmidt
synchronization, PN-synchronization and a third method that detects the start of the frame by two
known symbols. None of these blocks are able to sync on the null symbol. The two first blocks uses
a sync-symbol with every even or every odd sub-carrier set to zero which makes the first half
identical to the second half in the time domain. They also measures the frequency offset in the
signal. The third block relies on two known symbols in row according to its documentation. It was
tested that a null-symbol can't be used for this block as one of the two known symbols.

For detection of the null symbol the sync algorithm must detect energy dips in the signal. This can
be done using standard GNU radio blocks. To prove that a RMS block was used to measure the
energy in the signal over a given time, in this case the length of the null symbol. The energy signal
is then inverted so the energy dips are converted to energy tops. A threshold block forms pulses with
amplitude 1 by comparing the input signal with the high and low threshold values. Some more
blocks were used for data type conversion and offset adjustment. This algorithm was able to
reproduce the synchronization pulses. However, it struggled with some problems and a custom
made block would do the job more accurate. This algorithm is sensitive to shifts in the signal level
and SNR (Signal Noise Ratio). This was revealed by shifting the signal level and offset manually.
The explanation is that this algorithm uses fixed threshold and offset. The suggestion is to build a
custom block that carries out both the synchronization and the frequency offset measurement.

Creating new blocks is outside the limitations of this project so this solution were used.

RMS Float To Short - Add Const
out in out in out
Alpha: 1.246m Scale: -1 Constant: 4

Threshold
- Short To Float Low: 0
in E—F in out
Scale: 1 High: 1

Initial State: 0

Figure 5.5.1: Flow graph showing the frame sync algorithm.
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Figure 5.5.2: Time scope view of the frame synchronization
pulses. The frame duration is 96 ms in mode 1 [1].
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5.6. Frequency correction

It is very important that f. is located as close as possible to 0 Hz after the down conversion. Since
the spacing between the sub-carriers is only 1 kHz in DAB mode 1 [1](p27) even small frequency
shifts can cause sub-carriers to be detected in the wrong frequency bin or interfering each other
resulting in corrupted data. Both the Cox & Schmildt- and the PN-synchronization block detects
small frequency errors and outputs those as a frequency offset signal which is used externally for
frequency correction by controlling a frequency modulator. The measured frequency offset then
results in a generated frequency that is used to convert the baseband signal to the right frequency.
These blocks are unusable in this case. They are not able to detect the null symbol, see chapter 5.5.
Unfortunately, they were also unable to detect the frequency offset which was tested. The
explanation is likely that they need to find the PRS to measure the frequency offset. This is

impossible without synchronization.

The suggestion is to, as mentioned before, build a custom made block that does both the frame

sync extraction and measures the frequency offset just like the excising OFDM sync blocks.

The suggestion is to use the PRS for frequency offset measurement [8](p534).

. Frequency Mod
. [freq_offset i
Schmidl & Cox OFDM synch. [fregd n Sensitivity: -31.25m _
FFT length: 64 Multiply
Cyclic Prefix length: 16 detect

Delay
Delay: B0

Figure 5.6.1: Frequency correction as it is done in the example "rx_ofdm.grc" included in the
GRC bundle. The detect signal outputs the frame synchronization. The suggestion is to build a
"DAB-sync" block that replaces the Schmidl & Cox block above.
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5.7. OFDM sampling

The FFT block requires a vector at the input which size is equal to the FFT length. The conversion
to vectors must be synchronized with the signal. GNU radio offers a block called OFDM sampler
for that purpose. It requires the parameter FFT size which in this case is 2048 and the parameter
symbol length which is equal to the FFT size + cyclic prefix. The cyclic prefix is transmitted in the
guard area between two symbols[8](p362). It is given in the standard that the symbol time is 1 ms
and the guard time is 0,246 ms for DAB mode 1 [1](145). Therefore the cyclic prefix length must

(0.246-2048)

be: 1

~504 The synchronization was done by connecting the OFDM frame sync

signal to the flag input. It is unclear if that's the right way to use the flag input port since there is no

documentation about that port. It is likely that the OFDM sampler block can be used for DAB.

Another block that does the same thing is the header / payload demux. This block is used in the
OFDM packet receiver example “rx_ofdm.grc”. In addition to the sampling it also provides a
demux function intended for receivers with separate decoding paths for header and payload. The

block were tested but discarded since it didn't accept the DAB signal.

- Header/Payload Demux

Header Length (Symbols): 3
| ltems per symbol: 64
Length tag key: frame_len
Qutput Format: Symbols

Figure 5.7.1: The block "header/payload demux" preforms
sampling to OFDM symbols. However, it was discarded
because it didn't accept the DAB signal.
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5.8. FFT (Fast Fourier Transform)

The next signal processing steps must be done in the frequency domain. The FFT block transforms
the incoming signal from time to frequency domain when it is set to forward mode (and opposite
direction in reverse mode). The FFT size refers to the frequency resolution. Setting a FFT length of
2048 will divide the FFT window in 2048 frequency bins. The FFT window is limited by the
sampling rate. In this case the window was defined by the sampling rate 2,048 MHz. Dividing 2,048
MHz with 2048 gives a spacing of 1 kHz between the frequency bins which is equal to the spacing
between the sub-carriers in DAB mode 1. The FFT block outputs a vector with a length
corresponding to the FFT size. Each element consists of a complex number representing what was
detected in the corresponding frequency bin. It is then possible to reproduce amplitude and phase of
each sub-carrier. The FFT block also supports the float data type but this is not interesting in this
case since the phase information is necessary. It is very likely that the FFT- block provided with
GNU-radio can be used in a DAB implementation without any modifications. The proof for that is

that the constellation points were detected using this FFT block, see figure 5.10.1.

Subcarrier
Frequency bin

\x“‘ e

LA

-1024 -768 767 1023
-1023 -767 768 1024

(‘rﬁw‘ﬂ_rﬁ.\, . ,’;Tﬂﬁﬂ’ﬁ’ﬁ ‘“‘(‘lW'wﬂ!r“«,Lr- W"\-‘mw{" vh’“r’*."uqﬁllﬁ»ﬂ,

L L ‘ﬁ‘“‘.f'l‘*’w.f“w*?"“u “

L FFT window J

Figure 5.8.1: Illustration showing how sub-carriers are detected in frequency bins using
the FFT algorithm. Dividing the FFT window in 2048 bins represents the FF'T length
2048. At the bottom the corresponding OF DM spectrum is shown.
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5.9. Differential demodulation and frequency deinterleaving

DAB uses Differential modulation and for that reason no equalization is needed. Every sub-carrier
uses the same sub-carrier index from the previous symbol as phase reference. The PRS acts as
phase reference for the first symbol after the synchronization channel. The differential modulation

is described by the following formula [1](p161):

Ziv—=Zi_1k Y1k

Z is a differential modulated item, 1 is the symbol number, k is the sub-carrier index and y is a item

without differential modulation.

GNU-radio provides a differential phasor block. Unfortunately it doesn't support vector mode.
Differential modulation is applied on sub-carriers with same index from the previous symbol. For
that reason the differential phasor block must handle vectors to be able to keep the whole previous
symbol in memory. Such a block would fit best between the FFT block and the serializer block. It
could be combined with the frequency deinterleaving function which also fits best where the signal

1s in vector form and in the time domain.

Frequency interleaving means that the data that modulates each sub-carrier are shuffled around in
each frame according to a pattern described in the DAB specification [1](p157). The purpose is to
slice narrow-banded interferences to many small errors, which later can be corrected by the error
protection mechanism. The frequency deinterleaving shuffles the data back. There is no obvious
block for that function in GNU Radio. There are interleave and deinterleave blocks that splits a

vector to separate streams and vice versa. They are unusable in this case for at least two reasons:
» It is impractical with blocks having 2048 ports.

* The shuffle sequence also depends on the frame number. Using the existing blocks will

result in a static pattern.
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The missing block(s) that should fit between the FFT block and the serializer block shall take a
complex vector with the size equal to the FFT-length as input. It shall apply differential
demodulation and frequency deinterleaving according to the DAB standard. The PRS and the null-
symbol must be removed to prevent the to propagate in the data stream. It shall be possible to set
FFT-size and interleave pattern. Alternatively, the parameter * transmission mode” would be enough
since both FFT-size and interleave pattern are associated with the transmission mode as described

in the DAB standard.

FFT
OFDM Serializer
e Differential phasor S s
- Forward/Reverse: Forvard H and frequency- H Occupled Carriers: (range|... -
Windew: window.blackmanhar... Z
Shift: Yes deinterleaver Length Tag Key:
Num. Threads: 1 Input is shifted: True

Figure 5.9.1: The best place to preform differential demodulation and frequency
deinterleaving is probably between the FF'T and the OFDM Serializer blocks. Dark blue ports
symbolizes complex vectors.
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5.10. Serialization

At this stage the received signal is represented as a vector containing complex values in the time
domain. Before the constellation demodulator the signal has to be serialized. This can be done with
the “OFDM serializer” block. Required parameters are FFT length and occupied carriers. Occupied
carriers are -768 to -1 and 1 to 768 (0 is unused). The easiest way to set the occupied carriers-
parameter is to enter: (range(-768,-1) + range(1,768)). The FFT length should be 2048 for DAB
mode 1. The “OFDM serializer” block can probably be used for DAB as it is without any

modifications.

To support all previous statements about blocks and their usability for DAB it should be possible
at this point to plot the QPSK constellation. To compensate for the missing differential phasor (see
chapter 5.9) a work around was done. The idea was to use the existing differential phasor block
even if it doesn't support vectors. This was done by delaying the output of the FFT one symbol and
then connect the delayed signal to a second OFDM serializer block. This produces two streams:
One from the current symbol and one from the previous. The two streams were merged into one
stream using a interleave block. This produces one stream where every second item comes from the
current symbol and the other second comes from the delayed previous symbol. By using this
method the amount of data is doubled. This shouldn't be a problem if the only purpose is to apply

differential demodulation so the QPSK constellation can be viewed.

42



® Data 0

1,5

0,5

Quadrature

-0,5 _

_1,5 __

In-phase

Figure 5.10.1: Constellation diagram showing the QPSK dots extracted from the signal after
the serialization. The synchronization worked poorly, the frequency correction is missing and
the null-symbol wasn't removed so the dots were unstable. A work around was also done to
compensate for the missing differential phasor block. However, this test shows the potential of
the OFDM sampler, FFT and OFDM serializer blocks. A flow graph of the code that
generated this image can be found in annex C.

5.11. Constellation decoder

At this stage the complex signal from the serializer shall be turned into a bit-stream. This is done
by a constellation decoder. There are some blocks provided with GNU-radio that probably can be
used as they are. However they couldn't be tested since there were important blocks missing earlier
in the chain. One of the interesting blocks is the constellation decoder block. It is a very generic
block that takes a constellation object as parameter to map the incoming signal against. The

differential demodulation is done earlier so the constellation map shall be a simple QPSK-sheme.
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5.12. Stream manipulation

Most of the stream manipulation could not be done with the existing blocks. Data must be picked
in different positions in the data frames and in many cases on conditional criteria. There is a block
called “keep M in N”” which outputs M items from every N items at the input. It is also possible to
set a offset which makes it possible to pick the M items anywhere from the N items. This could, for
example, be used to separate the FIC from every frame. The problem is that the block must be
synchronized with the stream so every N items corresponds to a data frame. The obvious way to do
that is to use a tag as sync-pulse. Unfortunately, this block doesn't support tag synchronization.
There are many situations where a conditional statement is needed. For example, if a FIG is flagged
as a FIG type 0 the information should be used to select sub-channel. If the FIG is of type 1 the
contents should be addressed to the display etc. None of the blocks were suitable for these

conditional operations.

Another necessary function is the CRC calculations. There are a block called “Stream CRC32”
that can both generate and check CRC. Unfortunately, it is locked to 32-bit CRC and DAB uses 16
bits. It is also impossible to initialize the shift-registers to “1” which is necessary [1](p29, p36, p39).

When it comes to the output and control of the receiver the GUI-widgets provided with GRC is

insufficient.

One thing that could be done was the audio decoding and playback. The audio stream that was
captured as described in chapter 5.4 could be streamed to the media player VLC as a UDP stream
using the block “UDP sink”. When feeding the UDP sink from a file a “trottle” block was needed to
prevent excessive buffering. The conclusion must be that custom block(s) must be made for the all

stream manipulation and GUI.
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5.13. Interference injection

Another purpose with this project was to build a interferer in GRC that injects interferences into a
DAB transmission. The interferences can both be synthesized or pre-recorded. A concept interferer,

which easily can be expanded with more functions, were made (see annex D for flow graph).

The signal source consists of a pre-recorded DAB-ensemble down converted to baseband, a sine
wave generator, a square wave generator and a file source for pre-recorded interferences. Each
source except for the DAB-source have their own level controllers which can be controlled from the
GUIL. The level is adjusted by simply multiplying each signal with a constant using “multiply
constant” blocks. The constants are connected to variables that can be controlled by sliders in the
GUI. There are also sliders for controlling the frequency of each waveform generator. Another
feature with the interferer is that multipath propagation can be simulated. A multipath occurs when
the transmitted signal is reflected off surfaces on its way to the receiver. The reflections takes a
longer path then the direct signal resulting in a delay in the reflected signal compared with the direct
signal. The reflected signal is also attenuated as a result of the longer path and the attributes of the
reflective surface. The multipath simulator in the interference injector simply delays the DAB
source signal using a delay block. The delay time can be controlled by a slider to simulate different
multipath distances. It is also possible to control the attenuation caused by the multipath with a level
slider. All signals are then added using a multi input add block before it is transmitted by the USRP
via the USRP sink block. The signal can then be received using a ordinary DAB receiver.

Pa

Figure 5.13.1: A simple multipath situation. The green signal is the direct signal and
the red one is reflected off a wall. The reflected signal is delayed and attenuated as a
result of the longer path. It is also likely that the ground would reflect the signal
resulting in a second multipath (not shown).
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The interference injector were tested by receiving the transmitted signal using the Pure One Elite
DAB receiver. All functions functioned as predicted. Different interference sources were used one
by one or combined and the audio began to skip when the interference levels became too high. It is
not a accurate instrument by any means but it can still be used to evaluate a DAB receivers

resistance to different interferences relative to each other. This can be done as follows:

1. Arecorded interference is added to the DAB signal and transmitted to the receiver.

2. A second synthesized interference, a square wave for example, is added and the level is

increased until the reception becomes unacceptable.

3. At the point when the reception were affected the set level of the second interference is

noted down.
4. Repeat step 1 to 3 with a second recorded interference.

5. Comparison of the two levels reveals which one of the two interferences that affects the

DAB signal in the most negative way.

It should be taken in consideration that the result can differ depending on the attributes of the
second interference relative to the first one. It is also of great importance that the test is carried out

in a environment free from other interferences. An anechoic chamber is preferable.

DAB source Delay H )li‘éc\iljglstable

Recorded Adjustablel USRP
interference level | S cink
. | m
Sine wave Adjustable
level I
Square Adjustablel
wave level I

Figure 5.13.1: Block diagram of the interference injector. The GNU Radio flow graph can be
found in annex D.

c
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6. Results

It became clear at an early stage that several custom made blocks are needed to implement a DAB

receiver with GRC. Blocks that definitively are missing:

* Frame synchronization and frequency correction that supports the DAB synchronization

channel.

* Frequency deinterleaving- and differential decoder block that can handle vectors.

* Blocks for all stream manipulation and GUI.

Blocks that probably can be used as they are:

* USRP Source

e OFDM sampler

« FFT

* OFDM Serializer

* The constellation decoder in combination with a constellation object

* The UDP sink can be used to output the audio stream to an external media player
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Other valuable results:

48

The discoveries described in this report and the resulting GRC flow graphs may represent a

good springboard for further research.

A functional RF-recorder and player were made. These may, after some fine tuning, replace
the large, heavy, expensive and power demanding RF-recorders / players used at Volvo

today.

A working interference injector was made.

It has been proven how easy and cheap instruments like spectrum analysers can be made
with SDR software and hardware. Many measurements done during product development
are non verifying measurements and the GNU-radio instrumentation is more than enough in
many cases. It is much worth that many engineers can have their own cheap instruments

instead of sharing one expensive instrument.

This project has contributed with knowledges about what can be easily done with GRC and

what cannot.

It was proven that VLC can be used to play MPEG layer 2 audio that origins from a data

stream inside GNU-radio.

Frame synchronization pulses were extracted and constellation plots became visible. The

result wasn't perfect but it was valuable to find out the potential of the different blocks.



7. Discussion and conclusions

It is obvious that SDR will gain in popularity as a cheap and flexible development tool. This
assumes that the software and hardware works well and is easy to use. During this project it was
discovered how easy things can be made with SDR using GRC but also the opposite were

experienced.

The concept with graphical programming and flow graphs is very user-friendly and gives a very
good overview. GRC offers this for free but there are many things that could be improved. One of
those things is the documentation and the examples. Some blocks are well documented and some
doesn't have documentation at all. In general the documentation needs a major overview. Much of
the progress was the result of days with trials and errors trying to find out exactly how different
blocks behaved by probing inputs and outputs with different instrumentation and using appropriate

test signals.
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8. Further research

Except for creating all missing blocks and complete the DAB receiver a number of problems that
came up during this project need to be investigated:

There were problems with the instrumentation provided with GNU-radio (both WX and QT). For
example, when measuring the synchronization pulses with a time scope different results were

obtained with the WX and the QT scope.

There were also problems related to the hardware / communication with the hardware. When using
sample rates over 8 MHz the system became unstable and seemed to corrupt the FPGA software in
the USRP. When that happened the solution was to re-power the USRP to force a software reload.
The same thing happened more than one time when moving around the USRP when it was in

operation which may indicate a bad cable or solder joints in the USRP.

Another problem was the selection of the transmission frequency. For example, it was possible to
transmit a recorded DAB ensemble at 220 MHz and receive it on a DAB receiver but not at 220,352
MHz which corresponds to DAB channel 11C. The same phenomena occurred on other frequencies
too. Typing the frequency in the form 220,352e6 or 220352000 gave the same result. When using
real DAB frequencies the receiver in most cases was able to find some, but not all, of the services
but it was impossible to play any audio. Shifting the DAB ensemble up and down within the
baseband with different frequency offsets didn't solve anything. When transmitting on a working
frequency like 220 MHz the receiver was able to compensate for frequency shifts made at baseband
level even if it was shifted up 352 kHz generating a output frequency of 220,352 MHz. The
conclusion is that this problem is related to GNU-radio or the USRP.
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10.

Annex A

Frequency table for VHF band III [8](p265).

Channel Center frequency (MHz)
S5A 174,928
5B 176,640
5C 178,352
5D 180,064
6A 181,936
6B 183,648
6C 185,360
6D 187,072
7A 188,928
7B 190,640
7C 192,352
7D 194,064
8A 195,936
8B 197,648
8C 199,360
8D 201,072
9A 202,928
9B 204,640
9C 206,352
9D 208,064
10A 209,936
10B 211,648
10C 213,360
10D 215,072
11A 216,928
11B 218,640
11C 220,352
11D 222,064
12A 223,936
12B 225,648
12C 227,360
12D 229,072
13A 230,784
13B 232,496
13C 234,208
13D 235,776
13E 237,488
13F 239,200
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Annex B

11.

Block diagram showing the generation of a DAB ensemble [1](p22).
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Annex C
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Annex D

13.

Flow graph of the interference injector.
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Annex E
Gantt chart of the planning report.
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DAB radio design and implementation

FREDRIK FORSBERG

Software designed radio (SDR) is a technique where the signal processing of the radio signal is
done with software instead of hardware. This approach gives the designer maximum flexibility and
it is also possible to use the same hardware for many different applications which is a benefit in
many ways. It is not a new concept but it has become more widely used as a result of lower price of
computer power. SDR:s can be made to run on different chips, mostly DSP:s but there are also
software development kits for the PC. One of these development kits is GNU-Radio with the
graphical shell GRC (Gnu Radio Companion). One focus in this project was to investigate how
much of a DAB receiver that can be implemented in GRC using the standard blocks that comes
with the package. Consumer receivers are built up of chip-sets that provides all DAB functions. A
SDR model of a receiver gives access to all signal processing stages. This is usable when

investigating interferences impact on a DAB receiver.

In most consumer DAB -receivers all

[functionality is provided by a few customized
chips. This picture shows the Fenix 14701B-chip
which functions as the tuner.
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